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2.0  RADAR RANGE EQUATION 

 

2.1  INTRODUCTION 

 One of the simpler equations of radar theory is the radar range equation.  

Although it is one of the simpler equations, ironically, it is an equation that few radar 

analysts understand and many radar analysts misuse.  The problem lies not with the 

equation itself but with the various terms that make-up the equation.  It is my belief that if 

one really understands the radar range equation one will have a very solid foundation in 

the fundamentals of radar theory.  Because of the difficulties associated with using and 

understanding the radar range equation we will devote considerable class time to it and to 

the things it impacts, like detection theory, matched filters and the ambiguity function. 

 

2.2  BASIC RADAR RANGE EQUATION 

 One form of the basic radar range equation is 
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where 

 SNR is termed the signal-to-noise ratio and has the units of watts/watt, or w/w. 

 SP  is the signal power at some point in the radar receiver – usually at the 

output of the matched filter or the signal processor.  It has the units of watts 

(w). 

 NP  is the noise power at the same point that SP  is specified and has the units 

of watts. 

 TP  is termed the peak transmit power and is the average power when the radar 

is transmitting a signal.  TP  can be specified at the output of the transmitter or 

at some other point like the output of the antenna feed.  It has the units of 

watts 

 TG  is the directive gain of the transmit antenna and has the units of w/w. 

 RG  is the directive gain of the receive antenna and has the units of w/w.  

Usually, T RG G  for monostatic radars. 

   is the radar wavelength (see Equation (1-25) of the Radar Basics chapter) 

and has the units of meters (m). 

   is the target radar cross-section or RCS and has the units of square meters 

or m
2
. 

 R is the range from the radar to the target and has the units of meters. 
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 k is Boltzman’s constant and is equal to  231.38 10  w Hz K . 

 0T  denotes a reference temperature in degrees Kelvin  K .  We take 

0 290 KT   and usually use the approximation 
21

0 4 10  w/HzkT   . 

 B is the effective noise bandwidth of the radar and has the units of Hz.  I 

emphasized the word effective because this point is extremely important and 

often misunderstood and misused by radar analysts. 

 
nF  is the radar noise figure and is dimensionless, or has the units of w/w. 

 L is a term included to account for all losses that must be considered when 

using the radar range equation.  It accounts for losses that apply to the signal 

and not the noise.  L has the units of w/w.  L accounts for a multitude of 

factors that degrade radar performance.  These factors include those related to 

the radar itself, the environment in which the radar operates, the radar 

operators and, often, the ignorance of the radar analyst. 

We will spend the next several pages deriving the radar range equation and attempting to 

carefully explain its various terms and their origins.  We will start by deriving SP , or the 

signal power component and follow this by a derivation NP , or the noise component. 

 

2.2.1  Derivation of SP  

2.2.1.1  The Transmitter 

 We will start at the transmitter output and go through the waveguide and antenna 

and out into space, see Figure 2-1.  For now, we assume that the radar is in free space.  

We can account for the effects of the atmosphere at a later date.  We assume that the 

transmitter generates a single, rectangular pulse (a standard assumption) at some carrier 

frequency, cf .  A sketch of the pulse (the terminology we use) is contained in Figure 2-2.  

The average power in the signal over the duration of the pulse is termed the peak transmit 

power and is denoted as TP .  The reason we term this power the peak transmit power is 

that we will later want to consider the transmit power averaged over many pulses. 

 

 

Figure 2-1 – Transmit Section of a Radar 
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Figure 2-2 – Depiction of a Transmit Pulse 

 

 The waveguide of Figure 2-1 carries the signal from the transmitter to the antenna 

feed input.  The only feature of the waveguide that is of interest in the radar range 

equation is the fact that it is a lossy device that attenuates the signal.  Although we only 

refer to the “waveguide” here, in a practical radar there are several devices between the 

transmitter and antenna feed.  We lump all of these into a conceptual waveguide. 

 Since the waveguide is a lossy device we characterize it in terms of its loss which 

we denote as tL  and term transmit loss.  Since tL  is a loss it is greater than unity.  With 

this, the power at the input to the feed is 

  wT
rad

t

P
P

L
  (2-2) 

and is termed the radiated power. 

 We assume that the feed and the antenna are ideal and thus introduce no 

additional losses to the radiated power.  In actuality, the antenna assembly (antenna and 

feed) will have losses associated with it.  These losses are incorporated in tL .  Because of 

the above assumption, the power radiated into space is radP . 

 

2.2.1.2  The Antenna 

 The purpose of the radar antenna is to concentrate, or focus, the radiated power in 

a small angular sector of space.  In this fashion, the radar antenna works much as the 

reflector in a flashlight.  As with a flashlight, a radar antenna doesn’t perfectly focus the 

beam.  However, for now we will assume it does.  Later, we will account for the fact that 

the focusing isn’t perfect by a scaling term. 

 With the above, we assume that all of the radiated power is concentrated in an 

area, beamA , as indicated in Figure 2-3.  Therefore, the power density over beamA  is 
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 To carry Equation (2-3) to the next step we need an equation for beamA .  Given 

that the lengths of the major and minor axes of the ellipse in Figure 2-3 are AR  and BR

, we can write the area of the ellipse as 

 2 2 m
4

ellipse A BA R


  . (2-4) 

 

 

Figure 2-3 – Radiation Sphere with Antenna Beam 

 

 We next recognize that the power is not uniformly distributed across ellipseA  and 

that some of the power will “spill” out of the area ellipseA .  We account for this by 

replacing 4  with a constant AK , which will be less than 4 .  We will further discuss 

AK  shortly.  With this we write beamA  as 

 
2 2 mbeam A A BA K R  

.
 (2-5) 

 If we substitute Equation (2-5) into Equation (2-3) we get 
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 At this point we define a term, TG , that we call the transmit antenna gain as 
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and use it to rewrite Equation (2-6) as 
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 As it is used here, TG , is termed directive gain.
1
  With this form of the antenna 

gain, it is assumed that if there are losses in the feed or the antenna itself, these losses will 

be included as separate loss terms in the radar range equation (losses will be discussed in 

a later section).  Some analysts include the feed and antenna losses in the transmit 

antenna gain and term the result the power gain of the antenna.  We will not do that here 

since it can lead to confusion when using Equation (2-7) and a form of directive gain to 

be presented shortly. 

 

2.2.1.3  Effective Radiated Power 

 We now want to discuss a quantity termed effective radiated power.  To do so we 

ask the question: What power would we need at the feed of an isotropic radiator to get a 

power density of RS  at all points on a sphere of radius R ?  An isotropic radiator is an 

antenna that does not focus energy; instead it distributes power uniformly over the 

surface of a sphere centered on the antenna.  We can think of an isotropic radiator as a 

point source radiator.  We note that an isotropic radiator cannot exist in the “real world”.  

However, it is a mathematical and conceptual concept that we often use in radar theory, 

like the impulse function is in mathematical theory. 

 If we denote the effective radiated power as effP  and realize that the surface area 

of a sphere of radius R  is 
24 R  we can write the power density on the surface of the 

sphere as 

 2

2
 w/m

4

eff

R

P
S

R
 . (2-9) 

If we equate Equation (2-8) and Equation (2-9) we obtain 

  w T T
eff

t ant

P G
P ERP

L L
   (2-10) 

as the effective radiated power, or ERP.  In this equation, the losses in the feed and/or 

antenna are included as the antL  term. 

 Some radar analysts think that the power at the output of a radar antenna is the 

ERP.  IT IS NOT.  The power at the output of the antenna is T t antP L L .  All the antenna 

does if focus this power over a relatively small angular sector. 

                                                 
1
 Skolnik, M. I., Introduction to Radar Systems, Third Edition, 2001, McGraw-Hill, New York, N.Y. 
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 Another note is that the development above makes the tacit assumption that the 

antenna is pointed exactly at the target.  If the antenna is not pointed at the target, TG  

must be modified to account for this.  We do this by means of an antenna pattern which 

is a function that gives the value of TG  at all possible angles of the target relative to 

where the antenna is pointing. 

 

2.2.1.4  Antenna Gain 

 We next want to address the factor AK  in Equation (2-7).  As was indicated, AK  

accounts for the properties of the antenna.  Specifically: 

 It accounts for the fact that the power is not uniformly distributed over the 

ellipse. 

 It accounts for the fact that not all of the power is concentrated in the antenna 

beam, the ellipse.  Some of it will “spill” out of the beam into what we term 

the antenna sidelobes. 

A good value for AK  is 1.65.  With this we can write the antenna gain as 

 
4

 w/w
1.65

T

A B

G


 
 . (2-11) 

In Equation (2-11) the quantities A  and B  are termed the antenna beamwidths and have 

the units of radians.  In many applications, A  and B  are specified in degrees.  In this 

case we write the gain as 

 
25,000

 w/wT

A B

G
 

  (2-12) 

where the two beamwidths in the denominator are in degrees. 

 To visualize the concept of beamwidth we consider Figure 4 which is a plot of 

 ,TG    vs.   for 0  .  The expression  ,TG    is a means of saying that the 

antenna gain is a function of where the target is located relative to where the antenna is 

pointing.  With some thought, you will realize that two angles are needed to specify any 

point on the sphere discussed earlier. 

 The unit of measure on the vertical axis is dBi, or decibels relative to isotropic 

(see Chapter 1) and is the common unit of measure for TG  in radar applications.  We 

define the beamwidth of an antenna as the distance between the 3-dB points
2
 of Figure 4.  

The 3-dB points are the angles where  ,TG    is 3 dB below its maximum value.  As a 

side note, the maximum value of  ,TG    is the antenna gain, or TG .  With this we find 

that the antenna represented in Figure 4 has a beamwidth of 2 degrees.  We might call 

                                                 
2
 The concept of 3-dB points should be familiar from control and signal processing theory in that 

it is the standard measure used to characterize bandwidth. 
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this A .  Suppose we were to plot  ,TG    vs.   for 90  . and find distance between 

the 3-dB points was 2.5 degrees.  We would then say that the beamwidth was 2.5 degrees 

in this direction.  We would then call this B .  We would compute the antenna gain as 

 
25,000

5000 w/w or 37 dBi
2 2.5

TG  


. (2-13) 

In the future, we will drop the notation dBi and use dB. 

 

 

Figure 2-4 – Sample Antenna Pattern 

 

 The humps in Figure 2-4 on either side of the central hump are the sidelobe of the 

antenna that were mentioned earlier. 

 

2.2.1.5  The Target and Radar Cross-Section 

 Now back to our derivation.  Thus far we have an equation for RS , the power 

density in the location of the target.  As the electromagnetic wave passes by the target, 

some of the power in it is captured by the target and re-radiated back toward the radar.  

The process of capturing and re-radiating the power is very complicated and the subject 

of much research.  We will discuss it further in later sections.  For now we simplify the 

process by using the concept of radar cross-section or RCS.  We note that RS  has the 

units of w/m
2
.  Therefore, if we were to multiply RS  by an area we would convert it to a 

power.  This is what we do with RCS, which we denote by   and ascribe the units of m
2
, 
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or dBsm if we convert it to dB units.  With this we say that the power captured and re-

radiated by the target is 

  wtgt RP S . (2-14) 

We further make the idealized assumption that the target acts as an isotropic antenna and 

radiates tgtP  uniformly in all directions.  In this sense, tgtP  is interpreted as an effective 

radiated power  In fact, the target is much like an actual antenna and radiates the power 

with different amplitudes in different directions.  Again, this process is very complicated 

and beyond the scope of this course. 

 To get an ideal of the variation of tgtP  refer to Figure 2.15 of the Skolnik reference 

of footnote 1.  This figure indicates that tgtP  can vary by about 25 dB depending upon the 

orientation of the aircraft relative to the radar. 

 Given the above assumption that the power radiated by the target is tgtP  and that it 

acts as an isotropic radiator, the power density at the radar is 
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Or, substituting Equation (2-8) into Equation (2-14), and the result into Equation (2-15), 
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2.2.1.6  Antenna Again 

 As the electromagnetic wave from the target passes the radar, the radar antenna 

captures part of it and sends it to the radar receiver.  If we follow the logic we used for 

the target, we can say that the power at the output of the antenna feed is 

 ant rec eP S A  (2-17) 

where eA  is the effective area of the antenna; it is an area measure that describes the 

ability of the antenna to capture the returned electromagnetic energy and convert it into 

usable power.  A more common term for eA  is effective aperture of the antenna.  

According to the dictionary, aperture means opening or orifice.  Thus, in this context, we 

can think of the antenna as an orifice that funnels energy into the radar. 

 It turns out that the effective aperture is related to the physical area of the antenna.  

That is 

 e antA A  (2-18) 

                                                 
3
 We have included the extra loss term, antL , discussed earlier.  Thus we are assuming the antenna and feed 

are lossless.  We will correct this potential oversight when we consider loss terms. 
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where 
antA  is the area of the antenna projected onto a plane placed directly in front of the 

antenna.  We make this clarification of area because we don’t want to confuse it with the 

actual surface area of the antenna.  If the antenna is a parabola of revolution (a 

paraboloid), a common type of antenna, the actual area of the antenna would be the area 

of the paraboloidal surface of the antenna. 

 If we substitute Equation (2-16) into Equation (2-17) we get 
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2.2.1.7  Antenna Gain Again 

 It turns out that Equation (2-19) is not usually very easy to use because of the eA  

term.  A more convenient method of characterizing the antenna would be through the use 

of its gain, as we did on transmit.  According to antenna theory, we can relate antenna 

gain to effective aperture by the equation 
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If we substitute Equation (2-20) into Equation (2-19) we get 
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2.2.1.8  Losses 

 As a final step in this part of the development, we need to account for losses that 

we have ignored thus far.  Two of these are the antenna and feed loss that we discussed 

earlier, and a similar loss for the antenna and feed on receive.  It turns out that there are 

many more losses that we will need to account for.  For now we will lump all of these 

losses with tL  and denote them by L .  With this we say that the signal power in the radar 

is given by 
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which is antP  with the additional losses added in. 

 In the above paragraph we said that SP  is the signal power “in the radar”.  

However, we didn’t say where in the radar.  We will save this discussion until later.  For 

now, we want to turn our attention to the noise term, NP . 
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2.2.2  Derivation of NP  

 All radars, as with all electronic equipment, must operate in the presence of noise.  

In electronic devices the main source of noise is termed thermal noise and is due to 

agitation of electrons caused by heat.  The heat can be caused by the environment (the 

sun, the earth, the room, humans, etc.) and by the electronic equipment itself.  In most 

radars the predominant source of heat is the electronic equipment. 

 

2.2.2.1  Noise Power Spectral Density 

 Eventually, we want to characterize noise in terms of its power at some point in 

the receiver.  However, to derive this power, and provide a means of characterizing the 

effects of the receiver electronics, we will use the approach commonly used in radar and 

communication theory.  With this approach, we start by assuming that the noise in the 

radar, before we need to represent it as power, is white.  Because of this, we start by 

characterizing the noise in terms of its power spectral density, or energy, which are the 

same in this context.  (We can’t use power because white noise has infinite power.)  We 

define the noise power spectral density in the radar by the equation 

 0  w/Hz or w-s or jouleeffN kT  (2-23) 

where  231.38054 10  w/ Hz  Kk     is Boltzman’s constant.  effT  is the effective 

noise temperature of the radar in degrees Kelvin (ºK).  It turns out that effT  is not an 

actual temperature.  Rather, it is a temperature quantity that we use to compute the proper 

noise power spectral density in the radar.  Although this may be confusing at present (it 

says that we need to know 0N  to compute effT  which we need to compute 0N !), it will 

hopefully become clearer when we undertake a more detailed discussion of noise. 

 

2.2.2.2  Noise Figure 

 As an alternate formulation we also write 

 0eff nT F T  (2-24) 

where nF  is termed the noise figure of the radar and 0T  is a reference temperature 

normally referred to as “room temperature”.  In fact, 0 290 KT   or 16.84 ºC (0 ºC = 

273.16 ºK) or about 62 ºF which, by some standards, may be room temperature.  With the 

above we get 

 0 0 nN kT F . (2-25) 
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It is interesting to note that 21

0 4 10  w/HzkT   , which makes one think that the value of 

0 290 KT   was chosen to make 0kT  a “nice” number, and not because it is room 

temperature. 

 

2.2.2.3  Effective Noise Bandwidth 

 Since 0N  has the units of w/Hz, we need to multiply it by a frequency term to 

convert it to a power.  In fact, we use this idea to write the noise power in the radar as 

 0N nP kT F B  (2-26) 

where we term B  the effective noise bandwidth of the radar.  We want to emphasize the 

term effective.  In fact, B  may not be the actual bandwidth of any component of the 

radar.  It turns out that if the radar transmits a single, rectangular pulse (as in Figure 2-2), 

and if the receiver employs a filter that is matched to the transmit pulse, and we are trying 

to represent the power at the output of this matched filter then, in terms of the radar range 

equation, B  is the bandwidth of the matched filter.  It will be left as a homework 

problem to determine if B is the 3-dB bandwidth of the matched filter.  It will be noted 

that I placed a lot of caveats on our ability to tie B  to a specific bandwidth.  I did this to 

emphasize that we must be very careful in how we define the noise in a radar.  A very 

common mistake in the use of the radar range equation is to use the transmit waveform 

bandwidth for B .  For modern, pulse-compression radars this is incorrect! 

 If we combine Equation (2-26) and Equation (2-22) with the relation 

S NSNR P P  we get Equation (2-1) or  
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What we have not done in Equation (2-1) and Equation (2-27) is state where in the radar 

we are characterizing the SNR.  We will do this after we discuss some other topics.  For 

now, we want to develop an alternate formulation for SNR which, with one relation, will 

take the same form as (2-1) and (2-27). 

 

2.3  AN ENERGY APPROACH TO SNR 

 In this approach to SNR we define the SNR as the ratio of the signal energy to the 

noise energy (which, you will recall, is the power spectral density).  Recall that Equation 

(2-22) is the signal power in the radar (again, we won’t say where yet).  We further 

assume that the shape of the originally transmitted pulse is preserved.  This means that at 
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the point we measure the signal it has a power (peak power) of 
SP  for a duration of p , 

the pulse width, and zero at all other times.
4
  This means that the energy in the signal is 

  w-s or jouleS S pE P . (2-28) 

The energy in the noise is given by Equation (2-25) and is 

 0 0  jouleN nE N kT F  . (2-29) 

With this we determine that the SNR is 
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  



   . (2-30) 

We note that Equation (2-27) and Equation (2-30) are the same equation if we let 

 1 pB  . (2-31) 

In fact, Equation (2-31) provides us with the definition of effective noise bandwidth as 

the reciprocal of the transmitted pulse width. 

 

2.4  EXAMPLE 

 At this point it will be instructive to consider a couple of examples.  For the 

examples we consider a monostatic radar with the parameters indicated in Table 2-1. 

 

 

Table 2-1 – Radar Parameters 

RADAR PARAMETER VALUE 

Peak Transmit Power @ Power Tube, TP  1 Mw 

Transmit Losses, including feed and antenna, tL  2 dB 

Pulse Width, p  0.4 µs 

Antenna Gain, ,T RG G  38 dB 

Operating Frequency, cf  8 GHz 

Receive Losses, including feed and antenna, RL  3 dB 

Noise Figure nF  8 dB 

Other Losses, otherL  2 dB 

 

For the first example we wish to compute the SNR on a 6-dBsm target at a range of 60 

Km.  To perform the computation we need to find the parameters in the radar range 

                                                 
4
 We are tacitly assuming that the pulse envelop is rectangular.  It is extremely unusual for a radar to have a 

transmit pulse whose envelop is not rectangular. 
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equation (Equation (2-27) or Equation (2-30)) and be sure that they are in consistent 

units.  Most of the parameters are in Table 2-1, or can be derived from the parameters of 

Table 2-1.  The two remaining parameters are the target range and the target RCS, which 

are given above.  The parameters that we will need to compute are the wavelength,  , 

and the total losses.  If we use Equation (2-27), which we will, we also need to compute 

the effective noise bandwidth, B .  The appropriate parameters are given in Table 2-2 in 

“dB units” and MKS units. 

 

Table 2-2 – Radar Range Equation Parameters 

RADAR RANGE EQUATION PARAMETER VALUE (MKS) VALUE (dB) 

TP  10
6
 w 60 dBw 

TG  6309.6 w/w 38 dB 

RG  6309.6 w/w 38 dB 

cc f   0.0375 m -14.26 dB(m) 

  3.98 m
2
 6 dBsm 

R  60×10
3
 m 47.78 dB(m) 

0kT  4×10
-21

 w-s -204 dB(w-s) 

1 pB   2.5×10
6
 Hz 64 dB(Hz) 

nF  6.31 w/w 8 dB 

t r otherL L L L  5.01 w/w 7 dB 

 

 If we substitute the MKS values from Table 2-2 into Equation (2-27) we get 
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4

10 6309.6 6309.6 0.0375 3.98
=

4 60 10 4 10 2.5 10 6.31 5.01

27.41 w/w or 14.38 dB

T T R
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P G G
SNR

R kT BF L

 



 



  



 (2-32) 

As a double check, we compute Equation (2-27) using the dB values.  This gives 

     02 30log 4 4T T R nSNR P G G R kT B F L              (2-33) 

where all of the quantities are the “dB units” from Table 2-2.  Substituting yields 

 

  

    

60 38 38 2 14.26 6

32.98 4 47.78 204 64 8 7

14.38 dB or 27.42 w/w

SNR      

      



 (2-34) 

which agrees with Equation (2-32) (except for the last digit of the MKS value). 
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2.5  DETECTION RANGE 

 One of the important uses of the radar range equation is in the determination of 

detection range, or the maximum range at which a target has a given probability of being 

detected by the radar.  The criterion for detecting a target is that the SNR be above some 

threshold value.  If we consider the above radar range equations, we note that SNR varies 

inversely with the fourth power of range.  This means that if the SNR is a certain value at 

a given range, it will be greater than that value at shorter ranges.  The upshot of this 

discussion is that we define the detection range as the range at which we achieve a certain 

SNR.  In order to find detection range, we need to solve the radar range equation for R .  

Doing so by using Equation (2-27) as the starting point yields 

 
   

1 4
2

3

0

 m
4

T T R

n

P G G
R

SNR kT BF L

 



 
  
 
 

. (2-35) 

 As an example, suppose we want the range at which the SNR on a 6-dBsm target 

is 13 dB.
5
  Using the Table 2-2 values in Equation (2-35) yields 

 

   

        

       

1 4
2

3

0

1 4
2 26

3 21 6

4

10 6309.57 0.0375 3.98
=

4 19.95 4 10 2.5 10 6.31 5.01

=64957 m or 65 Km

T T R

n

P G G
R

SNR kT BF L

 



 

 
  
 
 

 
 
   
 

 (2-36) 

We interpret this to mean that the target will be detected at a maximum range of 65 Km.  

Or, that the target will be detected for all ranges of 65 Km or less. 

                                                 
5
 The value of 13 dB is a standard detection threshold.  Later, we will show that a SNR threshold 

of 13 dB yields a detection probability of 0.5 on an aircraft type of target. 


