Introduction to Signals and Systems

ECE 2610 Lecture Notes Spring 2011

© 2006–2011 Mark A. Wickert

Contents

Intr	oduction and Course Overview
	Introduction
	Signals and Systems – What for?
	Course Perspective – From Here to There
	Course Syllabus
	Computer Tools
	Introduction to Mathematical Modeling of Signals and Systems 1–8 Mathematical Representation of Signals 1–8 Mathematical Representation of Systems 1–10 Thinking About Systems 1–12 The Next Step 1–13
Sin	usoids
	Review of Sine and Cosine Functions
	Sinusoidal Signals
	Relation of Frequency to Period 2–7
	Phase Shift and Time Shift 2–9
	Sampling and Plotting Sinusoids
	Complex Exponentials and Phasors
	Review of Complex Numbers 2–16 Complex Exponential Signals 2–23
	The Rotating Phasor Interpretation 2–24
	Phasor Addition
	Phasor Addition Rule 2–28
	Summary of Phasor Addition 2–32
	Physics of the Tuning Fork
	Equations from Laws of Physics 2–34 General Solution to the Differential Equation 2–35
	Listening to Tones 2–38
	Time Signals: More Than Formulas
Spe	ectrum Representation
- 10 (The Spectrum of a Sum of Sinusoids
	A Notation Change 3–6
	Reat Notes

	Beat Note Spectrum 3–7
	Beat Note Waveform 3–9
	Multiplication of Sinusoids 3–10
	Amplitude Modulation 3–10
	Periodic Waveforms3–13
	Nonperiodic Signals 3–14
	Fourier Series
	Fourier Series: Analysis 3–18
	Fourier Series Derivation 3–18
	Orthogonality Property 3–20
	Summary 3–22
	Spectrum of the Fourier Series
	Fourier Analysis of Periodic Signals
	The Square Wave 3–24
	Spectrum for a Square Wave 3–26
	Synthesis of a Square Wave 3–27
	Triangle Wave 3–31
	Triangle Wave Spectrum 3–33
	Synthesis of a Triangle Wave 3–35
	Convergence of Fourier Series 3–36
	Time–Frequency Spectrum
	Stepped Frequency 3–38
	Spectrogram Analysis 3–39
	Frequency Modulation: Chirp Signals
	Chirped or Linearly Swept Frequency 3–42
	Summary
	~ ·
_	
San	npling and Aliasing
	Sampling
	Sampling Sinusoidal Signals 4–4
	The Concept of Aliasing 4–6
	The Spectrum of a Discrete-Time Signal 4–12
	The Sampling Theorem 4–14
	Ideal Reconstruction 4–16
	Spectrum View of Sampling and Reconstruction
	The Ideal Bandlimited Interpolation 4–20
	The facult Bullatinited Interpolation 1 20
FIK	Filters
	Discrete-Time Systems
	The Running (Moving) Average Filter
	The General FIR Filter

	The Unit Impulse Response 5–8	
	Convolution and FIR Filters 5–12	
	Using MATLAB's Filter Function 5–16	
	Convolution in MATLAB 5–17	
	Implementation of FIR Filters	ı 8
	Building Blocks 5–19	
	Block Diagrams 5–20	
	Linear Time-Invariant (LTI) Systems	24
	Time Invariance 5–25	
	Linearity 5–26	
	The FIR Case 5–28	• ^
	Convolution and LTI Systems	29
	Derivation of the Convolution Sum 5–30	
	Some Properties of LTI Systems 5–32	
	Cascaded LTI Systems	33
	Filtering a Sinusoidal Sequence with a Moving Average Filter 5–37	
_		
Fre	quency Response of FIR Filters	
	Sinusoidal Response of FIR Systems	-1
	Superposition and the Frequency Response 6-	-6
	Steady-State and Transient Response 6–1	
	Properties of the Frequency Response 6–1	
	Relation to Impulse Response and Difference Equation 6–14	
	Periodicity of 6–16	
	Conjugate Symmetry 6–16	
	Graphical Representation of the Frequency Response 6–1	8
	Cascaded LTI Systems	
	Moving Average Filtering	
	Plotting the Frequency Response 6–26	-
	Filtering Sampled Continuous-Time Signals	7
	Interpretation of Delay 6–32	- /
	interpretation of Delay 6–32	
_{7−} Tı	ransforms	
Z -11		1
	Definition of the z-Transform	
	The z-Transform and Linear Systems	-3
	The z-Transform of an FIR Filter 7–3	
	Properties of the z-Transform	-6
	The Superposition (Linearity) Property 7–6	
	The Time-Delay Property 7–7	
	A General z-Transform Formula 7–8	

	The z-Transform as an Operator
	Unit-Delay Operator 7–8
	Convolution and the z-Transform
	Cascading Systems 7–12
	Factoring z-Polynomials 7–13
	Deconvolution/Inverse Filtering 7–14
	Relationship Between the z-Domain and the Frequency Domain 7–16
	The z-Plane and the Unit Circle 7–16
	The Zeros and Poles of H(z) 7–17
	The Significance of the Zeros of H(z) 7–19
	Nulling Filters 7–19
	Graphical Relation Between z and 7–22
	Useful Filters
	The L-Point Moving Average Filter 7–24 A Complex Bandpass Filter 7–26
	A Complex Bandpass Filter 7–20 A Bandpass Filter with Real Coefficients 7–26
	Practical Filter Design
	Properties of Linear-Phase Filters
	The Linear Phase Condition 7–26
	Locations of the Zeros of FIR Linear-Phase Systems 7–27
	Eccutions of the Zeros of Fire Emedi Thase Systems / 2/
IK	Filters
	The General IIR Difference Equation
	Block Diagram 8–2
	Time-Domain Response
	Impulse Response of a First-Order IIR System 8–3
	Linearity and Time Invariance of IIR Filters 8–4
	Step Response of a First-Order Recursive System 8–6
	System Function of an IIR Filter
	The General First-Order Case 8–11
	System Functions and Block-Diagram Structures 8–12
	The Transposed Structures 8–14
	Relation to the Impulse Response 8–15
	Poles and Zeros
	Poles or Zeros at the Origin or Infinity 8–17
	Pole Locations and Stability 8–18
	Frequency Response of an IIR Filter
	3D Surface Plot of 8–23
	The Inverse z-Transform and Applications
	A General Procedure for Inverse z-Transformation 8–24
	Steady-State Response and Stability
	Second-Order Filters

	Poles and Zeros 8–36	
	Impulse Response 8–39	
	Frequency Response 8–43	
	Example of an IIR Lowpass Filter	-4 5
Cor	ntinuous-Time Signals and LTI Systems	
COI		0 1
	Continuous-Time Signals	9–1
	Two-Sided Infinite-Length Signals 9–1	
	One-Sided Signals 9–3	
	Finite-Duration Signals 9–4	0.5
	The Unit Impulse	9–3
	Sampling Property of the Impulse 9–7	
	Operational Mathematics and the Delta Function 9–8 Derivative of the Unit Step 9–9	
	Continuous-Time Systems	11
	Basic System Examples 9–11	-11
	Linear Time-Invariant Systems	10
	Time-Invariance 9–12	-12
	Linearity 9–13	
	The Convolution Integral 9–13	
	Properties of Convolution 9–15	
	Impulse Response of Basic LTI Systems	<u>-15</u>
	Integrator 9–16	
	Ideal delay 9–16	
	Convolution of Impulses	-16
	Evaluating Convolution Integrals	
	Step and Exponential 9–16	
	Square-Pulse Input 9–19	
	Properties of LTI Systems	-20
	Cascade and Parallel Connections 9–20	
	Differentiation and Integration of Convolution 9–21	
	Stability and Causality 9–22	
Fre	quency Response	
	The Frequency Response Function for LTI Systems	0–1
	Response to Real Sinusoid Signals	
	Symmetry of 10–5	
	Response to a Sum of Sinusoids 10–5	
	Periodic Signal Inputs 10–5	
	Ideal Filters	0-5
	Simulation of Circuit Implementations	
	r - r	

Introduction and Course Overview

Chapter __

1

Introduction

- Signals and systems what for?
- Course perspective
- Course syllabus
- Instructor policies
- Computer tools
- Introduction to mathematical modeling of signals and systems

Signals and Systems – What for?

- Electronics for audio (iPod) and wireless devices (cell phones, wireless local area networking) are all around us
 - What are some others?
- Signals and systems are an integral part of making these devices perform their intended function
- Signals convey information from one point to another
 - They may be generated by electronic means, or by some natural means such as talking, walking, your heart beating, an earthquake, the sun heating the sidewalk

- *Systems* process signals to produce a modified or transformed version of the original signal
 - The transformation may be as simple a microphone converting a sound pressure wave into an electrical waveform
 - The four campuses of the University of Colorado are often termed the 'CU System'
- In this class systems are specialized primarily to those that process signals of an electrical nature
 - If we do not have an electrical signal directly we may use a transducer to obtain one, e.g., a *thermistor* to sense the temperature of the heat sink in a computer power supply
- In the traditions of electrical engineering, signals and systems means the mathematical modeling of signals and systems, to assist in the design and development of electronic devices

Course Perspective – From Here to There

Course Syllabus

Spring Semester 2011

Instructor: Dr. Mark Wickert Office

Office: EB-292 **Phone:** 255-3500

wickert@eas.uccs.edu

Fax: 255-3589

http://www.eas.uccs.edu/wickert/ece2610/

Office Hrs:

M&W 12:45-1:15am, M&W 3:05pm-4:00pm, others by appointment.

Required Text

James McClellan, Ronald Schafer, and Mark Yoder, Signal Processing First,

Prentice Hall, New Jersy, 2003. ISBN 0-13-090999-8.

Optional Software:

The student version of MATLAB 7.x available under general software in the UCCS bookstore. Other specific programming tools will be discussed in class.

Grading:

1.) Graded homework worth 20%.

2.) Quizzes worth 15% total

3.) Laboratory assignments worth 20% total.

4.) Mid-term exam worth 15%.

5.) Final MATLAB project worth 10%.

6.) Final exam worth 20%.

Topics	Text	Weeks
1. Course Overview and Introduction	1.1–1.4	0.5
2. Sinusoids	2.1–2.9	1.0
3. Spectrum Representation	3.1–3.9	1.0
4. Sampling and Aliasing	4.1–4.6	1.0
5. FIR filters	5.1–5.9	1.5
6. Frequency response of FIR filters	6.1–6.9	1.5 (exam)
7. z-Transforms	7.1–7.10	1.0
8. IIR Filters	8.1–8.12	2.0
9. Continuous-Time Signals and Systems	9.1–9.10	1.5?
10. Frequency Response	10.1–10.6	0.5?
11. Continuous-Time Fourier Transform	11.1–11.11	1.5?
12. Filtering, Modulation, and Sampling	12.1–12.4	1.5 (project)

Note: that topics 9–12 will most likely only be overviewed at the end of the semester.

Instructor Policies

- Homework papers are due at the start of class
- If business travel or similar activities prevent you from attending class and turning in your homework, please inform me beforehand
- Grading is done on a straight 90, 80, 70, ... scale with curving below these thresholds if needed
- Homework solutions will be placed on the course Web site in PDF format with security password required; hints pages may also be provided

Computer Tools

- Through-out this semester we will be using MATLAB for modeling and simulation of signals and systems
- MATLAB is a very powerful vector/matrix oriented programming language
- If features an integrated graphics/visualization engine
- MATLAB has and integrated source code editor and debugging environment
- There are specialized toolboxes available for signal processing, communications, image processing, and may other engineering applications
- The text for this course includes a collection of MATLAB functions specialized for the signal processing taught in this course
- The laboratory portion of this course will focus on the use of MATLAB to explore signals and systems
- A very brief introduction to MATLAB follows
 - We will be learning shortly that a signal in mathematical terms can be as simple as a function of time, say a trigonometric function like

$$x(t) = A\cos(2\pi f_0 t) \tag{1.1}$$

where we call A the amplitude, f_0 the frequency in cycles per second, and t is the independent variable

MATLAB operates from a *command window* similar to a calculator

```
x * Command Window

>> t = 0:.01:2;
>> x = cos(2*pi*2*t) + 1.5*sin(2*pi*5*t);
>> plot(t,x)
>> grid
>> xlabel('Time in seconds')
>> ylabel('Amplitude')
>> title('Sum of Two Sinusoids Signal')
```

- On the first line we create a time axis vector running from 0 to 2 seconds, with time step 0.01 seconds
- The second line we fill a vector \times with functional values that correspond, in this case, to the sum of two sinusoids
- What are the amplitudes and frequencies of these sinusoids?
- Finally we plot the signal using the plot () function

Introduction to Mathematical Modeling of Signals and Systems

Mathematical Representation of Signals

- Signals represent or encode information
 - In communications applications the information is almost always encoded
 - In the probing of medical and other physical systems, where signals occur naturally, the information is not purposefully encoded
 - In human speech we create a waveform as a function of time when we force air across our *vocal cords* and through our *vocal tract*

A microphone has converted the sound pressure from the vocal tract into an electrical signal that varies over time, *t*

- Signals, such as the above speech signal, are continuous functions of time, and denoted as a *continuous-time signal*
- The independent variable in this case is time, *t*, but could be another variable of interest, e.g., position, depth, temperature, pressure
- The mathematical notation for the speech signal recorded by the microphone might be s(t)
- In order to process this signal by computer means, we may sample this signal at regular interval T_s , resulting in

$$s[n] = s(nT_s) (1.2)$$

- The signal s[n] is known as a discrete-time signal, and T_s is the sampling period
 - Note that the independent variable of the sampled signal is the integer sequence $n \in \{..., -2, -1, 0, 1, 2, ...\}$
 - Discrete-time signals can only be evaluated at integer values

- The speech waveform is an example of a one-dimensional signal, but we may have more that one dimension
- An image, say a photograph, is an example of a two-dimensional signal, being a function of two spatial variables, e.g. p(x, y)
- If the image is put into motion, as in a movie or video, we now have a three-dimensional image, where the third independent variable is time, (x, y, t)
 - Note: movies and videos are shot in frames, so actually time is discretized, e.g., $t \rightarrow nT_s$ (often $1/T_s = 30$ fps)
- To manipulate an image on a computer we need to sample the image, and create a two-dimensional discrete-time signal

$$p[m, n] = p(m\Delta_x, n\Delta_y)$$
 (1.3)

where m and n takes on integer values, and Δ_x and Δ_y represent the horizontal and vertical sampling periods respectively

Mathematical Representation of Systems

• In mathematical modeling terms a system is a function that transforms or maps the input signal/sequence, to a new output signal/sequence

$$y(t) = T_c\{x(t)\}\$$

 $y[n] = T_d\{x[n]\}$ (1.4)

where the subscripts c and d denote continuous and discrete system operators

- Because we are at present viewing the system as a pure mathematical model, the notion of a system seems abstract and distant
- Consider the microphone as a system which converts sound pressure from the vocal tract into an electrical signal
- Once the speech waveform is in an electrical waveform format, we might want to form the square of the signal as a first step in finding the energy of the signal, i.e.,

$$y(t) = [x(t)]^2$$
 (1.5)

• The squarer system also exists for discrete-time signals, and in fact is easier to implement, since all we need to do is multiply each signal sample by itself

$$y[n] = (x[n])^2 = x[n] \cdot x[n]$$
 (1.6)

- If we send y[n] through a second system known as a *digital* filter, we can form an estimate of the signal energy
 - This is a future topic for this course

Thinking About Systems

- Engineers like to use block diagrams to visualize systems
- Low level systems are often interconnected to form larger systems or subsystems
- Consider the squaring system

 The ideal sampling operation, described earlier as a means to convert a continuous-time signal to a discrete-times signal is represented in block diagram form as an ideal C-to-D converter

• A more complex system, depicted as a collection of subsystem blocks, is a system that records and then plays back an audio source using a compact disk (CD) storage medium

- The optical disk reader shown above is actually a high-level block, as it is composed of many lower-level subsystems, e.g.,
 - Laser, on a sliding carriage, to illuminate the CD
 - An optical detector on the same sliding carriage
 - A servo control system positions the carriage to follow the track over the disk
 - A servo speed control to maintain a constant linear velocity as 1/0 data is read from different portions of the disk
 - more ...
- If we just considering a CD player, we would only need the last two subsystem blocks (why?)

The Next Step

- Basic signals, composed of linear combinations of trigonometric functions of time will be studied next
- We also consider complex number representations as a means to simplify the combining of more than one sinusoidal signal

