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1 Basic Theorems of Complex Analysis

1.1 The Complex Plane

A complex number is a number of the form x + iy, where x and y are real
numbers, and i2 = −1. The real numbers x and y are uniquely determined
by the complex number x+ iy, and are referred to as the real and imaginary
parts of this complex number.

The algebraic operations of addition, subtraction and multiplication are
defined on complex numbers according to the formulae

(x+yi)+(u+iv) = (x+u)+i(y+v), (x+yi)−(u+iv) = (x−u)+i(y−v),

(x + yi)× (u + iv) = (xu− yv) + i(xv + yu),

where x, y, u and v are real numbers.
We regard a real number x as coinciding with the complex number x +

i×0. Note that the operations of addition, subtraction and multiplication of
complex numbers defined as above extend the corresponding operations on
the set of real numbers.

The set C of complex numbers, with the operations of addition and mul-
tiplication defined above, has the following properties:

(i) z1 + z2 = z2 + z1 for all z1, z2 ∈ C;

(ii) z1 + (z2 + z3) = (z1 + z2) + z3 for all z1, z2, z3 ∈ C;

(iii) there exists a complex number 0 with the property that z+0 = 0+z = z
for all complex numbers z;

(iv) given any complex number z, there exists a complex number −z such
that z + (−z) = (−z) + z = 0;

(v) z1 × z2 = z2 × z1 for all z1, z2 ∈ C;

(vi) z1 × (z2 × z3) = z1 × (z2 × z3) for all z1, z2, z3 ∈ C;

(vii) there exists a complex number 1 with the property that z×1 = 1×z = z
for all complex numbers z;

(viii) given any complex number z satisfying z 6= 0, there exists a complex
number z−1 such that z × z−1 = z−1 × z = 1;

(ix) z1×(z2+z3) = (z1×z2)+(z1×z3) and (z1+z2)×z3 = (z1×z3)+(z2×z3)
for all z1, z2, z3 ∈ C.
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To verify property (viii), we note that if z is a non-zero complex number,
where z = x + iy for some real numbers x and y, and if z−1 is given by the
formula

z−1 =
x

x2 + y2
− i

y

x2 + y2
,

then z × z−1 = z−1 × z = 1.
Given complex numbers z and w, with w 6= 0, we define the quotient z/w

(i.e., z divided by w) by the formula z/w = zw−1.
The conjugate z of a complex number z is defined such that x + iy = x−iy

for all real numbers x and y. The modulus |z| of a complex number z is
defined such that |x + iy| =

√
x2 + y2 for all real numbers x and y. Note

that |z| = |z| for all complex numbers z. Also z + w = z + w for all complex
numbers z and w. The real part Re z of a complex number satisfies the
formula 2 Re z = z + z. Now |Re z| ≤ |z|. It follows that |z + z| ≤ 2|z| for
all complex numbers z.

Straightforward calculations show that zz = |z|2 for all complex num-
bers z, from which it easily follows that z−1 = |z|−2z for all non-zero complex
numbers z.

Let z and w be complex numbers, and let z = x + iy and w = u + iv,
where x, y, u and v are real numbers. Then

|zw|2 = (xu− yv)2 + (xv + yu)2

= (x2u2 + y2v2 − 2xyuv) + (x2v2 + y2u2 + 2xyuv)

= (x2 + y2)(u2 + v2) = |z|2 |w|2

It follows that |zw| = |z| |w| for all complex numbers z and w.
Let z and w be complex numbers. Then

|z + w|2 = (z + w) (z + w) = zz + zw + wz + ww

= |z|2 + 2 Re zw + |w|2

≤ |z|2 + 2|zw|+ |w|2 = |z|2 + 2|z| |w|+ |w|2

= (|z|+ |w|)2.

It follows that |z + w| ≤ |z|+ |w| for all complex numbers z and w.
We define the distance from a complex number z to a complex number w

to be the quantity |w − z|. Thus if z = x + iy and w = u + iv then

|w − z| =
√

(x− u)2 + (y − v)2.

We picture the complex numbers as representing points of the Euclidean
plane. A complex number x + iy, where x and y are real numbers, repre-
sents the point of the plane whose Cartesian coordinates (with respect to an
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appropriate origin) are (x, y). The fact that |w − z| represents the distance
between the points of the plane represented by the complex numbers z and
w is an immediate consequence of Pythagoras’ Theorem.

Let z1, z2 and z3 be complex numbers. Then

|z3 − z1| = |(z3 − z2) + (z2 − z1)| ≤ |z3 − z2|+ |z2 − z1|.

This important inequality is known as the Triangle Inequality. It corresponds
to the geometric statement that the length of any side of a triangle in the
Euclidean plane is less than or equal to the sum of the lengths of the other
two sides.

1.2 Infinite Sequences of Complex Numbers

Definition A sequence a1, a2, a3, . . . of complex numbers is said to converge
to some complex number l if the following criterion is satisfied:

given any positive real number ε, there exists some natural num-
ber N such that |aj − l| < ε for all natural numbers j satisfying
j ≥ N .

The complex number l is referred to as the limit of the sequence a1, a2, a3, . . .,
and is denoted by lim

j→+∞
aj.

A sequence a1, a2, a3, . . . of complex numbers is said to be bounded if there
exists some real number R ≥ 0 such that |aj| ≤ R for all positive integers j.
Every convergent sequence of complex numbers is bounded.

Example Let w be a complex number satisfying |w| < 1. Then the infinite
sequence w,w2, w3, . . . converges to 0. Indeed suppose that ε > 0 is given.
We can choose some positive integer N large enough to ensure that |w|N < ε.
Then |wj| < ε whenever j ≥ N .

Lemma 1.1 Let a1, a2, a3, . . . be an infinite sequence of complex numbers,
and, for each positive integer j, let aj = xj + iyj, where xj and yj are
real numbers. Then lim

j→+∞
aj = l for some complex number l if and only

if lim
j→+∞

xj = p and lim
j→+∞

yj = q, where p and q are real numbers satisfying

p + iq = l.

Proof Let l be a complex number, and let l = p+ iq, where p and q are real
numbers. Suppose that lim

j→+∞
aj = l. Then, given any positive real number ε,
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there exists some natural number N such that |aj − l| < ε whenever j ≥ N .
But then |xj − p| < ε and |yj − q| < ε whenever j ≥ N . We conclude that
xj → p and yj → q as j → +∞.

Conversely suppose that lim
j→+∞

xj = p and lim
j→+∞

yj = q. Let some positive

real number ε be given. Then there exist natural numbers N1 and N2 such
that |xj−p| < ε/

√
2 whenever j ≥ N1 and |yj−q| < ε/

√
2 whenever j ≥ N2.

Let N be the maximum of N1 and N2. If j ≥ N then

|aj − l|2 = |xj − p|2 + |yj − q|2 < 1
2
ε2 + 1

2
ε2 = ε2,

and thus |aj − l| < ε. This shows that aj → l as j → +∞, as required.

Proposition 1.2 Let (aj) and (bj) be convergent infinite sequences of com-
plex numbers. Then the sequences (aj+bj), (aj−bj) and (ajbj) are convergent,
and

lim
j→+∞

(aj + bj) = lim
j→+∞

aj + lim
j→+∞

bj,

lim
j→+∞

(aj − bj) = lim
j→+∞

aj − lim
j→+∞

bj,

lim
j→+∞

(ajbj) =

(
lim

j→+∞
aj

) (
lim

j→+∞
bj

)
.

If in addition bj 6= 0 for all n ∈ N and lim
j→+∞

bj 6= 0, then the sequence (aj/bj)

is convergent, and

lim
j→+∞

aj

bj

=
lim

j→+∞
aj

lim
j→+∞

bj

.

Proof Let l = lim
j→+∞

aj and m = lim
j→+∞

bj.

Let some positive real number ε be given. It follows from the definition
of limits that there exist natural numbers N1 and N2 such that |aj − l| < 1

2
ε

whenever j ≥ N1 and |bj−m| < 1
2
ε whenever j ≥ N2. Let N be the maximum

of N1 and N2. If j ≥ N then

|aj + bj − (l + m)| ≤ |aj − l|+ |bj −m| < 1
2
ε + 1

2
ε = ε.

Thus lim
j→+∞

(aj + bj) = l + m.

Let c be some complex number. We show that lim
j→+∞

(cbj) = cm. Now,

given any positive real number ε, we can choose a positive number δ small
enough to ensure that |c|δ < ε. Now lim

j→+∞
bj = m, and therefore there exists
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some natural number N such that |bj −m| < δ whenever j ≥ N . But then
|cbj − cm| = |c| |bj − m| ≤ |c|δ < ε whenever j ≥ N . This shows that
lim

j→+∞
(cbj) = cm.

On applying this result with c = −1, we see that lim
j→+∞

(−bj) = −m. It

follows that lim
j→+∞

(aj − bj) = l −m.

Next we prove that if u1, u2, u3, . . . and v1, v2, v3, . . . are infinite sequences
of complex numbers, and if lim

j→+∞
uj = 0 and lim

j→+∞
vj = 0 then lim

j→+∞
(ujvj) =

0. Let some positive number ε be given. Then there exist positive integers
N3 and N4 such that |uj| <

√
ε whenever j ≥ N3 and |vj| <

√
ε whenever

j ≥ N4. Let N be the maximum of N3 and N4. If j ≥ N then |uj| <
√

ε and
|vj| <

√
ε, and therefore |ujvj| < ε. It follows that lim

j→+∞
(ujvj) = 0.

We can apply this result with uj = aj − l and vj = bj −m for all positive
integers j, where Let l = lim

j→+∞
aj and m = lim

j→+∞
bj. Now lim

j→+∞
uj = 0 and

lim
j→+∞

vj = 0. It follows that

0 = lim
j→+∞

(ujvj) = lim
j→+∞

((aj − l)(bj −m))

= lim
j→+∞

(ajbj − lbj −maj + lm)

= lim
j→+∞

ajbj − l lim
j→+∞

bj −m lim
j→+∞

aj + lm = lim
j→+∞

ajbj − lm.

and therefore lim
j→+∞

(ajbj) = lm.

Finally suppose that bj 6= 0 for all positive integers j, and that m 6= 0.
Then, given any positive real number ε there exists some natural number N5

such that
|bj −m| < 1

2
|m|2ε and |bj −m| < 1

2
|m|

whenever j ≥ N5. But then if j ≥ N5 then |bj| ≥ |m| − |bj −m| > 1
2
|m|, and

therefore ∣∣∣∣ 1

bj

− 1

m

∣∣∣∣ =

∣∣∣∣m− bj

mbj

∣∣∣∣ ≤ 2

|m|2
|bj −m| < ε.

Thus lim
j→+∞

(1/bj) = 1/m. It follows that lim
j→+∞

(aj/bj) = l/m, as required.

1.3 The Least Upper Bound Principle

A widely-used basic principle of real analysis, from which many important
theorems ultimately derive, is the Least Upper Bound Principle.

Let S be a subset of the set R of real numbers. A real number u is said
to be an upper bound of the set S of x ≤ u for all x ∈ S. The set S is said
to be bounded above if such an upper bound exists.
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Definition Let S be some set of real numbers which is bounded above. A
real number s is said to be the least upper bound (or supremum) of S (denoted
by sup S) if s is an upper bound of S and s ≤ u for all upper bounds u of S.

Example The real number 2 is the least upper bound of the sets {x ∈ R :
x ≤ 2} and {x ∈ R : x < 2}. Note that the first of these sets contains its
least upper bound, whereas the second set does not.

The Least Upper Bound Principle may be stated as follows:

given any non-empty S subset of R which is bounded above, there
exists a least upper bound sup S for the set S.

A lower bound of a set S of real numbers is a real number l with the
property that l ≤ x for all x ∈ S. A set S of real numbers is said to be
bounded below if such a lower bound exists. If S is bounded below, then
there exists a greatest lower bound (or infimum) inf S of the set S. Indeed
inf S = − sup{x ∈ R : −x ∈ S}.

1.4 Monotonic Sequences

An infinite sequence a1, a2, a3, . . . of real numbers is said to be strictly in-
creasing if aj+1 > aj for all j, strictly decreasing if aj+1 < aj for all j,
non-decreasing if aj+1 ≥ aj for all j, or non-increasing if aj+1 ≤ aj for all j.
A sequence satisfying any one of these conditions is said to be monotonic;
thus a monotonic sequence is either non-decreasing or non-increasing.

Theorem 1.3 Any bounded non-decreasing sequence of real numbers is is
convergent. Similarly any bounded non-increasing sequence of real numbers
is convergent.

Proof Let a1, a2, a3, . . . be a bounded non-decreasing sequence of real num-
bers. It follows from the Least Upper Bound Principle that there exists a
least upper bound l for the set {aj : j ∈ N}. We claim that the sequence
converges to l.

Let ε > 0 be given. We must show that there exists some natural num-
ber N such that |aj − l| < ε whenever j ≥ N . Now l − ε is not an upper
bound for the set {aj : j ∈ N} (since l is the least upper bound), and there-
fore there must exist some natural number N such that aN > l−ε. But then
l − ε < aj ≤ l whenever j ≥ N , since the sequence is non-decreasing and
bounded above by l. Thus |aj − l| < ε whenever j ≥ N . Therefore aj → l as
j → +∞, as required.

If the sequence a1, a2, a3, . . . is bounded and non-increasing then the se-
quence −a1,−a2,−a3, . . . is bounded and non-decreasing, and is therefore
convergent. It follows that the sequence a1, a2, a3, . . . is also convergent.
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1.5 Upper and Lower Limits of Bounded Sequences of
Real Numbers

Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers, and, for
each positive integer j, let

Sj = {aj, aj+1, aj+2, . . .} = {ak : k ≥ j}.

The sets S1, S2, S3, . . . are all bounded. It follows that there exist well-defined
infinite sequences u1, u2, u3, . . . and l1, l2, l3, . . . of real numbers, where uj =
sup Sj and lj = inf Sj for all positive integers j. Now Sj+1 is a subset of Sj for
each positive integer j, and therefore uj+1 ≤ uj and lj+1 ≥ lj for each positive
integer j. It follows that the bounded infinite sequence (uj : j ∈ N) is a non-
increasing sequence, and is therefore convergent (Theorem 1.3). Similarly
the bounded infinite sequence (lj : j ∈ N) is a non-decreasing sequence, and
is therefore convergent. We define

lim sup
j→+∞

aj = lim
j→+∞

uj = lim
j→+∞

sup{aj, aj+1, aj+2, . . .},

lim inf
j→+∞

aj = lim
j→+∞

lj = lim
j→+∞

inf{aj, aj+1, aj+2, . . .}.

The quantity lim sup
j→+∞

aj is referred to as the upper limit of the sequence

a1, a2, a3, . . .. The quantity lim inf
j→+∞

aj is referred to as the lower limit of the

sequence a1, a2, a3, . . ..
Note that every bounded infinite sequence a1, a2, a3, . . .. of real num-

bers has a well-defined upper limit lim sup
j→+∞

aj and a well-defined lower limit

lim inf
j→+∞

aj.

Lemma 1.4 Let a1, a2, a3, . . . be a bounded infinite sequence of real numbers,
and let u = lim sup

j→+∞
aj. Then, given any positive real number ε, and given

any positive integer N , there exists a positive integer j such that j ≥ N and
|aj − u| < ε.

Proof It follows from the definition of upper limits that u = lim
j→+∞

uj, where

uj = sup{ak : k ≥ j}. Moreover the infinite sequence u1, u2, u3, . . . is non-
increasing. Therefore there exists some positive integer m such that m ≥ N
and u ≤ um < u + ε. Then aj ≤ um < u + ε whenever j ≥ m. Moreover
u− ε is not an upper bound on the set {aj : j ≥ m}, because um is the least
upper bound of this set. Therefore there exists some positive integer j such
that j ≥ m and aj > u− ε. Then j ≥ N and |aj − u| < ε, as required.
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1.6 The Bolzano-Weierstrass Theorem

Let a1, a2, a3, . . . be an infinite sequence of real or complex numbers. A sub-
sequence of this sequence is a sequence that is of the form am1 , am2 , am3 , . . .,
where m1, m2, m3, . . . are positive integers satisfying m1 < m2 < m3 < · · · .
Thus, for example, a2, a4, a6, . . . and a1, a4, a9, . . . are subsequences of the
given sequence.

Proposition 1.5 Any bounded infinite sequence a1, a2, a3, . . . of real num-
bers has a subsequence which converges to the upper limit lim sup

j→+∞
aj of the

given sequence.

Proof Let u = lim sup
j→+∞

aj. It follows from Lemma 1.4 that, given positive

integers j and kj for which |akj
− u| < 1/j, there exists some positive inte-

ger kj+1 satisfying kj+1 > kj for which |akj+1
− u| < 1/(j + 1). Therefore

there exists an increasing sequence k1, k2, k3, . . . of positive integers such that
|akj

− u| < 1/j for all positive integers j. Then ak1 , ak2 , ak3 is a subsequence
of a1, a2, a3, . . . which converges to the upper limit of the sequence, as re-
quired.

The following theorem, known as the Bolzano-Weierstrass Theorem, is
an immediate consequence of Proposition 1.5.

Theorem 1.6 (Bolzano-Weierstrass) Every bounded sequence of real num-
bers has a convergent subsequence.

Theorem 1.7 (Bolzano-Weierstrass Theorem for Complex Sequences) Ev-
ery bounded sequence of complex numbers has a convergent subsequence

Proof Let a1, a2, a3, . . . be a bounded sequence of complex numbers, and, for
each positive integer j, let aj = xj+iyj, where xj are yj are real numbers. The
Bolzano-Weierstrass Theorem for sequences of real numbers (Theorem 1.6)
guarantees the existence of a subsequence aj1 , aj2 , aj3 , . . . of the given se-
quence such that the real parts xj1 , xj2 , xj3 , . . . converge. A further applica-
tion of Theorem 1.6 then allows to replace this subsequence by a subsequence
of itself in order to ensure that the imaginary parts yj1 , yj2 , yj3 , . . . also con-
verge. But then aj1 , aj2 , aj3 , . . . is a convergent subsequence of a1, a2, a3, . . .,
by Lemma 1.1.
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1.7 Cauchy’s Criterion for Convergence

Definition A sequence a1, a2, a3, . . . of complex numbers is said to be a
Cauchy sequence if the following condition is satisfied:

for every real number ε satisfying ε > 0 there exists some natural
number N such that |aj−ak| < ε for all natural numbers j and k
satisfying j ≥ N and k ≥ N .

Lemma 1.8 Every Cauchy sequence of complex numbers is bounded.

Proof Let a1, a2, a3, . . . be a Cauchy sequence. Then there exists some nat-
ural number N such that |aj − ak| < 1 whenever j ≥ N and k ≥ N . In par-
ticular, |aj| ≤ |aN | + 1 whenever j ≥ N . Therefore |aj| ≤ R for all positive
integers j, where R is the maximum of the real numbers |a1|, |a2|, . . . , |aN−1|
and |aN |+ 1. Thus the sequence is bounded, as required.

The following important result is known as Cauchy’s Criterion for con-
vergence, or as the General Principle of Convergence.

Theorem 1.9 (Cauchy’s Criterion for Convergence) An infinite sequence of
complex numbers is convergent if and only if it is a Cauchy sequence.

Proof First we show that convergent sequences are Cauchy sequences. Let
a1, a2, a3, . . . be a convergent sequence, and let l = lim

n→+∞
aj. Let ε > 0 be

given. Then there exists some natural number N such that |aj − l| < 1
2
ε for

all j ≥ N . Thus if j ≥ N and k ≥ N then |aj − l| < 1
2
ε and |ak − l| < 1

2
ε,

and hence

|aj − ak| = |(aj − l)− (ak − l)| ≤ |aj − l|+ |ak − l| < ε.

Thus the sequence a1, a2, a3, . . . is a Cauchy sequence.
Conversely we must show that any Cauchy sequence a1, a2, a3, . . . is con-

vergent. Now Cauchy sequences are bounded, by Lemma 1.8. The sequence
a1, a2, a3, . . . therefore has a convergent subsequence ak1 , ak2 , ak3 , . . ., by the
Bolzano-Weierstrass Theorem (Theorem 1.7). Let l = limm→+∞ akm . We
claim that the sequence a1, a2, a3, . . . itself converges to l.

Let ε > 0 be given. Then there exists some natural number N such
that |aj − ak| < 1

2
ε whenever j ≥ N and k ≥ N (since the sequence is a

Cauchy sequence). Let m be chosen large enough to ensure that km ≥ N
and |akm − l| < 1

2
ε. Then

|aj − l| ≤ |aj − akm|+ |akm − l| < 1
2
ε + 1

2
ε = ε

whenever j ≥ N , and thus aj → l as j → +∞, as required.
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1.8 Limits of Functions of a Complex Variable

Let D be a subset of the set C of complex numbers A complex number w
is said to be a limit point of D if and only if, given any δ > 0, there exists
z ∈ D satisfying 0 < |z − w| < δ.

A complex number w belonging to some subset D of the complex plane
is said to be an isolated point of D if it is not a limit point of D. Thus an
element w of D is an isolated point of D if and only if there exists some δ > 0
such that {z ∈ D : |z − w| < δ} = {w}.

Definition Let f : D → C be a function defined over some subset D of C.
Let w be a limit point of D. A complex number l is said to be the limit of the
function f as z tends to w in D if, given any real number ε satisfying ε > 0,
there exists some real number δ satisfying δ > 0 such that |f(z)− l| < ε for
all z ∈ D satisfying 0 < |z − w| < δ.

Lemma 1.10 Let f : D → C be a complex-valued function defined over some
subset D of the complex plane, and let w be a limit point of D. Then the
limit lim

z→w
f(z), if it exists, is unique.

Proof Suppose that lim
z→w

f(z) = l and lim
z→w

f(z) = m. We must show that

l = m. Let ε > 0 be given. Then there exist δ1 > 0 and δ2 > 0 such that
|f(z)− l| < ε whenever z ∈ D satisfies 0 < |z − w| < δ1 and |f(z)−m| < ε
whenever z ∈ D satisfies 0 < |z − w| < δ2. Choose z ∈ D satisfying
0 < |z−w| < δ, where δ is the minimum of δ1 and δ2. (This is possible since
w is a limit point of D.) Then |f(z)− l| < ε and |f(z)−m| < ε, and hence

|l −m| ≤ |l − f(z)|+ |f(z)−m| < 2ε

by the Triangle Inequality. Since |l−m| < 2ε for all ε > 0, we conclude that
l = m, as required.

Proposition 1.11 Let f : D → C and g: D → C be functions defined over
some subset D of C. Let w be a limit point of D. Suppose that lim

z→w
f(z) and

lim
z→w

g(z) exist. Then lim
z→w

(f(z) + g(z)), lim
z→w

(f(z)− g(z)) and lim
z→w

(f(z)g(z))

exist, and

lim
z→w

(f(z) + g(z)) = lim
z→w

f(z) + lim
z→w

g(z),

lim
z→w

(f(z)− g(z)) = lim
z→w

f(z)− lim
z→w

g(z),

lim
z→w

(f(z)g(z)) = lim
z→w

f(z) lim
z→w

g(z).
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If in addition g(z) 6= 0 for all z ∈ D and lim
z→w

g(z) 6= 0, then lim
z→w

f(z)/g(z)

exists, and

lim
z→w

f(z)

g(z)
=

lim
z→w

f(z)

lim
z→w

g(z)
.

Proof Let l = lim
z→w

f(z) and m = lim
z→w

g(z).

First we prove that lim
z→w

(f(z) + g(z)) = l + m. Let ε > 0 be given. We

must prove that there exists some δ > 0 such that |f(z)+ g(z)− (l +m)| < ε
for all z ∈ D satisfying 0 < |z − w| < δ. Now there exist δ1 > 0 and δ2 > 0
such that |f(z) − l| < 1

2
ε for all z ∈ D satisfying 0 < |z − w| < δ1, and

|g(z)−m| < 1
2
ε for all z ∈ D satisfying 0 < |z − w| < δ2, since l = lim

z→w
f(z)

and m = lim
z→w

g(z). Let δ be the minimum of δ1 and δ2. If z ∈ D satisfies

0 < |z − w| < δ then |f(z)− l| < 1
2
ε and |g(z)−m| < 1

2
ε, and hence

|f(z) + g(z)− (l + m)| ≤ |f(z)− l|+ |g(z)−m| < 1
2
ε + 1

2
ε = ε

This shows that lim
z→w

(f(z) + g(z)) = l + m.

Let c be some complex number. We show that lim
z→w

(cg(z)) = cm. Let

some positive number ε be given. Choose a positive number ε1 small enough
to ensure that |c|ε1 < ε. Then there exists some real number δ > 0 such that
|g(z)−m| < ε1 whenever 0 < |z − w| < δ. But then

|cg(z)− cm| = |c||g(z)−m| ≤ |c|ε1 < ε

whenever 0 < |z − w| < δ. Thus

lim
z→w

(cg(z)) = cm.

If we combine this result, for c = −1, with the previous result, we see
that lim

z→w
(−g(z)) = −m, and therefore lim

z→w
(f(z)− g(z)) = l −m.

Next we show that if p: D → R and q: D → R are functions with the
property that lim

z→w
p(z) = lim

z→w
q(z) = 0, then lim

z→w
(p(z)q(z)) = 0. Let ε > 0 be

given. Then there exist real numbers δ1 > 0 and δ2 > 0 such that |p(z)| <
√

ε
whenever 0 < |z − w| < δ1 and |q(z)| <

√
ε whenever 0 < |z − w| < δ2. Let

δ be the minimum of δ1 and δ2. If 0 < |z − w| < δ then |p(z)q(z)| < ε. We
deduce that lim

z→w
(p(z)q(z)) = 0.

We can apply this result with p(z) = f(z)− l and q(z) = g(z)−m for all
z ∈ D. Using the results we have already obtained, we see that

0 = lim
z→w

(p(z)q(z)) = lim
z→w

(f(z)g(z)− f(z)m− lg(z) + lm)

= lim
z→w

(f(z)g(z))−m lim
z→w

f(z)− l lim
z→w

g(z) + lm = lim
z→w

(f(z)g(z))− lm.

11



Thus lim
z→w

(f(z)g(z)) = lm.

Next we show that if h: D → R is a function that is non-zero through-
out D, and if lim

z→w
h(z) → 1 then lim

z→w
(1/h(z)) = 1. Let ε > 0 be given. Let

ε0 be the minimum of 1
2
ε and 1

2
. Then there exists some δ > 0 such that

|h(z) − 1| < ε0 whenever 0 < |z − w| < δ. Thus if 0 < |z − w| < δ then
|h(z)− 1| < 1

2
ε and |h(z)| ≥ 1− |1− h(z)| > 1

2
. But then∣∣∣∣ 1

h(z)
− 1

∣∣∣∣ =

∣∣∣∣h(z)− 1

h(z)

∣∣∣∣ =
|h(z)− 1|
|h(z)|

< 2|h(z)− 1| < ε.

We deduce that lim
z→w

1/h(z) = 1. If we apply this result with h(z) = g(z)/m,

where m 6= 0, we deduce that lim
z→w

m/g(z) = 1, and thus lim
z→w

1/g(z) = 1/m.

The result we have already obtained for products of functions then enables
us to deduce that

lim
z→w

(f(z)/g(z)) = l/m.

1.9 Continuous Functions of a Complex Variable.

Definition Let D be a subset of C, and let f : D → C be a function on D.
Let w be an element of D. The function f is said to be continuous at w if,
given any ε > 0, there exists some δ > 0 such that |f(z)− f(w)| < ε for all
z ∈ D satisfying |z − w| < δ. If f is continuous at every element of D then
we say that f is continuous on D.

Lemma 1.12 A complex-valued function f : D → C defined on some sub-
set D of C is continuous on D if and only if lim

z→w
f(z) = f(w) for all limit

points w of D that belong to D.

Proof Every element w of the domain D of the function f is either a limit
point of D or an isolated point of D. If w is an isolated point of D then it
follows from the definition of continuity that every complex-valued function
with domain D is continuous at w. If w is a limit point D, then comparison
of the relevant definitions shows that the function f is continuous at w if and
only if lim

z→w
f(z) = f(w). The result follows.

Given functions f : D → C and g: D → C defined over some subset D
of C, we denote by f + g, f − g, f · g and f/g the functions on D defined by

(f + g)(z) = f(z) + g(z), (f − g)(z) = f(z)− g(z),

(f · g)(z) = f(z)g(z), (f/g)(z) = f(z)/g(z).

12



Proposition 1.13 Let f : D → C and g: D → C be functions defined over
some subset D of C. Suppose that f and g are continuous at some element w
of D. Then the functions f + g, f − g and f · g are also continuous at w. If
moreover the function g is everywhere non-zero on D then the function f/g
is continuous at w.

Proof This result follows directly using Proposition 1.11 and the relationship
between continuity and limits described above.

Proposition 1.14 Let f : D → C and g: E → C be functions defined on D
and E respectively, where D and E are subsets of the complex plane satisfying
f(D) ⊂ E. Let w be an element of D. Suppose that the function f is
continuous at w and that the function g is continuous at f(w). Then the
composition g ◦ f of f and g is continuous at w.

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(z) −
g(f(w))| < ε for all z ∈ E satisfying |z − f(w)| < η. But then there
exists some δ > 0 such that |f(z) − f(w)| < η for all z ∈ D satisfying
|z − w| < δ. Thus if |z − w| < δ then |f(z) − f(w)| < η, and therefore
|g(f(z))− g(f(w))| < ε. Hence g ◦ f is continuous at w.

Lemma 1.15 Let f : D → C be a function defined on some subset D of C,
and let a1, a2, a3, . . . be a sequence of complex numbers belonging to D. Sup-
pose that lim

j→+∞
aj = w, where w ∈ D, and that f is continuous at w. Then

lim
j→+∞

f(aj) = f(w).

Proof Let ε > 0 be given. Then there exists some δ > 0 such that |f(z) −
f(w)| < ε for all z ∈ D satisfying |z − w| < δ. But then there exists some
positive integer N such that |aj − w| < δ for all j satisfying j ≥ N . Thus
|f(aj)− f(w)| < ε for all j ≥ N . Hence f(aj) → f(w) as j → +∞.

Proposition 1.16 Let f : D → C and g: E → C be functions defined on D
and E respectively, where D and E are subsets of C satisfying f(D) ⊂ E.
Let w be a limit point of D, and let l be an element of E. Suppose that
lim
z→w

f(z) = l and that the function g is continuous at l. Then lim
z→w

g(f(z)) =

g(l).

Proof Let ε > 0 be given. Then there exists some η > 0 such that |g(z) −
g(l)| < ε for all z ∈ E satisfying |z − l| < η. But then there exists δ > 0
such that |f(z) − l| < η for all z ∈ D satisfying 0 < |z − w| < δ. Thus if
0 < |z−w| < δ then |f(z)− l| < η, and therefore |g(f(z))− g(l)| < ε. Hence
lim
z→w

g(f(z)) = g(l).

13



1.10 The Intermediate Value Theorem

Proposition 1.17 Let f : [a, b] → Z continuous integer-valued function de-
fined on a closed interval [a, b]. Then the function f is constant.

Proof Let

S = {x ∈ [a, b] : f is constant on the interval [a, x]},

and let s = sup S. Now s ∈ [a, b], and therefore the function f is continuous
at s. Therefore there exists some real number δ satisfying δ > 0 such that
|f(x)− f(s)| < 1

2
for all x ∈ [a, b] satisfying |x− s| < δ. But the function f

is integer-valued. It follows that f(x) = f(s) for all x ∈ [a, b] satisfying
|x − s| < δ. Now s − δ is not an upper bound for the set S. Therefore
there exists some element x0 of S satisfying s − δ < x0 ≤ s. But then
f(x) = f(s) = f(x0) = f(a) for all x ∈ [a, b] satsifying s ≤ x < s + δ, and
therefore the function f is constant on the interval [a, x] for all x ∈ [a, b]
satisfying s ≤ x < s + δ. Thus x ∈ [a, b]∩ [s, s + δ) ⊂ S. In particular s ∈ S.
Now S cannot contain any elements x of [a, b] satisfying x > s. Therefore
[a, b]∩ [s, s + δ) = {s}, and therefore s = b. This shows that b ∈ S, and thus
the function f is constant on the interval [a, b], as required.

Theorem 1.18 (The Intermediate Value Theorem) Let a and b be real num-
bers satisfying a < b, and let f : [a, b] → R be a continuous function defined
on the interval [a, b]. Let c be a real number which lies between f(a) and f(b)
(so that either f(a) ≤ c ≤ f(b) or else f(a) ≥ c ≥ f(b).) Then there exists
some s ∈ [a, b] for which f(s) = c.

Proof Let c be a real number which lies between f(a) and f(b), and let
gc: R \ {c} → Z be the continuous integer-valued function on R \ {c} de-
fined such that gc(x) = 0 whenever x < c and gc(x) = 1 if x > c. Suppose
that c were not in the range of the function f . Then the composition func-
tion gc ◦ f : [a, b] → R would be a continuous integer-valued function defined
throughout the interval [a, b]. This function would not be constant, since
gc(f(a)) 6= gc(f(b)). But every continuous integer-valued function on the in-
terval [a, b] is constant (Proposition 1.17). It follows that every real number c
lying between f(a) and f(b) must belong to the range of the function f , as
required.

Corollary 1.19 Let f : [a, b] → [c, d] be a strictly increasing continuous func-
tion mapping an interval [a, b] into an interval [c, d], where a, b, c and d are
real numbers satisfying a < b and c < d. Suppose that f(a) = c and f(b) = d.
Then the function f has a continuous inverse f−1: [c, d] → [a, b].
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Proof Let x1 and x2 be distinct real numbers belonging to the interval [a, b]
then either x1 < x2, in which case f(x1) < f(x2) or x1 > x2, in which case
f(x1) > f(x2). Thus f(x1) 6= f(x2) whenever x1 6= x2. It follows that the
function f is injective. The Intermediate Value Theorem (Theorem 1.18)
ensures that f is surjective. It follows that the function f has a well-defined
inverse f−1: [c, d] → [a, b]. It only remains to show that this inverse function
is continuous.

Let y be a real number satisfying c < y < d, and let x be the unique real
number such that a < x < b and f(x) = y. Let ε > 0 be given. We can then
choose x1, x2 ∈ [a, b] such that x− ε < x1 < x < x2 < x + ε. Let y1 = f(x1)
and y2 = f(x2). Then y1 < y < y2. Choose δ > 0 such that δ < y − y1 and
δ < y2 − y. If v ∈ [c, d] satisfies |v − y| < δ then y1 < v < y2 and therefore
x1 < f−1(v) < x2. But then |f−1(v) − f−1(y)| < ε. We conclude that the
function f−1: [c, d] → [a, b] is continuous at all elements in the interior of
the interval [a, b]. A similar argument shows that it is continuous at the
endpoints of this interval. Thus the function f has a continuous inverse, as
required.

1.11 Uniform Convergence

Let D be a subset of C and let f1, f2, f3, . . . , be a sequence of functions
mapping D into C. We say that the infinite sequence f1, f2, f3, . . . converges
uniformly on D to a function f : D → C if, given any ε > 0, there exists
some natural number N such that |fj(z)− f(z)| < ε for all z ∈ D and for all
natural numbers j satisfying j ≥ N , where the value of N chosen does not
depend on the value of z.

Theorem 1.20 Let D be a subset of C, and let f1, f2, f3, . . . be a sequence of
continuous functions mapping D into C which is uniformly convergent on D
to some function f : D → C. Then the function f is continuous on D.

Proof Let w be an element of D. We wish to show that the function f is
continuous at w. Let ε > 0 be given. We must show that there exists some
δ > 0 such that |f(z) − f(w)| < ε whenever z ∈ D satisfies |z − w| < δ.
Now we can find some value of N , independent of z, with the property that
|fj(z)− f(z)| < 1

3
ε for all z ∈ D and for all j ≥ N . Choose any j satisfying

j ≥ N . We can find some δ > 0 such that |fj(z) − fj(w)| < 1
3
ε whenever

z ∈ D satisfies |z − w| < δ, since the function fj is continuous at w. But
then

|f(z)− f(w)| ≤ |f(z)− fj(z)|+ |fj(z)− fj(w)|+ |fj(w)− f(w)|
< 1

3
ε + 1

3
ε + 1

3
ε = ε
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whenever |z−w| < δ. Thus the function f is continuous at w, as required.

1.12 Open Sets in the Complex Plane

Let w be a complex number, and let r be a non-negative real number. We
define the open disk D(w, r) of radius r about w to be the subset

{z ∈ C : |z − w| < r}

of the complex plane consisting of all complex numbers that lie within a
distance r of w.

Definition A subset V of the complex plane is said to be open if and only
if, given any element v of V , there exists some δ > 0 such that D(v, δ) ⊂ V ,
where D(w, δ) is the open disc of radius δ about v.

By convention, we regard the empty set ∅ as being an open subset of the
complex plane. (The criterion given above is satisfied vacuously in the case
when V is the empty set.)

Example Let c be a real number, and let H = {z ∈ C : Re z > c}. Given
w ∈ H, let δ = Re w − c. Then δ > 0. Now Re z − Re w > −|z − w| for
all complex numbers z, and therefore Re z > c for all complex numbers z
satisfying |z − w| < δ. Thus D(w, δ) ⊂ H, where D(w, δ) denotes the open
disk of radius δ about w. Thus H is an open set in the complex plane.
Similarly {z ∈ C : Re z < c}, {z ∈ C : Im z > c} and {z ∈ C : Im z < c} are
open sets in the complex plane.

Lemma 1.21 Given any complex number w and any positive real number r,
the open disk D(w, r) of radius r about w is an open set in the complex plane.

Proof Let z be an element of the open disk D(w, r). We must show that
there exists some δ > 0 such that D(z, δ) ⊂ D(w, r). Let δ = r − |z − w|.
Then δ > 0, since |z − w| < r. Moreover if z1 ∈ D(z, δ) then

|z1 − w| ≤ |z1 − z|+ |z − w| < δ + |z − w| = r,

by the Triangle Inequality, and hence z1 ∈ D(w, r). Thus D(z, δ) ⊂ D(w, r).
This shows that D(w, r) is an open set, as required.

Lemma 1.22 Given any complex number w and any positive real number r,
the set {z ∈ C : |z − w| > r} is an open set in the complex plane.
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Proof Let z be a complex number satisfying |z − w| > r, and let z1 be a
complex number satisfying |z1 − z| < δ, where δ = |z − w| − r. Then

|z − w| ≤ |z − z1|+ |z1 − w|,

by the Triangle Inequality, and therefore

|z1 − w| ≥ |z − w| − |z1 − z| > |z − w| − δ = r.

Thus the open disk D(z, δ) of radius δ about z is contained in the given set.
The result follows.

Proposition 1.23 The collection of open sets in the complex plane has the
following properties:—

(i) the empty set ∅ and the whole complex plane C are both open sets;

(ii) the union of any collection of open sets is itself an open set;

(iii) the intersection of any finite collection of open sets is itself an open
set.

Proof The empty set ∅ is an open set by convention. Moreover the definition
of an open set is satisfied trivially by the whole complex plane. This proves
(i).

Let A be any collection of open sets in the complex plane, and let W
denote the union of all the open sets belonging to A. We must show that W
is itself an open set. Let z ∈ W . Then z ∈ V for some set V belonging to the
collection A. It follows that there exists some δ > 0 such that D(z, δ) ⊂ V ,
where D(z, δ) denotes the open disk of radius δ about z. But V ⊂ W , and
thus D(z, δ) ⊂ W . This shows that W is an open set. This proves (ii).

Finally let V1, V2, V3, . . . , Vk be a finite collection of open sets in the com-
plex plane, and let V denote the intersection V1 ∩ V2 ∩ · · · ∩ Vk of these
sets. Let z ∈ V . Now z ∈ Vj for j = 1, 2, . . . , k, and therefore there ex-
ist strictly positive real numbers δ1, δ2, . . . , δk such that D(z, δj) ⊂ Vj for
j = 1, 2, . . . , k. Let δ be the minimum of δ1, δ2, . . . , δk. Then δ > 0. (This is
where we need the fact that we are dealing with a finite collection of sets.)
Now D(z, δ) ⊂ D(z, δj) ⊂ Vj for j = 1, 2, . . . , k, and thus D(z, δ) ⊂ V . Thus
the intersection V of the sets V1, V2, . . . , Vk is itself an open set. This proves
(iii).

Example The set {z ∈ C : |z − 3| < 2 and Re z > 1} is an open set in the
complex plane, as it is the intersection of the open disk of radius 2 about 3
with the open set {z ∈ C : Re z > 1}.
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Example The set {z ∈ C : |z − 3| < 2 or Re z > 1} is an open set in the
complex plane, as it is the union of the open disk of radius 2 about 3 and
the open set {z ∈ C : Re z > 1}.

Example The set

{z ∈ C : |z − n| < 1
2

for some n ∈ Z}

is an open set in the complex plane, since it is the union of the open disks of
radius 1

2
centred on integers.

Example For each natural number k, let

D(0, 1/k) = {z ∈ C : k|z| < 1}.

Now each set D(0, 1/k) is an open disk of radius 1/k about the origin, and
is therefore an open set in the complex plane. However the intersection of
the sets D(0, 1/k) for all natural numbers k is the set {0}, and thus the
intersection of the open sets D(0, 1/k) for all natural numbers k is not itself
an open set in the complex plane. This example demonstrates that infinite
intersections of open sets need not be open.

Lemma 1.24 A sequence z1, z2, z3, . . . of complex numbers converges to a
complex number w if and only if, given any open set V which contains w,
there exists some natural number N such that zj ∈ V for all j satisfying
j ≥ N .

Proof Suppose that the sequence z1, z2, z3, . . . has the property that, given
any open set V which contains w, there exists some natural number N such
that zj ∈ V whenever j ≥ N . Let ε > 0 be given. The open disk D(w, ε) of
radius ε about w is an open set by Lemma 1.21. Therefore there exists some
natural number N such that zj ∈ D(w, ε) whenever j ≥ N . Thus |zj−w| < ε
whenever j ≥ N . This shows that the sequence converges to w.

Conversely, suppose that the sequence z1, z2, z3, . . . converges to w. Let
V be an open set which contains w. Then there exists some ε > 0 such
that the open disk D(w, ε) of radius ε about w is a subset of V . Thus there
exists some ε > 0 such that V contains all complex numbers z that satisfy
|z−w| < ε. But there exists some natural number N with the property that
|zj − w| < ε whenever j ≥ N , since the sequence converges to w. Therefore
zj ∈ V whenever j ≥ N , as required.
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1.13 Interiors

Definition Let A be a subset of the complex plane. The interior of A is
the subset of A consisting of those complex numbers w for which there exists
some positive real number δ such that D(w, δ) ⊂ A, where D(w, δ) denotes
the open disk of radius δ centred on w.

A straightforward application of Lemma 1.21 shows that if A is a subset
of the complex plane then the interior of A is an open set.

1.14 Closed Sets in the Complex Plane

A subset F of the complex plane is said to be closed if its complement C \F
is open. (Recall that C \ F = {z ∈ C : z 6∈ F}.)

Example The sets {z ∈ C : Re z ≥ c}, {z ∈ C : Re z ≤ c}, and {z ∈ C :
z = c} are closed sets in the complex plane for each real number c, since the
complements of these sets are open subsets of the complex plane.

Example Let w be a complex number, and let r be a non-negative real
number. Then {z ∈ C : |z − w| ≤ r} and {z ∈ C : |z − w| ≥ r} are closed
sets in the complex plane. In particular, the set {w} consisting of a single
complex number w is a closed set. (These results follow immediately using
Lemma 1.21 and Lemma 1.22 and the definition of closed sets.)

Let A be some collection of subsets of a set X. Then

X \
⋃
S∈A

S =
⋂
S∈A

(X \ S), X \
⋂
S∈A

S =
⋃
S∈A

(X \ S)

(i.e., the complement of the union of some collection of subsets of X is the
intersection of the complements of those sets, and the complement of the
intersection of some collection of subsets of X is the union of the comple-
ments of those sets). The following result therefore follows directly from
Proposition 1.23.

Proposition 1.25 The collection of closed sets in the complex plane has the
following properties:

(i) the empty set ∅ and the whole complex plane C are both closed sets;

(ii) the intersection of any collection of closed sets is itself closed;

(iii) the union of any finite collection of closed sets is itself closed.
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Lemma 1.26 Let F be a closed set in the complex plane, and let z1, z2, z3, . . .
be a sequence of complex numbers belonging to F which converges to a complex
number w. Then w ∈ F .

Proof The complement C \ F of F is open, since F is closed. Suppose
that w were an element of C \ F . It would then follow from Lemma 1.24
that zj ∈ C \ F for all values of j greater than some positive integer N ,
contradicting the fact that zj ∈ F for all j. This contradiction shows that w
must belong to F , as required.

Lemma 1.27 Let F be a closed bounded set in the complex plane C, and let
U be an open set in C. Suppose that F ⊂ U . Then there exists positive real
number δ such that |z − w| ≥ δ > 0 for all z ∈ F and w ∈ C \ U .

Proof Suppose that such a positive real number δ did not exist. Then
there would exist an infinite sequence (zj : j ∈ N) of elements of F and a
correspondinding infinite sequence (wj : j ∈ N) of elements of C \ U such
that |zj − wj| < 1/j for all positive integers j. The sequence (zj : j ∈ N)
would be a bounded sequence of complex numbers, and would therefore have
a convergent subsequence (zmj

: j ∈ N) (Theorem 1.7). Let c = lim
j→+∞

zmj
.

Then c = lim
j→+∞

wmj
, because lim

j→+∞
(zmj

− wmj
) = 0. But then c ∈ F and

c ∈ C \ U , because the sets F and C \ U are closed (Lemma 1.26). But this
is impossible, as F ⊂ U . It follows that there must exist some positive real
number δ with the required properties.

1.15 Closures

Definition Let A be a subset of the complex plane. The closure of A is the
subset of the complex plane consisting of all complex numbers z with the
property that, given any real number δ satisfying δ > 0, there exists some
element a of A such that |z − a| < δ. We denote the closure of A by A.

Let A be a subset of the complex plane. Note that a complex number z
belongs to the closure of A in X if and only if D(z, δ) ∩ A is a non-empty
set for all positive real numbers δ, where D(z, δ) denotes the open disk of
radius δ centred on z.

Lemma 1.28 Let A be a subset of the complex plane, and let w be an element
of the closure A of A. Then there exists an infinite sequence of elements of
A which converges to w.
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Proof For each positive integer j let zj be an element of A satisfying |w −
zj| < 1/j. Then lim

j→+∞
zj = w.

Proposition 1.29 Let A be a subset of the complex plane. Then the clo-
sure A of A is a closed set. Moreover if F is a closed set in the complex
plane, and if A ⊂ F then A ⊂ F .

Proof Let w be a complex number belonging to the complement X \ A of
A in X, and, for any positive real number r let D(w, r) denote the open
disk of radius r about w. Then there exists some real number δ such that
D(w, 2δ)∩A = ∅. Let z be an element of A. Then there exists some element a
of A such that |z − a| < δ. Then

2δ ≤ |w − a| ≤ |w − z|+ |z − a| < |w − z|+ δ,

and therefore |w− z| > δ. This shows that D(w, δ)∩A = ∅. We deduce that
the complement of A is an open set, and therefore A is a closed set.

Now let F be a closed set in the complex plane. Suppose that A ⊂ F .
Let w be a complex number belonging to the complement C \ F of F . Then
there exists some real number δ satisfying δ > 0 for which D(w, δ) ∩ F = ∅.
But then D(w, δ) ∩ A = ∅ and therefore w 6∈ A. Thus X \ F ⊂ X \ A, and
therefore A ⊂ F , as required.

1.16 Continuous Functions and Open and Closed Sets

Let U be an open subset of the complex plane, and let f : U → C be a
complex-valued function defined on U . We recall that the function f is
continuous at an element w of U if, given any ε > 0, there exists some δ > 0
such that |f(z) − f(w)| < ε for all elements z of U satisfying |z − w| < δ.
Moreover we can choose δ small enough to ensure that the open disk of
radius δ about w is contained within the open set U . It follows that the
function f : U → C is continuous at w if and only if, given any ε > 0, there
exists some δ > 0 such that the function f maps D(w, δ) into D(f(w), ε)
(where D(w, δ) and D(f(w), ε) denote the open disks of radius δ and ε about
w and f(w) respectively).

Given any function f : U → C, we denote by f−1(V ) the preimage of a
subset V of C under the map f , defined by f−1(V ) = {z ∈ U : f(z) ∈ V }.

Proposition 1.30 Let U be an open set in C, and let f : U → C be a
complex-valued function on U . The function f is continuous if and only
if f−1(V ) is an open set for every open subset V of C.
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Proof Suppose that f : U → C is continuous. Let V be an open set in C.
We must show that f−1(V ) is an open set. Let w ∈ f−1(V ). Then f(w) ∈
V . But V is open, hence there exists some ε > 0 with the property that
D(f(w), ε) ⊂ V . But f is continuous at w. Therefore there exists some
δ > 0 such that f maps D(w, δ) into D(f(w), ε) (see the remarks above).
Thus f(z) ∈ V for all z ∈ D(w, δ), showing that D(w, δ) ⊂ f−1(V ). This
shows that f−1(V ) is an open set for every open set V in C.

Conversely suppose that f : U → C is a function with the property that
f−1(V ) is an open set for every open set V in C. Let w ∈ U . We must show
that f is continuous at w. Let ε > 0 be given. Then D(f(w), ε) is an open set
in C, by Lemma 1.21, hence f−1 (D(f(w), ε)) is an open set which contains w.
It follows that there exists some δ > 0 such that D(w, δ) ⊂ f−1 (D(f(w), ε)).
Thus, given any ε > 0, there exists some δ > 0 such that f maps D(w, δ)
into D(f(w), ε). We conclude that f is continuous at w, as required.

Let U be an open subset of the complex plane, let f : U → R be continu-
ous, and let c be some real number. Then the sets {z ∈ U : f(z) > c} and
{z ∈ U : f(z) < c} are open sets, and, given real numbers a and b satisfying
a < b, the set {z ∈ U : a < f(z) < b} is an open set.

1.17 Continuous Functions on Closed Bounded Sets

We shall prove that continuous functions of a complex variable map closed
bounded sets to closed bounded sets.

Lemma 1.31 Let X be a closed bounded subset of the complex plane space C,
and let f : X → C be a continuous complex-valued function defined on X.
Then there exists some non-negative real number M such that |f(z)| ≤ M
for all z ∈ X.

Proof Suppose that the function f were not bounded on X. Then there
would exist a sequence (zj : j ∈ N) of complex numbers in X such that
|f(zj)| > j for all positive integers j. Now the sequence (zj : j ∈ N) would
be a bounded sequence of complex numbers, since the set X is bounded, and
every bounded sequence of complex numbers has a convergent subsequence
(Theorem 1.7). Therefore there would exist a subsequence (zmj

: j ∈ N)
of (zj : j ∈ N) converging to some complex number w. Moreover w would
belong to X, since X is closed (Lemma 1.26). Also it would follow from the
continuity of the function f that lim

j→+∞
f(zmj

) = f(w) (Lemma 1.15), and

therefore |f(zmj
)| ≤ |f(w)| + 1 for all sufficiently large positive integers j.

But this is impossible because |f(zj)| > j for all positive integers j, and thus
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|f(zmj
)| > mj for all positive integers j, where mj → +∞ as j → +∞.

Thus the assumption that the function f is unbounded on X leads to a
contradiction. We conclude that the function f must be unbounded on X,
as required.

Theorem 1.32 Let X be a closed bounded set in the complex plane, and
let f : X → C be a continuous complex-valued function on X. Then the
function f maps X onto a closed bounded set f(X) in the complex plane.

Proof It follows from Lemma 1.31 that the set f(X) must be bounded.
Let q be a complex number belonging to the closure f(A) of f(A). Then

there exists a sequence (zj : j ∈ N) of complex numbers in X such that
lim

j→+∞
f(zj) = q (Lemma 1.28). Because the set X is both closed and

bounded, this sequence is a bounded sequence in the complex plane, and
therefore has a convergent subsequence (zmj

: j ∈ N) (Theorem 1.7). Let
w = lim

j→+∞
zmj

. Then w ∈ X, because X is closed (Lemma 1.26). But then

q = lim
j→+∞

f(zmj
) = f(w), and therefore q ∈ f(A). Thus every element of

the closure of f(A) belongs to f(A) itself, and therefore f(A) is closed, as
required.

1.18 Uniform Continuity

Definition Let X and Y be subsets of the complex plane. A function
f : X → Y from X to Y is said to be to be uniformly continuous if, given any
ε > 0, there exists some δ > 0 (which does not depend on either z′ or z) such
that |f(z′)− f(z)| < ε for all elements z′ and z of X satisfying |z′ − z| < δ.

Theorem 1.33 Let X be a subset of C that is both closed and bounded. Then
any continuous function f : X → C is uniformly continuous.

Proof Let ε > 0 be given. Suppose that there did not exist any δ > 0
such that |f(z′) − f(z)| < ε for all complex numbers z′ and z in X sat-
isfying |z′ − z| < δ. Then, for each natural number j, there would exist
elements uj and vj in X such that |uj − vj| < 1/j and |f(uj) − f(vj)| ≥ ε.
But the sequence u1, u2, u3, . . . would be bounded, since X is bounded, and
thus would possess a subsequence uj1 , uj2 , uj3 , . . . converging to some com-
plex number w (Theorem 1.7). Moreover w ∈ X, since X is closed. The
sequence vj1 , vj2 , vj3 , . . . would also converge to w, since lim

k→+∞
|vjk

−ujk
| = 0.

But then the sequences f(uj1), f(uj2), f(uj3), . . . and f(vj1), f(vj2), f(vj3), . . .
would converge to f(w), since f is continuous (Lemma 1.15), and thus
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lim
k→+∞

|f(ujk
)− f(vjk

)| = 0. But this is impossible, since uj and vj have

been chosen so that |f(uj)− f(vj)| ≥ ε for all j. We conclude therefore that
there must exist some δ > 0 such that |f(z′) − f(z)| < ε for all complex
numbers z′ and z in X satisfying |z′ − z| < δ, as required.
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