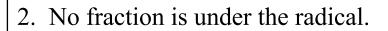
Unit 6, Lesson 1

Simplifying Radicals and Pythagorean Theorem


Choose always the way that seems the best however rough it may be; custom will soon render it easy and agreeable.

-Pythagoras

Radicals should always be in simplest form:

1. No perfect square factor (other than 1) 12 is under the radical.

3. No fraction has a radical in its denominator. $\frac{2}{17}$

Example 1: Simplify

a)
$$3\sqrt{112}$$
 $\frac{112}{426}$
 $\frac{12}{426}$
 $\frac{1}{42}$
b) $\sqrt{256} = 16$
c) $\sqrt{\frac{7}{4}}$

3√112 31.74901573 12√7 31.74901573

b)
$$\sqrt{256} = 16$$

c)
$$\sqrt{\frac{7}{4}}$$

It is often helpful to know the perfect squares up to 16.

$$1^2 =$$

$$5^2 = 2^{5}$$

$$9^2 = \mathcal{O}($$

$$13^2 = |69|$$

$$2^2 = 4$$

$$6^2 = 76$$

$$10^2 = 100$$

$$14^2 = /96$$

$$3^2 = 9$$

$$7^2 = 49$$

$$11^2 = /20$$

$$15^2 = 225$$

$$4^2 = \frac{1}{6}$$

$$8^2 = 64$$

$$12^2 = 144$$

$$1^{2} = 1$$

$$5^{2} = 25$$

$$9^{2} = 0$$

$$13^{2} = 169$$

$$2^{2} = 4$$

$$6^{2} = 36$$

$$10^{2} = 100$$

$$14^{2} = 196$$

$$3^{2} = 9$$

$$7^{2} = 49$$

$$11^{2} = 121$$

$$15^{2} = 225$$

$$4^{2} = 16$$

$$8^{2} = 64$$

$$12^{2} = 144$$

$$16^{2} = 256$$

How do we simplify $\frac{3}{\sqrt{5}}$?

In example 1, did we change the value of $3\sqrt{112}$ when we simplified?

What number can we multiply by so the value of an expression does not change?

What is the value of $(\sqrt{x})(\sqrt{x})$?

Using these ideas....

$$\frac{3}{\sqrt{5}} \cdot 1 = \frac{3}{\sqrt{5}} \cdot \frac{5}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$$

Example 2: Simplify

a)
$$\sqrt{\frac{3}{6}} = \sqrt{\frac{3}{6}}$$

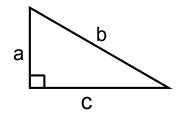
$$\sqrt{\frac{3}} = \sqrt{\frac{3}{6}}$$

$$\sqrt{\frac{3}} = \sqrt{\frac{3}{6}}$$

$$\sqrt$$

c)
$$\frac{16}{\sqrt{8}} \sqrt[8]{8}$$

$$\frac{16\sqrt{8}}{\sqrt{8}} \sqrt[8]{18}$$

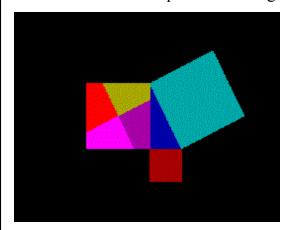

$$\frac{16\sqrt{8}}{\sqrt{8}} \sqrt[8]{18}$$

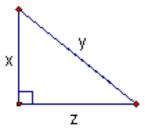
$$\frac{16\sqrt{8}}{\sqrt{8}} \sqrt[8]{18}$$

$$\frac{2\sqrt{6}}{2(2\sqrt{2})} \sqrt[8]{18}$$

$$\frac{2\sqrt{6}}{\sqrt{18}} \sqrt[8]{18}$$

Write the Pythagorean Theorem using the picture below:

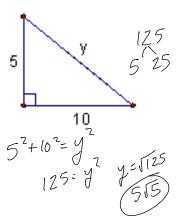


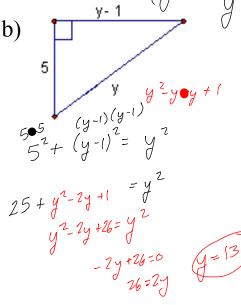

$$a^{2}+b^{2}=c^{2}$$
 $a^{2}+c^{2}=b^{2}$ $|ey^{2}+|ey^{2}=hyp^{2}|$

$$a^{2}+c^{2}=b^{2}$$

Pythagorean Theorem (Theorem 8-2)

In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

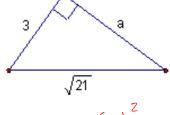



http://upload.wikimedia.org/wikipedia/commons/6/65/Pythag_anim.gif

Example 3: Find the value of the variable. $(y^{-1})^2 =$

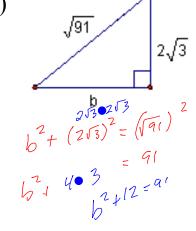
a)

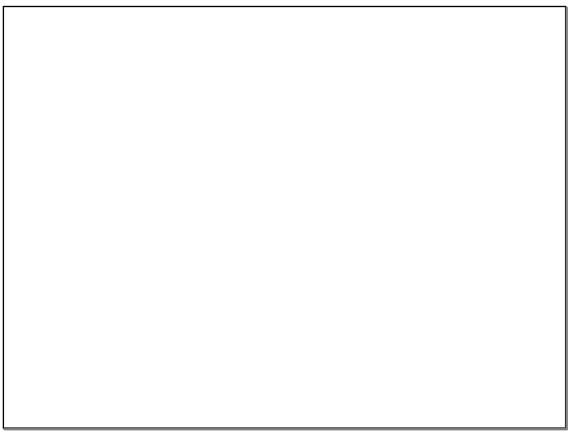
b)



$$25 + y^{2} - 2y + 1 = y^{2}$$

$$y^{2} - 2y + 26 = y^{2}$$


$$-2y + 26 = 0$$


c)

$$q + \alpha^2 = 21$$

d)

