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Problem definition 

 Given a matrix A(m × r) m rows and r columns, where 

each of its elements is denoted aij with 1 ≤ i ≤ m and 1 ≤ j 

≤ r, and a matrix B(r × n) of r rows and n columns, where 

each of its elements is denoted bij with 1 ≤ i ≤ r, and 1 ≤ j 

≤ n, the matrix C resulting from the operation of 

multiplication of matrices A and B, C = A × B, is such that 

each of its elements is denoted ij with 1 ≤ i ≤ m and 1 ≤ j 

≤ n, and is calculated follows 



Problem definition (Cont.) 

 The simplest way of multiplying two 

matrices takes about n3 steps. 

 

a11 a12 a13  b11 b12 

a21 a22 a23  b21 b22 

    b31 b32 

 

m x r                            r x n 



Problem definition (Cont.) 

 The number of operation required to multiply 

A x B is: 

 m × n × (2r-1) 

 For simplicity, usually it is analyzed in terms 

of square matrices of order n. So that the 

quantity of basic operations between scalars 

is : 

2n3 - n2  = O(n3) 



Sequential algorithm 

 for (i = 0; i < n; i++)  

  for (j = 0; i < n; j++)  

   c[i][j] = 0; 

   for (k = 0; k < n; k++)  

    c[i][j] += a[i][k] * b[k][j] 

   end for 

  end for 

 end for 



Assumptions 

 For simplicity, we will work with square 

matrices  of size n x n. 

 Considered the number of processors 

available in parallel machines as p. 

 The matrixes to multiply will be A and B. 

Both will be treated as dense matrices (with 

few 0's), the result will be stored it in the 

matrix C. 

 It is assumed that the processing nodes are 

homogeneous, due this homogeneity it is 

possible achieve load balancing. 



Implementation 
 Consider two square matrices A and B of size 

n that have to be multiplied: 

1. Partition these matrices in square blocks p, where p is the 

number of processes available.  

 

2. Create a matrix of processes of size p1/2  x p1/2  so that each 

process can maintain a block of A matrix and a block of B 

matrix. 

 

3. Each block is sent to each process, and the copied sub 

blocks are multiplied together and the results added to the 

partial results in the C sub-blocks. 

 

4. The A sub-blocks are rolled one step to the left and the B 

sub-blocks are rolled one step upward. 

5. Repeat steps 3 y 4  sqrt(p) times. 

 



Implementation (Cont.) 



Example 

Matrices to be multiplied 



Example: 

 These matrices are divided into 4 square 

blocks as follows: 

 2       1  

 0       7 

 9       2  

5       3 

5      3 

1       6 

 4      4  

7      2 

 

 6       1  

 4       5 

 1       9  

4       0 

2      3 

6      5 

   8     -8   

-8      5 

 

         P0,0             P0,1       P0,0        P0,1 

         P1,0             P1,1       P1,0        P1,1 



Example: 

 Matrices A and B after the initial alignment. 

 2       1  

 0       7 

 9       2  

5       3 

5      3 

1       6 

 4      4  

7      2 

 

 6       1  

 4       5 

 1       9  

4       0 

2      3 

6      5 

   8     -8   

-8      5 

 



Example: 

 Local matrix multiplication. 

 2       1  

 0       7 

 9       2  

5       3 

5      3 

1       6 

 4      4  

7      2 

 

 6       1  

 4       5 

 1       9  

4       0 

2      3 

6      5 

   8     -8   

-8      5 

 

16        7 

28      35 

 16     -25 

-40      22 

20      36 

15      63 

30      37 

42      39 

C0,0=     X    = 

 

 

 

 

C0,1 =     X    = 

 

 

C1,0 =     X    = 

 

 

 

C1,1 =     X    = 



Example: 

 Shift A one step to left, shift B one step up 

 2       1  

 0       7 

 9       2  

5       3 

5      3 

1       6 

 4      4  

7      2 

 

 6       1  

 4       5 

 1       9  

4       0 

2      3 

6      5 

   8     -8   

-8      5 

 



C0,0= C0,0 +   X                 =               +                = 

 

 

 

 

C0,1 = C0,1 +              X          =                +             + = 

 

 

C1,0 = C1,0 +              X          =                +             + = 

 

 

 

C1,1 = C1,1 +              X          =                +             + = 

Example: 
 Local matrix multiplication. 

 2       1  

 0       7 

 9       2  

5       3 

5      3 

1       6 

 4      4  

7      2 

 

 6       1  

 4       5 

 1       9  

4       0 

2      3 

6      5 

   8     -8   

-8      5 

 

16        7 

28      35 

 16     -25 

-40      22 

20      36 

15      63 

30      37 

42      39 

17      45 

25        9 

 10      11 

 42      35 

62      19 

42      33 

 0      -12 

40     -46 

33      52 

53      44 

 26      -14 

   2       57 

82      55 

57      96 

30      25 

82       -7 



Test 

Objective: 

 Analyze speedup achieved by the parallel 

algorithm when increases the size of the input 

data and the number of cores of the 

architecture. 

Constraints: 

 The number of cores used must be a exact 

square root. 

 Must be possible the exact distribution to the 

total amount of data into the available cores. 



Test 

Execution: 

 Run sequential algorithm on a single processor/ 

core. 

 For test the parallel algorithm were used the 

following number of cores: 

4,9,16,25,36,49,64,100 

 The results were obtained from the average 

over three tests of the algorithms. 

 Test performed in matrices with dimensions up 

1000x1000, increasing with steps of 100. 



Test Results - Sequential 
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Sequential 

Sequential



Test Results Sequential vs. Parallel 
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Test Results - Parallel 
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Test Results - Parallel 
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Test Results – Parallel (Counter 
Intuitive in small test data) 
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Further work 

 Implement the algorithm in OpenMP to 

compare the performance of the two 

solutions. 

 Implementation in MPI platform using  

threads when a processor receives more 

than one piece of data. 

 



Conclusions 

 The distribution of data and computing 

division across multiple processors offers 

many advantages: 

 With MPI it is required less effort in terms of 

the timing required for data handling, since 

each process has its own portion.  

 MPI offers flexibility for data exchange. 
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Questions… 


