e Parallel Algorithm for
Dense Matrix
Multiplication

CSE633 Parallel Algorithms

Fall 2012

Ortega, Patricia

Outline

Problem definition
Assumptions
Implementation
Test Results
Future work
Conclusions

Problem definition

Given a matrix A(m x r) m rows and r columns, where
each of its elements is denoted a; with 1 <i<mand 1 <]
<r, and a matrix B(r x n) of r rows and n columns, where
each of its elements is denoted b; with 1 <i1<r,and 1 <]
< n, the matrix C resulting from the operation of
multiplication of matrices A and B, C = A x B, is such that
each of its elements is denoted ijwith 1 <i<mand 1 <
< n, and is calculated follows

)
Cii = Z a; X bﬁg

k=1

Problem definition (Cont.)

—

—

—_—

dqp Aqp Ay

Adyq Aoy Ao:

m Xr

» The simplest way of multiplying two
matrices takes about n3 steps.

—

—

_—

bll blZ

21 b22

b31 b32

-

@)

X n

Problem definition (Cont.)

The number of operation required to multiply
A X B is:

m x n x (2r-1)

For simplicity, usually it is analyzed in terms
of square matrices of order n. So that the
guantity of basic operations between scalars
IS :

2n3-n? = O(n3)

Sequential algorithm

for 1=0;1<n; I++)
for (j =0;1<n;|++)
c[iji] = O;
for (k = 0; k < n; k++)
c[iji] += aliik] * b[k][]
end for
end for
end for

Assumptions

For simplicity, we will work with square
matrices of size n x n.

Considered the number of processors
available in parallel machines as p.

The matrixes to multiply will be A and B.
Both will be treated as dense matrices (with
few 0's), the result will be stored it in the
matrix C.

It Is assumed that the processing nodes are
homogeneous, due this homogeneity it is
possible achieve load balancing.

Implementation

Consider two square matrices A and B of size
n that have to be multiplied:

1.

Partition these matrices in square blocks p, where p is the
number of processes available.

Create a matrix of processes of size pl2 x p2 so that each
process can maintain a block of A matrix and a block of B
matrix.

Each block is sent to each process, and the copied sub
blocks are multiplied together and the results added to the
partial results in the C sub-blocks.

The A sub-blocks are rolled one step to the left and the B
sub-blocks are rolled one step upward.

Repeat steps 3y 4 sqgrt(p) times.

Implementation (Cont.)

00 01 02
D
alﬂ 1‘l[} all bll all b]l
10 11 LIZ

e o ¢ | Example

Matrices to be multiplied

e o ¢ | Example:

» These matrices are divided into 4 square
blocks as follows:

e o ¢ | Example:

» Matrices A and B after the initial alignment.

e o ¢ | Example:

» Local matrix multiplication.

C=2 1 16
00t 7 28

O
=
o
Il
~N A
N A

(0]
N
N
w

e o ¢ | Example:

» Shift A one step to left, shift B one step up

5 3 2 1

1 6 O 7 ‘---
4 4

9 2

5 3 N ‘---

e o ¢ | Example:
» Local matrix multiplication.

C. =C..+12 1 |x o ic 7 W17
000 ™00 " g 7 28 35 25

Test

Objective:

Analyze speedup achieved by the parallel
algorithm when increases the size of the input
data and the number of cores of the
architecture.

Constraints:

The number of cores used must be a exact
square root.

Must be possible the exact distribution to the
total amount of data into the available cores.

Test

Execution:

Run sequential algorithm on a single processor/
core.

For test the parallel algorithm were used the
following number of cores:
4,9,16,25,36,49,64,100

The results were obtained from the average
over three tests of the algorithms.

Test performed in matrices with dimensions up
1000x1000, increasing with steps of 100.

Test Results - Sequential

Sequential

(6]

Running Time (sec.)

100 200 300 400 500 600 700 800 900 1000

Sequential

Time sec.

a1

i N

Test Results Sequential vs. Parallel

Sequential vs Parallel
Procs # 100

Procs. 1
Procs. 100

100 200 300 400 500 600 700 800 900 1000

Time (sec)
o = N w
[6)] [(&) N (&) w (63} IS

o

Test Results - Parallel

Size:600x600

Procs. 1 Procs. 25 Procs. 36 Procs. 64 Procs. 100

Size:600x600

16

14

12

10

Test Results - Parallel

Speedup

rocs. 36

0cs. 64

rocs. 100

Speedup

Test Results — Parallel (Counter
Intuitive in small test data)

0.06

0.05

0.04

Time (sec.)
o
o
w

0.02

0.01

0

Procs. 1

Procs. 4

Size:100 x 100

Procs. 16

Procs. 25

Procs. 100

Size:100 x 100

Further work

Implement the algorithm in OpenMP to
compare the performance of the two

solutions.

Implementation in MPI platform using
threads when a processor receives more

than one piece of data.

Conclusions

The distribution of data and computing

division across multiple processors offers
many advantages:

- With MPI it is required less effort in terms of
the timing required for data handling, since
each process has its own portion.

- MPI offers flexibility for data exchange.

References

[1] V. Vassilevska Williams, "Breaking the Coppersmith-
Winograd barrier,” [Online]. Available:
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf. [Accessed 18
09 2012].

[2] Gupta, Anshul; Kumar, Vipin; , "Scalability of Parallel
Algorithms for Matrix Multiplication," Parallel Processing, 1993.
ICPP 1993. International Conference on , vol.3, no., pp.115-
123, 16-20 Aug. 1993

doi: 10.1109/ICPP.1993.160

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber
=4134256&isnumber=4134231

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4134256&isnumber=4134231
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4134256&isnumber=4134231

Questions...

