
Parallel Algorithm for

Dense Matrix

Multiplication

CSE633 Parallel Algorithms

Fall 2012

Ortega, Patricia

Outline

 Problem definition

 Assumptions

 Implementation

 Test Results

 Future work

 Conclusions

Problem definition

 Given a matrix A(m × r) m rows and r columns, where

each of its elements is denoted aij with 1 ≤ i ≤ m and 1 ≤ j

≤ r, and a matrix B(r × n) of r rows and n columns, where

each of its elements is denoted bij with 1 ≤ i ≤ r, and 1 ≤ j

≤ n, the matrix C resulting from the operation of

multiplication of matrices A and B, C = A × B, is such that

each of its elements is denoted ij with 1 ≤ i ≤ m and 1 ≤ j

≤ n, and is calculated follows

Problem definition (Cont.)

 The simplest way of multiplying two

matrices takes about n3 steps.

a11 a12 a13 b11 b12

a21 a22 a23 b21 b22

 b31 b32

m x r r x n

Problem definition (Cont.)

 The number of operation required to multiply

A x B is:

 m × n × (2r-1)

 For simplicity, usually it is analyzed in terms

of square matrices of order n. So that the

quantity of basic operations between scalars

is :

2n3 - n2 = O(n3)

Sequential algorithm

 for (i = 0; i < n; i++)

 for (j = 0; i < n; j++)

 c[i][j] = 0;

 for (k = 0; k < n; k++)

 c[i][j] += a[i][k] * b[k][j]

 end for

 end for

 end for

Assumptions

 For simplicity, we will work with square

matrices of size n x n.

 Considered the number of processors

available in parallel machines as p.

 The matrixes to multiply will be A and B.

Both will be treated as dense matrices (with

few 0's), the result will be stored it in the

matrix C.

 It is assumed that the processing nodes are

homogeneous, due this homogeneity it is

possible achieve load balancing.

Implementation
 Consider two square matrices A and B of size

n that have to be multiplied:

1. Partition these matrices in square blocks p, where p is the

number of processes available.

2. Create a matrix of processes of size p1/2 x p1/2 so that each

process can maintain a block of A matrix and a block of B

matrix.

3. Each block is sent to each process, and the copied sub

blocks are multiplied together and the results added to the

partial results in the C sub-blocks.

4. The A sub-blocks are rolled one step to the left and the B

sub-blocks are rolled one step upward.

5. Repeat steps 3 y 4 sqrt(p) times.

Implementation (Cont.)

Example

Matrices to be multiplied

Example:

 These matrices are divided into 4 square

blocks as follows:

 2 1

 0 7

 9 2

5 3

5 3

1 6

 4 4

7 2

 6 1

 4 5

 1 9

4 0

2 3

6 5

 8 -8

-8 5

 P0,0 P0,1 P0,0 P0,1

 P1,0 P1,1 P1,0 P1,1

Example:

 Matrices A and B after the initial alignment.

 2 1

 0 7

 9 2

5 3

5 3

1 6

 4 4

7 2

 6 1

 4 5

 1 9

4 0

2 3

6 5

 8 -8

-8 5

Example:

 Local matrix multiplication.

 2 1

 0 7

 9 2

5 3

5 3

1 6

 4 4

7 2

 6 1

 4 5

 1 9

4 0

2 3

6 5

 8 -8

-8 5

16 7

28 35

 16 -25

-40 22

20 36

15 63

30 37

42 39

C0,0= X =

C0,1 = X =

C1,0 = X =

C1,1 = X =

Example:

 Shift A one step to left, shift B one step up

 2 1

 0 7

 9 2

5 3

5 3

1 6

 4 4

7 2

 6 1

 4 5

 1 9

4 0

2 3

6 5

 8 -8

-8 5

C0,0= C0,0 + X = + =

C0,1 = C0,1 + X = + + =

C1,0 = C1,0 + X = + + =

C1,1 = C1,1 + X = + + =

Example:
 Local matrix multiplication.

 2 1

 0 7

 9 2

5 3

5 3

1 6

 4 4

7 2

 6 1

 4 5

 1 9

4 0

2 3

6 5

 8 -8

-8 5

16 7

28 35

 16 -25

-40 22

20 36

15 63

30 37

42 39

17 45

25 9

 10 11

 42 35

62 19

42 33

 0 -12

40 -46

33 52

53 44

 26 -14

 2 57

82 55

57 96

30 25

82 -7

Test

Objective:

 Analyze speedup achieved by the parallel

algorithm when increases the size of the input

data and the number of cores of the

architecture.

Constraints:

 The number of cores used must be a exact

square root.

 Must be possible the exact distribution to the

total amount of data into the available cores.

Test

Execution:

 Run sequential algorithm on a single processor/

core.

 For test the parallel algorithm were used the

following number of cores:

4,9,16,25,36,49,64,100

 The results were obtained from the average

over three tests of the algorithms.

 Test performed in matrices with dimensions up

1000x1000, increasing with steps of 100.

Test Results - Sequential

0

1

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

R
u

n
n

in
g

 T
im

e
 (

s
e
c
.)

Sequential

Sequential

Test Results Sequential vs. Parallel

0

1

2

3

4

5

6

7

8

9

100 200 300 400 500 600 700 800 900 1000

T
im

e
 s

e
c
.

Sequential vs Parallel
Procs # 100

Procs. 1

Procs. 100

Test Results - Parallel

0

0.5

1

1.5

2

2.5

3

3.5

4

Procs. 1 Procs. 25 Procs. 36 Procs. 64 Procs. 100

T
im

e
 (

s
e
c
)

Size:600x600

Size:600x600

Test Results - Parallel

0

2

4

6

8

10

12

14

16

Procs. 25 Procs. 36 Procs. 64 Procs. 100

Speedup

Speedup

Test Results – Parallel (Counter
Intuitive in small test data)

0

0.01

0.02

0.03

0.04

0.05

0.06

Procs. 1 Procs. 4 Procs. 16 Procs. 25 Procs. 100

T
im

e
 (

s
e
c
.)

Size:100 x 100

Size:100 x 100

Further work

 Implement the algorithm in OpenMP to

compare the performance of the two

solutions.

 Implementation in MPI platform using

threads when a processor receives more

than one piece of data.

Conclusions

 The distribution of data and computing

division across multiple processors offers

many advantages:

 With MPI it is required less effort in terms of

the timing required for data handling, since

each process has its own portion.

 MPI offers flexibility for data exchange.

References

 [1] V. Vassilevska Williams, "Breaking the Coppersmith-

Winograd barrier,“ [Online]. Available:

http://www.cs.berkeley.edu/~virgi/matrixmult.pdf. [Accessed 18

09 2012].

 [2] Gupta, Anshul; Kumar, Vipin; , "Scalability of Parallel

Algorithms for Matrix Multiplication," Parallel Processing, 1993.

ICPP 1993. International Conference on , vol.3, no., pp.115-

123, 16-20 Aug. 1993

doi: 10.1109/ICPP.1993.160

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber

=4134256&isnumber=4134231

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4134256&isnumber=4134231
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4134256&isnumber=4134231

Questions…

