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Abstract. In this paper we explore the performance of various aspects
of gang scheduling designs. We developed an event-driven simulator of a
vanilla gang scheduler that relies on the Distributed Hierarchical Control
(DHC) structure. We also developed three variations of the vanilla gang
scheduler that rely on a push-down heuristic and on two job-migration
schemes to decrease response times by reducing processor idle time. We
evaluated the gang schedulers on a compiled, one-month long history of
jobs from the Cornell Theory Center that was scheduled by EASY-LL,
a particular version of LoadLeveler with backfilling. Our results demon-
strate the significant performance improvements that can be achieved
with gang scheduling. They also show the performance impact of various
aspects in the design of gang schedulers. We identify and discuss the
potential benefits of several approaches for addressing a number of gang
scheduling issues that, under certain workload conditions, become im-
portant in practice. Our techniques include heuristics for mapping jobs
to processors and for choosing time quanta, block paging for reducing
memory overheads, and the allocation of multiple time-slices to smaller
jobs per timeplexing cycle.

1 Introduction

Resource management schemes have become essential for the effective utiliza-
tion of high-performance parallel and distributed systems that are shared among
multiple users. The main objective of resource schedulers is to achieve high over-
all system throughput, while at the same time providing some guarantee for the
performance of individual jobs in the system. This is a particularly challenging
task, given that typical workloads of multiprogrammed multicomputers include
a large number of jobs with diverse resource and performance requirements.

The two basic mechanisms used in multicomputer schedulers are time-sharing
and space-sharing. Time-sharing ensures that no job monopolizes the system’s
resources and can be suitable for scheduling jobs with relatively small processing
requirements. A job may not require the attention of the entire system, however.
Moreover, abundant empirical evidence indicates that program dependencies
and communication costs may limit the degree of achievable parallelism (e.g., [2,
16]). In these situations, space-sharing can increase throughput by partitioning
resources and reducing the underutilization of system partitions.



Gang scheduling is a flexible scheduling scheme that combines time-sharing
and space-sharing with the goal of providing the advantages of both approaches,
including high system throughput and low response times for short-running jobs.
The roots of gang scheduling can be traced back to the coscheduling concept
described in [18]. This two-dimensional division (in time and space) of resources
among jobs can be easily viewed as having the resource allocations governed
by a scheduling matrix, where each column represents a specific processor and
each row represents a particular time-slice, or quantum. Each non-empty matrix
entry (¢,j) contains a job (or set of jobs), which represents the allocation of the
J™ processor to this job during the ¢** quantum. The set of entries containing
the same job (or set of jobs) on a given row is called a partition. The number of
partitions and the size of each partition can vary both within and across rows.
When a job is submitted, it is assigned to a partition on a particular row. Each
partition is allocated a specific time quantum associated with its row, with the
possibility of having the partitions on a given row use different quantum lengths.
When the time quantum for a partition expires, the resources are reallocated and
the job(s) of the partition(s) on the next row are scheduled to execute on the
system. Within each partition, resources may be dedicated or time-shared. Thus,
gang scheduling supports time-sharing at the partition level and at the individual
job level.

Gang scheduling encompasses a very broad range of schedulers depending on
the particular schemes used for partitioning resources and for sharing resources
within each partition. One particular approach is based on the distributed hier-
archical control structure [4, 5, 6]. Within the context of the above description,
this scheme can be logically viewed as having a scheduling matrix with log P+ 1
rows, where the i** row contains 2¢ partitions each of size P/2!, 0 < i < log P,
and P denotes the number of system processors. A somewhat different approach,
which can be conceptually viewed as a generalization of Ousterhout’s original
global scheduling matrix, has also been considered [13, 14].

Due to its promising characteristics, gang scheduling has attracted consider-
able attention in recent years. Gang schedulers based on the distributed hierar-
chical control structure [4, 5, 6] have been implemented for the IBM RS/6000
SP2 [8, 30] and for clusters of workstations [9, 29]. Similarly, another form of gang
scheduling has been implemented on both the IBM SP2 and a cluster of worksta-
tions [13, 14]. The performance of gang scheduling schemes that use distributed
hierarchical control has been analyzed from a queueing-theoretic perspective [21,
22]. Moreover, the performance of several gang scheduling algorithms has been
studied by simulation on synthetically generated workloads [3, 7].

In this paper we present an empirical evaluation of various gang schedul-
ing policies and design alternatives based on an actual parallel workload. Our
focus is on the distributed hierarchical control approach to gang scheduling, al-
though many of the principles and trends observed in this study are relevant to
other forms of gang scheduling. Our study includes an examination of a vanilla
gang scheduling scheme [4, 21] and two variations of this scheme that use push-
down and job-migration heuristics to increase system throughput and decrease



response times by minimizing idle partitions. These scheduling strategies are sim-
ulated under a workload that we obtained by post-processing a trace of the work-
load characteristics for one month at the Cornell Theory Center [10, 11, 12]. The
original workload was scheduled on 320 processors of the IBM SP2 at Cornell’s
Theory Center using EASY-LL, an enhanced version of the basic LoadLeveler
scheduler that uses backfilling to reduce the response times of jobs with small
resource requirements [20].

The objectives of our evaluation study were to assess the effectiveness of
different aspects of gang scheduling designs under a variety of heuristics for
assigning jobs to processors and across a range of memory overheads. We inves-
tigated a greedy scheme for the vanilla and the push-down scheduler and two
priority-based policies for migrating and redistributing jobs. In our experiments,
both job-migration policies perform better than the vanilla and the push-down
schemes. Our first job-migration scheme favors jobs with small resource require-
ments and achieves significantly shorter response times than EASY-LL for most
job classes in the system. OQur other job-migration policy favors large jobs and
performs better than either EASY-LL or any of our gang scheduling schemes in
most job classes with large resource requirements. For jobs with small resource
requirements, however, EASY-LL outperforms this particular gang scheduler.
As context-switch costs increase due to factors such as memory and communica-
tions overheads, the performance of the three gang scheduling policies degrades
significantly, especially for short quanta. We propose an approach to effectively
reduce the performance impact of such memory overheads as part of our study.

The remainder of this paper is organized as follows. We begin in Section 2
with a more detailed description of EASY-LL and the gang scheduling policies
considered. In Section 3 we present the mechanisms examined for mapping jobs
to processors. A brief overview of our simulator engine is given in Section 4.
We describe the workload used in our study in Section b, and continue with
the presentation of our experimental results in Section 6. We then discuss in
Section 7 some of the practical implications of our results, as well as approaches
to improve gang scheduling performance and current ongoing aspects of our
study. Our concluding remarks are presented in Section 8.

2 Scheduling policies

In this section we describe the scheduling policies examined in our study. We first
present the notation and terminology used throughout this paper. We then give
a brief overview of the EASY-LL scheduling scheme, followed by a description
of the gang scheduling policies we considered.

2.1 Preliminaries

The basic parameters associated with serving any given job j is the arrival time
«;, the dispatch time 3;, and the completion time ¢; of the job. When this job is
submitted to the system at time o}, it is placed into a particular queue based on



the scheduling policy. At time 3;, the job is moved from this queue to a specific
partition and receives service for the first time. At time ¢; the job finishes its
execution and exits the system. The (cumulative) amount of time for which job
J actually receives service is its service time 5.

A number of important performance measures are used to compare the differ-
ent scheduling policies considered in our study. In particular, the job parameters
a;, B;,¢; and S; can be used to define the following performance metrics for the
execution of job j:

— response time R;, where R; = ¢; — o
— queueing time Q;, where Q; = 3; — o5
— execution time &, where & = ¢; — 3;
— sharing time H;, where H; = & — S;
— waiting time W;, where W; = R; — 5;

In these definitions, we have split “waiting time” (respectively, “service time”)
into two separate components W; and Q; (respectively, £ and H;) to take the
time sharing into account. Thus, the total waiting time W; is the sum Q; +H;
of the time spent waiting on the queue (Q;) and the time that job j is swapped
out (H;). Also, the execution time &; is the sum S; +H; of the service time (S;)
and the sharing time during which job j is swapped out (H;).

2.2 EASY-LL

Our consideration here of the LoadLeveler and EASY-LL schedulers is based
upon the use of the versions of these schedulers at the Cornell Theory Center
when the workload traces used in our experiments were collected. This version of
LoadLeveler schedules jobs in the order of their arrival times. The job at the head
of the queue is dispatched and begins its execution as soon as sufficient resources
become available in the system. LoadLeveler does not support preemption. Once
a job begins its execution, it continues until it terminates. Thus, in LoadLeveler
we have W; = Q; and & = S;. This LoadLeveler scheme may not be suitable
for interactive execution, as system access is blocked for every job that arrives
immediately after any single job with large resource requirements.

The EASY-LL scheduler is a variation of this version of the LoadLeveler
scheme that uses a backfilling heuristic to improve response time for short-
running tasks. When submitting their jobs to the system queue, users request a
specific number of processors and provide an estimate of the execution times of
their jobs on the requested resources. Whenever new resources become available
or a new job is submitted, EASY-LL schedules the first job in the queue that
fits within the available resources and whose execution does not delay the dis-
patching of any job ahead of it in the queue. Thus, small jobs can bypass larger
jobs, provided they do not delay the execution of the larger jobs.

2.3 Vanilla gang scheduling

Generic gang scheduling under distributed hierarchical control views a parallel
computing system as a collection of P identical processors and a hierarchy of



L =log P + 1 different classes of jobs. At any time, the system is serving jobs
from a specific class. When serving jobs of class ¢, the system is divided into
P/2' partitions where each partition consists of 2! processors. For example, a
256-processor system has 9 classes, where class 0 has 256 partitions each with
one processor, class 1 has 128 partitions each with two processors, and so on.
A first-come first-served queue is associated with each class from which the cor-
responding partitions select jobs for execution. An example of this hierarchical,
binary-tree view of the gang scheduling system is illustrated in Fig. 1. Jobs are
allocated to partitions in their corresponding classes according to a specific job
assignment policy (described in Section 3).
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Fig. 1. Binary-tree view of an 8-processor multicomputer system under the distributed
hierarchical control structure.

During the operation of the system, each class ¢ is allocated a time-slice of
certain length. Processors are dedicated to each of the L classes in a time-shared
manner by rotating the time allocated to the job classes. The time interval
between successive time-slices of the same class is called the timeplexing cycle of
the system, which we denote by T. A system-wide switch from the current class
i to the next class i — 1 (modulo L) occurs when at least one of the following
two events becomes true:

— The time-slice of class ¢ has expired.
— There are no jobs of class ¢ in the system.

In the vanilla gang scheduling scheme, when the number of partitions in a class
exceeds the number of jobs assigned to it, the excess partitions remain idle during
the time-slice. Therefore, the system may be significantly underutilized in light
load situations.

2.4 Gang scheduling with push-down

A simple variation of the vanilla gang scheduling scheme uses a push-down
heuristic to reduce the number of idle partitions at any time. In push-down
gang scheduling, every partition that is idle during its designated time-slice is



reconfigured into two partitions for the class below it, each of which is half the
size of the original partition. The partitions are reconfigured recursively until
they find a job(s) from a class below that is allocated to the same set of pro-
cessors. Thus, a fraction of the original partition’s time-slice is allocated to jobs
belonging to the class(es) below (i.e., it is “pushed down” to the lower parti-
tions), and at any time the system may be serving jobs from more than one
class. With push-down, the actual length of the timeplexing cycle is workload
dependent. Assuming that no job finishes before the expiration of its quantum,
the actual timeplexing cycle is equal to the maximum number of busy nodes in
any path from the root to the leaves of the distributed hierarchical control tree.

2.5 Gang scheduling with job migration

The third gang scheduling policy we consider borrows characteristics from both
the vanilla and the push-down schedulers. Under this policy, all jobs waiting in
the queue of a class are scheduled to execute in the beginning of the correspond-
ing time-slice. As is the case with push-down gang scheduling, idle partitions
are assigned jobs from other classes according to some job assignment priority
scheme. These jobs are free to execute on any idle partition, however. Therefore,
gang scheduling with migration is more flexible and may result in fewer idle par-
titions than gang scheduling with push-down. In a manner similar to the vanilla
gang scheduler, switches are system-wide and occur when the time-slice of the
class expires. Thus, even though the system may not be serving any job from
the class that corresponds to the active time-slice, jobs are reallocated 1n logical
synchrony, and the timeplexing cycle remains fixed.

The overhead of such a migration scheme can be quite large. In our cur-
rent study, we ignore this overhead and thus use the job-migration policy in
our experiments to explore the upper bound on gang scheduling performance
under distributed hierarchical control. A few methods for attempting to achieve
the performance of this migration scheme in practice, such as tree-packing, are
discussed in Section 7.

2.6 Processor counts that are not powers of 2

It is straightforward to embed the scheduling schemes described in the previous
subsections in systems with 2 processors. When processor counts are not powers
of 2, however, there are several ways to implement the distributed hierarchical
control structure. Fig. 2 illustrates the general approach that we adopted in
our scheduling policies. For one time-slice during each timeplexing cycle, system
resources are configured as a single 320-processor system. Subsequently, the 320
processors are partitioned into a 64-processor and a 256-processor system, each
of which is viewed as a binary tree. With the push-down scheduling policy, the
two trees proceed independently. With the job-migration policies, however, the
switches in the two trees are synchronized. Due to their different heights, the
two trees may be serving different classes at a time. In our implementations,
when the 256-processor subtree 1s serving class 8 or 7, the 64-processor subtree



is serving class 1 or 0, respectively. From class 6 and below, both trees serve the
same class during each time-slice.
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Fig. 2. Distributed hierarchical control structure for a 320-processor system.

3 Job assignment policies

An important component of every gang scheduling approach is the policy that
it uses to assign dispatched jobs to partitions. This policy can have a profound
impact on the performance of a gang scheduler, as we have found in our nu-
merous experiments, and these performance issues are highly dependent upon
the workload characteristics. So far, we have experimented with three policies for
assigning jobs within each class. The first two policies are used together with the
vanilla and the push-down scheduler. Under these policies, each job is assigned
to a partition when it starts to execute for the first time and remains assigned
to the same partition for the duration of its execution time. The third policy
is used together with the migration scheduler and assigns jobs to partitions on
every switch via different priority schemes.

Our first job assignment policy is a greedy, first-fit strategy that always starts
from the leftmost branch of the tree and assigns each new job to the first available
partition in that class. In a lightly loaded system, this scheme will load the left
branch of the tree, while leaving the partitions on the right branch idle. Under
these circumstances, the degree to which push-down can be applied on the right
branch is limited, and thus it can become ineffective for the right branch.

The second policy we investigate is a very simple, “weight-oriented” alloca-
tion scheme. Every node in the tree is associated with a weight equal to the
sum of the jobs allocated to that node and all its descendents in the tree. Node
weights are updated whenever a job finishes or is dispatched to a partition in
the tree. When assigning a job to a partition in class ¢, we select the one with
the lightest weight node in the level ¢ of the tree. Such a partition can be found
by a straightforward tree traversal that recursively looks for the lightest branch
at each level until it reaches level :. The lightest partition in the class has the
smallest number of jobs allocated in level ¢ and below. This scheme is a local op-
timization procedure that does not take into account the remaining service times
of the currently dispatched jobs or future job arrivals. Moreover, the details of 1ts
definition are meant to work in unison with the push-down scheduler. Under a
different approach, such as a push-up scheme, the weights and traversals should
be modified to match the corresponding properties of the approach employed.



For gang schedulers that support job migration, we experimented with a sim-
ple job assignment policy that maps jobs to idle partitions in a greedy manner.
During each time-slice, jobs waiting to execute in the queue of the corresponding
class are dispatched. If processors remain idle, they are assigned jobs from other
classes. Each time a job is dispatched, it may run on a different set of processors.
Since it is assumed that there is no overhead for migrating jobs to different par-
titions (see Section 2.5), there is no loss of generality while obtaining the best
gang scheduling performance. A straightforward job assignment strategy would
be to impose a priority on the system’s classes and to assign idle processors to
jobs of other classes by considering these classes in decreasing priority. In our
experiments, we investigated two extremes of this simple priority scheme. We
looked at a top-down order that starts from the root and proceeds to the leaves,
thus favoring jobs with large resource requirements. Conversely, we also studied
a bottom-up approach that traverses classes from the leaves to the root, thus
favoring jobs with small resource requirements.

4 Simulator

We developed an event-driven simulator engine to experiment with the various
gang scheduling policies described above. Our simulator has four different events:
job arrival, job completion, time-slice expiration, and context switch. All events
are inserted into an event queue, and the earliest event in the queue is triggered
first. In this section we outline the operation of our simulation and explain the
design choices we made in order to simplify its implementation.

In general, when a class ¢ job arrives, if class ¢ is currently being served and
has partitions available, the job is dispatched to an available partition according
to one of the schemes described in Section 3. If no partition in class ¢ is available,
the job is inserted into the queue for class .

If class ¢ is currently not being served, the job is handled according to the
specifics of the gang scheduling policy under consideration. In the vanilla policy,
the job is simply inserted into the waiting queue for class . With the push-down
and job-migration policies, if there are available partitions in another class j that
can have their class j time-slice pushed down to host the newly arrived class ¢
job, the new job will be dispatched accordingly. If there is no available partition
or no time can be pushed down, the job will be added to the class i queue.

When a job completes, its partition becomes available, and the weight asso-
ciated with each node is updated. If there are jobs waiting in the queue of the
current class, the available partition may be assigned to a new job according to
one of the mechanisms described in Section 3. Otherwise, under the push-down
and migration policies, the time-slice of the available partition is allocated to a
job of another class in a manner similar to that described above for an arrival
that finds the system serving another class while processors are idle.

When the time-slice of a class expires, every job that is currently executing
is stopped and its remaining execution time is updated. Subsequently, a context
switch event occurs. A context switch also occurs when all the partitions in a



class become idle, and there are no jobs waiting in the queue. Thus, the time
remaining in the quantum is not wasted idling.

The context switch event starts the execution of the jobs in the next class that
are ready to run. Preempted jobs resume their execution, and jobs in the queue
are dispatched if there are still partitions available. With push-down scheduling,
if any partitions remain idle, their time-slices are pushed down for jobs in lower
classes. In a similar manner, with the job-migration policy, idle partitions will
be assigned jobs from the queues of higher or lower classes in the system.

In order to avoid a complex software implementation, we made a few sim-
plifying assumptions in the simulation of the migration scheduler. First, our
simulator dispatches new jobs only in the beginning of each time-slice. Thus,
whenever jobs arrive or finish in the middle of a time-slice, our simulator does
not take advantage of the possibly idle processors in the system. Second, our
simulator does not account for the various overheads (e.g., communication, data
transfer, system state, etc.) incurred for migrating jobs among processors. In
view of the relatively light loads we experimented with, dispatching jobs only
in the beginning of time-slices should not significantly change the trends of our
performance results. Moreover, our second assumption yields an upper bound on
the performance of gang scheduling under distributed hierarchical control, and
we wanted to quantify this potential benefit under an actual workload. This and
other related issues, including several mechanisms that can be used to reduce
the cost of data transfers, are discussed further in Section 7.

5 Workload characteristics

We experimented with a collection of jobs that were submitted to the Cornell
Theory Center SP2 during the month of August 1996. The execution of these jobs
on the SP2 was managed by the EASY-LL scheduler described in Section 2.2.
Our workload comprised 6,049 jobs that requested up to 320 processors and had
nonzero CPU times. We categorized these jobs into ten classes according to their
resource requirements. Each job requesting p processors was assigned to class i,
where 2/~ < p < 2!, This classification scheme facilitated the direct performance
comparison of the gang scheduling policies with the EASY-LL scheduler on a
320-processor system.

The statistics of this workload are given in the table of Fig. 3. The first two
columns of the table give the class number and the job counts in each class.
The third column gives the average service time for the jobs in each class. This
number is intrinsic to each job and the number of processors it executes on. The
fourth and fifth columns give the average waiting and response time that was
achieved for each class using the EASY-LL scheduler. The last column gives the
normalized average response time for the jobs in each class. An interesting point
about these data is that, with the notable exception of the uniprocessor class
0, the average response times increase almost monotonically with the number
of processors in the class. Also, with the exception of class 8, the normalized
response times increase monotonically with the number of processors.
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Fig. 3. Job counts, service times, waiting times, response times, and normalized re-
sponse times for the one-month workload from the Cornell Theory Center under
EASY-LL. Service, waiting, and response times are measured in seconds.

6 Simulation results

Initially, we experimented with the vanilla gang scheduling policy. It soon be-
came evident that this scheme was performing consistently and significantly
worse than EASY-LL under the Cornell Theory Center workload. Since the
vanilla scheduler switches all partitions in the same class synchronously, this rel-
atively light parallel workload resulted in several idle partitions. We thus turned
our attention to the other gang schedulers, due to their promising handling of
idle partitions. In this section we discuss the results we obtained by simulating
the push-down scheduler and our two job-migration policies on the one-month
workload from the Cornell Theory Center. For the push-down policy, we only
present the results we obtained with the weight-oriented job assignment policy,
since 1t consistently outperformed the first-fit policy, as expected.

Figs. 4, 5, 6, and 7 give the performance of the gang scheduling schemes for
context-switch costs of 1 second and 16 seconds. In each of these graphs, the
y-axis gives the mean response time for the jobs in the corresponding class nor-
malized by the mean service time for that class. The timeplexing cycle, which
is given on the x-axis, is divided uniformly among the system’s ten classes. We
arrived at the worst-case context-switch cost of 16 seconds by assuming that the
jobs have a 64MB working set on each processor [11] which must be loaded in
its entirety at the rate of 1 page/millisecond for a page size of 4KB, given the
characteristics of many parallel scientific applications [19] and the (potentially)
large degree of multiprogramming with ten classes. Note that EASY-LL is not
affected by the context-switch overheads of gang scheduling, and the correspond-
ing curves in Figs. 4 — 7 represent the last column in the table of Fig. 3.

Our results show that the scheduling policy with migration from the leaves
achieves shorter response times than EASY-LL for eight out of the ten classes.
Recall that this migration policy favors jobs with smaller resource requirements.
This results in better performance for the small job classes than that provided
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Fig.4. Normalized response times of classes 0-5 for the push-down gang sched-
uler, the migration scheduler with jobs assigned from the root, and the migration
scheduler with jobs assigned from the leaves. Quanta are allocated uniformly, and
the context-switch cost for each class is 1 sec.
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Fig. 5. Normalized response times of classes 6-9 for the push-down gang sched-
uler, the migration scheduler with jobs assigned from the root, and the migration
scheduler with jobs assigned from the leaves. Quanta are allocated uniformly, and
the context-switch cost for each class is 1 sec.

under EASY-LL, which also attempts to improve performance for jobs with
smaller resource requirements via backfilling. In some cases, these performance
improvements are quite significant, with a reduction in the normalized response
times by factors that typically range between 2 and 4. Some of the larger job
classes also receive improved performance under migration from the leaves in
comparison to EASY-LL; e.g., the normalized response time of class 8 decreases
by almost a factor of 10. However, the favoring of smaller job classes under
migration from the leaves degrades the performance of classes 7 and 9 relative
to EASY-LL, where our results show a decrease in normalized response time by
about a factor of 3.

The job-migration policy that gives higher priority to the jobs closer to the
root of the control tree outperforms EASY-LL for classes 5 through 8. Moreover,
for sufficiently large timplexing cycles, this policy performs as well as EASY-LL
for classes 3 and 4. In comparison with the migration policy that favors jobs at
the leaves, this policy breaks even for class 5 and performs better for classes 6 and
above. As expected, both job-migration policies achieve the same performance
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Fig. 6. Normalized response times of classes 0-5 for the push-down policy, the
job-migration policy from the root, and the job-migration policy from the leaves.
Quanta are allocated uniformly, and a worst-case context-switch cost of 16 sec
is assumed for each class.
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Fig. 7. Normalized response times of classes 6-9 for the push-down policy, the
job-migration policy from the root, and the job-migration policy from the leaves.
Quanta are allocated uniformly, and a worst-case context-switch cost of 16 sec
is assumed for each class.

on class 9, since the timplexing cycle is fixed and the jobs in that class cannot fit
in any smaller partition of the system. The gains achieved for the large classes
by migrating jobs from the root come at a sometimes significant performance
hit for the smaller classes, however. For classes 0 through 2, migration from the
root performs worse than all the scheduling policies we considered.

As these results show, there is an important tradeoff with respect to the
priority order used to fill otherwise idle slots in the control tree (via migration
or other methods). This priority order should be reflected in the job assignment
and other aspects of the gang scheduling policies. Moreover, performance benefits
may be realized in various cases by exploiting adaptive (dynamic) schemes that
adjust the priority order based upon the state of the system (as well as changes
to this state). As a simple example, an adaptive migration scheme based on the
extremes considered in this paper could consist of determining whether migration
is performed from the root or the leaves on each timeplexing cycle based on the
state of the system at the start of the cycle.

The push-down policy almost always performs worse than EASY-LL and



the two migration policies. The disappointing performance of this scheme is
primarily due to processors left idle during certain time-slices when it is not
possible to push these processors down to jobs in classes below. While the simple
job assignment policy attempts to balance the allocation of jobs to the control
tree upon arrival, it does not take job service times into account and therefore
the tree can become unbalanced on departures. This characteristic coupled with
the relatively light workload resulted in idling partitions while jobs were waiting
in the queues of busy servers.
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Our simulations also show the performance degradation of the gang schedul-
ing policies when the context-switch costs increase. For both values of context-
switch overheads that we tried, however, the qualitative trends of our results are
similar. The bar charts in Figs. 8 and 9 illustrate the effects of context-switch
overheads on the performance of the job-migration schedulers. For low switch
costs, the two job migration schemes underperform EASY-LL in several classes.
When switch costs increase, however, the performance of both policies degrades,
and the number of classes in which they outperform EASY-LL decreases. Per-
formance degradation is more evident for short timeplexing cycles, since in this
case context-switch costs become a significant fraction of each time-slice. We
address in Section 7.1 ways to effectively reduce some of the dominant causes of
this overhead.

7 Discussion

Our simulation results based on the Cornell Theory Center workload data have
several important implications on gang scheduling strategies in practice. In this
section, we discuss various aspects of these practical implications, as well as
current ongoing aspects of our study.

7.1 Memory and paging overheads

Based on the simple analysis in Section 6 to estimate the context-switch memory
overhead, as well as the corresponding response time results, memory and pag-
ing overheads can have a considerable impact on the performance of large-scale
parallel systems that time-share their resources. We now discuss a particular
strategy to significantly reduce and effectively eliminate these overheads for a
general class of large-scale parallel applications. Our approach is based in part
on the concept of block paging, which was introduced in the VM /SP HPO oper-
ating system [1, 25, 26] and extended in the VM /ESA operating system [23, 24].
A few other systems have since adopted some of these concepts, and related
forms of prefetching have recently appeared in the research literature [15, 17].
We first provide a brief overview of the block paging mechanisms used in VM;
the interested reader is referred to [1, 23, 24, 25, 26, 27, 28] for additional tech-
nical details. We then discuss our approach for addressing memory and paging
overheads in large-scale parallel time-sharing systems, which is based on the VM
mechanisms and extensions tailored to the parallel computing environments of
interest.

The basic idea behind block paging is quite simple: the system identifies sets
of pages that tend to be referenced together and then pages each of these sets
into memory and out to disk as a unit. This strategy generalizes previous paging
and swapping methods in that defining the block size to be 1 page yields demand
paging and defining the block size to be the entire working set yields swapping.
Block sizes in between these two extremes provide additional degrees of freedom
to optimize various performance objectives.



The primary motivation for the block-paging mechanisms in VM was to im-
prove the response times of interactive jobs by amortizing the cost of accessing
disk over several pages, thus reducing the waiting time and processor overhead
of demand paging techniques and reducing the number of times the paging paths
need to be executed. For example, it is shown in [23, 24] that the delay to fetch
a single page from a particular IBM 3380 disk configuration is 29ms, whereas
the delay to fetch 10 pages from a simpler 3380 configuration is 48ms.

The VM paging system gathers various data and employs a number of algo-
rithms exploiting these data for the creation and dynamic adjustment of page
blocks. These algorithms attempt to identify pages that are referenced together.
To identify such pages with temporal (and address) affinity, the VM algorithms
are applied locally to each address space rather than globally across all address
spaces. The page replacement algorithms therefore work on a per address-space
basis to select pages of similar age and last-reference for similar treatment and
eventual placement on disk. In this manner, the time (and space) affinity of
pages is used to create blocks of pages that will be written to and read from
disk as a unit, subject to the constraint that the block size is tailored to the
characteristics of the particular disk(s) employed in the system. As a specific
example, the average block size on VM systems is between 9 and 12 pages with
a range of 2 to 20 pages [23, 24]. When a page is fetched from disk as part of a
block and is never referenced during the block’s residence in memory, then the
VM algorithms subsequently eliminate the page from the block. In certain cases,
the system also chains together related page blocks for additional optimizations.

When a page fault occurs and the page is part of a block, the VM system
issues the I/O request(s) in a manner that attempts to bring this particular page
into memory as fast as possible. A program controlled interrupt is associated with
the frame assigned to this faulting page, which signals when the required page
is in memory. Once this interrupt occurs, the system makes the faulting process
ready, therefore allowing it to be immediately scheduled. The remainder of the
page block continues to be fetched in parallel with the (possible) execution of the
process, thus overlapping the 1/O and computation within an application. All
pages in the block are initially marked as not referenced, with the exception of the
one causing the original page fault. This page status information together with
other temporal (and address) affinity information are used to minimize failures
in accurately predicting future page co-reference and to dynamically maintain
page blocks. The analysis in [28] shows that the VM paging algorithms are very
effective in maintaining appropriate page blocks (e.g., a page is incorrectly placed
in a block — in the sense that it is brought in as part of the block but never
referenced — less than 13% of the time in practice) and extremely effective at
minimizing the impact of disk performance on interactive response times.

There are two basic approaches to address the performance issues related to
the memory management component of large-scale parallel environments in gen-
eral [19], and especially in systems that time-share their resources. One approach
consists of allocating jobs to partitions such that the memory requirements of all
jobs on each node of the partition fit within the memory available on that node,



thus avoiding the memory overhead problem. This approach can severely limit
(or eliminate altogether) the degree of time-slicing, however, and for large-scale
parallel computing environments such as the Cornell Theory Center workload
considered in our study, it is impossible within the context of the distributed hier-
archical control schemes described in Section 2. Another basic approach consists
of developing memory management schemes to reduce the performance impact
of these memory overheads. In the remainder of this section, we sketch one such
approach based in part on block paging.

For each application being executed on a node, the operating system gathers
data and employs algorithms much like those in VM for the creation and dy-
namic adjustment of page blocks. When there is a context-switch to a previously
executing job and that job encounters a page fault, the operating system issues
an 1/O request to bring in the faulting page as quickly as possible and sets a
program controlled interrupt* on the page frame allocated to the faulting page.
As soon as the page is brought into memory, the system returns to the execu-
tion of this job and the remaining pages of the block are brought into memory
in parallel with the execution of the job. Given the memory reference character-
istics of many scientific applications [19], the operating system can continue to
bring into memory a number of page blocks that are chained to the faulting page
block based on time (and space) affinity. The optimal number of additional page
blocks that should be brought into memory depends upon the quantum length
allocated to the job (and estimates of the program behavior that could be pro-
vided by the compiler). Since the scheduling system controls this parameter,
it can work together with the memory management system (possibly together
with additional compiler support) to employ a reasonable estimate of the best
number of chained blocks to fetch into memory for the current time-slice. These
page blocks will replace page blocks already in memory. Once again, since the
scheduling system controls the time-slice ordering of the execution of the jobs,
it can convey this information to the memory management system so that the
page replacement policies displace page blocks that are guaranteed to not be
referenced for the longest period of time, thus minimizing the amount of page
faults encountered by the system. In this manner, the memory management sys-
tem can effectively set up a pipeline in which the fetching of the set of pages
required by a job during its current time-slice and the corresponding writing
of memory-resident page blocks to disk (when necessary) are overlapped with
useful computation for the job.

7.2 Quanta allocation

A key parameter of any time-sharing policy is the quantum length assigned to
each class of jobs. We have used, and continue to use, an analytic approach [21,
22] to gain insights into this problem with which heuristics can be developed
for practical gang scheduling policies. A simple resulting heuristic is based on

* The system could also have the job spin on an event associated with the page fault be-
ing satisfied, depending upon which is more efficient for the given hardware platform.



the relative utilization of the resources by each class. More formally, we define
the relative utilization for class ¢ over a particular interval of interest as p; =
(X:2%)/(pi P), where X; and pi; are the mean arrival and service rates for class i
over the interval, respectively. We then define the simple heuristic of allocating
quanta lengths of (p;/p)T to each class ¢, where T is the timeplexing cycle and
p = >, pi. Note that this approach assumes that time-slices assigned to each
class ¢ are primarily consumed by jobs of class ¢ over the time period of interest.

To examine the benefits and limitations of this approach, we ran a number of
simulations comparing the above heuristic with the uniform approach (i.e., the
quantum length for each class is T divided by the number of classes) where the
period of one day was used (a finer granularity of four hours was also examined).
In order to estimate the expected per-class relative utilization, we adjusted the
quantum of each class every day based on the class’ utilization the day before.
The simple intuition behind this allocation policy is that system utilization may
exhibit some form of “temporal locality” in which partitions that are used more
heavily than others over a given time interval are likely to continue to do so over
the next interval. In fact, comparisons between this approach and using the ac-
tual relative utilization for each day (obtained by an off-line analysis of the trace
data) demonstrated only small differences in the mean response times realized
for each class. In our preliminary simulations, we therefore set the quantum of
class ¢ for day d equal to (p;(d)/p(d))T, where these parameters are as defined
above with the addition of the parameter d.

Our preliminary simulation results suggest that this quanta allocation heuris-
tic can work quite well for heavier load situations in which each class has a non-
negligible amount of work, as the system resources are being allocated to equalize
the work brought to the system by each class. On the other hand, this approach
is not appropriate for (nor is it intended for) migration-based gang schedulers
(and to a lesser extent, push-down schemes) under lighter loads, since in this
case the classes are grabbing resources assigned to each other and the relative
utilization is not very representative of the actual allocation of resources. Hence,
one possible solution is to have the system use the p-based heuristic during heav-
ler load situations, and then switch to a uniform quanta length policy when the
load drops below certain thresholds. We are currently studying such approaches
in more detail.

Another important aspect of quanta allocation was also observed based upon
our queueing-theoretic gang scheduling analysis [21, 22]. In particular, the set-
ting of these policy parameters in gang scheduling systems must address the
complex tradeoff between providing preferential treatment to short-running jobs
via small quanta lengths at the expense of larger delays for long-running jobs.
By allocating multiple quanta to shorter-running job classes for each quantum
allocated to longer-running job classes, the system can generalize the optimiza-
tion problem at hand and provide additional flexibility to optimize various per-
formance objectives. We are currently working on variations of the basic gang
scheduling policy in which certain classes are allocated more than one time
slice during each timeplexing cycle and they are executed out of order. For ex-



ample, instead of visiting classes in the order < class-0, class-1, ..., class-8 >,
the scheduler could execute a timeplexing cycle order < class-0, class-1, class-2,
class-0, class-3, class-4, class-0, ..., class-8 >. We believe that such policies can
be used to significantly improve the performance of job classes with smaller pro-
cessing requirements while not degrading considerably the performance of jobs
with larger processing requirements.

7.3 Job assignment schemes

As previously noted, the migration scheme considered in our experiments pro-
vides an upper bound on gang scheduling performance for the actual workload
considered. We have been working on a tree-packing scheme that exploits par-
asite allocations (somewhat similar to the alternative scheduling in [3]) by as-
signing jobs to partitions in the tree that maximize the number of processors
kept busy throughout the timeplexing cycle. Much like the migration scheme,
this approach uses a priority-based mechanism for choosing among multiple as-
signments that are equal with respect to keeping processors busy. We are also
developing a push-up gang-scheduling policy that i1s similar to our push-down
policy. When two sibling partitions are idle during their designated time-slices,
they can be combined to serve jobs in the higher class. When both push-up and
push-down scheduling i1s used, the idle time-slice may be passed either up or
down, depending on which class has the largest number of outstanding jobs. Of
course, a broad variety of other criteria can be applied depending on the specific
performance objectives that are set forth for the scheduling policy. We are in
the process of adding these schemes to our simulator and will be evaluating how
well they perform relative to the job-migration method.

Another area we are currently investigating concerns different mechanisms
for assigning jobs to partitions in a balanced manner. Different functions or
algorithms may be required for the different policies (vanilla, push-up, push-
down). Moreover, during the assignment of a job in class ¢, the values at level ¢
as well as its parents and immediate children could be used to determine which
half of the tree the job should be allocated on. Finally, it would be interesting
to prove the optimality of job assignment mechanisms under simple service time
and arrival time assumptions for the jobs in the system.

8 Conclusions

In this paper we evaluated the performance of various aspects of several gang
scheduling approaches and compared them with EASY-LL. We developed an
event-driven simulator of the various policies and evaluated their performance
by applying them on an actual parallel workload from the Cornell Theory Cen-
ter. Qur experimental results demonstrate the performance benefits, trade-offs,
and limitations of alternative gang scheduling designs under the specific work-
load conditions we considered. We proposed several approaches for addressing
different aspects of gang scheduling in practice and presented evidence for the



potential benefits of some of these approaches. We are continuing to explore
these and other issues related to different forms of gang scheduling in large-scale
and/or distributed parallel computing environments.
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