
PARALLEL AND DISTRIBUTED COMPUTING

TECHNIQUES IN BIOMEDICAL ENGINEERING

CAO YIQUN

(B.S., Tsinghua University)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

AND

DIVISION OF BIOENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

 National University of Singapore i

Declaration

The experiments in this thesis constitute work carried out by the candidate

unless otherwise stated. The thesis is less than 30,000 words in length, exclusive of

tables, figures, bibliography and appendices, and complies with the stipulations set

out for the degree of Master of Engineering by the National University of Singapore.

Cao Yiqun

Department of Electrical and Computer

Engineering

National University of Singapore

10 Kent Ridge Crescent, Singapore 119260

 National University of Singapore ii

Acknowledgments

I would like to express sincere gratitude to Dr. Le Minh Thinh for his guidance

and support. I thank him also for providing me an opportunity to grow as a research

student and engineer in the unique research environment he creates.

I have furthermore to thank Dr. Lim Kian Meng for his advice and administrative

support and contribution to my study and research.

I am deeply indebted to Prof. Prof. Nhan Phan-Thien whose encouragement as

well as technical and non-technical advices have always been an important support

for my research. Special thanks to him for helping me through my difficult time of

supervisor change.

I would also like to express sincere thanks to Duc Duong-Hong for helping me

through many questions regarding biofluid and especially fiber suspensions

modelling.

Most importantly, my special thanks to my family and my girlfriend. Without

your support, nothing could be achievable.

 National University of Singapore iii

Table of Contents

Chapter 1 Introduction...1

1.1 Motivation.. 2

1.2 Thesis Contributions .. 5

1.3 Thesis Outline .. 8

Chapter 2 Background ...10

2.1 Definition: Distributed and Parallel Computing .. 10

2.2 Motivation of Parallel Computing ... 11

2.3 Theoretical Model of Parallel Computing ... 14

2.4 Architectural Models of Parallel Computer ... 15

2.5 Performance Models of Parallel Computing Systems ... 21

2.6 Interconnection Schemes of Parallel Computing Systems 27

2.7 Programming Models of Parallel Computing Systems.. 31

Chapter 3 Overview of Hardware Platform and Software Environments

for Research in Computational Bioengineering ..34

3.1 Hardware Platform... 34

3.2 Software Environments for Parallel Programming.. 40

Chapter 4 Parallel Fiber Suspensions Simulation45

4.1 An Introduction to the Fiber Suspensions Simulation Problem........................... 46

 National University of Singapore iv

4.2 Implementing the Parallel Velocity-Verlet Algorithm using Conventional

Method ... 48

4.3 Performance Study of Conventional Implementation.. 52

4.4 Communication Latency and the Number of Processes 55

4.5 Implementing the Parallel Fiber Suspensions Simulation with Communication

Overlap... 68

4.6 Results .. 77

4.7 Conclusion ... 85

Chapter 5 Parallel Image Processing for Laser Speckle Images87

5.1 Introduction to Laser Speckle Imaging Technique .. 87

5.2 Previous Work.. 96

5.3 Parallelism of mLSI Algorithm.. 99

5.4 Master-worker Programming Paradigm... 100

5.5 Implementation .. 103

5.6 Results and Evaluation... 119

5.7 Conclusion ... 127

Chapter 6 Conclusions and Suggestions for Future Work.........................129

6.1 Conclusions.. 129

6.2 Areas for Improvement .. 131

6.3 Automated Control Flow Rescheduling... 131

6.4 Programming Framework with Communication Overlap.................................. 133

6.5 Socket-based ACL Implementation ... 134

 National University of Singapore v

6.6 MATLAB extension to ACL ... 135

6.7 Summary .. 136

Bibliography ..137

 National University of Singapore vi

Abstract

Biomedical Engineering, usually known as Bioengineering, is among the fastest

growing and most promising interdisciplinary fields today. It connects biology,

physics, and electrical engineering, for all of which biological and medical

phenomena, computation, and data management play critical roles. Computation

methods are widely used in the research of bioengineering. Typical applications range

from numerical modellings and computer simulations, to image processing and

resource management and sharing. The complex nature of biological process

determines that the corresponding computation problems usually have a high

complexity and require extraordinary computing capability to solve them.

Parallel and Distributed computing techniques have proved to be effective in

tackling the problem with high computational complexity in a wide range of domains,

including areas of computational bioengineering. Furthermore, recent development of

cluster computing has made low-cost supercomputer built from commodity

components not only possible but also very powerful. Development of modern

distributed computing technologies now allows aggregating and utilizing idle

computing capability of loosely-connected computers or even supercomputers. This

means employing parallel and distributed computing techniques to support

computational bioengineering is not only feasible but also cost-effective.

In this thesis, we introduce our effort to utilize computer cluster for 2 types of

computational bioengineering problems, namely intensive numerical simulations of

 National University of Singapore vii

fiber suspension modelling, and multiple-frame laser speckle image processing. Focus

has been put on identifying the main obstacles of using low-end computer clusters to

meet the application requirements, and techniques to overcome these problems.

Efforts have also been made to generate easy and reusable application frameworks

and guidelines on which similar bioengineering problems can be systematically

formulated and solved without loss of performance.

Our experiments and observations have shown that, computer clusters, and

specifically those with high-latency interconnection network, have major performance

problem in solving the 2 aforementioned types of computational bioengineering

problems, and our techniques can effectively solve these problems and make

computer cluster successfully satisfy the application requirements. Our work creates a

foundation and can be extended to address many other computationally intensive

bioengineering problems. Our experience can also help researchers in relevant areas

in dealing with similar problems and in developing efficient parallel programs

running on computer clusters.

 National University of Singapore viii

List of Figures

Figure 2-1 A simplified view of the parallel computing model hierarchy 16

Figure 2-2 Diagram illustration of shared-memory architecture 17

Figure 2-3 Diagram illustration of distributed memory architecture.............................. 18

Figure 2-4 Typical speedup curve .. 22

Figure 2-5 Illustrations of Simple interconnection schemes .. 28

Figure 4-1 Division of a fluid channel into several subdomains 50

Figure 4-2 Pseudo code of program skeleton of fiber suspensions simulation 50

Figure 4-3 Relationship between time variables defined for execution time analysis ... 60

Figure 4-4 Directed Graph illustrating calculation of execution time............................ 60

Figure 4-5 Simulation result: execution time versus number of processes 63

Figure 4-6 (A) non-overlap versus (B) overlap: comparison of latency......................... 66

Figure 4-7 Extended pseudo-code showing the structure of main loop 72

Figure 4-8 Rescheduling result ... 75

Figure 4-9 Observed speedup and observed efficiency on zero-load system................. 80

Figure 4-10 Observed speedup and observed efficiency on non-zero load system........ 85

Figure 5-1 Basic setup of LSI with LASCA... 93

Figure 5-2 Master-worker paradigm... 102

Figure 5-3 Illustration of top-level system architecture ... 105

Figure 5-4 Illustration of master-work structure of speckle image processing system 107

Figure 5-5 Architecture of Abastract Communication Layer 109

Figure 5-6 Flowchart of the whole program, master node logic, worker node logic,
and assembler node logic. .. 110

 National University of Singapore ix

List of Tables

Table 4-1 Performance profiling on communication and computation calls.................. 54

Table 4-2 CPU times with and without the communication overlap applied................. 77

Table 4-3 Performance evaluation results: zero-load system ... 81

Table 4-4 Performance evaluation results: non-zero load system (original load is 1) ... 85

Table 5-1 Time spent on blocking communication calls under different conditions ... 121

Table 5-2 Time spent on non-blocking communication subroutines with different data
package sizes and receiver response delay time .. 122

Table 5-3 Time spent on non-blocking communication calls under different
conditions ... 123

Table 5-4 Time spent on processing 1 image frame when no compression is used 125

Table 5-5 Comparison of different compression methods.. 126

Table 5-6 Time spent on processing 1 image frame when LZO compression is used . 127

Chapter 1 Introduction

The domain of this research is effectively utilizing parallel and distributed

computing technologies, especially computer clusters, to support computing demands

in biomedical research and practice. Two typical computational problems in

bioengineering field are numerical simulation, which is very common in research in

computational fluid dynamics; and biomedical image processing, which is

increasingly playing an essential role in research in diagnostic and clinical

experiments. The complexity of biological systems imposes severe requirements on

computing power and latency on both types of problems.

Parallel computing promises to be effective and efficient in tackling these

computation problems. However, parallel programming is different from and far more

complex than conventional serial programming, and building efficient parallel

programs is not an easy task. Furthermore, the fast evolution of parallel computing

implies algorithms to be changed accordingly, and the diversity of parallel computing

platforms also requires parallel algorithms and implementations to be written with

consideration on underlying hardware platform and software environment for research

issues in bioengineering.

In this thesis, we investigate how to effectively use the widely-deployed

computer cluster to tackle the computational problems in the aforementioned two

 National University of Singapore 1

types of bioengineering research issues: numerical simulations of fiber suspension

modelling, and laser speckle image processing for blood flow monitoring. Computer

cluster imposes several challenges in writing efficient parallel programs for those two

types of applications, in terms of both coding time and run-time efficiencies. For

instance, relatively larger communication latency may hinder the performance of

parallel programs running on computer cluster, and it would be desirable if

programmers can optimize the communication by hand; however, that extra work

would make the programming task less systematic, more complex, and error prone.

We introduce several techniques to deal with these general problems of run-time

performance, which may widely present in other bioengineering applications.

Methods to reduce the programming task and to allow programmers to focus more on

computation logic are also proposed.

1.1 Motivation

Fundamental biology has achieved incredibly significant advancement in the past

few decades, especially at the molecular, cellular, and genomic levels. This

advancement results in dramatic increase in fundamental information and data on

mechanistic underpinnings of biological systems and activities. The real challenge is

now how to integrate information from as low as genetic levels to high levels of

system organization. Achievement of this will help both scientific understanding and

development of new biotechnologies. Engineering approaches - based on physics and

chemistry and characterized by measurement, modelling, and manipulation - have

been playing an important role in the synthesis and integration of information. The

 National University of Singapore 2

combination of biological science research and engineering discipline has resulted in

the fast growing area of biomedical engineering, which is also known as

bioengineering.

Of the many methods of engineering principles, computational and numerical

methods have been receiving increasing emphasis in recent years. This is mainly

because of its physics and chemistry root, as well as the recent advancement of

computing technologies, which makes complex computation feasible， cost-efficient

and less time-consuming. As a result, computational bioengineering, which employs

computational and numerical methods in bioengineering research and industry, has

experienced fast adoption and development in the last few years.

The complex nature of biological system contributes to the large computation

complexity of these problems. Another important characteristic is the distribution of

data and instruments. These together inspire the use of parallel and distributed

computing in computational bioengineering. With this computing technique, a single

large-scale problem can be solved by dividing into smaller pieces to be handled by

several parallel processors, and by taking advantage of distributed specialized

computation resources, such as data sources and visualization instruments.

However, there are several challenges involved in using parallel and distributed

techniques in computational bioengineering. Firstly, efficient programs utilizing

parallel and distributed technique are far from easy development, especially for

medical doctors and practitioners whose trainings are not computer programming.

This is because programmers of parallel and distributed system, in addition to

specifying what values the program computes, usually need to specify how the

machine should organize the computation. In other words, programmers need to make

 National University of Singapore 3

decision on algorithms as well as strategies of parallel execution. There are many

aspects to parallel execution of a program: to create threads, to start thread execution

on a processor, to control data transfer data among processors, and to synchronize

threads. Managing all these aspects properly on top of constructing a correct and

efficient algorithm is what makes parallel programming so hard.

When a computer cluster, the most popular and accessible parallel computing

facility, is used as the hardware platform, the relatively larger communication latency

is a further obstacle in achieving high performance. Practical experience usually

shows a threshold of the number of processors, beyond which the performance starts

degrading with larger number of processors.

Another important performance criterion, especially for clinical applications, is

whether a system is capable of supporting real-time operation. When this is

concerned, in addition to computing capacity, latency or lag, defined as the time it

takes to get the result after the input is available for the processing system, imposes

further performance requirements. When parallel computing is used, the coordination

among participating processors, although increases the computing capacity, will result

in larger latency.

There is also the challenge from the fact that biomedical engineering is a fast

evolving field, with dozens of methods available for each task, and with new methods

invented every day. It would be desirable to separate the computational logic from the

supporting code, such as thread creation and communication. Parallel processing also

complicates this task and computational logic is often tightly coupled with supporting

code, making it difficult for non-computer experts to customize the methods to use.

 National University of Singapore 4

Based on the aforementioned observations, the main research objectives of this

thesis are summarized as follows:

• Identify typical performance bottlenecks, especially when common

hardware platforms and software environments are used and when typical

computational bioengineering applications are concerned;

• Derive methods to solve the above performance problems, without largely

complicating the programming task, to introduce complex tools, or to add

more overhead;

• Derive methods to achieve real-time processing for specific biomedical

application. These methods should be scalable to larger problem size or

higher precision of results; and

• Derive methods to achieve core computational logic customizability. This

is the best way to reduce programming workload of non-computer

medical personnels facing similar programming tasks.

1.2 Thesis Contributions

Our research activities are based on two representative computational

bioengineering applications, namely numerical simulations of fiber suspension

modelling, and laser speckle image processing for blood flow monitoring. We study

how high-performance parallel programs can be built on computer clusters for these

applications, with consideration of the special characteristics of this platform.

 National University of Singapore 5

Fiber suspension simulation is a typical numerical simulation problem similar to

N-body problem. Parallel processing technique is used to support larger domain of

simulation and thus provides more valid results. With specific problem scale, parallel

processing will largely reduce time to acquire simulation result. A computer cluster

will be used to perform the computing task. Parallelization is accomplished by spatial

decomposition. Each spatial subdomain will be assigned to a parallel process for

individual simulation. Neighboring subdomains usually have interactions and need to

exchange data frequently. The need for data exchange implies that communication

latency will be a significant factor in affecting the overall performance. The idea of

using parallel computing to solve this type of problems is not new. However, there is

little research done on identifying the bottleneck of performance improvement and

optimizing the performance on computer cluster platform. In our research, theoretical

analysis, simulations and practical experiments all show that communication latency

will increasingly hinder the performance gain when more parallel processors are used.

Communication overlap is proved to effectively solve this communication latency

problem. This conclusion is supported by both theoretical analysis and realistic

experiments.

Laser speckle image processing is chosen as a representative application of

biomedical image processing. A large portion of biomedical image processing

problems share the important common feature of spatial decomposability, which

means the image can be segmented into blocks and processed independently.

Although there is little interaction among these blocks, image processing usually

requires real-time processing. The second part of the thesis is contributed to the

parallel processing of biomedical images using a computer cluster, the most

accessible parallel platform. We build a master-worker framework to support this

 National University of Singapore 6

application family, and build support for real-time processing inside this framework.

This framework is simple, highly customizable and portable, and natively supports

computer clusters. Potential limitations to real-time processing are analysed and

solution is proposed. As a demonstration, real-time laser speckle image processing is

implemented. The image processing logic can easily be customized, even in other

languages, and this framework for parallel image processing can be easily

incorporated into other image processing tasks. Since our framework is portable, it

can be used on various types of parallel computers besides the computer cluster,

which our implementation is based on.

In summary, we have achieved the following:

• We have found and verified that asynchronism among parallel processes

of the same task is a main source of communication latency. This type of

communication latency is among the most common types of performance,

especially for applications similar to fiber suspension simulation. This

latency is independent of communication networking technology used and

cannot be reduced by improvement on interconnection networks.

• We have shown why and how communication overlap can help reduce the

negative impact of communication latency, including both network-

related and asynchronism-related latencies. We have also demonstrated

how communication overlap can be implemented with MPICH with p4

device, which does not support real non-blocking data communication.

Using this implementation, we have largely improved performance of

fiber suspension simulation, and enable more processors to be used

without performance degradation.

 National University of Singapore 7

• We have demonstrated how parallel real-time image processing can be

achieved on a computer cluster. The computational logic is also

customizable, allowing researchers to use different methods and

configuration without rewriting the whole program.

• We have designed a simple, scalable, and portable application framework

for real-time image processing tasks similar to laser speckle image

processing. Our design effectively separates processing logic from the

underlying system details, and enables the application to harness different

platforms and probably future parallel computing facilities without

program modification.

1.3 Thesis Outline

This paper is divided into four parts, as described in the following paragraphs.

The first part comprises of this introduction, a short introduction to parallel

computing, a description of the prototype problems, and the hardware platform and

software environment used in this research. This part covers from Chapter 1 to

Chapter 3.

The second part, consisting of Chapter 4, focuses on first type of problem, the

fiber suspension simulation problem. This is treated as a representative

Computational Fluid Dynamics problem, one of the most common problem types in

computational bioengineering field. This part describes the common algorithm

 National University of Singapore 8

skeleton and generic parallel execution strategies, which are optimized for solving

this iterative problem on computer clusters.

The third part, consisting of Chapter 5, focuses on another prototype problem, the

parallel processing of speckle images. Image processing is another common problem

in bioengineering. It usually features large input and output data as well as large

computational complexity. The results after processing, including the laser speckle

images, would be much more meaningful if they can be obtained in real-time. This

need raises even more rigorous performance requirement. This part describes the

effort to use computer cluster to tackle this problem. Some properties of this type of

problems prevents computer cluster to be an effective platform. Suggestions on how

to tackle this difficulty is presented.

In the last part, Chapter 6, a summary is given. Based on the discussion in part 2

and 3, suggestions on interesting future improvement will also be presented.

 National University of Singapore 9

Chapter 2 Background

Parallel and distributed computing is a complex and fast evolving research area.

In its short 50-year history, the mainstream parallel computer architecture has evolved

from Single Instruction Multiple Data stream (SIMD) to Multiple Instructions

Multiple Data stream (MIMD), and further to loosely-coupled computer cluster; now

it is about to enter the Computational Grid epoch. The algorithm research has also

changed accordingly over the years. However, the basic principles of parallel

computing, such as inter-process and inter-processor communication schemes,

parallelism methods and performance model, remain the same. In this chapter, a short

introduction of parallel and distributed computing will be given, which will cover the

definition, motivation, various types of models for abstraction, and recent trend in

mainstream parallel computing. At the end of this chapter, the connection between

parallel computing and bioengineering will also be established. Materials given in this

chapter server as an overview of technology development and will not be discussed in

details. Readers will be advised to relevant materials for further information.

2.1 Definition: Distributed and Parallel Computing

Distributed computing is the process of aggregating the power of several

computing entities, which are logically distributed and may even be geologically

 National University of Singapore 10

distributed, to collaboratively run a single computational task in a transparent and

coherent way, so that they appear as a single, centralized system.

Parallel computing is the simultaneous execution of the same task on multiple

processors in order to obtain faster results. It is widely accepted that parallel

computing is a branch of distributed computing, and puts the emphasis on generating

large computing power by employing multiple processing entities simultaneously for

a single computation task. These multiple processing entities can be a multiprocessor

system, which consists of multiple processors in a single machine connected by bus or

switch networks, or a multicomputer system, which consists of several independent

computers interconnected by telecommunication networks or computer networks.

Besides in parallel computing, distributed computing has also gained significant

development in enterprise computing. The main difference between enterprise

distributed computing and parallel distributed computing is that the former mainly

targets on integration of distributed resources to collaboratively finish some task,

while the later targets on utilizing multiple processors simultaneously to finish a task

as fast as possible. In this thesis, because we focus on high performance computing

using parallel distributed computing, we will not cover enterprise distributed

computing, and we will use the term “Parallel Computing”.

2.2 Motivation of Parallel Computing

The main purpose of doing parallel computing is to solve problems faster or to

solve larger problems.

 National University of Singapore 11

Parallel computing is widely used to reduce the computation time for complex

tasks. Many industrial and scientific research and practice involve complex large-

scale computation, which without parallel computers would take years and even tens

of years to compute. It is more than desirable to have the results available as soon as

possible, and for many applications, late results often imply useless results. A typical

example is weather forecast, which features uncommonly complex computation and

large dataset. It also has strict timing requirement, because of its forecast nature.

Parallel computers are also used in many areas to achieve larger problem scale.

Take Computational Fluid Dynamics (CFD) for an example. While a serial computer

can work on one unit area, a parallel computer with N processors can work on N units

of area, or to achieve N times of resolution on the same unit area. In numeric

simulation, larger resolution will help reduce errors, which are inevitable in floating

point calculation; larger problem domain often means more analogy with realistic

experiment and better simulation result.

As predicted by Moore's Law [1], the computing capability of single processor

has experienced exponential increase. This has been shown in incredible advancement

in microcomputers in the last few decades. Performance of a today desktop PC

costing a few hundred dollars can easily surpass that of million-dollar parallel

supercomputer built in the 1960s. It might be argued that parallel computer will phase

out with this increase of single chip processing capability. However, 3 main factors

have been pushing parallel computing technology into further development.

First, although some commentators have speculated that sooner or later serial

computers will meet or exceed any conceivable need for computation, this is only true

for some problems. There are others where exponential increases in processing power

 National University of Singapore 12

are matched or exceeded by exponential increases in complexity as the problem size

increases. There are also new problems arising to challenge the extreme computing

capacity. Parallel computers are still the widely-used and often only solutions to

tackle these problems.

Second, at least with current technologies, the exponential increase in serial

computer performance cannot continue for ever, because of physical limitations to the

integration density of chips. In fact, the foreseeable physical limitations will be

reached soon and there is already a sign of slow down in pace of single-chip

performance growth. Major microprocessor venders have run out of room with most

of their traditional approaches to boosting CPU performance-driving clock speeds and

straight-line instruction throughput higher. Further improvement in performance will

rely more on architecture innovation, including parallel processing. Intel and AMD

have already incorporated hyperthreading and multicore architectures in their latest

offering [2].

Finally, generating the same computing power, single-processor machine will

always be much more expensive then parallel computer. The cost of single CPU

grows faster than linearly with speed. With recent technology, hardware of parallel

computers are easy to build with off-the-shelf components and processors, reducing

the development time and cost. Thus parallel computers, especially those built from

off-the-shelf components, can have their cost grow linearly with speed. It is also

much easier to scale the processing power with parallel computer. Most recent

technology even supports to use old computers and shared component to be part of

parallel machine and further reduces the cost. With the further decrease in

 National University of Singapore 13

development cost of parallel computing software, the only impediment to fast

adoption of parallel computing will be eliminated.

2.3 Theoretical Model of Parallel Computing

A machine model is an abstract of realistic machines ignoring some trivial issues

which usually differ from one machine to another. A proper theoretical model is

important for algorithm design and analysis, because a model is a common platform

to compare different algorithms and because algorithms can often be shared among

many physical machines despite their architectural differences. In the parallel

computing context, a model of parallel machine will allow algorithm designers and

implementers to ignore issues such as synchronization and communication methods

and to focus on exploitation of concurrency.

The widely-used theoretic model of parallel computers is Parallel Random

Access Machine (PRAM). A simple PRAM capable of doing add and subtract

operation is described in Fortune's paper [3]. A PRAM is an extension to traditional

Random Access Machine (RAM) model used to serial computation. It includes a set

of processors, each with its own PC counter and a local memory and can perform

computation independently. All processors communicate via a shared global memory

and processor activation mechanism similar to UNIX process forking. Initially only

one processor is active, which will activate other processors; and these new

processors will further activate more processors. The execution finishes when the root

processor executes a HALT instruction. Readers are advised to read the original paper

for a detailed description.

 National University of Singapore 14

Such a theoretic machine, although far from complete from a practical

perspective, provides most details needed for algorithm design and analysis. Each

processor has its own local memory for computation, while a global memory is

provided for inter-processor communication. Indirect addressing is supported to

largely increase the flexibility. Using FORK instruction, a central root processor can

recursively activate a hierarchical processor family; each newly created processor

starts with a base built by its parent processor. Since each processor is able to read

from the input registers, task division can be accomplished. Such a theoretical model

inspires many realistic hardware and software systems, such as PVM [4] introduced

later in this thesis.

2.4 Architectural Models of Parallel Computer

Despite a single standard theoretical model, there exist a number of architectures

for parallel computer. Diversity of models is partially shown in Figure 2-1. This

subsection will briefly cover the classification of parallel computers based on their

hardware architectures. One classification scheme, based on memory architecture,

classifies parallel machines into Shared Memory architecture and Distributed

Memory architecture; another famous scheme, based on observation of instruction

and data streams, classifies parallel machines according to Flynn's taxonomy.

 National University of Singapore 15

Figure 2-1 A simplified view of the parallel computing model hierarchy

2.4.1 Shared Memory and Distributed Memory

Shared Memory architecture features a central memory bank, with all processors

and this memory bank inter-connected through high-speed network, as shown in

Figure 2-2. Shared Memory shares a lot of properties with PRAM model, because of

which it was favoured by early algorithm designers and programmers. Furthermore,

because the memory organization is the same as in the sequential programming

models and the programmers need not deal with data distribution and communication

details, shared memory architecture has certain advantage in programmability.

However, no realistic shared-memory high-performance machine have been built,

because no one has yet designed a scalable shared memory that allows large number

of processors to simultaneously access different locations in constant time. Having a

centralized memory bank implies that no processor can access it with high speed.

 National University of Singapore 16

Figure 2-2 Diagram illustration of shared-memory architecture

In Distributed Memory architecture, every processor has its own memory

component that it can access via very high speed, as shown in Figure 2-3. Accessing

memory owned by other processor requires explicit communication with the owner

processor. Distributed Memory architecture uses message-passing model for

programming. Since it allows programs to be optimized to take advantage of locality,

by putting frequently-used data in local memory and reducing remote memory access,

programs can often acquire very high performance. However, it imposes a heavy

burden on the programmers, who is responsible for managing all details of data

distribution and task scheduling, as well as communication between tasks.

 National University of Singapore 17

Figure 2-3 Diagram illustration of distributed memory architecture

To combine the performance advantage of Distributed Memory architecture to

the ease of programming of Shared Memory architecture, Virtual Shared Memory, or

Distributed Shared Memory (DSM) system, is built on top of Distributed Memory

architecture and exposes a Shared Memory programming interface. DSM virtualizes

the distributed memory as an integrated shared memory for upper layer applications.

Mapping from remote memory access to message passing is done by communication

library, and thus programmers are hidden from message communication details

underneath. Nevertheless, for the foreseeable future, use of such paradigm is

discouraged for efficiency-critical applications. Hiding locality of memory access

away from programmers will lead to inefficient access to memory and poor

performance until significant improvements have been gained in optimization.

The most common type of parallel computers, computer clusters, belongs to the

distributed memory family. With different programming tools, the programmers

might be exposed to a distributed memory system or a shared memory system. For

example, using message passing programming paradigm, the programmers will have

to do inter-process communication explicitly by sending and receiving message, and

 National University of Singapore 18

are based on the distributed memory architecture; but when a distributed shared

memory library such as TreadMarks is used, the distributed memory nature will be

hidden from the programmer. As discussed above, we would suggest the use of

message passing over distributed shared memory, because communication overhead

can be more significant in computer clusters. It is advantageous to allow the

programmer to control the details of communication in a message passing system.

This will be further discussed in Section 2.7.

2.4.2 Flynn’s Taxonomy

Another classification scheme is based on taxonomy of computer architecture

firstly proposed by Michael Flynn [5] in 1966. Flynn differentiated parallel computer

architectures with respect to number of data streams and that of instruction streams.

According to Flynn, computer architectures can be classified into 4 categories,

namely Single Instruction Single Data Stream (SISD), Single Instruction Multiple

Data Stream (SIMD), Multiple Instruction Single Data Stream (MISD), and Multiple

Instruction Multiple Data Stream (MIMD). This work was later referred to as Flynn's

taxonomy.

In Flynn's taxonomy, normal sequential von Neumann architecture machine,

which has dominated computing since its inception, is classified as SISD. MISD is a

theoretical architecture with no realistic implementation.

SIMD machine consists of a number of identical processors proceeding in a lock

step synchronism, executing the same instruction on their own data. SIMD was the

major type of parallel computer before 1980s, when the computing capability of a

 National University of Singapore 19

single processor is very limited. Nowadays, SIMD computing is only seen inside

general purpose processors, as an extension to carry out vector computation

commonly used, for example, in multimedia applications.

MIMD is the most commonly used parallel computers now, and covers a wide

range of interconnection schemes, processor types, and architectures. The basic idea

of MIMD is that each processor operates independent of the others, potentially

running different programs and asynchronous progresses. MIMD may not necessarily

mean writing multiple programs for multiple processors. The Single Program

Multiple Data (SPMD) style of parallel computing is widely used in MIMD

computers. Using SPMD, a single program is deployed to multiple processors on

MIMD computers. Although these processors run the same program, they may not

necessarily be synchronized at instruction level; and different environments and

different data to work on may possibly result in instruction streams being carried out

on different processors. Thus SPMD is simply a easy way to write programs for

MIMD computers.

It is obvious that computer cluster is a type of MIMD computer. Most parallel

programs on computer cluster are developed in the SPMD style. The same program

image is used on each parallel processor, and each processor goes through a different

execution path based on its unique processor ID.

A relevant topic is the concept of granularity of parallelism, which describes the

size of a computational unit being a single “atom” of work assigned to a processor. In

modern MIMD system, the granularity is much coarser, driven by the desire to reduce

the relatively expensive communication.

 National University of Singapore 20

2.5 Performance Models of Parallel Computing Systems

2.5.1 Speedup, Efficiency and Scalability

In order to demonstrate the effectiveness of parallel processing for a problem on

some platform, several concepts have been defined. These concepts will be used in

later chapters to evaluate the effectiveness of parallel programs. These include

speedup, which describes performance improvement in terms of time savings,

efficiency, which considers both benefit and cost, and scalability, which represents

how well an algorithm or piece of hardware performs as more processors are added.

Speedup is a first-hand performance evaluation. However, it is a controversial

concept, which can be defined in a variety of ways. Generally speaking, speedup

describes performance achievement by comparing the time needed to solve the

problem on N processors with the time needed on a single processor. This is shown

as:

S(n) = T(1) / T(n); (2-1)

where S(n) is the speedup achieved with n processors, T(1) is the time required on a

single processor, and T(n) is the time required on N processors. The discrepancies

arise as to how the timings should be measured, and what algorithms to be used for

different numbers of processors. A widely accepted method is to use optimal

algorithms for any number of processors. However, in reality, optimal algorithm is

hard to implement; even if it is implemented, the implementation may not perform

 National University of Singapore 21

optimally because of other machine-dependent and realistic factors, such as cache

efficiency inside CPU.

A typical speedup curve for a fixed size problem is shown in Figure 2-4. As the

number of processors increases, speedup also increases until a saturation point is

reached. Beyond this point, adding more processors will not bring further

performance gain. This is the combined result of 1) reduced computation on

participating node, and 2) increased duplicate computation and synchronization and

communication overhead.

Figure 2-4 Typical speedup curve

The concept of efficiency is defined as

E(n) = S(n) / n. (2-2)

 National University of Singapore 22

It measures how much speedup is brought per additional processor. Based on the

typical speedup curve shown in the figure above, it is evident that typically efficiency

will be decreased upon increase in the number of processors.

The concept of scalability cannot be computed but evaluated. A parallel system is

said to be scalable when the algorithm and/or the hardware can easily incorporate and

take advantage of more processors. This term is viewed as nebulous [6], since it

depends on the target problem, algorithm applied, hardware, current system load, and

numerous other factors. Generally, programs and hardware are said to be scalable

when they can take advantage of hundreds or even thousands of processors.

In practice, the computable speedup and efficiency can be much more complex.

Both values are affected by many factors, which can be algorithmic and practical.

Take superlinear speedup as an example. Superlinear speedup is defined as the

speedup that exceeds the number of processors used. It is proved that superlinear

speedup is not achievable in homogeneous parallel computers. However, when

heterogeneous parallel computers are used, it is possible to achieve it [7]. An example

of practical factors that may lead to superlinear speedup is cache performance: when a

large number of processors are used, problem scale on a single node is largely

reduced, which may result in higher cache hit ratio, fast execution, and finally

probably superlinear speedup even if communication overhead is not negligible.

When the parallel computer is not dedicated to a single parallel computing task, load

difference among the computing nodes will imply heterogeneity and consequently the

possibility of superlinear speedup. That is what we will encounter in later chapters.

 National University of Singapore 23

2.5.2 Amdahl’s Law

As shown in the previous subsection, efficiency gets reduced as more processors

are added. This effect implies the limit of parallel performance: when the number of

processors reaches some threshold, adding more processors will no longer generate

further performance improvement and will even result in performance degradation,

due to decrease in time saving brought by further division of task and increase in

overhead of interprocess communication and duplicate computation. Gene Amdahl

presents a fairly simple analysis on this [8], which is later referred to as Amdahl’s

Law.

Amdahl gave the speedup of a parallel program as:

s
n
ps

nS 11)(<
+

= .
(2-8)

where p is the fraction of code that is parallelizable, and s=1-p, is that requires serial

execution. This inequality implies that superlinear speedup is not achievable and the

maximal ideal speedup cannot exceed
s
1 , where s is the ratio of serial code (i.e., the

code that requires serial execution) out of the whole program.

Amdahl’s Law is a rough method to evaluate how parallel computing can be

effective for a specific problem. Amdahl’s Law has resulted in pessimistic view of

parallel processing. For example, if 10% of the task must be computed using serial

 National University of Singapore 24

computation, the maximal ideal speedup is 10. Since 1967, Amdahl’s Law was used

as an argument against massively parallel processing (MPP).

Gustafson’s discovery [9] on loophole of Amdahl’s law has led the parallel

computing field out of pessimism and skepticism. Since then, the so-called

Gustafson’s Law has been used to justify MPP. Amdahl assumed the problem size to

be fixed as the number of processors changes, and thus s and p to be constants. In

many scientific applications, problem size is flexible, and when more processors are

available, problem size can be increased in order to achieve finer result such as higher

resolution or higher precision. To quote Gustafson, “speedup should be measured by

scaling the problem to the number of processors, not fixing problem size.” When

problem size is changed, s and p are no longer constants, and the limit set by

Amdahl’s Law is broken.

According to Gustafson’s observation, the amount of work that can be done in

parallel varies linearly with the number of processors and the amount of serial work,

mostly vector startup, program loading, serial bottlenecks and I/O, does not grow with

problem size. Use s' and p' to represent execution time associated with serial code and

parallel code, rather than ratio, spent on the parallel system with n homogeneous

processors, then if this task is to be computed on a single processor, the time needed

can be represented as:

T(1) = s' + np', (2-9)

and the scaled speedup can be written as:

 National University of Singapore 25

'')1(
''

')1(
''
)''(

)(
)1()(' snn

ps
snn

ps
nps

nT
Tns ⋅−−=

+
⋅−−=

+
+

== , (2-10)

if s'' is defined as s'/(s'+p'). s'' is the ratio of serial code, but has different meaning

from the ratio s in Amdahl’s Law: s'' is the ratio of serial code with reference to whole

program executed on one processor in a parallel execution, while s is with reference

to all code in the whole program for the problem [10]. It must also be noted that s is a

constant that is only relevant to the computation problem, under the precondition that

problem scale is fixed; while s'' is a constant under the precondition of problem scale

changes as Gustafson described. Under Gustafson’s Law, the speedup can be linearly

increased with the number of processors hired in the computation.

In the context of computational bioengineering, Gustafson’s Law makes more

sense than Amdahl’s Law, because with larger computing capability, it is desirable to

acquire better result, in terms of resolution in image processing and simulation and in

terms of higher precision in many numerical applications. When the problem size is

fixed, Amdahl’s Law has told us to reduce the fraction of code that has to be executed

in serial. Essentially, we have to reduce the fraction of code whose execution time

cannot be reduced by introducing more processors. Since communication code has

this feature, we will look into the techniques to optimize inter-processor

communication.

 National University of Singapore 26

2.6 Interconnection Schemes of Parallel Computing

Systems

Both Amdahl’s Law and Gustafson’s Law acknowledge the significance of serial

code in affecting the parallel computer performance. Another important factor that is

closely related to parallel program performance is inter-process communication and

synchronization. Especially with modern technology, processing capability of single

chip has been tremendously increased; however, inter-process communication has

received relatively small improvement, and thus become the bottleneck of overall

performance. That also explains the trend of coarser-granularity parallelism. High-

performance parallel computers, especially those able to scale to thousands of

processors, have been using sophisticated interconnection schemes. Here we cover the

major interconnection schemes listed in Figure 2-5 in brief.

 National University of Singapore 27

Figure 2-5 Illustrations of Simple interconnection schemes

Figure 2-5(A) illustrates the line scheme, which is the simplest connection

scheme. In this illustration, circle represents a computing node and line represents

direct communication channel between nodes. Computing nodes are arranged on and

connected with a single line. Except for the nodes at the two ends, vertex degrees are

all 2 and thus the implementation of network interface is simple; routing is simple and

the topology can be viewed as recursive. However, communication between any two

non-neighbor nodes needs the help of other nodes; the connectivity is only 1 and fault

at any node will make the whole system break; and diameter of this corresponding

graph is n-1, where n is the number of nodes, which implies that the latency could be

very high. To summarize, this scheme is simple and low-cost, but will not be able to

generate high performance or reliability; and as system scales, the performance

degrades rapidly.

Figure 2-5(B) illustrates the ring scheme, which is an enhanced line topology,

with an extra connection between the two ends of the line. This increases the

 National University of Singapore 28

connectivity to 2 and decreases the diameter to half of the corresponding line

topology. However, basic characteristics are still the same.

The other extreme is probably the fully-connected topology, in which there is a

direct connection between any two computing nodes. Fully-connected topology is

shown in Figure 2-5(C). The corresponding graph representation has an edge between

any two vertices, and distance between any two vertices is 1. Thus the diameter is 1,

and it generates the minimal communication latency, if the physical link

implementation is fixed, as well as the maximal connectivity. However, the degree of

nodes changes with the number of processors and thus the implementation of network

interface must be very complex; and it is hard to be recursive, adding another layer of

complexity of implementation and reducing the scalability. To summarize, this

scheme will generate the highest performance possible, but due to the complexity and

thus cost, it can hardly be scalable: with larger scale, although performance will not

degrade at all, complexity will climb very fast at the level of .)(2nO

Similar to fully-connected network, bus network, illustrated in Figure 2-5(E), has

direct connection between any two nodes. In fact, bus topology shares the same

logical graph representation with fully-connected topology and. Consequently, static

characteristics of bus topology are exactly the same as those of fully-connected

topology. But connection between any pair of nodes is not dedicated but shared:

interconnection is implemented via a shared bus. This reduces the complexity

significantly. In fact, its complexity is similar to that of line and ring topology.

However, the dynamic characteristics, such as data transfer speed, are more inferior to

those of fully-connected counterpart. Although collective communication is now very

easy to implement, this single shared bus prevents more than one pair of nodes to

 National University of Singapore 29

carry out point-to-point communication. As a result, the system does not scale very

well.

An intuitive improvement on bus network is to change the bus to eliminate the

constraint that only two nodes can communicate at any time. The result is the star

network, where a communication switch node is added to replace the shared bus, as

shown in Figure 2-5(D). If we treat this switch node as a non-computing node and

ignore it in the graph representation, then star network corresponds to the same fully-

connected graph as bus network, while the implementation does not have the

constraint of bus network; if switch node is viewed as normal computing node, then

the corresponding graph has a diameter of 2, supports easy implementation of

collective communication with the help of the central switch node, and allows

recursive expansion. Except for the switch node, all other nodes have a constant

vertex degree of 1. The critical disadvantage is that the connectivity is 1: failure at the

switch node will cause the whole system to fail.

For computer clusters, most are built with a star structured interconnection

network around a central switch. For better fault tolerance or easier setup, the other

interconnection scheme might also be used. Parallel program using message passing

might be rewritten to better adapt to different interconnection network.

There are other types of more sophisticated topology schemes, such as tree,

mesh, and hypercube, which are widely used in parallel computers with thousands of

processors or more. These schemes often scale better to larger scale network with

good performance. Readers are advised to [11] for more information about this.

 National University of Singapore 30

2.7 Programming Models of Parallel Computing

Systems

Programming models are high-level abstract views of technologies and

applications that hide most architectural details with programmers as the main

audience. For MIMD machine like a computer cluster, the most important models

include shared-memory model, message passing model, and object oriented model.

In the shared-memory model, multiple tasks run in parallel. These tasks

communicate with one another by writing to and reading from a shared memory.

Shared-memory programming is comfortable for the programmers, because the

memory organization is similar as in the familiar sequential programming models,

and programmers need not deal with data distribution or communication details.

Popularity of this model was also promoted by its similarity to the theoretical PRAM

model. Practice of programming on this model originated from concurrent

programming on transparency of data and task placement determines that, besides the

simplicity of programming, the performance cannot be predicted or controlled on

hardware platform with Non-Uniform Memory Architecture (NUMA) or distributed

memory. This performance problem is evident especially on large-scale

multiprocessor systems, in which access time to memory at different locations varies

significantly and thus memory locality plays critical role in determining overall

system performance.

Message passing model is becoming the prevailing programming model for

parallel computing system, thanks to the trend to large-scale multiprocessors systems,

 National University of Singapore 31

including computer clusters. In this model, several processes run in parallel and

communicate and synchronize with one another by explicitly sending and receiving

message. These processes do not have access to a shared memory or a global address

space. Although harder to program compared to previous models, it allows programs

to explicitly guide the execution by controlling data and task distribution details.

Since everything is under the programmer’s control, the programmer can achieve

close to optimum performance if enough effort has been spent on performance tuning.

Besides this performance advantage, message passing model is also versatile. Being a

relatively low-level model, it is capable of implementing many higher-level models.

A typical example is the widely-used SPMD data model, which fits in with many

naturally data-parallel scientific applications. Very low-level message passing

systems, such as Active Message, are even used to implement shared-memory system

by emulating a shared memory. These systems, while allowing easy high-level

algorithm design with the help of more friendly high-level models, expose enough

low-level details to support and encourage the programmers to manually control and

tune the performance. Wide deployment of multicomputers and loosely-coupled

computer clusters, which feature expensive communication, promotes the popularity

of message passing systems. Message Passing Interface (MPI) [12] and Parallel

Virtual Machine (PVM) [4] are the 2 major programming libraries used to build

message passing system. MPI is the base of our research and will be covered in detail

in the next chapter.

In this chapter, we have reviewed some basic concepts in parallel computing

systems. Parallel computing is the simultaneous execution of the same task on

 National University of Singapore 32

multiple processors in order to obtain faster results. It is used to acquire the results

faster and/or to acquire better results, which is useful in many computational

bioengineering applications. PRAM is the model of parallel computer to study the

algorithm, and in practice, program designers usually have to consider the

architectural models of the hardware to better utilize the resources available and to

achieve higher performance. In this context, computer cluster belongs to distributed

memory MIMD computers. To evaluate the performance, several terms have been

defined. Studies on these terms suggest the important role of inter-processor

communication. That is why many different interconnection schemes with different

levels of complexity have been devised. Computer cluster usually uses the star-

structured scheme, but more complex scheme may be employed when the cluster

scales to a larger size. We have shown that to have better control on the execution

details including inter-processor communication, message passing programming

model is suggested.

In the next chapter, we will look into the architecture and programming model

used in our research with more details.

 National University of Singapore 33

Chapter 3 Overview of Hardware Platform and

Software Environments for Research in

Computational Bioengineering

In this chapter, we will focus on hardware and software platforms we use in our

research. As for hardware, 3 types of platforms with message passing architecture are

involved in our research, to best take advantage of available resources and to satisfy

different requirements. As for software tools, message passing is the main

programming paradigm used, and Message Passing Interface (MPI) model and library

are used in both research projects. For image processing algorithms that are more

suitable for SIMD-style architectures, use of SIMD extension instructions in

commodity CPU are also investigated.

3.1 Hardware Platform

Parallel program based on message passing paradigm can be run on various

platforms, ranging from high-end distributed-memory multiprocessor systems with

thousands of processors, such as IBM Blue Gene/L [13], the No. 1 supercomputer in

the world as of this writing, to multicomputer system with dozens of CPUs, like the

 National University of Singapore 34

computer cluster we use in our research. Our research projects mainly rely on a

computer cluster for computing power. For the biomedical image processing project,

we propose to use Computational Grid to integrate our system into other components

of whole system. We also look into the possibility to utilize the vast computing power

available in thousands of campus workstations connected via high-speed campus

network, as well as the SIMD extension available in modern commodity CPU.

3.1.1 Computer Cluster

A computer cluster is a group of loosely coupled computers that work together

closely so that in many respects it can be viewed as though it were a single computer.

Clusters are commonly (but not always) connected through fast local area networks.

Comparing to parallel machines with specific-purpose hardware components,

computer clusters use commodity general-purpose components and usually have

significant cost advantage. This means that with the same amount of budget, building

a computer cluster usually will result in higher system performance. With the fast

increase in performance of commodity components and improvement of network

technology, computer cluster is now the mainstream architecture of modern parallel

machines.

The main piece of hardware used in our research is the Hydra II computer cluster

system, built and maintained by Singapore MIT Alliance (SMA). This system consists

of one dual-processor head node and 34 uni-processor client nodes, connected via a

Gigabit Ethernet switch. The head node is equipped with 2 Pentium III processors,

both clocked at 1.3GHz, and 2 GB of RAM. Each client node has one 1.3GHz

 National University of Singapore 35

Pentium III processors attached with 1GB of RAM. LINPACK benchmark shows the

system can generate 27GFlops of average computing power.

3.1.2 Computational Grid

Grid computing is a very young and uncharted field [14]. Various definitions and

designs coexist and numbers of implementations based on different designs have been

built and deployed in real applications. Out of them, Computational Grid, described

by Open Grid Services Architecture (OGSA) [15], standardized by Open Grid

Services Infrastructure (OGSI) [16], and implemented and refined in Globus toolkit

by Globus Alliance (http://www.globus.org), is widely accepted as the standard form.

Computational Grid, named by analogy to electric power grid, is defined as hardware

and software infrastructure that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities. It is hoped that

inexpensive, reliable and universally accessible computing power brought by

Computational Grid will result in revolutionary development of computing devices,

like the electric power grid did in the 1910s. To be specific, one of the many present

goals is to allow execution of parallel code across more than one supercomputer site

or computer cluster.

Computational Gird is designed to integrate distributed computing power to form

a single supercomputer, which would be a rather powerful hypercomputer to tackle

large-scale computation problems. When message passing programming is to be

considered, the mainstream Message Passing Interface (MPI) implementation,

MPICH, has support for Grid-based communication. Unfortunately, in practice there

are a lot of problems to be circumvented. For example, for many computer clusters,

 National University of Singapore 36

only the head node has the public Internet Protocol (IP) address, which makes the

direct Grid-based communication between 2 client nodes residing in different

computer clusters impossible. When our research is to be considered, the

heterogeneous nature and hierarchical structure of Gird are further barriers to efficient

deployment of our flat-structured MPI program.

We use Grid mainly to take advantage of its capability to integrate different types

of resources. For many computational bioengineering applications, various types of

resources are involved. Take biomedical imaging as a typical example: special-

purpose imaging equipment is used to acquire the images possibly in the form of

video; a powerful computer is needed to process this image information, preferably in

real-time; another computer may present to perform more complex image processing

in a non-real-time manner; and a storage device with large capacity may be used for

data storage and enquiry. Rather than building a machine consisting of all these

components, Grid can help to glue these distributed components together, some of

which may already exist. Being able to reuse existing components not only means

cost reduction, but also means more scalable system with more desirable functions.

For example, imagine the scenario that developers have implemented a good feature

in an image processing program based on a hardware platform that best suits this

program. Without using Grid, when it is time to build a new system with new image

capturing facility, for example, there is usually the need to migrate to a new image

processing program that may not suit the application, or to rewrite the existing

program on a new platform that may not suit the program. Grid can help integrate this

system into a new system without the need to rewrite the program or to migrate to a

new hardware platform, and best save the development effort while preserving the

functionality.

 National University of Singapore 37

In our research on parallel biomedical image processing, we look at the option of

integrating speckle image processing program with image acquiring facilities using

Computational Gird techniques.

3.1.3 Network of Workstations

A Network of Workstations (NOW) is a computer network which connects

several computer workstations together, and by using specific software it allows to

use the network as a cluster. Different from nodes of a computer cluster, workstations

of NOW is often loosely-coupled, and although they are continuously connected to

the network, every workstation is not dedicated to the NOW tasks and some of them

will accept tasks from normal interactive user sessions. One of the many goals of

NOW is to utilize idle CPU cycles [17]. When a node is overloaded with tasks from

interactive user session and is no longer idle, task distribution system of NOW will be

removed from this node and be migrated to another node or simply be suspended.

Since the progress of subtask is unpredictable, the NOW system is more suitable for

problems that can be divided into independent subproblems. Master-worker

programming model is an example of suitable models.

The first NOW system was developed at UC Berkeley [18]. As of April 1997, it

was listed in the 200 fastest machines in the world, thanks to its 10 GFLOPS

performance in LINPACK benchmark. In our university, workstations connected via

campus network provide desirable environment to build NOW system. This is

because a large portion of CPU cycles are wasted with no user task at all or with tasks

requiring little CPU power; besides, all workstations are constantly connected to

 National University of Singapore 38

high-bandwidth network; furthermore, there are also a lot of research applications

suitable to run on NOW system.

Image processing is one of such applications. Non-real-time image processing

that employs complex algorithms and thus requires large computing power can take

advantage of this computing platform, if the algorithm allows subtasks with little

interaction. Such prerequisite holds true for most image processing algorithms, which

divide a large image into subimages and process them independently.

In our parallel image processing project, master-worker programming model is

used, which implies that NOW system can be used to run the program. In the

implementation, the design of portable communication layer allows the program to be

ported to use many hardware and software platforms. We suggest future research to

implement a BSD socket-based communication layer, which allows the program to

run on NOW systems. If other higher-level NOW communication systems are used,

such as Active Message [19], it would also be possible and easy to port onto it.

Details about the design of portable communication layer will be given in Chapter 5

and relevant suggestion for future research is given in Section 6.5.

3.1.4 Vector processing in commodity CPU and GPU

Major commodity microprocessor vendors have included SIMD instruction

extensions in their CPU offerings. For example, Intel has added SIMD instructions

since its Pentium MMX offering, and has enhanced this design through Streaming

SIMD Extensions (SSE), SSE2, and SSE3, appearing respectively in Pentium III,

Pentium 4, and Pentium 4 Prescott revision; the PowerPC vendors has also integrated

 National University of Singapore 39

its floating point and integer SIMD instruction set, known as AltiVec, in both G4 and

G5 CPU families. Utilizing this vector processing capability properly will largely

increase the performance of some applications such as image processing.

Graphic Processing Unit (GPU), a common component available in almost every

computer, is another source of vector computing power which recently starts to gain a

lot of attention. There is a trend of using the GPU rather than CPU to perform

computation. This technique is known as General-Purpose computation on Graphics

Processing Units (GPGPU) [20] [21]. With graphics and image processing

applications being the main consumer of this technique, many non-graphics areas,

including cryptography, signal processing, are also benefiting from instinctive

powerful vector processing capability of modern GPU.

SIMD extension and GPGPU may largely improve the performance of image

processing programs, since many algorithms in this area are SIMD computation and

vector processing by nature. Due to time constraint and availability of hardware and

software, this technique is not covered in our research. However, it is receiving much

research attention recently and may be studied in future research.

3.2 Software Environments for Parallel Programming

As stated in the previous chapter, parallel programming is a complex task. In

order to reduce this complexity, different programming models are abstracted, with

each providing tools such as special-purpose compilers, libraries and frameworks to

simplify programming task. These tools hide many details about parallel execution,

such as message transfer and routing, task allocation and migration, and platform

 National University of Singapore 40

differences. Higher-level programming model will even have commonly-used

algorithms pre-implemented in the bounded libraries. As an example, Fluent, a high-

level programming system to develop CFD programs with parallel processing

capabilities, have built in many CFD-specific functions such as dynamic meshing and

acoustics modeling, which makes more like a program than a programming system.

Our research is based on message passing programming model and specifically on

Message Passing Interface (MPI) standards and MPICH library.

3.2.1 Message Passing Interface and MPICH

Message Passing Interface, or MPI, is the most widely-used message passing

standard. The basic functions are defined by the MPI standard [12], and with many

implementations targeting almost all distributed memory architectures, it is the de

facto industrial standard for message passing programming.

Basically, MPI provides two types of communication operations. Point-to-point

operations allow any two processes to exchange information via MPI_Send (for

sending), MPI_Recv (for receiving) and their variants. Collective operations are

provided so that a set of processes, known as a communicator, can share and dispatch

data through broadcast and reduction operations.

When an MPI program runs, the user will explicitly specify the number of

parallel processes and how the processes are mapped to physical processors. On

startup, each processor starts one or more processes to execute the same program

body. Each parallel process will be assigned a rank, which serves as the identity of the

process, and which will also cause processes to carry out different computation

 National University of Singapore 41

despite their common program body. During the execution, processes carry their own

computation, without synchronization with other processes unless they encounter an

explicit synchronization command. Processes communicate with each other using

point-to-point or collective communication primitives, using process rank to address

the recipient or sender if it is required. The whole parallel program exits when all the

parallel processes have finished. Although there is no requirement on how the

computation result is generated, in many cases a head process, usually the one with

rank 0, will collect the results from participating processes and assemble the final

outcome.

Apart from MPI, another well-know standard for inter-process message passing

is called Parallel Virtual Machine, or PVM [4]. One major difference between these 2

standards is that PVM provides semantics for dynamic process creation: a parallel

process is capable to spawn a new process on some node. This feature resembles the

PRAM model, in which a processor can activate another idle processor to join parallel

processing. Because of this, PVM provides more flexibility and scalability, and is

more suitable for heterogeneous environment than MPI. Unfortunately, due to lack of

development effort and support, PVM suffers from performance problem and lack of

important features. As MPI becomes the de facto standard and MPI-2 has adopted

numbers of excellent features in PVM, PVM itself is fading out from the parallel

programming area.

The two major implementations of MPI standards are MPICH [22] developed by

Argonne National Laboratory and LAM by Ohio Supercomputing Center and Indiana

University. Our research is heavily based on MPICH and its successor MPICH2.

Besides a complete and efficient implementation of MPI-1 standard and partial MPI-2

 National University of Singapore 42

standard, MPICH also targets at a portable design. Area of parallel computing

features a large number of different architectures, interconnection scheme and

technology, and communication protocols. This makes portability and efficiency often

conflicting tasks. MPICH separates a vast set of machine independent functions from

a machine specific abstract device interface (ADI), which is about lower-level

communications. This design simplifies the job of porting MPICH to different

architectures and platforms without much sacrifice of performance. When MPICH is

to be ported to a new platform, at the beginning stage, only a small number of

fundamental subroutines in ADI need to be implemented, and all other subroutines

will be based on these fundamental ones and need not be rewritten. After this step, a

functional MPICH is built on this platform. When more development power is

available, non-fundamental subroutines in ADI can be selectively reimplemented to

take advantage of platform features, and thus performance can be gradually improved.

Thanks to this portable design, MPICH has been adopted by almost all major vendors,

including IBM, HP, SGI, and SUN, all of which has built their own so-called native

MPICH implementation which leverages their hardware features. For example, MPI

implementation on IBM Blue Gene/L is based on MPICH and utilizes the platform-

specific design of dedicated collective network in its ADI implementation to support

efficient broadcast and reduction operations [23].

MPICH2 is an all-new implementation of MPI by the MPICH team. In addition

to features of its predecessor, including the portability advantage, MPICH2 includes

partial implementation of MPI-2 functions, including one-side communication,

dynamic process creation, and expand MPI-IO functionality. One important

improvement for our research is that MPICH2 has better support for multithreading.

This makes it safe to run another thread for computation while the main thread is busy

 National University of Singapore 43

with inter-process communication, which is just the idea of communication-

computation-overlap covered in Chapter 4.

3.2.2 Vector Processing Software

Intel provides a set of tools to allow programmer to take advantage of its SSE

instruction extension. These tools are provided in forms of new assemblers to

understand these extended assembly instructions, dedicated C intrinsic functions, and

compiler capable of doing automatic vectorization. Although these tools and

techniques are not used in our research due to our focus on programming framework

and the relatively simple algorithms we choose for image processing, they may be

important for other applications using more complex algorithms.

As for GPGPU, because computing capabilities of different GPU chips differ

significantly, programs using GPGPU can hardly be portable. Our research will not

use this technology. More information about this technology can be found on the

GPGPU website [24] and Fernando’s GPU Gems [25].

 National University of Singapore 44

Chapter 4 Parallel Fiber Suspensions Simulation

Fiber suspensions simulation is a typical computational biomechanics/biofluid

application. There is complex computation involved in updating dynamic status of a

large number of particles through numerous time steps. Therefore, intensive

computing power is desired to both expedite the computation and to enable finer

results. Parallel computing is commonly used to solve this style of applications, and

there is a relatively common routine to convert the serial programs into parallel

versions for these applications. However, experiences have shown that these parallel

programs do not scale very well to large number of processors, and the overall

performance gain from using multiple processors is not satisfactory. In this chapter,

we will see how significant this performance problem is in the program we study,

when computer cluster is used as the hardware platform. Theoretical analysis and

simulation will show that synchronous inter-process communication operations

among processes with asynchronous progress are the main obstacle of achieving

higher performance. A technique to efficiently utilize the computing power of

computer cluster for this style of applications will be proposed based on this study.

Practical experiment results will be presented and analyzed.

 National University of Singapore 45

4.1 An Introduction to the Fiber Suspensions Simulation

Problem

Fiber suspensions problem is a common problem in searching for fiber reinforced

composites that can be found in many applications requiring the high strength,

stiffness, toughness, and light weight. Because of the wide ranges of applications,

viscoelastic fiber suspensions have been intensively studied in the last decade.

When most methods decouple the problem and solve them individually, the

Dissipative Particle Dynamics (DPD) technique [26], using a mesoscopic model of

hydrodynamics, tackles this problem at micro-structural point of view. The

commonly-used numerical method for DPD is velocity-Verlet algorithm [27]. Using a

time step approach, it recursively updates the particle status from that of previous

step.

A lot of numeric simulation problems, especially those in computational fluid

dynamics, share these features with velocity-Verlet algorithm: 1) a set of evolution

equations are used to describe the trend of status change (such as acceleration of each

particle) in terms of the current status parameters (such as the current position and

velocity of each particle); 2) the status of the current time step and these evolution

equations are used to compute the status of the next time step; and 3) by recursively

repeat of the status update, a time-domain evolution of the status of objects of interest

is archived. This style of simulation often implies very intensive computation because

1) evolution equations often correspond to complex floating-point calculations with

high-precision requirement; 2) calculation of status of the next time step from that of

 National University of Singapore 46

the current time step usually involves many instances of computation based on

evolution equations, because of complex inter object intervention; and 3) to generate

meaningful time-domain evolution, a large number of time steps need to be computed.

By studying the fiber suspension simulation problem, we expect to find out a general

method that can also improve the performance of parallel programs for other similar

applications.

Algorithms for the above problems often use decomposition to get parallelized.

For example, the fiber suspension simulation uses spatial decomposition: the spatial

domain of a problem is divided into several subdomains, each of which does its own

time-domain evolution using the serial algorithm. Because the subdomains are hardly

independent, they need to exchange status information at the end of each time step,

usually only with their neighboring subdomains. For linear partition, each subdomain

has one left neighbor and one right neighbor. Synchronization of all subdomains at

the end of each time step might also be required, for example, for the purpose of

collecting global statistics. Communication latency is generated when 1) there is time

spent on data transfer in communication or synchronization, and 2) some processes

involved in communication or synchronization spend time on waiting for some other

processes because the later ones are not ready for the communication or

synchronization. It is observed that although using more processors will reduce the

computation time, it will not reduce the communication time. Since the

communication time does not reduce with the increase of the number of processors,

communication latency can be seen as part of the serial factor in Amdahl’s Law,

which is introduced in Section 2.5.3, and will limit the performance gain from parallel

computing. In the next section, we will look into the relationship between

 National University of Singapore 47

communication latency and the number of processes used, and why it is impossible to

solve this problem by utilizing more advanced networking technology.

4.2 Implementing the Parallel Velocity‐Verlet Algorithm

using Conventional Method

In this section, velocity-Verlet algorithm and its parallelization will be covered in

details. As mentioned above, the velocity-Verlet algorithm uses a time-step approach:

the algorithm updates the particle status data of the current step, including the

position, velocity and acceleration, from those of the previous time step; and by using

a tiny time step value and a large number of steps, evolution of particle status over

some time internal can be achieved. Stepwise status update is based on calculation of

interactive forces among the particles, which are further computed from particle

positions of the previous step.

Similar to N-body problem, to calculate the forces exerted on one particle, the

algorithm needs to compute interactive forces among this particle and the others in

the domain. To reduce the complexity, only particles within a pre-defined cut radius

from the target particle are considered. In this way, if the number of particles per unit

volume, or particle density, is constant, the number of operations required by each

particle is constant and finite. This also facilitates parallelization of the problem with

spatial-domain decomposition. Here is how the spatial decomposition works. The

spatial domain of interest is divided into several subdomains, each of which is

assigned to a parallel process. In each iteration corresponding to a time step, each

 National University of Singapore 48

process will update particle status of its own subdomain independently using the

original velocity-Verlet algorithm. At the end of each iteration (which is also the

beginning of the next iteration), processes will have to exchange particle status data,

because 1) over the time there are particles moving from one subdomain to another

one, and 2) particles within one subdomain may have interactive forces with those in

another subdomain and thus particle status data have be shared to finish interactive

force computation. Fortunately, the use of this cut radius will largely reduce the

interprocess communication, and hopefully only the processes handling spatially

neighboring subdomains need to exchange information. Only status of particles

positioning a radius from the subdomain boundaries need to be shared between

processes.

Figure 4-1 illustrates the division of a channel into a fluid channel of interest into

subdomains. In light of these observations, the structure of main program is shown in

Figure 4-2, and its skeleton procedures are explained below:

 National University of Singapore 49

Figure 4-1 Division of a fluid channel into several subdomains

Figure 4-2 Pseudo code of program skeleton of fiber suspensions simulation

 velocity_Verlet: This procedure is to update the status of particles within

each subdomain. It computes the status data for the (n+1)th time step based

on those data of the nth time step.

 National University of Singapore 50

 move_particles_to_neighbors: This procedure keeps track of the

movement of particles from one subdomain to another subdomain, and

updates the respective destination computing process with the status data of

the transferred particles.

 copy_boundary_particles_to_neighbors: This procedure copies status

data of particles at a radius away from subdomain boundaries to the

process(es) that(those) requires them to finish force computation for the next

time step. In our implementation, cut radius is always smaller than

subdomain width, only processes associated with neighboring subdomains

have to exchange particle information, and copy of particle status will cross

just one boundary.

 collect_GMV: Every subdomain has its own maximum particle velocity.

This procedure will collect all the local maximum velocity values and selects

the global maximum velocity among the local velocity values.

 broadcast_GMV: This procedure broadcasts the global maximum velocity to

all the participating computing processes. This GMV is then used to

determine whether it is necessary to perform the procedure of

move_particles_to_neighbors.

The velocity_Verlet procedure is the most time-consuming computation. On

the other hand, the communication phase consists of

move_particles_to_neighbors, copy_boundary_particles_to_neighbors,

collect_GMV, and broadcast_GMV. The first 2 procedures are point-to-point

 National University of Singapore 51

communication while the remaining 2 procedures are collective communication. This

algorithm has been successfully implemented using MPICH with FORTRAN binding.

4.3 Performance Study of Conventional Implementation

In this subsection, we study the performance of the conventional implementation

of the fiber suspension simulation problem on a computer cluster.

A fiber suspensions simulation program has been built based on the parallel

velocity-Verlet algorithm introduced in the previous subsection. The program is

successfully deployed and tested on Hydra II computer cluster system introduced in

Chapter 3. A standard simulation involves 4 thousand fibers in a channel of size

64x30x30 with nearly 50,000 particles. Simulation is run for 36,000 time steps. As

shown in Figure 4-1, each subdomain is assigned to a parallel process, and each

process, unless otherwise stated, is assigned to one processor. Processors

communicate via interprocessor communication library built on top of Ethernet links

to exchange particle status data.

We profile the program using a self-made tool, which precisely records the time

spent in crucial parts of the program. These crucial parts include large computation

block, and all inter-process communication procedure calls. Our profiling tool is

based on counters built in CPU to record the time spent on both communication calls

and computation class of interest. This provides the best precision as well as wall

clock timing support. We do no use existing profiling tools either because they are

incapable of wall cock time profiling (like GNU gprof on x86 platforms) or because

they need super-user privilege to install (like PAPI).

 National University of Singapore 52

Our observations have shown that 1) there is a significant performance

improvement with increased number of processors, and 2) when the number of

processors passes some value, there is less and less performance improvement

obtained through further introduction of more processors. The latter is consistent with

Amdahl’s Law, if the communication time is considered as a constant and therefore

contributes to the serial fraction of the code. This relationship can be represented as:

N
pss

N
psNt

commcomp ++=

+=)(
 (4-1)

where is serial computation time and is communication time. When the

communication time is larger, according to Amdahl’s Law, the maximum speedup

that can be achieved will be smaller. In other words, the limit of maximum

performance gets smaller. It can be seen that the communication time plays a

significant role in affecting the performance, and it should be kept as small as

possible.

comps comms

Our observations have also shown that when the number of processors further

passes some value, the performance starts to degrade. More detailed profiling data

shows that communication time will not keep constant but will increase with more

processors being used. Table 4-1 shows how the time spent on a typical computation

procedure and a typical communication procedure changes when the number of

processes varies. From this table we see that although computation gets less

 National University of Singapore 53

expensive when more processors are used, communication gets more and more time

consuming. When the increase in communication time surpasses the decrease in

computation time, performance starts to degrade. Since the amount of data being

transferred during inter-process communication roughly remains the same, this

increase in communication time is brought in by larger communication latency. In the

next subsection, theoretical analysis on relationship between communication latency

and the number of processes used will be presented. More detailed performance

profiling data can be found in subsequent Section 4.5.3, where performance data of

conventional implementation and new implementation are compared.

Table 4-1 Performance profiling on communication and computation calls

 2-process 4-
process

8-
process

16-
process

Time spent on a typical
communication procedure (in unit) 4372 5126 10836 41270

Time spent on a typical computation
procedure (in unit) 86998 37913 19992 10348

In summary, the fiber suspension simulation problem, as a typical biomechanics

problem, can be parallelized using the classic spatial decomposition. However,

according to the performance profiling, the parallel program performs unsatisfactory

on computer cluster. Analysis shows that with more processors being used, although

the computation time of procedures gets smaller, the increased communication

latency significantly reduces the performance gain and eventually results in the

performance degradation. In the following subsections, we will run a theoretic

analysis on communication latency and propose a solution to this problem.

 National University of Singapore 54

4.4 Communication Latency and the Number of

Processes

In this section we will study the relationship between communication latency and

the number of processors involved in the computation. In the following text, the term

process denotes a computing process of a number of parallel processes belonging to

the same task. Consider a message passing program running on a homogeneous

computer cluster with star-style interconnection scheme; each computing process

performs relatively the same amount of computation task and can directly

communication with any other processes. The fiber suspensions simulation problem is

solved with velocity-Verlet algorithm and a large number of time steps. A time step

corresponds to an iteration of loop in implementation program. In each time step or,

in other words, in each loop iteration, the program at each process will do some

computation to update its own data; it will then exchange part of these data with other

processes before the next step can continue. We notice that with high-performance

low-latency networking technology, the latency is now mainly brought by

asynchronism between interdependent processes. That is, when one process finishes

its computation and is ready for data exchange, the other interdependent processes

may still be in computation phase, and therefore the early finished process has to wait.

Based on different interdependent relationships, discussion can be divided into two

scenarios.

 National University of Singapore 55

4.4.1 Scenario 1: Barrier Operation in Each Iteration

If a global synchronization operation, such as MPI_Barrier1 in MPI, is used to

synchronize all participating processes, all processes are interdependent with each

other. In this scenario, a delay of progress at any one process will cause all the

remaining processes to wait. Therefore, the execution time for this iteration will be

determined by the process with the slowest progress. Let the execution time on

process n for an iteration excluding the time spent on barrier operation be . For all

processes, execution time for an iteration with the time spent on barrier operation

included is , where n=1, 2, …, N. Consider the expectation of the ,

. Let

nt

)max(nN tT = nT

)E(nT)P(⋅ be the probability of an event. When we introduce one more process

and assume computation work on each process remains the same, given that for

each process is independent,

nt

),E(

))(maxP())(max|)(maxE(

))(maxP())(max|)(maxE(

))(maxP())(max|E(

))(maxP())(max|)(maxE(

))(maxE()E(

1..11..1..1

1..11..1..1

1..11..11

1..11..1..1

1..11

N

NNNnNnNnnNn

NNNnNnNnNNn

NNNnNnNnN

NNNnNnNnNNn

nNnN

T

ttttt

ttttt

ttttt

ttttt

tT

=

<⋅<+

≥⋅≥≥

<⋅<+

≥⋅≥=

=

+=+==

+=+==

+=+=+

+=+==

+=+

 (4-2)

1 MPI_Barrier is an MPI routine which blocks all processes until all have reaches such a routine

call

 National University of Singapore 56

where the equality holds if and only if 0))(maxP(1..1
=< += NnNn

tt , which is not true. This

means that when there is a barrier operation in each iteration and the computation

complexity in one iteration remains constant, the expectation of execution time for

one iteration will be increased if the number of processes is increased. Since the

computation does not get complex at any process, this increase in execution time can

be attributed to larger communication latency. In other words, when there is a barrier

operation in each iteration, the expectation of communication latency will be

increased. This conclusion about communication latency will no longer rely on the

assumption on constant computation on all processes, because communication latency

is independent with computation scale as long as the parallel processes are

homogeneous.

This conclusion can also be applied to scenario where barrier operation is not

present, but with the presence of an MPI_Reduce 2 operation followed by an

MPI_Bcast3 operation. The reduce operation causes the root process to wait until all

other processes have reached the same reduce operation, and the broadcast operation

causes all the non-root process to wait until the root process has reached the same

2 MPI_Reduce is an MPI routine which reduces (or collects) values on all processes to a single

value

3 MPI_Bcast is an MPI routine which broadcasts a message from a leading process (known as

root) to all processes in a process group (known as communicator)

 National University of Singapore 57

broadcast operation. After the reduce operation, root process has the slowest progress.

So root process will be the last to reach broadcast operation, making all the non-root

process to wait for the root and then to continue from the broadcast operation

simultaneously. The overall effect is that progresses of all processes are now

synchronized. The two operations combined produce the same effect as a barrier

operation does, and thus the same conclusion can be applied.

4.4.2 Scenario 2: Process Communicating with only Neighboring

Processes in Each Iteration

Another common scenario is that at the end of each iteration, each process

communicates only with one or more fixed processes. The processes that one process

communicates with are called the neighboring processes. When spatial decomposition

is used for parallelism, which is the case of velocity-Verlet algorithm used for fiber

suspensions simulation, processes working on neighboring spatial subdomains will

usually need to communicate with each other and are neighboring processes.

Consider N processes in a line, with nth process communicates with the (n+1) th

and (n-1) th process where applicable. When a process reaches the communication

phase, it is synchronized with the 2 neighbors (1 if it is a boundary process). For

analysis, we define 3 time variables. For process n and iteration i, computation time

for this iteration is the time from the start of this iteration to the start of

communication phase within this iteration, and is denoted as ; starting from the

start of the first iteration, the elapsed time until the start of communication phase

within this iteration is denoted as , and elapsed time until the completion of

)(i
nt

)(i
nτ

 National University of Singapore 58

communication phase (which is also the completion point of this iteration) is denoted

as . The following relationship applies:

)(i
nT

),,max(1
)()(

1
)(

)()1()(

i
n

i
n

i
n

i
n

i
n

i
n

i
n

T

tT

+−

−

=

+=

τττ

τ
 (4-3)

Figure 4-3 illustrates this relationship. The direct graph in Figure 4-4 can be used

to help calculate , or the completion time of iteration i at process n. This graph

grows downwards from top to bottom, with its edges representing the dependency

relationship. According to the above equations, each τ graph vertex depends on a T

graph vertex by adding a t value; each T depends on 2 or 3 τ vertices by selecting the

maximum value of these τ vertices. For example, depends on , , and

, and further depends on . From these recursive dependency relations,

it is easy to see that finally all can be represented by the sum of t as:

)(i
nT

)2(
2T)2(

1τ
)2(

2τ

)2(
3τ

)2(
3τ

)1(
3T

)(i
nT

∑
=

i

j

j
j

t
1

)(
α , where j = 1, 2, …, i, and Nj ≤≤ α1 . (4-4)

 National University of Singapore 59

Figure 4-3 Relationship between time variables defined for execution time
analysis

Figure 4-4 Directed Graph illustrating calculation of execution time

 National University of Singapore 60

This representation corresponds to a path in the graph. So the execution time of

the whole program,

)(max)(

..1

N
iIi

TT
=

∧

= , (4-5)

corresponds to a path P in the graph, and P is the optimal path to maximize
∧

T .

Now let us remove a process at the boundary and assume the computation on

other processes remains the same. If P has a vertex corresponding to the removed

process, this removal will change P, and reduce the overall execution time, because

the new P is non-optimal path in the original graph. If P does not have a vertex

corresponding to the removed process, then the execution time will not change

because P is still the optimal path. To summarize, removing a process will not change

the execution time or will reduce it; the expectation of the overall execution time will

be reduced by this removal, given that the possibility of the event that “P has a vertex

corresponding to the removed process” is not zero. Vice verse, introducing a new

process will increase the expectation of the overall execution time. Because the

computation at each process does not change, this increase in execution time can be

attributed to the increase in communication latency. In short, introducing more

processes into parallel computation will increase the expectation of communication

latency. Note that this conclusion does not require the assumption that the

computation remains constant on each process any more, because communication

latency is independent of computation scale as long as the parallel processes are

homogeneous.

 National University of Singapore 61

In the above deduction, the process at boundary is chosen to be removed. This

choice is because we do not want to introduce new edges which will complicate the

problem. However, as we assume all processes are homogeneous, and for

different i and n are of the same distribution, the expectation of overall execution time

will only be related to the number of processes we use, and the conclusion drawn

above does not lose any generality despite the choice on process to be removed.

)(i
nt

A simple MATLAB script is used to simulate this process. is assumed to

come from a normal distribution with a mean of 4 and a standard deviation of 1, and

does not change with the number of processes used. This means that the computation

scale at each process remains constant. Execution times of 10,000 steps are collected

with number of processes ranging from 2 to 8192. The simulation result, in Figure

4-5, shows that the overall execution time grows with the number of processes. This

is consistent with theoretical conclusion above.

)(i
nt

 National University of Singapore 62

Figure 4-5 Simulation result: execution time versus number of processes

From Figure 4-5, we also observe that with exponential increase in the number of

processes, the increase in execution time gets less and less significant. This is because

in the directed graph in Figure 4-4, with more processes, there will be smaller

possibility for the event that removing a boundary process will affect path P and thus

reduce the execution time. In other words, with more processes, adding another

process will generate less increase in the expectation of overall execution time. Rough

deduction shows that if increasing the number of processes from N to N×2

generates an increase in the expectation of execution time of t, then increasing the

number of processes from N×2 to N×4 will generate an increase in the

expectation of execution time of the amount
2
t .

 National University of Singapore 63

To summarize these two scenarios, when the computing processes are

homogeneous, which means the all computing processes have the same computing

capability and are assigned with computation task of relatively the same scale, the

expectation of communication latency will increase when more processes are used, if

processes use barrier operation to synchronize in each iteration, or if processes

communicate with some neighboring processes in each iteration.

4.4.3 Utility of Communication Overlap

Analysis above has shown that, when the overall problem scale is fixed, using

more processors and processes will increase the communication latency while

reducing the computation time at each process. Therefore, the communication latency

will quickly become the bottleneck of further performance improvement. When the

increase in communication latency is larger than decrease in computation time,

adding more processes will result in negative performance gain.

In the analysis in previous subsections, time spent on real data transfer is ignored,

and the communication latency considers only the wait time generated by

asynchronous progress among interdependent processes. Consequently, this

communication latency cannot be reduced by employing more advanced networking

technology. However, communication overlap technique can be used to reduce or

even fully hide the impact of this communication latency.

Here is the basic idea of hiding communication latency using communication

overlap. For time evolution style algorithms mentioned above in Section 4.1, 4.4.1

and 4.4.2, in iteration n of the main loop, there is computation that is not dependent

 National University of Singapore 64

on interprocess communication happening at the end of iteration n-1; there is also

computation which the communication happening in iteration n does not depend on.

Computation belonging to these 2 types is later referred to as communication-

independent computation. Similarly, the computation that (probably indirectly)

depends on communication happening at the end of previous iteration and the

computation that is relied on by the communication happening in the same iteration

are referred to as communication-dependent computation. If the communication-

independent computation can be rescheduled to be carried out when the

communication in iteration n-1 or n is in progress, computation progress and

communication progress are overlapped. With this overlap of communication and

computation, these 2 program blocks are now executed in parallel rather than in

serial, and thus execution time can be shortened.

We now provide analysis on the utility of this technique. We will prove that this

technique will reduce the impact of communication latency in long-term running of

parallel program even though the main source of this latency, the progress

asynchronism among participating processes, is not changed. Similar to the above

analysis, communication latency brought by real data transfer is ignored. Consider the

two cases shown in Figure 4-6. In this figure, a parallel computation with two

participating processes, process 1 and process 2, is considered. Each rectangle

represents an iteration of a loop, with unshaded subarea representing communication-

dependent computation, and shaded subarea representing communication-independent

computation, which can overlap with communication in the previous iteration. During

the interprocess communication, when one process reaches communication phase

before the other one, without communication overlap it may initiates an idle wait for

the other one to start the communication, which is the solid subarea in the figure. A

 National University of Singapore 65

running of 4 iterations is considered. In the first and the third iteration, the 2

participating processes have synchronous progress. In the second iteration, process 1

is delayed; and in the iteration 4, process 2 has a slower progress.

Figure 4-6 (A) non-overlap versus (B) overlap: comparison of latency

In case (A), in the second iteration, process 1 performs slower than process 2.

Therefore, no matter how fast process 2 is, it will has to wait for process 1 to finish

before it can do the communication and continue with the next iteration. It appears to

process 2 as large communication latency. The overall effect is that execution time of

process 2 for this iteration is lengthened. Later, in iteration 4, although process 1

finishes in a shorter time than process 2 does, similar communication latency will

now be applied to process 1 and process 1 cannot reclaim it previous delay in iteration

 National University of Singapore 66

2. In summary, when no communication overlap is used, at any iteration, delay at

progress of one process will be reflected in all interdependent faster processes as

larger communication latency, and future faster progress at this very process cannot

reclaim this negative effect. Delays will get accumulated over iterations and will

increase overall execution time.

In case (B), the delay of process 1 in iteration 2 does not affect the progress of

process 2 because process 2 can continue with its communication-independent

computation of iteration 3 without finishing the communication of iteration 2. Later,

in iteration 4, process 1 has a faster per-iteration progress and its overall progress

catches up with normal progress. The overall effect is that its delay in iteration 2 is

reclaimed by its faster progress (like a negative delay) in iteration 4.

Comparing these 2 cases, the communication overlap technique prevents the

delay of progress of one process to affect other processes that interact with this

process; it allows the very process to effectively reclaim this delay in the future. In

our homogeneous system, the execution times of each iteration at different processes

vary around an average value. If the communication overlap technique is not used, a

delay, or a positive offset from this average value, will be immediately propagated to

neighboring processes and will hopefully affect the overall execution time, while a

faster progress, or a negative offset from this average value is hidden by propagation

from other neighboring processes. The overall effect is that communication latency

gets accumulated over iterations and increases total execution time. To the contrary, if

communication overlap is used, a delay will hopefully be reclaimed later by the same

process and will not affect the overall progress or the execution time. To summarize,

communication overlap technique is effective in reducing the impact of

 National University of Singapore 67

communication latency brought by asynchronous progress of interdependent

processes.

4.5 Implementing the Parallel Fiber Suspensions

Simulation with Communication Overlap

4.5.1 Theoretical Aspects of Communication Overlap

We will now see quantitatively how much communication latency can be hidden.

It is possible to overlap communication with computation is because that if we ignore

the little CPU involvement in communication phase, communication and computation

basically use different types of resources and thus can happen simultaneously instead

of successively. (Using normal blocking communication procedures will let

communication and computation be executed consecutively.) As mentioned above, in

a typical iteration n of the main loop, there are two types of communication-

independent computation. Let the time spent of this computation be and time

spent on interprocess communication be . With communication overlap to let

these two blocks be executed in parallel, the execution time to finish them will be

 as opposed to

compt

commt

),max(compcomm tt compcomm tt + when they are executed in sequence. It

can be seen that communication latency can be partially hidden (when)

or fully hidden (when

compcomm tt >

compcomm tt <), and the overall execution time will always be

reduced.

 National University of Singapore 68

The challenge of communication overlap technique is how to best reschedule the

algorithm to allow the overlap while at the same time preserving the validity of the

algorithm. This can be restated as the following scheduling problem: 1) scheduling as

much computation as possible to be executed when the communication is being

processed; and 2) changing the order of execution during rescheduling should not

break the data and control dependences among program blocks. The latter constraint

set by dependences usually limits the former. In fact, the existence of communication-

dependent computation can also be attributed to this constraint, because this

computation and communication has control and/or data dependences. Two methods

are used to obtain more opportunity for communication overlap: (A) break large

computation blocks which are communication-dependent into small ones, some of

which are communication-independent; and (B) conditionally break the data and

control dependences to generate more communication-dependent computation while

using variable rename and memory copy to preserve the accuracy.

The main loop is the level-1 program block. If we reschedule only inside this

level-1 block, most of the operations, which are treated as atomic elements during

scheduling, are communication-dependent and cannot be useful for communication

overlap. However, if we expand these operations in level-1 block to their

implementation, (in the programming language C, function calls are expanded to

function implementations,) then with finer-grain scheduling elements there are much

more opportunities for communication overlap.

Speculative execution is another technique used to generate more opportunities

for communication overlap. Speculative execution is the execution of code whose

result may not actually be needed, and is used to circumvent constraints set by control

 National University of Singapore 69

dependence, for example, to reduce the cost of conditional branch instructions. In

such a case, before the condition is computed, which branch is to be executed is

unknown. Consequently, code inside the branches cannot be scheduled to be executed

prior to the condition gets known. Using speculative execution, one or more of the

branches are computed before the condition is available, with variable renames so that

speculative execution will not really change variables. Later when the condition gets

available, hopefully all or part of speculation execution result can be validated.

Speculative execution is useful in our rescheduling problem because there are

conditional branches. One important use is that the procedure

move_particles_to_neighbors is conditional, while the condition is

need_to_move computed from the global maximum velocity which requires

interprocess communication to compute. With speculative execution, some

computation of procedure move_particle_to_neighbors can be executed when

the interprocess communication is being processed.

Besides this control dependence, there are 3 types of data dependences, namely

flow data dependence, anti data dependence, and output data dependence. Both anti

and output data dependences can be circumvented via variable rename and memory

copy, while flow data dependence cannot be bypassed. An instruction is flow

dependent on instruction (or there exists flow data dependence from to)

when writes to a variable X which is later read by . is anti dependent on

instruction (or there exists anti data dependence from to) when

reads from a variable X which is later written to by . is output dependent on

 (or there exists output data dependence from to) when writes to a

2S

1S 1S 2S

1S 2S 2S

1S 1S 2S 1S

2S 2S

1S 1S 2S 1S

 National University of Singapore 70

variable X which is later written to by . Both dependences can be circumvented by

letting to write another variable X'; an instruction to copy X' to X is inserted at

the present location of . After this scheduling of will not be limited by this

dependence. This technique is used to reschedule some particle status update

computation to make it execute prior to the particle status is used to compute the

forces.

2S

2S

2S 2S

There is also the controversy of maximizing the communication-independent

computation blocks and preserving the clearness of algorithm. To best maximize the

communication-independent computation blocks, the rescheduling should happen at

the instruction or language primitive level. However, that would totally reshuffle the

program and leads to complete lose of clarity. Furthermore, the data dependence

analysis will be very complex. In fact, fine-grain will not necessarily generate

efficient algorithm, given that the rescheduling can only rely on approximation

algorithms. Our idea is that a non-optimal time saving in a big program block often

generates better result than a large time saving within many tiny program blocks does.

The method is that, we do a performance profiling to identify what the time-

consuming function calls are in the main loop. Based on the method (A) mentioned

above, the communication-dependent time-consuming function calls will be replaced

with its implementation and the generated “fat” main loop can have much more

communication-independent computation blocks. This is a 1-level expansion. If there

is still largely time-consuming function calls after expansion, a further expansion may

be done. We will not go any further to do another level of function call expansion,

which will largely worsen the clarity of algorithm.

 National University of Singapore 71

4.5.2 Rescheduling

Our profiling program has helped us to identify critical function calls, which are

listed in the algorithm skeleton in Figure 4-2. Some important ones are

move_particles_to_neighbors, copy_particles_to_neighbors, and

velocity_Verlet. They are extended into their implementations, and the “fat” loop

body is listed in Figure 4-7.

Figure 4-7: Extended pseudo-code showing the structure of main loop

There are 2 communication blocks in one loop iteration in our simulation

program. The first one, later referred to as communication block 1, is to do particle

move and copy (procedure exchange_moved_particles and procedure

exchange_copied_particles), and another one, later referred to as

communication block 2 (procedure collect_GMV), is to collect the global maximum

velocity data. Both computation and communication access and share the same data,

which are the particle status information.

 National University of Singapore 72

There exists control dependence from communication block 2 in iteration n-1 to

move_particles_to_neighbors in iteration n, because the global maximum

velocity (GMV) collected in procedure collect_GMV determines whether

move_particles_to_neighbors needs to be executed for the current iteration.

Some computation within move_particles_to_neighbors can be circumvented

from this dependence using speculative execution and is scheduled to be executed

simultaneously with communication block 2. In the final schedule in Figure 4-8,

prepare_to_move is speculatively executed and overlaps with communication block

2.

Anti data dependence exists from collect_GMV of iteration n-1 to

particle_status_update_1 of iteration n. This is because collect_GMV needs to

read the particle information, while particle_status_update_1 will write to

particle information. However, by letting particle_status_update_1 to output to

a backup memory location rather than normal memory storing particle status, it can be

overlapped with collect_GMV. Results in the backup memory can be copied back to

normal memory location at the original code position of collect_GMV.

Flow data dependence cannot be circumvented, but it largely limits scheduling in

our program. The most time-consuming computation, force_computation, is flow

data dependent on communication block 1. However, by looking into the

force_computation procedure, a large portion of the computation is not data

dependent on communication. The force_computation procedure computes forces

between all pairs of particles having distance within the cut radius. The particles

involved in this computation within one subdomain can be divided into 3 categories,

namely moved particles, which are moved from neighboring subdomain in the

 National University of Singapore 73

previous move_particles_to_neighbors procedure, copied particles, whose

status is copied to the current subdomain by copy_particles_to_neighbors, and

normal particles, consisting of particles within this subdomain except for those moved

particles. Based on this categorization, the interactive forces among particles can be

divided into these 6 categories:

1. moved particles versus moved particles,

2. moved particles versus copied particles,

3. moved particles versus normal particles,

4. copied particles versus copied particles,

5. copied particles versus normal particles, and

6. normal particles versus normal particles.

Of these 6 categories, the last one involves only local particles and does not

require move_particles_to_neighbors to finish, and thus is not flow dependent

on communication block 1. Based on this, force_computation is divided into 2

parts. boundary_force_computation computes forces belonging to category 1 to

5, and non_boundary_force_computation computes forces belonging to category

6. The latter one, which accounts for most of the computation time, can overlap with

communication block 1 and can help reduce the impact of communication latency.

The final rescheduling result is shown in Figure 4-8.

non_boundary_force_computation overlaps with communication block 1, and

speculative particle_status_update_1, prepare_to_move, and

 National University of Singapore 74

prepare_to_copy overlap with communication block 2. For speculative execution, a

complementary procedure is added to validate the result, and for prepare_to_move

which uses variable rename to avoid anti data dependence, a complementary

procedure is also added to copy the renamed results to original variables.

Figure 4-8 Rescheduling result

4.5.3 Implementation of Communication Overlap

Communication overlap is implemented by using asynchronous (or non-

blocking) communication primitive in many programming libraries. Unfortunately,

our experiments showed that non-blocking operations in MPICH with p4 device (or

MPICH-P4) cannot be used for this purpose. We observed that for message size

smaller than 128kB, they perform just like standard send and receive procedures and

do not return immediately, and for message size greater than 128kB, although they

 National University of Singapore 75

return immediately, they do not perform the real data transfer until MPI_Wait4 is

called, which will block the program anyway. (Note that in the later case, the

conclusions in Section 2 still apply. It is like to move the communications down to

position of MPI_Wait.) In other words, the real data transfer always blocks the

execution thread and communication and computation cannot happen simultaneously.

This is probably because in MPICH-P4 non-blocking MPI operations are

implemented with synchronous socket communication, which means it is impossible

to make communication and computation happen simultaneously because they are in

a single execution thread.

We overlap communication with computation by letting them execute in a

separate OS thread. An extra thread is used to regulate computation when the

communication is blocking the main thread. At the beginning, the extra thread is

blocked in purpose. When the main thread is about to do communication and block,

the extra thread will be activated. Upon activated, the extra thread read a status set by

main thread, and pick the right computation procedures to start. When the main thread

is wakened upon the finish of communication, it checks for extra thread and waits for

its completion before it moves on. With careful synchronization between main thread

and extra thread, the communication and computation can be scheduled in an

overlapped manner. For secure multi-threading, we also move to MPICH2, all-new

implementation of MPI by MPICH developers, which has better thread-safe support.

Our new implementation based on the schedule above and on the multi-threaded

4 MPI_Wait is an MPI routine which blocks the process and waits for specified MPI send or

receive to complete.

 National University of Singapore 76

MPICH2 has improved the performance on computer cluster. The next subsection

will list the experiment results.

4.6 Results

Using the experiment configured as listed in Section 4.3, tests are run on 1, 2, 4,

8 and 16 processors, with one process per processor. Wall clock time and CPU time

have both been recorded. For comparison purpose, the test is firstly conducted when

the system has zero load, and is then conducted when the system has a load of 1. The

UNIX program top is used to obtain the load information.

4.6.1 CPU Time

CPU Time is a good measurement of computation complexity. When different

numbers of processes are used, the overall computation complexity varies and this

will result in different CPU times. Table 4-2 shows the overall CPU times for

different numbers of processes with and without the communication overlap

technique applied. The overall CPU time is computed by adding up the CPU times of

the involved processors.

Table 4-2 CPU times with and without the communication overlap applied

Number of processes 1 2 3 4 5

Without overlap 53362s 50711s 49382s 50054s 54570s

With overlap 67914s 60409s 57221s 58129s 62519s

 National University of Singapore 77

From Table 4-2, we see that in both experiments with and without overlap

applied, the overall CPU times first decrease and then subsequently increase. This is

the combined effect of 1) the decrease in complexity of non-optimal algorithms for

subproblems as the domain is divided into subdomains - an example of these

subproblems is to search for all particle pairs within a radius from a specific particle

in velocity-Verlet algorithm; and 2) the increase in the number of duplicated

computations of forces associated with particles positioning within a radius away

from the boundary of two neighboring subdomains. As the number of processes

increases beyond 4, the combined effect is the increase in overall CPU time because

the second factor dominates the first.

Table 4-2 also shows that even though the communication overlap technique

helps reduce the communication latency, the scheduling adds overhead and results in

larger CPU time. An example of overhead is the duplicated needed to separate one

program block (or procedure) into two blocks during rescheduling. In the subsequent

sections, we will evaluate the performance of applying the communication overlap

technique to zero-load system and non-zero load system.

4.6.2 Performance Evaluation using Zero-load System

 We first test the program on a zero-load system. This means that our test

programs run exclusively on the system with no other programs to compete for the

resources, which is the case when the all parallel jobs are submitted to and controlled

by a central batch job scheduler. Similar to the CPU time test, only one process is

assigned to each processor. We note that due to the non-optimum of the parallel

velocity-Verlet algorithm, the computation complexity may decrease with the

 National University of Singapore 78

increase in the number of processors. Therefore, conventional definition of speedup

and efficiency cannot be used. We define observed speedup) and observed

efficiency as:

(NSo

)(NEo

%,100)()(

,
processor with Ntimeexecution
processor 1 with timeexecution)(

×=

=

N
NSNE

NS

o
o

o

 (4-6)

and the plots of observed speedup and observed efficiency are shown in Figure 4-9.

From this figure, we see that 1) on zero-load system, using communication overlap

appears to degrade the observed speedup and observed efficiency and 2) as the

number of processes increases, the performance difference between experiment with

communication overlap technique applied and that without this technique gets

smaller. The overhead introduced by this technique, such as the thread

synchronization operations, accounts for the performance degradation. Furthermore,

because the system is of zero load, there is little asynchronism among the

participating parallel processes and thus small communication latency, leaving small

room for this technique to improve performance. However, as the number of

processes increases further, as discussed in the previous section, the communication

latency is not insignificant any more and the communication overlap technique starts

to take effect. This is why the observed efficiency of program having this technique

applied decreases slower. When 16 processes are used, program with this technique

and the program without this technique demonstrate comparable performances.

 National University of Singapore 79

Figure 4-9 Observed speedup and observed efficiency on zero-load system

A separate test with 32 processes on 16 processors is performed 5 , and

performance of the program with the communication overlap technique applied

surpasses that of the program without this technique. This behavior demonstrates that

the communication overlap technique actually reduces the impact of communication

latency as the number of processes gets larger.

In a parallel implementation of an application, the efficiency generally reduces

due to the ineffective mapping and increase in communication among processes. In

our experiment, the observed efficiency can be larger than 100% because the overall

5 Because of limitation of usable processors in Hydra II, we could not run 32 processes on 32

processors, but rather 32 processes on 16 processors.

 National University of Singapore 80

problem size (measured by CPU time) does not remain constant with different

numbers of processes. If we compensate the observed efficiency with change of

problem size, the new efficiency values will be below 100%. The original efficiency

and that after compensation are listed in Table 4-3. Compensation is calculated using

the following equation (with being the observed efficiency after

compensation):

)(NE p

program overlap-non process-1 of timeCPU
program overlap-non process-N of timeCPU)()(×= NENE op (4-7)

Table 4-3 Performance evaluation results: zero-load system

Number of processes 2 4 8 16
32

(on 16 processes)

Observed speedup when
communication overlap is not

used
2.04 4.02 7.51 10.27 8.37

Observed speedup when
communication overlap is

used
1.69 3.55 6.89 10.10 8.74

Observed efficiency when
communication overlap is not

used
102% 100% 94% 64% N/A

Observed efficiency when
communication overlap is

used
84% 89% 86% 63% N/A

Observed efficiency when
communication overlap is not

used, after CPU Time
compensation

97% 93% 88% 65% N/A

 National University of Singapore 81

Observed efficiency when
communication overlap is

used, after CPU Time
compensation

80% 82% 81% 64% N/A

In summary, on zero-load system with no other users and with a single process

being assigned to each processor, the effect of applying the communication overlap

technique is minimal if not undesirable. This is primarily because of the insignificant

amount of communication latency. It is also observed that this technique started to

show some performance improvement as the number of processes gets larger such as

16 and beyond.

Such zero-load system is idealistic in system with interactive job submission

rather than with a global batch job scheduler, because many user processes share the

same computer cluster and their processes will actively look for resources. The

communication latency will be significant because of the much larger asynchronism

among participating parallel processes of a single job. In such a case, communication

overlap technique starts to play an important role. In the next section, performance

evaluation using non-zero load system is performed to model this scenario with

processes competing for resources.

4.6.3 Performance Evaluation using Non-zero Load System

Most of the time the simulation program cannot exclusively use a computer

cluster (except for system requiring job submission via a batch job scheduler, which

often means to wait for some time before the job can start). We now run the test on a

system whose nodes all have a load of 1, which means there is already another

 National University of Singapore 82

program taking 100% of the CPU time and keeping the CPU 100% busy. We call this

process an interfering process. As each node of the computer cluster has to deal with

multiple computation-intensive operating system (OS) processes, the asynchronous

switches of OS processes will contribute to large asynchronism among parallel

computing processes. If the interfering process itself is not perfectly stable, it will

further contribute to the asynchronism among parallel computing processes. Large

degree of asychronism will bring large communication latency and therefore harm the

overall performance of the parallel program.

Figure 4-10 shows the observed speedup and observed efficiency of our parallel

simulation program under non-zero load situation. From this figure we see that only

in the 2-process case the experiment with communication overlap technique applied

shows worse performance than that without this technique. This is because the

overhead of communication overlap surpasses its benefits. For larger number of

processes, the communication latency becomes a main obstacle to high performance.

When more processes and processors are introduced, there is severe degradation of

efficiency, which limits further increase of performance by adding more processors.

Table 4-4 summarizes the results. When the number of processes increases from 8 to

16, observed speedup is improved by 65% (or from 7.16 to 11.85), compared to 93%

(or from 1.98 to 3.84) when the process number is increased from 2 to 4. The

communication overlap technique effectively tackles this problem and prevents the

severe decrease in efficiency as the number of processes increases. For example,

increasing the number of processes from 8 to 16 brings an improvement of 86% (from

7.79 to 14.50). In fact, if we take into account the effect of change in problem

complexity and uses speedup and efficiency compensation, the efficiency after

compensation almost remains constant with communication overlap technique

 National University of Singapore 83

applied. This is also shown in Table 4-4 in the last 2 rows. Consequently, for large

number of processes when there is large communication latency, use of

communication overlap technique will result in large performance improvement

because the technique will effectively reduce the impact of communication latency.

For example, our test showed that for 16-process case, program with the

communication overlap technique applied is 22.3% faster than that without this

technique in terms of observed speedup.

Figure 4-10 Observed speedup and observed efficiency on non-zero load system

Table 4-4 Performance evaluation results: non-zero load system (original load is
1)

Number of processes 2 4 8 16

Observed speedup when communication overlap is not
used 1.98 3.84 7.16 11.85

Observed speedup when communication overlap is used 1.82 3.96 7.79 14.50

 National University of Singapore 84

Observed efficiency when communication overlap is not
used 99% 96% 89% 74%

Observed efficiency when communication overlap is used 91% 99% 97% 91%

Observed efficiency when communication overlap is not
used, after CPU time compensation 94% 89% 84% 75%

Observed efficiency when communication overlap is
used, after CPU time compensation 86% 92% 91% 92%

In summary, the effectiveness of the communication overlap technique has

become significant when the communication latency is not trivial and especially when

the parallel machine has several active computation tasks. This is the case when the

number of processors involved in the computation is large and/or the computer cluster

is not dedicated to a single computation task. Communication overlap technique and

our implementation on MPICH2 have successfully reduced the impact of large

communication latency, and significantly improved the measurable performance. As

demonstrated in the case of 16 processes, introduction of this technique can increase

the efficiency as high as 22.3%.

4.7 Conclusion

A large number of computational bioengineering applications employ

decomposition to realize parallel computation. Fiber suspension simulation problem,

which utilizes spatial decomposition, is a typical example of these applications. A

vast majority of these applications suffer from degraded efficiency and even speedup

with the increase in the number of processors used, while actually they need more

processors to achieve faster computation. In this chapter, we use both experiment and

 National University of Singapore 85

theoretical analysis to understand a major source of performance bottleneck:

asynchronism among participating parallel computing processes. This asynchronism

is an important source of communication latency, and the contributed latency grows

along with the number of processors. It therefore imposes an increasingly negative

impact on performance. Finally when the increase in communication latency brought

in by using more processors, together with other overhead, surpasses the benefit, the

limit of performance gain from parallel computing is reached.

We propose to use communication overlap technique to reduce the impact of

communication latency on performance, which is theoretically proved to be effective,

even for communication latency brought in by asynchronism among parallel

processes. Multi-threading is used to implement this technique, and block-level

rescheduling is performed to generate enough opportunities to allow communication

to overlap with computation. Experiments have shown significant improvement under

practical conditions on computer clusters. For example, in the experiment with 16

non-dedicated processors, our implementation increases the efficiency as high as

22.3%.

As mentioned above, the fiber suspension simulation problem belongs to a family

of similar computational bioengineering applications, and a vast majority of

applications in this family suffers from the same performance problem, especially

when the program is run on computer clusters. Our work helps to understand a major

source of performance bottleneck. We suggest incorporating communication overlap

technique into parallel programs for these applications, probably via the same

implementation as ours, to reduce the impact of communication latency and to

improve the overall parallel execution performance.

 National University of Singapore 86

Chapter 5 Parallel Image Processing for Laser

Speckle Images

Laser speckle, a random interference effect that gives a grainy appearance to

objects illuminated by laser light, is widely used as a flow monitoring. It is used in

clinical applications as a non-contact, two-dimensional, full-field measurement of

retinal microcirculation. Laser Speckle Contrast Analysis (LASCA) is an important

technique in this application, which uses CCD camera for image capturing and

software digital image processing. When this is used for real-time clinical

applications, it imposes severe requirements on computing capacity. We propose to

use parallel computers for this task.

5.1 Introduction to Laser Speckle Imaging Technique

5.1.1 Laser Speckle Images

Laser speckle is a random interference effect that gives a grainy appearance to

objects illuminated by laser light. When a rough surface is illustrated by laser light,

light scattered from different parts of the surface within a resolution cell of the

detector (an eye or camera, for example) traverses different paths to reach the image

 National University of Singapore 87

plane. At any given point, the interference of light will result in random intensity. The

overall effect is high-contrast grainy in appearance, with light and dark “speckles”

caused by constructive and destructive interference, respectively, of scattered laser

light. In brief, laser speckle is an interference pattern produced by light reflected or

scattered from different parts of the illuminated surface. It is a random phenomenon

and can only be described in statistical method.

In 1970s, Goodman [28] developed a theory of speckle images using statistical

methods. In his theory, ideal conditions for producing a speckle pattern have been

assumed, which mean single-frequency laser light and a perfectly diffusing surface

with a Gaussian distribution of surface height fluctuations. Goodman showed that

under these conditions, the standard deviation of the intensity variations in the speckle

image pattern is equal to the mean of intensity. In practice when idea conditions are

not met, speckle patterns often have a standard deviation that is less than the mean

intensity, and thus a reduction in contrast is observed. Speckle contrast, quantifying

this reduction of contrast, is defined as the ratio of the standard deviation to the mean

intensity:

1≤
><

=
I

K σ (5-1)

This concept of speckle contrast is lately widely used as the most important spatial

statistics of speckle images.

 National University of Singapore 88

5.1.2 Time-varying Laser Speckle Image

When the illuminated object moves slowly as a whole solid object, the speckles

move with the object and remain correlated. When the object performs large motion

or when the object itself consists of individual moving scatterers (such as blood cells),

the speckles decorrelate and the speckle pattern fluctuates. This type of time-varying

speckle is frequently observed when biological samples are observed under laser light,

because of the flow of fluid inside biological components or even the motion of

particles within the cells. These fluctuations encode information about the velocity

distribution of the scatterers, such as the particles within the cells of biological

systems.

Several methods have been proposed to extract velocity information about the

particles from these fluctuations. These methods are whether based on time-integrated

speckle technique or time-differentiated speckle technique, both of which are

explained below.

The time-integrated speckle technique [29] treats acquired speckle image as

temporal integration of speckle fluctuations and uses spatial statistics to translate

acquired image pattern into velocity map. It is based on the fact that, in practice, it is

impossible to achieve instantaneous measurement of the speckle intensity due to the

finite integration time of the detector. Therefore, the obtained speckle image is always

integration of speckle fluctuations in the time domain. By measuring the depth of

modulation and/or integration time, estimation of particle velocity can be obtained.

Single-exposure speckle photography [30], as well as the derived Laser Speckle

Contrast Analysis (LASCA) [31] described in the Section 5.1.4, is based on time-

 National University of Singapore 89

integrated technique and relates the spatial statistics (essentially the contrast) of the

time-integrated speckle pattern to the scatterer velocity.

A different approach is the time-differentiated speckle, which captures successive

speckle intensity images through continuous scanning and performs temporal

statistical analysis. Takai et al [32] used frequency analysis, while Fercher [33] used

speckle contrast and largely simplified the analysis. Ruth [34] [35] also used

differentiation of the speckle intensity and showed that the velocity is proportional to

the mean frequency of the fluctuations, and that this in turn is proportional to the root

mean square of the time-differentiated intensity.

5.1.3 Laser Speckle Imaging Systems

Using the techniques above, various Laser Speckle Imaging (LSI) systems have

been widely built and deployed in many engineering and especially medical

applications. One of the most important potential applications, first recognized by

Stern [36], aroused when the fluctuations were caused by the flow of blood; this

discovery was later developed into various non-contact and noninvasive blood flow

measurement techniques.

Early researchers used the temporal statistics of time-varying laser speckle. This

method can only measure the blood velocity at a point. When a map of blood velocity

distribution is required, either a mechanical scanning or the successive analysis of the

intensity fluctuations at different pixels in a CCD array is needed. The consequence is

large delay and non real-time operation.

 National University of Singapore 90

Single-exposure speckle photography is a technique that removes the need for

scanning and offers a true full-field velocity map. It is essentially a photography

technique and uses an exposure time that is long enough to allow the faster fluctuating

speckles to blur out. The resulting photo is a time-integrated speckle pattern. It then

utilizes mathematical models to relate spatial statistics of this time-integrated speckle

pattern to the velocity of scatterers. This technique was successfully developed for

measurement of a retina blood flow [37].

The disadvantage of single-exposure speckle photography technique is that,

although it removes the need for scanning, it suffers from the disadvantage of being a

two-stage process that precludes real-time operation. This is because chemical

processing is required to develop the film before it can be used for spatial filtering.

5.1.4 Laser Speckle Contrast Analysis

Laser Speckle Contrast Analysis (LASCA) is a digital version of single-exposure

speckle photography. By replacing conventional camera with a CCD camera and a

frame grabber, the need for photographic stage is eliminated and facilitates digital

processing of the resulting photographs. Since the exposure is as short as 20

milliseconds, if the digital processing time is short enough, this technique can support

effectively real-time operation.

As shown in Figure 5-1, a LASCA LSI system basically consists of a laser light

source, a high-resolution CCD camera, a frame grabber, and a computer equipped

with specially developed software that computes the local speckle contrast and

converts it to a false-color map of contrast (and hence of velocity). The frame grabber

 National University of Singapore 91

may also be a specialized software component built for the camera. It is important to

select a laser with suitable wavelength. For example, in a blood flow measurement

setting, laser wavelength should be selected based on the tissue under observation, as

it is necessary to achieve some tissue surface penetration with the laser light for blood

flow mapping.

Figure 5-1 Basic setup of LSI with LASCA

The sample, or area of interest, is illuminated with laser light while the computer

acquires a series of images at high speed with the frame grabber and CCD camera.

Each acquired image will display a slightly different speckle pattern, caused by the

change of position of moving scatterers in the area of interest. Every single frame

generated by the frame grabber is a time-integrated speckle pattern. Speckle patterns

are then sent to PC for statistical analysis. By assembling a series of frames, a real-

time video of velocity map can be achieved.

The principal of LASCA is similar to other time-integrated speckle techniques.

LASCA translates reduction of contrast to scatterers velocity. It is clear that the

higher are the scatterers velocities, the faster are the fluctuations of speckles and the

 National University of Singapore 92

more blurring occurs in a given integrated time. It has been shown [30] that given

certain conditions, spatial statistics of time-integrated speckle patterns can be linked

to temporal statistics of the fluctuations in the following way:

∫=
T

ts dC
T

T
0

2)(1)(ττσ , (5-2)

where is spatial variance of the time-integrated speckle pattern, T is the

integration time, and

)(2 Tsσ

)(τtC is the autocovariance of the temporal functions at time t,

defined as

tt ItIItIC })({},)({)(−+−= ττ
. (5-3)

It is now established that spatial statistics used in LASCA is equivalent to techniques

using temporal statistics so far as linking the measurements to actual velocities is

concerned. All techniques determine the correlation time cτ to estimate velocities,

and further assumptions are made to link speckle contrast to cτ . With assumption of

Lozentzian velocity distribution, it is shown that:

)1(
2

2

c

T
c e
T

K ττ −

−=
.

(5-4)

 National University of Singapore 93

This is further linked to mean velocity by

c
cv

πτ
λ

2
=

,
(5-5)

where λ is the wavelength of the laser light.

It must be noted that it would be unwise to take too much account of the

quantitative value of the LASCA technique. The system being monitored is extremely

complex and there are many indeterminate factors in play. Most assumptions made in

the analysis are also inconsistent with practice. What is important from a medical

point of view is the ability to monitor the changes and variations. From this

perspective, LASCA technique is useful for medical applications. Besides, further

simplification will not harm the performance much.

5.1.5 Modified LSI

LASCA method uses speckle contrast to indirectly measure flow velocity. In

practice, to compute speckle contrast, a 5x5 or 7x7 region of pixels is used. Lower

numbers reduce the validity of the statistics, whereas higher numbers limit the spatial

resolution of the technique. The software computes the speckle contrast K for any

given square, and assigns this value to the central pixel of the square. The process is

then repeated for 5x5 or 7x7 squares centered on each pixel in turn. This results in a

 National University of Singapore 94

smoothing of the contrast map, but the spatial resolution is lost in averaging over a

block of pixels. For example, when the image captured consists of 512×512 pixels

and a square of 7×7 is used to compute the spatial statistics for each pixel, the

resulting image will have resolution effectively reduced by use of this 7×7 squares to

73×73 (pixel blocks). Cheng et al. [38] realized this problem, and suggested a

modified LSI (mLSI) which uses temporally derived speckle contrast.

Temporal statistics of time-integrated speckle patterns was previously used to

obtain velocity information of a single point [29]. is defined as

tN

2
2

22

K
I

IINt =
><

><−><
= , (5-6)

where <I> and >< 2I are the mean and mean-square values of time-integrated

speckle intensity variations during the time interval t. We can see that is

inversely proportional to the velocity of the scattering particle.

tN

Cheng extended this method to obtain a 2-D distribution of blood flow. In this

method, m frames are used to estimate the mean and mean-square values of time-

integrated speckle intensity variations. For the (i’th, j’th) pixel, its N is defined as

mt

I

II
N

ttji

ttjittji
ji

..1

2

,,

2

,,
2

,,
,

=

−
= , (5-7)

 National University of Singapore 95

where is the instantaneous intensity of the i’th and j’th pixel at the t’th frame of

raw speckle images, and

tjiI ,,

tjiI ,, is the average intensity of the i’th and j’th pixel over

the consecutive m frames. The results are given as 2-D grey-scale or false-color coded

maps that describe the spatial variation of the velocity distribution in the area

examined. Both normalized velocity map and the speckle contrast map can be

computed thereafter.

5.2 Previous Work

Various implementations of digital image processing for LASCA and mLSI have

been built. When CCD cameras are used for imaging, the image processing procedure

becomes the only obstacle to achieve real-time operation.

Briers stated in his original paper about his LASCA implementation [30] that the

processing takes around 40 seconds, while the image capture takes only 20

microseconds. If the image processing time can be reduced to tens of microsecond’s

level, real-time operation is achieved. Although about 10 years has passed since

Briers’ initial work, the LASCA technique has not reached the real-time goal. In

Briers’ more recent paper [39], he described his improvements in the software that

reduce the processing time to one second.

Dunn et al. [40] have been using speckle contrast imaging to monitor cerebral

blood flow. They published their MATLAB scripts for computing speckle contrast on

the web. We have tested these short MATLAB scripts on a Pentium 4 2.4GHz

 National University of Singapore 96

workstation with 256 MB of SDRAM. MATLAB profiler has shown that to generate

a speckle contrast image of 640x480, the scripts need 39 seconds to do spatial

statistics on 10 raw source images.

Researchers in our research group also implemented software for image

processing of mLSI speckle images [41]. To save computation time, binning is used

to preprocess the image so that less computation is required. Even with a binning size

of 2 to reduce the effective image size from 640x480 to 320x240, generating one

speckle contrast map using mLSI method will take this MATLAB program around 20

seconds.

Although it is possible to rewrite the whole program using more performance-

aware language such as C to approach real-time operation, that would make

programming much more difficult, especially with image processing program heavily

based on MATLAB image processing toolbox. There is also a trend of move to

higher-level and more user-friendly programming environment, to focus more on

programmability and to let system software and underlying hardware improvement

worry about the performance. Based on this consideration, we propose to leverage

parallel processing facility to approach real-time processing of speckle images. It will

not only reduce the processing time, but also support larger image with higher

resolution, given enough computing resources.

Speckle image processing is by nature suitable for parallel processing. Whether

spatial or temporal statistics is used, there is little dependence between two pixels that

are far enough from each other, and especially for temporal statistics every pixel is

independent of others. Parallelization requires segmentation of the image into several

blocks. When spatial statistics is used, each block will overlap with its neighboring

 National University of Singapore 97

block; and when temporal statistics is used, blocks are disjoint. In both cases,

processing of different blocks is independent, and can be scheduled in parallel

without the need of interprocess communication. Based on the discussion in the

previous chapter, efficiency will not degrade with more processes (and processors)

and performance can be easily doubled by doubling the processes (and processors).

At the time of this writing, we have not found any implementation of parallel

processing system for laser speckle images. Although there is intensive research work

on parallel image processing and there are dedicated conferences on this topic, such

as Parallel and Distributed Methods for Image Processing, the research results

cannot be applied to laser speckle image processing. Most of the work focuses on

parallel algorithms for fine-grain parallel computing, usually based on a theoretical

model for algorithm research. A large portion of work relies on data parallelism, such

as [42] and [43]. Research on practical parallel image processing is usually based on

data parallelism with a special-purpose SIMD processor or VLSI circuit. A typical

example is Gealow et al’s work on pixel-parallel image processing [44], which is

based on large processor-per-pixel arrays. A very interesting and more relevant

research is the SKIPEER project [45]. In this research, parallel algorithms are

categorized into several general algorithmic skeletons. By describing the parallel

problems with a combination of supported skeletons and providing the sequential

functions, SKIPPER system is capable to generate efficient parallel program without

the programmer to deal with any detail of parallel execution.

When laser speckle image processing is considered, various algorithms used are

all relatively simple statistical analysis rather than complex conventional image

processing algorithms. The parallelization of these algorithms is relatively simple

 National University of Singapore 98

decomposition and does not require complex programming framework or supporting

runtime. Computer cluster or network of workstations built from commodity

components is chosen as the hardware platform, and data parallelism is not usable.

Although SKIPPER is versatile and can support many types of applications, it is too

complex for our application.

The programming framework we propose for parallel laser speckle image

processing uses a simple master-worker paradigm. Because only laser speckle image

processing applications are supported, many logics will be built inside this framework

and programmers do not need to handle any parallel execution detail, and

performance will also be optimized for this specific application family. Our main

goals are customization of processing logic as well as portability to take advantage of

many different types of parallel computing resources.

5.3 Parallelism of mLSI Algorithm

Temporal statistics-based mLSI algorithm can easily be parallelized with spatial

decomposition. For a pixel on source images, the K value computed with mLSI is

only relevant to intensity value of this very pixel on several consecutive frames.

Because of this, when computing K value is considered, every pixel is independent

with the other pixels in the same frame. The extreme decomposition is to assign one

pixel to a processor, and none of the processors need to communication with others in

order to compute its corresponding K value. For load balancing purpose, with known

number of processors, decomposition of every frame will ensure processors receive

relatively the same amount of work load.

 National University of Singapore 99

When general laser speckle image processing techniques using spatial statistics is

considered, the case is more complex. For every pixel in the image, its K value will

depend on several neighboring pixels. Because of this, when the image is segmented

into several blocks and has each block assigned to a processor, the processors have to

exchange pixel values at the segmentation boundaries. To avoid this interprocessor

communication, a simple approach is to send all necessary pixels when a block is sent

to a processor. In this way, the computation can be performed without the interaction

of the working processes. The same programming model as that for mLSI can then be

used.

5.4 Master‐worker Programming Paradigm

Master-worker paradigm is the main programming paradigm used in parallel

speckle image processing program. Master-worker approach is used for task that can

be partitioned into several independent subtasks, which can be carried out separately

and probably (but not necessarily) in parallel without any inter-subtask

communication.

 National University of Singapore 100

Figure 5-2 Master-worker paradigm

The master-worker paradigm is depicted in Figure 5-2. The master node, usually

denoted as node 0, is in charge of farming out work load to workers. Several workers

work on work loads assigned by the master node. When a worker finished its current

work load, it reports the result back to the master if necessary and triggers the master

to send additional work load to the worker. As long as the task can be partitioned into

sufficiently small segments, this approach will produce small amounts of idle time for

the worker nodes.

Parallel speckle image processing is suitable for master-worker programming

paradigm. The master node serves as the feeding point of input image(s), and stores

the full speckle image or an array of frames of speckle images. It will segment each

image into blocks, based on the number of available workers. In conventional master-

work paradigm, subtasks will be maintained by master node in work load poll and

wait for a worker to pull them out for further processing. However, for speckle image

processing application, because of real-time requirement, indeterminism involved in

waiting for processing worker node is unaffordable for any image block. Instead each

 National University of Singapore 101

block will be determinately assigned to a worker and this worker is expected to finish

this subtask in some specific time.

In order to support master-worker program, at least two types of services have to

be provided:

• Communication: Portions of computation and results must be passed between

master and workers;

• Resource management: System should manage the available computing nodes

and preferably their capabilities and loads, and support enquiry of status from

program.

Compared to communication, resource management of a master-worker

framework can be very complex. For example, it may support resource detection so

that master is capable of selecting the most appropriate subtask for the right worker

node; it may detect the interconnection scheme used by the computing nodes so that

the best routing method can be used to reduce communication latency. As a

demonstration work, our research focuses on testing the feasibility of real-time

processing with parallel computers, so resource management will be minimized. In

fact, a real-time application can hardly depend on an unstable and/or dynamic

platform such as that made available by Litzkow et al [17]. A stable environment with

static contributing machines, such as a computer cluster, may be a better choice.

When a computer cluster is used as the testing platform, the homogeneous

environment eliminates the necessity of many resource management functions,

because the load is automatically balanced and the worker nodes are static and

dedicated. Even if the framework is ported to a heterogeneous environment in the

 National University of Singapore 102

future, when resource management becomes important, resource management

function should also be encapsulated and hidden from application coders. The result

is that any expansion to framework will be transparent to application coder and there

is no need to modify the application-level code. So the discussion here will not lose

any generality.

5.5 Implementation

5.5.1 High-level Architecture

For real-time performance and easy integration into existing medical devices, our

new implementation of speckle image processing system will be based on computer

cluster systems and Grid technology. The use of computer cluster is to utilize the

power of parallel computing to provide central, fast and stable processing of speckle

imaging data as well as to take advantage of the homogeneous environment to reduce

the system complexity. Since the data capture device is geographically separated from

the computing facilities, Grid technology is proposed to be used to integrate all

devices together. This also enables central processing of speckle imaging related data

for multiple capture devices so that multiple observations of blood flow can be taken

at the same time. The top-level system architecture is shown in Figure 5-3. This figure

shows that a central processing system is built on a computer cluster, which is

integrated with multiple image capture components using the Grid.

 National University of Singapore 103

Figure 5-3 Illustration of top-level system architecture

At the beginning of a speckle image processing session, the workstation for

image capture will negotiate with the central image processing system through the

Grid. This negotiation will notify the central image processing system various

information about the image stream, such as compression method, frame size, and

frame rate. The central image processing system will then allocate enough resources

and prepare to work on the new image stream. Upon receiving further

acknowledgement from the image processing system, the image capture workstation

will start the image capture device and upload image stream to the image processing

system; it will also receive corresponding result image or video through the Grid.

When the last frame of image has been sent, the workstation will send an End-of-

Session command to the image processing system, which will perform post-session

work, such as freeing all allocated resource for this image stream and updating load

information.

 National University of Singapore 104

Because the image capture components access the image processing service

through the Grid service portal, and does not rely on any information about how the

service is built, the image processing service can run on different platforms without

any modification to the image capture components. For example, the image

processing service can run at a single machine, with Grid service portal also built on

this machine; it may later be ported to a computer cluster, with Grid service portal

built on the head node which have access to the Grid, and which will further distribute

image processing subtasks to slave nodes of the same cluster. Image capture

components are unaware of this change and require no change in order to work with

the new system.

5.5.2 Master-worker framework implementation details

The image processing service is deployed on a computer cluster, and is built with

the master-worker paradigm described in Section 5.4. Figure 5-4 illustrates the

structure of the program. A master node gets the input image stream from the Grid

service portal. Known as the dispatcher, it will segment every image into several

blocks and send each to a worker node. The worker nodes receive the assigned image

blocks and apply image processing algorithms. The resulting image will be uploaded

to the assembler node, which assembles the output image stream and outputs the

result through the Grid service portal. When mLSI technique is used and temporal

statistics is based on M frames of input images, output frame rate will be reduced to

1/M of the input frame rate, which is shown in the figure.

 National University of Singapore 105

Figure 5-4 Illustration of master-work structure of speckle image processing
system

The system is designed with high-level of customization and portability in mind.

It allows the interface and image processing logic to be customized, and support

portability to various hardware types and communication libraries by rewriting a

small number of underlying communication functions.

Interface controls how the image processing system acquires input images and

outputs results. The core of the processing system, consisting of dispatcher, workers

and assembler, reads input stream from standard input and outputs to standard output,

which means that the interface to outside world can easily be built by wrapping and

redirecting the standard input and output. For example, the interface as a Grid service

portal is a program that reads input stream through the Grid and writes to the standard

input of the core; it also reads from the standard output of the core and writes back to

the Grid service consumer.

 National University of Singapore 106

Considering the many methods, algorithms and parameters to determine in

speckle image processing, it is important to separate the processing logic from the

supporting code, which deals with initialization, communication, etc. There is also the

goal of making the processing logic code independent of the underlying

communication method, so that image processing service without any modification

can run on any underlying parallel machine which the framework has been ported to.

Based on these considerations, a framework called Abstract Communication Layer

(ACL) has been designed to separate the supporting code out and to serve as a simple

general master-worker application framework.

The architecture of ACL is illustrated in Figure 5-5. ACL has built in the main

program flow, which will deal with the execution details such as initializing the

underlying communication library, determining roles of computing nodes, reading

input image stream and outputting result images. The flow control code will call

image processing functions in custom logics for master node, worker nodes and

assembler node. The custom callback functions in these logics can utilize the master-

worker communication functions to handle information exchange between the master

and workers and between workers and the assembler.

 National University of Singapore 107

Figure 5-5 Architecture of Abastract Communication Layer

The flow of the program is shown in Figure 5-6. A session is started after the

image capture components have successively finished the negotiation with the image

processing system. Based on the provided image stream information as well as the

underlying communication configuration, parameters and the environment are

initialized. Each computing node will then determine its own role, which is one of

master, worker, and assembler. Upon knowing its role, each node will switch to

perform its specific role function, which is also illustrated in Figure 5-6.

 National University of Singapore 108

N

ational U
niversity of Singapore

109

Figure 5-6 Flowchart of the whole program, master node logic, worker node logic, and assembler node logic.

 National University of Singapore 110

From the flowchart, it is seen that the custom image processing logic is

implemented in the following callback functions:

• Master init: This function is called on the master node at the beginning

of a session. It can be used to make necessary preparation, such as

allocating memory space and calculating parameters. Similar to this

function, worker nodes have Worker init and assembler node has

Assembler init.

• Master work: This function contains the main processing logic of master

node, and will be called for every input image or video frame. Normally,

this function implements the segmentation of input image and will call

ACL communication functions to feed the segments to worker nodes.

• Header parse: This function at master node is used to analyze header

information, which is attached before every image. The purpose of the

header is to provide extra information to the processing logic. For

example, the header may contain information about whether this is the

last frame. Parse extra command at worker node and that at assembler

nodes are for similar purposes; it will extract extra commands from the

image segment (for workers) or from the result segment (for the

assembler).

• Worker work: This function contains the main processing logic of master

node and will be called repeatedly until end of session command is

detected. Normally this function will read image segment through ACL

 National University of Singapore 111

communication function and apply image processing algorithms to this

segment. When a result image is generated, it will upload the result to

assembler node using another ACL communication function.

• Assembler work: Similar to Worker work, this function will also be

called repeatedly. Normally it will read result image segments from all

worker nodes using ACL communication function. These segments will

be assembled and post-processed to generate the final resulting image,

which can be a K-map or a relative velocity false-color image.

Note that although the framework is written in C, the custom callback function

may not necessarily be written in C. Many programming languages provide

interfacing capability to C. For example, MATLAB contains a MATLAB Engine to

allow application to embed MATLAB as the computation engine; it also provides a

MEX file format to allow MATLAB code to call C functions. Using these two

techniques, bidirectional interfacing between framework in C and custom code in

MATLAB is accomplished. The framework will call custom code in MATLAB using

MATLAB Engine, and the custom code in MATLAB can call ACL communication

functions written in MEX file format.

From the above analysis it is clear that the communication between master node

and every worker node and that between every worker node and assembler node are

based on ACL communication functions. This design prevents the program from

being dependent on any specific underlying communication library and hardware. In

 National University of Singapore 112

order to port to a new platform, only ACL communication functions need to be

rewritten. These include the following functions:

• acl_init: This is a callback function and will be called upon program

start-up. It can be used to initialize underlying communication system.

• acl_get_rank: This function returns a unique rank for each participating

computing node. This rank (or ID) can be used to perform role

determination.

• acl_get_no_of_processors: This function returns the total number of

participating computing nodes. This is also used for role determination.

• acl_feed_workers and acl_feed_workers_complement: These two

functions together accomplish the communication between the master

node and worker nodes. The former is called by the master node with a

data structure storing portions of data for each worker node. The latter is

called by the worker nodes to receive its portion of data.

• acl_query_workers and acl_query_workers_complement: These two

functions combined accomplish the communication between the

assembler node and worker nodes. The former is called by the assembler

to collect data from every worker node. The later is called by the slave to

submit data to the assembler.

 National University of Singapore 113

• acl_stop_workers: This function provides a means for the master node

to terminate work at all worker nodes. Similarly, acl_stop_assembler

provides a means for a worker node to terminate work at assembler node.

• acl_finalize: A callback function that will be called upon the end of the

program. ACL can perform necessary resource reclamation work in this

function.

By leveraging the underlying communication library, such as MPICH or BSD

Socket, implementation of ACL is straightforward. We have finished two versions of

MPICH-based ACL implementations, one with data compression and another

without, within 350 lines of code. Some functions have their MPICH equivalents and

can be implemented by adding a function call wrap. For example, the MPICH

subroutine MPI_Comm_rank can be directly used for acl_get_rank, and

MPI_Comm_size, also in MPICH, can be used for acl_get_no_of_processors.

Other functions require more work but remain to be easy. For example,

acl_feed_workers is implemented by calling MPI_Send, the MPI subroutine to send

data from one process to another, for each worker node.

5.5.3 Special Considerations

1. acl_stop_workers and acl_stop_assembler

Most communication libraries do not provide primitives to terminate a remote

process. With MPICH, even if you terminate the node having rank 0, none of the

 National University of Singapore 114

other node will exit because of the terminating node. In fact, the call to

MPI_Finalize will not return until all participating nodes call that function, which

means all nodes have to actively terminate themselves. So using MPICH,

acl_stop_workers and acl_stop_assembler can only implemented at a higher

level. For example, a dedicated channel for commands can be used; or a header can be

added to the beginning of each image segment being transferred.

To avoid overhead of adding the barely-used command channel,

acl_stop_workers and acl_stop_assembler are implemented by sending specially

designed faked image data which in fact contain a text message. The receivers will

not confuse it with normal images because of its abnormal size.

However, this implementation may not be used to terminate the remote processes

prematurely or asynchronously. In other words, when the remote processes are busy

processing normal images, it is impossible to stop them immediately, because the

terminating command is encoded also in an image, and will not be read until all prior

images have been successfully processed. To implement asynchronous terminating

command, a possible solution is to use another supervising process on each node,

which will monitor the status of the computing process and stop it upon receiving the

command. This is not implemented in our ACL implementation.

2. Concerns on Real-time Processing

Computing capacity and latency is an important issue in real-time applications.

Computing capacity concerns whether the CPU is fast enough to keep pace with the

 National University of Singapore 115

input stream, and latency concerns whether the output comes too late after the

corresponding input frame.

Computing capacity is easier to be ensured. If the images come in at N fps, there

is 1/N second for processing at the master node, worker nodes and assembler node,

respectively. A typical value of N is 30. In this case, master node, worker nodes and

assembler node all have 33 milliseconds of processing time for one frame of image.

Normally that is enough time for speckle image processing, especially when the

image has been segmented and a sufficient number of processors have been used.

Communication overlap can be used to allow larger communication and

computation time. When the input image stream is at the frame rate of N fps, total

processing time of one image segment at the worker, including the time to receive the

image segment from the master and that to send the result image to the assembler,

should be kept below 1/N second. Otherwise, it exhibits as there is not enough

computing capacity to process image stream at that frame rate. When the

communication time is too large and leaves not enough time for image processing,

communication overlap technique introduced in the previous chapter can be used to

allow the communication and computation happen simultaneously, and thus roughly

1/N second can be spent on communication and computation, respectively.

Latency is relatively complex. From the Figure 5-4 it is seen that the image

processing system has a pipeline structure and increase in the pipeline depth will

imply larger latency. Fortunately, pipeline involved in this application has depth of

only 3. Suppose it takes for that data to travel from the image capture inputt

 National University of Singapore 116

components to the image processing interface. Denote the time to dispatch it and pass

it to worker is . On receiving the block for this frame, the worker will generate

output false-color image. Denote the time for worker to process is . Denote the

time to pass it to the Assembler and the time to assemble is . Finally, suppose

it takes for the output to reach the visualization device. The total latency can

now be represented as:

dispatcht

kerwort

assemblet

outputt

outputassemblewordispatchinput tttttt ++++= ker . (5-8)

Of all the components in the above equation, and are not controlled by

the image processing system. Of the remaining three components, , compared

to the other two, is easier to control simply by using more processors and thus smaller

image segments. But and are relatively more significant, because

there are communication involved and the image data being transmitted is relatively

large. Even if more processors (and thus processes) are used, data involved in the

dispatching and assembling remains the same. The result is that, although there is no

bottleneck in the pipeline that leads to insufficient processing capacity, the image

stays for too long time in the pipeline and therefore the result image is output long

after the corresponding source image is inputted.

inputt outputt

kerwort

dispatcht assemblet

The solution is to communicate with compressed image data rather than with raw

data. Because compression is a computation-intensive task, algorithm should be

 National University of Singapore 117

chosen carefully for this real-time application. LZO [46] compression library, a block

compression library that favors speed over compression ratio, is used for this task.

Specifically for mLSI which uses temporal statistics, the following solution may

be used. When M consecutive frames are used to compute one output image, for the

number 1 to number M-1 frame, they are processed normally as depicted in Figure

5-4. After the number M-1 frame is processed, all results are transmitted from workers

to the assembler. When the number M frame is available at the master, it is not

segmented and sent to workers; instead it is directly sent to assembler, which will

perform fast processing with some simplified algorithm. The final result image is

obtained by merging this result with those sent by workers and is soon available at the

output end. If the dispatcher and assembler reside on the same machine, there is extra

time saving by eliminating the need to do communication.

3. MPICH-specific Latency

When MPICH with p4 device is used to build the ACL, there is extra concern

about communication latency. Both master and assembler node perform point-to-

point communication with all workers. This is later referred to as 1-to-N

communication. Because MPICH communication is by default blocking, and for

master and assembler communicates with all workers one after another, a delay at any

worker may affect progress of other workers.

The master node will execute a send command for each worker when dispatching

the image segments. The series of send commands are issued one after another. For

 National University of Singapore 118

large data package, a send command will not return until the data have really been

transmitted to the receiving end. In other words, the sequence in which the send

commands are issued is the sequence in which the real data transmission is

performed. Consequently, a delay at one worker, which is at the receiving end, will

possibly cause other workers which are later in the transmission sequence to wait for

an extra time. So it is importantly to keep the package size small so that send

command will return immediately without waiting for the data to be really

transmitted; or to use non-blocking send command so that the real data transmission

sequence will be independent of the sequence in which the send commands are

issued.

Similarly, the assembler node will execute a receive command for each worker

when assembling the result image segments. These series of receive commands are

also issued one after another. Whatever the data package size is, a receive command

will not return until the data is really received. So to prevent a delay at one worker to

affect others, it is important to use non-blocking receive command. Using this method

in this series of point-to-point communication operations, a point-to-point data

transfer will happen immediately when the two ends are ready, and will be

independent of the sequence in which the receive commands are issued. Therefore, a

delay at one worker will not affect progresses of the remaining workers.

 National University of Singapore 119

5.6 Results and Evaluation

5.6.1 Study of MPICH Blocking and Non-blocking Operations

We first present our study on how the blocking and non-blocking operations of

MPICH are performed. The purpose of this experiment is to help determine the design

of 1-to-N communication at master node and assembler node.

1. Single Sender with Multiple Receivers

In this case, one sender node will send data to 2 receiver nodes, one after another,

with the first receiver delaying 1 second before receiving the data. Tests have been

done with different data package sizes and with the 1-second delay enabled and

disabled. Result is listed in Table 5-1.

Table 5-1 Time spent on blocking communication calls under different
conditions

Data package size Description Value

Sender: first send time 0.117 ms

Sender: second send time 0.065 ms

Receiver 1: receive time
(with 1 second of sleep time) 1004.4 ms

16k bytes

Receiver 2: receive time 2.6 ms

Sender: first send time 1015 ms 160k bytes

Sender: second send time 0.014 ms

 National University of Singapore 120

Receiver 1: receive time
(with 1 second of sleep time) 1017 ms

Receiver 2: receive time 1003 ms

From Table 5-1 it can be observed that: 1) when the package size is small, the

sender will not wait for the corresponding receiving acknowledge from the receiver,

therefore, although the first receiver delays for 1 second before receiving data, the

second receiver is not affected by this delay. This is because at this data package size,

MPICH will transmit the data to receiver even if it has not received a receiving

acknowledge from the receiver. 2) When the data package size is large, sender will

not return from sending subroutine before the receiver sends the receiving

acknowledgement. Consequently, when the first receiver delays for 1 second before

receiving data, the second receiver also has its progress delayed. This effect is

undesirable for the master node, when the delay at one worker will affect progresses

of many other workers.

Now replace the blocking send subroutines with its non-blocking counterparts

and redo the above experiments. After all non-blocking communication subroutines

have returned, an MPI_WaitAll is added to wait for real data transfer to finish. Times

spent on different communication subroutines are listed in Table 5-2.

Table 5-2 Time spent on non-blocking communication subroutines with different
data package sizes and receiver response delay time

Data package size Description Value

16k bytes Sender: first send time 0.134 ms

 National University of Singapore 121

Sender: second send time 0.066 ms

Sender: MPI_WaitAll 0

Receiver 1: receive time
(with 1 second of sleep time)

1003.0 ms

Receiver 2: receive time 2.8 ms

Sender: first send time 0.026 ms

Sender: second send time 0.007 ms

Sender: MPI_WaitAll 1016.0ms

Receiver 1: receive time
(with 1 second of sleep time)

1018 ms

160k bytes

Receiver 2: receive time 14.4 ms

From Table 5-2 it is seen that with both small and large data packages, the delay

at the first receiver will not affect the second receiver. Detailed analysis shows that 1)

at small data package size, the non-blocking send operation performs exactly the

same as its blocking counterpart; and 2) at large data package size, the non-blocking

send operation returns immediately after the data being transmitted have been copied

to the system buffer. This allows the second send command to be executed without

being postponed because of the delay in the first receive command.

This result suggests the use of non-blocking operations at the master node, if the

package size is large enough. MPICH source code uses 128k bytes as the minimum

size of large package.

 National University of Singapore 122

2. Multiple Senders with 1 Receiver

In this case, 2 senders need to send data to a single receiver node, which uses a

loop to receive from these senders one after another. The first sender will delay for 1

second before it sends the data. When blocking receive is used, whatever the package

size is, the receiver will not return from the call to receiving subroutine until real data

transfer has been accomplished. This implies that receiving from the second sender

will definitively be delayed.

We directly test the non-blocking receive without validating property of the

blocking receive mentioned above. Similar to non-blocking send, an MPI_WaitAll is

added to wait for real data transfer to finish. Test result is listed in Table 5-3.

Table 5-3 Time spent on non-blocking communication calls under different conditions

Data package size Description Value

Receiver: first receive time 0.017 ms

Receiver: second receive
time 0.002 ms

Sender 1: send time
(with 1 second of sleep time) 1002.3 ms

16k bytes

Sender 2: send time 0.137 ms

Receiver: first receive time 0.018 ms

Receiver: second receive
time 0.001 ms

Sender 1: send time
(with 1 second of sleep time) 1015 ms

160k bytes

Sender 2: send time 12.3 ms

 National University of Singapore 123

From Table 5-3, it is seen that with both small and large data package, non-

blocking receiving subroutine prevents the second sender to be affected by the delay

in the first sender. It is very important to use non-blocking receiving subroutine in

assembler, in order to prevent progress delay at one worker to affect other workers.

5.6.2 Experiment Settings and Results

Practical speckle image processing test has been performed. Testing speckle

image processing algorithm is based on Cheng’s mLSI [38]. All pixels in the images

are processed and 10 consecutive frames are used to generate 1 K map. Images

acquired by our colleagues [41] are used to test the program. These images are 696

pixels in width and 520 pixels in height. Every pixel is encoded in 4 bytes, one byte

for each of Red, Green and Blue components, and another byte for alpha channel.

These color images need to be converted into grey level images, which have intensity

encoded in 1 byte. However, to simulate images with higher resolution, these 4 bytes

are treated as independent intensity values and the effective pixel number is increased

by a factor of 3. In this way, the effective image size is 1392x1040 or 1,447,680

pixels.

Computer cluster mentioned in the previous chapter is used as the testing

platform. All image processing job is done at the worker nodes, without using

assembler node to compute the last frame of a group of 10 consecutive frames.

Communication and computation take place in sequence without communication

 National University of Singapore 124

overlap technique applied. Based on this setting, time spent on processing every

frame of image is recorded and listed in Table 5-4.

Table 5-4 Time spent on processing 1 image frame when no compression is used

Setting
Master node: Typical time

spent on processing 1 frame of
image

Worker node: Typical time
spent on processing 1 frame of

image

8 processors, no
compression used 114 ms 114 ms

16 processors, no
compression used 124 ms 124 ms

From Table 5-4 it is seen that when no compression used, both 8-processor and

16-processor setting cannot handle image processing at real-time at the input frame

rate of 33 fps. Detailed analysis shows that the bottleneck is at the master node: the

worker nodes spend less than 1 millisecond in computation task, because of the

relatively simple mLSI algorithm and the small size of image segment, more than 100

millisecond waiting for the master node to feed it with next frame of data, and another

around 10 millisecond in real data transfer from the master node. The master node

spends all time in transferring image segments to worker nodes, one after another and

one frame after another frame. To accomplish real-time processing, time spent on

transferring one frame of image segment must be reduced. Image data compression is

used for this purpose.

We now compare two candidate compression libraries, zlib [47] and LZO library

[46]. By assuming 10 worker nodes, image segment for each worker node will have

 National University of Singapore 125

144768 pixels. 144768 bytes of data are used to test different compression methods.

The compression result and time using different compression library are listed in

Table 5-5. Note that the master node needs to repeat this compression procedure for

10 times for a single frame of input image.

Table 5-5 Comparison of different compression methods

Size before compression Compression
method

Size after
compression Compression time

zlib 10.2 Kbytes 21 ms

LZO 33.3 Kbytes 2 ms 144768 bytes

LZO 2-level
compression 25.2 Kbytes 5 ms

From Table 5-5 it is seen that for this image size, machine configuration and

frame rate, only LZO compression library can be used to achieve real-time

processing. With smaller image size, LZO 2-level compression, which performs

another LZO compression on the result of a previous LZO compression, can also be

used. For zlib, although it generates desirable compression ratio, the compression is

large even for small image size, and can hardly be useful for our application.

With 1 level of LZO compression used, time spent on processing every frame of

image is largely reduced and the result is listed in Table 5-6. For both 8-processor and

16-processor settings, time spent on processing one frame of image at the master and

worker has fallen under the threshold of 33 milliseconds, and real-time processing is

achieved. Currently the processing time excluding time spent on data transmission is

 National University of Singapore 126

less than 1 millisecond, including the small LZO decompression time, and there is

large room to employ better and more complex algorithms or to use higher

resolutions. When communication overlap is not used, using 8 processors will allow a

worker node to spend around 29 milliseconds in processing 1 frame of image

segment, and using 16 processors will allow around 10 milliseconds; when

communication overlap is used, both settings allow around 33 milliseconds of image

processing with higher image resolutions, if the little time involved in lzo

decompression is ignored.

Table 5-6 Time spent on processing 1 image frame when LZO compression is
used

Setting
Master node: Typical time

spent on processing 1 frame of
image

Worker node: Typical time
spent on processing 1 frame of

image

8 processors, LZO
compression used 14 ms 14 ms

16 processors, LZO
compression used 23 ms 23 ms

This result has shown that real-time processing is achieved using our framework.

The use of compressed communication channel allows more time to be spent on more

complex computation. If the communication overlap technique is used, there is even

more time for computation and the use of compression will allow more data to encode

the image. That is to say, the system will be able to handle images with higher

resolution.

 National University of Singapore 127

5.7 Conclusion

In this chapter we have described our efforts in building real-time image

processing program on parallel platforms, including computer clusters. There is an

increasing need for parallel computing for image processing recently, especially in the

medical imaging area for the purpose of real-time processing. Laser speck image

processing is a typical example. However, research in parallel image processing

usually follows the data parallelism model and uses SIMD or special-purpose

platform. Little work is done to leverage the computing power of more accessible

computer clusters. We propose and implement a framework for parallel speckle image

processing to be run on computer cluster and other type of loosely-coupled

multicomputers. It is designed to be simple, utilizing the master-work paradigm. It is

also small, portable and scalable: porting the ACL to a new platform only requires

reimplementation of less than 10 functions, and the processing logic is separated from

underlying hardware platform and software environment. By allowing customization

of processing logic and custom code in other language such as MATLAB,

programmers can now easily change and extend the function using their favorite

languages and relevant libraries. We have studied the requirements of real-time

processing, and proposed to compress data using timing-friendly compression library.

Experiments have shown that real-time processing is achieved with our chosen image

processing algorithm, with further room to accommodate more complex algorithms. If

communication overlap is used, it is possible to use more complex algorithms and

larger number of processors, and be more tolerant to other overheads. In brief, our

 National University of Singapore 128

design can be a desirable base to help developers easily build laser speckle processing

programs to run efficiently on many different types of parallel computers, to

maximally take advantage of the available computing power, and to achieve real-time

processing goals.

 National University of Singapore 129

Chapter 6 Conclusions and Suggestions for Future

Work

6.1 Conclusions

Our research is motivated by the need to use computing power to address

computation problems in the emerging field of computational bioengineering. This

thesis mainly covers several techniques to facilitate use of computer clusters in

satisfying computing power for two representative bioengineering research issues.

Fiber suspension simulation is the first, which we choose as a representative for

the large number of computational biomechanics applications. These applications use

decomposition to exploit parallelism. Our research has pointed out that, for these

parallel programs, asynchronism among parallel processes of the same task is an

important source of communication latency, especially when they run on computer

clusters. We have proposed the use of communication overlap to eliminate impact of

communication latency. Our experience of implementing this technique in fiber

suspension simulation program is introduced. Realistic experiments on the new

 National University of Singapore 130

simulation program have shown significant performance gain for both zero-load

system, such as computer clusters with a central batch job scheduler, and non-zero

load system, such as computer clusters with interactive job submission. For example,

in of our test with 16 parallel processes (and processors), program with the

communication overlap technique applied was 22.3% faster than that without this

technique in terms of observed speedup.

Real-time laser speckle image processing is the second issue, which we choose as

an example of many biomedical image processing problems having critical timing

requirements. We have found that although there is a lot of research work on parallel

image processing, little work is done on utilizing computer cluster for that task, when

computer cluster is actually the most accessible parallel computing facility nowadays.

Our research has focused on satisfying the timing requirements in real-time laser

speckle image processing. We aim at a simple, portable, and highly customizable

framework based on the master-worker programming paradigm. Performance

profiling shows that it is capable to process laser speckle images in real-time using

our chosen algorithm, there is much room to incorporate more complex algorithms.

Although our design is centered on the laser speckle image processing problem, the

design and the framework can be extended for use in many similar image processing

applications.

 National University of Singapore 131

6.2 Areas for Improvement

There are a lot of areas that we can improve on based on our current research. As

for communication overlap technique, especially when it is applied to numerical

simulation problems similar to fiber suspension simulation, automation tools can be

built to perform high-level control flow rescheduling (Section 6.3). A programming

framework with built-in capability of communication overlap used in inter-process

communication is also an option (Section 6.4). As for master-worker framework for

parallel image processing, an implement of ACL using BSD Socket or WinSock can

largely extend the usable computing power in campus environment (Section 6.5).

Certain extensions to ACL to facilitate inclusion of MATLAB image processing

script can be very useful for bioengineering researchers who are more versed with

MATLAB and its powerful image processing toolbox (Section 6.6).

6.3 Automated Control Flow Rescheduling

Automated control flow rescheduling is to automatically reschedule the program

at block level to generate more opportunities for communication overlap. The

intensive research and great success in instruction scheduling of optimizing compilers

is a large impetus to work on automated control flow rescheduling. For high-level

control flow rescheduling, it is necessary to ask the programmer to provide necessary

information about every reschedulable code block (RCD), such as whether it is

communication-relevant or computation-relevant, what shared variables or arrays are

 National University of Singapore 132

used and how they are used. To make it feasible, the programmer should also follow

some programming style, such as to distinguish global (or shared) variables from

local variables; they should choose appropriate the granularity of RCD.

The automation tools can build a dependency relationship among RCD from the

provided information about RCD. It may first perform a performance profiling

through a sample running. Acquired profiling data may help choose the important

RCD. If necessary, the user might be prompted to further decompose a RCD because

of its significant impact on the performance as well as the complex dependences it

involves. After that, dependence relationship graph will be built and rescheduling to

generate overlap of communication and computation will be carried out accordingly.

All the methods to circumvent data dependence restriction mentioned in Chapter 4

may be used.

Using existing research outcome in the area of instruction scheduling, building

the aforementioned automation tools may not face much technical challenge. Such

tools may largely promote the use of communication latency in parallel computing for

similar numerical simulation problems.

 National University of Singapore 133

6.4 Programming Framework with Communication

Overlap

Communication overlap is very important for decomposition-based parallel

programs in computation biomechanics areas, and a framework to prebuild the

common details would largely ease the programming tasks. By implementing general

logics such as communication latency hiding in the framework, the programmers can

focus on writing application-specific code and let the framework writer to worry

about the common problems.

A lot of applications in bioengineering share the same features with fiber

suspensions simulations. These features include time-step approach, spatial

decomposition for parallelization, interprocess communication between neighboring

processes in every time step, and (optional) interprocess communication among all

processes in every time step. These applications can also share the same high-level

control flow but with several customizable application-specific functions.

The programming framework implements the general control flow, with

communication overlap applied. It leaves several application-specific functions to be

implemented by the users. The framework imposes very strict limitations on how the

user code use shared variables. Because the framework has internally used

communication overlap and control flow rescheduling, improper use of shared

variables will result in invalidation of rescheduling.

 National University of Singapore 134

6.5 Socket‐based ACL Implementation

Considering the almost universal availability of BSD socket on all computer

platforms, building a socket-based ACL implementation will allow our ACL-based

framework to run on all computers. A Socket-based ACL will allow to take advantage

of a large number of high-performance workstations interconnected with high-speed

dedicated campus networks and to utilize these otherwise wasted computing

resources.

BSD Socket is built in all modern UNIX and Linux workstations and WinSock is

in available for every 32-bit Windows PC. With Socket-based ACL, master-worker

parallel program based on ACL will be able to utilize almost every workstation and

PC in campus as a computing node. Considering the excellent computer network that

keeps communication latency low and the large number of machines to choose from,

a temporary homogeneous cluster of workstations can always be built at any time. If

enough number of dynamic backup machines is also selected, exit of one or more

machines from this temporary cluster will not stop or affect progress of ongoing

computation.

It is noted that implementing such an ACL version requires a much more

complex resource management function. But the computing power it can generate

makes it a very interesting area to work on.

 National University of Singapore 135

6.6 MATLAB extension to ACL

A MATLAB extension to ACL is to allow researchers to write ACL callback

functions in MATLAB. Considering the powerful image processing toolbox and a

comprehensive mathematical toolset, MATLAB is among the best choice for

researchers to try ideas and to write prototype implementations. For production use,

most researchers will choose to reimplement MATLAB functions using a more

performance-aware language, such as C or C++. However, as the computing power of

parallel computer makes slow language less a problem, and as MATLAB itself is

getting faster, there is less and less necessity to rewrite MATLAB functions. It is

important to support using MATLAB script as the custom logic in our ACL

architecture.

The MATLAB extension can allow bidirectional communication between

MATLAB and ACL – it will allow ACL to call MATLAB script as the callback

functions, and will allow MATLAB script to use ACL communication services.

MATLAB provides mechanism to implement both directions. When ACL needs to

call a MATLAB script, it can use the MATLAB engine feature. To expose the ACL

communication functions to MATLAB script, these functions can be rewritten to

follow the MEX file format. After the rewriting, MATLAB script can call these C

routines as MATLAB functions.

 National University of Singapore 136

6.7 Summary

The use of parallel computers in bioengineering research and practice represents

a major step in development of bioengineering field. Techniques introduced in this

thesis are examples of this development of parallel computing in the subfield of

numerical simulations and image processing, with an emphasis of using computer

clusters as the supporting platform. Our techniques will benefit computational

bioengineering field by effectively powering more intensive simulation with higher

precision and better resolution and real-time high-density biomedical image

processing.

 National University of Singapore 137

Bibliography

[1] Gordon Moore, “Cramming more components onto integrated circuits,”

Electronics Magazine, 19 April 1965.

[2] Herb Sutter, “The free lunch is over: a fundamental turn toward concurrency in

software, ” Dr. Dobb's Journal, Vol. 30(3), March 2005.

[3] Steven Fortune, and James Wyllie, “Parallelism in random access machines,” in

Proceedings of the tenth annual ACM symposium on Theory of computing, San

Diego, California, United States, pp. 114-118, 1978.

[4] V. S. Sunderam, “PVM: a framework for parallel distributed computing,”

Concurrency: Practice and Experience, Vol. 2(4), pp. 315-339, Dec. 1990.

[5] Michael J. Flynn, “Very high-speed computing systems,” in Proceedings of the

IEEE, Vol. 54, pp. 1901-1909, December 1966.

[6] Lou Baker, and Bradley J. Smith, Parallel Programming, New York, McGraw-

Hill, 1996.

 National University of Singapore 138

[7] Donaldson V., “Parallel speedup in heterogeneous computing network,”

Journal of Parallel Distributed Computing, Vol. 21, 316-322, 1994

[8] Amdahl, G.M., “Validity of the single processor approach to achieving large

scale computer capability,” in Proceedings of AFIPS Spring Joint Computer

Conference, pp. 30, Atlantic City, New Jersey, United States, 1967.

[9] Gustafson, J. L., “Reevaluating Amdahl’s law,” Communications of ACM, Vol.

31(5), pp. 532-533, 1988.

[10] Yuan Shi. Reevaluating Amdahl’s law and Gustafson’s law. Available:

http://joda.cis.temple.edu/~shi/docs/amdahl/amdahl.html

[11] David Culler, J.P. Singh, and Anoop Gupta, Parallel Computer Architecture : A

Hardware/Software Approach, Morgan Kaufmann, 1998.

[12] Message Passing Interface Forum, MPI: A message-passing interface standard,

May 1994.

[13] A. Gara, M. A. Blumrich, D. Chen; G. L.-T. Chiu, P. Coteus, M. E. Giampapa,

R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M.

Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas, “Overview

of the Blue Gene/L system architecture,” IBM Journal of Research and

Development, Special Issue on Blue Gene, Vol. 49(2/3), 2005.

 National University of Singapore 139

[14] I. Foster, and C. Kesselman, The Grid: blueprint for a future computing

infrastructure, Morgan-Kaufmann, 1998.

[15] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of Gird: an

Open Grid Service Architecture for distributed system integration. Available:

http://www.globus.org/ogsa, June 2002.

[16] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T.

Maguire, T. Sandholm, P. Vanderbilt, and D. Snelling, “Open Grid Services

Infrastructure (OGSI) Version 1.0,” Global Grid Forum Draft Recommendation,

June 27 2003.

[17] Michael Litzkow, Miron Livny, and Matt Mutka, “Condor - a hunter of idle

workstations,” in Proceedings of the 8th International Conference of

Distributed Computing Systems, pp. 104-111, June 1988.

[18] Thomas E. Anderson, David E. Culler, and David A. Patterson, “A case for

Networks of Workstations: NOW,” IEEE Micro, February 1995.

[19] Alan M. Mainwaring, and David E. Culler. Active Messages: organization and

applications programming interface. Available:

http://now.cs.berkeley.edu/Papers/Papers/am-spec.ps, 1995.

[20] Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder, “Sparse matrix

solvers on the GPU: conjugate gradients and multigrid,” ACM Transactions on

Graphics, Vol. 22(3), 2003.

 National University of Singapore 140

[21] P. Trancoso, and M. Charalambous, “Exploring graphics processor performance

for general purpose applications,” in Proceedings of the Eighth Euromicro

Conference on Digital System Design, 2005.

[22] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable

implementation of the MPI message passing interface standard,” Parallel

Computing, Vol. 22(6), pp. 789-828, September 1996.

[23] G. Almasi, C. Archer, J. G. Castanos, J. A. Gunnels, C. C. Erway, P.

Heidelberger, X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, B. D.

Steinmacher-Burow, W. Gropp, and B. Toonen, “Design and implementation of

message-passing services for the Blue Gene/L supercomputer,” IBM Journal of

Research and Development, Special Issue on Blue Gene, Vol. 49(2/3), 2005.

[24] General-Purpose computation on GPUs. Available: http://www.gpgpu.org

[25] Randima Fernando, GPU Gems: programming techniques, tips, and tricks for

real-time graphics, Addison-Wesley, 2004.

[26] Ref H. P. J., and K. J. M. V. A., “Simulating microscopic hydrodynamic

phenomena with dissipative particle dynamics,” Enrophys. Lett., Vol. 19(3), pp.

155-160, 1992.

[27] R. Groot, P. Warren, “Dissipative article dynamics: bridging the gap between

atomic and mesoscopic simulation,” J. Chem. Phys., Vol. 107(11), pp. 4423-

4435, 1997.

 National University of Singapore 141

[28] J. W. Goodman, “Some effects of target-induced scintillation on optical radar

performance,” Proceedings of IEEE, Vol. 53, pp. 1688-1700, 1965.

[29] A. F. Fercher, J. D. Briers, “Flow visualization by means of single-exposure

speckle photography,” Opt. Commun., Vol. 37, pp. 326-329, 1981.

[30] J. D. Briers, and Sian Webster, “Laser Speckle Contrast Analysis (LASCA): a

nonscanning, full-field technique for monitoring capillary blood flow,” J.

Biomedical Optics, Vol. 1(2), pp. 174-179, 1996.

[31] J. D. Briers, “Time-varying laser speckle for measuring motion and flow,” Proc.

SPIE, Vol. 4242, pp. 25-39, 2000.

[32] Takai N, Iwai T, Ushizaka T, and Asakura T, “Velocity measurement of the

diffuse object based on time differentiated speckle intensity fluctuations,” Opt.

Commun., Vol. 30, pp. 287–292., 1979.

[33] Fercher A. F., “Velocity measurement by first-order statistics of time-

differentiated laser speckles,” Opt. Commun., Vol. 33, pp. 129–135, 1980.

[34] Ruth B., “Superposition of two dynamic speckle patterns: an application to non-

contact blood flow measurements,” J. Mod. Opt., Vol. 34, pp. 257–273, 1987.

[35] Ruth B., “Non-contact blood flow determination using a laser speckle method,”

Opt. Laser Technol., Vol. 20, pp. 309–316, 1988.

 National University of Singapore 142

[36] Stern M. D., “In vivo evaluation of microcirculation by coherent light

scattering,” Nature, Vol. 254, 56–58, 1975.

[37] J. D. Briers, and A. F. Fercher, “Retina blood-flow visualization by means of

laser speckle photography,” Inv. Ophthalmol. & Vis. Sci., Vol. 22, pp. 255-259,

1982.

[38] H Cheng, Q Luo, S Zeng, S Chen, J Cen, and H Gong, “Modified laser speckle

imaging method with improved spatial resolution,” Journal of Biomedical

Optics., Vol. 8(3), pp. 559-564, 2003.

[39] J. D. Briers, Xiao-Wei He, “Laser speckle contrast analysis (LASCA) for blood

flow visualization: improved image processing,” Proceedings of SPIE, Vol.

3252, pp. 26-33, June 1998.

[40] A.K. Dunn, H. Boaly, M.A. Moskowitz, and D.A. Boas, “Dynamic imaging of

cerebral blood flow using laser speckle,” Journal of Cerebral Blood Flow and

Metabolism, Vol. 21, pp. 195-201, 2001.

[41] Y K Tan, “Speckle image analysis of cortical blood flow and perfusion using

temporally derived contrast,” Final Year Project Report, National University of

Singapore, 2004.

[42] Frank J. Seinstra, Dennis Koelma, and Andrew D. Bagdanov, “Finite state

machine-based optimization of data parallel regular domain problems applied in

 National University of Singapore 143

low-level image processing,” IEEE Transactions on Parallel and Distributed

Systems, Vol. 15(10), pp. 865-877, 2004.

[43] Thomas Braunl, Parallel Image Processing, Springers, 2001.

[44] Gealow, J.C., Herrmann, F.P. , Hsu L.T., and Sodini C.G., “System design for

pixel-parallel image processing,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Vol. 4(1), pp. 32-41, 1996.

[45] Jocelyn Serot, and Dominique Ginhac, “Skeletons for parallel image

processing: an overview of the SKIPPER project,” Parallel Computing, Vol.

28(10), pp. 1685-1708, 2002.

[46] M.F.X.J. Oberhumer. lzo compression library. Available: http://wildsau.idv.uni-

linz.ac.at/mfx/lzo.html

[47] Greg Roelofs. zlib compression library. Avaiable: http://www.zlib.net

	Chapter 1 Introduction
	1.1 Motivation
	1.2 Thesis Contributions
	1.3 Thesis Outline
	Chapter 2 Background
	2.1 Definition: Distributed and Parallel Computing
	2.2 Motivation of Parallel Computing
	2.3 Theoretical Model of Parallel Computing
	2.4 Architectural Models of Parallel Computer
	2.4.1 Shared Memory and Distributed Memory
	2.4.2 Flynn’s Taxonomy

	2.5 Performance Models of Parallel Computing Systems
	2.5.1 Speedup, Efficiency and Scalability
	2.5.2 Amdahl’s Law

	2.6 Interconnection Schemes of Parallel Computing Systems
	2.7 Programming Models of Parallel Computing Systems

	Chapter 3 Overview of Hardware Platform and Software Environments for Research in Computational Bioengineering
	3.1 Hardware Platform
	3.1.1 Computer Cluster
	3.1.2 Computational Grid
	3.1.3 Network of Workstations
	3.1.4 Vector processing in commodity CPU and GPU

	3.2 Software Environments for Parallel Programming
	3.2.1 Message Passing Interface and MPICH
	3.2.2 Vector Processing Software

	Chapter 4 Parallel Fiber Suspensions Simulation
	4.1 An Introduction to the Fiber Suspensions Simulation Problem
	4.2 Implementing the Parallel Velocity-Verlet Algorithm using Conventional Method
	4.3 Performance Study of Conventional Implementation
	4.4 Communication Latency and the Number of Processes
	4.4.1 Scenario 1: Barrier Operation in Each Iteration
	4.4.2 Scenario 2: Process Communicating with only Neighboring Processes in Each Iteration
	4.4.3 Utility of Communication Overlap

	4.5 Implementing the Parallel Fiber Suspensions Simulation with Communication Overlap
	4.5.1 Theoretical Aspects of Communication Overlap
	4.5.2 Rescheduling
	4.5.3 Implementation of Communication Overlap

	4.6 Results
	4.6.1 CPU Time
	4.6.2 Performance Evaluation using Zero-load System
	4.6.3 Performance Evaluation using Non-zero Load System

	4.7 Conclusion

	Chapter 5 Parallel Image Processing for Laser Speckle Images
	5.1 Introduction to Laser Speckle Imaging Technique
	5.1.1 Laser Speckle Images
	5.1.2 Time-varying Laser Speckle Image
	5.1.3 Laser Speckle Imaging Systems
	5.1.4 Laser Speckle Contrast Analysis
	5.1.5 Modified LSI

	5.2 Previous Work
	5.3 Parallelism of mLSI Algorithm
	5.4 Master-worker Programming Paradigm
	5.5 Implementation
	5.5.1 High-level Architecture
	5.5.2 Master-worker framework implementation details
	1.1.1
	5.5.3 Special Considerations
	1. acl_stop_workers and acl_stop_assembler
	2. Concerns on Real-time Processing
	3. MPICH-specific Latency

	5.6 Results and Evaluation
	5.6.1 Study of MPICH Blocking and Non-blocking Operations
	1. Single Sender with Multiple Receivers
	2. Multiple Senders with 1 Receiver

	5.6.2 Experiment Settings and Results

	5.7 Conclusion

	
	Chapter 6 Conclusions and Suggestions for Future Work
	6.1 Conclusions
	6.2 Areas for Improvement
	6.3 Automated Control Flow Rescheduling
	6.4 Programming Framework with Communication Overlap
	6.5 Socket-based ACL Implementation
	6.6 MATLAB extension to ACL
	6.7 Summary

	
	Bibliography

