

CLOUD BASED WEB RESILIENCE USING NODE.JS

by

PRAGATI NARAYANI GUNNAM

BSCS, Andhra University, 1999

MCA, Andhra University 2002

A thesis submitted to the Graduate Faculty of the

University of Colorado Colorado Springs

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

2017

	

© Copyright by Pragati Narayani Gunnam 2017

All Rights Reserved

	 ii	

This thesis for the Master of Science degree by

Pragati Narayani Gunnam

has been approved for the

Department of Computer Science

by

C.H. Edward Chow, Chair

Yanyan Zhuang

Sang Yoon Chang

May 15th, 2017
Date:________________

	 iii	

Gunnam, Pragati Narayani (M.Sc, Computer Science)

Cloud based Web Resilience using Node.js

Thesis directed by Professor C. Edward Chow

 ABSTRACT

Web services are used almost everyday and for everything. Combining these with

cloud based services would allow the web applications to become more available for the

users. Delivering such cloud based web applications to a massive number of clients,

without disruption to the service would require the application servers to run undisturbed.

Such resiliency in the application servers would be desirable and at the same time a

forefront consideration. We studied and experimented with Node.js web servers to

achieve such resiliency. For achieving resiliency, we took into consideration of two

factors: Availability and Agility. Since our experiment is in the context of cloud based

web applications, we also tried locating the servers, which are geographically placed

nearer to the requested client. As for our availability factor, we shut down some of the

servers to prove that the client was still served with the desired response. And for our

agility factor, we also calculated the duration in which the client was served with

response since the request was sent. All our experiments proved that such resiliency, in

fact, can be achieved using Node.js web servers.

	 iv	

This thesis is dedicated to the loving memory of my father, Rama Krishna Rao Gunnam.

I miss him every day, but I am glad to know he always believed in me which gets me

through the hard times.

	 v	

ACKNOWLEDGEMENTS

First and foremost, I would like to sincerely thank my advisor Dr. Edward Chow for all

the guidance and interest he took in the progress of this work. I am very grateful to him

for his constructive comments, feedback and for always being there to help either in

person or online. I would like to thank him also for providing the resources like Amazon

Web Services and helping me set them up during our research.

I am extremely grateful to Dr. Yanyan Zhuang and Dr. Sang Yoon Chang for their valuable

suggestions and advises in our thesis proposal and during all of this thesis work without

which it would have been very difficult for me to come up with this great work.

I would like to extend my sincere thanks to my mentor, Mr. Weston Pace for introducing

me to Node.js. My deep appreciation goes to him for his patience in guiding me and

helping me understand Node.js, which further helped me progress in my thesis.

Many thanks go to my family members for their constant support and encouragement. I

am grateful to my parents for all their love, affection and blessings without which I would

not have gotten this far in life. And finally a special note of thanks goes to Prasad, my

husband and my kids, Pranav and Praful for their continual encouragement, support,

advice and patience that has enabled me to accomplish things I never thought were

possible. Thank You.

	 vi	

 TABLE OF CONTENTS

CHAPTER

I. INTRODUCTION ... 1

1.1 Goal of Thesis .. 2

1.2 Node.js ... 3

II. BACKGROUND .. 4

III. DESIGN .. 6

3.1 Request ... 8

3.2 Promise .. 10

IV. IMPLEMENTATION ... 12

V. IMPROVEMENT & PERFORMANCE EVALUATION 15

5.1 Design Improvement .. 15

5.2 Performance Evaluation ... 16

VI. LESSONS LEARNED & CHALLENGES FACED 29

6.1 Better Understanding of Node and packages ... 29

6.2 Better Understanding of Promise ... 30

6.3 Better understanding of Amazon EC2 Instances ... 31

VII. FUTURE DIRECTIONS ... 32

	 vii	

VIII. CONCLUSION .. 33

REFERENCES ... 35

APPENDIX A ... 37

APPENDIX B ... 41

	

	

	

	

	

	

	 viii	

 TABLE OF FIGURES

FIGURE

1: A Simple Overview of our design	...	7	

2: A Detailed Description of the Design	...	14	

3: Performance from both the original and improved design for a client in Colorado Springs to a
Server in EAS private cloud running on port 8000	...	18	

4: Performance from both the original and improved design for a client in Colorado Springs to a
Server in EAS private cloud running on port 9090.	..	18	

5: Performance from both the original and improved design for a client in Colorado Springs to a
Server(Amazon Instance) in Oregon (West) region running on port 9000	19	

6: Performance from both the original and improved design for a client in Colorado Springs to a
Server (Amazon Instance) in Ohio (East) region running on port 8080.	19	

7: Performance from both the original and improved design for a client in Singapore to a
Server(Amazon Instance) in N.Virginia (East) region running on port 8000	20	

8: Performance from both the original and improved design for a client in Singapore to a
Server(Amazon Instance) in N.Virginia (East) region running	...	20	

9: Performance from both the original and improved design for a client in Singapore to a Server
(Amazon Instance) in Oregon (West) region running on	..	21	

10: Performance from both the original and improved design for a client in Singapore to a Server
(Amazon Instance) in Ohio (East) region running on port 8080.	..	21	

11: Performance from both the original and improved design for a client in California to a Server
(Amazon Instance) in N.Virginia (East) region running on port 8000.	22	

12: Performance from both the original and improved design for a client in California to a Server
(Amazon Instance) in N.Virginia (East) region running on port 9090.	22	

13: Performance from both the original and improved design for a client in California to a Server
(Amazon Instance) in Oregon (West) region running on port 9000.	23	

	 ix	

14: Performance from both the original and improved design for a client in California to a Server
(Amazon Instance) in Ohio (East) region running on port 8080.	..	23	

15: Performance from both the original and improved design for a client in Tokyo to a Server
(Amazon Instance) in N.Virginia (East) region running on port 8000	24	

16: Performance from both the original and improved design for a client in Tokyo to a Server
(Amazon Instance) in N.Virginia (East) region running on port 9090	24	

17: Performance from both the original and improved design for a client in Tokyo to a Server
(Amazon Instance) in Oregon (West) region running on port 9000.	25	

18: Performance from both the original and improved design for a client in Tokyo to a Server
(Amazon Instance) in Ohio (East) region running on port 8080.	..	25	

19: Differences in total time for clients to Oregon server, during different times of the day.	27	

20: Differences in total time for clients to Ohio server, during different times of the day.	28	

21: Differences in total time for clients to Virginia server, during different times of the day.	28	

	

	

	 x	

 TABLE OF NPM PACKAGES

NPM PACKAGE

1: Using 'request'	...	9	

2: Using 'bluebird' Promise	...	11	

	

	

	 1	

	

CHAPTER 1

 INTRODUCTION

Web services became so important in our daily life. The introduction of cloud-

based web servers reduces the cost of maintaining such web services. By choosing the

hosting regions/data centers, we improve the performance of response time of web

services. By using their new load balancing features to form a web-cluster, we improve

the availability and resilience of the web services. To improve the performance and

maintenance, migration of Virtual Machines (VMs) were proposed, to move VM to a

new host or hosts in a new data center within a region. Some even proposed to perform

live virtual machine migration with the goal of no disruption in service during the

migration (Clark, 2005).

Virtual Machines offer many services which made data storage very easy,

efficient and less expensive. Many cloud providers offer virtual machine hosting, cloud

data and database services for prices which are imaginatively less than what we had

before. These services made cloud a popular choice for many small and large

organizations and even for individuals to store their personal data. The cloud is made up

of VMs in two different flavors: VMs which are located on a single physical platform and

	 2	

VMs which are located in different geographical places. Migration of VMs is done when

there is a need for optimizing: CPU utilization, storage, power consumption, server and

network resources to optimize application performance and also bandwidth utilization

efficiency. Migration of VMs usually deals with transferring the instance image and its

data from VM (source VM) to another VM (destination VM).

1.1 Goal of Thesis

Live migration is the process in which the transition of a VM from source to

destination is done without halting the guest operating system [Clark2005] (Clark, 2005).

This live migration technique is usually done by copying memory pages (kernel internal

state and application level state) of the source VM while it continues to run. When the

hypervisor of the source VM decides that this transfer is complete, it will halt the VM,

and trigger the requests to be sent over to the destination VM. Now the destination VM

starts executing and all the ‘dirty’ data would be updated. There might be a possibility for

these source and destination VMs to be present at the same physical server or at a

different geographical location.

Instead of touching at kernel level, we focus on providing web service resilience

at the application level. By focusing on the application level, we allow our design to be

portable across different cloud providers and VM platforms.

We choose Node.js [Tilkov2010] (Tilkov, 2010) for developing the load balancer,

the resilient module and the web servers. It has the advantage of using same

programming language (JavaScript) for portability and potential migration of node.js

modules across different hosting platforms, possibly even running them at client

	 3	

machines. Node.js core functionalities are kept to a minimum and all the existing APIs

expose minimum amount of complexity to the program. For complexity tasks, you can

pick, install and use several third-party modules [Teix2012] (Teixeira, 2012.) or develop

the JavaScript code yourself.

1.2 Node.js

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.js

uses an event-driven, non-blocking I/O model that makes it lightweight and efficient.

Node.js' package ecosystem, npm, is the largest ecosystem of open source libraries in the

world. As an asynchronous event driven JavaScript runtime, Node is designed to build

scalable network applications.

Node.js brings event-driven programming to web servers, enabling development

of fast web servers in JavaScript. Developers can create highly scalable servers without

using threading, by using a simplified model of event-driven programming that uses

callbacks to signal the completion of a task. Node.js was created because concurrency is

difficult in many server-side programming languages, and often leads to poor

performance.

We chose Node.js for our experiment because of its scalability, agility and of its

close association with JavaScript[Tilkov2010] (Tilkov, 2010).

	

	 4	

CHAPTER II

BACKGROUND

During our study about live migration of virtual machines, we came across

several authors who studied and researched about its issues, shortcomings, solutions and

various insights. In 2005, Clark et al [Clark2005] (Clark, 2005), researched about live

migration and found out that the downtime for each live migration of the operation

system was very less. They even proposed of recommending to perform live migration of

operation systems running interactive loads.

In 2009, Voorsluys et al [Voorsluys2009] (Voorsluys, 2009), researched the effect

of live migration on the virtual machines hosting web servers. They evaluated the effects

of live migration of virtual machines on the performance of applications running inside

Xen VMs. Their results show that, in most cases, migration overhead is acceptable but

cannot be disregarded, especially in systems where availability and responsiveness are

governed by strict Service Level Agreements [Voorsluys2009] (Voorsluys, 2009). Later

on, much studies are done focusing primarily on the security issues that might arise

during live migration. In 2014, Navamani et al [Nava2014] (B. Navamani, 2014),

	 5	

experimented with the resources involved in live migration and found out the security

does not hold true once the live migration starts.

The ultimate aim of all the above studies was to achieve resiliency for providing

an undisrupted service to the client. But since all of the above studies involve system

level migration to achieve resiliency, we choose to research on the application level. So,

instead of touching at kernel level, we focus on providing web service resilience at the

application level. By focusing on the application level, we allow our design to be portable

across different cloud providers and VM platforms. We chose Node.js for our

experiment, because of its asynchronous I/O model, and JavaScript, since it supports

callback functions[Tilkov2010] (Tilkov, 2010). Using cloud based approach for serving

web applications, we focus on achieving resiliency for such applications.		

	

	 6	

CHAPTER III

 DESIGN

In order to achieve web resiliency, we suggest the following design for our intended

experiment. Our design consists of multiple redundant Node.js servers located in different

geographical regions. For our experiment, we would be setting up:

Ø three Node.js servers within our EAS VI private cloud and

Ø each Node.js server on two Amazon EC2 Instances in East region within AWS Cloud and

Ø one Node.js server on one Amazon EC2 Instance in West region within AWS Cloud

Within Amazon EC2 Ohio region, we would like to have one instance to act as a low-level load

balancer for the other instance created within that region. Any requests coming to that low level

load balancer should be directed to the other instance for the response and that response should be

served back to this low level balancer before serving back to the high-level load balancer.

 One of the web servers within our EAS VI private cloud would act as the high-level load

balancer, which would keep track of the remaining servers on EAS private cloud along with the

low level load balancer (Amazon Instance) in Ohio and the other Amazon instance in Oregon.

This high-level load balancer would keep track of the servers of their availability, in the

sense, that if any server is unresponsive, the load balancer should be able to bring up that server.

	 7	

It should also have the ability to shut off a server, if need be. In addition to this, it should also be

able to secure connect to the Amazon Instances.

We desire to achieve the maximum resiliency using this high-level load balancer. For

this, we would initially calculate the distances of the servers from the client’s IP address. In the

ascending order of the distances, we list our servers accordingly. Secondly, we would send the

request to all of these servers in that order. All the responses from all the servers should reach this

load balancer and it should decide which one of the responses should be sent back to the client,

especially in the context of shortest duration (Please Refer to Figure1).

Our simple overall design would look as follows:

	

Figure 1: A Simple Overview of our design

	 8	

When a user sends a request to the server (here it is EAS VI private cloud), this request is

intended to travel in the following way in order to have the response back:

• Initially the request would be handled by the high-level load balancer by sending it to all

of the available Node.js servers.

• These available Node.js servers would be approached in the ascending order of their

geographical distances from the requested server (the user’s server).

• Each server would serve the request.

• If any of the available server is serving as the low-level load balancer, the request would

be sent to its servers and wait for the response to be sent back to it.

• Calculate the time taken for the request/response.

• Whichever server serves the request in the shortest time, the response from that server

would be sent as response to the client.

In order to achieve web resiliency, the high-level load balancer should have the following

abilities:

• Should know the status of the servers – responsive/unresponsive.

• Should have the ability to bring up a server.

• Should have the ability to shut off a server.

• Should be able to secure connect to a remote server (Amazon instances)

To achieve the desired flow of the request and to receive the response better, we would be using

the package ‘request’ in node and also ‘Promise’ as an alternate to callbacks.

3.1 Request

Request is used to make http calls easier and simpler. It also supports HTTPS and make

redirects by default. It can be installed within node using: npm install request

	 9	

		

This ‘request’ should be imported into our application and be used as:

This request takes in an url or an options object and a callback function as parameters.

The options object should contain a ‘url’ property. If the request to the url is a success,

response is returned as an object ‘response’ and the data of the response as ‘body’. This

response object has many properties and some of them which we might find use of:

• .statusCode – status code of response if response was received

• .elapsedTime – if time is set to true in options, it adds a property elapsedTime to

response object.

• .body - entity body for request.

We use:

- statusCode to find the availability of a server. If the statusCode is 2xx, it is a

successful request. If the code is 4xx, it is a client error and if the code is 5xx, it is

a server error.

var request = require('request');

request (options, callback)
// where options= {url: ’http://google.com’}
 OR
request('http://www.google.com', function (error, response,
body) {
 if (error) {
 console.log ('error:', error);
 } else {
 console.log(’elapsedTime:', response.elapsedTime);
 console.log ('body:', body);
 }
});

NPM Package 1: Using 'request'

	 10	

- elapsedTime is the duration of the entire request/response in milliseconds

- body is the response’s data.

3.2 Promise

Promises are basically used as an alternative to callbacks in JavaScript. A promise

represents the result of an asynchronous operation. A promise is in one of three different

states:

• pending - The initial state of a promise.

• fulfilled - The state of a promise representing a successful operation.

• rejected - The state of a promise representing a failed operation.

Once a promise is fulfilled or rejected, it is immutable (i.e. it can never change again).

We installed package ‘bluebird’, especially for using its advanced features associated

with Promises: npm install bluebird

By returning a Promise, we now have access to a value representing the

asynchronous operation (the promise). We can pass the promise around and anyone with

access to the promise can consume it using then regardless if the asynchronous operation

has completed or not. We also have guarantees that the result of the asynchronous

operation won’t change somehow, as the promise will only be resolved once (either

fulfilled or rejected). Think of then as a function that unwraps the promise to reveal what

happened from the asynchronous operation. Anyone with access to the promise can

use then to unwrap it. In addition, Promise provides us with catch, which can be used for

error handling. We discuss below how to use promise as an alternative to callbacks:

	 11	

Using Callback:

request('http://www.google.com', function (error, response, body) {
 if(error) {
 console.log('error:', error);
 } else {
 console.log('body:', body); // Should use the values here
 }
});

Using Promise:

var Promise = require(‘bluebird’)

function getRequest(){
 return new Promise(function(resolve, reject) {
request('http://www.google.com', function (error, response, body) {
 if(error) {
 reject(error);
 } else {
 resolve(response);// Can use the value of promise later
 }
 });
 })
}
getRequest()
 .then(response => { // Using the value of promise here
 console.log('body:', response.body);
}).catch(error=> {
 console.log('error:', error);
});

NPM Package 2: Using 'bluebird' Promise

	 12	

	

	

	

 CHAPTER IV

IMPLEMENTATION

For our implementation of our design, we make use of both request and promise.

Initially, when the high-level load balancer receives a request from a client (1),

a. It calculates the geographical distances from the client’s IP address to each

available server’s IP addresses.

b. Sorts the servers in ascending order of these distances.

c. Now sends the request to each server (2).

d. If the server can serve the incoming request, a Promise object with elapsedTime

and body will be sent to the high-level load balancer, otherwise an error object

would be sent.

e. Once it receives all the Promise objects (some of them might be an error object if

the server fails to serve), it will try to resolve/fulfill these promises

simultaneously using Promise.all () functionality. This functionality would

resolve all the promises using then and return one promise object which would be

an array containing all the resolved values. (We have to note that using

	 13	

Promise.all ([Promise Objects]) would resolve only when all the promises are

fulfilled; even with one rejected promise, the whole result would be rejected. So

we modified our functionality in a way that when a request is rejected, we

converted it into a Promise object and tried to resolve (whose end result would be

an error message pushed into the final Promise array).

f. We then removed any value in the final Promise array which starts with string

‘Error:’, so that the final Promise array would now hold only the fulfilled values.

g. We then sort the array based on the elapsedTime value column.

h. The body associated with the first elapsedTime value in the now sorted array

would be sent to the high-level load balancer as a final response (3).

i. This response would be sent to the client (4).

This would make sure that the client always receives the response from the server that

has the shortest request/response duration. We intentionally shut down some of the

servers to find out the result. Even if one of the server does not respond, this design

makes sure the client is served indefinitely (Please Refer to Figure 2).

We performed our experiments by sending a request for test files with sizes ranging

from <1 Kb to <= 54 Mb. No matter the size, the client was always served with the

response. This would prove the availability of the service for the clients in a satisfactory

way.

But while considering the factor of resiliency, this design does not necessarily serve

the client in the fastest way possible. We had to modify our design for optimum

resiliency factor: agility/speed.

	 14	

	

Figure 2: A Detailed Description of the Design

	

	 15	

	

	

	

	

CHAPTER V

IMPROVEMENT & PERFORMANCE
EVALUATION

5.1 Design Improvement

Our design would serve the client with the response only after finding out the

durations of the request/response from each available server. We have to observe, even

though the response from a given server, which is geographically nearer to the client,

would send the response in a shortest time than other servers, that response would be sent

to the client only after all the durations from all the other servers are calculated. This

would delay in serving the response to the client.

 So, to improve the design, we sent out the response to the client immediately as

soon as the request sent to the first server, which is geographically nearer to the client,

was resolved. If in any case, the server is down or the service is disrupted, the response

from the next available server would be sent to the client and so on. This improvement in

design would serve the client within shortest possible time.

	 16	

5.2 Performance Evaluation

5.2.1 Improved Design

Now for the next step, to evaluate this improved design in terms of better

performance and availability, we calculated the request/response durations from clients,

who are located in four different geographical locations, to the servers. We selected

requesting clients from:

1. Colorado Springs

2. Singapore

3. North California

4. Tokyo

For the clients other than from Colorado Springs, since they couldn’t access our EAS

VI private cloud’s high-level load balancer, we set up an Amazon EC2 Instance in North

Virginia region to act as a high-level load balancer for the clients from Singapore, North

California and Tokyo. This high-level load balancer (running on port 8080) would be

replacing the functionality we currently have via EAS VI private cloud. Since we

couldn’t access the private cloud for our experiment from outside of it, we recreated the

functionality of high-level load balancer and webservers within the North Virginia

Amazon Instance. This load balancer would be monitoring two other web servers under

it, running on ports 8000 and 9090 respectively.

We sent requests from all the clients to both our original design and the improved

design and evaluated their performances. We collected the data by sending the request to

	 17	

the high-level load balancer – either on EAS VI private cloud or on North Virginia

Amazon EC2 Instance, Amazon EC2 Instance in Oregon region and Amazon EC2

Instance in Ohio region. We sent the requests from the client to our original design,

which would send the response after all the available webservers’ duration of

request/response would be calculated and then that response would be sent to the client.

Also we sent the same requests to our improved design which would send the response as

soon as the request is sent to the first available server.

We calculated:

Ø the duration: the total time it took the server to get the response since it received

the request, in milliseconds (duration of request/response). And,

Ø the total time: it took for the client to receive the response since the request was

sent from the client, in milliseconds.

The total time for the client to receive the response in both the original and improved

design are highly differentiable. Our improved design reduced the total time drastically

for the client to receive the response.

	 18	

1. Request coming from a client located in Colorado Springs:

	

Figure 3: Performance from both the original and improved design for a client in
Colorado Springs to a Server in EAS private cloud running on port 8000

	

Figure 4: Performance from both the original and improved design for a client in
Colorado Springs to a Server in EAS private cloud running on port 9090.	

	 19	

	

Figure 5: Performance from both the original and improved design for a client in
Colorado Springs to a Server(Amazon Instance) in Oregon (West) region running on port
9000

	

Figure 6: Performance from both the original and improved design for a client in
Colorado Springs to a Server (Amazon Instance) in Ohio (East) region running on port
8080.

	

	

	

	 20	

2. Request coming from a client located in Singapore:

	

Figure 7: Performance from both the original and improved design for a client in
Singapore to a Server(Amazon Instance) in N.Virginia (East) region running on port
8000

	

	

Figure 8: Performance from both the original and improved design for a client in
Singapore to a Server(Amazon Instance) in N.Virginia (East) region running
on port 9090.

	

	 21	

	

Figure 9: Performance from both the original and improved design for a client in
Singapore to a Server (Amazon Instance) in Oregon (West) region running on
 port 9000.	

	

Figure 10: Performance from both the original and improved design for a client in
Singapore to a Server (Amazon Instance) in Ohio (East) region running on port 8080.

	

	 22	

3. Request coming from a client located in North California:

	

Figure 11: Performance from both the original and improved design for a client in
California to a Server (Amazon Instance) in N.Virginia (East) region running on port
8000.

	

	

Figure 12: Performance from both the original and improved design for a client in
California to a Server (Amazon Instance) in N.Virginia (East) region running on port
9090.

	

	 23	

	

Figure 13: Performance from both the original and improved design for a client in
California to a Server (Amazon Instance) in Oregon (West) region running on port 9000.

	

	

Figure 14: Performance from both the original and improved design for a client in
California to a Server (Amazon Instance) in Ohio (East) region running on port 8080.

	

	 24	

4. Request coming from a client located in Tokyo:

	

Figure 15: Performance from both the original and improved design for a client in
Tokyo to a Server (Amazon Instance) in N.Virginia (East) region running on port 8000

	

	

Figure 16: Performance from both the original and improved design for a client in Tokyo
to a Server (Amazon Instance) in N.Virginia (East) region running on port 9090

	

	 25	

	

Figure 17: Performance from both the original and improved design for a client in Tokyo
to a Server (Amazon Instance) in Oregon (West) region running on port 9000.

	

	

Figure 18: Performance from both the original and improved design for a client in Tokyo
to a Server (Amazon Instance) in Ohio (East) region running on port 8080.

	

	 26	

We derive from our experiments and data, that more significant difference in the

total time for delivery of the response to the client would be seen only in the web servers

which are geographically placed much nearer to the client. The more the difference

between the location, the less the significant difference in the total time for delivery of

response to the client.

Even though, there is less difference between the total time of delivering the

response to the client and the actual duration it took to retrieve the response within the

server, it should be noted that 99 percent of the times, the total time from the improved

design is still smaller than that from the original design. By this improvement in design

we further achieved the desired resiliency for the web application performance.

5.2.2 Hops

We calculated the ttl (Time-to-live) for each client to its servers’ locations.

The time-to-live (TTL) is the number of hops that a packet	is permitted to travel before

being discarded by a router. Ttl for clients from Singapore, N.California and Tokyo to

servers in N.Virginia, Oregon and Ohio, and ttl for client from Colorado Springs to

servers in EAS VI private cloud, Oregon and Ohio are as follows:

	 27	

	

	

	

	

 Table 1: Time-to-Live (ttl) readings from clients to all the available servers.

	

5.2.3 Time of the day

We recorded the responses’ total time for all the clients to all the available servers

in the mornings, afternoons and late evenings of the day. Typically, we recorded around

7:00am during the morning, 12:00pm during the afternoon and 10:00pm during the late

evening. Our recorded data show that the total time is equal or comparatively less during

the mornings than that of the late evenings and afternoons.

	

Figure 19: Differences in total time for clients to Oregon server, during different times of
the day.

Client N.Virginia Oregon Ohio EAS VI

California 235 237 239

Singapore 237 234 235

Tokyo 234 233 234

Colorado Springs 236 237 125

	 28	

	

	

	

	

	

	

	

Figure 20: Differences in total time for clients to Ohio server, during different times of
the day.

	

	

Figure 21: Differences in total time for clients to Virginia server, during different times
of the day.

	

	 29	

	

 CHAPTER VI

LESSONS LEARNED & CHALLENGES FACED

6.1 Better Understanding of Node and packages

We learned a great deal about Node.js Web Servers. Being working with them, setting

them up, linking from one server to another, helped me understand the functionality of this

servers. A great effort of my study went into understanding how the packages work within them,

once installed using npm (node package manager). I learned about some important packages in

node which would make developing applications much easier. These include:

- Express	

Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications. This package has a variety of HTTP

utility methods and middleware to create an API easily. The HTTP utility methods include:

GET, PUT, POST. The middleware include route, set and use. This package can be used to

route HTTP requests (GET, POST, PUT), configure middleware, render HTML views and so

on. We made use of this package for routing HTTP GET request from the client to the

specified path with specified callbacks.

- Simple-ssh

	 30	

This node package makes it easier to run a sequence of commands over SSH. This

package is easier to install and use. We made use of this package to secure SSH over to the

Amazon Instances. (Simple-ssh)

- Child_Process

This is another node package we made use of. This package has several methods,

including exec and spawn. We used exec() initially, but returned a buffered data; exec()

should be used with caution as shell injection can be exploited. The spawn method spawns an

external application in a new process and returns a streaming interface for I/O. We used this

package’s spawn method to start executing a web server as a child to our load balancer. The

load balancer was able to start up a web server and was also able to kill that process when

needed using child.kill(‘SIGINT’) (Child_process), where child is a chid_process instance.

- Geoip-lite

This is another node package we made use of for retrieving the longitude and

latitudes of a given IP address. This API would return for a given IP address input, an object

consisting of several properties, of which one of them is an array containing the longitude and

latitude for the given IP address. (Geoip-lite)

6.2 Better Understanding of Promise

We made use of Promise instead of callback functions for asynchronous programming in

our experiment. With Promises, we can resolve our data when and where it is needed, whereas with

callbacks, the data has to be resolved then and there itself. This extra ability with Promises gave us

a possible flexibility to use the data later in the time. We returned the responses from all the servers

as Promises and once all promises are received, we then tried to resolve all of them together.

Without Promises, we would not be able to achieve our desired functionality.

	 31	

We even faced many challenges making promise work for us as to our desire. We resolved

a promise prematurely and tried to send the response to the client after first server’s response, which

did not give us the opportunity to send other much faster response from another server to the client.

After realizing the mistake, we resolved the promise much later than we did before, which gave us

the desired result of having to sort them first based on time and then send the response to the client.

6.3 Better understanding of Amazon EC2 Instances

With the help from Dr. Chow, I was able to set up Amazon Instances. I learned a great

deal of installing Node in Instances, copying files/folders from desktop to the Instances, creating

and assigning Elastic IP for each Instance and many more. Every action involving Instances is a

good learning experience for us. We faced some challenges when dealing with Node.js servers in

Amazon Instances. We initially used spawn to start the node server, but since we couldn’t kill the

process using child_process_instance.kill(‘SIGINT’), we had to lean on the simple-ssh API for

secure connect to Amazon Instances and then execute the commands serially using its exec()

functionality. We were able to start the servers within Instances using simple-ssh, but were not

able to kill the processes when needed. We had to manually find out the process id for the

running server and kill that process by streaming those command line arguments over the same

shell, using exec('kill $(pgrep -f app.js) ').

	

	

	

	

	 32	

	

 CHAPTER VII

FUTURE DIRECTIONS

Our design can be expanded to accommodate the recording of durations from the

servers, on high-level load balancer’s side, from the previous sessions. Using these

results, the high-level load balancer might effectively direct the clients to the optimal

servers, for to serve the client in a much effective way, assuming that sever always serves

the fastest response to the client. Also high-level load balancer can give the client the

choice of redirect to a server based on its distance (using geoip-lite) and/or servers’

reported performance

 Our client-side design can be improved much elaborately, in a way where

dynamic interaction with the server-side would make the client side’s application retrieve

data dynamically. As for our existing design, we tested by only retrieving a file upon

each refresh of the page i.e., upon each get request. We wish to extend our client-side to

have applications where dynamic refresh of the content would be much suited. Such

applications would benefit when used in a larger scale especially in coordination with

web resiliency factor.

	 33	

	

	

	

 CHAPTER VIII

CONCLUSION

In this research, we developed a secure resilient web system with redundant

Node.js web servers and multiple level of Node.js web clusters. The Node.js web servers

are continuously monitored by the load balancer for their health and security. These

multiple level of Node.js based load balancers are used to distribute requests to the

backend web servers, start a web server, join this new server to the cluster. Depending on

the origin of the requests, the load balancers will allocate or redirect them to the load

balance clusters that are closer to the requested client.

By developing this secure resilient web system especially using Node.js web

servers, we are able to serve a client faster with the response. The service to the client can

never be disrupted even when a serving server becomes unresponsive. The high-level

load balancer which takes upon it the whole responsibility of sending the request to the

optimal server, based on location and throughput, would always serve the client with the

response. This cloud based approach gives us the flexibility of reaching out for much

reliable service. Therefore, based on the results of our experiment, we could conclude

	 34	

that, a resilient web service can be offered to the clients using cloud based Node.js web

servers.

	

	

	

	

	

	 35	

	

	

REFERENCES

[Ahma2015] R. W. Ahmad, A. Gani, S. H. A. Hamid, M. Shiraz, F. Xia, and S. A.
Madani. Virtual machine migration in cloud data centers: a review, taxonomy, and open
research issues. The Journal of Supercomputing, 71(7):2473–2515, 2015.  	

 

[Aias2014] M. Aiash, G. Mapp, and O. Gemikonakli. Secure live virtual machines
migration: issues and solutions. In Advanced Information Networking and Applications
Workshops (WAINA), 2014 28th International Conference on, pages 160–165. IEEE,
2014.  	

[Alam2016] S. M. ALAmri and L. Guan. Exploring the firewall security consistency in
cloud computing during live migration. In Proceedings of the 7th International
Conference on Computing Communication and Networking Technologies, page 40.
ACM, 2016.  	

[Alsh2016] H. Alshahrani, A. Alshehri, R. Alharthi, A. Alzahrani, D. Debnath, and H.
Fu. Live migration of virtual machine in cloud: Survey of issues and solutions. In
Proceedings of the International Conference on Security and Management (SAM), page
280. The Steering Committee of The World Congress in Computer Science, Computer
Engineering and Applied Com- puting (WorldComp), 2016.

 

[Anwar2013] M. Anwar. Virtual firewalling for migrating virtual machines in cloud
computing. In Information & Communication Technologies (ICICT), 2013 5th
International Conference on, pages 1–11. IEEE, 2013. 8

[Nava2014] B. Navamani, C. Yue, X. Zhou, and E. Chow. An analysis of the virtual
machine migration incurred security problems in the cloud. 2014.

	 36	

[Voorsluys2009] Voorsluys, William, et al. "Cost of virtual machine live migration in
clouds: A performance evaluation." IEEE International Conference on Cloud Computing.
Springer Berlin Heidelberg, 2009.

[Tilkov2010] Tilkov, Stefan, and Steve Vinoski. "Node. js: Using JavaScript to build
high-performance network programs." IEEE Internet Computing 14.6 (2010): 80-83.

[Teix2012] Teixeira, Pedro. Professional Node. js: Building Javascript based scalable
software. John Wiley & Sons, 2012.

[Clark2005] Clark, Christopher, et al. "Live migration of virtual machines." Proceedings
of the 2nd Conference on Symposium on Networked Systems Design & Implementation-
Volume 2. USENIX Association, 2005.

[Request] https://www.npmjs.com/package/request

[Amazon] http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/setting-up-
node-on-ec2-instance.html

[Bluebird] http://bluebirdjs.com/docs/api-reference.html	

[ChildProcess]
https://nodejs.org/api/child_process.html#child_process_child_process_spawn_command
_args_options

[Simple-ssh] https://www.npmjs.com/package/simple-ssh

[Geoip-lite] https://www.npmjs.com/package/geoip-lite

	 37	

APPENDIX A

Installing node on Amazon Instances: http://docs.aws.amazon.com/sdk-for-

javascript/v2/developer-guide/setting-up-node-on-ec2-instance.html

Testing Environment:

1. Web cluster in EAS VI private cloud (http://viva.uccs.edu):

1. High-level load balancer:

• Node.js web server running on port 8080.

• Can be reached using: http://viva.uccs.edu:8080.

• Set up environment can be found at:

http://viva.uccs.edu/~pgunnam/thesis/vm1/nodejs/

• Server set up-Original design (Simple-ssh): app-simple-ssh.js

• Improved design : app-simple-ssh-alt-1.js

• To start, execute: node app-simple-ssh.js or node app-simple-ssh-alt-1.js

2. WebServer-1:

• Node.js web server running on port 8000.

• Can be reached: http://viva.uccs.edu:8000.

• Set up environment can be found at:

http://viva.uccs.edu/~pgunnam/thesis/vm2/nodejs/

• Server set up: http.js

• To start, execute: node http.js

	 38	

3. WebServer-2:

• Node.js web server running on port 9000.

• Can be reached: http://viva.uccs.edu:9000.

• Set up environment can be found at:

http://viva.uccs.edu/~pgunnam/thesis/vm3/nodejs/

• Server set up: http.js

• To start, execute: node http.js

4. WebServer-3:

• Node.js web server running on port 9090.

• Can be reached: http://viva.uccs.edu:9090.

• Set up environment can be found at:

http://viva.uccs.edu/~pgunnam/thesis/vm4/nodejs/

• Server set up: http.js

• To start, execute: node http.js

2. Web cluster in Amazon Ohio (East) region

1. Low-level load balancer:

• Node.js web server in Amazon Linux environment running with Elastic

IP: 52.14.178.188.

• Port: 8080

• Can be reached: http://52.14.178.188:8080

• Set up environment can be found at:

http://52.14.178.188:8080/server1/nodejs/

• Server set up: app.js

• To start, execute: node app.js

	 39	

2. WebServer-1:

• Node.js web server in Amazon Linux environment running with Elastic

IP: 52.14.188.220.

• Port: 8000

• Can be reached: http://52.14.188.220:8000

• Set up environment can be found at:

http://52.14.188.220:8000/server2/nodejs/

• Server set up: http.js

• To start, execute: node http.js

3. Web Server in Amazon Oregon (West) region:

• Node.js web server in Amazon Linux environment running with Elastic

IP: 54.69.97.75.

• Port: 9000

• Can be reached: http://54.69.97.75:9000

• Set up environment can be found at:

http://54.69.97.75:9000/server/nodejs/

• Server set up: http.js

• To start server, execute: node http.js

4. Web cluster in North Virginia substituting for EAS VI high-level load balancer:

1. High-level load balancer:

• Node.js web server running on port 8080.

• Can be reached using: http://34.200.60.134:8080.

• Set up environment can be found at: http://34.200.60.134/vm/nodejs/

• Server set up-Original design: app-simple-ssh.js

• Improved design: app-simple-ssh-alt-1.js

	 40	

• To start, execute: node app-simple-ssh.js or node app-simple-ssh-alt-1.js

2. WebServer-1:

• Node.js web server running on port 8000.

• Can be reached: http://34.200.60.134:8000.

• Set up environment can be found at: http://34.200.60.134/vm1/nodejs/

• Server set up: http.js

• To start, execute: node http.js

3. WebServer-2:

• Node.js web server running on port 9090.

• Can be reached: http://34.200.60.134:9090.

• Set up environment can be found at: http://34.200.60.134/vm2/nodejs/

• Server set up: http.js

• To start, execute: node http.js

Third Party Libraries:

• simple-ssh https://www.npmjs.com/package/simple-ssh for SSH to Amazon

Instances.

• bluebird http://bluebirdjs.com/docs/getting-started.html for Promise.

• request https://www.npmjs.com/package/request for get request.

• geoip-lite https://www.npmjs.com/package/geoip-lite for retrieving longitude and

latitude of a given IP address.

Development Tools:

• Firefox or Safari for client-side browser (for Colorado Springs client) and

amazon console for other clients from California, Singapore and Tokyo.

• Linux console for debugging.

	 41	

	

	

APPENDIX B

 Demo

a. Request from a client from Colorado springs:

1. When all the servers are responsive, the client receives the response from

http://viva.uccs.edu:8000/

 Original Design:

Improved Design:

2. When all the servers except viva.uccs.edu:8000 are responsive, the client receives the

response from http://viva.uccs.edu:9090/

	 42	

Original Design:

Improved Design:

3. When all the servers other than those within EAS VI private cloud are responsive, the client

receives the response from Oregon Amazon Instance:

Original Design:

	 43	

Improved design:

	

b. Request from a client from Tokyo:

When all the servers are responsive, the client from Tokyo receives the response from

Virginia Instance (high-level load balancer):

 Original Design:

	

	 44	

Improved Design:

	 45	

c. Request from a client in Singapore:

When all the servers are responsive, the client in Singapore receives the response from

Virginia Instance (high-level load balancer):

Original Design:

	 46	

Improved Design:

	 47	

d. Request from a client in N.California:

When all the servers are responsive, the client in California receives the response from

Virginia Instance (high-level load balancer):

Original Design:

	 48	

Improved Design:

	

	

	

	

	

	

