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Abstract. In this paper, all Neutrosophic rindgd(R, ) are assumed to be finite
commutative with identity element. An elemexitIN(R, I)is called a Neutrosophic

self-additive inverse ik+X=0. A characterization is given for Neutrosophic self-
additive inverse elements and their inverses in the classical finite commutativi@ ring

with identity. The arithmetic functiod§(R)| and‘S(N(R, I))‘exists, which counts the

total number of self-additive and Neutrosophic self-additive inverse elemeRsarnid
N(R, I), respectively. The relations betwe&R) and S(N(R, I)) are explored, and

S(N(R, 1)) OS(N(R, 1)) is proved, whenROR' . Furthermore, we obtain a
formula for enumerating total number of self-additive and Neutrosophic self-additive
inverse elements in finite fieIdEpn and Neutrosophic fieIdéN(Fpn), 1), respectively.
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1. Introduction

Algebraic Neutrosophic theory is an abstract branch of modern mathematics that
originated from classical algebra through the composition of Neutrosophic theory. Its
development started few years ago, and now a days Neutrosophic analytic methods and
results are important in various fields of engineering science and applied mathematics
with its applications. The impetus came from mathematical logic and philosophical
problems, whose theory had the greatest effect on the development and promotion of the
modern and philosophical ideas in the real world problems. Neutrosophic mathematicians
observed that the real world problems from different fields often enjoy related features
and Neutrosophic properties. This fact was used for an effective unifying approach
towards such Neutrosophic problems, the unification being obtained by the omission of
unessential details. Hence, the advantage of such a Neutrosophic abstract approach is that
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it concentrates on the essential facts, so that these facts become clearly visible. In this
respect the Neutrosophic abstract method is the simplest and most economical method for
treating Neutrosophic mathematical systems.

In the Neutrosophic abstract approach, one usually starts from a set of
Neutrosophic elements satisfying certain Neutrosophic axioms. The nature of the
Neutrosophic element is left unspecified. This is done on purpose of Neutrosophic theory.
The theory then consists of logical consequences which result from the Neutrosophic
axioms and are derived as theorems once and for all.

The concept of finite Neutrosophic numbers, sets, structures and systems was
introduced by Florentin Smarandache [9]. Kandasamy and Florentin Smarandache were
shown in [10] how algebraic operations addition and multiplication could be performed
in the Neutrosophic sets and Neutrosophic structures. These authors introduced in [11]
the concepts of philosophical theory, in particular, the notion of indertminancy of the real
world problem in algebra, and initiated the new way for the emergence of a new class of
rings and fields, namely, Neutrosophic rings and Neutrosophic fields. In [2, 3], Agboola
and others studied further properties of Neutrosophic rings with different illustrations and
examples.

The problem of classifying the self additive inverse elements of an arbitrary finite
commutative semi ring with identity is also another open problem in Neutrosophic
theory. However, the problem will be solved for certain classes of semi rings and ordered
semi rings, see [13-15].

Let Rbe a finite commutative ring with identity and let N(R, I) be its

Neutrosophic ring with same identityand determinacy , wherel? =1 . The order of
Rand the order oN(R, ) will be denoted byR|andN(R, 1)|, respectively. in this

paper,S(R) and S(N(R, I )) denotes the set of self additive inverse element? arfid
N(R, 1), respectively.

The main purpose of this paper is to investigate the set of self and Neutrosophic
self additive inverses elements of finite rings and fields. Further, we dete|md’qﬁé I )|

and ‘S(N(R, I))‘ . In particular, we compute*S(N(Zn, I))‘ : ‘S(N(Fpn, I))‘ :

Furthermore, we prove that the result, if two ringsand R' are isomorphic, then
S(N(R 1)) OS(N(R, 1)).

2. Finite Neutrosophic rings and its basic properties
This section reviews some basic and important notions about finite Neutrosophic rings
and their properties. These results arise in important ways in this text to follow other
sections. We assume that the reader of this paper is familiar with the fundamentals of
finite commutative rings [4]. Therefore, this section solely intended to provide a brief
over view of the basic concepts of ring theory [1] and to consider terminology and
notation employed in our discussion of Neutrosophic theory [12].

We begin with definition of Neutrosophic ring with few properties and results.

64



Self Additive Inverse Elements of Neutrosophic Rings and Fields
Definition 2.1. Let (R, +, [)] be a finite ring. The setN(R, 1) =<RD I>
={a+ bl :a b R} is called a Neutrosophic finite ring generated®gndl , wherel

is the Neutrosophic element with the propertfes | ,01 =0,1 +1 =2l and | " does
not exist.

The Neutrosophic ring contains the following properties

RON(R, I).

N(R, I)OR.

Ris a ring with unity if and only ifN(R, 1) is a Neutrosophic ring with unity.
N(R, 1)is commutative if and only ifs= s for all r, sO(RO).

Every Neutrosophic ring is a ring.

a s wnhe

Theorem [12] 2.2.The Neutrosophic ring is a classical ring under the operations
1. (a+hl)+(c+d)=(a+c)+(b+d)l

2. (a+hbl)(c+dl) = (ac) +(bc+ad +bd)! for alla+bl ,c+dl ON(R, 1).

Definition 2.3. Let Sbe a subring of a ring. ThenN(S, 1)is a Neutrosophic subring
of N(R, I)if N(S, I)is itself a Neutrosophic ring .

Definition 2.4. Let N(R, I )andN(R, |)be any two Neutrosophic rings. The mapping
f:N(R 1) - N(R, I)is called a Neutrosophic ring homomorphismfisatisfies the

following axioms.
1. fisaring homomorphism

2. f()=1.

3. Equivalent Neutrosophic rings
In this section, we obtain a formula for enumerating total number of Neutrosophic

elements in the finite Neutrosophic rin§l(R, I) . In particular, we compute
|N(Zn[i], I)|. Also this section covers equivalent and non-isomorphic classical rings of
Z,[¥

(7))

Definition 3.1. Let Rand R'be any two finite rings. TheRis equivalent toR'if and
only if there exists a one-one correspondence betamd R', and we writeR~ R'.

If Ris isomorphic toR', then there exist a bijective ring homomorphism
betweenRand R', it can be written aR (IR’ .

The following theorem about Neutrosophic finite rings is a basic result. It play an
important role in finding the orders of various Neutrosophic rings of finite order.

N(R, 1) with Ris isomorphic toZ,,Z,xZ, Z [i] and
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Theorem 3.2. Let Rbe a finite commutative ring with unity of ordar. Then
IN(R, 1)|=nr?.

Proof: We haveR' =R—{0} , Rl ={al :aOR}andR +R| ={a+bl : a bOR}.
Therefore, N(R 1) =RORIO(R+RI) , where RnARI=¢
R1n(R +R1)=gand(R +R1)n R=g. Hence,

IN(R 1) =|R[+|R1[+|R +RI| =n+(n-1)+ (n-1 =n”.

Theorem 3.3. Let N(Z_[i], I) be the Neutrosophic ring of Gaussian integét] over
modulon . Then,|N(Z,[i], 1)| =n*.
Proof: We know that|Z,[i]| = n*. In view of the Theorem [3.2],

IN@Z,[i], D] =[Z,[]+|2L1" 1| +|Z. [T +Z [T 1]

=n?+(n*-1) +(n’-1)* =n".

Definition [7] 3.4. Let Z be the ring of integers modulo. Then Z xZ is a
commutative ring with unity(1, 1)under addition and multiplication defined by

1. (a,b)+(c,d)=(a+c,b+d)and

2. (a, b)(c, d)=(ac, bd)for every(a, b),(c,d)areinZ xZ .

The following theorem tells us that the finite comtative ring and Neutrosophic
commutative ring are both equivalent but not isqrhar.

Theorem 3.5. Let n > 1be a positive integer. Then the following condisare hold.
1. Z, xZ ~N(Z,,1).
2. Z,xZ #N(Z,, 1).
Proof: For each positive integér>1, define a mapf :Z,xZ, - N(Z,, |) by the
relation f ((a, b)) =a+bl for every(a, b)Z xZ with, f((0, 0))= 0 f((1, 0))=1,
f((0,1)=1. Clearly, f is a well-defined and one-one function becqasé) = (c, d)
-~ a=c,b=d < a=cbl=d = a+bl=c+d < f((ab))=7f((cd)) .
Also, for any a+blON(Z,, 1) , there exist (a,b)0Z xZ such that
f((a, b))=a+bl, as f is surjective. Thus the classical ridgxZ is equivalent to
Neutrosophic rindN(Z,,, 1) .
Further, f is not a ring homomorphism, sind€(1, 0)(0, 1))= f((0, 0))=0
andf ((1, 0))f ((0, D))= 1 =1 .Hence,Z xZ_is not isomorphic taN(Z,, | ).
Theorem [3.5] has a number of useful consequences.
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Corollary 3.6. Letn be a positive integer. Then the following are true.

1. Z[i]~N(z,, 1)

2. Z[i]&N(Z,, 1), whereZ[i]is the ring of Gaussian integers over modnlo
Proof: It is obvious from the bijective map+bi+> a+bl with O+ 0,1~ land
i1, wherei?=-1land|?=1.

Corollary 3.7. Let n be a positive integer andr(x) is a quadratic irreducible
polynomial overZ, . Then the following are true

2Nz,
(m00)

Zn[x]

o N(Z, 1).

Proof: Follows from the bijective map+ba +— a+bl with O+ 0,1 landa |
wherel > =l and 7(a) = 0.

4. Self additive inverse elements of finite Neutsmphic rings

In this section, we define Neutrosophic self-additinverse elements of Neutrosophic
rings and studied their basic properties. Also,aols&in formulae for enumerating total
number of self-additive inverse elements of variofisite Neutrosophic rings.

Furthermore, we compute the relation betw&R) and S( N(R, | )) :

Definition 4.1. Let N(R, I) be a finite commutative Neutrosophic ring with yni&n
elementxin N(R, I)is called self-additive inverse elementift X =0. Otherwisex is
called mutual additive inverse elementh(R, 1) .

The set of all self additive inverse elementdN(R, |) denoted b5(N(R, 1))
that is, S(N(R, 1)) ={xON(R, 1): 2x= 0 and the of set all mutual additive inverse
elements inN(R, 1) denoted byM (N(R, 1)), that is,

M (N(R 1)) ={xON(R, 1):2x2 .

Always, the indeterminacy is never self-additive inverse element for any
Neutrosophic ringN(R, 1) if and only ifS(R) # R, becausd +1 #0.

Theorem 4.2. 1. S(R) is a subring of a finite commutative rirfg.

B(N(R, 1))is not a Neutrosophic subring of a finite Neutyusic
commutative rindN(R, |) with unity.
Proof: 1. We haveS(R) ={a0R: 2a=0 . For anya, bOS(R), we have2a = Oand
2b=0 . Therefore, 2(a+b)=2a+20=0 , 2@-b)=2a-2b=0 and
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2(@b)=(2a)p= 0= 0. This implies thata+b, a—b, ab[OS(R). Thus S(R) is a
subring ofR.
2.The setS(N(R, 1)) ={XxON(R, I): 2x= G is not a Neutrosophic subring

of N(R, I). For instanceS(N(Z;, 1)) ={0, 4, 4 , 4+ 4} is the set of self additive
inverse elements of the Neutrosophic rilg(Z,, 1), but S(N(ZB, I)) is not

Neutrosophic subring becau&( N(Zg, | )) does not contain the indeterminaty

Remark 4.3.The Theorem [4.2] shows th&(N(R, I)) is not a Neutrosophic subring
of N(R, I), but it is a semi Neutrosophic commutative subdhdN (R, 1) with unity.

Theorem 4.4. Let R be a finite ring with unity. ThenS(R) =R if and only if
S(N(R, 1)) =N(R, I).

Proof: Let a, bbe any two elements in a finite ring with unity. ThenS(R) =R
= 2a=0,Db=0

= 2a=0,2 =C

o 2(a+bl):0,Da+bI ON(R, 1)

= S(N(R, 1))=N(R/ ).

Lagrange’s Theorem [1] 4.5Let Abe a subring of a finite ringR. Then |A HR| :

Theorem 4.6.Let Z be aring of integers module. Then
1 if nisodd
s(N@,, I))\={

4 if niseven’
Proof: First, by way of contradiction, suppose tlfﬁ(N(Zn, I))‘ >1if nis odd. So

without loss of generality we may assume ’rBéN(Zn, I)) = 2. Then there exist a

subringA={0, a:2a= 0,a0R} in Z,such that, by the Lagrange’s Theorem [4.5] for
finite rings|A||Z,| that is2||Z,| which is not true becauszis even andZ,|is odd.
So our assumption is not true, and he‘r&(al\l (z,, | ))‘ =1whennis odd.

Next, supposenis even, then, by the Theorem [3.PI‘}I(ZH, I)| is also even.
Now letx =a+bl ON(Z,, I)for anya, bOZ, . Therefore,
2x=0 < 2(a+bl)=0
= 2a+2l =0+0
= 2a=0,D=0
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n n
= a, bl 0,E , since—+—=0 (modn)
2 2 2

- xgdo 2 0y L
2 '2 2

NS

Hence‘S(N(Zn, I ))‘ = 4whennis even.

Theorem 4.7.Let Rand R’ be two finite commutative rings with unity. ROR', then

S(N(R, 1)) OS(N(R, 1)). But converse is not true.

Proof: Supposdr R’ . Then there exist an isomorphisfnfrom a ringRonto a ring

R’ such thatf(x) =X , wheref(0;)=0; and f(13)=1;, . We now show that

S(N(R, 1)) OS(N(R, 1)) . For this we define a  map
¢:S(N(R 1)) = S(N(R, 1)) by the relation
X if xOR
#(X) =< X1 if xOR'I

X+x1 if xOR +R

For everyx(ON(R, 1) =ROR'1 O(R +R1)andR = R-{0} .It is straight forward
to see thatg is a bijective Neutrosophic semi ring homomorphidmecause
R~ R,RlI—RlandR +R 1+ R +R | are bijective maps. Next, letbe any
self-additive inverse in the Neutrosophic rifg(R, 1) , then x[ S(N(R, I))
= 2x=04

= 20(X) =g (x)+@(x) = p(x+x) = #(0;) =0¢

= () OS(N(R, 1)).
This shows that preserves self-additive inverse elements betweartrdsophic semi
rings S(N(R, 1))and S(N(R, 1)). Hence,S(N(R, 1)) OS(N(R, 1)).

The converse of the Theorem [4.7] is not true,gémeral. LetR=27, and

R =Z,we see thaRand R are both commutative rings with unity. By the Défon
[4.1], we have S(N(Z,, 1)) ={0,2,2,2+2} and S(N(Z,]1))
={0,3,3, 3+ 3} . Clearly, S(N(Z,, 1)) OS(N(Z,, 1)) but Z, 2 Z,.

5. Self additive inverse elements of Neutrosophimfte fields

The concepts of finite fields and their relatioaypa central role in number theory,
algebraic number theory, and in applications oftralss algebra to communication
theory, design theory, algebraic coding theoryelatgic cryptography, control theory and
several other computer related areas, see [5,6, 8]
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Z
Basically, the finite cyclic groupZ,, = ={a+nZ: a0z} may be given the
structure of a finite commutative ring with unifut, just as the addition o0& induced
addition onZ,_, and similarly the multiplication onZ induced a multiplication oz, .
So, the algebraic structur(eZn, i, @) is a finite commutative ring with unit{ of

integersO0, 1, 2,...,n— with respect to additiori] and multiplication ® modulon .
Further, we know thaZ_ is a finite field of ordernif and only if nis a prime.
Notationally, ifpis a positive prime integer, thef, for the field with p elements. In

particular, Fp = Zp. Also, we shall notateFpn as a field withp" elements over modulo

p.
We next prove that the result for finding a foremdbr enumerating the total
number of self additive inverse elements ﬁ%g .

Theorem 5.1. Let p # 2be a prime andh = 1a positive integer. Then
1 if S(Fpn) # Fpn

p" it SF)=F,
Proof: Case 1.Suppose theS(Fpn) Z Fpn . Then there exist at least one elemamt Oin

SCOE

p

Fpn such thata# —a. Assume thaBi+a=0for somea# 0in Fpn, then a *exist in
F . such thaf2a)a™’ = 0a™" =0= 2(aa™)=0=2=0, which is not true because
p#2. So our assumption is wrong, so tl@ex Ois the only one self additive inverse

element iann. So, in this ca:%é;(Fpn) =1.

Case 2.If S(Fpn) = Fpn, then obviously, each and every eIemenFé}nis self additive

inverse element. Henc@a = 0, for everyall Fpn .

Corollary 5.2. For each positive integar> 1, we have(S(an) =2".

Proof: It is obvious since2a = Ofor everyalF,, .

Now starts Neutrosophic fields in the Neutrosophic theory. Téteidy of
Neutrosophic fields was introduced for the firgshéi by Vasantha Kandaswamy and
Florentin Samarandache in [12]. In this sectionreeall the definition of Neutrosophic
finite field, and we are going to computing a fotenfor enumerating total number of self
additive inverse elements in that field.

70



Self Additive Inverse Elements of Neutrosophic Rimgd Fields

Definition 5.3. Let Fpn be a finite field of ordep” . Then the Neutrosophic field

generated b;Fpn and | under the operations dﬁpn denoted b)N(Fpn, 1) :<Fpn O I>,

wherel?=1, 1 #1,1 # 0and | *does not exist.
It is important to note thaN(Fpn, | )is a Neutrosophic finite field but not a

classical field, and it is only finite commutativing with unity under the operations
defined on the Theorem [2.2].

Theorem 5.4. Let h=1be a positive integer. Then,
1 if pisodd
S(N((Fn,l)))={2 DB
P p" if pis even
Proof: Case 1.If p is odd, thenS(Fpn);tFpn . Then, by the Theorem [ ],
S(N((Fpn, |))) =1,

Case 2.If p is even, then, in view of Theorem [3.2], we have

N((Fpn, I))‘ =(p")> = p*. This shows thaB(F ,)=F , . Hence, by the Theorem

[5.1], ‘S(N ((Fpn, |)))‘ = p™.

6. Conclusions

An enumerating procedure of the self additive isesrelements of a finite Neutrosophic
commutative ring with identity was presented. Tak additive inverse elements of finite
fields were examined through the Neutrosophicdifiiélds. Complete characterizations
of the finite rings and fields of determining a#lifsadditive inverse elements &tand

R'such thatS(N(R, 1)) OS(N(R/, 1)) whenROR'
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