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An Introduction to the Mathematics 

of Digital Signal Processing 
Part I: Algebra, Trigonometry, and 

The Most Beautiful Formula in Mathematics 
? 1978 F. R. Moore 

F. R. Moore 
Bell Laboratories 

Murray Hill, New Jersey 07974 

Introduction 

As it says in the front of the ComputerMusic Journal 
number 4, there are many musicians with an interest in 
musical signal processing with computers, but only a few have 
much competence in this area. There is of course a huge 
amount of literature in the field of digital signal processing, 
including some first-rate textbooks (such as Rabiner and 
Gold's Theory and Application of Digital Signal Processing, 
or Oppenheim and Schafer's Digital Signal Processing), but 
most of the literature assumes that the reader is a graduate 
student in engineering or computer science (why else would he 
be interested?), that he wants to know everything about digital 
signal processing, and that he already knows a great deal about 
mathematics and computers. Consequently, much of this 
information is shrouded in mathematical mystery to the 
musical reader, making it difficult to distinguish the wheat 
from the chaff, so to speak. Digital signal processing is a very 
mathematical subject, so to make past articles clearer and 
future articles possible, the basic mathematical ideas needed 
are presented in this two-part tutorial. In order to prevent 
this presentation from turning into several fat books, only the 
main ideas can be outlined; and mathematical proofs are of 
course omitted. But keep in mind that learning mathematics 
is much like learning to play a piano: no amount of reading 
will suffice -it is necessary to actually practice the techniques 
described (in this case, by doing the problems) before the 
concepts become useful in the "real" world. Therefore some 
problems are provided (without answers) to give the motivated 
reader an opportunity both to test his understanding and to 
acquire some skill. 

Part I of the tutorial (this part) provides a general review 
of algebra and trigonometry, including such areas as equations, 
graphs, polynomials, logarithms, complex numbers, infinite 
series, radian measures, and the basic trigonometric functions. 
Part II will discuss the application of these concepts and others 
in transforms, such as the Fourier and z-transforms, transfer 
functions, impulse response, convolution, poles and zeroes, 
and elementary filtering. Insofar as possible, the mathematical 
treatment always stops just short of using calculus, though a 
deep understanding of many of the concepts presented 
requires understanding of calculus. But digital signal processing 
inherently requires less calculus than analog signal processing, 
since the integral signs are replaced by the easier-to- 
understand discrete summations. It is an experimental goal of 
this tutorial to see how far into digital signal processing it is 
possible to explore without calculus. 

Algebra 

To most people, mathematics means formulas and 
equations, which are expressions describing the relationships 
among quantities. As long as the relationships do not use the 
integration or differentiation ideas of calculus, they usually 
fall into the general domain of algebra, named after the arabic 
best-seller of the 9th century, Kitab al jabr w'al-muqabala 
("Rules of Restoration and Reduction") by Abu Ja'far 
Mohammed ibn Musa al-Khowarizmi (from whose name the 
word algorithm is derived). 

Algebra is, in fact, merely a systematic notation of quan- 
titative relationships among numerical quantities, usually 
called variables, since with algebra we can manipulate the 
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relationships into various forms without specifying the particu- 
lar quantities we are manipulating. For example, the equation: 

y =x+1 

"says" that y is an arbitrary name given to a quantity which is 
one greater than another quantity, x. If we were to write 

y-l =x 

we would be "saying" exactly the same thing, just as we would 
if we wrote any of the following: 

16y = 16 + 16x 
y/2 = ?(x+1) 

r (y - r) = 7r(1 - r) + 7rx 

The basic notion here is that whatever is on the left hand side 
of the equal sign (=) is just another name for what is on the 
right hand side. Of course, as the last example above shows, 
there are simple ways and complicated ways to say the same 
thing, and it is usually the task of the algebraist to find the 
simplest way of expressing a relationship so that it can be 
easily understood. 

Functions, Numbers, and Graphs 

Sometimes it is desirable to give a name to an entire 
relationship, rather than just to the variables in a relationship. 
Mathematicians have a keen sense of brevity, so these names 
are usually single letters as well, but they serve quite a differ- 
ent purpose. For example, the notation 

f(x)= x+ 1 

means that "f" is being defined as a function of x, where x 
is called the independent variable, since it can take on any 
value whatsoever. We can now write 

y = f(x) 
(read: "y equals f ofx ") 

to mean that the value of y (which is called a dependent 
variable since its value depends on the value chosen for x) is 
a function of x, and the function is named f. Remember that 
f(x) is just another name for x + 1, so the last equation above 
is still saying the same thing as all of the previous examples. 
The advantages of the function notation are that it a) explicit- 
ly states the name of the varying quantity (the independent 
variable or argument of the function), and b) it gives a short 
name to what may be a complicated expression, allowing its 
further manipulation. For example: 

let f(x) = x + 1 (as above), and 
g(x) = 2x + 3 

We might now define: 

a =f(x)+g(x) and 
b = f(x) -g(x) 

Of course, this "says" the same thing as 

a = 3x +4 and 
b = -x -2 

but the latter form doesn't show explicitly where these 
relationships come from. 

What do we mean when we say that x can have any 
value? In fact, what does value mean? Without going too far 
afield into the theory of numbers, we should note that in 
many cases, the value of the independent variable in a particu- 
lar function is restricted to the set of all natural numbers, or 
integers, or reals. Briefly, the set of natural numbers (denoted 
here as N) is the set of numbers used for counting: 

N= (0,1,2,3...} 

(the curly braces " { 4 " denote a set, and the ellipsis "..." 
means here that the set has an infinite number of elements). 
To indicate that the independent variable must be chosen from 
this set, we write 

f(x) = x -1 x EN 

where "EN" means "is an element of N", the set of all 
natural numbers. Suppose we choose x equal to 0; what is 
f(x) equal to? Our Pavlovian response is, of course, minus 
one, but note that this number is not a natural number as 
defined above. 

So even though x might always be a natural number, 
f(x) might not be. Other sets of numbers frequently encoun- 
tered are I, the set of all integer numbers, 

I = 0, 1,+2,+3,. . . 

and R, the set of all real numbers. Real numbers are those 
which can be written as a (possibly unending) decimal 
expression, such as ir, 2, and 1/3, since rr = 3.14159..., 
2 = 2.000. ., and 1/3 = .333 .... Sometimes R+ is used 
to denote the positive reals, R2 for the set of all ordered pairs 
of real numbers, etc. Just as the integers include all of the 
natural numbers, the reals include the integers, as well as the 
rationals (numbers formed by the ratio of two integers, such as 
1/3 or 22/7), and the irrationals, like ir (which is approximately 
equal to 22/7, but is not exactly equal to any ratio of two 
integers). It is a fundamental mystery that the ratio of the 
diameter of a circle to its circumference should so transcend 
our ability to compute it exactly on any number of fingers, 
but that's just the way our particular universe is arranged! 
nr and e are also called trancendental numbers for such meta- 
physical reasons (more about e later). 

So if we are permitted to use the integers, we can com- 
pletely solve f(x) = x - 1, x E N for all allowed values ofx. 
It is clear that the equation 

3x = 2 x ElI 

has no solution, since no integer has the value 2/3. There is 
another type of number needed to solve such equations as 
x2 + 1 = 0, since no real number when multiplied by itself 
is equal to - 1. Mathematicians simply define the square root 
of minus one as i, the imaginary unit. (Engineers use j, since 
i was already used to stand for current in the engineering 
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literature. In Part I of this tutorial we shall stick with i; 
Part II will use j, since signal processing is a branch of 
engineering.) An imaginary number is any real number times i, 
and since the reals include the other number sets, we can have 
imaginary integers, imaginary rationals, even imaginary 
naturals! 

The final set of numbers is just a combination of the 
reals with the imaginaries, which are called complex numbers. 
The set of all complex numbers is denoted C, and each 
member of the set has the form 

x + iy x,yE R 

where x is called the "real part", and iy is called the "imagin- 
ary part." Complex numbers may be added, subtracted, multi- 
plied and divided according to the usual rules of algebra. 

If cl and c2 (read "c-sub-one and c-sub-2") are two 
complex numbers, with cl = xl + iyl and c2 = x2 + iy2, then 
the rules of complex arithmetic are as follows: 

Rule Cl (complex addition): To add two complex numbers, 
add the real and imaginary parts independently, i.e., 

cl + c2 = (x1 + iyl) + (x2 + iy2) = (xl + x2) + i(y1 +Y2) 

Rule C2 (complex subtraction) (similar to addition): 

c1 - c2 = (xI + iyl) - (x2 + iy2) = (x -x2) + i(y 1 -Y2) 

Rule C3 (complex multiplication): The product is formed by 
the ordinary rules of algebra: 

C1 c2 = (xI + iyl) (x2 + iy2) = X1X2 + iY1x2 + i1 y2 + i2y1y2 
= 

(X x2 -Y1Y2) + i (xy2 + Y1 X2) 
(Remember that by definition, i2 = - 1) 

Rule C4 (complex division): Again, ordinary algebra is used to 
define the quotient: 

S_ x+iy x + iy x 2 +Y12 + i(y1x2 - XY2) 
c2 x2 + iy2 x22 +y2 

obtained by multiplying by 

2 - iy which is equivalent to 1. 
x2 - iY2 

While a function is most generally stated in algebraic 
form, it is often enlightening to draw graphs in order to get a 
clear idea of how a function varies as its argument changes. 
The conventional graph uses a horizontal line to represent the 
independent variable, and a vertical scale to represent values of 
the function. Thus, in order to find the value of a function for 
some value of the independent variable, say, x = 3, we slide 
one finger along the horizontal axis until we point at 3, then 
move straight up (or down) to find the value f(x = 3) (read: 
"the function fat x = 3"). 

A glance at Figure 1 tells us several things about the 
function f(x) = .5x + 1. First, the graph is a straight line, 
sloping upwards to the right; second, it crosses the vertical 
axis at the value +1; third, it crosses the horizontal axis at the 
value -2. In fact, any function which has the form 

f(x) 

5 
4 

3 
-(x) = .Sx + 1 

2 -f(x = 3) = 2.5 

-4 -3 
--2 

-1 1 2 3 4 5 6 7 8 9 
-1-- x 

-3 - 

Figure 1. A graph of f(x) = .5x + 1 

f (x) = mx + b m, b constants 

is the graph of a straight line. m is called the slope of the 
function since it is the amount by which the function changes 
for a unit change in x. Setting m to .5, as in Figure 1, means 
that every time x increases by one, f(x) will increase by .5, 
hence a positive slope is associated with lines sloping upward 
to the right. f(x) will always cross the vertical axis when 
x = 0, and since f(x = 0) = b, b is called the vertical axis 
intercept of f The horizontal axis will be crossed, of course, 
when f(x) equals zero, which occurs in this example at: 

f(x) = .5x + 1 = 0 
x = -2 

Actually, Figure 1 is not a graph of f(x) = .5x + 1, but more 
precisely a graph of this function for the values of x between 
- 4 and +9, or in most proper notation: 

f(x) = .5x + 1 - 4 < x < + 9 

The original function could extend for all x, that is 
- < x < + 0, but graphing the entirety of such a function 
would require a very big piece of paper indeed. Graphs are use- 
ful to get the general picture of a function, but they can serve 
other purposes as well. For example, it is often useful to add 
graphs directly, especially when it is difficult to do the 
addition algebraically, or when the algebraic sum of two 
functions is difficult to interpret. Graphical addition of two 
functions consists of carefully drawing both functions on the 
same graph, and then carefully adding up the vertical distances 
for all (or many) values of the independent variable, to obtain 
a graph of the sum function (see Figure 2). Such graphical 
techniques are, of course, only approximate, but often 
sufficient to gain considerable insight into the shape of 
composite functions. 
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h (x) = f(x) +g(x) 
4 

/ 

3.5 I g(x) = x2 

\ f(x) .5x + 1 

2 

\/ h( ) 
= 

f(1) + g(1) 
\ 1.5- - - - -- 

f(() 

-3 -2.5 2 -1.5 -1 -.5 .5 1 1.5 2 2.5 3 

-5-. - 

-1 

-1.5- 

-2T 

Figure 2. Graphical addition of f(x) = .5x + 1 and g(x)= x2 
to get graph of h (x) = f(x) + g (x) = x2 + .5x +1 

Polynomials and Roots 

A polynomial is an algebraic expression which has the 
form: 

f(x) = ao + al x + a2x2 + a3x3 + + anxn 

The a's are constants (numbers) called coefficients, and the 
highest power of x which occurs in any given polynomial 
(n) is called the degree of the polynomial. Thus f(x) in 
Figure 2 is a first-degree polynomial, since the greatest 
power of x in .5x + 1 is one. Both g (x) and h (x) from the 
same figure are second degree, or quadratic, polynomials. 
Third degree polynomials are called cubic, fourth degree 
quartic, and so on, though after that one rarely hears of, 
say, "quintic polynomials" instead of "fifth-degree polynom- 
ials." A polynomial is "solved" by setting it to zero, and 
finding which values of the independent variable make the 
equation true. For example, to find the roots of the quadratic 
equation x2 + x - 6 = 0, we can do any of at least three things: 

1. try every value of x and see when the formula is true, 
2. try to factor the polynomial, or 
3. use the quadratic formula, which will give the roots for 

any quadratic polynomial. 
Method 1 may sound a bit absurd, but sometimes it is the best 
we can do. Method 2 means trying to write the polynomial in 
the form (x- zl) (x - z2) = 0. zl and z2, are called the 
"zeroes" of the function, since if x is equal to zl, the first 
factor, and hence the product, will be zero; and similarly for 
x = z2. Method 3 requires remembering the general solution 
for any second-degree polynomial (or looking it up), called 
the quadratic formula: 

if the equation has the form 

ax2 + bx + c = 0 
then 

-b J -4b2 - 4ac 
X= 

2a 

The method 2 solution yields: 

x2+x -6=0 
(x +3)(x-2) = 0 

x = -3 or + 2 

The method 3 solution, with a = 1, b = 1, and c = - 6 also 
yields 

-b + /b"- 4ac 
X 2a 

2a 

-1 
?J12-4.1.(-6) 2-1 

-1 - _2 -1 + 5 - - -3or2 2 2 

What about such formulas as x2 + 1 = 0? The quadratic 
formula works just as well on those: 

a = 1, b =0, c = 1,so 

0?J= ? 2i 
x = 2 = +ior-i 

which says that again there are 2 roots, and that they are both 
imaginary. In factorial form, we could have written 

x2 +1 = (x -i)(x+i) = 0 

The Fundamental Theorem of Algebra states that any 
nth-degree polynomial always has exactly n roots, that they 
may in general be complex (having both real and imaginary 
parts), and that all the roots may not be different from each 
other (distinct). Also, we might have guessed that if + i is a 
solution to x2 + 1 = 0, then - i is also, since complex roots 
always appear in conjugate pairs if the coefficients of the 
polynomial are real numbers. (If c = x + iy is a complex 
number, then its conjugate, written c* , is x - iy.) 

If the general formula method works so well, why would 
we ever use factoring, or trial and error? The answer is both 
simple and unfortunate: General formulas exist only for 
polynomials with degree less than 5, and in fact the French 
mathematician Galois proved that no such formulas can exist 
for degree 5 or more. Even the general quartic formula is very 
complicated; it is often easier to factor than to use it! And 
finally, trial and error solutions are often implemented with 
computers, using special guessing algorithms such as Newton's 
Method, which work remarkably well. 

Exponents, Logarithms, and the Number e 

If we say that addition and subtraction are easy, that 
multiplication and division are harder, and that taking a 
number to a power is most difficult, then the rules of expo- 
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nents show us how many problems in mathematics may be 
made one level easier! It is important to remember which 
kinds of numbers these rules apply to, so in the following list, 
we will use p and q to stand for any real numbers (that is, 
p, q E R), a and b are positive reals (a, b E R?), and m and 
n are positive integers (m, n E N). 

Rule El: aP - a = aP +q 

Rule E2: aq = a - q 

Rule E3: (aP)q = apq 

Rule E4: nfl F- = am/n 

1 Rule E5: a-p = aP 

Rule E6: ao = 1 (if a*0) 

Rule E7: n =1 a 

Rule E8: (ab)P = apbp 

Using these rules, we can deduce such things as 4s = 2 
(Rule E4, since .5 = ?), x'/x5 = x-' = 1/x (Rules E2 and 
ES), and /-6 •-2 = 4J3 (Rule E7). In fact, the first 3 rules are 
so useful in doing calculations, that the entire system of 
logarithms has been devised to make them universally appli- 
cable to the more "difficult" problems of multiplication, 
division, and exponentiation. 

If ap = x, where a is not 0 or 1, then p is called the 
logarithm to the base a of x, written logaX = p. Thus, 
log28 = 3, since 23= 8, and loglo10000 = 4, since 
10000 = 104. The rules for logarithms are derived from El, 
E2 and E 3, above: 

Rule Ll: logaxy = 
logaX 

+ logay 

Rule L2: 

logay 

= logax - logay y 

Rule L3: logaxY = y logax 

where x, y E R. 

Also, if loga x = p, then x is called the antilogarithm of p to 
the base a, written x = antilogap, since by definition aP = x. 
Any number except 0 or 1 may be used for the base, but in 
fact only three numbers are used very often: 10, 2, and 
e = 2.71828... . Logarithms to the base 10 are used because 
we commonly use a decimal (base 10) number system for 
everything else! Logarithms to the base 2 are very often 
encountered in the relatively new fields of computer science 
and information theory, since computers typically operate 
using binary arithmetic (internally), and both computers and 
information theory define the unit of information as a bit 
(short for binary digit). Logarithms to the base e are called 
"natural" logarithms, and are the most used in mathematics. 

It is hard for us today to appreciate what a boon 
logarithms were to mathematicians before the advent of com- 
puters and pocket calculators. Logarithms were so useful that 
two 16th century mathematicians literally devoted most of 

their lives to calculating "log tables" in order to relieve their 
colleagues of the drudgery of multiplication and division: 
Briggs calculated the so-called common, Briggsian, or base 10 
logarithms, and Napier the "natural", Naperian, base e log- 
arithms. Base 2 logarithms are not found in mathematical 
handbooks, and they probably never will be, since their 
computation today is largely a matter of button-pushing. 
Also, if the log of a number is available in any one base, it is 
easy to change it to another base using the following relation- 
ships: 

logax = K logb x 

where 
K- 

logba 

K is given in the following table for base changes among 10, 
2, and e: 

b 

10 2 e 

10 1 0.30103... 0.43429... 
2 3.32193... 1 1.44270... 
e 2.30259... 0.69315... 1 

Thus 

loglox = .30103 log2x = .43429 Inx 

and so on, where In stands for "natural logarithm" (i.e., 
In x = 

logex). Logarithms are defined only for positive 
numbers. 

Where does the number e come from? Unfortunately, 
its true origins are buried deep within calculus, which is not a 
part of our subject matter, but some of its properties, as we 
shall see, turn out to be remarkable. e is an irrational number 
like 7r, which means that its decimal expansion is both infinite 
and that it never repeats itself: 

e = 2.71828 18284 59045 23536 0287... 

If you would like to calculate it to more accuracy than this, 
the following formula may be used: 

1 1 1 1 e = 1+ -I+ +I + + 
" 1! 2! 3! 4! 

where n! means n factorial, which is the product of all the 
integers from one to n (3! = 6, 4! = 24, 5! = 120, etc.). 

A more useful form of this infinite expression yields the 
value of e raised to any power x: 

2 3 4 

e = 1 + 2 + T ... 

Another way to write the same thing is with sum notation: 

eX = 1 + X 
which "says" exactly the same thing. The capital sig=l 

which "says" exactly the same thing. The capital sigma ( ) is 
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used to denote that we should add up all values of xn/n! 
starting with n= 1, then n = 2, etc. (It is read: "the sum over n 
from one to infinity of x to the n divided by n factorial".) 

Sums and Series 

Such formulas as the one above for ex are called infinite 
series, or infinite sequences, since there are infinitely many 
terms in the sum, even though we know what any one of them 
would be. Such sums need not be infinite, of course. For 
example, the following formula illustrates a finite sum: 

n 

1+2+3+-+n = k 
k= 1 

which is just the sum of the first n integers. It is both interest- 
ing and useful that many such sums have a general, or "closed- 
form" formula, making it unnecessary to carry out the lengthy 
addition sequence. For example: 

n 

nk n1+2+3+.+ 
n (n+ 1) 

k=1 2 

The closed form is clearly more useful if n is greater than 3 or 
4 or so. Other sum formulas often crop up in digital signal 
processing. For example 

o00 

Eark = a+ar+ar2+ 
a 

r k=O 

This sum exists only if r < 1, since otherwise the sum will be 
infinite, a is the first term in the sequence, and r is called the 
ratio, since it is multiplied by any term to get the next term in 
the sequence. Thus, we see that 

oo 
I 1 + 

= E 2-k - 2 
2 4 8 k=0 l-M 

If there is not an infinite number of terms, we can remove 
the restriction that r be less than 1: 

n-1 
ark = 

alr(1-r) 
rn 

1-r k=O 

If r # 1, and the last term 1 = ar n -1 , then this sum is also 
equal to 

a - rl 
1 -r 

Trigonometry 

[It has been said that a tribe called the Trigonometric 
Indians once roamed the earth, that they spoke in sine 
language, and never used wrong angles. The secret name of 

their beautiful princess was known only to initiates, for it 
conveyed all of their secrets at once. The name of their 
princess was Sohcahtoa.] 

If we label a right triangle (one which contains a 
right angle) with respect to an angle e- (see Figure 3), side 
O is opposite the angle, side A is adjacent to angle a, and 
side H is, of course, the hypotenuse of the triangle. 

O 

1 a _ 

C ~A> 

Figure 3. A right triangle with inscribed angle e and sides 
O, A, and H 

The 3 basic trigonometric functions are defined as 
follows: 

sine of a = sina = H 
A 

cosine of o = cos e = H 
O 

tangent of a = tana A 

Clearly, the size of the right triangle doesn't matter, since, for 
a given angle a, if we double the length of one of the sides, the 
others will double as well. Only the ratios of their lengths are 
needed to define the trigonometric functions. 

The 3 remaining trigonometric functions are defined 
in terms of the first 3: 

1 H 
cosecant of e = csce - sin - O 

1 H 
secant of a = sec = - - A cos e-` A 

1 A 
cotangent ofa = cot a tanl - O 

Radians, Degrees, and Grads 

As almost everyone knows, if you slice a pie into 360 
equal wedges, you have not only very small slices to eat, but 
the angle at the tip of each slice will be one degree (1 0). If 
you are very hungry, however, and slice the pie into 4 equal 
pieces, the angle at the tip of each slice will be 900, which is 
exactly right. 

Another measure is to divide the circular pie into 400 
equal pieces, or 400 grads. But by far the most common 
measure of angles used in mathematics is the radian. Since 
the ratio of the circumference of a circle to its diameter is 
7r = 3. 14159 26535 ..., and since the radius of a circle 
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is exactly one half its diameter, the circumference of a 
circle is exactly 2nr times the length of its radius, and we say 
there are 21r radians in a circle. A right angle is then any of 
900, 100 grads, or n/2 radians, depending on which measure 
we are using. 

If we choose a circle with radius equal to one unit, 
and we inscribe our right triangles inside the circle (see 
Figure 4), 

2H 
2~O 

Figure 4. A unit circle with inscribed right triangles 

we can "solve" the triangles conveniently with the 

Pytha orean theorem: 02+ A2= H', or 02+ A2 = 1, 
O = 1 - A , and A = 

7J1--U 
. Angles are conventionally 

measured counter-clockwise from the right hand horizontal 
axis (see a1, and a2 in the figure). Angles measured in a 
clockwise direction are considered negative. 

We can treat the angle e as an independent variable and 
graph the basic functions as shown in Figure 5. 

The inverse trigonometric functions are defined in a 
similar way to the antilogarithm: if sin a = x, then the arcsine 
of x = sin-1 x = 0, and so on, for each of the six trigonometric 
functions. 

We can see from the graph of sin e that the function is 
periodic, that is, it repeats itself over and over again as e gets 
larger or smaller by 27r, which is called the period of sin e. 
Furthermore, sin & always has a value between + 1 and - 1 
inclusive, so we say that the domain of the sine function is the 
set of all real numbers between + I and - 1, or in more mathe- 
matical form: 

sin E R , - 1 < sin e < + 1 

Because of this restricted domain, it is meaningless to write 
sin-1 2 = o, since no angle e has a sine equal to 2. But what 
about sin-' 1= e? From the graph, it is clear that sin 7r/2 = 1, 
so, o = 7r/2 is one solution to this equation. But sin 5nT/2 

is also equal to one, as is sin - 3n/2. In fact sin-11 = e has 
infinitely many solutions, all of the form e = i/2 + k2n, 
where k is any integer. The principle values of the inverse 
trigonometric functions are chosen to be close to e = 0, 
and these are used to resolve the problem of which answer to 
choose. Thus: 

< sin-' x ?< 2 2 

0 < cos-'x < nr , and 

< tan-1x ?<~ 
2 2 

Inspection of Figure 5 also shows that the sine and 
cosine functions are also identical to each other, except for 
their starting place at e = 0, i.e., they differ only in phase: 

sin(- 
+ e) = 

coso 
, and - % 

., 

cos (&- ) = sine 
sin e 

/ 

II 
II 

COS & 
I I I 

I I I 

/I I 

II I I I I 

tan e 

I I i 

0 7r 37r 27r 57r 37T 71r 4r 

22 2 2 

i 

/ 
1. 

i IiI 

II I 

0 7r r 3r 27r 5• 31r 71r 4r 
2 2 2 2 

Figure 5. Graphs of sin e-, cos e, and tan e as functions of 
e, & in radians. 

Trigonometric Identities 

Many formulas may be derived from the basic defini- 
tions of the trigonometric functions which are often useful in 
the manipulation of equations involving trigonometric 
functions. They are called identities since, like all equations, 
the expressions on either side of the equal sign "say" exactly 
the same thing, but in a useful way. In the following identities, 
A and B are any angles: 
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(T1): sin2A = 2 sin AcosA 

(T2): cos 2A = cos2 A - sin2 A 

(T3): sin2 A = ? - /2cos 2A 

(T4): cos2 A = + 1/2cos 2A 

(TS): sin A + sin B = 2 sin 1 (A + B) cos ? (A - B) 

(T6): sin A - sin B = 2 cos x (A + B) sin ? (A - B) 

(T7): cos A + cos B = 2 cos ? (A + B) cos 1 (A - B) 

(T8): cos A - cos B = 2 sin (A + B) sin a (B - A) 

(T9): sin A sin B = 1/2 [cos(A - B) - cos (A + B)] 

(T10): cos A cos B = ? [cos (A - B) + cos (A + B)] 

(T11): sin A cos B = 1/2 [sin (A - B)+ sin (A + B)] 

(T12): sin (A ? B) = sin A cos B + cos A sin B 

(T13): cos (A B) = cos A cos B T sin A sin B 

These identities are fairly easy to derive from each other, and, 
of course, many more exist. 

Like ex, the sine and cosine functions may be represent- 
ed as summation series: 

sinx = x-x +---- --- + 
3! 5! 7! 

2 
X4 X6 cosx = 1-2! 

4+!" 6! + "-'" 2! 4! 6! 

where x is an angle measured in radians. 

Using Trigonometric Functions to Represent 
Musical Sounds 

One of the great pleasures of mathematics is that it can 
be used to understand portions of the "real world." If some 
phenomenon naturally behaves in a way which can be 
described mathematically, mathematics provides a wealth of 
intellectual "tools" which allow that phenomenon to be 
analyzed (i.e., understood), perhaps modified in a predictable 
and desirable way, and possibly synthesized (created in a new 
and flexible way). Such phenomena are the sounds of music 
and speech. 

Sounds are vibrations in the air to which our ears are 
sensitive. Acoustical studies have shown that the quality of 
a sound as we perceive it is related to certain characteristics 
of the "shape" of the vibrations, i.e., we draw a graph of the 
air pressure fluctuations as a function of time and observe its 
graphical shape. If the waveshape is fairly regular and repeti- 
tive (i.e., roughly periodic) it will sound like a tone with a 
steady pitch, such as a violin note or a fog horn. If the wave- 
form is irregular and aperiodic, the sound will have little or 
no pitch, but instead sound like a noise such as steam rushing 
or a cymbal crash. In speech, periodic waveforms are associat- 
ed with voiced sounds, such as vowels and voiced consonants. 
Aperiodic waveforms are associated with unvoiced consonants, 
such as s and f. The period of a periodic waveform is closely 
related to what pitch it will have. Period and frequency are 
two names for two ways of describing the same thing: how 
often does the waveform regularly repeat itself. If the 
frequency of repetition is between about 20 to 20, 000 times 
per second, then the vibration will be heard as a sound. In 

other words, pitched sounds have periods ranging from about 
1/20 to 1/20, 000 of a second. The amplitude, or strength, of 
the vibration is a measure of how far the pressure deviates 
from the atmospheric mean. One could measure the peak 
deviation from the mean, or possibly the average deviation, 
but the word amplitude generally refers to the peak deviation, 
unless stated otherwise, and is related to our perception of the 
loudness of a sound. Finally, the general shape of the 
waveform determines its tone quality, or timbre. All of these 
factors interact perceptually. For instance, the pitch can be 
affected by the amplitude and the shape as well as the period 
of a waveform. Hence it is important to distinguish between 
frequency, which is a measure of the repetition rate of a 
periodic waveform, and pitch, which is our perception of 
something like the "tonal height" of a sound. 

An important mathematical tool which will be described 
in Part II of this tutorial is Fourier's theorem, which states 
that any periodic waveform can be described as the sum of 
a number, possibly an infinite number, of sinusoidal variations, 
each with a particular frequency, amplitude, and phase. 
Futhermore, there is a method for determining exactly what 
these frequencies, amplitudes, and phases must be in order to 
re-construct the waveform by adding together sine waves, 
which are seen to be the basic "building blocks" of periodic 
waveforms. Actually there are a few other requirements as 
well as periodicity; suffice it to be said that any waveform 
which could exist in the physical world will obey these other 
conditions (called the Dirichlet conditions). 

Stated mathematically, the waveform must obey the 
condition f(t) = f(t + T), where f is the periodic waveform, 
t is time, and T is the period of the waveform. Then 

00 

f(t) =E Aksin(kt + Ok) 
k=0 

where: 

Ak is the amplitude of the kth sinusoidal component of 
f(t), 

C is the fundamental frequency ( = / T) of the waveform 
times 27r, and 

Ok is the phase of the kth sinusoidal component off(t). 

Another way which is more commonly used of stating 
the same thing is 

00 

f(t) = > (ak cos kct 
+ bk sin kcot) 

k=0 

where both the amplitudes and phases of the previous expres- 
sion are imbedded in the a's and b's of the second expression. 
To see that this is so, we can use trigonometric identity T12 
(we omit the subscripts for the moment): 

A sin (kcot + c) = A (sin kCot cos q + cos kot sin q) 
= A sin 4 cos kco t +A cos 4 sin kcot 

a cos kcot + b sin kCot 
where 

a =Asin 4 and b =Acos b 

Similarly, we can show from these expressions for a and b 
that: 
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a2 + b2 = (A sin 4)2 + (A cos 4)2 
= A2 sin2 ++A 2 cos2 0 (by Rule E8) 
= A2 (sin2 0 + cos2 q0) 

SA2 (since sin2 0+ cos2 0 = 1 by 
Pythagorean theorem) 

Therefore, 
A = Ja2+b 

Also, 
a = A sin = tan 0 (by the basic defini- b A cos 0 tion of sin, cos, and 

Therefore tan) 
S= tan a b 

What we have done is not only to show that the two formulas 
for f(t) above are the same, but also how to derive one form 
from the other. 

The Most Beautiful Formula in Mathematics 

In the 19th century, the German mathematician Euler 
proved the following remarkable identity: 

eix = cosx +i sin x 

thereby relating algebraic exponentials to the trigonometric 
functions. This key formula is the basis for much of the 
mathematics used in signal processing, for it allows some very 
powerful manipulations to be made using sinusoidal functions 
that would otherwise prove very tedious. For example, by 
using rules E3 and E8 regarding exponents, it is easy to see 
that 

(rei&)P = rPeipO (De Moivre's theorem) 

By using Euler's relation we can see that this innocent-looking 
equation "says" the same thing as 

[r (cos a+ i sin e)]P = rP (cosp+ i sin po) 

This form of De Moivre's theorem may be used to demonstrate 
many of the trigonometric identities in a very economical way. 
For example, if we let r = 1 and p = 2, 

cos 2o + i sin 
2o 

= (cos 
o 

+ i sin e)2 
= cos2o - sin 2 + i 2 sin 

o 
cos q 

Since two complex numbers are equal if an only if both their 
real parts are equal and their imaginary parts are equal, this 
simple procedure has just shown that 

cos 2G = cos2e - sin 2e and 
sin 2o = 2 sin a cos o 

This demonstrates the validity of both identity TI and 
identity T2. In other words, by using the complex exponential 
in Euler's relation, we can, in effect, solve two equations at 
once! 

But Euler's relationship tells us something else, 
something which is at the same time profound, elegant, and 

simple. It tells us of a relationship among all of the known 
fundamental constants of mathematics in a way that mathe- 
maticians, and perhaps by now the reader, can only consider 
beautiful. It is easy to see from Figure 5 that the following 
relationships are true: 

cos n = -1 
sin rr = 0 

If we substitute 7r for x in Euler's relationship, we are unerring- 
ly led to what has been rightly called "the most beautiful 
formula in mathematics:" 

e' = cos n + i sin n 
= -1+0 

Therefore: 
es"+ 1 = 0 

Conclusion of Part I 

Mathematicians create mathematics, the rest of us 
merely use, and sometimes appreciate, what the mathema- 
ticians have created. Computers have at the same time reduced 
the need for human calculation and increased many fold the 
utility of human mathematics, especially to non-mathemati- 
cians who can now apply these powerful tools to the study of 
virtually anything. We now have to discover the models which 
state the correspondence between phenomena and mathe- 
matics. Once we know that a vibration is periodic, for 
instance, we know that we can use Fourier's techniques to 
find the elemental building blocks of the vibration. We also 
know that if we add up the same building blocks ourselves 
that we can reproduce the phenomenon at will. Or perhaps we 
might improve on the original a bit, once we're sure that the 
original is understood correctly. 

Thus we can make machines that talk and sing, we can 
study the waves in the ocean, and the vibrations in an earth- 
quake. Fourier himself was studying the transfer of heat at the 
time he devised his theorem about the way waves are shaped, 
which is all the more remarkable because it doesn't matter! 
Mathematics deals with the relationships, not with the things 
per se, and if a theorem correctly states that "A" has relation 
"R" to "B", and we note that the height of a mountain could 
be thought of as thing "A", then we know that something else 
will correspond to "B", and "R" will tell us where to look for 
it. 

For the reader interested in using mathematics, a good 
mathematical handbook is heartily recommended, such as the 
excellent and inexpensive Mathematical Handbook of 
Formulas and Tables by Murray R. Spiegel, available as a 
Schaum Outline Series paperback (McGraw-Hill). For the 
reader interested in understanding mathematics in greater 
detail, it is recommended that this be treated in the same way 
as a desire to learn to play a piano: a good teacher and regular 
practice will suffice in a way that nothing else can. Reading 
books helps,* and there are certainly plenty of books to read 
on mathematics at every conceivable level, but not much 
more than it helps to read a book about playing a piano. 

* An excellent book to read is The Foundations of Mathemat. 
ics by Stewart and Tall (Oxford University Press). 
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Some Problems 

1. Solve these equations for x: 

a) x2 - 1 = 0 (Two solutions) 
b) x4 - 1 = 0 (Four solutions) 
c) loglox = .43429... (Hint: logaa = 1) 
d) antilog2 5 = x 
e) 2x = 20 (Hint: 20 = 10 - 2) 
f) ax2 + bx + c = 0 

2. The sequence (i, i2, i3, , i45, ... ) is periodic, since it 
eventually repeats itself every n numbers. Find n. 

3. Find the sum of all the integers between 100 and 1000, 
inclusive. 

4. Rewrite the following sequences using summation notation 
(1) and find their solutions: 

a) 1, 000, 000 + 100, 000 + 10, 000 + ... (infinitely many 
terms) 

b) 100 + 200 + 400 + 800 +... to 10 terms 
c) 106 + 2.5 X 105 + 6.25 X 104 + ... to n terms 

5. If we graph a complex number c = x, + iyI on a plane, we 
can use x, and yi for the horizontal and vertical coordin- 

ates of a point on that plane 

Y7 
- _ 

(xI'Yl) 

I I 

x x-- 

If we draw a straight line from the origin (point (0, 0) ) to 
point (x,, yl ), we could also use the length r and angle & 
of that line to define the locations of the point 

(xl, 
Y ). 

Find r and e in terms of xl and yl. 
(Hint: Pythagoras' theorem states that the square of the 
length of the hypotenuse of a right triangle is equal to the 
sum of the squares of the other sides). 

6. Show that sin 2 + cos2o = 1. 

7. Show that e ie = cos e + i sin & 
(Hint: Use the summation formula, also called the power 
series expansion, for ex). 
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Monochord illustrating universal relationships (from Robert Fludd's Monochordum mundi, Frankfort, 1622.) 
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