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Abstract—In this paper, a fast and reliable formula for 

simplifying sin
4
n and cos

4
n using Half Angle Identities will be 

developed. This formula offers a simplified approach in 

simplifying sine and cosine function with exponent 4 to a 

function of cosine with exponent 1 with any value of n. From the 

algorithm of solving of half angle identities the new formula will 

emerge. 

 

Index Terms—Mathematical algorithm, half angle identity, 

multiple angle formula, half angle formula, trigonometric 

identities. 

 

I. INTRODUCTION 

Half angle formulas are very useful. It is use to rewrite and 

evaluate multiple angle formulas. Usually it involves the 

other multiple angle formulas like the double angle formula 

to simplify the expression. Rational functions involving sine 

and cosine become easier to manipulate with the existence of 

half angle and the degree of difficulty to solve or to work on 

the problems involving sine and cosine becomes easier 

especially in the case of powers of sine and cosine. Half angle 

formulas and half angle identities all started from 

trigonometric identities. Simple ways on derivation of 

formula are shown in [1]-[3]. 

Half angle formula will direct you closer to the angle of the 

unit circle. It is the better option in order to find the 

trigonometric values of any angle that can be expressed as 

half of another angle on the unit circle. 

Half-angle identities are derived from half angle formulas. 

Common application of these is to evaluate trigonometric 

function of an angle that isn't on the unit circle [4]. 

The purpose of this paper is to present a new formula to 

simplify the solution in expressingSin4n and Cos4n in 

terms of cosine function with exponent 1. Some examples are 

given using the old method and the new one. The results of 

the new formula suggest that the new formula is easier to use 

than the old one. 

Half angle identities for sine and cosine [5], [6]. 
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II. PROCEDURE OF THE OLD METHOD 

The usual procedure in evaluating half angle identity is to 

apply double angle and half angle formulas. In expressing 

sine and cosine function in terms of cosine with exponent one 

is to factor the given to reduce the exponent. All functions 

with equivalent identity are substituted before manipulating 

and simplifying the equation. 

If you are to express 𝑠𝑖𝑛4u in terms of the cosine function 

with exponent 1. The procedure will be as follows: 
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Simplify 
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Similarly, if you are to express 𝑠𝑖𝑛42u
 
in terms of the 

cosine function with exponent 1. The procedure will be:
 

 

Factor u2sin4  
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Generalizing the results for the three examples given 
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In the case of cosine function with exponent 4, the same 

method will be applied: 
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Another example is express 𝑠𝑖𝑛43u in terms of cosine 

function with exponent 1. The same procedure will be 

followed:

If you are to express 𝑐𝑜𝑠4u in terms of the cosine function 

with exponent 1. The procedure will be as followed:

We can say that for every function 𝑠𝑖𝑛4𝑛𝑢 the simplified 

expression in terms of cosine function with exponent 1 is:
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Generalizing the result for the three examples given 
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III. PROCEDURE OF THE NEW METHOD 

With the new formula we can solve the same problem with 

different values of n. This makes the procedure easy and 

solution shorter. 

Example: 

Express the following example in terms of cosine function 

with exponent 1 using the formula written below 
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Similarly if you are to express𝑐𝑜𝑠42𝑢 in terms of the 

cosine function with exponent 1. The procedure will be

Another example is express 𝑐𝑜𝑠43𝑢 in terms of cosine 

function with exponent 1. The same procedure will be 

followed

We can say that for every function 𝑐𝑜𝑠4𝑛𝑢 the simplified 

expression in terms of cosine function with exponent 1 is:

Therefore, instead of simplifying the function 

𝑠𝑖𝑛4𝑛𝑢 and 𝑐𝑜𝑠4𝑛𝑢 into a function with exponent 1 using 

the long method we can use the simplified formula which is:
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IV. CONCLUSION 

function with exponent 1 can be solved using half angle 

identities as mathematical algorithm. The process to solve 

this kind of form is shorter and easier using the new formula 

presented in this paper. The formula presented is very easy to 

follow because it is the generalized formula for the said 

function. This confirms that simplifying trigonometric 

equations can be attained by sufficiently following this 

simple formula. This can be further used in higher 

mathematics courses such as Differential and Integral 

Calculus, Differential Equations, Complex Analysis and even 

in Physics and Mechanics. The most prominent application of 

this is in the field of engineering particularly in Electrical, 

Civil and Mechanical in which the alternating current (AC) 

and direct current (DC) are being analyzed. It can be widely 

used in Architecture especially in large scale infrastructures. 

In the field of music especially stringed instrument it can be 

used in calculating the frequency and the same with Physics 

which also requires the calculation of frequency in unit of 

Hertz. 
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