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I. Introduction 
This paper is about G. Spencer-Brown's "Laws of Form" [LOF, SB] and 
its ramifications. Laws of Form is an approach to mathematics,  and 
to epistemology, that begins and ends with the notion of a 
distinction. 
Nothing could be simpler. A distinction is seen to cleave a domain. A 
distinction makes a distinction. Spencer-Brown [LOF] says  
"We take the form of distinction for the form." 
There is a circularity in bringing into words what is quite clear 
without them. And yet it is in the bringing forth into formalisms 
that mathematics is articulated and universes of discourse come into 
being. The elusive beginning, before there was a difference, is the 
eye of the storm, the calm center from which these musings spring. 
 
In this paper, I have endeavored to give a mathematical and 
personal account of an exploration that I have followed for quite 
some time. As a result, there have arisen many pathways and 
byways, all related to this central theme of distinction. The 
collection of sections will speak for themselves, but a few warnings 
are in order: Part of the game of fusing apparently separate subjects 
is the use of similar notations with different import in different 
contexts. 
Accordingly and particularly, we use the Spencer-Brown mark in 
many different contexts with shifts of meaning, and shifts of use as 
these contexts change. This means that the reader is invited to pay 
close attention to the uses assigned to notations in any given 
section. 
They vary from place to place. In all cases, the mark stands for a 
distinction, but just how that distinction is distinct in its particular 
context is a matter for local articulation. 
 
Sections 2 through 6 are a review of Laws of Form basics, with 
remarks that tell more. Section 7 is a relatively deep exploration of 
parentheses and contains a new proof, using marks and anti-marks, 



of the formula for counting the number of well-formed expressions 
in a given number of parentheses. This section will be of interest to 
those who wish to reformulate Laws of Form in parenthetical 
language. 
 
Section 7 also introduces containers and extainers, an algebra 
generated by parenthesis structures, that reaches into biology 
(DNA reproduction), physics (Dirac bra-kets and ket-bras) and 
topology (the Temperley Lieb algebra and knot invariants).  
 
Another theme that comes forward in section 7 is the matter of 
imaginary boolean values. It has been my contention for a long time 
that mathematics itself is the subject that 
invents/discovers/catalogs/explores  
forms of reasoning beyond boolean logic. Each such discovery is 
eventually seen to be quite "logical", and is accepted into the toolkit 
of mathematicians and users of mathematics, who find all these 
methods as amazing ways to get at the truth about structured 
situations. In particular, the Spencer-Brown mark is itself (in the 
mind of the one who marks, in the mind that arises in the marking) 
the quintessential imaginary boolean value. This point may be 
either too easy to see at the beginning or too hard to see, but when 
we find the incredible effectivity of using a combination of mark 
and anti-mark in getting at the properties of parentheses and binary 
sequences (as happens in section 7), then it may dawn on us that 
there really is a power of new reasoning in mathematical 
constructions. Mathematical constructions are powers of reason. 
 
Section 8 shows how boundary interactions give a new viewpoint on 
the primary arithmetic of Laws of Form, and gives a quick 
introduction to relationships with map coloring. Section 10 looks at 
sets in terms of the mark. Sections 10, 11, 12 are about re-entry, 
recursion and eigenform. The theme of imaginary value here comes 
forth in language that captures aspects of infinity and 
incompleteness of formal systems. Section 13 returns to sets, and 
weaves a story about sets and knots and links. Section 14 is about a 
digital circuit model and about the structures that come from 
chapter 11 of Laws of Form. Here counting and imaginary values 
live in the context of designs for circuits whose behaviour is quite 
real, and whose structure has the subtlety of asynchronous states 
and transitions. Section 15 discusses the waveform arithmetics of 
Form Dynamics [FD], and the Flagg resolution of paradoxes that lets 
us avoid multiple valued logics if we so desire.  



 
In fact Flagg resolution is intimately related to the remark we made 
at the beginning of this introduction, that each use of the distinction 
must carefully respect the context in which it is cradled. The whole 
enterprise of paradox resolution is the search for appropriate 
contexts in which the contradiction will not arise as an anomaly. 
When the contradiction does arise, it comes forth because a new 
value for a familiar object seems to contradict its present value. 
Flagg resolution denies the freedom to make the substitution. The 
entity that becomes contradictory is treated as non-local in the text, 
and must change in every instance of its saying, or not at all.  
 
Section 16 explains diagrammatic matrix algebra, applies it to the 
vector algebra of three-space, and indicates its relationship with 
map coloring and formation (section 8). Section 17 discusses the 
mythology and form of arithmetic in terms of Laws of Form. Section 
18 shows how the mark, and the primary algebra provide a key to 
deciphering the conceptual notation of Frege. Section 19 is about 
Shea Zellweger's logical garnet, and how this is related to the logic 
structure of the mark. Section 20 is devoted to remembering events 
and people. Section 21 is a final remark. 
 
The titles of the sections are listed below. 
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II. Laws of Form 
Laws of Form [LOF] is a lucid book with a topological notation based 
on one symbol, the mark: 
 

 
 
This single symbol is figured to represent a distinction between its 
inside and its outside: 

Inside

Outside

 
As is evident from the figure above, the mark is to be regarded as a 
shorthand for a rectangle drawn in the plane and dividing the plane 
into the regions inside and outside the rectangle.  Spencer-Brown's 
mathematical system made just this beginning. 
 
In this notation the idea of a distinction is instantiated in the 
distinction that the mark is seen to make in the plane. Patterns of 
non-intersecting marks (that is non-intersecting rectangles) are 
called expressions. For example, 
 

 
 
In this example, I have illustrated both the rectangle and the marks 
version of the expression.  In an expression you can say definitively 
of any two marks whether one is or is not inside the other.  The 
relationship between two marks is either that one is inside the other, 
or that neither is inside the other.  These two conditions correspond 
to the two elementary expressions shown below. 
 



 
 
The mathematics in Laws of Form begins with two laws of 
transformation about these two basic expressions. Symbolically, 
these laws are: 
 

=

=

 
 
 
In the first of these equations, the law of calling, two adjacent marks 
(neither is inside the other) condense to a single mark, or a single 
mark expands to form two adjacent marks.  In the second equation, 
the law of crossing, two marks, one inside the other, disappear to 
form the unmarked state indicated by nothing at all.  Alternatively, 
the unmarked state can give birth to two nested marks. A calculus is 
born of these equations, and the mathematics can begin. But first 
some epistemology: 
 
 First we elucidate a principle of distinction that delineates the use 
of the mark. 
 
Principle of Distinction: The state indicated by the outside of a mark is not 
the state indicated by its inside. Thus the state indicated on the outside of a mark 
is the state obtained by crossing from the state indicated on its inside. 
 

S not S
 

 
It follows from the principle of distinction, that the outside of an empty mark 
indicates the marked state (since its inside is unmarked). It also follows from the 



principle of distinction that the outside of a mark having another mark incribed 
within it indicates the unmarked state. 
 

markedunmarked

unmarked marked unmarked
 

Notice that the form produced by a description may not have the properties of 
the form being described. For example, the inner space of an empty mark is 
empty, but we describe it by putting the word "unmarked" there, and in the 
description that space is no longer empty. Thus do words obscure the form and at 
the same time clarify its representations. 

 
 
Spencer-Brown begins his book, before introducing this notation, 
with a chapter on the concept of a distinction.  
 
"We take as given the idea of a distinction and the idea of an 
indication, and that it is not possible to make an indication without 
drawing a distinction. We take therefore the form of distinction for 
the form."   
 
From here he elucidates two laws: 
 
1. The value of a call made again is the value of the call. 
2. The value of a crossing made again is not the value of the 
crossing. 
 
The two symbolic equations above correspond to these laws. The 
way in which they correspond is worth discussion.  
 
First look at the law of calling. It says that the value of a repeated 
name is the value of the name. In the equation 

=
 

 
one can view either mark as the name of the state indicated by the 
outside of the other mark.   
 
In the other equation 



=

 
 
the state indicated by the outside of a mark is the state obtained by 
crossing from the state indicated on the inside of the mark. Since 
the marked state is indicated on the inside, the outside must 
indicate the unmarked state.  The Law of Crossing indicates how 
opposite forms can fit into one another and vanish into the Void, or 
how the Void can  produce opposite and distinct forms that fit one 
another, hand in glove. 
 
There is an interpretation of the Law of Crossing in terms of 
movement across a boundary. In this story, a mark placed over a 
form connotes the crossing of the boundary from the Domain 
indicated by that form to the Domain that is opposite to it. Thus in 
the double mark above, the connotation is a crossing from the single 
mark on the inside. The single mark on the inside stands for the 
marked state. Thus by placing a cross over it, we transit to the 
unmarked state. Hence the disappearance to Void on the right-hand 
side of the equation. The value of a crossing made again is not the 
value of the crossing. 
 
The same interpretation yields the equation 

=

 
 
where the left-hand side is seen as an instruction to cross from the 
unmarked state, and the right hand side is seen as an indicator of 
the marked state. The mark has a double carry of meaning. It can be 
seen as an operator, transforming the state on its inside to a 
different state on its outside, and it can be seen as the name of the 
marked state. That combination of meanings is compatible in this 
interpretation.   
 
In this calculus of indications we see a precise elucidation of the way 
in which markedness and unmarkedness are used in language. In 
language we say that if you cross from the marked state then you 
are unmarked. This distinction is unambiguous in the realm of 
words. Not marked is unmarked. In this calculus of the mark these 



patterns are captured in a simple and non-trivial mathematics, the 
mathematics of the laws of form. 
 
From indications and their calculus, we move to algebra where it is 
understood that a variable is the conjectured presence or absence of 
an operator (the mark).  Thus  

A  
 
stands for the two possibilities 

=   

=   , A = 

, A = 

 
 
In all cases of the operator A we have 

A  = A
. 

Thus begins algebra with respect to this non-numerical arithmetic of 
forms.  The primary algebra that emerges is a subtle precursor to 
Boolean algebra. One might mistake it for Boolean algebra but at the 
beginning the difference is in the use of the mark. Forming  

A  
accomplishes the negation of A, but the mark that does the job is 
also one of the values in the arithmetic. The context of the 
formalism separates the roles of operator and operand. In standard 
Boolean algebra the separation is absolute. 
 
Other examples of  algebraic rules are the following: 

aa = a

a a =

ab b = ba

a =

  
 
Each of these rules is easy to understand from the point of view of 
the arithmetic of the mark. Just ask yourself what you will get if you 
substitute values of a and b into the equation. For example, in the 



last equation, if a is marked and b is unmarked, then the equation 
becomes 
 

=
 

 
which is certainy true, by the law of calling. 
 
 
With algebra one can solve equations, and Spencer-Brown pointed 
out that one should consider equations of higher degree in the 
primary algebra just as one does in elementary algebra.  
 
Such equations can involve self-reference. Lets look at ordinary 
algebra for a moment. 
 

x2 = ax + b 
 

is a quadratic equation with a well-known solution, and it is also 
well-known that the solution is sometimes imaginary in the sense 

that it utilizes complex numbers of the form  R +Si where i2 = -1. 
One can re-write the equation as  
 

x = a + b/x. 
 

In this form it is indeed self-referential, with x re-entering the 
expression on the right. We could "solve" it by an infinite reentry or 
infinite continued fraction: 
 

x = a + b/(a + b/(a +b/(a +b/(a + b/(a + ...))))). 
 
In this infinite formalism it is literally the case that   x = a + b/x and 
we can write 
 

[a+ b/  ]a + b/(a+b/(a+...))) =

 
 
to indicate how this form reenters its own indicational space. 
This formal solution to the quadratic equation converges to a real 
solution when the quadratic equation has real roots. For example, if 
a=1=b, then 



 

1+1/(1+1/(1+...))) = [1+ 1/  ]

 
 

converges to the positive solution of  x2 = x + 1, which is the 
golden  
ratio, ! = (1 + !5)/2.  We shall have more to say about the 

geometry of the golden ratio in later sections. 
 
 On the other hand, the quadratic equation may have imaginary 

roots. (This happens when a2 + 4b is less than zero.) Under these 
circumstances, the formal solution does not represent a real 
number. 
For example, if i denotes the square root of minus one, then we 
could write 
 

= -1/(-1/(-1/...))i = [-1/ ]
 

 
to denote a formal number with the property that  
 

i = -1/i .
 

 
Spencer-Brown makes the point that one can follow the analogy of 
introducing imaginary numbers in ordinary algebra to introduce 
imaginary boolean values in the arithmetic of logic. 
An apparently paradoxical equation such as  
  

J =  J
 

 
can be regarded as an analog of the quadratic  x = -1/x, and its 
solutions will be values that go beyond marked and unmarked, 
beyond true and false. 
 
 
III. Paradox 
In Chapter 11 of Laws of Form, Spencer-Brown points out that a 
state  



that may appear contradictory in a space may appear without 
paradox in space and time.  
 
This is so with the famous paradoxes such as the Russell set of all 
sets that are not members of themselves.  These are structures 
whose very definition propels them forward into the production of 
new entities that they must include within themselves. They are 
paradoxical in an eternal world and generative in a world of time.  
 
The simplest instance of such an apparent paradox is the equation    
 

J =  J
 

 
taken in the context of Laws of Form.  For if J is equal to the mark, 
then the equation implies that J is equal to the unmarked state, and 
if J is equal to the unmarked state, then the equation implies that it 
is equal to the marked state. 

J = J = =  

J = J = 
 

 
Sometimes one writes 
 
 

J =
 

 
or  
 

...
J =

 
 
to indicate that this form reenters its own indicational space. 
 
In Laws of Form  we have the equation 



 

=
 

 
where the nothing on the right hand side of the equals sign literally 
means nothing.  Living in this context, we see that the finite 
approximations to the reentering mark will oscillate between the 
values marked and unmarked: 

=

=

=

=

=
  

 
This means that we now have two views of the reentering mark, one 
is purely spatial -- an infinite nest of enclosures.  One is purely 
temporal -- an alternating pattern of marked and unmarked states. 
All sorts of dynamics can occur in between these two extremes and 
this was the subject of Form Dynamics[FD].   
 
There is no paradox when J is seen to oscillate in time. A new state 
has arisen in the form of the reentering mark J.  At this level the 
reentering mark would represent autonomy or autopoiesis [CSR]. It 
represents the concept of a system whose structure is maintained 
through the self-production of its own structure.  This idea of a 
calculus for self-reference, and the production of a symbol for the 
fundamental concept of feedback at the level of second order 
cybernetics captured the imaginations of many people, and it still 
does! Here is the ancient mythological symbol of the worm 
ouroboros embedded in a mathematical, non-numerical calculus. 



The snake is now in the foundations and it is snakes all the way 
down. 
 
One may argue that it is, in fact not appropriate to have the 
reentering mark at the very beginning.  One may argue that it is a 
construct, not a fundamental entity. This argument would point out 
that the emergence of the mark itself requires self-reference, for 
there can be no mark without a distinction and there can be no 
distinction without indication (Spencer-Brown says there can be no 
indication without a distinction. This argument says it the other way 
around.). Indication is itself a distinction, and one sees that the act 
of distinction is necessarily circular.  Even if you do not hold that 
indications must accompany distinctions, they do arise from them. 
The act of drawing a distinction involves a circulation as in drawing 
a circle, or moving back and forth between the two states. Self-
reference and reference are intimately intertwined. 
 
In our work on Form Dynamics [FD] we place the reentering mark 
back in the position of a temporal construct.  In biology one may  
view autonomous organisms as fundamental,  and one may look to 
see how they are generated through the physical substrate.  It is a 
mystery that we face directly. The world that we know is the world 
of our organism. Biological cosmology is the primary cosmology and 
the world is fundamentally circular. 
 
In writing [FD], I was fascinated by the notion of imaginary boolean 
values and the idea that the reentering mark and its relatives, the 
complex numbers, can be regarded as such values.   
 
The idea is that there are "logical values" beyond true and false, and 
that these values can be used to prove theorems in domains that 
ordinary logic cannot reach.  Eventually I came to the 
understanding that this is the creative function of all mathematical 
thought.   
 
At that time I was fascinated by the reentering mark, and I wanted 
to think about it,  in and out of the temporal domain.  
 
The reentering mark has a value that is either marked or unmarked 
at any given time. But as soon as it is marked, the markedness acts 
upon itself and becomes unmarked. "It" disappears itself.  However, 
as soon as the value is unmarked, then the unmarkedness "acts" to 
produce a mark.  



 
You might well ask how unmarkedness can "act" to produce 
markedness. How can we get something from nothing?  The answer 
in Laws of Form is subtle.  It is an answer that destroys itself. The 
answer is that  
 
Any given "thing" is identical with what it is not.   
 
Thus markedness is identical to unmarkedness.  Light is identical to 
darkness.  Everything is identical to nothing.  Comprehension is 
identical to incomprehension.  Any duality is identical to its 
confusion into union.  There is no way to understand this "law of 
identity" in a rational frame of mind.  An irrational frame of mind is 
identical to a rational frame of mind. In Tibetan Buddhist logic there 
is existence, nonexistence and that which neither exists nor does not 
exist [BL]. Here is the realm of imaginary value. 
 
The condition of reentry, carried into time, reveals an alternating 
series of states that are marked or unmarked.  This primordial 
waveform can be seen as  
 

Marked, Unmarked, Marked, Unmarked,.... 
 
or as 
 

Unmarked, Marked, Unmarked , Marked,... 
 
I decided to examine these two total temporal states as 
representatives of the reentering mark, and I called them I and J 
respectively [DMA].  These two imaginary values fill out a world of 
possibility ,  that is perpendicular to the world of true and false. 
 



TF

I

J

I = [T,F] <-----> TFTFTFTFTFTFTFTFTF...

J = [F,T] <-----> FTFTFTFTFTFTFTFTFT...

I J

 
 
In [DMA] it is shown how I and J can  be used to prove a 
completeness theorem for a four valued logic based on True, False, I 
and J.   This is the "waveform arithmetic" associated with Form 
Dynamics.  In this theory the imaginary values I and J participate in 
the proof that their own algebra is incomplete.  This is a use of the 
imaginary value in a process of reasoning that would be much more 
difficult (if not impossible) without it.    
 
We shall return to this discussion of paradox and values that extend 
beyond the marked and the unmarked in sections 10 - 15. In the 
next section we take up the mathematics of Laws of Form from the 
beginning. 
 
IV. The Calculus of Indications 
So far, we have described how Laws of Form is related to the 
concepts of distinctions, self-reference, paradox and reentry. 
We now go back to the beginning and look at the mathematical 
structure of the Calculus of Indications  and its algebra. We shall see 
that these structures reach outwards to a new view of Boolean 
algebra, elementary logic, imaginary values and a myriad of 
excursions into worlds of mathematical form. 
 
Recall the two basic laws of calling and crossing: 
 
 



=

=

Calling:

Crossing:
 

 
The mark is seen to make a distinction in the plane between its 
inside and its outside, and can be regarded as an abbreviated box. 
 
An expression is any collection of marks that have the property that 
for any two of them, they are either each outside the other, or one is 
inside the other one. 
 

 
 
In the figure above we have illlustrated an expression in the form of 
boxes, and in the Laws of Form notation. Note that it is manifest to 
the eye that any two boxes are either outside each other, or one is 
inside the other one. In the box notation, an expression is just a 
collection of boxes in the plane such that the boundaries of the 
boxes do not intersect each other. One reads this same criterion into 
expressions created with the mark as half-box. 
 
A Word About the Equals Sign.  
A = B is to be understood as saying that  
"A can be confused with B." in the root meaning of the word 
confused. To confuse A and B is to lose the distinction that makes 
them different. Just so, in the laws of calling and crossing, the 
equals sign is an indication of our capacity to see two calls as a 
single call, and to see a crossing made again as no crossing at all. 
 
Calling and crossing can be applied to the parts of an expression. 
For 
example 
 



= =

 
 
the expression shown above reduces to the marked state by two  
applications of crossing. Note that in applying calling or crossing, 
one looks for a region in the expression where only the pattern of 
marks in the representative form for calling or crossing occur. 
To apply calling, one must find two empty adjacent marks. 
To apply crossing one must find two nested marks with no other 
marks between them, and with the innermost mark empty. 
 
Here is another example of reduction. 
 

= =

 
 
In this case, the expression reduces to the unmarked state via one 
application of calling and one application of crossing.  
 
Lemma 1. Any finite expression can be reduced to either the 
marked or to the unmarked state by a finite sequence of 
applications of calling and crossing. 
 
Remark. We say finite expression in the statement of the Lemma 
because there are infinite expressions such as  
 

...
J =

 
 
 
where there is no possibility of any reduction, since neither the law 
of calling  nor the law of crossing applies. In the expression J above, 



there is no instance of adjacent empty marks and there is no 
instance of two nested marks with the inner mark empty. This would 
be the case if the expression stopped as in  
 

J6 =

 
 
consisting in six nested marks. We see easily that J6 is equivalent to 

the unmarked state, and that more generally, Jn (n nested marks) is 

equal to the marked state when n is odd and to the unmarked state 
when n is even. The infinite expression J is neither even nor odd, 
and it does not reduce to either the marked state or to the 
unmarked state. 
 
Remark. In order to prove Lemma 1, it is useful to note that an 
expression divides the plane into disjoint (connected) divisions that 
can be assigned depth 0,1, 2,.. . according to the number of inward 
crossings needed to reach the given division.  The concept is 
illustrated in the diagram below. In this diagram we illustrate an 
expression both in box form and in the notation of the mark. 
 



01

2

33
4

01

2

3

4
3

 
 
In the diagram above, note that the given expression has two 
divisions of depth 3. In general there may be a multiplicity of 
divisions at a given depth. The maximal depth in this expression is 
4. 
Any finite expression has a maximal depth and a finite number of 
divisions.  Note that a division of maximal depth is necessarily 
empty, for otherwise it would have marks within it leading to 
greater depth. When you get to the bottom, there is nothing there. 
 
 
Proof of Lemma 1.  Let E be a finite expression. Let S be a 
division of maximal depth in E. Then S is necessarily empty, and S 
may  be surrounded by an  mark M. This mark itself may be 
surrounded by an otherwise empty mark, or it may be  adjacent to 
some other mark M'. If there is another mark M' adjacent to M, 
then M' must be empty, else the depth in M' would be greater than 
the depth in M. Therefore if there occurs an M' adjacent to M then 
M and M' can be reduced to M alone by the law of calling. If there 
is no adjacent mark M' to M, and M is nested within a mark M'', 
then M and M'' can be canceled by the law of crossing. We see that 
in these cases the expression can be reduced to an expression with 



fewer marks. The only case where this can not be accomplished is 
when the expression is empty or consists in a single mark. This 
completes the proof of the Lemma. // 
 
Lemma 1 shows that every expression can be regarded as marked 
or unmarked, but one could worry that it might be possible to 
transform the marked state to the unmarked state by using the laws 
of calling and crossing.  Note that expressions can be made more 
complicated as well as less complicated by applications of calling 
and crossing. The next Lemma assures us that the marked and 
unmarked states are indeed different. 
 
Lemma 2. There is no finite sequence of applications of calling and 
crossing that can transform the unmarked state to the marked state. 
 
Remark. In order to prove Lemma 2 we shall give a method for 
calculating a well-defined value V(E) for each expression E.  (The 
letter V in V(E) stands for the word Value.) 
 
V(E) does not depend upon reducing the expression by using 
calling and crossing. We then show that V(E) does not change under 
the operations of calling and crossing.  
 
V(E) is computed as follows: 
We shall use two values denoted by m (marked) and u (unmarked). 
These values will label divisions of an expression. We take the rule 
that if a division is labeled with at least one m and some number of 
u's  then its label is m. If it is labeled with only a multiplicity of u's 
then its label is u. Thus  
uu=u 
mm=m 
mu = um = m 
as far as labels are concerned. These labels give names to each 
division in an expression. 
 
Now take an expression E, and label all its empty divisions (e.g. the 
deepest divisions) with u. Now send labels upward from  deeper 
spaces by the rules shown below. 
 



u

m

u

m m

u

 
 
A deeper space sends an opposite label to divisions of one lesser 
depth above it.  Think of the marks as inverting the labels as they 
pass the boundaries. Each successive division acquires a definite 
value by combining all labels that it receives from the depths below 
it. 
 
Finally the unique division of depth 0 receives a label of m or u. 
This label for depth 0, is by definition V(E). 
 
Here is an example of the labeling process. 
 



u

u

u

u

m
m

u

u

m
m

u

u

u

m
m

u
u

m

 
 
Let E denote the initial expression. We begin the process by labeling 
the the two deep empty spaces with u. Crossing the boundary from 
these spaces propagates two m labels. The second m label 
propagates a u label into a division already labeled m. This does not 
change the value of that division, and a u is propagated into the 
next division which then propagates an m to the zero depth 
division.  
Hence V(E) = m.   
Note that E reduces by calling and crossing to the marked state. 



 
A little thought by the reader should convince her that this method 
of evaluation of an expression is well-defined for finite expressions. 
 
Proof of Lemma 2. Let E be a finite expression. Suppose that F 
differs from E by one operation of calling. Consider the calculation 
of V(E). Suppose that F has two adjacent empty marks and that E is 
obtained from F by removing one of the marks. Then each mark in 
F has its interior space labeled u and each mark transmits a label m 
to the same division in which they are adjacent. Since mm = m, we 
see that the evaluations of E and F are necessarily the same. Now 
suppose that E contains two nested marks with the innermost mark 
empty, and that these two marks have been removed in F. Then the 
innermost space of the two marks is labeled u, the next space m and 
the space outside the marks receives a u from them. Hence 
removing the two marks does not affect the evaluation of F. We have 
shown that if E and F differ by one act of calling or one act of 
crossing, then V(E) = V(F). It is easy to see that V(M) = m and 
V(U) = u where M denotes a single mark, and U denotes the 
unmarked state. Thus there can be no sequence of calling and 
crossing that takes M to U since at each step the value of I remains 
constant, and the labels u and m are distinct. This completes the 
proof of Lemma 2. // 
 
Example. The following diagram illustrates the simplest cases of the 
invariance of V(E) under calling and crossing. 
 

=

=

Calling:

Crossing: u
mu

u

m m m

u u u

 
 
We now know that every expression E in the calculus of indications 
represents a unique value (marked or unmarked) and that this 
value can be found either by reducing the expression to the marked 
or unmarked state, using calling and crossing, or by computing 
V(E). 
 



V. The Primary Algebra 
In the last section we established that the calculus of indications, the 
primary arithmetic based on the laws of calling and crossing, is a 
non-trivial formal system that has a unique value (marked or 
unmarked) associated to each expression in the calculus. This 
calculus can be regarded as an arithmetic of distinctions, and just as 
ordinary arithmetic has an algebra, so there is a Primary Algebra 
that describes the calculus of indications. In this algebra, a letter 
will denote the presence or absence of a marked state. Thus A, as an 
element of the primary algebra denotes an unspecified expression in 
the primary arithmetic of the calculus of indications. If we write 
 

A
  

 
this new algebraic expression denotes the result of crossing the 
original expression A.  Thus if A is marked then the cross of A will 
be unmarked, and vice versa. Similarly, if A and B are algebraic 
symbols, then we can form 

A B and AB
 

 
where the juxtaposition of two symbols described the juxtaposition 
of the expression for which they stand. For example 
 

If A = and B = ,

then  AB = 
.

 
 
It is easy to see that AB is marked exactly when either A is marked, 
or B is marked. Thus the algebraic operation of juxtaposition 
corresponds to the logical operation "OR", where the logical values 
under consideration are marked and unmarked.  By the same token, 
 



A
 

 
denotes NOT A, often denoted by  ~A. 
 
Remark. Note that in working with the primary algebra, we take it 
for granted that elements of the algebra commute: 
 

AB = BA
 

 
for any algebraic expressions A and B. Certainly, we can observe 
that this is indeed an identity about the primary arithmetic. It is just 
that we use this identity so frequently, that it is useful to take it as a 
given and not have to mention its use. (Of course, if we consider 
non-commutative generalizations of the algebra, then instances of 
commutativity will have to be indicated.) 
 
Remark on Logic. The algebra we are constructing can be 
construed as an algebra for the logic of true and false by adopting 
the convention that  
Marked = True 
UnMarked = False. 
We shall hold to this convention, and describe the interpretation for 
logic as we go along. So far, we have interpreted AB as A OR B and  
Cross A as NOT A. We will return to the interpretations for logic 
after discussing the algebra a bit more. 
 
The primary algebra has lots of identities, just as does ordinary 
algebra. Lets look at some of them. 
 



AA = A

If A = 

then AA = = = 

If A =     

then AA =   = A.

A.

 
 
In the above figure, we have shown the identity AA = A, and its 
proof. Proofs are easy in the primary algebra. One only has to look 
at the possible values for the terms, and then use properties of the 
primary arithmetic. 
 

A =  A

If A = then 

A = = = A.

If A =   

then A = = = A.
 

 
Above is the identity "A double cross = A" and its proof in the 
primary arithmetic. 
 



A  A =  

AB B = A B

A =  

A B C AC BC=

A = A

AA = A

A B A = A

J1.

J2.

C1.

C2.

C3.

C4.

C5.

A B A B = AC6.
 

 
Figure 1 - Identities in the Primary Algebra 
 
In the Figure above, we have listed a number of identities in the 
primary algebra, including C1 and C5 that we have already 
discussed. The reader should try his hand at proving each of J1, J2, 
C1, C2, C3, C4, C5 and C6. The reader of Laws of Form will find 
that there are three more identities proved there, and that the ones 
we have listed have the following names: 
J1. Position 
J2. Transposition 
C1. Reflection 
C2. Generation 
C3. Integration 
C4. Occultation 
C5. Iteration 
C6. Extension. 
It is convenient at times to refer to the identities by their names. 
 



There are actually an infinite number of identities that one can 
write down in primary that are truths about the primary arithmetic. 
How can we understand the structure of the collection of all such 
true algebraic identities? One way to study this question is to realize 
that some identities are algebraic consequences of other identities. 
For example, once we know reflection (C1 above), then we can 
apply it again and again, as in  

A =  A  =  A .
 

 
In fact, we regard the identity 
 

A A=
 

 
as a direct instance of C1.  More generally, in working algebraically, 
we interpret each identity as an infinite number of specific algebraic 
formulas that can be obtained through algebraic substitution into 
the variables in a given identity. Thus 
 

A  A =  J1.

Let A = B C . Then

B C B C = 
 

 
But there are subtler possibilities. For example, reflection is an 
algebraic consequence of J1 and J2. Here is the proof. 
 



A  A =  

A B C AC BC=

J1.

J2.

A = A A A

=  
A A A A

=  
A A

=  
A A A A

=  
A A A

=  A

(J1)

(J2)

(J1)

(J1)

(J2)

(J1)
 

 
The reader should look carefully at the steps in this demonstration. 
In the first step we used one of the infinitely many instances of J1, 
here obtained by replacing A by cross A in J1. Hen we apply J2 
directly, and then vanish a subexpression using J1. We then 
reinstate a different subexpression using J1 and avail ourselves of 
the opportunity to apply J2. The resulting expression simplifies via 
J1. 
It is certainly not immediately obvious that C1 is a consequence of 
J1 and J2, but once this has been accomplished, it is not too hard to 
show that C3, ..., C6 all follow as well. 
 



For example, here is the proof of C2: 
 

A  A =  

A B C AC BC=

A = A

J1.

J2.

C1.

A  B B = A B B

A B BB=

A B=

A B=

(C1)

(J2)

(J1)

(C1)
 

 
In this demonstration, we have used C1 freely. If one wants a pure 
demonstration of C2 from J1 and J2, then it can be obtained from 
this demonstration by repeating the moves that obtain C1 from J1 
and J2 whenever we have just used C1. 
 
It turns our that all equational identities about the primary 
arithmetic can be derived from J1 and J2. This is the completeness 
theorem for the primary algebra. 
 
Completeness Theorem for the Primary Algebra.  Let a = b 
be an algebraic identity that is true for the primary arithmetic. Then  
a = b is a consequence of J1 and J2.  
 
We omit the proof of this Theorem, and refer the reader to Laws of 
Form for the details. This result is the analog of completeness 



theorems for axioms systems for Boolean algebra, and it is a version 
of the completeness of the Propositional Calculus for elementary 
logic. It is very nice to have a Theorem of this kind for an algebraic 
or logical system. In more complex systems there is no algorithm to 
determine whether a give statement is a theorem in the system, but 
in the case of the primary algebra it is a finite algorithmic check to 
determine arithmetically whether a = b is true or false. 
 
One says that J1 and J2 are initials for the primary algebra.  If 
another collection of equations has the same consequences, then we 
say that the other set of equations is also a set of initials for the 
primary algebra. It is also worth remarking that there are other sets 
of initials for the primary algebra. Two that are worth noting are 
1. J1 (position), C1 (reflection)  and C2 (generation). 
2. C6 (extension). 
That is, position, reflection and generation taken together, 
generate the whole primary algebra. Just extension also generates 
the whole primary algebra. It is an open problem to characterize 
just which sets of initials capture the entire algebra. 
 
I will refer to {position, reflection, generation} as the Bricken 
Initials, as the observation that they are an alternate set is due to 
William Bricken [WB]. That {extension} is an initial for the primary 
algebra is a reexpression of a theorem discovered for Boolean 
algebras in the 1930's by Huntington [H]. It was re-discovered by 
Spencer-Brown and his students in the 1980's. See [RA] for a proof 
due to the author of this article. 
 
In verifying an alternate set of initials, one wants to derive J1 and 
J2 from the new set. We will not go into the details of these results, 
but it is of interest to show that reflection is needed in the Bricken 
initials. That is, we will show that reflection is not a consequence of 
position and generation. The method for doing this is to introduce a 
model in which position and generation are true, but reflection is 
false. In this model we shall have a new arithmetical element, 
distinct from both the marked and the unmarked states, and 
denoted by e, with the following properties 
 



= 

= 

= 

= 

= 

ee = e

e e

e

 
 
Call this the PG Arithmetic (PG stands for Position and 
Generation). Certainly reflection is not valid in this arithmetic, 
since the double cross of e is equal to the unmarked state and e is 
not unmarked. (One proves that this arithmetic really has three 
values in a fashion analogous to the way we proved that the primary 
arithmetic has two distinct values .) One then needs to verify that 
position and generation are facts about the PG arithmetic. We leave 
this as an exercise for the reader. Note that if reflection were a 
consequence of position and generation, then one could deduce it as 
a proposition about the PG arithmetic, and that would be a 
contradiction. Thus we have a model where position and generation 
hold, but reflection does not hold.  
 



p  p =

p q pq q=

p = p

pp = p p= p  p  p = p

p  p = p  p =

p = p p = 

p q r
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rpr qrpr qr

prr qrr rpr qr
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pr qr
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=

=

Bricken Initials
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=
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The diagram above shows the Bricken initials and the derivation of 
iteration, crossed position, integration and transposition from them. 
The derivation of transposition shows the extraordinary power of 
generation in the presence of other initials. In the first three steps of 
the derivation of transposition (shown above) we detail a use of 
generation that should be separately stated as a lemma. 
 
Lemma. Assume only the use of the initial generation.  

pq pq q= .
 

Let E be any algebraic expression. Then for any variable q, Eq = Fq 
where F is any algebraic expression obtained from E by adding or 
removing any instances of the variable q from within 
(past at least one cross) the expression E. 
 
Proof. We leave the proof of this lemma to the reader. // 
 
Example.  
 

qa b c q b c qa=
 

 
The power of sorting variables that is inherent in generation alone is 
extraordinary, and is the basis of Bricken's work on using primary 
algebra in computational contexts. It is worth noting that the 
following problem is NP complete: 
 
Problem: Let E be an expression in the primary algebra in a finite 
number of variables. Determine whether there exist values (marked 
or unmarked) for these variables such the corresponding value of E 
is marked. 
 
No one has given a general algorithm for solving this problem that 
is not time exponential in the number of variables. No one has 
proven that exponential time is necessary. This problem (equivalent 
to the corresponding problem in boolean algebra) is a standard 
example from the range of problems of complexity type NP. Given 
the efficiency of the primary algebra, it is possible that a solution to 
the NP problem could emerge from a deeper analysis of its 
potentials. 



 
Imaginary Boolean Values. The use of e is an example of using 
an imaginary Boolean value to reason to a mathematical result. The  
mathematical result is the fact that reflection is not a consequence 
of position and generation. Without the addition of the extra 
arithmetical value e, any proof of this result would certainly be 
quite complex. In this case, I do not know of another proof.    
 
But what is an imaginary boolean value? Did we really go beyond 
boolean reasoning in using the value e?  Certainly, the three valued 
system PG can be regarded as a sort of logic with extra value e. The 
value e is subtle. It is not unmarked all by itself, but it appears to be 
unmarked in the presence of a mark. By using the imaginary value 
e, we were able to reason to a definite result about the structure of 
algebras. On the other hand, PG can be regarded as a mathematical 
construct, and the reasoning we used, with the help of this 
construct, was normal boolean reasoning.  Here we have the  
fundamental situation that appears to occur with every instance of 
imaginary values. An imaginary value can be viewed as a new piece 
of mathematics. Mathematics itself is the subject that studies and 
classifies imaginary values in reasoning. Each new mathematical 
discovery is a discovery of a new way to bring forth reason. 
Boolean algebra, or standard logic is a very useful brand of 
mathematics. Reason is inexhaustible. 
 
VI. Elementary Logic 
Here is how we shall model elementary logic using Laws of Form. We 
shall take the marked state for the value T (true) and the unmarked 
state for the value F(false). We take NOT as the operation of 
enclosure by the mark. 

A = NOT A
 

 
We take A OR B as the juxtaposition AB in the primary algebra. 
Note that the law of calling tells you that this works as a model of 
OR where A OR B means  "A or B or both". 
 
By putting in AND and ENTAILS,  
we shall have the vocabulary of elementary logic.  
 
First we create AND: 
 



A and B = A B
 

 
We take the convention (See the last section.) that marked 
corresponds to true, and unmarked corresponds to false. 
The reader should have no difficulty verifying that this expression 
for A and B is marked if and only if both A and B are marked. 
Hence it is true if and only if A is true and B is true.  Note also that 
this definition of and embodies the DeMorgan Law: 
 
A and B = Not (Not A  or  Not B). 
 
The next matter is entailment. The standard logical definition of  
A entails B is 
 
A entails B = (Not A)  or  B. 
 
Thus 

A entails B  =  A B .
 

 
The result of our labors is a neat iconic expression for entailment, 
sometimes called implication. Note that the expression of entailment 
is false (unmarked) only if A is marked and B is unmarked. This is 
the hallmark of that operation. A entails B is false only when A is 
true and B is false. 
 
We now have the vocabulary of elementary logic, and are prepared 
to analyze syllogisms and tautologies. For example, the classical 
syllogism has the form 
((A entails B) and (B entails C)) entails (A entails C), 
which has the form in our notation: 
 

A B AB C C
 

 
The tautological nature of this expression is at once apparent from 
the primary algebra. 



 

A B AB C C

A B AB C C

B AB C

B AB C

A C

=

=

=

=

=

 
 
This formalism makes it very easy to navigate problems in 
elementary logic and it makes it easy to understand the structure of 
many aspects of elementary logic. Here is one example. Note that in 
evaluating the syllogism we immediately reduced it to the form 
 

A B AB C C
 

 
where the premises 
A entails B 
and  
B entails C 
are enclosed in marks, while the conclusion 
A entails C 
is not enclosed in a mark. 
 
We can rearrange this syllogistic form using only  reflection (C1 
from Figure 1)  (and implicit commutativity) without changing its 
value. Call the algebra generated by reflection alone the 
reflection algebra. By applying reflection algebra to this form of 



the syllogism, we cannot reduce it to a marked state, but we can 
obtain alternate valid forms of reasoning. We get a host of other 
valid syllogisms from this one form. For example, 
 

A B AB C C

A B A B CC

=

.
 

 
With this rearrangement, we have that the new premises are 
A entails B 
and 
not(A entails C) 
with the conclusion 
not(B entails C). 
 
This is indeed a valid syllogism, but what is most interesting is the 
result of taking one of the interpretations of entailment. 
 
Let us take  
A entails B to mean All A are B. 
Then not(A entails C) means not(all A are C). 
But we can interpret that latter as 
not(all A are C) = some A are not C. 
 
With this intepretation, we have the rearranged syllogism 
with premises 
All A are B. 
and 
Some A are not C. 
with the conclusion 
Some B are not C.  
 
This is ia correct syllogism, and it turns out that there are exactly 24 
valid syllogisms involving some, all and not. Each of these can be 
obtained by rearranging the basic form of the syllogism (as 
indicated above) in combination with replacing some or all of the 
variables by their crossed forms. The 24 valid syllogisms are exactly 
those that can be obtained by this rearrangement process. This fact 



is an observation of Spencer-Brown in his Appendix 2 to Laws of 
Form. 
It is a remarkable observation. The elementary logical form that we 
have been pursuing does not actually "know" about multiplicities. 
Without any formalization of quantification for logical variables, we 
nevertheless get a structure that holds the basic reasonings about 
collections. This a matter for the structure of logic and linguistics 
and it deserves further study. 
 
Remark on the Algebra of Sets. Another relationship of the 
primary algebra with studying multiplicities is its interpretation as a 
Boolean algebra of sets.  
 
Let U be a "universe", a set whose subsets we are studying. 
Let O denote the empty set. Other subsets of U will be denoted by 
alphabetic letters such as A, B, C. Let <A> = U - A denote the 
collection of elements in 1 that are not in A. Interpret this 
complement in Laws of Form notation by 
 

<A> = U - A =  A

U marked state =

O unmarked state =

A

A
U

U = The Universe

O = The Empty Set

 
 
so that cross A = <A> corresponds to the complement of the set A 
in the universe U. Incidentally, the notation <A> for cross A is 
useful in other contexts. William Bricken [WB] and Philip Mequire 



[Meg] apply Laws of Form and other instances of boundary 
mathematics by using this notation. With this interpretation of 
crossing, we see that the subset of the universe makes a distinction 
between inside (in the subset) and outside (not in the subset but in 
the surrounding universe). We then have 
 

A Union B = AB

A Intersection B = A B
 

 
so that the basic set-theoretic operations are expressed in the 
language of the primary algebra. All the identities in the primary 
algebra are correct identities about sets. For example, position says 
that the complement of the union of a set with its own complement 
is empty. Transposition says that union distributes over 
intersection. 
The Boolean algebra of sets can be regarded as a second order 
version of the primary algebra, since the elements of the sets can 
themselves be sets. We ignore everything but the top level of this 
structure when we do the usual set theoretic algebra. 
 
VII. Parentheses 
It will not have escaped the reader that the mark acts as a 
generalized pair of parentheses. In fact it is perfectly possible to 
rewrite the arithmetic and algebra of Laws of Form in terms of 
parentheses with () denoting the marked state.  
 

()=
 

 
For Laws of Form, we then have  
 

(()) = * 
()() = ()  

 
where * is a place-holder for the unmarked state, and can be erased 
when it is convenient. For example, we write (*) = (). In this 
language it is assumed that all parenthesis structures are well-



formed (correctly paired according to the usual typographical 
conventions), and that we make the operation of juxtaposition so 
that AB is regarded as equal to BA. We leave it as an exercise for the 
reader, to rewrite everything in this language and experiment with 
it. Labor is saved in making this switch, while some graphical 
emphasis is lost. 
 
In this section we shall consider parentheses in their usual non-
commutative mode so that AB is not equal to BA in the sense that  
()(()) is not equal to (())(). Hence  
 

= .
 

 
It is here that parentheses come into their own.  
Lets make some lists. 
1. () 
2. ()(), (()) 
3. ()()(), (())(), ()(()), (()()), ((())) 
We have listed all parentheticals with one, two and three 
parentheses. Let Cn denote the number of parentheticals with n 

parenthesis pairs. We have shown that C1=1, C2=2, C3 = 5. You 

will find that C4 = 14. These are the Catalan Numbers. The general 

result is that  
 
Cn = (1/(n+1))C(2n,n) = (2n)!/n!n!(n+1), 

 
where C(r,s) is the number of ways to choose s objects from r 
distinct objects. This counting result is surprisingly subtle to verify. 
 
Here is one way to approach the result. 
Form the following infinite sum of all possible parentheticals: 
 
P = *  + () + ()() + (()) + ()()() + (())() + ()(()) + (()())  + ... 
 
Use the following conventions 
 
(*) = () 
*A = A* = A 
(A + B) = (A) + (B) 
A + B = B + A. 
 



Then it is easy to see that P satisfies the following reentry equation. 
 

P = *  + P(P). 
 
The infinite sum is regenerated by successive reentry into this 
equation, and the equation is literally true about the infinite sum. 
The truth of this reentry equation is equivalent to the observation 
that every parenthetical has a unique expression in the form 
 

X(Y) 
 

where X and Y are smaller parentheticals (possible empty). 
It follows at once from this that Cn satisfies the recursion relation 

 
Cn+1 = C0Cn + C1Cn-1 + ... + Cn-1C1 +CnC0 
 
where C0 = C1 = 1.  

 
For example, 
C4 = C0C3 + C1C2 + C2C1 + C3C2 = 5 + 2 + 2 + 5 = 14. 

 
 

Define C(x) = C0 + C1x +C2x2 + C3x3 + ... .  so that 

 

C(x) = 1 + x + 2x2 + 5x3 + 14x4 + ... . 
 
C(x) is the generating function for the Catalan numbers. 
 
C(x) is obtained from P by replacing each parenthesis pair in P by a 
copy of the commuting variable x. Hence it follows from the reentry 
equation for P, that  
 

C(x) = 1 + x C(x)2.   
 
You then solve this quadratic equation for C(x) as a power series in 
x, using the fractional binomial theorem,  and get the coefficients. 
The coefficients  turn out to be given by the formula we just wrote 
down for Cn.   

 
Just for the record, here is a sketch of that calculation. The 
fractional binomial theorem says that  



 

1+x =1+C
1

1/2
x+C

2

1/2
x
2
+C
2

1/2
x
3
+...  

 
where  
 

C
n

a = a(a!1)(a!2)...(a!n+1)/n! 

 
with a any real number and n a non-negative integer. 
The correct solution to the quadratic to use for this combinatorics is 
 

C(x)=(1! 1!4x ) / 2x= (!1)
n

n=0

"
# 2

2n+1
C
n+1
1/ 2

x
n
. 

 
One then checks that  
 

(!1)n22n+1C
n+1
1/ 2 =C

n

2n /(n+1).  

 
On the other hand, one would like a more direct understanding of 
the formula for the Catalan numbers in term of the structure of the 
parentheses themselves. Note that the choice coefficient C(2n,n) in 
the formula for Cn suggests that we should be choosing n things 

from 2n things. In fact, a parenthesis structure is such a choice.  
Regard a parenthetical as a sequence of left and right parentheses. 
To emphasize this, let L = ( and R = ) so that, for example, 
 

(())() = LLRRLR. 
 

We see that the parenthetical is determined by choosing the 
placement of the three left parentheses in the expression. Thus each 
parenthetical is a choice of n placements of L in a string of 2n L's 
and R's. 
 
But the collection of all such choices is bigger than the set of 
parentheticals. Many of these choices are illegal. For example, 
consider 

RRRLLL = )))(((. 
 



This is a legitimate choice of three L's from six places, but it is not a 
well-formed parenthetical. Our formula  
 

Cn = (1/(n+1))C(2n,n) 

 
seems to be telling us that we should look in the larger set of all 
sequences of n left and n right parentheses, and find that to each 
legal string there are associated in some natural way n other illegal 
strings, filling out the whole set.  
 
It turns out that this idea is correct!  There is a wider domain to 
explore. Let Sn denote the collection of all strings of   n left 

parentheses and n right parentheses.  Call these the n-strings.  
 
In order to conduct this exploration, we shall take seriously the anti-
parenthesis )(.  In fact, we shall denote this by an anti-mark. 

= )(
 

 
With the help of the anti-mark, we can easily write n-strings as well-
formed expressions using both the mark and the anti-mark.  
Such decompositions are not, however, unique. 
For example, 

)()( = 

)()( = .
 

 
There are two distinct ways to write the string )()( as an expression 
in primary marks. (We shall refer to the mark and the anti-mark as 
the two primary marks.) 
 
Note how these two expressions are related to one another. If you 
take the second expression and erase the place where the two marks 
share a bit of horizontal boundary, you get the first expression. 
 



)()( = 
erase common 

horizontal lines

and reconnect the

vertical line.

)()( = 
 

 
We shall call this operation of cancellation and reconstruction of 
expressions, horizontal boundary cancellation, or HB-cancellation 
for short. In order to apply HB-cancellation, the two marks in 
question must be horizontally adjacent to one another, and of 
opposite type. 
Note that the horizontal segment of the lower mark must be shorter 
that the horizontal segment of the upper mark, so that the 
cancellation produces two new horizontal segments. 
Here is another example. 
 



= )()()(

 
 
In this example, we see that  there are five distinct expressions in 
two primary marks that represent the one string )()()(. They are 
obtained one from another by sequences of horizontal boundary 
cancellation. We have collected these expressions below. 
 



= )()()(

= )()()(

= )()()(

= )()()(

= )()()(

 
 
The general result is that if two expressions in the two primary 
marks describe the same n-string, then they can be obtained from 
one another by a sequence of horizontal boundary cancellations (or 
inverse cancellations where one constructs an expression that 
cancels to the first expression).   
 
I shall say that an expression in the two primary marks is special if 
it has the following two properties:  
1. For each anti-mark in the expression, all marks that contain it are 
also anti-marks.  
2. Given two anti-marks in the expression, then one contains the 
other. 
 
For example, in the above list there is only one special expression: 
 

= )()()(
 

 
 
Theorem. To every n-string there corresponds a unique special 
expression in the two primary marks. 



 
Proof. Let S be a given n-string. Regard S as a sequence of L's and 
R's with  

L = (
R = )

= )( = RL

= () = LR .
 

 
Scan the string S and strike out each occurrence of LR. Call the 
resulting string S1. Repeat this process for S1, calling the new string 

S2, and continue until a string Sk is reached that has no occurrence 

of LR. It is easy to see that Sk must either be empty, or of the form 

Sk= RR...RLL...L. Thus Sk itself corresponds to the special 

expression 

Sk

.. .

= R...RL...L = )...)(...(

 
 
Sk will be the collection of anti-marks in the expression for the 

original string S. The LR's that have been removed can be reinserted 
as a collection of legal subexpressions in the mark. The special 
expression is obtained in this manner. 
 
For example, suppose that S = )(()))()( = RLLRRRLRLL. Then we 
see that  
 
S1 = RL[]RR[]LL   and  

 
S2 =  R[[]]RL[]L. 

 
In writing S1 and S2 in this example, we have kept track of the 
removals of LR by placing empty square parentheses for each pair  



LR. As a result, one can read out directly the special expression that 
corresponds to Sk by replacing the square parentheticals with 

parentheticals in the mark. The remaining L's and R's give the parts 
written in the form of the anti-mark. 
 

S2 = R[[ ]]RL[ ]L 

= )[[ ]] ) [ ] ( (

S = )(()))()(( = RLLRRRLRLL

S1 = RL[ ] RR [ ] LL

 
 
This method shows how to uniquely associate a special expression to 
each n-string. It is clear from the construction that any special 
expression is obtained in this way. This completes the proof. // 
 
We now show how to construct all special expressions from the 
collection of parentheticals,  and how this relates to our problem 
about the Catalan numbers.  
 
Generation Method 
1. Take a given expression E in using n marks (no anti-marks).  
2. Form n special expressions from the given expression by the 
following recipe: Choose a mark in the expression E. Switch it to an 
anti-mark and switch all marks that contain this mark to anti-marks. 
This new expression is special. 
 
Here is an example: 
 



E =
n=4

 
 
The result of this generation method is the production from a given 
expression E (in only the mark) n expressions that are special. Note 
that E is, by definition, special. Hence each E produces n+1 special 
expressions, and all special expressions are generated in this way 
from parentheticals. By the Theorem, the collection of all special 
expressions is in one-to-one correspondence with the collection of 
all n-strings of which there are C(2n,n). Thus we have shown that  
 

(n+1)Cn = C(2n,n). 

 
This is exactly what we wanted to prove. QED. 
 
In this section we have looked rather deeply into the structure of 
parentheses, and we have given two quite different proofs of the 
formula for the number of parenthetical expressions with n 
parenthesis pairs. Each proof is accomplished by going outside the 
original system of ideas presented by the counting problem. In the 
first case we used a reentry formula for the formal sum of all 
parenthetical expressions. In the second case, we enlarged the 
structure to all n-strings, and showed how the parenthetical 
epressions were embedded in  n-strings by using the concept of an 
anti-mark (reversed pair of parentheses). These proofs illustrate, in 



a microcosm, the common situation in mathematics where one 
needs to introduce concepts or constructions apparently beyond the 
original problem in order to solve that problem. In this essay we 
have used the metaphor of the imaginary boolean value to refer to 
this process. The metaphor asks us to locate the extra concept, the 
new construction that does the trick in solving the problem. How 
did we go outside the system in order to facilitate a new view and 
accomplish the task? Since there is no logical way to find such 
solutions, it is only after the fact that we look at the entire 
construction and say -- this is just more mathematics! 
 
Coda 
I will end this section with some hints about an algebraic structure 
that uses the mark and the anti-mark. We will write in the language 
of sharp brackets: 

C = < > 

E = >< 

 
calling C a container and E an extainer.  In previous terminology C 
is the mark and E is the anti-mark. Now using sharp parentheses, we 
take the view that C is a container for its inside, while E is an 
opening for interaction with its outside (the space to the right and 
to the left of E in the line). Note the patterns of concatenation: 
 

CC = < > < > = < E > 

EE =  >< >< = > C < . 

 
Iteration of C produces E and iteration of E produces C. If we make 
no discrimination between C and E, then they have symmetric roles 
in this arithmetic of concatenation. But we shall make a 
discrimination. 
 
Suppose that we also had a rule that under certain circumstances an 
E could be generated inside a container. 

< >  (gen)----> < E >. 
Then we could have 
 

< >  (gen)----> < E > = < >< > , 
 



and we have accomplished the reproduction of the container < >. 

 
What is interesting here is that the form of this reproduction is 
identical to way that the DNA molecule can reproduce itself in the 
living cell. The DNA molecule consists in two interwound long chain 
molecules called the Watson and Crick strands. These two strands 
are bound to one another molecule by molecule in a pattern that 
can be reproduced from either of the strands taken individually. 
That is, 
if a Watson strand, Watson, were introduced, by itself, into the 
cell's environment, that molecules from the environment would 
bind to Watson and transform it into DNA = WatsonCrick. 
Similarly, if Crick is the Crick strand, then Crick will be 
transformed by the cell's environment into CrickWatson = DNA. 
Finally, there are mechanisms in the cell that separate DNA into the 
individual strands when the cell divides. Thus we can write 
 
DNA = WatsonCrick -----> Watson E Crick  
-----> WatsonCrick WatsonCrick = DNA DNA 
 
as the schema for DNA reproduction, where E denotes the  action of 
the environment of the cell on these molecules.  
 
This example shows that there is power in the descriptive properties 
of extainers and containers. In the DNA context, the container 
corresponds to the DNA. The DNA is a movable entity, but also, like 
the extainer, open to interaction. 
The extainer, in this description is analogous to the environment 
with its free supply of molecules for interaction. 
 
More generally, the container is a natural notation for a self-
contained entity, while the extainer is a natural notation for an 
entity that is open to interactions from the outside. We can 
emphasize this way of discriminating containers and extainers by 
regarding  
the container as a single entity that is movable. That is, we shall take 
C as an element that commutes with the rest of the string. Then we 
have 
 

EE =  >< >< = > C <  = C ><  = CE. 

 



We do not assume that E commutes with other expressions. In this 
way containers and extainers are made distinct from one another, 
and a language arises that can be used in many contexts.  
 
For example, consider the algebra of two types of container and 
extainer. Let 
 

A = ><  and  B = ] [ . 
 
Then 
 

ABA = >< ] [ > < = < ] [ >  >< = < ] [ > A 
 
BAB = ] [ > < ] [ = [ > < ] ] [ = < ] [ > B. 
 
We see that A and B generate both their own corresponding 

containers  < > and [ ], and also the mixed containers [ > and  

< ], along with mixed extainers  > [ ,   ] <  as well. The identities  

shown above indicate an interesting algebraic structure. 
In fact, this algebraic structure is related to biology, topology, 
statistical mechanics and quantum mechanics. There is not room in 
this essay to explore these connections. We refer the reader to 
[Biologic] as well as [KP]. 
 
Here is a hint about the relationship with physics. Dirac  [D] devised 

a notation for quantum states that has the form | ! >. An function 

that evaluates states is denoted by <" | so that  the bra-ket 

< " | | ! > = < " | ! > 

represents the value of the projection of the state | ! > in the 

direction of | " >.  The ket-bra  | ! >< " |  is used as a 

projection operator and acts just like the extainers in our algebra. 
This duality between evaluations and operators is endemic to 
quantum mechanics. It is an instance of the abstract duality of 
containers and extainers. In fact, if the reader will reflect on our 
original remarks about the dual nature of the mark in Laws of Form 
as operator and as value or name, she will see that the extainer - 



container duality is nothing more than an exfoliation of that 
original identity of naming and acting that occurs at the inception 
of the form.  
 
Here is a hint about the relationship with topology. View the 
diagrams below. You will note that P and Q are now extainers that 
have been shifted from one another by the placement of an extra 
line. Each of P and Q has the aspect of three (vertical) left points 
and three (vertical) right points, connected by non-intersecting 
segments in the plane. Multiplication such as PQ is accomplished by 
attaching the right end-points of P to the left end-points of Q. We 
see that  
PQP = Q via a topological equivalence of the resulting 
configuration. 
This equation is analogous to our equation for A and B above where 
we found that ABA is a multiple of A and BAB is a multiple of B. 
It is in fact mysterious that this pattern occurs in these two different 
ways, one combinatorial, the other topological.  
 

P = Q =

PQP = 

~

= PPQP
 

 
Note also that PP = CP, QQ=CQ where C denotes the circle in the 
plane. We take this circle as the container in this context and allow 



it to commute with every other expression. As the diagrams below 
show,if we take I to denote three parallel lines, then  
{ I, P, Q, PQ, QP} is closed under multiplication, up to multiples of 
C. This algebra is called the diagrammatic Temperley Lieb algebra. 
See [KP, KL]. 
 

P = Q =

PQ = 

QP = 

PP = 

 
 
It is not an accident that the set  { I, P, Q, PQ, QP} has five 
elements. In fact each form of connection in the plane by non-
intersecting curves from n points to n points is a parenthetical 
structure. To see this in terms of the algebra we have just been 
discussing, turn eacn element by ninety degrees and then 
take the top points and curve them in parallel down and to 
the right. You will see the parenthesis structure emerge.  
 



P =

 
 
In this way the parentheticals with n- marks acquire an intricate 
algebra structure generated by the Catalan number of connection 
patterns between two rows of n points.   
 
VIII. Idemposition, Curve Arithmetic and Map Coloring 
In this section we give some hints about a different approach to 
Laws of Form via a calculus of boundaries. We shall consider curves 
in the plane and their interactions. 
 



 
In the figure above, we illustrate two polygonal closed curves 
interacting, and one smooth curve in isolation.  We will use 
polygonal curves throughout the rest of this section, but it is 
convenient to draw smooth curves as well.  All polygonal curves will 
interact by sharing a segment of boundary in such a way that the 
two curves either cross over one another or not. In the case where 
they do not cross over, we call the interaction a bounce. 
 

cross bounce
 

Analogous to the laws of crossing and calling in Laws of Form, we 
adopt the principle of idemposition:  
Common boundaries cancel. 
 

idempose

 
 



In the above figure we illustrate the two basic local effects of 
idemposition at a bounce or at a crossing. Note the following two 
examples. 
 

 
 
This diagram shows that the familiar laws of calling and crossing are 
part of the more general curve arithmetic of idempositions. Of 
course, there are many more complex interactions possible. For 
example consider the next diagram. 
 

 
 
Here a curve self-interacts and produces two curves.   
Lots of things can happen. In fact, we are now going to look at an 
even more complex curve arithmetic, where there are two types of 
curves, distinguished by light and dark edges. 
 



formation

cubic graph

 
 
In the diagram above we have illustrated how a dark curve and a 
light curve can interact. The shared edges are combination of dark 
and light. A curve interaction of curves of two colors in the plane 
such that only curves of different colors interact (by bounce or 
cross) is called a formation. Each formation has an underlying cubic 
graph (three edges incident to each vertex). See the the diagram 
above for the cubic graph corresponding to the formation drawn 
there. The formation gives a coloring of the cubic graph such that 
each vertex sees three colors: dark, light and the combination 
dark/light. In this way we obtain, by drawing formations, 
infinitely many cubic graphs colored with three colors with 
three distinct colors at the vertex. The famous Four Color 
Theorem [Kempe, Tutte, VCP, SB, Map] is equivalent to the 
statement that every cubic plane graph without an isthmus (an edge 
such that the graph is disconnected if the edge is deleted) is 
colorable by three colors, with three distinct colors incident at each 
node. This approach to the problem of coloring cubic graphs is the 
beginning of Spencer-Brown's work on the problem [SB, Map]. 
 
Uncolorables and Reentry Forms 
Another approach to the Map Theorem is to characterize and 
understand the class of uncolorable cubic graphs. The simplest such 
graph is the dumbbell shown below. This example is planar, but has 
an isthmus (the edge joining the two loops). 
 



 
 
In [RI], Rufus Isaacs gives a basic building block for the construction 
of uncolorables that have no isthmus, but are not embeddable in the 
plane. Here is the Isaacs building block R: 
 

R = 

 
 
The crossover of lines at the top of R is not meant to indicate any 
interaction. It is a virtual crossing, and can be resolved if the graph 
is placed in three-dimensional space. You can think of R as an input-
output device for three colors assigned to the lines, with the 
stipulation that each node must see three distinct colors. Isaacs then 
defines the graph Jn to be that graph obtained by plugging n of 

these R's into one another, and then running the output back into 
the input as shown below for n=3. 
 
 



J3

 
Isaac's J3 is uncolorable and non-planar.  In fact J2n+1 is 

uncolorable for each n=1,2,3,.. .. The uncolorablity comes from 
that fact that the transmission of values around the three strand 
loop is self-contradictory. In this sense J3 is a cousin of the 

reentering mark. One way to gain insight into the Four Color 
Theorem is to begin to realize that uncolorables are all analogs of 
the reentering mark, and there is just no way to build self-
contradictory devices like that in the plane. 
 
IX. Sets  
It is common practice in mathematics to introduce the concept of 
sets and membership, and then construct a hierarchy of sets, 
beginning with the empty set and continuing by using the operation 
of collection (making a set from a previously constructed array of 
sets). 
 
1. Collection: We assume that given an array of sets, there is a new 
set whose members are the elements of this array.  
2. Equality: Two sets are equal if and only if they have the same 
members. 
 
This has the effect of bootstrapping a huge array of sets virtually 
from nothing but the act of forming a collection and the definition 
that two sets A and B are equal if they have the same members. 
 
Lemma. If A and B are empty sets, then A = B. Hence there is only 
one empty set and it shall be denoted by { }. 
 



Proof. A = B if and only if A and B have the same members. But A 
and B do have the same members, namely none. This completes the 
proof of the Lemma. // 
 
Now that we know the empty set is unique, we can proceed. But 
wait! How do we know that the empty set exists? 
 
Lemma. There is an empty set. 
 
Proof. Suppose that all sets are non-empty. 
Let S be the collection of all sets that have no members. 
But then S is empty! This is a contradiction. Therefore the empty set 
exists.// 
 
Remark. In this context, we could just as well have said, let 0 be the 
set of all round squares, or the set of all unicorns. The advantage of 
the above proof is that it bootstraps the existence of the empty set 
directly from the internal structure of our universe of sets. Note that 
if there were no empty sets and we formed S, the collection of all 
sets with no members, then as soon as S is formed, S itself would 
demand membership in S. If we allow S to be a member of itself, 
then S would no longer be empty, and so could not be a member of 
itself. This keeps S empty but always asking for self-membership. 
There are interesting issues of self-reference surrounding this 
evocation of the empty set. 
 
Now that we have the empty set 0 = { }, we can begin to form lots 
of sets. For example we can form the set whose member is the empty 
set 1 = {0} = {{ }}. This set has one element.  
Now form  
2 = { 0, 1} = {{ }, {{ }}} 
3 = { 0, 1, 2 } = { { }, {{ }}, {{ }, {{ }}} } 
and generally 
n+1 = {0, 1, 2, .. ., n}. 
Each set in this sequence has one more element than the preceding 
set and they are all unequal to one another. For example 0 is not 
equal to 1 since 1 has a member (namely 0) and 0 has no member. 
2 is not equal to 1 because 0 is the only member of 1, while 1 
(which is not equal to 0) is a member of 2. In this way we construct 
eventually, sets that have n elements for every natural number n. 
This construction of numbers from sets is due to John von Neumann 
and, in an earlier version, to Gottob Frege.  
 



Note that if we are making sets only from sets, then the comma that 
is commonly used to delineate the members from one another can 
be eliminated. We can write 
0 = { } 
1 = { { } } 
2 = { { } {{ }} } 
3 = { { } {{ }} {{ } { }}} } 
In this notational universe, when you go inside the boundary of a 
given set (passing through its outer braces), 
you encounter a well-formed parenthetical expression in the 
brackets. Such an expression factors into a collection of 
subexpressions, each in the form { Something }. These are the 
elements of the set. For example, the elements of 
2 = { { } {{ }} } 
are the factors of { } { { } }, which are { } and { { } }. 
 
We can, if we wish, replace the paired braces with marks, and 
represent the sets as expressions (but without any rules of calling or 
crossing) in the notation of the  primary arithmetic.  
 
There is a strong parallel between our constructions of elementary 
sets and the formalism of the primary arithmetic.  The set theoretic 
brackets correspond to the mark. The marked state corresponds to 
the empty set. Putting a mark around an expression makes all the 
parts of the expression the members of a corresponding set.  

0 =

1 =

2 = 

3 = 

4 =

 
 



Set theory can be formulated in terms of distinctions, and is seen to 
be another way (distinct from the primary arithmetic) to start from 
nothing and build a mathematical universe. 
 
Here is another take on the von Neumann construction, using boxes 
this time. 
 

1 2 3

4

0

 
With boxes, it is intuitively a little easier to think about the form of 
the limit of this construction, as we let n go to infinity. 
 

...

... ...... ... ............

... LLLLLL=

...! =

L

0 1 2 3

 
 
The figure above indicates two ways to look at the limit. In the first 
way we see the limit as the set of all numbers 0,1,2,3,4,.. .. This is 
called #, the first countable transfinite ordinal. Once one has taken 



a limit in this mode, it is possible to continue, forming the unending 
sequence of transfinite ordinals.  

! +1 =  !   !

!+2, !+3, !+4, ..., !+!,...

!+!+!, ..., ! 2 , ... ! ! ,...

!
!
!
!

.
..

" = = !
"

, ...
 

 
The second limit is L as shown above. We have L = { ... L L L L }, 
a countably infinite multi-set (it has infinitely many elements, all 
identical to one another) whose only member is itself! The second 
limit takes us out of the usual category of sets. It shows how each 
non-negative integer is an approximation to a set that is a member 
of itself. In the author's opinion, both of these limits should be 
taken seriously and regarded as a rich source of imaginary values. 
 
Of course we can make lots of other sets. For example we can make 
 
[0] = { } 
[1] = {{ }} 
[3] = {{{ }}} 
[4] = {{{{ }}}} 
[5] = {{{{{ }}}}} 
 
and so on so that  
 
[n+1] = { [n] }. 
 
Here one is tempted to take a limit and form 
 
L = [Infinity] = {{{{{{{ ... }}}}}}} 
 
so that  
 
L = { L }. 
 



Then L would be a singleton set with itself as the only member. 
L is of course, in form, nothing but the reentering mark. 
 

...
J =

L = {{{{{{{ ... }}}}}}}  = { L }

=  J

 
 
There is nothing wrong with considering such sets, but they are 
excluded by certain axiom systems for set theory. Other axioms 
systems allow them. In order to form L as a limit, we did have to use 
something beyond the act of forming a collection of previously 
created sets. 
 
X. Infinite Recursive Forms 
Constructions of sets as expressions in the mark, suggests 
considering all possible expressions, including infinite expressions, 
with no arithmetic initials other than commutativity. 
We shall call such expressions forms.  Here we shall discuss some of 
the phenomenology of infinite forms that are described by reentry. 
This simplest example of such a form is the reentering mark J as 
discussed above. Here are the next two simplest examples. 

D = =  DD

F = F  F=
 

I call D the doubling form, and F the Fibonacci form. 
A look at the recursive approximations to D shows immediately why 
we have called it the doubling form (approximations are done in 
box form): 



... ... ... ... ... ... ... ...
D = 

 
  
We see from looking at the approximations, that the number of 
divisions of D doubles at each successive depth beyond depth zero. 
Letting Dn denote the number of divisions of D at depth n, we see 

that D0=1, D1=1, D2=2, D3=4, D4 = 8, ..., Dn = 2n-1. We can 

see this behaviour from the recursive definition of the form, for 
given any forms G and H, it is clear that with Gn the number of 
divisions of G at depth n, we have the basic formulas: 

G nn+1
 = G

(GH)
n = G   +   Hn n

 
Thus 

D = =  DD

D =  DD
n n

n-1 n-1= D D+

n-1= D2D
n

 
 
The reader will have no difficulty verifying that in the case of the 
Fibonacci form,  Fn+1 = Fn + Fn-1 with F0=F1=1. Hence the 

depth counts in this form are the Fibonacci numbers 
 



1,1,2,3,5,8,13,21,34,55,89,144,... 
 

with each number the sum of the preceding two numbers. 
 

... ... ... ... ...... ... ...F = 

The Fibonacci Form
 

 
It is natural to define the growth rate µ(G) of a form G to be limit of 

the ratios of successive depth counts as the depth goes to infinity. 
 

µ(G) = limn-->Infinity  Gn+1/Gn. 

 
Then we have µ(D) = 2, and  µ(F) = (1 + !5)/2, the golden ratio. 

 
In the spirit of these recursions and the consideration of thinking 
about the most elementary recursive forms, it is natural to wonder 
what are the recursive forms that would correspond to the general 
recursion 
 

Gn+1 = aGn + bGn-1 

 
where a and b are rational numbers? 
 
Note that if we have a recursion as shown above, then  

Gn+1/Gn = a + b/(Gn/Gn-1). 

Thus, if the limit x = µ(G) exists, then it satisfies the equation  

x = a + b/x. We can call the growth rate of the form G the infinite 
formal continued fraction 



(G) = [a + b/  ]µ

 
 

In the case where a2 + 4b < 0, the roots of the corresponding 

quadratic equation (x = a + b/x  implies the quadratic x2 = ax + 
b) 
are complex numbers, and the continued fraction approximations 
do not converge to any specific real number. The corresponding 
complex roots could be regarded as the "growth rate" of G. 
 
In particular, what about  Sn+1 = Sn  - Sn-1?  Here, we ask only 

about the possibility of using negative numbers in the recursion. 
It is clear that if a and b are positive integers, then we can make 
corresponding recursive forms by using multiple reentries just as we 
did with the doubling form D. We can accomplish negative numbers 
in the counts by introducing the  negative mark. 
 

+ -

 
 
The negative mark, by definition, encloses a negative space. 
There is 1 division of depth 0 in the negative mark, and -1 division 
of depth 1. Also, by definition, if a form G is crossed by the negative 
mark, then all positive spaces in G become negative and all negative 
spaces in G become positive. Thus 
 

G G=n n-1
( ) - .

 
 
For example, 
 



++

--

- +

 
 
the form above has one division of depth 0, one division of depth 1, 
-2 divisions of depth 2 and 0 = -1 +1 divisions of depth 3. Note 
how the crossing of the negative mark by the negative mark makes 
the innermost space positive. Now consider the following form. 
 

=S = S S

n n-1 n-2S   = S      - S

1,1,0,-1,-1,0,1,1,0,-1,-1,0, ...
 

 
Using the negative mark, we obtain the the recursion  
Sn = Sn-1 - Sn-2, which is periodic of period 6. The depth counts 

of the form S have period six. Notice that the actual number of 
divisions at depth n in S is the n-th Fibonacci number.  
 
More generally, if  

Gn+1 = aGn + bGn-1 

with G0 = 1 and G1 =1, we shall model this as a recursive form in 

the formalism 
 

a bG(a,b) =

 
 
where it is understood that the divisions in the reentry that receive 
labels a or b are now weighted with that label, so that they count a 
or b in the depth count, and so that all divisions inside them are 
now weighted by multiplying by the factor a or b. For a and b 



positive integers, we identify the labeling process with the process of 
actually repeating these subforms that many times. Thus 
 

D = 2=
 

 
and 
 

S = =
1 -1

.

 
 
There is a general formula for the depth counts of the forms 
G(a,b). It is based on the fact that if R and S are the roots of the 

quadratic equation x2 = ax + b, then these roots satisfy 

xn+1 = axn + bxn-1, so that linear combinations of the roots can 
be used to produce the desired recursion. Assuming that R and S 
are distinct roots, we have, for G0 = G1 = 1, 

 

G(a,b)n = ((S-1)Rn + (1-R)Sn)/(S-R). 

 
This works even when the roots are complex numbers. Thus if 
S = cos($) + isin($) and R=cos($) - isin($), 

then the quadratic equation is 

x2 = 2cos($)x - 1 

so that  the recursive form is  
G($) = G(2cos($), -1) 

 

G(  ) = !

"(!)

"(!) = 2 cos(  ) !  
 
A little algebra reveals that  
G($)n = (sin(n$) - sin((n-1)$))/sin($), 

from which it follows that  



 
Totn(G($)) = G($)1 + G($)2 + ... + G($)n = sin(n$)/sin($). 

 
Thus the sine function appears as the total signed depth count, 
Totn(G), for the form G($). If we implicitly choose $  by taking 

 a = (q-1)/q  and b = -1 (q is a positive integer greater than 1), 
then the depth counts of G((q-1)/q, -1) can yield very good 
approximations to the sine function when q is large, and they can 
exhibit interesting, sometimes chaotic behaviour. 
 
Finally, here is a natural hierarchy of recursive forms, obtained each 
from the previous by enfolding one more reentry. 
 

J
J'

J''

G G'=

G'

GG'=

G' Gn+1 n n-1
+=

 
Given any form G, we define  G' by the formula shown above, so 
that 
G'n+1 = G'n + Gn-1. 

This implies that  
G'n+1 - G'n  = Gn-1. 
Thus the discrete difference of the depth series for G' is (with a 
shift) the depth series for G. In a certain sense G' is the "integral"  
of G. The series J, J', J'' , J'' ', . .. is particularly 

interesting because the depth sequence  (J(n))k is equal to the 

maximal number of divisions of n-dimensional Euclidean space by  
k-1 hyperspaces of dimension n-1.  We will not prove this result 
here, but note that J takes the role of a point (dimension zero) with  
Jk = 1 for all k, while J' satisfies J'k+1 = J'k + 1 (k > 0), so that  

J'k = k-1 for k>1. This is the correct formula for the number of 

divisions of a line by k-1 points.  
 



J'

......
...

...
... 

=

=

 
 
To think about the divisions of hyperspace, think about how a 
collection of lines in general position in the plane intersect one 
another. If a new line is placed, it will cut a number of regions into 
two regions. The number of new regions is equal to the number of 
divisions made in the new line itself. This is a verbal description of 
the basic recursion of reentry enfoldment given above. 
 

1 2 4

7 11 16

1 + 1 = 2

2 + 2 = 4

4 + 3 = 7

7 + 4 = 11

11 + 5 = 16

...
 

 



 
The very simplest recursive forms yield a rich complexity of 
behaviours that lead directly into the mathematics of imaginary 
numbers and oscillations, patterns of growth, dimensions and 
geometry.. 
 
There is an eternity and a spirit at the center of each complex form. 
That eternity may be an idealization, a "fill-in", but it is nevertheless 
real. In the end it is that eternity, that eigenform unfolding the 
present moment that is all that we have.  We know each other 
through our idealizations of the other. We know ourselves through 
our idealization of ourselves. We become what we were from the 
beginning,  a Sign of Itself [P] .   
 
XI. Eigenforms 
Consider the reentering mark. 
 

 
 
This is an archetypal example of an eigenform in the sense of Heinz 
von Foerster [VF].  What is an eigenform?  An eigenform is a 
solution to an equation, a solution that occurs at the level of form, 
not at the level of number. You live in a world of eigenforms. You 
thought that those forms you see are actually "out there"?  Out 
where? It has to be asked. The very space, the context that you 
regard as your external world is an eigenform. It is your organism's 
solution to the problem of distinguishing itself in a world of actions. 
The shifting boundary of the Myself/MyWorld  is the dynamics of 
the form that "you" are.  The reentering mark is the solution to the 
equation 

J =  J  
 
where the right-angle bracket  distinguishes a space in the plane. 
This is not a numerical equation.  One does not even need to know 
any particularities about the behaviour of the mark to have this 
equation.  It is more akin to solving 



Me  =   

Me

 
 
by attempting to create a space where "I" can be both myself and 
inside myself, as is true of our locus psychological.  And this can be 
solved by an infinite regress of Me's inside of Me's. 
 

Me  =   

Me

 
 
Just so we may solve the equation for J by an infinite nest of boxes 

...
J =

 
 
Note that in this form of the solution, layered like an onion, the 
whole infinite form reenters its own indicational space.  It is indeed 
a solution to the equation 

J =   J
 

 
The solution in the form  
 



J =  
 

 
is meant to indicate how the form reenters its own indicational 
space. This reentry notation is due to G. Spencer-Brown.  Although 
he did not write down the reentering mark itself in his book "Laws 
of Form",  it is implicit in the discussion in Chapter 11 of that book. 
 
Now you might wonder many things after seeing this idea.  First of 
all, it is not obvious that we should take an infinite regress as a 
model for the way we are in the world.  On the other hand, everyone 
has experienced being between two reflecting mirrors and the 
veritable infinite regress that arises at once in that situation.  
Physical processes can happen more rapidly than the speed of our 
discursive thought, and thereby provide ground for an excursion to 
infinity.   
 
  
These patterns of form dynamics form the skeleton for the 
description and consideration of many structures in cybernetics and 
science.  Elaboration of the solution to eigenform equations leads to 
the structure of fractals and to a philosophy that extends the notion 
of eigenvalues in physics. See [SRF ,EF] for a discussion of this point 
of view.    
 
Here is one more example. This is the eigenform of the Koch fractal 
[SRF]. In this case one can write the eigenform equation 

 

K = K { K  K } K. 

 
The curly brackets in the center of this  
equation refer to the fact that the two middle copies within the 
fractal are inclined with respect to one another and with respect to 
the two outer copies.  In the figure below we show the geometric  
configuration of the reentry. 
 
The Koch fractal reenters its own indicational space four times (that 
is, it is made up of four copies of itself, each one-third the size of 



the original.  We say that the Koch fractal has replication rate four 
and write R(K)=4. We say it has length ratio three and write 
F(K)=3. 
 
In describing the fractal recursively, one starts with a segment of a 
given length L. This is replaced by a R(K) segments each of length 
L' = L/F(K). In the equation above we see that R(K)=4 is the 
number of reentries, and F(K) is the number of groupings in the 
reentry form. 
 
It is worth mentioning that the fractal dimension D of a fractal such 
as the Koch curve is given by the formula 
 

D = ln(R)/ln(F)  
 
where R is the replication rate of the curve , F is the length ratio 
and ln(x) is the natural logarithm of x. 
 
In the case of the Koch curve one has D = ln(4)/ln(3). The fractal 
dimension measures the fuzziness of the limit curve. For curves in 
the plane, this can vary between 1 and 2, with curves of dimension 
two having space-filling properties. 
 

It is worth noting that we have, the case of an abstract, grouped 
reentry form such as K = K { K  K } K, a corresponding abstract 
notion of fractal dimension, as described above  
 
D(K) = ln(Number of Reentries)/ln(Number of Groupings). 
 
As this example shows, this abstract notion of dimension interfaces 
with the actual geometric fractal dimension in the case of 
appropriate geometric realizations of the form. There is more to 
investigate in this interface between reentry form and fractal form. 

 



K = K { K K } K
 

 
In the geometric recursion, each line segment at a given stage is 
replaced by four line segments of one third its  length, arranged  
according to the pattern of reentry as shown in the figure above.  
The recursion corresponding to the Koch eigenform is illustrated in 
the next figure. Here we see the sequence of approximations leading 
to the infinite self-reflecting eigenform that is known as the Koch 
snowflake fractal. 



 

 
Five stages of recursion are shown. To the eye, the last stage vividly  
illustrates how the ideal fractal form contains four copies of itself, 
each one-third the size of the whole. The abstract schema 
 

K = K { K K } K  

 
for this fractal can itself be iterated to produce a "skeleton" of the  
geometric recursion: 

 

K = K { K K } K  



   = K { K K } K  {  K { K K } K  K { K K } K  } K { K K } K   

   = ... 

 
We have only performed one line of this skeletal recursion. There 
are sixteen K's in this second expression just as there are sixteen 
line segments in the second stage of the geometric recursion. 
Comparison 
with this abstract symbolic recursion shows how geometry aids the 
intuition.  
 
Geometry is much deeper and more surprising than the skeletal 
forms. The next example illustrates this very well. Here we have 
the initial length L being replaced by a length three copies of L' 
with L'/L  equal to the square root of 3. (To see that L'/L is the 
square root of three, refer to the illustration below and note that  
L'= !(1 + 3) = 2, while L = !(9 + 3) = 2!3.) Thus this fractal 
curve has dimension D = ln(3)/ln(!3) = 2. In fact, it is strikingly 
clear from the illustration that the curve is space-filling. It tiles its 
interior space with rectangles and has another fractal curve as the 
boundary limit. 

 



 



 
The interaction of eigenforms with the geometry of physical, mental, 
symbolic and spiritual landscapes is an entire subject that is in need 
of deep exploration.  Compare with [EF]. 
 
As a last fractal example for this section, here is a beautiful 
specimen SB generated by the Spencer-Brown mark. That is, the 
generator for this fractal is a ninety degree bend. Each segment is 
replaced by two segments at ninety degrees to one another, and the 
ratio of old segment to new segment is  !2. Thus we have  
D(SB) = ln(2)/ln(!2) = 2, another space-filler. Notice how in the 
end, we have an infinite form that is a superposition of two smaller 
copies of itself at ninety degrees to one another. 
 



 

 

 



It is usually thought that the miracle of recognition of an object 
arises in some simple way from the assumed existence of the object 
and the action of our perceiving systems.  What is to be appreciated 
is that this is a fine tuning to the point where the action of the 
perceiver, and the perception of the object are indistinguishable. 
Such tuning requires an intermixing of the perceiver and the 
perceived that goes beyond description.  Yet in the mathematical 
levels, such as number or fractal pattern, part of the process is 
slowed down to the point where we can begin to apprehend it.   
There is a stability in the comparison, in the one-to-one 
correspondence that is a process happening at once in the present 
time. The closed loop of perception occurs in the eternity of present 
individual time. Each such process depends upon linked and 
ongoing eigenbehaviors and yet is seen as simple by the perceiving 
mind. 

 

XII. Lambda Calculus, Eigenforms and Godel's Theorem 
Church and Curry [B] showed (in the 1930's, long before von 
Foerster wrote his essays) how to make eigenforms without apparent 
excursion to infinity. Their formalism is usually called the "lambda 
calculus." 
 
Here is how it works: 
We wish to find the eigenform for F. We want to find a J so that  
F(J) = J.  Church and Curry admonish us to create an operator G 
with the property that  

 

GX = F(XX)   

 
for any X. That is, when G operates on X, G makes a duplicate of X 
and allows X to act on its duplicate.  Now comes the kicker.   
Let G act on herself and look! 
 

GG = F(GG) 

 
So GG, without further ado, is a fixed point for F. We have solved 
the problem without the customary ritual excursion to infinity.   
 



 I like to call the construction of the intermediate operator G, the 
"gremlin" [VL, MP]  Gremlins seem innocent enough. They duplicate 
entities that meet, and set up an operation of the duplicate on the 
duplicand. But when you let a gremlin meet a gremlin then strange 
things happen. It is a bit like the story of the sorcerer's apprentice, 
except that here the sorcerer is the mathematician or computer 
scientist who controls context, and the gremlins are like the self-
duplicating brooms in the story. The gremlins can go wild without 
some control. In computer science the gremlins are programs with 
loops in them. If you do not put restrictions on the loops, things can 
get very chaotic! 
 
The reentering mark can be created with the help of a gremlin. 
In the illustration below, we show a gremlin G such that GA = 
<AA> where the brackets in this notation represent the enclosure 
shown in the figure. Then GG = <GG> so that GG can be regarded 
as the reentering mark. 
 

=   

=

J =   J

J = 

 
 
Once an appropriate gremlin is in place, clocks will tick and 
numbers will count.  For each of us, there is a continual 
manufacture of eigenforms (tokens for eigenbehaviour) but such 
tokens will not pass as the currency of communication unless we 
achieve mutuality as well.   
 
The Indicative Shift 



This next part is intimately related to the lambda calculus. 
One way to see this is to reformulate the gremlin as follows:  
Let #a = aa.  
Then the Gremlin is defined by  GX = F(#X) and we obtain 
the fixed point by substituting G into its own formula to get 
GG = F(#G) = F(GG). In this next part we shift the equality sign to 
a sign of reference so that instead of #a = aa, we have #a -----> aa, 
and we shall see this as a consequence of an earlier reference of a to 
itself in the form a -----> a. 
In this case a -----> a came from a = a.  
Read on! 
 
Consider the form of names.  When I am introduced to 
Mr. A, there is a momentary separation of the name of Mr. A (lets 
say this is just A) and the person of Mr. A (who is in the room). 
If I did not know his name, the person would nevertheless be 
present, but after I learn his name, then the presence of his person 
calls up his name. If my memory is not slow, then the name and the 
person are superimposed for me. We can diagram this process as 
follows. Let  
A -----> P 
denote the name A pointing to the person P. 
After I get to know him, this separation has shifted to  
#A -----> PA. 
That is, the name is "attached" (in my mind) to the person (as 
perceived, or as a participant in a conversation) and there is a new 
meta-name #A that refers to this combination. In ordinary language 
there is no explicit distinction between the name and the meta-
name, but analysis of our ways of speaking shows that it is there. 
For example, if I should forget Mr. A's name, then I am uneasy and 
can experience the name and meta-name drop into place as I 
remember his name (hopefully he has not, at this point, left the 
room). 
 
I call the movement from A -----> P to #A -----> PA the 
indicative shift. 
 
Since it is useful to have the arrow available for the shift itself, lets 
use the following notation for A refers to B. 
 

A B
 

 



Then the indicative shift is written 
 

A B #A  BA
 

 
We regard the meta-naming operator # as a nameable object, and so 
suppose that M names #. 
 

M # #M #M
 

 
We see that the indicative shift applied to the naming of # yields the 
self-reference 
 

#M #M .
 

 
The meta-name of the meta-naming operator refers to itself. 
 
Similarly if we start with a reference to F# for any F, then the result 
is an expression F#g that contains its own name (which is #g). 
 

F#g #g F#g
 

 
Godel's Theorem 
At this point we have arrived at the essence of Godel's 
Incompeteness Theorem. Godel works with a formal system 
where every formula or well-formed text in the system has a code 
number  g in the positive integers. We shall write 

g F
 

 
to denote that g is the Godel code number of the formula F. 
 
Godel considers formulas F = F(u) that have a single free variable 
u, 
and considers the operation of substituting a specific number N into 
the formula. We shall write FN = F(N), the result of substituting N 
for the free variable in F. If g is the Godel number of F, a formula 



with one free variable, then #g is by definition the Godel number of 
Fg, the result of substituting its own Godel number into the formula 
F. 
 
The indicative shift  

g F #g  Fg
 

 
can be interpreted as the shift obtained by substituting a Godel 
number g into its own formula, getting a new Godel number #g for 
the new formula. 
 
Godel considers formulas specifically of the type F(#u). If one 
should substitute a number in for u, then the formula says: first 
replace u by #u, then determine F applied to #u. We shall write F# 
for the formula F(#u).  Note that #u is not computed in forming 
F#, rather we just substitute the numeral for u in the syntax of the 
original formula. This is directly in line with the definition of the 
operator # so that if F has Godel number g, then F# has Godel 
number #g.  We have the shift 

g F# #g  F#g
 

 
The result is that the formula F#g = F(#g) makes an assertion 
about its own Godel number. 
 
In particular we can use the formula B(u) that says that "the 
formula whose Godel number is u has a proof in the given 
formal system". Then the shift 
 

g ~B# #g ~B#g
 

  
yields the formula  ~B#g that asserts own unprovability in the 
formal system. This formula cannot consistently have a proof within 
the formal system. Thus any consistent formal system strong 
enough to support these structures is incomplete. We have proved 
that there can be no proof of ~B#g within the system. Since that is 
what ~B#g says, this means that we (outside the given formal 
system)  have proved ~B#g, a result that the formal system itself 
cannot prove. That is the proof of Godel's Theorem 



 
 
XIII. Knots,  Sets and Knot Sets 
The theme of this section is expressed in the following diagram, that 
we shall repeat again below in speaking of algebras associated with 
knots. 
 

U

MU * = U =

M

* = =
 

 
Here you see a circle, configured as a distinction, with the circle 
itself as the boundary of the distinction, labeled with the reentering 
mark. 
You see an arrow (whose linear dimension is similar to that of a 
boundary) shown crossing from the inside of the distinction to the 
outside. We adopt the convention that the arrow represents the act 
of crossing while the circle represents the boundary that is crossed. 
This means that interacting boundaries can be interpreted 
differently as shown below. Furthermore, we take the boundary 
itself as neither marked, nor unmarked. The boundary is the terra 
incognita of the imaginary value. The boundary can be seen as the 
operator that transforms marked state to unmarked state and vice 
versa. We take the equation  
 

* = X X
 

 



as the basic operation of the imaginary value on the marked and 
unmarked states, we note that this definition entails the equation 
 

* = =
 

the fact, that via the definition of the reentering mark, the action of 
the reentering mark on itself is to reproduce itself. 
 

boundary

crossing the

boundary
 

 
Here we choose the interpretation of boundaries as active (changing 
state) or passive (spatial boundary) by using the broken line to 
indicate the locus of the crossing of the boundary. The overcrossing 
part is passive. The undercrossing part (with its pair of broken 
segments) is active. 
 
Knot Sets 
 Consider the mutual forms A and B such that  

A =  B B =  A

 
 
Each form (A and B) includes the other inside itself, creating a 
mutuality indicated below the equations for the two forms.  The 
form of mutuality.  Here we shall consider a model for set theory 
where such mutuality is part of the natural territory. 
 
We shall use knot and link diagrams to represent sets. More about 
this point of view can be found in  the author's paper "Knot Logic" 
[KL]. 



 
From the point of view of science fiction, these diagrams were first 
used in this way by flatlanders before the invention of the third 
dimension. After that invention, it turned out that the diagrams 
represented knotted and linked curves in space, a concept far 
beyond the ken of those original flatlanders.  
 
Set theory is about an asymmetric relation called membership.  

We write a % S to say that a is a member of the set S. And we are 

loathe to allow a to belong to b, b to belong to a (although there is 
really no law against it). In this section we shall diagram the 
membership relation as follows: 

a
b

a

a b!
 

 
The entities a and b that are in the relation a % b are diagrammed 

as segments of lines or curves, with the a-curve passing underneath 
the b-curve.  Membership is represented by under-passage of curve 
segments.  A curve or segment with no curves passing underneath it 
is the empty set. 
 

{   }

{ {  }  }

{   }

 



 
In the diagram above, we indicate two sets. The first (looking like 
the mark) is the empty set. The second, consisting of a mark 
crossing over another mark, is the set whose only member is the 
empty set. 
We can continue this construction, building again the von Neumann 
construction of the natural numbers in this notation: 
 

{ {} {{}} }

{ {} {{}} {{} {{}}} }

{}

{{}}

 
 
This notation allows us to also have sets that are members of 
themselves, 
 

a a!

a

a = {a}
 

and sets can be members of each other. 
 



a

b

a={b}

b={a}
 

 
Mutuality is diagrammed as topological linking. This leads the 
question beyond flatland: Is there a topological interpretation for 
this way of looking at set-membership?  
 
Consider the following example, modified from the previous one. 
 

b
a

a = {}

b = {a,a}

b

a

a={}

b={}

topological

equivalence

 
 
The link consisting of a and b in this example is not topologically 
linked. The two components slide over one another and come apart. 
The set a remains empty, but the set b changes from b = {a,a} to 
empty. This example suggests the following interpretation. 



 
Regard each diagram as specifying a multi-set 
(where more than one instance of an element can occur), and the 
rule for reducing to a set with one representative for each element 
is: 
Elements of knot sets cancel in pairs. 
Two knot sets are said to be equivalent if one can be obtained from 
the other by a finite sequence of pair cancellations. 
 
This equivalence relation on knot sets is in exact accord with the 
general diagrammatic topological move shown below. 
 

 
 
There are other topological moves, and we must examine them as 
well.  In fact, it is well-known that topological equivalence of knots 
(single circle embeddings), links (mutltiple circle embeddings) and 
tangles (arbitrary diagrammatic embeddings with end points fixed 
and the rule that you are not allowed to move strings over 
endpoints) is generated by three basic moves (the Reidemeister 
moves) as shown below. 
See [KP]. 



I.

II.

III.

 
The Reidemeister Moves 

 
It is apparent that move III does not change any of the relationships 
in the knot multi-sets. The line that moves just shifts and remains 
underneath the other two lines. On the other hand move number 
one can change the self-referential nature of the corresponding 
knot-set. 
One goes, in the first move, between a set that indicates self-
membership to a set that does not indicate self-membership (at the 
site in question). 
 



I.

a = { a, ...} a= { ...}
 

 
This means that in knot-set theory every set has representatives 
(the diagrams are the representatives of the sets) that are members 
of themselves, and it has representatives that are not members of 
themselves. In this domain, self-membership does not mean infinite 
descent. We do not insist that a = {a} implies that  
a={ { { { ... } } } }. Rather, a = {a} just means that a has a little 
curl in its diagram. The Russell set of all sets that are not members 
of themselves is meaningless in this domain. 
 
We can summarize this first level of knot-set theory in the following 
two equivalences: 
1. Self-Reference:   a = {b,c,...} <-----> a = {a,b,c, .. .} 
2. Pair Cancellation:  {a,a, b, c, ...} <-----> {b,c, .. .} 
With this mode of dealing with self-reference and multiplicity, knot-
set theory has the interpretation in terms of topological classes of 
diagrams. We could imagine that the flatlanders felt the need to 
invent three dimensional space and topology, just so their set theory 
would have such an elegant interpretation. 
 
But how elegant is this interpretation, from the point of view of 
topology? Are we happy that knots are equivalent to the empty 
knot-set? 
 



a = {a, a, a}
a = {}

 
 
We are happy that many topologically non-trivial links correspond 
to non-trivial knot-sets. 
 

a

b

c

d

a = {b}

b = {a, c}

c = {b, d}

d = {c}
 

 
In the diagram above, a chain link becomes a linked chain of knot-
sets. But consider the link shown below. 

a

bc

a = {b,b}
b = {c,c}
c = {a,a}

The Borrommean Rings
 

These rings are commonly called the Borromean Rings. The Rings 
have the property that if you remove any one of them, then the 
other two are topologically unlinked. They form a topological 
tripartite relation. Their knot-set is described by the three equations 
 



a = {b,b} 
b = {c,c} 
c = {a,a}. 
 
Thus we see that this representative knot-set is a "scissors-paper-
stone" pattern. Each component of the Rings lies over one other 
component, in a cyclic pattern. But in terms of the equivalence 
relation on knot sets that we have used, the knot set for the Rings is 
empty (by pair cancellation)! 
 
The example of the Borrommean Rings suggests that we should 
generalize the notion of knot-sets so that the Rings represent a non-
trivial "set" in this generalization. The generalization should also be 
invariant under the Reidemeister moves. 
 
Ordered Knot Sets 
Take a walk along a given component. 
Write down the sequence of memberships and belongings that you 
encounter on the walk  in the following manner. 
 

a
b c d e f g

a = { b [c] d e [f] [g] }
 

 
In this notation, we record the order in which memberships and "co-
memberships" ( a is a co-member of b if and only if b is a member 
of a) occur along the strand of a given component of the knot-set. 
Since we have no intention of setting a fixed direction of traverse, it 
is ok to reverse the total order of the contents of a given 
component. Thus we now have the following representation of the 
Borrommean  
Rings: 
 



a

bc

a = { b [c] b [c] }

b = { c [a] c [a] }

c = { a [b] a [b] }
 

 
With this extra information in front of us, it is clear that we should 
not allow the pair cancellations unless they occur in direct order, 
with no intervening co-memberships. Lets look at the Reidemeister 
moves for wisdom: 



I.

II.

III.

a = { a [a] ... } a = { ... }

a a

a

b

a = { bb ...}

b = { [a][a] ...}

a

b

a = { ... }

b = { ... }

a

b c
a

b c

a = { bc ...}

b = { ac ...}

c = { a[b] }

a = { cb ... }

b = { ca ... }

c = { [b]a ... }
 

As is clear from the above diagrams, the Reidemeister moves tell us 
that we should impose some specific equivalences on these ordered 
knot sets: 
1. We can erase any appearance of a[a] or of [a]a inside the set for 
a. 
2. If bb occurs in a and [a][a] occurs in b, then they can both be 
erased. 



3. If bc is in a, ac is in b and a[b] is in c, then we can reverse the 
order of each of these two element strings.   
 
We take these three rules (and a couple of variants suggested by the 
diagrams) as the notion of equivalence of ordered knot-sets. 
I conjecture that the ordered knot-set for the Borrommean rings is 
non-trivial in this equivalence relation. It would be quite interesting 
to have a proof of this conjecture, as it would constitute a proof that 
the Borromean rings are linked, based on their scissors, paper, stone 
structure. 
 
Knots and links are represented by the diagrams themselves, taken 
up the equivalence relation generated by the Reidemeister moves. 
This calculus of diagrams is quite complex and it is a source of 
wonderment to the author, the number and depth of different 
mathematical approaches that are used to study this calculus and its 
properties. Studying knots and links is rather like studying number 
theory. The objects of study themselves can be constructed directly, 
and form a countable set. The problems that seem to emanate 
naturally from these objects are challenging and fascinating. 
For more about knot-sets, see [KL]. 
 
Quandles and Colorings of Knot Diagrams 
There is an approach to studying knots and links that is very close 
to our ordered knot sets, but starts from a rather different premise. 
In this approach each arc of the diagram receives a label or "color". 
An arc of the diagram is a continuous curve in the diagram that 
starts at one undercrossing and ends at another undercrosssing.  
For example, the trefoil diagram below has three arcs. 
 



a

b

cT

b=a*c

c = b*a

a = c*b

x

y

z

z=x*y

 
 
Each arc corresponds to an element of a "color algebra"  
IQ(T) where T denotes the trefoil knot. We have that IQ(T) is 
generated by colors a,b and c with the relations 
c*b=a, a*c=b, b*a = c. Each of these relations is a desecription of 
one of the crossings in T. These relations are specific to the trefoil 
knot. If we take on an algebra of this sort, we want its coloring 
structure to be invariant under the Reidemeister moves. As the next 
diagram shows, this implies the following global relations: 
 
x*x = x 
(x*y)*y= x 
(x*y)*z = (x*z)*(y*z) 
  
for any x, y and z in the algebra (set of colors) IQ(T). 
An algebra that satisfies these rules is called an Involutory Quandle 
[], hence the initials IQ. 
 



I.

II.

III.

x

xx*x

x

x

x*x=x

(x*y)*y

x*y y
x

y
x

x

(x*y)*y = x

y z

x*y
(x*y)*z

y*z

x

x

y z

(x*z)*(y*z)

x*z y*z

(x*y)*z = (x*z)*(y*z)
 



 
It should be apparent to the reader that these global relations are 
really expressions of the concept of self-crossing and iterated 
crossing in the multiplicity of crossings that are available in a 
calculus of boundaries where the notation 
 

 
 
indicates the choice of interpretation, where one boundary is seen 
to cross (over) the other boundary. Such a choice of interpretation 
is a choice that regards one boundary as the active and the other 
one as passive, or one as the container and the other as the 
contained. The difference in the quandle calculus of boundaries is 
that we chose to change the name of the undercrossing boundary. 
That is, if U crosses under the boundary of the first distinction, then 
the name of U  is changed to M. (The progression from the 
unmarked state U to the marked state M). This is a boundary image 
of the formalism of crossing a single distinction that we have 
already used in Laws of Form. But now we have made explicit the 
boundary of the first distinction. What is the boundary of the first 
distinction. It is neither marked, nor is it unmarked. The most 
aesthetic choice for the boundary of the first distinction is that it 
should be the reentering mark, the imaginary value herself!  This 
this we have the equation shown below, with the reentering mark 
acting on the unmarked state to produce the marked state. If J 
denotes the reentering mark, then  
U*J = M and by the quandle laws M*J = U as well. The reentering 
mark is the transformer of states. All this is in good accord with the 
epistemology that we have developed for the reentering mark as an 
imaginary value. Note that in this context,  the quandle equation  



J*J = J is equivalent to the statement to the statement that J is 
invariant under the operation of crossing, which is the defining 
property of the reentering mark. 
 
What we see here is that the knot theory can be seen as a natural 
articulation not of three dimensional space (a perfectly good 
interpretation) but of the properties of interactions of boundaries in 
a realm where each boundary is seen as the imaginary value that 
sources a distinction. Each boundary can be regarded as that 
boundary transgressed by another boundary. The choice of who is 
the transgressed and who transgresses is the choice of a crossing, 
the choice of membership in the context of knot-set theory. In one 
sense all boundaries represent the creation of the first distinction, 
and all boundaries can be different in the complexity of interactions 
of actors that is the domain of knot-sets, and is the precursor 
domain for three-dimensional space and spaces of higher 
dimensions as well. 
 
 

U
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If we adopt these global relations for the algebra IQ(K) for any knot 
or link diagram K, then two diagrams that are related by the 
Reidemeister moves will have isomorphic algebras. They will also 



inherit colorings of their arcs from one another. Thus the 
calculation of the algebra IQ(K) for a knot or link K has the 
potentiality for bringing forth deep topological structure from the 
diagram. 
 
Lets go back and look at what happens for the trefoil knot T. 
We have the initial local relations from the diagram: 
c*b=a,  
a*c=b,  
b*a = c. 
From these relations it follows that  
c = a*b 
a = b*c 
b = c*a 
For example, we get 
c = (c*b)*b = a*b  
by taking c*b = a from the first list of equations, and multiplying 
by b on both sides, and using the global relation 
(c*b)*b = a. 
Thus we now know 
 
c*b=a  
a*c=b 
b*a=c 
c = a*b 
a = b*c 
b = c*a 
 
This says that given any two distinct elements of the set {a,b,c} 
their quandle product is the third (remaining) element.  We are also 
given that  
 
a*a=a 
b*b =b 
c*c=c.  
 
So we have found that if we make the quandle IQ(T) for the trefoil 
knot T, then IQ(T) = {a,b,c} with the multiplication of colors 
defined as above. 
 



* a b c

a a c b

b c b a

c b a c

 

 
We can put the whole matter of the structure of IQ(T) succinctly via 
the multiplication table above. This algebra is certainly disctinct 
from the simple one-generator algebra for the unknotted circle, and 
so we have proved that the trefoil knot is knotted. 
 
There is a more concrete way to understand this pattern. 
Suppose that a, b and c are integers and that we define 
a*b by the equation 
 

a*b = 2b - a. 
 
Then it is easy to check the quandle properties: 
1. a*a = 2a -a  = a 
 
2. (a*b)*b = 2b - (2b -a) = a 
 
3. (a*b)*c = 2c - (2b -a) = 2c -2b + a 
(a*c)*(b*c) = 2(2c -b) - (2c -a) = 2c - 2b + a  
Hence (a*b)*c = (a*c)*(b*c). 
 
This shows that we could label the arcs of the knot diagram with 
integers if these integers solved the local equations. 
In the case of the trefoil, we need 
 
a=c*b=2b - c 
b=a*c=2c - a 
c=b*a=2a - b 
 
which is the same as 
 
a - 2b + c = 0 
a  + b - 2c = 0 
-2a + b + c = 0. 
 



The third equation is the negative of the sum of the first 
two and can be eliminated. We are left with 
 
a - 2b + c = 0 
a  + b - 2c = 0. 
 
Letting c = 2b -a we have 
a + b - 2(2b -a) = 0. 
Hence 
3(a - b) = 0. 
 
What does this mean? If we are to solve the trefoil using  
x*y = 2y -x over the integers, then it would mean that a=b. But if  
a = b, then c = 2a -b = a also, and we would have a constantly 
colored knot. This would not distinguish the knot from the unknot. 
Can 3 = 0? That looks like a contradiction in mathematics, but we 
know that there are number systems where 3 = 0, and so we decide 
to take the elements that label the knot from the modular number 
system Z/3Z = {0,1,2} where the arithmetic operations are 
performed by doing the usual integer operations and then taking 
the remainder on division by 3. This means that we have colored 
the arcs of the trefoil knot with elements of Z/3Z using the 2b-a 
rule. But note that in this system 1*2 = 3, and generally the 
quandle product of any two distinct elements of the set {0,1,2} is 
the remaining element (and the product of any element with itself is 
itself). Thus we have, in this case, reproduced the algebra obtained 
abstractly from just the local equations and the global rules defining 
the quandle. 
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Coloring the Trefoil in Z/3Z
 



 
In the figure above, we have illustrated coloring the trefoil in Z/3Z. 
A knot is said to be 3-colorable if it can be colored with three colors 
in this way. It is not necessary for every crossing to have three 
colors incident to it as in the figure above, but one wants three 
distinct colors on the diagram and the coloring has to follow the 2b-
a rule. In the case of three colors this means simple that every 
crossing sees either three colors or only one color.  
 
It is not hard to see that a single component diagram K that is three 
colored must be knotted. For suppose that K is equivalent by 
Reidemeister moves to an unknot. Then there is a sequence of 
colorings each obtained from the previous one by a local change 
that goes from the coloring of K to a coloring of the unknot. The 
coloring of the unknot has only one color, but the coloring of K has 
three colors. However it is easy to see (exercise!) the on going from a 
three-colored knot to another one by Reidemeister moves, no colors 
are lost. So it is impossible to get to the unknot. That means that the 
knot was indeed knotted. 
 
We can apply the above argument to prove that some other knots 
are knotted. For example consider the knot below and the coloring 
we have shown for it. 
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In this figure we show a trefoil knot that has been augmented with 
some extra knotting in the form of a figure eight knot. The trefoil 
part is colored with three colors and the new part is colored only 
with the one color zero. But the whole knot shown must be knotted, 
since it is colored with three colors. This is part of a more general 
result illustrated in the second part of the figure. There we show a 
trefoil knot augmented by an arbitrary knot K. This general 
construction is called the connected sum of the knots T and K, and 
denoted by T#K. The very same argument then shows that threre is 
no knot K such that T#K is unknotted. Actually, this is true more 
generally: If K and K' are two knots such that K#K' is knotted, then 
it can be proved that both K and K' are individually unknotted. (See 
[KL].) 
 
Not every knot can be three colored. For example, the figure eight 
knot shown below can be colored in colors from Z/5Z, but it cannot 
be three colored. 
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In the diagram above we have shown a coloring of the figure eight 
knot using four out of the five colors in Z/5Z = {0,1,2,3,4}. Other 
diagrams of the figure eight knot actually require five colors. The 
modulus 5 is forced by the equations in the 2b-a labelling. Every 
knot has modulus, known as the determinant of the knot, and this 
modulus is itself an invariant of the knot (unchanged under the 
Reidemeister moves). Thus we have shown that the figure eight knot 
is also knotted, and that the figure eight knot and the trefoil knot 
are distinct from one another. 
 
 
But now, what about the Borrommean Rings? 
 

a

b
c

a'

b'

c'

a*c = a'

a'*c' = a

b*a = b'

b'*a' = b

c*b = c'

c'*b' = c
a=(a*c)*(c*b)

b=(b*a)*(a*c)

c=(c*b)*(b*a)
 



 
Here we have the rings and their quandle-equations. The boxed 
equations are a consequence of substitution from the equations on 
the side. They express the self-referring intelock of the three rings 
in the quandle language.  Our task is to show that this intelocking 
algebraic pattern can not be reduced to the pattern that comes from 
three unlinked rings.  
 
The linear equations  (via the 2y - x rule ) corresponding to the 
boxed equations are: 
 
a = 2(2b-c) - (2c -a) 
b = 2(2c-a) - (2a -b) 
c = 2(2a -b) - (2b -c) 
 
It is not hard to see that these simplify to 
 
4(b-c)=0 
4(c-a)=0 
4(a-b)=0. 
 
Thus the appropriate modulus for the Borrommean rings is 4, and 
the coloring occurs in Z/4Z.  The fact that the modulus is 4 shows 
that the rings are indeed linked. 
 
Discussion. We have spent some care in explaining how the 
quandle algebra and its representations (using the 2b-a rule and 
using modular number systems) can be used to show that some 
knots are knotted, how to distinguish some knots from each other, 
and how to show that the Borrommean rings are linked. In the case 
of the Borrommean rings the basic quandle equations certainly do 
use the fact that the rings pass over one another in cyclic fashion 
("scissors - paper - stone" pattern), but this initial fact seems to get 
lost in the algebraic technique that we used to detect them. There is 
still much to think about at this elementary level. From the point of 
view of form the cyclic relationship that is tripartite is certainly a 
fundamental pattern. That it can be embodied in a topological 
entity is very fascinating. We have not exhausted  the potential of 
the topological analysis at all in this discussion.  
 
 
 
XIV. Digital Circuits 



The mark can be construed as an operator that inverts a signal. 

a a
 

 
More generally, we can consider a collection of inputs to the 
inverter, 
and a collection of outputs. Balance at the given inverter will mean 
that each output is the cross of the juxtaposition of the inputs. This 
is illustrated below for three inputs a,b,c and one output. 
 

a

b

c

abcO = 

 
 
The reentering mark can be construed as a circuit in which an 
inverter feeds back its output directly to the input. The result of 
such an interconnection is an oscillation between the initial state 
and its inversion. Such an interpretation assumes that there is a 
time delay between the production of the output and the processing 
of the input. If there is no time delay, then we are in a state of 
eternal contradiction. 
 

...

 
 
From the mathematical point of view, time is just another structure. 
Thus we can say  
 

J =  J
tt+dt

 
 
and as long as dt is non-zero, then there is no contradiction.  



If dt = 0, then we arrive at the abstract structure of the reentering 
mark that is neither marked not unmarked, the imaginary value. 
 
There is a way to understand such circuits that goes beyond simple 
temporal recursion. A given circuit may have stable states, where 
the equations at each inverter are balanced. Then one can consider 
the process corresponding to the circuit to be a pattern of 
transitions from one stable state to another, instigated by an 
imbalance at some places in the circuit. If the circuit has no stable 
states (as with the reentering mark) then the process of transition 
continues without end. A transition process happens as follows: 
 
Transition Model for Inverter Circuits  
0. Assign "time delays" to each inverter in the circuit. For the 
purpose of this model, it is sufficient to just order the inverters so 
that one can answer the question whether any one inverter is slower 
than another. 
1. Find an inverter in the circuit whose equation is not balanced. 
Readjust the outputs of this inverter so that it is balanced. 
If there is more than one unbalanced inverter, choose the one with 
the smallest time delay. 
2. Examine the circuit once more. If it is balanced, stop. If there is 
an unbalanced inverter, perform step 1. again. 
 
Another way to formulate this model is to replace ordering of the 
marks by a probabilistic choice.  The rules would then read: 
 
Probabilistic Transition Model for Inverter Circuits 
1. If there is more than one unbalanced inverter, choose one of 
them at random. Readjust the outputs of this inverter so that it is 
balanced. 
2. Examine the circuit once more. If it is balanced, stop. If there is 
an unbalanced inverter, perform step 1. again. 
 
A circuit is said to be determined. If the process described above 
does not depend upon the (time delay) ordering of the marks in the 
circuit (or upon the probabilities in the second model). This 
transition model for circuit behaviour is asynchronous in the sense 
that it does not assume that there is an external "clock" that causes 
all rebalancings to happen at once. As we shall see, clocked 
behaviour can be quite different from unclocked behaviour. 
 
The next example is the simplest circuit with a stable state. 



 

V

 
 
You might call this circuit V, the reentering void.  It has two stable 
states, marked or unmarked, and no inverters. In illustrating the 
states, marks in the state are indicated by black dots and white dots. 
A black dot is a mark, and a white dot denotes the absence of the 
mark.  
 

V V

 
 
You could think of V as a form of memory, where a given state 
labeling persists for as long as necessary. We will, however, not use 
this memory, but rather the next one (see below) in making circuit 
designs. For mathematical purposes one could use V in circuit 
design, but the memory we are about to construct, by taking two 
inverters back to back, actually corresponds to what is done in 
engineering practice. At the least, if we used V, we would have to 
assign a time delay to it and then it would have a similar 
mathematical effect as the back-to-back inverters that we are about 
to discuss, the only problem being how to kick it out of the marked 
state once a mark had begun to circulate round its basic turn. The 
difference between V and the circuit we are about to discuss is the 
difference (operational at best) between 
 

 
 



and the void. 
 
The next example corresponds to the equation 
 

MM =
 

 
and its corresponding circuit. 
 

MM =

aa

=

 
 
Here we have a benign reentry that does not create oscillation. The 
circuit has two stable states, and it is described by two equations 
with the extra variable N corresponding to the internal line in the 
circuit. 
 

M = 

M

N

N = 
 

 
One need not think of any recursion going on in the stable state. In 
that condition, one just has a solution to the above equations. Each 
part of the circuit balances the other part.  The circuit itself can be 
interpreted as a memory element, in that it can store time-
independently the information  
 
(M,N) = (marked, unmarked) 
 or  
(M, N) = (unmarked, marked).  



 
 
These two stable states of the memory are depicted in the figure 
above. 
 
A little modification of this memory circuit, and we can interrogate 
it and change it from one state to another. 
 

a b MN

M = NbN = Ma
 

 
The new circuit has inputs a and b, and outputs that can measure 
the values of M and N without affecting the balance of the circuit 
itself. By choosing a marked and b unmarked, the memory is forced 
into the state (M,N) = (marked, unmarked). By choosing a 
unmarked and b marked the memory is forced into the state 
 (M,N) = (unmarked, marked). In each case, since these states 
are stable, the marked input can be removed without affecting the 
state of the memory. 
 
A more diabolical setting would be to have both a and b marked and 
then to remove them simultaneously.  The resulting state of the 
memory is then the unstable configuration shown below. 



 

 
 
Each mark in the memory is unbalanced. The first mark to transmit 
a marked state will win the race and propel the memory into one of 
its two stable states. If it is possible for both marks to "fire" at once, 
we would arrive at the other unstable state where both sides are 
marked. In physical practice this will never happen, and the above 
unstable state will fall to one or the other of the two stable states, 
just as it does in our transition model (where one mark reacts faster 
than the other).  
 
In practice, memory conditions such as the above can occur, and it 
is interesting to see how to design a circuit that will determinably 
transit to only one of the two possibilities.  Consider the circuit 
below. 
 

a N =  aIM

M =  aN

I = NM

MN

I

 
 



In this circuit we have eliminated the arrows that indicate direction 
of signals through the inverters and have used the convention that  
signals travel through each inverter from left to right.  This suffices 
to fix all other directed lines. The memory consisting of M and N 
has an input a, and there is one more mark in the circuit labeled I. 
If a is marked, then N and M are unmarked, forcing I to be marked. 
This is a stable condition of the circuit so long as a is held in the 
marked state. 
 

a=
 

 
If now, we let a change to the unmarked state, then the circuit 
becomes unbalanced at M only, since I continues to put out a 
marked state.  
 



a=

(now unmarked)

unbalanced here

a=

balanced

1
1

2

 
In the diagram above, we show how the change of a to the 
unmarked state gives rise to a transition of M to the marked state 
(1) and that this forces a transition of I to the unmarked state (2). 
The resulting circuit is balanced and the transition to this state of 
the memory is determinate. 
 
The addition of the mark I to the circuit enabled the determinate 
transition. In fact, I acts as an observer of M and N who feeds back 
the inversion of the or of M and N to the input to N. The result is 
that I is marked at the point of transition, holding the state at N in 



balance. For any choice of time delays, this condition of I can be 
arbitrarily small, but significant in forcing the transition.  
 
We see that a circuit can be construed as a miniature self-observing 
system, and that this condition of self-observation can radically 
influence the behaviour of the circuit. In a certain sense, the value 
of the circuit at I is "imaginary" in at least the metaphorical sense of 
the term.  In terms of circuit design, we can use such imaginary 
values to influence the structure of the design and make otherwise 
indeterminate circuits determinate. We say that an marker in a 
circuit has an imaginary value if there are transient states at that  
marker that influence the transition behaviour of the circuit. 
Self-observation can occur in a circuit without transient states. 
The circuit below is an example. It is a modulator in the sense of 
Spencer-Brown. That is a given frequency waveform input at a 
results in an output waveform of one-half the frequency at b. 
I discovered this circuit in 1978 when studying Laws of Form. 
It is similar to circuits in Chapter 11 of Laws of Form, and it 
accomplishes the modulation without using any imaginary values 
using only six markers. Spencer-Brown gives an example in Chapter 
11 of a modulator with six markers that uses imaginary values. The 
reader will enjoy making the comparison. 
 

a

b

 
To see how this circuit operates, I have illustrated one stable state 
and one transition below. In showing the transition, I have only 
shown the end result. The reader will find that this is an example of 



a determinate transition. Note also that in the next transition, the 
value of b will not change. There is a four-fold cyclic pattern in the 
transitions, with b changing every other time. 
 

a

b

a

b

 
Modulators are the building blocks for circuits that count and are 
often called "flip-flops" in the engineering literature. There is much 
more to say about this circuit structure and its relationships with 
computer design, information and cybernetics, but we shall stop 
here, only to note that this is an aspect of Laws of Form that goes far 
beyond traditional boolean algebra, and is well-worth studying and 
working with as a research subject. 



 
Remark.  G. Spencer-Brown (private communication 1992)  
discovered another modulator with six markers but fewer 
connecting lines, and conjectured it to be the unique minimal 
modulator. One wishes to minimize the number of markers plus the 
number of lines. We respect Spencer-Brown's privacy by not 
showing this design, but the reader is encouraged to find it!  The 
question of the classification of minimal modulators is a good 
example of the open nature of the mathematics of circuit design. 
The mathematical model of circuit design discussed in this section 
makes it possible to formulate such questions with precision. 
 
 
XV.  Waveform Arithmetics and The Flagg Resolution 
Lets go back to the reentering mark again, first looking at it through 
the eyes of the primary algebra. We have 
 

J = with = .
 

 
Lets suppose that J satisfies all the identities in the primary algebra. 
Then 
 

= 

=

= 

= = = 

Hence,

.
 

 
This glaring contradiction seems to propel us into the point of view 
that it is not legitimate to attempt to extend the primary algebra by 



adding in the reentering mark. Indeed that is a way out. One can 
add in the reentering mark as an imaginary value, but not assume 
all the usual rules of the arithmetic. In particular, one does not 
assume that 

=
.

 
More specifically, one can start with the following arithmetical 
interactions. 
 

= 

=

= 

= 

= 
 

The algebra that describes this arithmetic is Varela's Calculus for 
Self-Reference (CSR). It is mapped directly into the three-valued 
logic of Lukasiewcz. See [CSR] and [IV]. In CSR, we have 

=
,

 
 
but the reentering mark has a value distinct from marked or 
unmarked.  
 
Such constructions are fine, but they do not tell the whole story. 
If we take the temporal point of view, then the reentering mark may 
be identified with a discrete wave-form. Crossing the mark can be 
interpreted as switching each temporal instant of this waveform 
from the marked state (up) to the unmarked state (down), and vice-
versa. The result is that the cross of the reentering mark is not equal 
to the reentering mark, but rather it is equal to a waveform that is  



phase-shifted from the original one by one half-period. The 
juxtaposition of the these two waveforms yields a marked state. 

...

...

=

=

=

...

...

 
 
With this interpretation we would like to keep position as a rule 
about the reentering mark. But we also note, that as a waveform 
the reentering mark, taken all by itself, is indistinguishable from its 
crossed form. 
 

......=

= (all by itself)
 

 
One way to get partially out of this dilemma is to make two 
imaginary values i and j, one for each waveform and to have the 
following waveform arithmetic: 

...

...

=

=

=

...

...i

j

ij

j   = ji   = i

i j= =, ,

,
 

 
The waveform arithmetic satisfies occultation and transposition, but 
not position. It is similar to the three-values Calculus for Self-
Reference, and has a completeness theorem using these values. This 
rich structure is directly related to a class of multiple valued logics 



called DeMorgan Algebras [DMA]. In [FD] we called the algebra 
corresponding to the waveform arithmetic Brownian Algebra. 
 
It is worth mentioning what a simple model the waveforms are 
suggesting here. Consider an alternating temporal pattern. 
 

... ababababababababab...
 

 
Such a pattern can be viewed as a repetition of ab or as a repetition 
of ba. We can see [a,b] and [b,a] as two views of this pattern. 
We define the cross of one view to be the other view. With this 
definition in place we can define i to be the ordered pair  
[ unmarked, marked]  and j to be the ordered pair  
[marked, unmarked]. 
 
Views of one alternating pattern become distinct ordered pairs. 
We juxtapose the ordered pairs by superimposing the corresponding 
patterns. Thus 
 

[a,b][c,d] = [ac, bd].
 

 
 
In this way we get a specific model for the waveform arithmetic. One 
can then investigate matters of initials, completeness and so on. 
 
 



... ababababababababab...

[a,b] [b,a]

[a,b] = [  b  ,  a   ]

i = [    ,    ]

=

=

j = [    ,    ]

... ...

i =  [     ,     ][   ,   ] = = [   ,   ] = i

j   =  j

ij = [      ,      ] = [    ,    ] =
 

  
This last figure has been designed to kind of give you a feel for the 
potential of waveform arithmetics and algebras as ways of capturing 
temporal process and multiple viewpoint in algebraic equations. 
There is a great deal of this, and it extends outward into 
programming languages, cellular automata, artificial life and so on. 
And yet, have we solved the conundrum with which we began? Have 
we found a context for the reentering mark in the primary algebra? 
Well, the answer is obviously not, not this way. There is another 
way, and it is very simple. 
 



That other way is the Flagg Resolution, discovered by James Flagg 
around 1980. See [FR1] for more about the history of this point of 
view. Any solution to our paradox will ask us to give up something. 
Flagg resolution asks us to give up the commonly assumed locality 
of an algebra element. In Flagg resolution, the reentering mark is 
non-local in the text. Here is the Flagg resolution. 

= .

If one applies this equation in 

a given text, then 

it must be applied everywhere 

in that text. There is only one 

reentering mark, and all 

references to it are relational.

In particular you can write

=

changing both marks in the text

,

,

but it is forbidden to change only 

one of them.
 

 
With this resolution in hand, there is no paradox. Look back, for 
example, at the contradiction that we derived at the beginning of 
this  
section. It cannot happen. Each text must be taken on its own 
grounds. The reentering mark has its self-crossing property, but that 
does not disturb its relation to itself in the equation. 



=
.

 
In fact, if you now go back to waveform description, you see that in 
the above equation, it is nonsense to allow one to change only one 
reentering mark, but not the other. The whole point of the equation 
is that within it, the two waveforms are shifted and they 
superimpose to form the marked state.  
 
Flagg resolution resolves the paradox by turning the temporal 
interpretation into a non-locality in the treatment of specific text 
entities. Once one is conscious of this mode of resolution, one 
realizes that it is in essence what is being done to avoid 
contradictions in numerous systems. For example, in the digital 
circuits we work with systems with circularities and indicate the 
non-local connections by using the graphical representation. Flagg 
could be done graphically by attaching common lines to all 
instances of the reentering mark that must be handled as one mark. 
Much more can be said along these lines, and we shall take up the 
theme in a separate paper [FR2]. 
 
XVI. Diagrammatic Matrix Algebra 
This section is about the use of diagrams in the algebra of matrices, 
a well-known subject in mathematics that has many motivations. We 
add this section to the present paper because the issues in 
diagramming matrix algebra are directly related to the formal 
mathematics examined here. 
 
Lets first recall how matrix multiplication works. Matrices are arrays 
of elements of an arithmetic or an algebra. Here we will begin by 
assuming that the matrix elements occur in ordinary numbers 
(integers, rationals, reals or complex numbers) or their algebra. 
Two 2 x 2 arrays are multiplied by the following formula. 
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00a 00b + 01a 10b 00a 01b + 01a 11b

10a 00b + 11a 10b 10a 01b + 11a 11b

! 

" 

# # 

$ 

% 
& 

 
We denote a matrix  A = (Aij) by a global letter (A in this case), 

and by an indication of the form of the elements of the array, Aij. 

The subscripts range over the set {0,1} in the case of a 2 x 2 matrix, 
as shown above. The rule for multiplying two matrices is 



 

(AB)ij = &k AikBkj. 
 
where the summation is over the index set for the matrix size that 
we are using. Compare this formula with the arrangement of indices 
and sums in the explicit matrix product given above. 
 
We now give a diagrammatic interpretation for matrix algebra. 
Each individual matrix is represented by a box with (input and 
output) lines that correspond to the matrix indices. 
 

A

A
i j

A

Aij
 

 
Matrix multiplication is represented by attaching the output line 
from one box to the input line of the other box. 
 

A

A

i j

A

ij

B

B

k

A B( )ij=  ! k ik kj

A B

Sum over all k.

B

AB( )

 
Lines tying one box to another correspond to internal indices in the 
matrix product, and so one sums over all possible choices of index 
for such internal lines.  
 
With these diagrammatic conventions in place, one can often make 
very efficient insight into properties of matrix composition. For 
example, the trace of a matrix A is given by the formula 



 

Tr(A) = & i Aii. 

Here is the diagram. 
 

Tr(A)
A

 
 
With this diagrammatic for the trace of A, we easily prove that  
Tr(AB) = Tr(BA) by putting two boxes in a circular connection 
pattern. 
 

ABA B
=

Tr(AB) = Tr(BA)
 

 

One of my favorite matrices is the "epsilon tensor"  %ijk. 

This matrix has three indices, each of which can take the values 1, 2 
or 3. The values of the epsilon are as follows 

%123 = %312 = %231 = +1 

%132 = %213 = %321 = -1. 

Otherwise (if there is any repetition of indices) the epsilon is zero. 
Note that epsilon is invariant under cyclic permutation of the 
indices. 
We diagram epsilon by using a trivalent vertex. 

i j

k

! ijk

 



There is a magic identity about the epsilon, which translates into 
diagrammatic language as 

- +=

 
 
A single line represents the identity matrix. That is, when the two 
endpoints of the line have the same index value, then the value of 
the matrix element is one, otherwise it is zero. You can see the truth 
of this diagrammatic identity by assigning some values to the lines. 
For example: 

- +=

1 2

3

1 2 1

1 2

2 1

1 2

2

(0)(0)=0(1)(-1) = -1 -(1)(1) = -1  
 
Now the cross product of two three dimensional vectors is defined 
by the epsilon:   
 

(V x W)k = &k% ijkViWj. 

 
Here one sums over the repeated index k. Note that a vector, having 
only one index is represented by a box with one line. In diagrams 
the vector cross product is given as follows. 
 



V x W  =  V     W

 
 
Similarly, the dot product of two vectors is given by the formula 
 

V.W = &kVkWk. 

 
In diagrams, we have: 
 

V.W =  V     W

 
Now we are prepared to see some identities about the vector cross 
product and the dot product. 
 

V.(W x Z) =  V    W    Z

 (V x W). Z = V W Z

V.(W x Z) = (V x W).Z
 

 
The diagrams deform to one another in the plane. The epsilon is 
invariant under cyclic permutation of its indices. 
Here is one that uses the basic epsilon identity. 



V    W    ZV x (W x Z) =

V    W    Z
+

V    W    Z

=
-

= -(V.W)Z + (V.Z)W
 

 
Vector algebra becomes transparent through the use of  
diagrammatic matrices. 
 
One last remark about the epsilon: Roger Penrose [Pen] assigns  
epsilon times the square root of minus one to cubic vertices, and 
uses that assignment to prove a beautiful formula that lets one 
count the number of colorings of a planar cubic graph, just as we 
have discussed the problem in section 8. The proof of the Penrose 
formula can be performed as a combination of diagrammatic matrix 
algebra and the use of idemposition and formation as in section 8. 
The interested reader can consult [KP] or [Map] for the details. Here 
is a quick sketch of the matter: 
 
From now to the end of the section the trivalent vertex  

will stand for !1"ijk . 



i j

k

!-1

 

We shall indicate this by placing a !1 sign next to the 
corresponding graphical node. Now consider the following 
decorated graph G. 
 

i j k

!-1

!-1

[G] =

= !
ijk

"
ikj ijk
"!-1 !-1

= !
ijk

"
ijk

"
ijk(#1)(# )

= !
ijk

1
- distinct

= 6
 

 
We see in this instance that by taking each vertex of G as an epsilon 
multiplied by the square root of negative unity, we can take the 
matrix evaluation of the closed graph that is obtained by summing 
over all possible index assigments to the edges of the graph, and 
multiplying together the matrix entries for each choice of indices. 



The resulting sum certainly runs through all colorings of the graph, 
as we have defined coloring to mean three distinct colors at each 
vertex, and the epsilon is non-zero in just this case. We find, in this 
example that each coloring gets counted with a plus one, so the the 
sum over all of them is equal to the number of colorings. This is not 
an accident! 
 
XVII. Formal Arithmetic 
The purpose of this section is to go underneath the scene of 
numbers as we know them and to look at how these operations of 
addition and multiplication can be built in terms of a little 
technology of distinctions and the void. This is a story as old as 
creation herself, and we shall take some time to point out a 
mythological connection or two as we go along. 
 
In the Beginning 
In the beginning there was Everything/Nothing, a world with no 
distinctions, the Void. Of course, there was not even a world at this 
stage, and we do not really know how to describe how observers 
with understanding could arise from a world in which there really 
was nothing and no way to begin.  
 
So the idea in exploring the possibility of an infinitely creative Void 
prior to the creation of All Things is to look at structures that we 
know in the world that we seem to know, and follow them back into 
simplicity.    
 
This will not be a linear process. Once we follow a structure back 
into what seems to be its essential simplicity, there is a new and 
wider view available, and this view compounded with what we 
already knew, leads to a new way to hold the entire matter and 
more possibility to move into even deeper simplicity.  
 
It is a paradox.  By moving into simplicity, we make room for a 
world with even greater complexity. And this complex world allows 
the movement into even greater simplicity. There is an infinite 
depth to simplicity, just as there is an infinite possibility for 
complexity. 
 
One 
One? 
 



The Void of Everything/Nothing is certainly One.  "It" (and by 
referring to it I naturally move away from it, for it is not an it.  The 
Void, when named, is not the Void. There is no way to define, name, 
delineate or otherwise contain the uncontainable. 
 
This very uncontainability makes the Void a One, since it certainly is 
not a Many. So we can certainly say that the Void is One. And at the 
same time there is no way to actually name the Void and so we 
might imagine that she has a secret and unpronounceable name. 
Void is not really her name. Void is a finger pointing to the moon. 
 
Mathematics, at this stage, is delicate. You can do mathematics in 
the neighborhood of the Void, but you had better be very careful to 
understand that reference just does not work in the everyday --up 
here in the trees--world full of things way. No. We have proved that 
the Void is One, because it certainly is not Many. But we have to 
take this very carefully, because, if we were to enter into the Void 
there would not even be One or None or Many.  
 
On the other side, coming from our home in the trees, it is quite 
tempting to just say. Well , One is just one distinction.  Like this: 

 

     

 
or perhaps this: 

 
 

    
 
How can we reconcile that grand One of the One Void and the small 
one of one distinction? Clearly the answer lies in understanding that 
the one of the distinction stands for the form of distinction itself 
and that it is this form of distinction that we refer to when we 
distinguish the One. The one void is not an expression of a 
something, but rather  an indication of our intuition of the form of 
distinction itself. Nothing is more distinguished than the Void, and 
so all aspects of distinction belong to it from the outside, as it were. 
In and of itself the void knows nothing, distinguishes nothing, is 
nothing. 



 
Yet the void is Everything/Nothing and so all this, all this discussion 
is occurring in Void. This discussion pretends to make distinctions 
and to talk about the One and the Many.  But it is fiction. It is all 
empty, and the only meaning that can possibly adhere to this 
discussion is emptiness. 
 
For these reasons, we choose  the mark 
 

    
 
as the quintessential representative of one.  The mark is seen to 
make a distinction in the plane on which it is drawn, and yet (being 
an abbreviated square) it provides an open pathway from inside to 
outside.  The one mark unifies the sides that it divides. 
 
Many 
We can proceed into the multiplicity of arithmetic with  
 
0 = 

1 =     

2 =        

3 =            

 
and so on. 
 
Addition is the juxtaposition of forms:  a + b = ab. 
 
Thus  
 

1 + 1 =      +     =       = 2. 

 
Multiplication is more complex.  
When we multiply  2 x 3 we either take two threes and add them 
together, or we take 3 twos and add these together.  In either case 
we make an operator out of one number and use this operator to 
reproduce copies of the other number. We seek a way to put these 
patterns into our formalism.  
 



Let n   denote the operator corresponding to the number n. Here is 

how this will work. If we put  n    next to any operator  m   then  

 

n  m     

 
will create n copies of the number m (or m copies of the number n) 
and place them under the roof of a mark forming a new operator. 
Thus 
 

5  3  = 5 x 3   . 

 
 
Thus the juxtaposition of operators  effects multiplication in the 
language of the operators. We would like to remove the mark over 

the result  5  3    and thereby obtain the product of the two 

numbers in the realm of numbers.  The following simple rule about 
the boundaries helps:  
 

 a   = a  for any a. 

 
In particular, 
 

     = 
 
 
This rule is the law of crossing from Laws of Form.  
 
We take on the law of crossing for this version of  arithmetic (but 
not the law of calling).  With the law of crossing in use, we can write 
 

5  3   =  5 x 3   = 5 x 3. 

 
In fact, these operators begin to take on a life of their own. Certainly 
we can write arithmetic entirely in Laws of Form notation. For 
example: 



=

=

=

= 9

3 x 3 3 3=

 
 
What I wish to focus upon here is what this formalism says about 
zero. Consider   zero multiplied by zero.  Since zero is represented 
by absolutely nothing, we get 
 

0 x 0 =          

 
and there is no reason in this system to reduce 0 x 0 to 0. 
In fact we see that  

0 x 0 = 2  , 

 
our important multiplication operator corresponding to the number 
two. 
 
Look at the powers of zero: 
 

00 =       

01 =       = 0 

02 =          

03 =            

 
Now we can see how beautifully this choice of notation works. 
Zero raised to the first power is indeed zero, since  



     is equal to absolutely nothing, and this is the additive zero in 

our system.  The most wonderful equation of all is  
 

00 =      
 
For here we have the production of Distinction and Unity from the 
Void. The Void taken to its own Power produces Unity. This 
equation is true. We have proven it. It is beautiful and we can not 
know its full meaning. For that is the Power of the Void. 
 
Remark. 
We should note that if we allow transposition (see the section on 
primary algebra) then we can write: 
 

N = ...a a

...a a a a=

= a
N

 
Thus  
 

N ==
N

a a 0
N
.a

 
 
Note well that a special case of this last result is the equation  

=.
 

 

expressing the fact that 10 = 1. This is not to be confused with  

 
 
which represents 2 as 1+1. In general, this means that the 
arithmetic consisting of zero numbers together with standard 
numbers is non-associative, and one must take care! 
 



Remark. What about negative numbers? 
We could postulate a reverse mark 

 = -1  
so that  

= =  
 
Then  
 

1/0 = 0
-1

= 

0
a

= a

0
1/0

= = 

0
1/0

= - 1
 

 
(We assure the reader that one can set up the context so that this 
formalism is consistent. That task is not discussed here.) 
One can regard this last equation as a precursor to the famous 
mathematical equation 

e
i

= -1
!

.
 

  
Remark. There is a good deal more to say about the structure of 
numerical arithmetic as constructed in the context of Laws of Form. 
Spencer-Brown has an article on this in the English-German edition 
of his book [SB]. See also [LKN, JEN, JJN]. 
 

   
 
XVIII. Frege's Conceptual Logical Notation and Laws of 
Form 
Along with his very clear motive to base arithmetic and logic on 
conceptual foundations, Gottlob Frege devised a "conceptual 
notation" for logic.  It turns out that this Frege notation is directly 



related to the circuit theory approach to Laws of Form. In this 
section we give an exposition of Frege's system and of that 
connection with Laws of Form. The material in this section is joint 
work with Christina Weiss [KF]. It is of great interest that Frege 
interwove his graphical notation with the logical text.  
 
Here is the Frege symbol for  "A entails  B": 
 

A

B

 
 
 
This is a continuous notation that structurally links the propositions 
together in the form of a tree.  Compare "A entails (B entails C)" 
 

A

B

C

 
 
with  "(A entails B) entails C". 

A

B

C

 
 
The different tree structures in Frege's notation make the non-
associativity of entailment graphic. 
 
Negation is accomplished in Frege by the placement of a stroke. The 
diagram below represents "Not A." 

A  
 



Not A is represented by the diagram as a whole, but the placement 
makes the sign of negation act on what is found to the right of it.  
Thus  the following diagram represents "Not (A entails B)" 

A

B

 
 
while the next diagram represents  "(Not A) entails B." 

A

B

 
 
Logical relationship becomes spatial relationship in this inherently 
two-dimensional notation.  
 
 Frege went on to include the quantifiers "for all" and "there exists". 
We will not use these constructions in this paper. The reader can 
consult [GF] for more information about Frege's conceptual notation 
for the logic of quantification. 
 
Now we come to the difficulties in using the Frege notation.  
Consider the tautology  "Not{A implies B) = (Not B) implies 
(Not A)."  In the Frege diagrams this is expressed as shown below. 

A

B

B

A
=

 
 
In order to operate the Frege system one must get used to applying 
transformations of this kind.  An algebraic model  has it uses.  Logic 
is not just the structure of implication.  Logic, beginning with 
implication, needs to handle the intricacies of other connectives 
such as "and" and "or" and the patterns that arise from negation. 
 
What about the other connectives such as "AND" and "OR" ?   
In standard logic  one has 
 

Not(A OR B) = (Not A) AND (Not B)  
 

and 
 



A entails B = Not ( A AND Not B), 
 
from which it follows that  
 

A entails B = Not(A) OR B. 
 

Turning this around, we have 
 

A OR B = Not(A) entails B. 
 

Thus in Frege, the following diagram represents "A OR B". 

A

B

 
Similarly we have that   
 

A AND B = Not( A etails Not(B)) 
 
so that the following diagram represents  "A AND B." 

A

B

 
This is getting complicated.    
 
Frege's Diagrams as Signal Processors of the Marked and 
Unmarked States 
In order make Frege's notation palatable, one needs to become 
fluent in making transformations within it. In order to make Frege's 
notation useful we need a deeper understanding of its structure. 
There is such an understanding, an understanding that was not 
available to Frege, but began with Claude Shannon in the 1930's 
with his discovery of the relationship of Boolean algebra and 
switching networks [CES].  A precursor to our remarks occurs in the 
paper by  Hoering [H], who made an early relationship between 
Frege's diagrams and switching circuits. We are indebted to James 
Flagg for pointing out this paper to us. 
 
Shannon's insight was that the patterns of logic and Boolean 
algebra, were the same as the patterns of signals transmitted in 
networks where at a given juncture the signal would either be 



transmitted or not transmitted. The decision to transmit or not to 
transmit can be made by a switch that is either open or closed. 
Switches in series have the pattern of AND. Switches in parallel have 
the pattern of OR. 
The negation of a switch is obtained by changing its state from open 
to closed, or from closed to open. With this point of view Shannon 
was able to utilize Boolean algebra in the design of switching 
circuits, and logic took on new clothes in the form of the network 
formalisms.  These networks can have circularities and Shannon was 
well aware, even at the beginning of his project, that this meant that 
logic would also have to deal with the circularities so apparent in an 
electrical or information network.  Shannon found the inception of a 
cybernetic logic. 
 
 Think of a Frege diagram as a signal processor of the letters on its 
right.  Let the information flow from right to left so that the left-
most edge in the diagram represents the value of the expression that 
is the diagram itself. 

A Frege Diagram

A
B
C
D

Z

 
 
Z is the transform of A,B,C,D that is the value of the diagram. 
 
For example, we take the diagram for Not A and label it as follows. 

ANot A

 
 
A is transformed into Not A by the negation stroke. 
 
 
In entailment we have the production of Not(A) OR B. 

A

BNot(A) OR B

 
 



What happens to the signal when you turn a corner? 

A

??

 
 
What is the action of the simple join of two lines in the tree? 

A

B??

 
 
The answers are simple, and they reveal an underlying syntax for 
Frege's diagrams that makes them easy to use.   
 
Laws of Form is the Key to Frege  
Here are our answers to the questions. 
 
1. The signal is negated when it turns the corner. 

A

Not(A)

 
 
2. The join of two lines performs the operation OR. 

A

BA OR B

 
  
It is a miracle!  Signals can now flow in Frege's formalism and his 
language can live in time. 
 



With these assignments of operation, Frege's diagrams become 
information processing networks and they are utterly easy to read 
in the language of Not and OR. 

A

B

Not(A)

Not(A) OR B

 
 

A

B

C

Not(A)

Not(Not(A) OR B)

Not(A) OR B

Not(Not(A) OR B) OR C

 
 
  
 Here is our amalgam of the Frege and Spencer-Brown notations. 

A

A

X

YXY

A

B

A

A B

 
 
Note that in Spencer-Brown [LOF], "A entails B"  is written as 
 

A B. 
 



Spencer-Brown's ninety degree bend is a marker, a container, a 
representative of a primary distinction.   
 
And Peirce 
The American philosopher and mathematician Charles Sanders 
Peirce 
discovered diagrammatic logic systems (his sign of illation and his 
existential graphs) that are closely related to the concerns of this 
essay.  For an introduction to Peirce's diagrams we refer the reader 
to [MP]. More needs to be said, but here it is worth remarking that 
the Peirce sign of illation 
 

A B

 
 
also partakes of a ninety degree angle. Peirces's sign is a compound 
sign, a combination of negation (the horizontal overbar) and 
addition (logical OR) the vertical bar with a horizontal line. Thus 
one has the decomposition 

A B A B= = ~ A OR B.
 

 
Peirce managed to invoke in this compound sign a microcosm of his 
entire theory of signs.  Like Frege's diagram for implication, the 
Peirce sign of illation invokes both a unitary sense of that operation 
and a hint of its interrelationship with other operations in the web 
of logical discourse. By finding negation at the ninety degree bend 
and OR at the junction in the Frege implication diagram, we have 
provided a view of Frege's diagram of implication that puts in 
parallel with the Peirce sign of illation and its internal structure. 
These parallels between Peirce and Frege run deep and will be the 
subject of another paper. 
 
Recursive Unity 
We have discussed Frege's conceptual notation and how it can be 
understood in terms of the transmission of signals.  Signs can be 
seen to move through and be transformed by other signs and by 
themselves. Seen this way, the Frege notation enters the modern 
age. It is extraordinary how well it fits.    
 



Note that the Frege traditional diagrams are all trees. There is no 
recursion.  Recursion caught up with Frege  with the Russell 
paradox.  There the class R of all sets that are not self-members, 
keeps extending itself.  For if R is not a member of itself, then 
indeed R at once becomes a member of itself! But this is a new R, 
augmented by its own self-collection. The bootstrapping goes on so 
that R always becomes NOT R or simply ~ R. 
If we wish R to exist timelessly, then the paradox comes forth in the 
equation 
 

R = ~ R. 
 

In order to support such a circularity in the formalism we  
would have to let the ninety degree angle bite its own tail. 
 

...

R

R = R

R =

R =

R

R

R

 
In Spencer-Brown, the mark reenters its own indicational space, 
producing circularity, recursion and time.  In Frege,  it is necessary 
to curve back to the start lest we transform again by the action of an 
angle. Angular turn combined with smooth transition is the essence 
of circularity.  This synthesis of the continuous and the discrete is 
inherent in Frege's language. The basis of self-reference sits right 
there in that eternal return.   
 
 
XIX. The Logical Garnet 
The purpose of this section is to point out a remarkable connection 
between Laws of Form, polyhedral geometry, mirror symmetry and 
the work of Shea Zellweger [ZW].  



 
Zellweger did an extensive study of the sixteen binary connectives  
in Boolean logic ( "and", "or" and their relatives -- all the Boolean 
functions of two variables), starting  from Peirce's own study of 
these patterns. He discovered a host of iconic notations for the 
connectives and  a way to map them and their symmetries to the 
vertices of a four dimensional cube and to a three dimensional 
projection of that cube in the form of a rhombic dodecahedron. 
Symmetries of the connectives become, for Zellweger, mirror 
symmetries in planes perpendicular to the axes of the rhombic 
dodecahedron. See Figure G2. Zellweger uses his own iconic 
notations for the connectives to label the rhombic dodecahedron, 
which he calls the "Logical Garnet".   
 
This is a remarkable connection of polyhedral geometry with basic 
logic. The meaning and application of this connection is yet to be 
fully appreciated. It is a significant  linkage of domains.  On the one 
hand, we have logic embedded in everyday speech.  One does not 
expect to find direct connections of the structure of logical speech 
with the symmetries of Euclidean Geometry.  It is the surprise of this 
connection that appeals to the intuition.  Logic and reasoning are 
properties of language/mind in action. Geometry and symmetry are 
part of the mindset that would discover eternal forms and grasp the 
world as a whole. To find, by going to the source of logic, that we 
build simultaneously a world of reason and a world of geometry 
incites a vision of the full combination of the temporal and the 
eternal, a unification of action and contemplation.  The relationship 
of logic and geometry demands a deep investigation.  This 
investigation is in its infancy.  
 
In this section I will exhibit a version of the Logical Garnet (Figure 
G2) that is labeled so that each label is an explicit function of the 
two Boolean variables A and B.  A list of these functions is given in 
Figure 1.  We will find a new symmetry between the Marked and 
Unmarked states in this representation. In this new symmetry the 
mirror is a Looking Glass that has Peirce on one side and Spencer-
Brown on the other! 
 
Before embarking on Figure G1, I suggest that the reader look 
directly at Figure G2.  That Figure is  a depiction of the Logical 
Garnet.  Note the big dichotomies across the opposite vertices.  
These are the oppositions between Marked and Unmarked states, 
the opposition between A and not A, and the opposition between B 



and not B. If you draw a straight line through any pair of these 
oppositions and consider the reflection in the plane perpendicular 
to this straight line, you will see one of the three basic symmetries 
of the connectives.  Along the A/not A axis the labels and their 
reflections change by a cross around the letter A.  Along the B/not B 
axis, the labels change by a cross around the letter B. These 
reflections correspond to negating A or B respectively.  Along the 
Marked/Unmarked axis, the symmetry is a bit more subtle. You will 
note the corresponding formulas differ by a cross around the whole 
formula and that both variables have been negated (crossed).  Each 
mirror plane performs the corresponding symmetry through 
reflection.  In the very center of the Garnet is a double labeled cube, 
labeled with the symbols  "A S B"  and "A Z B".  These stand for 
"Exclusive Or" and its negation.  We shall see why  S and Z have a 
special combined symmetry under these operations. The rest of this 
section provides the extra details of the discussion. 
 
Let us summarize. View Figure G2. Note that in this three-
dimensional figure of the Logical Garnet there are three planes 
across which one can make a reflection symmetry. Reflection in a 
horizontal plane has the effect of changing B to its crossed form in 
all expressions. Reflection in a vertical plane that is transverse to 
projection plane of the drawing, interchanges A and its crossed 
form. Finally, reflection in a plane parallel to the projection plane of 
the drawing interchanges marks with unmarks. We call this the 
Marked/Unmarked symmetry. 
 
On first pass, the reader may wish to view Figure 2 directly, think on 
the theme of the relationship of logic and geometry, and continue 
into the next section.  The reader who wishes to see the precise and 
simple  way that the geometry and logic fit together should read the 
rest of this section in detail. 
 
Figure 1 is a list of the sixteen binary connectives given in the 
notation of Laws of Form. Each entry is a Boolean function of two 
variables. In the first row we find the two constant functions, one 
taking both A and B to the marked state, and one taking both A and 
B to the unmarked state (indicated by a dot). In row two are the 
functions that ignore either  A or B. The remaining rows have the 
functions that depend upon both A and B.  The reader can verify 
that these are all of the possible Boolean functions of two variables.  
The somewhat complicated looking functions in the last row are 
"Exclusive Or"  , A S B and its negation A Z B.   



 
In order to discuss these functions in the text, and in order to 
discriminate between the Existential Graphs and the Laws of Form 
notations, I will write  <A> for the Laws of Form mark around A.  
Thus, in contrast,  (A) denotes the Existential Graph consisting in a 
circle around A.  The Spencer-Brown mark itself is denoted by <>, 
while the circle in the Peirce graphs is denoted ().  Exclusive Or and 
its negation are given by the formulas 
 

AS B = <A <B> > < <A> B > ,   AZ B = < AS B >. 
 

                            
 

Figure G1.  The Sixteen Binary Boolean Connectives 
 

Here we have used Zellweger's alphabetic iconics for Exclusive Or 
with the letters S and Z topological mirror images of each other. 
 
Exclusive Or is actually the simplest of the binary connectives, even 
though it looks complex in the chart in Figure 1.  Let "Light" denote 
the unmarked state and "Dark" denote the marked state.  Then the 
operation of Exclusive Or is given as follows  
 

Dark S Dark = Light,       
Dark S Light = Dark,       
Light S Dark = Dark,       

  Light S Light = Light.   
 
Imagine two dark regions, partially superimposed upon one 
another. 



Where they overlap, the darknesses cancel each other, and a light 
region appears. This is the action of Exclusive Or.  Darkness upon 
darkness yields light,  while darkness can quench the light, and light 
combined with light is light.  In other words, Exclusive Or is the 
connective closest to the simple act of distinction itself, and it is 
closest to the mythologies of creation of the world (heaven and 
earth, darkness and light) than the more complex movements of 
"and" and "or".  Exclusive Or and its negation sit at the center of the 
logical garnet, unmoved by the symmetries that interchange the 
other connectives.  
 
The operation of Exclusive Or on the marked state is the same as 
negation (darkness cancels darkness to light) and the operation of 
Exclusive Or on the unmarked state is the identity operation that 
makes no change.  
 

A S <> = <A>    while  
A S   .  =    A. 

 
The symmetries of Exclusive Or are very simple. If we change one of 
the variables to its negation we just switch from S to Z!  That is, 
 

<A> S B = A S <B> = A Z B. 
 
As a result, A S B and A Z B together are invariant under the 
symmetries induced by the A/not A and B/ not B polarity. 
 
 
Note that the central vertex (cube) in the Garnet (labeled with  
A S B and A Z B)  is connected to the eight compound terms on the 
periphery of the Garnet.  These terms are the terms that arise from 
Exclusive Or and its Complement when we take it apart.  For 
example 
 

A S B = < A <B> > < <A> B > 
 
and we can take this apart into the two terms   
 

<A <B>>   and  < <A> B>, 
 
while 
 

<A> S B = <<A> B> < A B> 



 
and we can take this apart into the two terms 
 

< <A> B>   and  <A B>. 
 
The reader will enjoy looking at the geometry of the way the central 
and simple operation of Exclusive Or is taken apart into the more 
complex versions of  "and" and "or" and how the Geometry holds all 
these patterns together. 
 
As for the periphery of the Garnet, it is useful to diagram this as a 
plane graph with the corresponding labels shown upon it. The 
illustration below exhibits this graph of the rhombic dodecahedron. 
The rhombic dodecahedron itself does not have a central vertex and 
the graph below shows precisely the actual vertices of the rhombic 
dodecahedron and their labels. By comparing with Figure 2, one can 
see how to bring this graph back into the third dimension. Note how  
we have all the symmetries apparent in this planar version of the 
rhombic dodecahedron, but not yet given by space reflection. It 
requires bringing this graph up into space to realize all its 
symmetries in geometry. 
 



       
Diagram G2 - Planar Graph of the Rhombic Dodecahedron 

 
Looking at this peripheral structure, we see the genesis of the 
pattern of the rhombic dodecahedron in relation to the connectives. 
This graphical pattern can be viewed as the lattice of inclusions of 
these functions regarded as subsets of a universal set. To see this 
clearly, view the next diagram where we have labeled the vertices of 
the graph in standard notation with an upward pointing wedge 
denoting intersection ("and"), a downward pointing wedge denoting 
union ("or"), 0 denoting empty set and 1 denoting the universe. 
Then, going outward from 0, pairs of vertices are connected to 
vertices denoting the union of their labels until we reach the whole 
universe which is denoted by 1.  This lattice is exactly the graph of 
the rhombic dodecahedron. 
 



 
 

Diagram G3 - The Rhombic Dodecahedron as the Lattice 
Associated with a Two Circle Venn Diagram 



 
Figure G2 - The Logical Garnet 

 
In this section we have exhibited a version of the  Logical Garnet 
suited to Laws of Form. This appearance of significant Geometry  



at the very beginning of Logic and Form deserves deeper 
investigation. The diagrammatic investigations of Peirce, Venn, 
Carroll, Nicod [Nicod] and Spencer-Brown are all ways of finding 
geometry in logic, but in Zellweger's Logical Garnet classical three-
dimensional geometry appears, and this is an indication that one 
should think again on the relationship of logic and mathematics. 
 
 
XX. Remembering 
This work relates at an abstract level with the notions of autonomy 
and autopoesis inherent in the earlier work of Maturana, Uribe and 
Varela [V]. There they gave a generalized definition of life 
(autopoesis) and  showed how a self-distinguishing system could 
arise from a substrate of "chemical" interaction rules.  I am sure that 
the relationship between the concept of the reentering mark and the 
details of this earlier model was instrumental in getting Francisco to 
think deeply about Laws of Form and to focus on the Calculus for 
Self-Reference. Later developments in fractal explorations and 
artificial life and autopoesis enrich the context of Form Dynamics. 
 
At the time (around 1980) that Francisco and I discussed Form 
Dynamics we were concerned with providing a flexible framework 
within which one could have the "eigenforms" of Heinz von Foerster 
[VF] and also the dynamical evolution of these forms as demanded 
by biology and by mathematics.  Francisco had a deep intuition 
about the role of these eigenforms in the organizational structure of 
the organism.  This is an intuition that comes forth in his books 
[V1,V2] and in his other work as well.   
 
There is a more general theme that has been around since that time. 
It is the theme of "unfolding from a singularity" as in catastrophe 
theory. In the metaphor of this theme the role of the fixed point is 
like the role of the singularity.   The fixed point is an organizing 
center, but it is imaginary in relation to the actual behaviour of the 
organism, just as the "I" of an individual is imaginary in relation to 
the social/biological context. The Buddhists say that the "I" is a "fill-
in". The linguists point out that " I am the one who says "I"." The 
process that is living never goes to the fixed point, is never fully 
stable.  The process of approximation that is the experiential and 
experienced I is a process lived in, and existing in the 
social/biological context.  Mind becomes conversational domain and 
"mind" becomes the imaginary value generated in that domain. 



Heinz von Foerster [VF] said "I am the observed link between myself 
and observing myself." 
 
The fixed point is fundamental to what the organism is not. In the 
imaginary sense, the organism becomes what it is not. 
 
In those same years, from 1978 until the middle 1990's I had a long 
and complex correspondence with G. Spencer-Brown that 
culminated in my paper [Map] about his approach to the four-color 
map theorem. These conversations also revolved around the nature 
of mathematics and the nature of the circuit structures in Chapter 
11 of Laws of Form. 
 
Since 1980, I have been in remarkable  conversation with James 
Flagg about all topics related to Laws of Form and many other 
subjects. Conversation with other members of the Chicago Laws of 
Form Group from the 1970's continue unabated in non-local realms 
(Jerry Swatez, Paul Uscinski, David Solzman). In the intervening 
years the notion of locality has changed radically, and yet it is still 
personal conversation that has the highest value.  
 
XXI. Epilogue 
There is a kind of blinding clarity about these simple ideas near the 
beginning of Laws of Form. They point to a clear conception of 
world and organism arising from the idea of a distinction.  
Nevertheless, if you follow these ideas out into any given domain 
you will be confronted by, perhaps engulfed by,  the detailed 
complexities of that domain.  The non-numerical mathematics acts 
differently than in traditional numerical models.  It acts as an arena 
for the testing of general principles and as a metaphor that can be 
used in the face of complexity. One keeps returning to the mystery 
of how "it" emerged from "nothing". 
 
"Crawling up along the waves of an oscillation Parabel asked Cookie: 
" I fail to understand what we are doing here."  "What do you 
mean?" she replied.  Well, in the beginning there was only  
void. Right? And then somehow we are crawling our way upward 
toward stable forms. Where do these forms come from? How can 
there be anything at all if we began with absolute nothingness.  
I don't get it. Listen, says Cookie. It's a secret. Actually all this is ... 
nothing. You see it all begins to look flowing and strong now. Not 
solid. Not yet. And you can imagine a time when it will even feel 
solid and real. But look here Parabel it is actually nothing, nothing 



at all. Nothing is an opportunity to imagine something. Absolute 
nothing is the most powerful opportunity of all to imagine anything 
at all. Because there is really absolutely nothing, the contrast with 
even a flickering thought of something is enough to make that 
something seem real! You imagined it all up. Yup! And you have 
nothing to thank for that." 
[F] 
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