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ABSTRACT 

Genetic programming (GP) can be applied to a wide variety of problems and produce 
human competitive results, but the solution GP comes up with is often hard to understand.  
This paper shows that picking the right functions sets, setting up the appropriate program 
structure, and adding a parsimony factor can help to reduce the complexity of the evolved 
solution and to make the evolved solution easier to understand.  Even though the algorithm 
for finding the greatest common factor (GCF) of two positive integers is well known, this 
paper will use evolving the GCF algorithm as an example and show that the right program 
structure, functions sets, and an appropriate parsimony factor can reduce computation 
time, decrease solution size, increase the understandability of the evolved program, and 
make the evolved algorithm more generalizable. 

 

1. Introduction 
Genetic Programming has been used in a variety of fields to solve difficult problems and produce human competitive results.  
In the field of mathematics, it has been used to solve problems such as symbolic regression, discovery of trigonometry 
identities, and sequence induction, just to name a few (Koza 1992).  However, in many cases, even though genetic 
programming correctly solves the problem, the algorithm that genetic programming comes up with is large, complex, and 
difficult to understand.  This paper will aim to find the best strategies and structures to use in order for genetic programming 
to produce a result that is more understandable.  The problem of finding the greatest common factor of two positive integers 
will be explored.  Since the GCF problem, like many other math problems, has an infinite number of test cases, increasing 
the understandability of the evolved solution also gives us one additional way to validate the correctness of the evolved 
program.  Upon the successful discovery of a solution to solve the GCF problem, additional adjustments to the GP run such 
as modifying the function set, changing the program tree structure, and adding additional fitness measures will be tried to see 
if we can make GP produce a solution with an understandable algorithm. 

2. Background of GCF Problem 
The greatest common factor of two positive integers, A and B, is defined as the largest integer that divides both A and B 
evenly.  The solution to finding the greatest common factor of two positive integers is well known.  One simple approach is 
to iterate through all the integers between 1 and the smaller of the two integers A and B, and the largest integer that divides 
evenly into both A and B is the GCF.  A more efficient approach can be obtained from the following math theorem (Rosen 
1995):  
 

Let A and  B be two positive integers with A >= B. 
If C = A mod B is non-zero, then GCF of A and B is equal to GCF of B and C. 
Otherwise, B is the GCF of A and B. 
 
Applying the above theorem, the following is a pseudo code representation of the Euclidean algorithm that can be used to 

solve the problem of GCF. 



 

 
// returns GCF of a and b 
int gcf(int a, int b) 
{ 
   int rem = a mod b; 
   while (rem != 0) 
   { 
      a = b; // updating dividend 
      b = rem; // updating divisor 
      rem = a mod b; 
   } 
   return b;  
} 

3. Genetic Programming Setup  
3.1 Major Preparatory Steps 
Table 1 shows the setup for the GP run using iteration and memory to evolve an algorithm for the GCF problem.  This setup 
is aimed to produce small and understandable results. 
 

Objective The objective is to evolve a program to find the greatest common factor of two 
positive integers. 

Terminal set The program is separated into two branches.  One initialization branch and one 
for-loop branch. 
Both branches share the same terminal set: 
{T1, T2, T3, T4, X, Y, Zero, One} 

Function set 
The function set for the initialization branch is: 
{Prog1, Prog2, SetT1, SetT2, SetT3, SetT4} 
 
The function set for the for-loop branch is: 
{Prog1, Prog2, SetT1, SetT2, SetT3, SetT4, +, -, *, %, Mod, If, Not, Equal} 

Fitness cases 

12 fitness cases: 
 
GCF(125, 15) =  5 
GCF( 36, 24) = 12 
GCF(   5,   1) =  1 
GCF( 36, 25) =  1 
GCF( 18, 14) =  2 
GCF( 16, 12) =  4 
GCF( 65, 25) =  5 
GCF( 65, 13) = 13 
GCF( 24, 15) =  3 
GCF(100, 10) = 10 
GCF(180, 72) = 36  
GCF( 27,  27) = 27 

Raw fitness 
Raw fitness is the sum of the following two components: 
 
ValErr = Sum of the absolute value of the difference between the actual GCF and 
the calculated result. 
ValSize = Number of nodes in the initialization branch and for-loop branch 
 
Raw fitness = ValErr + ValSize / weight, where weight = 100 

Standardized 
fitness Same as raw fitness. 



 

Hits Number of test fitness cases gotten correctly.  Max is 12. 
Wrapper None 
Parameters 

Population size M = 1500 
Number of generations G = 150 
Reproduction rate = 0.1 
Crossover rate = 0.9 
Tournament selection of size 7 is used. 

Success 
predicate When number of hits equals 12, additional test cases are used to test the 

success of the program.  However, no termination criteria is used in hope that the 
size fitness factor will drive the evolved program to be even smaller. 

 Table 1    Genetic programming tableau for GCF problem 
 
3.2 Description of Terminals and Methods 
 
Terminals 
T1, T2, T3, T4: These four variables represent the memory block of the run.  Each terminal Tn is an integer variable that 

can be set and accessed during the run. 
X: X is the first of the 2 positive integers whose GCF we are trying to find.  We make X the greater of the 2 

integers. 
Y: Y is the second of the 2 positive integers whose GCF we are trying to find.  Y is the smaller of the 2 

values. 
Zero: Constant 0. 
One: Constant 1. 
 
Methods 
Prog2, Prog3: These are connectors in the tree that allow the children nodes to be executed sequentially.  ProgN has N 

children. 
+, -, *, %: These are the add, subtract, multiply, and protected divide arithmetic operators.  Each takes 2 arguments. 
Mod: This is the mod operator.  It takes two arguments arg1 and arg2, and returns the value arg1 mod arg2.  If 

arg2 evaluates to 0, then the return value is 1. 
If: The If operator is the conditional operator that takes 3 arguments.  The first is the expression to be tested.  

If the first argument evaluates to a non-zero value, then the second child is executed.  Otherwise the third 
child is executed. 

Equal: The Equal operator takes 2 arguments and returns 1 if both children evaluate to the same value.  Otherwise 
it returns 0. 

Not: The Not operator takes 1 argument and returns 1 if the child argument evaluates to 0.  It returns 0 
otherwise. 

 
3.3 Tree Structure 
Two branches of trees are evolved during the run.  The first branch is an initialization branch that takes care of setting the 
variable values before the execution of the second branch.  The initialization branch contains all the terminals, the SetTn() 
variable modifiers, and the connectors Prog2 and Prog3. 
 
The second branch is the main for-loop branch representing the body of the for-loop.  The terminal T1 is arbitrarily chosen to 
be the return value of the evolved individual upon the completion of the for-loop.  T2 is the variable representing the for-
loop termination criteria.  At the beginning of each iteration, the value of T2 is checked.  If T2 is equal to zero, then we break 
out of the for-loop.  The for-loop is hard coded to iterate a maximum of 50 times to avoid infinite loops.   
 
The following pseudo code may help to understand the evaluation of the two branches better. 



 

// global vars T1, T2, T3, T4 
Init(); // initialize T1, T2, T3, T4 to zero 
EvaulateTree (Initialization Branch); 
For (int j=0; j<50; j++) 
{ 
   if (T2 == 0) 
      break; 
 
   EvaluateTree (For-loop Branch); 
} 
// value of T1 at the end of evaluation is taken to be the result 
 
3.4 Fitness Evaluation 
3.4.1 Training Test Cases 
Twelve fitness cases were chosen for the run.  These twelve cases were not chosen at random because the method of 
generating two random positive integers to use seems to favor training cases where the GCF is composed of multiples of 
relatively small prime numbers.  Choosing from a large range of integers doesn’t seem to gain much advantage in obtaining a 
representative training set.  Having multiple test cases helps to train the program correctly to achieve a general solution, but it 
is desirable to keep the number of test cases small to speed up the genetic programming run. 
 
Because of the above reasons, twelve fitness cases were chosen by hand.  These fitness cases include general test cases 
where the two integers share many common factors, where the two integers share only a few common factors, and where 
they share only one prime factor.  Special care is given in choosing these general test cases so that the number of iterations 
that the Euclidean algorithm needs to find the GCF of the two numbers varies.  Corner test cases where the two integers are 
relatively prime, where the two integers are the same, and where the smaller integer is the GCF of the two integers are also 
included in the training set. 
 
3.4.2 Hits 
The hits in the run is defined to be the number of fitness cases gotten correctly.  A maximum score of 12 hits is obtainable.  
However, scoring perfect on the 12 test cases doesn’t guarantee a 100% correct general solution.  Therefore when an 
individual scoring 12 hits is found, additional test cases involving bigger numbers and test cases that require more iterations 
to solve are used.  Early on in the experiment, the genetic programming run is terminated when the individual scores a 
perfect score on the additional test cases.  But in later runs, this termination criteria is taken out in hope that the parsimony 
factor will help to reduce the size of the evolved program even more to make the program more efficient and readable. 
 
3.4.3 Raw and Standardized Fitness 
Raw fitness was originally defined to be the sum of the absolute value of the differences between the actually GCF and the 
calculated results.  But another component, the weighted sum of number of nodes in the initialization branch and the for-loop 
branch is added later.  Overall the raw fitness = #hits + #nodes/weight.  In the discussion that follows, the weight used during 
the run is 100 unless otherwise specified.  The standardized fitness is the same as the raw fitness.  Adjusted fitness is defined 
as 1 / (1 + Raw Fitness) to ensure that it is in the range between 0 and 1. 
 
3.5 Example Individuals 
In figure 1 below, the initialization branch consists of the 2 nested functions SetT2 and SetT3.  Structures of this kind turn 
out to be common in the initialization branch.  In the initialization branch of this example individual, T3 is set to X, and 
SetT2 takes the return value of SetT3(X), which is X again, as an argument and sets T2 to X also.  The main for-loop branch 
consists of an If-statement that checks if T3 mod Y is equal to zero.  If so, T1 is set to Y, and T2 is set to zero, thus 
terminating the for-loop.  If not, T4 and T1 are both set to one, and this step is repeated 50 times in the for-loop before the 
iteration limit is reached.  The effect of this individual is that if Y is the GCF of X, then it correctly returns Y as the result.  
Otherwise it returns 1 as the GCF of X and Y. 
 



 

  
 Figure 1 An example of a possible individual in the population. 
 
Figure 2 below shows a 100% correct solution.  In the initialization branch, T1 is set to Y, T3 is set to X, and T2 is set to X 
mod Y.  The body of the for-loop consists of three operations connected by Prog3.  The body of the for-loop is only 
evaluated if T2 is not equal to zero.  If T2 is not equal to zero, we move the divisor to T3, and remainder to T1, and set T2 to 
be T3 mod T1.  If the new remainder is not zero again, this procedure repeats in the for-loop.  This simulates the Euclidean 
algorithm. 
 

  
  Figure 2      An example of a perfect individual structure in the population. 
 

4. Problems Encountered 
The problems described below are from earlier experiments in which only one result producing branch is evolved during the 
run. 
 



 

4.1 Do-Until Operator 
In earlier experiments of GP runs, the structure of having two branches in the tree wasn’t used.  Instead, a Do-Until (DU) 
operator was used in the function set along with the other ones described in section 3.2.  The DU operator takes two 
arguments.  The first argument serves as the termination criteria, and the second argument is the body of the loop.  While the 
first argument evaluates to true (a non-zero value), the second argument is evaluated.  A maximum of 50 iterations is also 
enforced to prevent infinite loops. 
 
By putting the DU operator in the function set in a GP run that produces only one result producing branch, we hoped that GP 
will evolve both the program structure and the algorithm needed to solve the GCF problem.  Indeed, some individuals 
achieving 12 hits (perfect for the number of training cases presented) was evolved; however, there are many problems with 
this approach in terms of time, complexity, program size, and understandability of the evolved program.  With the DU 
operator, a generation of 1000 individual may take up to 30 minutes to process.  The time it takes to evolve each generation 
tend to increase during the course of the run as the individuals in the population increase in size.  Another reason 
contributing to the large amount of time needed to evolve one generation is that multiple DU operators may exist or be 
nested in the program.  In many cases, the DU operators contain termination criteria that can never be satisfied.  In other 
cases the DU operators contain bodies that do redundant work such as setting the same variable to the same value repeatedly.  
These unnecessary DU operations reach their max iteration limit after 50 loops, and the produced effect can easily be 
replaced with a single SetTn() operator.  Nested DU operators pose even greater problems because the number of iterations 
the inner-most DU body gets executed grows exponentially large at the rate of 50^n, where n is the number of nested DU 
operators.  The possible appearance of multiple DU operators make the program longer to run, harder to understand, and 
unnecessarily complex. 
 
4.2 Lack of Generality 
Without constraints in size, these programs also seem to grow larger and larger in order to fit the 12 test cases.  But the 
results are often not general.  The programs seem to evolve more complex in order to find a way to solve the 12 training 
cases. specifically  Instead of using the DU operator to iteratively test the remainder of the division of two numbers, and then 
updating the dividend and divisor appropriately as in the Euclidean algorithm, the evolved program tend to mimic this 
iterative solution as a bunch of If-Else statements that carries the generalized algorithm out to only a fixed number of 
iterations.  For example, instead of using the terminals Tn as place holders for divisors and dividends and updating them 
correctly, some of the programs contains code fragments like (% (% X Y) Y) to simulate the second iterative step of the 
Euclidean algorithm.  These individuals score relatively high and survive because they can correctly solve all test cases 
requiring only a pre-specified number of iterations of the Euclidean algorithm. 
 
Multiple approaches were considered to help GP evolve a generalized solution.  One approach is to use random test cases in 
each generation.  However, this approach was ruled out because of the difficulty in generating good random test cases as 
discussed earlier in section 3.4.1.  Another approach is to increase the number of test cases to add more diversity to the 
training set.  This is a good idea although adding test cases will lead to even slower runs.  So 8 additional test cases involving 
larger numbers and larger number of iterations to solve were added.  To save time, these 8 test cases will only be tried on the 
best-of-generation individuals if they have 12 hits already.  The old termination criteria of stopping the run after achieving 12 
hits is replaced by terminating only after the additional 8 test cases are satisfied also.  These test cases can serve as negative 
testing in case the perceived perfect solution turns out to be flawed on some unseen sample data.  They add more assurance 
that the evolved program is correct and generalizable, but passing these 8 test cases still cannot guarantee the evolved 
program’s general applicability. 
  
4.3 New Program Structure Needed to Save Computation Time 
To deal with the problems of the computation time needed to do the GP run and the complexity of the evolved solution, the 
idea to modify the structural representation and evolve an initialization branch and a separate main for-loop branch came 
about.  This new tree structure guarantees the existence of only one and no nested loops in the evolved program to help with 
1) speeding up the run, 2) making the program more understandable by separating it into two specialized branches, and 3) 
getting rid of unnecessary functions and terminals in certain branches to reduce unnecessary choices. 
 

5. Results 
In generation 55 of one run, a perfect individual is evolved.  This individual scores a perfect 12 on the training test cases and 
also has a perfect score on the additional test cases.  The initialization branch contains 3 nodes, and the main for-loop branch 
contains 14 nodes as shown below: 

 
INIT: 



 

 (setT2 (setT3 X)) 
FOR_LOOP: 
 (setT1 (if (% t3 
               (setT1 (if t1 t1 Y))) 
            (% t3 
               (setT3 t1)) t1)) 
 

This was run with a population size of 1500 individuals with reproduction rate of 10% and crossover rate of 90%, using 
tournament-selection of size 7.  A parsimony factor is included as part of the fitness measure, and the weight of the 
parsimony factor is 100.  The choice of 1500 as the population size is carried over from the older GP runs of one branch 
only.  1500 seems to be the smallest population size for which GP can still evolve a solution with one result-producing 
branch only, so this number is used here again for comparison purposes.   
 
Upon closer inspection, this individual mimics the Euclidean algorithm described earlier.  In the initialization branch, T3 and 
T2 are both set to X.  T3 acts as the dividend place holder.  T2 is initialized to a non-zero value X so that the for-loop doesn’t 
terminate prematurely.  In the first iteration, the inner If-statement evaluates to false since T1 is initialized to zero; therefore, 
the inner SetT1 operator sets the value of T1 to Y.  Then the outer If-statement tests to see if T3 mod T1 is equal to zero.  If 
so the GCF of X and Y has been found already and is the value currently stored in T1.  In this case, the dummy operation of 
setting T1 to the value of T1 is performed repeated until the maximum number of iteration is reached.  If T3 mod T1 is not 
equal to zero, then the divisor place holder T1 is set to the value of T3 mod T1, and the dividend place holder T3 is updated 
to be the value of the previous divisor.  This is essentially the logic behind the Euclidean algorithm. 

 
In fact, during this run, an individual scoring 12 hits was already obtained in generation 19 with the following tree: 
 
INIT: 
 (setT2 (prog3 (setT4 (prog3 Y 
                             (setT4 X) X)) 
               (setT3 (setT2 (setT1 (setT4 (setT2 X))))) t3)) 
FOR_LOOP: 
 (setT1 (if (% t3 
               (setT1 (if (setT1 (% (setT4 t1) Y)) 
                          (setT4 t1) Y))) 
            (% t3 
               (setT1 (if (setT3 Y) 
                          (setT4 t1) 
                          (setT2 t2)))) 
            (if (prog2 t4 
                       (setT4 t1)) 
                (setT4 t1) 
                (setT2 t2)))) 

 
Even though the above individual is already a lot more compact than the ones evolved in the runs where there is no 
parsimony factor, this individual still contains operations that essentially performs nothing or can be replaced by simpler 
ones.  Keeping the run going, in generation 29, the following best-of-run individual is reduced to 29 nodes as shown below: 
 
INIT: 
 (setT2 (setT3 X)) 
FOR_LOOP: 
 (setT1 (if (% t3 
               (setT1 (if t1 
                          (setT4 t1) Y))) 
            (% t3 
               (if (setT3 Y) 
                   (setT4 t1) 
                   (setT2 t2))) 

 
Notice that this individual already resembles the final result very closely and in fact contains the same underlying algorithm 
with a few redundant method calls.  In particular, the initialization branch is already the same as the one in the best-of-run 
individual.  The main for-loop branch has very similar structure as the best-of-run individual but contains some unnecessary 
calls such as setting the otherwise unused T4 variable.  In generations 33, 34 and 36, this best-of-generation individual’s for-



 

loop branch kept decreasing by one in size.  The unnecessary calls to SetT4 are either eliminated from the tree or replaced by 
the return value of the SetT4 call only. 
 
In generation 43, the best-of-generation individual is almost the same as the final result. 

 
INIT: 
 (setT2 (setT3 X)) 
FOR_LOOP: 
 (setT1 (if (% t3 

            (setT1 (if t1 t1 Y))) 
          (% t3 
            (if (setT3 Y) t1 t1)) t1)) 
 

This individual has the program structure to run Euclidean algorithm.  The only thing wrong with it is that it is updating the 
dividend with the constant and incorrect value of Y every time.  Upon closer inspection, fixing the dividend value in the 
algorithm has the same effect as specifying a fix number of iterations in the Euclidean algorithm.   
 
Finally in generation 55, the assignment of the dividend variable is updated correctly and the Euclidean algorithm is evolved.  
The individual in generation 55 actually doesn’t include a correct termination condition unless Y happens to be the GCF of X 
and Y.  Instead, the evolved program stops updating the result variable T1 when the GCF is found and does the dummy 
operation of setting T1 to be T1 for the remaining of the iterations.  Although not perfect in terms of its termination 
condition, this individual takes advantage of the way for-loops are defined in the GP run and is perfect within the framework 
of our setup. 
 
6. Result Discussion 
Before including a parsimony factor, the programs that the GP runs produced were large and extremely hard to understand.  
In order to better understand the evolved programs, a parsimony factor is used, and the fitness measure became a 
combination of the error from the actual result and the size of the evolved tree. The effect of the parsimony factor was 
satisfying.  The evolved programs reduced in size dramatically, and as a side effect of keeping the run going and pressuring 
the ideal individuals to get smaller, the evolved programs also tend to generalize better. 
 
6.1 Size Comparison without Parsimony 
When we first moved to the two branches structure, a parsimony factor was not used, and the evolved solutions were large in 
comparison to the individual shown in section 5.  The parsimony factor reduced the program size dramatically.  As an 
example, one perfect individual from a GP run without parsimony factor has 128 nodes with the structure below: 
 
INIT: 
 (setT1 (prog3 (setT2 (setT1 X)) 
               (setT4 (setT2 (setT1 (setT2 (setT4 (setT2 (setT2 X))))))) 
               (setT4 (setT2 (setT2 (setT1 (setT2 (setT1 X)))))))) 
FOR_LOOP: 
 (if (setT3 (prog2 (+ (prog2 (setT1 (== Y X)) 
                             (setT1 (== Y X))) 
                      (== 1 t4)) 
                   (setT1 (== Y X)))) 
     (* (+ (* (prog3 t3 t3 t3) 
              (prog2 (== 1 t3) 
                     (setT4 t4))) 
           (not (setT1 Y))) 
        (prog4 t3 
               (== (setT3 t3) 
                   (if X 0 
                       (- 1 0))) 0 
               (setT3 (% t1 
                         (prog4 (setT2 (setT1 t4)) 
                                (if X 0 t3) 
                                (setT3 t3) 
                                (setT3 (% t1 Y))))))) 
     (prog4 (+ (* X Y) 



 

               (== 1 t4)) 
            (not (% (+ (setT1 1) 
                       (- 1 0)) 
                    (setT4 t2))) 
            (setT4 (setT2 (setT1 t4))) 
            (setT2 (% (setT1 (prog4 (setT2 (setT3 (% t1 Y))) 
                                    (if X 0 t3) 
                                    (setT3 t3) 
                                    (- Y t2))) 

(setT2 (setT1 t4)))))) 
 
This individual also scores perfectly on the additional test cases, but it is unknown whether this is truly a 100% correct 
solution because of its complex structure.  The algorithm this individual uses is almost impossible to understand. 
 
In contrast, the following perfect individual with only 10 nodes is evolved with the help of the parsimony factor and no 
termination criteria in generation 38 of one GP run.  This individual follows the Euclidean algorithm, including the 
termination condition, perfectly. 
 
INIT: 
 (prog2 (setT2 Y) 
        (setT1 X)) 
FOR_LOOP: 
 (setT2 (% t1 
           (setT1 t2))) 
 
Without the parsimony fitness measure, the average size of 9 individuals scoring 12 hits is 100.  With parsimony as a fitness 
measure, the average size of 6 individuals scoring 12 hits is only 19.  The average tree size of individuals evolved with and 
without parsimony as a fitness measure is shown below.  This is the average taken over 20 runs each. 
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  Figure 3    Average individual size with and without parsimony fitness measure. 
 
6.2 Weight of Parsimony Factor 
The choice for the weight of the parsimony factor is important.  The fitness measure is defined to be raw fitness = error + 
size/weight, where error is the sum of the absolute value of the difference between the actually GCF and the calculated 
result.  The parsimony factor is the number of nodes in the tree divided by the weight factor.  When we overemphasize the 
parsimony factor, for example making weight equal to one, then the overwhelming advantage for a small program in the 
evolutionary process causes the accuracy of the program to be overlooked.  For example, when weight equal to 1, many 
small programs of size less than 10 turn out to be the best-of-generation individuals even though they only score between 2 
to 4 for the number of hits.  For the GCF problem, the parsimony factor has to be properly adjusted so that accuracy on the 
training test cases is emphasized.  With the proper weight for the parsimony factor, the GP run produces correct programs 
with unnecessary parts stripped off to make the solutions smaller and more understandable.  Choosing the weight to be 
between 100 and 200 works well for this particular setup of the GCF problem. 
 



 

6.3 Choice of Fitness Cases Important 
In evolving the GCF program, the best-of-generation individuals early in the run were often large programs that solve the 
fitness cases correctly but fail to generalize on additional unseen test cases.  One of the problems contributing to this lack of 
generalization was the bad choice of some fitness cases initially.  Five out of the twelve original test cases happen to share 
the property that the GCF of the two integers is the same as the difference between the two.  This confusing characteristic 
causes many individuals with perfect scores on the training cases to miscalculate the GCF of some unseen test cases to be the 
difference between the two integers.  But even after changing the test cases to cover a wider variety of training cases, the 
problem of evolving a generalized solution still remains although the solutions evolved through the modified training cases 
do perform better and solve a larger variety of unseen test cases.   
 
6.4 Parsimony Contributes to Generality 
Fortunately the parsimony factor also seems to increase the general applicability of the evolved program in addition to 
reducing program size and enhancing understandability.  Without the parsimony factor, the individuals in the population are 
free to grow arbitrarily large to cover the twelve training cases.  Without the parsimony factor, it seems easier for GP to find 
solutions that cover all training cases, but the ability of these solutions to generalize is not guaranteed.  However, by putting 
in a parsimony factor, it seems that the evolved programs are forced to find a general strategy to solve all training cases.  In 
20 runs of GP without the parsimony factor, nine individuals scoring a perfect twelve hits are evolved.  However, three out 
of these nine individuals failed on additional test cases.  In 20 runs of GP with the parsimony factor, only six individual 
scoring twelve hits are evolved.  But out of these six, only one failed on additional test cases.  From tables 3 and 4 below, 
smaller programs seem to generalize better. 
 

Size 
Additional 
Cases 
Correct   

Size 
Additional 
Cases 
Correct 

168 62.5%   38 87.5%
121 100%   18 100%
113 75%   17 100%

94 75%   16 100%
93 100%   15 100%
82 100%   10 100%
81 100%     
75 100%     
74 100%     

Table 3   Size and generalizability of Table4 Size and generalizability of  
  9 individuals scoring 12 hits from  6 individuals scoring 12 hits from 
  20 runs without parsimony factor.  20 runs with parsimony factor. 

7. Conclusion 
The GCF problem is a simple problem for genetic programming to solve given that an appropriate set of test cases is chosen.  
However, without additional care, the solution that genetic programming comes up with can be hard to understand.  This 
paper has demonstrated that with an appropriate parsimony factor to reduce the size of the evolved solution and a proper 
choice for the structure of the evolved program, we can make genetic programming produce solutions that are compact, easy 
to understand, and more general. 
 
8.  Further Work 
Further experiments using GP with more complex setup like recursion and automatically defined functions can be made to 
see if they can solve more complex math problems and provide understandable results that give insight to the algorithm 
discovered. 
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