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Plouffe's Constant

We start with a formula which is surprising at first glance: 

 

where 

 

and 

 

In words, the binary expansion of 1/( ) is completely determined by the sign pattern of the second-order

recurrence { }. The (trivial) proof uses the double angle formulas for sine and cosine: 

 

and the fact that 
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One might believe that we've uncovered here a fast way of computing the binary expansion of 
1/( ), but this would be a mistake. The reason is that we would need sin(1) to high accuracy for

initialization, but computing sin(1) is no easier than computing 1/ . 

The double angle formula for cosine gives rise to a simpler, first-order recurrence 

 

but the sum 

 

doesn't appear to have a closed-form expression. The double angle formula for tangent, however, gives rise to
both a first-order recursion 

 

and a closed-form expression for the sum 

 

by a trivial proof like before. Again, computing tan(1) is no easier than computing 1/ . 

We've observed so far that, for sine and tangent, certain irrational inputs yield recognizable irrational outputs.
S. Plouffe([1]) wondered if this process could be adjusted somewhat. He asked if it was possible to initialize
any of these three recurrences with rational values, such as 1/2, and still obtain recognizable irrational binary
expansions. Define 
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then the first two sums turn out to be rational 

 

but the third sum 

 

is more mysterious. Plouffe numerically determined that 
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and it is reasonable to conjecture that C is irrational. A large number of decimal digits appear at the Inverse
Symbolic Calculator web pages. 

J. M. Borwein and R. Girgensohn([2]) succeeded in proving Plouffe's formula for C and much more. They
demonstrated that, given an arbitrary real value x, if 

 

then 

 

which we call Plouffe's recursion. 

This, however, was only one facet of their paper ([2]). It turns out to be crucial that the above sum, call it f(x),
satisfies the functional equation 
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We won't attempt to summarize [2] except to remark that Plouffe's recursion appears to be the simplest
example in the theory. Here are two results, corresponding to cosine and sine, due to Borwein and
Girgensohn: 

Given arbitrary , if 

 

then 

 

where 

 

Given arbitrary , if 

 

then 
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where 

 

Other examples, associated with logarithmic, hyperbolic and elliptic integrals of the first kind, are presented in
[2]. But suitably generalized binary expansions, given arbitrary x and extending those for the recursions { },

{ } and { }, { }, remain undiscovered. 

The Mathcad PLUS 6.0 file brwngrgs.mcd verifies the results given above. (Click here if you have 6.0 and
don't know how to view web-based Mathcad files). 
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