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ABSTRACT  

We examine quantum decay of the false vacuum in the driven sine-Gordon 

system and show how both together permit construction of a Gaussian wave 

functional. This is due to changing a least action integral to be similar with 

respect to the WKB approximation. In addition we find that the soliton-antisoliton 

(S-S’) separation distance obtained from the Bogomol’nyi inequality permits after 

rescaling a dominant 2φ  contribution to the least action integrand. This is from an 

initial scalar potential characterized by a tilted double well potential construction. 
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INTRODUCTION  
In this paper, we apply the vanishing contribution to a physical system of a 

topological charge Q to show how the Bogomol’nyi inequality6 can be used to simplify a 

Lagrangian potential energy term. This is so that the potential energy is proportional to a 

quadratic 2φ  scalar field contribution. In doing so, we work with a field theory featuring 

a Lorenz scalar singlet valued field in D+1 dimensional spacetime. Here, the D is the 

spatial dimensions of the analyzed system, so if D = 1 we are working with 1 spatial 

dimension plus a time contribution. 

Topological charges and inequalities exist and hold respectively for D+1 

dimensional theories featuring scalar and singlet valued fields; only for D = 1. For D > 1, 

the Lorentz scalar fields must be D-plets! We use the D = 1 dimensional case for 

describing the dynamics of quasi-one-dimensional metallic materials in our condensed 

matter example.  

We then describe how the quantum decay of a false vacuum1,2 contributes to our 

problem. For forming the Gaussian wavefunctionals in our new functional integration 

presentation of our generalized rate creation problem, we employed a least action 

principle that Sidney Coleman used for WKB-style modeling of tunneling.2  

As a sign of its broad scientific interest, for over two decades several quantum 

tunneling approaches2 have been proposed to this issue of the quantum decay of the false 

vacuum. One2 is to use functional integrals to compute the Euclidean action (“bounce”) 

in imaginary time. This permits inverting the potential and modifying what was 

previously a potential barrier separating the false and true vacuums into a potential well 

in Euclidean space and imaginary time. The decay of the false vacuum is a potent 
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paradigm for describing decay of a metastable state to one of lower potential energy. In 

condensed matter, this decay of the false vacuum method has been used3 to describe 

nucleation of cigar-shaped regions of true vacuum with soliton-like domain walls at the 

boundaries in a charge density wave. Another approach,4 using the Schwinger proper 

time method, has been applied by others5 to calculate the rates of particle-antiparticle pair 

creation in an electric field for the purpose of simplifying transport problems. Our 

method fits well with more abstractly presented treatments of transport theory.6 We also 

mathematically elaborate upon the S-S’ domain wall paradigm7,8 so that a tunneling 

Hamiltonian formalism which uses thisGaussian wavefunctional derived here has the 

kinetic energy information for our rate of transfer problem. But that the wavefunctionals 

derived here contain the tilted potential contribution the false vacuum hypothesis gives us 

for physics problems re scaled to a . quadratic 2φ  scalar field contribution 

BASIC TECHNIQUES USED IN THIS PAPER 
In this study, we apply the domain wall physics of S-S’ pairs to obtain a quadratic 

scalar valued potential for transport physics problems involving weakly coupled scalar 

fields. After this energy/mass representation of the soliton kink is modified by the 

Bogomol’nyi inequality,1 we can use the bound on our modified potential to simplify a 

Euclidian least action integral  

If we use Euclidian imaginary time, the least action integral of our wave 

functional will be changed from Eq. (1a) below to Eq. (1b) by using ( )timeitime ⋅→ . 

( ) ( ) ( ) →⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ −∂⋅⋅⋅⋅∫ ∫ φφφ VxdiD d 2

2
1/exp h  (1a) 

transforms to 
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( ) ( ) ( )∫ ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥⎦
⎤

⎢⎣
⎡ +∂⋅⋅⋅−⋅ φφφ VxdD d

E
2

2
1/1exp h  (1b) 

We should note that Eq. (1b) has an energy expression of the form  

 ( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +∂⋅⋅≡ ∫ φφφε Vxd d

E
2

2
1  (2a) 

Eq. (2a) has a potential term that we can write as  

( ) ( ) ( ) ...4
01

2
00 TOHCCV +−⋅+−⋅≡ φφφφφ  (2b) 

Furthermore, even after we invert our potentials, we can simplify our expression for the 

potential by procedures that eliminate the scalar potential terms higher than 2φ  by 

considering the energy per unit length of a soliton kink. This is given by A. Zee,1 after 

rescaling to different constants, as  

( ) ( )22
2

42
1~ ϕφλφε −⋅+⎟

⎠
⎞

⎜
⎝
⎛

⋅
⋅

⋅=
xd

dx  (3) 

with a mass of the kink or antikink of this given by  

( )∫ ⋅≡ xdxM ε~  (3a) 

to be bounded below, namely, by use of the Bogomol’nyi inequality 

( ) Q
xd

ddxM ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

⋅
≥−⋅⎟

⎠
⎞

⎜
⎝
⎛

⋅
⋅

⋅⋅≥ ∫ λ
μμϕφφλ 2

22

23
4

2
 (4) 

where Q is a topological charge of the domain wall problem. and 2
0φλμ ⋅∝  We define 

conditions for forming a wave functional via the Bogomol’nyi inequality and the 

vanishing of the topological charge Q, as given by Eq. (5):1,9  

[ ] )exp(
2)1(∫ −⋅−⋅≡Ψ ≡

C
Ddxc φφα  (5) 
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We presuppose, when we obtain Eq. (5), a power series expansion of the Euclidian 

Lagrangian, LE    about 0φφ ≡C . The first term of this expansion,  

( ) ( )
00

|
2
1|

2

φφφφφφ φεφ
≡== ≡∇⋅=

r
OEL  (6) 

is a comparatively small quantity that we may ignore most of the time. Furthermore, we 

simplify working with the least action integral by assuming an almost instantaneous 

nucleation of the S-S’ pair. We may then write, starting with a Lagrangian density ζ , 

∫∫∫ ⋅⋅→⋅⋅→⋅⋅ Ldxtdxtdxd PP ζζτ  (7) 

Quantity Pt in equation 7 is scaled to unity. Eq. (7) allows us to write our wave functional 

as a one-dimensional integrand. We called the 1∝Pt  as a unit interval of time in this 

calculation. Eq. (7) needs considerable explanation. To do this, break up the Lagrangian 

density as  

( ) )(2 φφζ V+∂≡  (8) 

with 

( ) ( ) ( )222 φτφφ ∇+∂∂=∂
r

E  (9) 

where the Euclidian imaginary time is over such a short interval that we, instead, look at 

the spatial variation according to setting the time varying contribution of the phase as a 

uniform constant term, so we look at 

( ) ( )22 φφ ∇+≅∂
r

 (9a) 

and then look at the integrand as 
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∫ ⋅⋅ ζτ dxd = ( )φε(⋅Pt  (9b) 

with 

( ) ( ) ( )⎥⎦
⎤

⎢⎣
⎡ +∇⋅⋅≅ ∫ φφφε Vxd 2

2
1(  (10) 

Then we have to look at the behavior of  

( ) ( ) ( )2/2/ LxLx nn +−−≡∇ δδφ  (11) 

which would represent the behavior of test functions converging to Dirac delta functions 

as ∞→n  

Furthermore, we should look at the behavior of, if N is very large 

( ) ( ) ( )[ ]

( )[ ] ( )[ ]

[ ] 1
2

12/2
2
1

2/
2
12/

2
1

2/2/
2
1

2
1

22

22

<≡⋅≅

+⋅+−⋅≡

+−−⋅⋅⎯⎯ →⎯⎥⎦
⎤

⎢⎣
⎡ ∇⋅⋅

∫∫

∫∫ →

LxdxLxdx

LxLxdxxd

NN

NNNn

δδ

δδφ

 (12) 

where I am, for this example modeling for all N  

( ) ( ) ( ) )4/~exp(2/~2/ 22 NxNxLx NN ⋅−⋅⋅≡≡± πδδ  (13) 

where for all N values we have  

( ) 1~~ =⋅∫
+∞

∞−
xdx

N
δ  (14) 

So, then, we are analyzing this problem according to a finite contribution of 

( ) ⎯⎯ →⎯⎥⎦
⎤

⎢⎣
⎡ ∇⋅⋅ →∫ Nnxd 2

2
1 φ 1

2
1

<  with contributions about the domain walls of 

2/Lx ±≅  assuming a thin wall approximation, as illustrated by Fig. 1.  
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[Insert Fig. 1 here] 

Introducing domain wall physics via Eq. (6) and Eq. (7) allows us to use a least 

action integral interpretation of WKB tunneling as the starting point to our analysis. This 

permits us to write our wave functional as proportional to1,9 

   ( )∫⋅−⋅∝ τβψ dLc ~exp  (15) 

with the Lagrangian  treated as 

( )
0

|
2
1| 2

2
2

0 φφφφ φ
φφ == ⋅∂

⋅∂
−⋅+≈ E

EE
VLL

O
+ ( )

0
|

!3
1

3

3
3

0 φφφ
φφ =⋅∂

⋅∂
⋅−

⋅
EV +   

( )
0

|
!4

1
4

4
4

0 φφφ
φφ =⋅∂

⋅∂
⋅−

⋅
EV  (16) 

We should be aware that for a wick rotation, when Eit τ⋅−=  that for d  dimensions 

xdixd d
E

d ⋅−=  with xddxd d
E

d
E

1−⋅= τ , and then we will set 2=d , effectively leaving 

us with use of ( ) ( )22
2

42
1~ ϕφλφε −⋅+⎟

⎠
⎞

⎜
⎝
⎛

⋅
⋅

⋅=
xd

dx  for a soliton kink. We also use a 

conserved current quantity of1,10  

φε
ϕ ν

μνμ ⋅∂⋅⋅
⋅

=
2

1J  (17) 

with a topological charge of1 

( ) ( ) ( )[ ]∞−⋅−∞⋅
⋅

=⋅≡ ∫
+∞

∞−

φφ
ϕ2

10 xJdxQ  (18) 

Note that the denominator ϕ  is not the same as ( )xφ ! In Zee,1 the ϕ  term is due to his 

setting of two minimum positions for φ  for a double well potential. We find that if we 

have meson type behavior for the field ( )xφ , this charge will vanish. It is useful to note 
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that if we look at the mass of a kink via a scaling 2
0φλμ ⋅∝  with M defined as the 

same as the energy of a soliton kink given in Eq. (3), with a subsequent mass given in 

Eq. (3a), that we have, via using baba ⋅⋅≥+ 222 , an inequality of the form given by 

Eq. (4). So that1  

QM ≥  (19) 

with mass M in terms of units of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

⋅ λ
μμ

2

23
4 . If we note that we have 

( ) ( ) ( )2
00

22
0

24
0 4 φφφφφφφφ −⋅⋅⋅−−=−  in one dimension, we physically use our 

topological current as a vanishing quantity from the kinetic term and the fourth order 

term both in a current as a vanishing quantity from the kinetic term and as an expansion 

of the potential about 0φ . Then we can write 

( ) { }⋅−⋅+≥ 2
02

1
CE QL φφ  (20) 

where 

0→Q  (21) 

Due to a topological current argument (S-S’ pairs usually being of opposite charge) 

and 

{ } { } { } 122 −⋅≈Δ⋅≡−≡ αgapBA E  (22) 

where if we pick1 : 

{ } { } { }( ) ( ) ( )TEFEgap
BA VVE φφ −≡Δ≡

−≡
2

 (23) 
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This means a wavefunctional with information from a inverted potential as part of 

a transport problem of weakly coupled systems along the lines suggested by Tekeman.11 

We found our weakly coupled systems eliminated the cross terms in our derivation of a 

functional integral and for 1=D , can write more generally the initial configuration of the 

form12 

( )[ ] ( )[ ]{ },exp 2
0∫ −−⋅=Ψ

≡
φφαφ

φφ
xxx icii dc

Ci
 (24a) 

which is  

     

( )[ ] ( ){ }

{ }.'exp

'exp

E

Ei

Sc

Ldc

α

αφ

−⋅=

−⋅=Ψ ∫ xxx

 (24b) 

in addition, we would also have a final state immediately after tunneling,1,12   

( )[ ] ( ) ( ) ( )[ ]{ },exp 2
0∫ −−⋅=Ψ ≡ xxxxx φφβφ φφ Cfff dc

Cf
 (24c) 

In the case of a driven sine-Gordon potential system, the initial state is similar to 

Coleman’s false vacuum bounce representation.1 The final state can be approximated as a 

modified Gaussian centered about a final field configuration of ( )xCfφ  that includes a 

bubble in which 0φ  has tunneled through the barrier into the true vacuum state, creating 

one or more soliton domain walls at the boundary between true and false vacuums 

   ( )x0φ  inside the tunnel barrier. Furthermore, we have that1 
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+
+

+

≈⎥
⎦

⎤
⎢
⎣

⎡
+

≈⇒

=
∂
∂

ε
ε

εφ

φ

1
.

,0

F

V

 (25) 

that is then tied in with the Bogomol’nyi inequality formulation of Eq. (20) where the 

topological charge 0≈→ +εQ . We also have in the case of a driven sine-Gordon 

potential a situation where we can generalize our wave functionals as1,12  

( )[ ] ( )[ ]{ }
[ ] ,~exp

exp
2

11

2
0

initialF

icii

xdc

dc
Ci

Ψ≡⎟
⎠
⎞⎜

⎝
⎛ ⋅−⋅

→−−⋅=Ψ

∫

∫≡

φα

φφαφ
φφ

xxx
 (26a) 

and 

( )[ ] ( ) ( )

[ ] ,~exp

exp

2

22

2

0

finalT

fC
ff

xdc

dc
Cf

Ψ≅⎟
⎠
⎞⎜

⎝
⎛ ⋅−⋅

→
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ −−⋅=Ψ

∫

∫≡

φα

φφαφ φφ xxxx
 (26b) 

where a driven sine-Gordon system is of the form 9 (assuming )ba CC >>  

( ) ( ) ( )2
,cos1 fiCba CCV φφφφ −⋅+−⋅≈  (27a) 

 πφ ⋅≈⇒ 2T  (27b) 

We also assume that ic , with the i  being either 1 or 2, will take into consideration the 

contributions denoted from Eq. (12). Furthermore, where ( )xcfci,φ  is the initial and final 
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state equilibrium configuration of phase, the wavefunctionals so obtained permit us to 

write wavefunctionals that obey the extremal condition of2,9 

( ) ( ) 0
,0

, ≡
≡

∫
CfCi

dL
x fi

φφ

τ
δφ

δ  (28) 

which is a further tie in with Sidney Coleman’s fate of the false vacuum hypothesis.2 

CONCLUSION 
It is straightforward to construct wavefunctionals that represent creation of a 

particular event within an embedding space. Diaz and Lemos13 use this technique as an 

example of the exponential of a Euclidian action to show how black holes nucleate from 

nothing. This was done in the context of de Sitter space; Diaz and Lemos13 used a similar 

calculation with respect to nucleating a de Sitter space from nothing. The ratio of the 

modulus of these two wavefunctionals is used to calculate the probability of Black hole 

nucleation within a de Sitter space, which is the general embedding space of the universe. 

This trick was also used by Kazumi Maki14 to observe a field theoretic integration of 

condensates of S-S’ pairs in the context of boundary energy of a two-dimensional bubble 

of space-time. This two-dimensional bubble action value was minus a contribution to the 

action due to volume energy of the same two-dimensional bubble of space-time. Maki’s14 

probability expression for S-S’ pair production is not materially different from what Diaz 

and Lemos13 used for black hole nucleation. 

What we have done is to generalize this technique to constructing wavefunctional 

representations of false and true vacuum states in a manner that allows for transport 

problems to be written in terms of kinetic dynamics as they are given by a functional 

generalization of a tunneling Hamiltonian. It also allows us to isolate soliton/instanton 
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information in a potential field that overlaps with a Gaussian wavefunctional presentation 

of soliton/instanton dynamics.1 We believe that this approach will prove especially 

fruitful when we analyze nucleation of instanton15 states that contribute to lower 

dimensional analysis of the configurations of known physical systems (e.g., NbSe3).1,9 

This approach to wavefunctionals materially contributes to calculations we have 

performed with respect to I-E curves fitting experimental data quite exactly1,9 — and in a 

manner not seen in more traditional renderings of transport problems in condensed matter 

systems with many weakly coupled fields interacting with each other.16  

 

FIGURE CAPTION  

FIG. 1: Evolution from an initial state Ψi[φ] to a final state Ψf[φ] for a double-well 

potential (inset) in a 1-D model, showing a kink-antikink pair bounding the nucleated 

bubble of true vacuum. The shading illustrates quantum fluctuations about the initial and 

final optimum configurations of the field, while φ0(x) represents an intermediate field 

configuration inside the tunnel barrier. The upper right hand side of this figure is how the 

fate of the false vacuum hypothesis gives a difference in energy between false and true 

potential vacuum values which we tie in with the results of the Bogomol’nyi inequality. 
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