CSC326 Array Programming Paradigm

CSC326 Array Programming Paradigm

CSC326 Array Programming Paradigm

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

1.0

2011-09

JZ

CSC326 Array Programming Paradigm

Contents

10

11

12

13

14

15

16

17

18

19

Agenda

Array Programming Language

NumPy Package

Creating Array

Changing Shape

Indexing and Slicing

Enumeration

Elementwise Operations

Universal Functions

More indexing

Broadcasting

Fractal Example

Sum and Partial Sum

Reduction

Reduction/Scan In Python

Parallel Reduction and Scan

Inner Product

Directed Graph

Recap

12

13

14

15

15

16

16

CSC326 Array Programming Paradigm

1/16

1 Agenda

* Array Programming Paradigm
* NumPy

* Array as collection

* Elementwise operations

¢ Reduction

2 Array Programming Language

» Native sequences are nice

— But very general: element can be anything

— Slow for large scale data and numerical computation
* Array Programming Paradigm

— Everything is an array

— No loops! (we already saw list comprehension)
* APL (A Programming Language)

— Kenneth E. Iverson: Candian Computer Scientist
— Turing Speech: "Notations as a Tool of Thoughts" (one of the most inspiring talks in CS)

— Influenced spreadsheets, functional programming, and computer math packages

¢ Vector machine

Vector Machine

Each register is an array

Instructions operate on arrays

Seymour Cray: Father of Supercomputer

¢ Question: How to

— Combine performance of C
— Expressive Power of APL

— Python as a language substrate
e NumPy: Multidimensional arrays!

— Vector / Matrix
— Photo:
— Tables

CSC326 Array Programming Paradigm

2/16

3 NumPy Package
* Retrieving source

>wget url

* Unpack

>tar xvfz foo.tar.gz

e Installation

— setup.py

>python setup.py build
>python setup.py install --user

* Ready to import

>python
>>>import numpy as np

NumPy Type: ndarray

* Rank
— Number of dimensions
* Axis
— Each dimension
* Shape
— tuple of integers indicating the size of the array in each dimension
* accessors

— andim: rank

— a.shape: shape

— a.size: total number of elements (prod of all elements of shape)
— a.itemsize: number of bytes for each elements

— a.dtype: data type of each element

— a.data: actual data (do not use directly)

CSC326 Array Programming Paradigm

3/16

>>> from numpy import =

>>> a = arange (10) .reshape (2, 5)

>>> a

array([[O0, 1, 2, 3, 41,
[5, 6, 7, 8, 911)

>>> a.shape

(2, 5)

>>> a.ndim

2

>>> a.dtype.name

"int32’

>>> a.itemsize

4

>>> a.size

10

4 Creating Array

* array function

— Convert from sequences

>>> import numpy as np

>>> a = np.array([2,3,4])
>>> g

array ([2, 3, 41])

>>> a.dtype

dtype (' int32")

>>> b = array([1l.2, 3.5, 5.11)
>>> b.dtype

dtype (' float64d’)

* Or sequences of sequences ...

>>> b = np.array([(1.5,2,3), (4,5,6) 1)
>>> b
array ([[1.5, 2. , 3. 1,

[4., 5., 6. 11

* zeros/ones/empty function

>>> np.zeros((3,4
array ([[O0.,
[O'I
[O'I
>>> np.ones (
array ([[[1,

0., , 0.1,
0
0
(
1
, 1
1
1
1
1

)
0.
., 0., 0.1,
., 0., 0.11)
4

2, dtype=intl6)

4

14 4

~

3)I
1, 1]
1, 11,
1,01, 110,
1, 1]
1, 1]
1, 1]

14 4 4

4 4 4

e e

[
[
[l
[
[

4 4 4

>>> np.empty ((2,3))
array ([[3.7360395%e-262, 6.02658058e-154,
[5.30498948e-313, 3.14673309e-307,

dtype can also be specified

6.55490914e-260]
1.00000000e+000]

1)

CSC326 Array Programming Paradigm

4/16

¢ arange

— recall range function ?

>>> np.arange(10, 30,
array ([10, 15, 20, 251)
0.3
array ([0. , 0.3, O.

>>> np.arange(0, 2,

1

* linspace: more predicatable number of elements

>>> np.linspace(0, 2,

array ([0. , 0.25, 0.5

>>> x = np.linspace(O,
>>> f = sin(x)

e random

>>> b = np.random.random((2,3))

>>> b
array ([[.69092703,
[.18679111,

5 Changing Shape

¢ ravel
>>> a = np.array ([[7.,
[7., 200 7o
[6., 8., 3.,
>>> a.ravel () # flatten the array

array ([7., 5., 9,
>>> a.shape = (6, 2)
>>> a.transpose ()
array ([[7., 9., 7.,
[Bcp 3oy 2oy

e resize

— modify the array in place

>>> g

array ([[7., 5.1,
[9., 3c]y
[7., 2.1,
[7., 8.1,
[6., 8.1,
[3., 2.11)

>>> a.resize((2,6))

>>> a

array ([[7., 5o 9.,
7., 8., 6.,

9

.8324276
.3039349

3

)

1o

.0114541
.37600289]1)

-1

.2,

it accepts float arguments

9 numbers from 0 to 2

useful to evaluate function at lots of points

CSC326 Array Programming Paradigm

5/16

* reshape
— returns another array with changed shape

— -1 means the dimension is automatically calculated according to other dimensions

>>> a.reshape(3,-1)
array ([[7., 5., 9o, 3
r 7., 2., 7., 8.1,
[6., 8., 3., 2

6 Indexing and Slicing

¢ Just like list

>>> a = array([0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]

8

>>> a[2:5]

array ([8, 27, 641])

>>> al[:6:2] = -1000 # modify elements in a

>>> a

array ([-1000, 1, =1000, 27. -1000, 125, 216, 343, 512, 7291)
>>> al::-1] # reversed a

array ([729, 512, 343, 216, 125, -1000, 27, =1000, 1, -10001)

>>> for i in a:
print i*x(1/3.),

nan 1.0 nan 3.0 nan 5.0 6.0 7.0 8.0 9.0

 Tuple indexed (NOT like list)

>>> b = array([[O, 1, 2, 31,
(1o, 11, 12, 131,
20, 21, 22, 23],
[30, 31, 32, 331,
[40, 41, 42, 43]])
>>> b2, 3]
23
>>> b[:,1] # the second column of b
array ([1, 11, 21, 31, 41])
>>> b[1:3,:] # the second and third row of b
array([[1l0, 11, 12, 131,
[20, 21, 22, 23]])

* Missing indices

>>> b[-1] # the last row. Equivalent to b[-1,:]

array ([40, 41, 42, 43])

e Dots (...)

— Means: as many as :

- x[1,2,...] is equivalent to x[1,2,:,:,:],

CSC326 Array Programming Paradigm

6/16

- x[...,3] to x[:,:,:,:,3] and
- x[4,...,5,:] to x[4,:,:,5,].

>>> ¢ = np.array([[[O,
[10, 12,

1, 21,

1311,

[[100,101,102],

>>> c.shape
(2, 2, 3)
>>> c[1l,...]
array([[100, 101, 102],
[110, 112, 11311)

>>> c[...,2]
array ([[2, 131,
[102, 11311)
>>> ¢ = np.array([[[O,

[10, 12,

[110,112,113]]

1, 2],

1311,

[[100,101,102],

>>> c.shape
(2, 2, 3)
>>> c[1l,...]
array([[100, 101, 102],
[110, 112, 11311)

>>> cl[...,2]
array ([[2, 131,
[102, 11311)

7 Enumeration
e Hierachical

for element in b:
print element,

¢ Flat

for element in b.flat:
print element,

[110,112,113]]

8 Elementwise Operations

e So far similar to list

Seems just a convenience

But why bother?

compare

Maybe more efficient in storage

]

]

)

)

same

same

same

same

3d

as

as

3d

as

as

array

array

(two stacked 2d arrays)

(two stacked 2d arrays)

CSC326 Array Programming Paradigm

7/16

for i in range(len(a))
cli] = al[i] + b[i]

[x + vy for x, yv in zip(a,b)]

* array op array

— vector operation just like scalar operation

— no loops

— not even list comprehension

a = np.array([20,30,40,50])
b = np.arange(4)

>>> ¢ = a-b
©
Yy

([20, 29, 38, 471])

* array op scalar

>>> bxx2

array ([0, 1, 4, 91)

>>> 10*sin (a)

array ([9.12945251, -9.88031624,
>>> a<35

array ([True, True, False, False],

9 Universal Functions

* QOperators are nothing but functions
* Universal functions

e Unary

7.4511316 ,

dtype=bool)

— arccos/arccosh/arcsin/arcsinh/arctan/arctanh

— cos/cosh/exp/log/log10/sin/sinh/sqrt/tan/tanh

* Binary

add/subtract/multiply/divide

remainder

power

Comparison

greater/less

—-2.62374854])

CSC326 Array Programming Paradigm

8/16

10 More indexing

* We saw indexing by

— integers
— slices

— tuple of integers/slices
* Array of integers!

— Gather operation

>>> a = np.arange (12) x*2

>>> i = np.array([1,1,3,8,5 1)
>>> ali]
array ([1, 1, 9, 64, 25])

>> palette = array([[0,0,0],

[
[0,255,01,
[@,0,255],
[255,255,255] 1)
0, 1L, 2, © 1,

0, 3, 4, 01 1)

>>> image = array([

>>> palette

[image]
array ([[[O, 0, 01,
[255, 0, 01,
[0, 255, 01,
[0, 0, 011,
[r o, 0, a1,
[0, 0, 255],
[255, 255, 255],
[0, 0, 0111)

* Scatter operation

>>> a = np.arange (5)
>>> g
array ([0, 1, 2, 3,
>>> af[[l1,3,4]1] =0
>>> g
array ([0, 0, 2, 0, 01)

4])

>>> a = np.arange (5)
>>> a[[0,0,2]1=[1,2,3]
>>> a

array([2, 1, 3, 3, 41)

[NOTE] For repeat entries, take the value of last one.

* Array of booleans!

— Pack operation

the first 12 square numbers
an array of indices
the elements of a at the positions 1

black
red
green
blue
white

2x4 image with color index entry

2x4 image with RGB entry

CSC326 Array Programming Paradigm

9/16

>>> a = np.arange (12) .reshape (3, 4)
>>> b = a > 4
>>> b # b is a boolean with a’s shape
array ([[False, False, False, False],

[False, True, True, True]l,

[True, True, True, True]], dtype=bool)
>>> a[b] # 1d array with the selected elements
array([5, 6, 7, 8, 9, 10, 111)
>>> al[b] =0 # All elements of ’a’ higher than 4 become 0
>>> a

array ([[0, 1, 2, 3],
t4, o, 0, 01,
6, 0, 0, 0]]

[NOTES] We have seen how elementwise operation help eliminate loops in code — what procedural construct does pack help

eliminate?

11 Broadcasting

» Elementwise function applies to arrays with matching shape

* What happens if they do not match?
— We already see the case with array op scalar

¢ Rules

All inputs with smaller ndim will have 1s prepended in their shape

size of each dimension of output array will be the same as the maximum size of all inputs along that dimension

an input can be used if its shape in a dimension is either one or equal to the output size (maximum size)

if input size along a dimension is 1, first data entry will always be used (stride will be O in stepping)

12 Fractal Example

e Mandelbrot set

— Given a complex number z, make a copy of the number (call it c), and then perform the following operation recursively:

Z = zZ*x*2 + C

CSC326 Array Programming Paradigm
10/16

* May go to infinity - Refinement:

— Any point z which, after 100 iterations, has a magnitude of greater than 10, belongs to the Mandelbrot set.
* Constructing a grid

— 1D axis

>>> np.linspace (0, 1, num=5)
array([0. , 0.25, 0.5, 0.75, 1. 1)

>>> re = np.linspace (-2, 1, 1000)
>>> im = np.linspace(-1.5, 1.5, 1000)

>>> x, y = np.meshgrid([1,2,3]1, [1,2])

>>> x
array ([[1, 2, 31,
(1, 2, 311)
>>> y
array ([[1, 1, 11,
(2, 2, 211)
>>> x, y = np.meshgrid(re, im)

* Complex grid: What’s happening down there?

CSC326 Array Programming Paradigm

11/16

>>> z = x + 1j*y
>>> z.shape
(1000, 1000)

* Copies and Views

— To save space and time, Python uses copies whenever possible:

Create a new array
>>> x = np.array([1,2,3])

Ve O

View the first two elements and call it ‘y
>>> y = x[:2]

>>> y

array ([1, 2])

Modify the first element of ‘y‘

>>> y[0] = 3

And note that ‘x' has also changed!

>>> x

array ([3, 2, 31)

» Use explicit copy if needed

>>> ¢ = z.copy ()

* Creating an empty image

>>> fractal = np.zeros(z.shape, dtype=np.uint8)

 All black pixels for now

— Generate a fractal

for n in range (100) :
print "Iteration %d" % n
Z *x=

z
Z += C

* Remember z is a grid of complex numbers!

[NOTE] the in-place operator: Not exactly the same asz=1z * 3

>>> mask = (np.abs(z) > 100)
>>> fractal[mask] = 255

[NOTE] Boolean array is used for indexing!
* Ploting

>>> import matplotlib.pyplot as plt
>>> plt.imshow (fractal)
>>> plt.show ()

CSC326 Array Programming Paradigm
12/16

* Full listing

— With color indicting how fast they escape to infinity

ITERATIONS = 100
DENSITY = 1000 # warning: execution speed decreases with square of DENSITY

x_min, x_max = -2, 1
y_min, y_max -1.5, 1.5

X, y = np.meshgrid(np.linspace(x_min, x_max, DENSITY),
np.linspace (y_min, y_max, DENSITY))

c =x + 1lj*xy # complex grid
z = c.copy ()
fractal = np.zeros(z.shape, dtype=np.uint8) + 255

for n in range (ITERATIONS) :
print "Iteration %d" $ n

——— Uncomment to see different sets ———
Tricorn
z = z.conj()

Burning ship
z = abs(z.real) + 1j*abs(z.imag)

Leave the lines below in place

*= z
z += C

mask = (fractal == 255) & (abs(z) > 10)
fractal[mask] = 254 x n / float (ITERATIONS)

plt.imshow (np.log(fractal), cmap=plt.cm.hot,
extent=(x_min, x_max, y_min, y_max))

plt.title (’Mandelbrot Set’)

plt.xlabel ("Re(z)")

plt.ylabel (" Im(z)")

plt.show ()

13 Sum and Partial Sum

* Let’s see some of Iverson’s original notations (APL)

¢ from scalar to vector
iota 5

123405

e sum: from vector to scalar

+/ iota 5
15

CSC326 Array Programming Paradigm
13/16

* partial sum: from vector to vector

+\ diota 5
1 3 6 10 15

+/ +\ iota 5
35

¢ reverse:

phi iota 5
54321

* repeat:

5 rho 6
6 6 6 6 66

e What is this?

+/ 5 rho 6
30

5X 6
30

+/ 5 rho 6 <—> 6 x 5
+/ iota N <-> ((N+1) x N) / 2

14 Reduction

* Suggestivity:

— "A notation will be said to be suggestive if the forms of expressions arising in one set of problems suggest related expression
which finds application in other problems"

* Sum can be generalized

— operator: applies to an input function, produce an derived function

— reduce and scan
* Applicable to any binary functions that are associative

— multiply
— and

- or

— min

— max

5 rho 2
2.2 2 2 2
*/ 5 rho 2
32

CSC326 Array Programming Paradigm

14/16

Note
power is to times what times is to add!

5 rho 1
11111
+\ 5 rho 1
12345

iota 5
12345
x/ iota 5
120

15 Reduction/Scan In Python

>>> a = np.arange (5)
>>> a

array([0 1 2 3 4])
>>> np.add.reduce (a)

10 # that’s 0 + 1 + 2 + 3 + 4

>>> np.add.accumulate (a)
array([0 1 3 6 10])

>>> a = np.array([1]%10)
>>> np.add.accumulate(a)
array ([1, 2, 3, 4, 5, 6, T,

* Applicable to other universal functions too

— np.multiply.reduce?

— np.multiply.accumulate?

CSC326 Array Programming Paradigm

15/16

16 Parallel Reduction and Scan

™
L+

ol

'd'

| ;}9 | +)\§+)
€

(
S
1

)

klr_.f Ry
[
S

[
O

™~

4

—
;-T-

N)
IR ICIRNE

I IGIISIICIIGIIOIG

17 Inner Product

 If P and Q are two vectors, then inner product + . X is

P+ . x0Q0<=>+/P x0

— pairwise multiplication produce intermediate vector

— reduction over intermediate vector produce a scalar

* Applicable to any functions

* What is Matrix Multiplication?

— For 1-D arrays to inner product of vectors (without complex conjugation)

CSC326 Array Programming Paradigm
16/16

— For 2-D arrays it is equivalent to matrix multiplication

— For N dimensions it is a sum product over the last axis of a and the second-to-last of b

np.dot (a, b)[i,]J,k,m] = np.sum(ali,J,:] * blk,:,m])

18 Directed Graph

¢ A set of nodes [QRST]
* A set of directed edges

¢ Connection matrix

R = O O
o O O O
o O O o
o O O

How to calculate

Out degree?

In degree?

Number of edges?

Related graph with direction reversed?

Immediately reachable neighbours?

Transitively reachable neighbours (transitive closure)?

19 Recap

e Think in collection

* Array programming concept

Shape and Layout

Indexing and Slicing
Scatter/Gather/Pack

Elementwise function

Reduce/scan/inner operators

	Agenda
	Array Programming Language
	NumPy Package
	Creating Array
	Changing Shape
	Indexing and Slicing
	Enumeration
	Elementwise Operations
	Universal Functions
	More indexing
	Broadcasting
	Fractal Example
	Sum and Partial Sum
	Reduction
	Reduction/Scan In Python
	Parallel Reduction and Scan
	Inner Product
	Directed Graph
	Recap

