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Preface

The fourth edition of Analog and Digital Communication Systems is a greatly modified
and enhanced version of the earlier editions. The digital communications portion of the
text has been considerably expanded and reorganized. The material is presented in a man-
ner that emphasizes the unifying principles governing all forms of communication,
whether analog or digital. Practical design applications and computer exercises have been
expanded. In particular, many of the graphs are prepared and formulas are solved using
MATLAB™ or Mathcad™. In such cases, the instruction set is presented to give the stu-
dent practice in using these important tools.

In addition to presenting a unified approach to analog and digital communication,
this text strikes a balance between theory and practice. While the undergraduate engineer-
ing student needs a firm foundation in the theoretical aspects of the subject, it is also im-
portant that he or she be exposed to the real world of engineering design. This serves two
significant purposes. The first is that an introduction to the real world acts as a strong mo-
tivating factor: The “now™ generation needs some “touchy-feely"” to motivate the spending
of hours digging through mathematical formulae. The second purpose of real-world engi-
neering is to ease the transition from academia to the profession. A graduate’s first experi-
ence with real-world design should not be a great shock, but instead should be a natural
transition from the classroom environment.

The book is intended as an introductory text for the study of analog and/or digital
communication systems, with or without noise. Although all necessary background mate-
rial has been included, prerequisite courses in linear systems analysis and in probability

The text stresses a mathematical systems approach to all phases of the subject mat-

*r. The mathematics used throughout is as elementary as possible, but is carefully chosen
50 as not to contradict any more sophisticated approach that may eventually be required.
An attempt is made to apply intuitive techniques prior to grinding through the mathemat-
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ics. The style is informal, and the text has been thoroughly tested in the classroom with ex-
cellent success.

Chapter 1, which is for motivational purposes, outlines the environmental factors
that must be considered in communicating information. The chapter also clarifies the dif-
ferences between analog, sampled, and digital signals. The final section lays out a block
diagram of a comprehensive communication system. This diagram could serve as a table
of contents for the remainder of the text.

Chapter 2 sets forth the mathematical groundwork of signal analysis. It should be re-
view for most students taking the course. Chapter 3 applies signal analysis results to linear
systems, with an emphasis on filters. The material in Chapters 2 and 3 is covered in most
linear systems courses.

Chapter 4 introduces probability and random analysis and applies these to the study
of narrowband noise. The matched filter is introduced as a technique to maximize the
signal-to-noise ratio. Chapter 5 deals with baseband communication. Although it concen-
trates on analog communication, the sampled systems form an important transition into
digital communication.

Chapter 6 is a thorough treatment of amplitude modulation (AM), including applica-
tions to broadcast radio, television, and AM stereo. Chapter 7 parallels Chapter 6, but for
angle instead of amplitude modulation. A section on broadcast frequency modulation
(FM) and FM stereo is included. The final section of the chapter compares various angle
modulation schemes.

Source encoding is the subject of Chapter 8. In addition to a thorough discussion of
the analog-to-digital conversion process, and of the associated round-off errors, the chap-
ter presents baseband forms of digital transmission. Chapter 9 focuses on channel encod-
ing, including data compression, entropy coding, and forward error correction. Both block
codes and convolutional codes are analyzed. Baseband forms of digital transmission and
reception are the topic of Chapter 10, and modulated forms of transmission are examined
in Chapter 11. Transmitters, receivers, error analysis, and timing considerations are treated
for amplitude shift keying (ASK), frequency shift keying (FSK), and phase shift keying,
(PSK). Hybrid signalling techniques and modems conclude the chapter.

The final chapter, Chapter 12, summarizes important design considerations for both
analog and digital communication systems. The chapter concludes with five contemporary
case studies.

Problems are presented at the end of Chapters 1 through 11. Numerous solved ex-
amples are given within each chapter.

The text is ideally suited for a two-term sequence at the undergraduate level. Chap-
ters 2 and 3 can be omitted if a course in linear systems forms a prerequisite. Chapter 4
can be omitted either if a probability course is a prerequisite or if noise analysis is not part
of the course.

If the text is used for a digital communication course, the following sequence of sec-
tions and chapters is recommended: Sections 4.7, 5.2, and 5.3, and Chapter 8, Chapter 10,
and Chapter 11. Channel encoding (Chapter 9) is normally not included in an introductory
digital communication course.

It gives me a great deal of pleasure to acknowledge the assistance and support of
many people without whom this text would not have been possible:



Preface xi

To the many classes of students who are responsive during lectures and helped indi-
cate the clearest approach to each topic.

To the faculty around the world who have written to me with comments and
suggestions.

To my colleagues at Bell Telephone Labs, Hughes Aircraft Ground Systems, and
California State University, Los Angeles. Special thanks go to Professors Roy Barnett,
Fred Daneshgaran, George Killinger, and Lili Tabrizi for their many helpful suggestions.

To Dennis J. E. Ross for guidance and assistance.

To Professor A. Papoulis, who played a key role during the formative years of my
education.

I sincerely hope this text is the answer to your prayers. If it is, please let me know. If
it isn’t, please also communicate with me so that, together, we can improve engineering
education.



Introduction
for the Student

Communication is perhaps the oldest applied area within electrical engineering. As is the
case in many technical disciplines, the field of communication is experiencing a revolution
several times each decade. Some important milestones of the past include the following:

The television revolution: After only five decades, television has become a way of
life. Wristwatch television, wall-size television, and fully interactive cable television are
all available.

The space revolution: This has been the catalyst for many innovations in long-
distance communication. Satellite communication permits universal access.

The digital revolution: The overriding emphasis on digital electronics and process-
ing has resulted in a rapid change in direction from analog communication to digital com-
munication.

The computer revolution: Microprocessors are changing the shape of everything re-
lated to computing and control, including many phases of communication. Home and
portable computers (e.g., the “notebook”) with modems are popular. They permit direct
data communication by the general public.

The consumer revolution: Consumers first discovered calculators and digital
watches. They then expanded to sophisticated TV recording systems, CB radio, cellular
phones, facsimile (FAX) systems, and video games. When digital watches were not
enough, numerous other functions were added to the wrist device, such as calculators, TV,
pager receivers, and pulse and temperature indicators.

The personal communication revolution: Cellular telephones began as a tool of the
business person. They then expanded into the public sector, with concerns for safety. In-
stant worldwide analog and digital communication is now desired by a broad spectrum of
the public.

There is every reason to expect the rate of revolution to continue or, indeed, acceler-
ate. Two-way interactive cable, high-definition television (HDTV), videotext, and per-
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sonal communication will greatly reduce our need for hard copies of literature and for
traveling. People are juggling bank accounts, ordering groceries, sending electronic mail,
and holding business-related conferences without leaving their homes. The problems of
urban centers are being attacked through communication. Indeed, adequate communica-
tion can make cities unnecessary. The potential impact of these developments is mind bog-
gling, and the possibilities involving communications are most exciting.

These facts should inspire you to consider the field of communication as a career.
But even if you decide not to approach the field any more deeply than in this text, you will
be a far more aware person for having experienced even the small amount contained
herein. If nothing more, the questions arising in modern communication, as it relates to
everything from the space program to home entertainment, will take on a new meaning for
you. The devices around you will no longer appear mysterious. You will learn what
“magic force” lights the stereo indicator on your receiver, the basics of how a video game
works, the inner workings of a FAX machine, and the mechanism by which your voice can
travel to any part of the globe in a moment of time.

Enjoy the book! Enjoy the subject! And please, after studying this text, communi-
cate any comments that you may have (positive, negative, or neutral) to me at California
State University, Los Angeles, CA 90032. Thank you!

Martin S. Roden
Los Angeles, California




Introduction

.0 PREVIEW
What We Will Cover and Why You Should Care

You will not encounter your first communication system until Chapter 5 of this text. The
first four chapters form the framework and define the parameters under which we operate.

Chapter 1 begins with a brief history of the exciting revolution in communication, a
revolution that is accelerating at an ever-increasing rate.

We then turn our attention to an investigation of the environment under which our
systems must operate. In particular, the characteristics of various communication channels
are explored, and we present analytical techniques for the resulting signal distortion. It
would not make much sense to start designing communication systems without knowing
something about the environment in which they must operate.

The third section of the chapter defines the three types of signals with which we will
operate. We begin with analog signals and make a gradual transition to digital signals
through the intermediate step of discrete time (sampled) signals.

The block diagram of a communication system is presented and discussed in the fi-
nal section. The various blocks in the transmitter and receiver form the road map for our
excursion through this exciting subject. We present a single comprehensive system block
diagram that applies to both analog and digital communication systems. This block dia-
gram forms an abbreviated table of contents for the remainder of the text.

Necessary Background

There are no prerequisites to understanding most of this introductory chapter. The only ex-
ception is the discussion of channel distortion in Section 1.2. Understanding the equations
in this section requires a basic knowledge of Fourier transforms and systems theory. Such
material is reviewed in Chapter 3.
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1.1 THE NEED TO COMMUNICATE

Among the earliest forms of communication were vocal-cord sounds generated by animals
and human beings, with reception via the ear. When greater distances were required, the
sense of sight was used to augment that of hearing. In the second century B.C., Greek
telegraphers used torch signals to communicate. Different combinations and positions of
torches were used to represent the letters of the Greek alphabet. These early torch signals
represent the first example of data communication. Later, drum sounds were used to com-
municate over greater distances, again calling upon the sense of hearing. Increased dis-
tances were possible because the drum sounds were more easily distinguished from back-
ground noise than were human vocal-cord sounds.

In the 18th century, communication of letters was accomplished using semaphore
flags. Like the torches of ancient Greece, these flags relied on the human eye to receive the
signal. This reliance on the eye, of course, severely limited the transmission distances.

In 1753, Charles Morrison, a Scottish surgeon, devised an electrical transmission
system using one wire (plus ground) for each letter of the alphabet. A system of pith balls
and paper with letters printed on it was used at the receiver.

In 1835, Samuel F. B. Morse began experimenting with telegraphy. Two years later,
in 1837, the telegraph was invented by Morse in the United States and by Sir Charles
Wheatstone in Great Britain. The first public telegram was sent in 1844, and electrical
communication was established as a major component of life. These early forms of com-
munication consist of individual message components such as the letters of the alphabet.
(We would later call it digital communication.) It was not until Alexander Graham Bell in-
vented the telephone in 1876 that analog electrical communication became common.

Experimental radio broadcasts began about 191(), with Lee De Forest producing a
program from the Metropolitan Opera House in New York City. Five years later, an exper-
imental radio station opened at the University of Wisconsin in Madison. Stations WWJ in
Detroit and KDKA in Pittsburgh were among the first to conduct regular broadcasts, in the
year 1920.

Public television had its beginning in England in 1927. In the United States, it
started three years later. During the early period, broadcasts did not follow any regular
schedule. Regular scheduling did not begin until 1939, during the opening of the New
York World’s Fair.

Satellite communication was launched in the 1960s, with Telstar I being used to re-
lay TV programs starting in 1962 and the first commercial communications satellites be-
ing launched in the mid-1960s.

The 1970s saw the beginning of the computer communication revolution. Data
transfer is an integral part of our daily lives and has led to a merging of the disciplines of
communication and computer engineering. Computer networking is one of the fastest
growing areas of communication.

The personal communication revolution began in the 1980s. Before the decade of
the nineties is over, the average professional will have a cellular telephone in the car, a
portable telephone (no larger than the Star Trek® communicators of the original series), a
paging system, a modem in the home computer for use in paying bills or accessing the
daily news, and a home FAX machine. Consumers will use fully interactive compact disk
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~ technology, laptops will be networked with worldwide data services, and the global-
positioning satellite (GPS) will assist in navigating cars through traffic jams.

The coming millennium is certain to bring a new set of applications and innovations
as communication continues to have a significant impact on our lives.

THE ENVIRONMENT

Before we can begin designing systems to communicate information, we need to know
something about the channel through which the signals must be transmitted. We start by
exploring the ways in which the channel can change our signals, and then we discuss some
common types of channels.

1.2.1 Distortion

Anything that a channel does to a signal other than delaying it and multiplying it by a con-
stant is considered to be distortion. (See Chapter 3 for a discussion of distortionless linear
systems.) Let us assume that the channels we will encounter are /inear and therefore can-
not change the frequencies of their input. Some nonlinear forms of distortion are signifi-
cant at higher transmission frequencies. Indeed, the higher frequencies are affected by air
turbulence, which causes a frequency variation. Doppler radar systems used for monitor-
ing weather capitalize on this phenomenon.

Linear distortion can cause problems in pulse transmission systems of the type used
in pulse modulation or in digital communication. This distortion is characterized by time
dispersion (spreading), due either to multipath effects or to the characteristics of the chan-
nel. For now, we look at the effects that can be readily characterized by the system func-
tion of the channel. The channel can be characterized by a system transfer function of the
form

H(f) = A(f)e ™) (1.1)

The amplitude factor is A( f), and the phase factor is 0( f).

Distortion arises from these two frequency-dependent quantities as follows: If A(f)
is not a constant, we have what is known as amplitude distortion; if 8(f) is not linear in f,
we have phase distortion.

Amplitude Distortion

Let us first assume that 8( f) is linear with frequency. The transfer function is therefore of
the form

H(f) = A(f)e ™o (1.2)

where the phase proportionality constant has been denoted as tp because it represents the
channel delay.
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One way to analyze Eq. (1.2) is to expand A(f) into a series—for example, a Fourier
series. This can be done if A(f) is bandlimited to a certain range of frequencies. In such
cases, we can write

H(f) = Y H(f) (1.3)
n=0
where the terms in the summation are of the form
H(f) = a,m('}lf)e-ﬂ"ﬂ- (1.4)

These terms are related to the cosine filter, whose amplitude characteristic follows a cosine
wave in the passband. This filter is shown in Fig. 1.1 for n = 2. The system function for
this filter is

H(f) = (A + acosj,—" f)e'ﬂ"ﬂ-

= Ae 2o 4 -‘zfexp[jznf(l - :o)] (1.5)

o - -4

Computer Exercise:

Plot Eq. (1.4) for representative values of f,, and 1.
Solution: We present the instruction steps both for Mathcad and for MATLAB.
Mathcad: We illustrate the instructions to type and the resulting expression on the screen:

fm:1 L2 o
£:-2,-1.95;2 £:1»-2,-1.95..2
H(f):cos(2*w*£/£fm) H(f) :=cos(2.m.£/fm)

NOTES: We set fm to unity and step the frequency from —2 to +2 in steps of 0.05. Enter m
by pressing CONTROL+P. You then enter the plotting mode by pressing “@"”, Insert “f” for
the abscissa and “H(f)" for the ordinate, and the plot results.

H()
- 4
a
+ A T
i g
"f- fm
Figure 1.1 Cosine filter.
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MATLAB: The following instructions are typed:

fm=1

fo-2:.05:2
H=cos(2*pi*f/fm)
plot(f,.H)

The result is shown in Fig. 1.2.

If the input #(7) to the cosine filter is bandlimited, the output is
a 1 a 1
s(n) = Ar(t — 1) + ir(l +}’; - ‘0) e Er(l - '; - ‘0) (1.6)

Equation (1.6) indicates that the response is in the form of an undistorted version of the in-
put, added to two time-shifted versions (echoes, or a multipath).

Returning to the case of a general filter, we see that the output of a system with am-
plitude distortion is a sum of shifted inputs. Thus, with

H(f) = Ea cos( )-ﬂ*ﬂo (1.7

n=0

the output due to an input (1) is

s() = ”Zo—“[r( t+—— ro) + r(r - —z-f— - :0)] (1.8)

Equation (1.8) can be computationally difficult to evaluate. This approach is therefore usu-
ally restricted to cases where the Fourier series contains relatively few significant terms.

1 T I | T
0.5 |- -
g °r 3
-0.5
S I | |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 25

Figure 1.2 Computer plot of H(f).
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Example 1.1

Consider the triangular filter characteristic shown in Fig. 1.3. Assume that the phase charac-
teristic is linear with slope —2rto. Find the output of this filter when the input signal is

sin400s
f
Solution: We must first expand H(f) in a Fourier series to get

L 4 w4 g 4 Sef
B = 5+ 227000 T 972 %1000 T 2572 “ 1000

The signal r(r) is bandlimited, so that all frequencies are passed by the filter. This is true be-
cause R(f) is zero at frequencies above 200 Hz and the filter cuts off at f = 1,000 Hz. If we
retain the first three nonzero terms in the series, the output becomes

1 2 1 1
l’(!)—"z‘r(f"to)'l‘?[r(t—m— )+r(l+m—to)]

2 3 3
+ﬁr('um—"’)+r('+ﬁ_'°)]

This result is sketched as Fig. 1.4 for to = 0.005 second.

Computer Exercise

Plot the result of Example 1.1 using both Mathcad and MATLAB. The MATLAB instructions
are:

r(r) =

+ ooe

t=-.01:.0005:.02;
to=.005;
ti=t-to;
t3%11-.001;
t3=t1+.001;
té=t1-.003;
t5=tl+ .003;
al=400*pi*tl;
a2=400*pi*t2;
a3=400*pi*t3;
ab4=400*pi*té;

H()

=1,000/2% 1,000/21m ;
Figure 1.3 Triangular filter characteristic.
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1,500 T T T T

1,000

_500 I ! I | 1
-0.01 -0.005 0 0.005 0.01 0.015 0.02

Figure 1.4 Result of Example 1.1.

a5=400*pi*t5;
s=sin(al)./t1+(2/pi*2)*(sin(a2)./t2+sin(a3)./t3))

+(2/(9*pi*2))*(sin(a4)./t4+sin(a5)./t5))
plot(t,s)

Note the presence of the period (.) before the division in the next-to-last statement. In MAT-
LAB, it is important to realize that we deal with matricies. In this case, tis a (1 X 61) vector,
s0 s has the same dimensions. If we attempt to execute an expression such as s=sin(t)/t, we get
an error, since we are trying to divide one (1 X 61) vector by another (1 X 61) vector. To
force the division to be scalar, we precede the division sign by a period.

In Mathcad, the equations can be entered directly. The instructions are:

t:=-,01,-.0099.. .02

r(t) :=sin(400*mw*t)/t

rd(t) :=r(t-.005)

s(t):=r(t-.005)/2+(2/n*2)*(r(t-.001-005)+r (t+.001-.005))+
(2/(9*n*2))*(r(t-.003-.005)+r (t+.003-.005))

@[enter t for abscissa, and s(t),rd(t) for ordinatel]

Note that we have defined rd(t) as the undistorted delayed version of r(t) so that we could plot
the latter. Figure 1.4 was generated using Mathcad.

The undistorted function is plotted in Figure 1.4 as a dashed line. Examining the dif-
ferences between the two curves, we see that the distortion is manifest as an attenuation
and a slight time delay. That is, the peaks of the output are smaller and slightly to the right
of the corresponding peaks of the undistorted waveform.
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Phase Distortion

Deviations of the phase away from the distortionless (linear phase) case can be character-
ized by variations in the slope of the phase characteristic and in the slope of a line from the
origin to a point on the curve. We define group delay (also known as envelope delay) and
phase delay as follows:

_ 80 _ )
Wffi=3 W =0

Figure 1.5 illustrates these definitions for a representative phase characteristic. If the chan-

nel were ideal and distortionless, the phase characteristic would be linear, and the group

and phase delays would both be constant for all £ In fact, for this ideal case, both delays

would be equal to the time delay f, from input to output.

The phase characteristic can be approximated as a piecewise linear curve. As an ex-
ample, examine the phase characteristic of Figure 1.5. If we were to operate in a relatively
narrow band around f;, the phase could be approximated as the first two terms in a Taylor
series expansion:

(1.9)

dae(fy) .
df ¢-R (1.10)

= fﬂ,(ﬁ))fo ¥ (f_ﬂ))‘y(fll))

Equation (1.10) applies for positive frequency, and its negative applies for negative fre-
quency. This is so because the phase characteristic for a real system must be an odd func-
tion of frequency.

Now suppose that the amplitude factor is constant, that is, A(f) = A, and a wave of
the form r(1)cos2mfyr forms the input to the system. The Fourier transform of the input is
found from the modulation property of the transform (see Chapter 3):

0(f) = 0(f,) +

1
r(fcos2mfyt ¢ S(R(f = Jo) + R(f+ )] (1.1

L1Fp)

Slope = 2ty (fo)

Slope = 2w, (fo)

fo /' Figure 1S5 Group and phase delay.
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The Fourier transform of the output, S( f), is given by the product of the input transform
with the system function. Thus,

1
S(f) = ER(f = fo)Aexpljty(fo)2mfolexpli2n(f — fo)ty(fo)] (1.12)

Equation (1.12) has been written for positive f. For negative f, the value of the ex-
pression is the complex conjugate of its value at positive f. We now find the time function
corresponding to this Fourier transform. The transform can be simplified by taking note of
the following three Fourier transform relationships (we ask you to prove them as part of
Problem 1.2.1):

r(t — ty)cos2mfyt < %R(f—ﬁ’)e—ﬂwlf—.ﬁ,lln
+ % R(f+ fo)e—.ih(fﬂ.,):.,

r(t — t)cos2mfy(t — 1) & %[R(f—fo) + R(f + fy)]e 2™ (1.13)

1 :
r(t — ty)cos2mfy(t — 1)) & 2 R(f — fy)e 13~ fotto= 1)

' %R(f + f)e 12U N0~ 1) g ~i2nfh

Using these relationships to simplify Eq. (1.12), we find that

s(0) = Ar[t = 1, (fo)leos2mfylt — 1,,(fp)] (1.14)

Recall that this is the output due to an input r(f)cos2mfur. This result indicates that the
time-varying amplitude of the input sinusoid is delayed by an amount equal to the group
delay and the oscillating portion is delayed by an amount equal to the phase delay. Both
group and phase delay are evaluated at the frequency of the sinusoid. Equation (1.14) will
prove significant later. Getting ahead of the game, we will work with two types of re-
ceiver: coherent and incoherent. Incoherent receivers operate only upon the amplitude of
the received signal, so the group delay is critical to the operation of the receiver. On the
other hand, coherent receivers use all of the information about the waveform, so phase de-
lay is also important.

1.2.2 Typical Communication Channels

All communication systems contain a channel, which is the medium that connects the re-
ceiver to the transmitter. The channel may consist of copper wires, coaxial cable, fiber op-
tic cable, waveguide, air (including the upper atmosphere in the case of satellite transmis-
sion), or a combination of these. All channels have a maximum frequency beyond which
input signal components are almost entirely attenuated. This is due to the presence of dis-
tributed capacitance and inductance. As frequencies increase, the parallel capacitance ap-
proaches a short circuit and the series inductance approaches an open circuit.
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Many channels also exhibit a low-frequency cutoff due to the dual of the foregoing
effects. If there is a low-frequency cutoff, the channel can be modeled as a bandpass filter.
If there is no low-frequency cutoff, the channel model is a lowpass filter.

Communication channels are categorized according to bandwidth. There are three
generally used grades of channel: narrowband, voiceband, and wideband.

Bandwidths up to 300 Hz are in the narrow band; that is, they are telegraph grade.
They can be used for slow data transmission, on the order of 600 bits per second (bps).
Narrowband channels cannot reliably be used for unmodified voice transmissions.

Voice-grade channels have bandwidths between 300 Hz and 4 kHz. While they were
originally designed for analog voice transmission, they are regularly used to transmit data
at rates on the order of 10 kilobits per second (kbps). Some forms of compressed video can
be sent on voice-grade channels. The public telephone (subscriber loop) circuits are voice-
band.

Wideband channels have bandwidths greater than 4 kHz. They can be leased from a
carrier (e.g., a telephone company) and can be used for high-speed data, video, or multiple
voice channels.

We now give a brief overview of the variety of communication channels in use to-
day. We then focus on telephone channels, since their use in both analog and digital com-
munication predominates over that of the other types of channels.

Wire, Cable, and Fiber

Copper wire, coaxial cable, or optical fibers can be used in point-to-point communication.
That is, if we know the location of the transmitter and the location of the receiver, and if
the two devices can be conveniently connected to each other, a wire connection is possi-
ble. Copper wire pairs, twisted to reduce the effects of incident noise, can be used for low-
frequency communication. The bandwidth of this system is dependent upon length. The
attenuation (in dB/km) follows a curve similar to that shown in Fig. 1.6.

An improvement over twisted copper pairs is realized when one moves to coaxial
cable. The bandwidth of the channel is much higher than that of twisted wire, and multiple
pairs of wires can be enclosed within a single cable sheath. The sheath which surrounds
the wires shields them from incident noise, so coaxial cables can be used over longer dis-
tances than can twisted pair.

Fiber optics offers advantages over metal cable, both in bandwidth and in noise im-
munity. Fiber optics is particularly attractive for data communication, where the band-
width permits much higher data rates than those achievable with metallic connectors.

Air (terrestrial) communication has both advantages and disadvantages when used
as a transmission channel. The most important advantage is the ability to broadcast sig-
nals. You do not need to know the exact location of the receiver in order to set up a com-
munication link. Mobile communication would not be possible without that capability.
Among the disadvantages are channel characteristics that are highly dependent on fre-
quency, additive noise, limited allocation of available frequency bands, and susceptibility
to intentional interference (jamming).

Attenuation (at sea level) is a function of frequency, barometric pressure, humidity,
and weather conditions. A typical curve for fair-weather conditions would resemble Fig.




Sec. 1.2 The Environment 1

— —
(] (=
| I

Attenuation (dB/km)

I | 1 1
100 1,000 10,000 100,000 1,000,000

Frequency (Hz)

Figure 1.6 Copper wire attenuation vs. distance.

1.7(a). Visible light occupies the range of frequencies from about 40,000-75,000 GHz.
Figure 1.7(b) amplifies the lower frequency portion of the attenuation curve.

Additive noise and transmission characteristics also depend upon frequency. The
higher the frequency, the more the transmission takes on the characteristics of light. For
example, at radio frequencies (7f), in the range of 1 MHz, transmission is not line of sight,
and reception beyond the horizon is possible. However, at ultrahigh frequencies (uhf), in
the range of 500 MHz and above, transmission starts acquiring some of the characteristics
of light. Line of sight is needed, and humidity and obstructions degrade transmission.

1,000 —
§ 100 —
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1=
| | 1)
10 100 1,000 10,000 100,000

Frequency (GHz)

Figure 1.7(a) Attenuation vs. frequency for air.




Attenuation (dB/km)

0.001

12 Introduction Chap. 1

|
10 100

Frequency (GHz) Figure 1.7(b).

At microwave frequencies, transmission is line of sight, and antennas must be situ-
ated in a manner to avoid obstructions.

Satellite communication provides advantages in long-distance communication. The
signal is sent to the satellite via an uplink, and the electronics in the satellite (transponder)
retransmits this signal to the downlink. It is just as easy for the satellite to retransmit the
signal to a receiver immediately adjacent to the uplink as it is to transmit to a receiver
5,000 km away from the uplink. The only requiirement is that the receiver be within the
Sfootprint of the satellite—that is, the area of the earth’s surface covered by the satellite
transmitting antenna pattern. Satellite communication has several major disadvantages.
Satellites are usually located in assigned orbital slots in geosynchronous orbit, about
35,000 km (22,300 miles) above the earth’s surface. This results in a round-trip travel time
of approximately % second, making rapid interactive two-way communication difficult.
The medium is relatively expensive, although signal compression techniques are bringing
down the price.

All broadcast transmission systems suffer from a lack of privacy: Anyone within the
reception area of the transmitting antenna can tap into the conversation. This shortcoming
can be partially alleviated with scrambling and encryption.

Telephone Channels

There are two types of phone lines in use today. The dial-up line is routed through voice-
switching offices. The switching operations can add impulse noise, which is heard as occa-
sional clicks during a phone conversation—not terribly devastating to the conversation.
But it should not be too surprising to learn that this causes serious problems in data com-
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munication. The alternative is the leased line, which is a permanent circuit that is not sub-
ject to the public type of switching. Since the same line is used every time, some types of
distortion can be predicted and compensated for (with equalizers).

In the dial-up circuit, assorted problems arise due to procedures adopted for voice
channels. For example, the system has bridge taps. A bridge tap is a jumper that is in-
stalled when a phone is removed or when extra phone jacks have been installed for possi-
ble later expansion. These are not serious causes of distortion in voice transmission, but
their capacitance leads to delays that can destroy data. (Recall your transmission line the-
ory and what happens if the termination is not properly matched.)

The phone system is specifically tailored to audio signals with an upper frequency in
the vicinity of 4 kHz. When such lines are used for data, the upper cutoff is often stretched
to provide data rates above 10 kbps. Loading coils in the line improve performance in the
voiceband, but cause additional amplitude distortion above 4 kHz, thus making higher bit
rates more difficult to achieve.

Long-distance phone channels contain echo suppressors that are voice activated.
These prevent a speaker from receiving an echo due to reflections from transitions in the
channel. The time delay in activating the echo suppressors can make certain types of data
operation impossible. Many telephone line data sets contain a provision to disable the
echo suppressors using a tone of about 2,000 Hz.

Phone lines have amplitude characteristics that are not constant with frequency, and
they therefore contribute to amplitude distortion. Figure 1.8 shows a typical attenuation, or
loss, curve. The loss is given in decibels (dB) and is relative to attenuation at about 1,000
Hz, where the minimum loss occurs.

Phase distortion also occurs in the phone line. A typical phase characteristic for
about 7 kilometers of phone line is shown in Fig. 1.9.

Voice-grade channels are classified according to the maximum amount of attenua-
tion distortion and maximum envelope delay distortion within a particular frequency
range. Telephone companies can provide conditioning to reduce the effects of particular
types of distortion. In leasing a telephone channel, a particular conditioning is specified,

‘\\n JINIE 2SIV ] | |

1,200 2,400 3,600 300 1,500 3,000
Frequency (Hz) Frequency (Hz)

Figure 1.8  Typical telephone channel attenuation. Figure 1.9 Typical telephone channel phase.
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and the company guarantees a certain performance level. Naturally, the better the channel,
the higher the cost will be. Table 1.1 lists typical channel conditioning characteristics for
representative types of conditioning.

As an example, let us examine the C2 channel. If you were to purchase such a chan-
nel and use it within the band of frequencies between 500 Hz and 2,800 Hz, you would be
guaranteed that the attenuation would not vary beyond the range of —1 dB to +3 dB (rel-
ative to response at 1,004 Hz). If you use the channel in the wider band between 300 Hz
and 3,000 Hz, the guaranteed attenuation range increases to —2 dB to +6 dB. Similarly,
the envelope delay variation will be less than 3,000 microseconds if you operate within the
band between 500 Hz and 2,800 Hz.

In addition to the parameters given in Table 1.1, the various lines have specified
losses, loss variations, maximum frequency error, and phase jitter. For example, the C1
channel specifies a loss of 16 dB £ 1 dB at 1,000 Hz. The variation in loss is limited to 4
dB over long periods of time. The frequency error is limited to 5 Hz and the phase jitter to
10°.

TABLE 1.1 TYPICAL TELEPHONE CHANNEL PARAMETERS

Attenuation Distortion Envelope Delay Distortion
Conditioning Frequency Range Variation Frequency Range Variation (js)
Basic 500-2,500 ~2to0 +8 800-2,600 1,750
300-3,000 =3to0+12
Cl 1,000-2,400 ~1to+3 1,000-2,400 1,000
300-2,700 -2to +6 800-2,600 1,750
300-3,000 =30 +12
C2 500-2,800 =lto+3 1,000-2,600 500
300-3,000 —210 +6 600-2,600 1,500
500-2,800 3,000
C4 500-3,000 =203 1,000-2,600 300
300-3,200 -2t0 +6 800-2,800 500
600-3,000 1,500
500-3,000 3,000

1.3 TYPES OF SIGNALS

The signals we wish to transmit either come directly from the source or result from signal-
processing operations. Examples of signals that come directly from the source are the
pressure wave emitted by human vocal cords and the electrical signal resulting from a
power source connected to a computer keyboard. Processed signals can result from analog-
to-digital converters, encoding and encryption devices, and signal-conditioning circuitry.
The manner in which we communicate information is dependent on the form of the signal.
There are two broad signal classifications: analog and digital. Within these are a number of
more detailed subdivisions.
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1.3.1 Analog Signals

An analog signal can be viewed as a waveform that can take on a continuum of values for
any time within a range of times. Although our measuring device may be limited in resolu-
tion (e.g., it may not be possible to read an analog voltmeter more accurately than to the
nearest hundredth of a volt), the actual signal can take on an infinity of possible values.
For example, you might read the value of a voltage waveform at a particular time to be
13.45 volts. If the voltage is an analog signal, the actual value would be expressed as an
extended decimal with an infinite number of digits to the right of the decimal point.

Just as the ordinate of the function contains an infinity of values, so does the time
axis. Although we may conveniently resolve the time axis into points (e.g., every mi-
crosecond on an oscilloscope), the function has a defined value for any of the infinite num-
ber of time points between any two resolution points.

An example of an analog signal is a human speech waveform. We illustrate a repre-
sentative waveform and its Fourier transform in Fig. 1.10. Note that we show only the
magnitude of the Fourier transform. If the speech waveform resulted from someone
whistling into a microphone, the time waveform would be a sinusoid, and the Fourier
transform would be an impulse at the whistling frequency. If the person hummed into a
microphone, the time waveform would be periodic with fundamental frequency equal to
the frequency at which the person is humming. The Fourier transform would consist of
impulses at the fundamental frequency and at its harmonics.

1.3.2 Analog Sampled Signals

Suppose that an analog time signal is defined only at discrete time points. For example,
suppose you read a voltage waveform by sending values to a voltmeter every microsec-
ond. The resulting function is known only at these discrete points in time. This results in a
discrete time function, or a sampled waveform. 1t is distinguished from a continuous ana-
log waveform by the manner in which we specify the function. In the case of the continu-
ous analog waveform, we must either display the function (e.g., graphically, on an oscillo-
scope) or give a functional relationship between the variables. In contrast to this, the
discrete signal can be thought of as a list or sequence of numbers. Thus, while an analog
waveform can be expressed as a function of time, v(7), the discrete waveform is a se-
quence of the form, v, or v[n], where n is an integer or index.

IS(!
: ﬂ\\
1 f
3 kHz

Figure 1,10 Representative speech waveform.
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Discrete signals can be visualized as pulse waveforms. Figure 1.11 shows an analog
time function and the resulting sampled pulse waveform. (We will refer to this sampled
waveform later as pulse amplitude modulation, or PAM.)

s(1) sd1)

- 0Mnnma.

2T, T, R AR BT

Figure 1.11 Discrete waveform derived from analog time function.

1.3.3 Digital Signals

A digital signal is a form of sampled or discrete waveform, but each number in the list can
now take on only specific values. For example, if we were to take a sampled voltage wave-
form and round each value to the nearest tenth of a volt, the result would be a digital signal.

We can use a thermometer as an example of all three types of signal. If the ther-
mometer has a dial or a tube of mercury, the output is an analog signal: We can read the
temperature at any time and to any desired degree of accuracy (limited, of course, by the
resolution of the reader—human or mechanical).

Suppose now that the thermometer consists of a dial, but that it is updated only once
every minute. The result is an analog sampled signal.

If the transducer now takes the form of a numerical readout, the thermometer be-
comes digital. The readout is the result of sampling the temperature (perhaps every
minute) and then displaying the sampled temperature to a predetermined resolution (per-
haps the nearest tenth of a degree).

Digital signals result from many devices. For example, dialing' a telephone number
produces | of 12 possible signals, depending on which button is pressed. Other examples in-
clude pressing keys on a bank automated teller machine (ATM) and using a computer key-
board. Digital signals also result from performing analog-to-digital conversion operations.

1.4 ELEMENTS OF A COMMUNICATION SYSTEM

A communication system consists of a transmitter, a channel, and a receiver, as shown in
Fig. 1.12. The purpose of the transmirter is to change the raw information into a format
that is matched to the characteristics of the channel. For example, if the information is a
speech waveform and the channel is the air, the signal must be modified prior to insertion
into the channel. The reason is that the basic speech waveform will not propagate effi-
ciently through the air because its frequency range is below that of the passband of the
channel.

'The word dialing is as obsolete as the word clockwise. It is a carryover from the early days of telephony
when telephone sets contained a rotary dial used to enter numbers and control a step-by-step rotary switch.
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Transmitter Channel Receiver

Figure 1.12 Block diagram of communication system.

The channel connects the transmitter to the receiver and may take the form of one of
the channels described in Section 1.2.

The receiver accepts the signal from the channel and processes it to permit interfac-
ing with the final destination (e.g., the human ear or a computer monitor).

Figure 1.13 shows an expansion of the simplified block diagram of a communica-
tion system. We shall briefly describe the function of each block. These functions will be
expanded upon in later chapters of the text.

The signal source (or transducer) is the starting point of our system. It may be a mi-
crophone driven by a pressure wave from a human source or a musical instrument, a mea-
suring device that is part of a monitoring system, or a data source such as a computer key-
board or a numeric pad on an ATM. Its output is a time waveform, usually electrical.

The source encoder operates upon one or more signals to produce an output that is
compatible with the communication channel. The device could be as simple as a lowpass
filter in an analog communication system, or it could be as complex as a converter that ac-
cepts analog signals and produces a periodic train of output symbols. These symbols may
be binary (1's and 0’s), or may be members of a set with more than two elements. When
channels are used to communicate signals from more than one source at the same time, the
source encoder contains a multiplexer.

With electrical communication replacing written communication, security has be-
come increasingly important. We must assure that only the intended receiver can under-
stand the message and that only the authorized sender can transmit it. Encryption provides
such security. As unauthorized receivers and transmitters become more sophisticated and
computers become larger and faster, the challenges of secure communication become
greater. In analog systems, security is often provided using scrambling systems, as in pay
television, and privacy devices, as with telephones.

Symbols
4 Spread-
Source Channel Carrier
Encryptor spectrum [~}
encoder encoder modulator ML T :
!
B b i SR it o s s e e i i )
Spread- 2
Carrier Symbol Channel Source
spectrum Decryptor [ ———
Demodulator demodulator syne decoder decoder
Data

Figure 1.13 Expanded communication system block diagram.
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The channel encoder provides a different type of communication security than that
provided by the encryptor. It increases efficiency and/or decreases the effects of transmis-
sion errors. Whenever noise is introduced into a communication channel, errors occur at
the receiver. These errors can take the form of changes in an analog signal, or they can
make it possible for one transmitted symbol to be interpreted as a different symbol at the
receiver in a digital system. We can decrease the effects of errors by providing structure to
the messages in the form of redundancy. In its simplest form, this would require that the
messages be repeated. We sometimes intentionally distort an analog signal to decrease the
effects of frequency-sensitive noise (as, for example, in pre-emphasis/de-emphasis sys-
tems and Dolby sound systems). In digital communication, we often use forward error
correction, in which encoding permits error correction without the necessity of the re-
ceiver asking the transmitter for additional information.

The output of the channel encoder is either a processed analog signal or a digital sig-
nal composed of symbols. For example, in a binary system, the output would be a train of
1’s and 0’s. We need to modify the channel encoder output signal in a manner that matches
the characteristics of the channel. The carrier modulator produces an analog waveform
that is transmitted efficiently through the system. The waveform is selected in order to
provide for efficiency and also to permit multiple use of the channel by several transmit-
ters. For analog signal sources, the carrier modulator modifies the range of signal frequen-
cies in order to allow efficient transmission. In the case of digital signal sources, the mod-
ulator produces signal segments (bursts) corresponding to the discrete symbols at its input.

Spread spectrum is a technique for providing some immunity to frequency-selective
effects such as interference and fading. A signal is spread over a wide range of frequencies
so that single-tone interference affects only a small portion of the signal. Spread spectrum
also has other advantages, related to simplified methods of sharing a channel among mul-
tiple users. Since an unauthorized listener may mistake a spread spectrum signal for wide-
band noise, the technique provides some (limited) additional security beyond that afforded
by encryption.

We have been describing the blocks that form the first half of Fig. 1.13. The second
half of the figure comprises the receiver, which is simply a mirror image of the transmitter.
It must “undo” each operation that was performed at the transmitter. The only variation
from this one-to-one correspondence is that the carrier modulator of the transmitter has
been replaced by two blocks in the receiver: the carrier demodulator and the symbol syn-
chronizer. The symbol synchronizer is needed only in digital systems; it thus represents a
major distinction between analog and digital communication systems. Once the analog
waveforms are reproduced at the receiver, it is critical that the overall signal be properly
partitioned into segments corresponding to each symbol and to each message. This parti-
tioning is the function of the synchronizer.

PROBLEMS

1.2.1 Show that the function of time corresponding to the transform of Eq. (1.12) is
s(n) = Arlt = 1,(fo)lcos2mfylr = 1,,(f)o)]




Chap. 1 Problems
Hint: You may find it useful to prove the following relationships first:

r(t — tg)cos2mfyt & % [R(f = fy)e 2™~ 4 R(f + f,)e 12+ folk)
r(t = t)cos2mfy(t — 1)) &> %[R(f —fo) + R(f + fy)le 72/

r(t — ty)cos2mfy(t — t,) & %[R(f—f;,)e““""fn"'ﬂ"-’

+ R(f+ )%),—fzﬂfw««—r.)]e —i2aft,
1.2.2 Find the output of the filter of Fig. 1.3 when the input is
sin 200 7t 4 5 sin 600 ¢

r(n) = . 7
1.2.3 Find the output of a typical telephone line when the input is
(a) cos 2w X 500 ¢ + cos 2w X 1,000 ¢

(b) A periodic triangle of frequency 1 kHz.

19

1.2.4 White noise forms the input to a telephone line with amplitude and phase as shown in Figs.
2.12 and 2.13. The height of the two-sided noise power spectral density is K. Find the output

power.




Signal Analysis

2.0 PREVIEW

What We Will Cover and Why You Should Care

By this stage of your education, you have probably heard of Fourier series expansions.
You have probably also learned that the earlier part of any course of study tends to be the
least interesting; certain groundwork must be laid prior to getting into the interesting ap-
plications.

The purpose of this chapter is to put the study of signals into proper perspective in
the much broader area of applied mathematics. Signal analysis, and indeed most of com-
munication theory, is a mathematical science. Probability theory and transform analysis
techniques form the backbone of all communication theory. Both of these disciplines fall
clearly within the realm of mathematics.

It is quite possible to study communication systems without relating the results to
more general mathematical concepts, but this approach is narrow minded and tends to
downgrade engineers (a phenomenon to which we need not contribute). More important,
the narrow-minded approach reduces a person’s ability to extend existing results to new
problems.

After studying the material in this chapter, you will:

* Understand the theory of applications of Fourier series

» Be able to find the Fourier transform of various functions
* Appreciate the value of the Fourier transform

* Know the important properties of the Fourier transform

Necessary Background

The only prerequisite you need to understand the material in this chapter is basic calculus.
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2.1 FOURIER SERIES

A function can be represented approximately over a given interval by a linear combination
of members of an orthogonal set of functions. If the set of functions is denoted as g,.(r),
this statement can be written as

st = Y, 6,80 @.1)
n==—-%
An orthogonal set of functions is a set with the property that a particular operation per-
formed between any two distinct members of the set yields zero. You have learned that
vectors are orthogonal if they are at right angles to each other. The dot product of any two
distinct vectors is zero. This means that one vector has nothing in common with the other.
The projection of one vector onto another is zero. A function can be considered an infinite-
dimensional vector (think of forming a sequence by sampling the function), so the
concepts from vector spaces have direct application to function spaces. There are many
possible orthogonal sets of functions, just as there are many possible orthogonal sets of
three-dimensional vectors (e.g., consider any rotation of the three rectangular unit
vectors).
One such set of orthogonal functions is the set of harmonically related sines and
cosines. That is, the functions

sin 2mfot, sin 4for, sin 6mfor . . .
cos 2mfot, cos 4mfot, cos 6mfor . . .

form an orthogonal set for any choice of fo. These functions are orthogonal over the inter-
val between any starting point #o and #, + 1/fp. That is, { + 1
| J, % W) dulr) -0 ®ini)
]

ot
J Jrl’8,.(!)3,,,(1)-'.11 =0 foralln # m (2.2)

0

where g,(7) is any member of the set of functions and g,(f) is any other member. This
equation can be verified by a simple integration using the cosine-of-sum and cosine-of-
difference trigonometric identities.

Example 2.1

Show that the set made up of the functions cos2nmfyr and sin2nmfit is an orthogonal set over
the interval o < t =< 1y + 1/f; for any choice of fo.
Solution: We must show that

1
j " b g (Dg.(0dt =0
o

for any two distinct members of the set. Three cases must be considered:
(a) Both g,(1) and g,(1) are sine waves.
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(b) Both g.(1) and g.(1) are cosine waves.

(c) One of the two is a sine wave and the other a cosine wave.
Considering each of these cases in turn, we have the following:
Case (a):

o+ . | [oty
I B sin2mnfysin2wmfyr dr = 2 J; cos(n — m)2wfyt dt
fa

]h+"l°coa(+ 2fyt dt
-‘2'& n + m)2mfot

We have used the trigonometric identity’

sindsinB = -;-[eos(A — B) — cos(A + B)]
For n # m, both n — m and n + m are nonzero integers. We note that, for the function
cos2wkfyr, the interval 7 <t = tp + 1/f, represents exactly k periods. The integral of a cosine

function over any whole number of periods is zero, so we have completed this case. Note that
it is important that n # m, since if n = m, we have

1 1
o R =lf’7m=i=ﬁo
3 J; cos(n — m)2mfyt dt 2), %

Case (b):
Wt | (ots
J # cos2mnfycos2mmfy dt = EJ:, Pleos(n — m)2mfyr
8

+ % cos(n + m)2wfyfdt

Here we have used the trigonometric identity
eoMeosB=%[cos(A+B)+cos(A-B)]

This is equal to zero by the same reasoning applied to case (a).
Case (c):

Wt 1 (%%
f P sin2mnfyrcos2mmfyt dt = e f sin(n + m)2mfyt dt
o o

1 (%% o
+ 3 j sin(n — m)2mfyt dt
o

The applicable trigonometric identity for this case is

'We will use three different trigonometric identities in this example. However, all necessary results could
be derived from the two basic identities for cos(A + B) and sin(A + B).




Sec. 2.1 Fourier Series 23

1
sinAcosB = E[sin(A + B) + sin(A — B)]
To verify case (c), we note that

1
j “*% sin k2 it dt = 0

0

for all integer values of k. This is true because the integral of a sine function over any whole
number of periods is zero. (There is no difference between a sine function and a cosine func-
tion other than a shift.) Each term present in case (c) is therefore equal to zero.

It follows that the given set is an orthogonal set of time functions over the interval
h<t=t+ lfo.

In the first sentence of this section, we used the word approximately. By that term,
we are implying that Eq. (2.1) cannot always be made an equality. An orthogonal set of
time functions is said to be a complete set if the approximation can in fact be made into an
equality (with the word equality being interpreted in some special sense) through proper
choice of the ¢, weighting factors and for s(r) being any member of a certain class of
functions. The three rectangular unit vectors form a complete orthogonal set in three-
dimensional space, while unit vectors in the x- and y-directions, by themselves, form an
orthogonal set that is not complete.

We state without proof that the set of harmonic time functions

cos 2mnfot, sin 2wnfor

where n can take on any integer value between zero and infinity, is an orthogonal complete
set in the space of time functions defined in the interval between o and fo + 1/fy. There-
fore, a time function? can be expressed, in the interval between f and 1o + 1/f;, by a linear
combination of sines and cosines. In this case, the word equality is interpreted not as a
pointwise equality, but in the sense that the distance between s(f) and the series represen-
tation approaches zero as more and more terms are included in the sum. The distance is

defined as
o
%
fo

The preceding is what we will mean when we talk of equality of two time functions. This
type of equality will be sufficient for all of our applications.
For convenience, we define the period of the function as
1

T=— 24
fo (24)

2
dr (2.3)

S0 = 2, €,8,(0)
n—=0

Any time function s(f) can then be written as

“In the case of Fourier series, the class of time functions is restricted to be that class which has a finite
number of discontinuities and a finite number of maxima and minima in any one period. Also, the integral of the
magnitude of the function over one period must exist (i.e., be finite).
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s(1) = a,e0s(0) + D, [a,cos2mnfyt + b,sin2mnfy] (2.5)

n=|]
for

H<t<t+T

An expansion of this type is known as a Fourier series. We note that the first term in Eq.
(2.5) is simply ao, since cos(0) = I. The proper choice of the constants a, and b, is indi-
cated by the following relationships:

I LA
ao—}j s(n)dt

fo

0+ T

s(t)cos2mnfyt dt (2.6)

a,,=-1-.
fo

2T

b, = *I s(r)sin2wnfyt dt
1),

The expression for ao in Eq. (2.6) can be derived by integrating both sides of Eq. (2.5).

The expressions for a, and b, are derived from Eq. (2.5) by multiplying both sides by the

appropriate sinusoid and integrating.

Note that ao is the average of the time function s(r). It is reasonable to expect this
term to appear by itself in Eq. (2.5), since the average value of the sines or cosines is zero.
In any equality, the time average of the left side must equal the time average of the right
side.

A more compact form of the Fourier series just described is obtained if one consid-
ers the orthogonal, complete set of complex harmonic exponentials, that is, the set made
up of the time functions

exp( j2mnfol)

where n is any integer, positive or negative. This set is orthogonal over a period of 1/f; sec.
Recall that the complex exponential can be viewed as (actually, it is defined as) a vector of
length 1 and angle n2mwfot in the complex two-dimensional plane. Thus,

exp(j2mnfyt) = cos2mnfyt + jsin2wnfy 2.7)

As before, the series expansion applies in the time interval between to and 70 + 1/fy. There-
fore, any time function s(f) can be expressed as a linear combination of these exponentials
in the interval between #, and 1 + T where (T = 1/f;, as before):

s(f) = 5: L S (2.8)
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The ¢, are given by

W+ T

c, = %, s(t)e 2™ dt (2.9)

fo

This is easily verified by multiplying both sides of Eq. (2.8) by e >™ and integrating
both sides.

The basic results are summed up in Egs. (2.5) and (2.8): Any time function can be
expressed as a weighted sum of sines and cosines or a weighted sum of complex exponen-
tials in an interval. The rules for finding the weighting factors are given in Eqgs. (2.8) and
(29).

The right side of Eq. (2.5) represents a periodic function outside of the interval
fo < t <1y + T. In fact, the period of the function is 7. Therefore, if s(f) happened to be
periodic with period 7, even though Eq. (2.5) was written to apply only within the interval
to < t < to + T, it actually applies for all time. (Think about it!)

In other words, if s(f) is periodic, and we write a Fourier series that applies over one
complete period, the series is equivalent to s(r) for all time.

Example 2.2

Evaluate the trigonometric Fourier series expansion of s(z) as shown in Fig. 2.1. This series
must apply in the interval —m/2 < ¢ < 7/2.

Solution: We use the trigonometric Fourier series form with T = « and fy = U/T = /.
The series is therefore of the form

s(t) = ay + I, [a,cos 2nt + b,sin 2nr]

where
1 (2 2
ao—wj_xoosrdr-“
2
n
neu@e fod s (e o (S A
a,,—wJ“}costcoswdt—w [2"_1 +2n+1

202
b,,=—f cos t sin 2ntdt = 0
* )y

s(1)

L

-m/2 w2

Figure 2.1 s(r) for Example 2.2.
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We actually did not need to evaluate the integral for b,: Since s(#) is an even function of time
[i.e., s(f) = s(—1)], s(r)sin 2nt is an odd function, and the integral from —7/2 to +7/2 is zero.
In fact, @, = 0 for any odd s(f). The Fourier Series is then given by

2 )n+l+ (_l)n
me= +,,E_l1'r[ ke uamaal

]cos 2nt

Note that this series is also the expansion of the periodic function s,(f) shown in Fig. 2.2.

5,(0

-m/2 w2 In2
Figure 2.2  5,(r) represented by Fourier Series.

Suppose we now calculate the Fourier Series of g(z) shown in Fig. 2.3, with the se-

ries required to apply in the interval —2 < ¢ < +2. The result will clearly be different
from that of Example 2.2. One is readily convinced of this difference once it is noted that
the frequencies of the various sines and cosines will be different from those of Example
2.2. Nonetheless, for 1 between —m/2 and +m/2, both series expansions represent the
same function of time. Both series do not, however, represent s,(7) of Fig. 2.2. The peri-
odic function corresponding to g(1), denoted as g,(1), is sketched in Fig. 2.4.

4 g(1)
L Portion of cosine wave
e Ry Figure 2.3 (1) similar to s(1) of
=2 —w2 e 2 Example 2.2.

&)

Figure 2.4 Periodic repetition of g(r) of Fig. 2.3.




Sec. 2.1 Fourier Series 27

We conclude that the series expansion of a function in a finite interval is not unique.
There are situations in which one takes advantage of this fact in order to choose the type of
series that simplifies the results. (The solution of partial differential equations by separa-
tion of variables is one example.)

Example 2.3
Approximate the time function

s(t) = |cos 1|

by a constant. This constant is to be chosen so as to minimize the error, which is defined as
the average of the square of the difference between s(f) and the approximating constant. Find
the “best” value of the constant.

Solution: The square error between s(r) and the approximating constant C is

&) = [|cos 1| = CT

The average square error is found by integrating the square error over one period and dividing
by the period:
T

(€%} avg =1T I " loost| - CF ar

2

We could evaluate this integral and differentiate with respect to C in order to minimize
the error, or we can borrow a result from orthogonal vector spaces. We used orthogonal sets to
approximate a general function. Even if we do not use a sufficient number of terms to describe
the function exactly, the weighting coefficients are chosen as if there were enough terms. This
is an important property of orthogonal sets. It is easier to visualize using vectors. If you think
of approximating a three-dimensional vector with a sum of vectors in only two directions, you
would not be able to make the summation identical to the vector. However, you would choose
the weighting terms for the two given dimensions just as if there were sufficient terms (i.e.,
they would still be given by the projection of the vector on the appropriate axis). This is so be-
cause the missing vector is orthogonal to the vectors that are present and therefore has noth-
ing in common with them. The same is true of the Fourier series: If terms are missing, the co-
efficients are chosen in the same manner as if all terms were present.

Accordingly, we must approximate s(r) by the first term in its Fourier series expansion.
The best value to choose for the constant C is the ao, or constant, term in the Fourier series
expansion. This particular expansion was evaluated in Example 2.2, where the value of ay
was found to be 2/w. The function s(r) and its dc approximation are shown in Fig. 2.5.

In sum, if we wish to approximate Icos f| by a constant so as to minimize the mean
square error, the best value of the constant to choose is 2/m.

s(r) diceo
Best constant approximation

value is 2/

il L e Y 5 A ke T e
gt s Gy o\l n et o Dy

Figure 2.5 Result of Example 2.3.

s()=Ilcost|
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2.2 COMPLEX FOURIER SPECTRUM (LINE SPECTRUM)

In finding the complex Fourier series representation of a function of time, we assign a
complex weighting factor ¢, to each value of n. These ¢, can be plotted as a function of n.
Note that this really requires two graphs, since the c, are, in general, complex numbers.
One plot can represent the magnitude of ¢, and the second plot the phase. Alternatively,
the real and imaginary parts could be plotted. Note further that this graph would be dis-
crete; that is, it has nonzero value only for discrete values of the abscissa (e.g., ¢y has no
meaning).

A more meaningful quantity than n to plot as the abscissa would be n times f;, a
quantity corresponding to the frequency of the complex exponential for which ¢, is a
weighting coefficient. This plot of ¢, vs. nfy is called the complex Fourier spectrum.

Example 2.4

Find the complex Fourier spectrum of a full-wave rectified cosine wave. This wave is shown
in Fig. 2.6 and is given by

s(1) = |cos 1]

lcost|

—m/2 | w2 3In/2

Figure 2.6 s(1) for Example 2.4.

Solution: To find the complex Fourier spectrum, we must first find the exponential (com-
plex) Fourier series expansion of the given waveform. As in Example 2.2, fy = 1/7. We could
evaluate the ¢, from Eq. (2.9) and find the Fourier series directly. However, we have already
found the trigonometric Fourier series of this function in Example 2.2, namely,

B AR v L i G 14
’(‘)_w+,,2_:,w[2n—1 +2n+l]m52m

We can expand the cosine function into complex exponentials by using Euler’s iden-
tity. That is,

1
cos 2nt = E{eﬁ'" + e~
The exponential Fourier series is then given by

2 —a i
= — <4 bt . § 7-ﬂl'+ 2._‘! —Jj2nt
s(r) £ "}-;'2& ,.._=2e
zq:r_ﬂm_'_ :a_-n_ i2nt
2e 2 e’
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B We have made a change of variables in the last summation. We see that the c, are re-
i lated to the a, by

- Cy = a_l;,_ forn >0

ai" forn<0

2
€= —
0 m

Pl Cy =

A The resulting complex Fourier spectrum (line spectrum) is sketched in Fig. 2.7.
b1, Note that only one plot is necessary, since in this particular example, the ¢, are all real
numbers.

a0
:
=

Figure 2.7 Line spectrum for Example 2.4.
2.3 FOURIER TRANSFORM

The vast majority of interesting signals extend for all time and are nonperiodic. One would
certainly not go through any great effort to transmit a periodic waveform, since all of the
information is contained in one period. Instead, one could either transmit the signal over a
single period or transmit the values of the Fourier series coefficients in the form of a list.
The question therefore arises as to whether we can write a Fourier series for a nonperiodic
signal.

A nonperiodic signal can be viewed as a limiting case of a periodic signal whose pe-
riod approaches infinity. Since the period approaches infinity, the fundamental frequency
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Jfo approaches zero. The harmonics get closer and closer together, and in the limit, the
Fourier series summation representation of s(f) becomes an integral. In this manner, we
could develop the Fourier integral (transform) theory.

To avoid the limiting processes required to go from Fourier series to Fourier inte-
gral, we will take an axiomatic approach. That is, we will define the Fourier transform and
then show that the definition is extremely useful. There need be no loss in motivation by
approaching the transform in this “pull out of a hat” manner, since its extreme versatility
will rapidly become obvious.

What is a transform? Recall that a common everyday function is a set of rules that
substitutes one number for another number. That is, s(r) is a set of rules that assigns a num-
ber s(7) in the range to any number ¢ in the domain. You can think of a function as a box
that spits out a number whenever you stick in a number. In a similar manner, a transform is
a set of rules that substitutes one function for another function. It can be thought of as a
box that spits out a function whenever you stick in a function.

‘We define one particular transform as

S(f) = I s(te ™" dt (2.10)
Since ¢ is a dummy variable of integration, the result of the integral evaluation (after the
limits are plugged in) is not a function of ¢, but only a function of f. We have therefore
given a rule that assigns, to every function of ¢ (with some broad restrictions required to
make the integral in Eq. (2.10) converge), a function of f.

The extremely significant Fourier transform theorem states that, given the Fourier
transform of a function of time, the original time function can always be uniquely recov-
ered. In other words, the transform is unique: Either s(¢) or its transform S(f) uniquely
characterizes a function. This is crucial! Were it not true, the transform would be useless.

An example of a useless transform (the Roden transform) is the following:

To every function s(r), assign the function

RH=f2+13

This transform defines a function of f for every function of 7. The reason it has not become
famous is that, among other factors, it is not unique: Given that the Roden transform of a
function of time is f? + 1.3, you have not got a prayer of finding the s(r) which led to that
transform.

Actually, the Fourier transform theorem goes one step further than stating unique-
ness: It gives the rule for recovering s(r) from its Fourier transform. This rule exhibits it-
self as an integral and is almost of the same form as the original transform rule. That is,
given S(f), one can recover s(f) by evaluating the integral

s(r) = r S(f)e”™* df 2.11)

Equation (2.11) is sometimes referred to as the inverse transform of S(f). It follows that
this is also unique.
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There are infinitely many unique transforms.* Why, then, has the Fourier transform
achieved such widespread fame and use. Certainly, it must possess properties that make it
far more useful than other transforms.

Indeed, we shall presently discover that the Fourier transform is useful in a way that
is analogous to the usefulness of the common logarithm. (Remember them from high
school?) In order to multiply two numbers together, we can find the logarithm of each of
the numbers, add the logarithms, and then find the number corresponding to the resulting
logarithm. One goes through all of this trouble in order to avoid multiplication (a frighten-
ing prospect to students). We have

a X b = ¢
o g § f
log(a) + log(h) = log(c)

An operation that often must be performed between two functions of time is convo-
lution. This is enough to scare even those few who are not frightened by multiplication! In
Section 2.5, we will show that if the Fourier transform of each of the two functions of time
is found first, a much simpler operation can be performed upon the transforms that corre-
sponds to convolution of the original functions. The operation that corresponds to convo-
lution of the two functions of time is multiplication of their two transforms. (Multiplica-
tion is no longer difficult once one graduates from high school.) Thus, we will multiply the
two transforms together and then find the function of time that corresponds to the resulting
transform.

Notation

We will usually use the same letter for the function of time and its corresponding trans-
form, with uppercase used for the transform. That is, if we have a function of time called
g(1), we shall call its transform G(f). In cases where this is not possible, we find it neces-
sary to adopt some alternative notational forms to associate the function with its trans-
form. The script capital ¥ and §' are often used to denote taking the transform and the
inverse transform, respectively. Thus, if S(f) is the transform of s(¢), we can write

Fs(0] = S(f)
FUS(F)) = s(0)

A double-ended arrow is also often used to relate a function of time to its transform, the
two together being known as a fransform pair. Thus, we would write

s(n) & S(f)
S(f) & s

*As two examples, consider either time scaling or multiplication by a constant. That is, define S)(f) =
s(2f) or 8:(f) = 2s(f). For example, if s(r) = sin 1, §i(f) = sin2f and §:(f) = 2sin f. The extension to an infin-
ity of possible transform rules should be obvious.
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2.4 SINGULARITY FUNCTIONS

We must introduce a new kind of function before proceeding to applications of Fourier the-
ory. The new function arises whenever we analyze periodic functions. This new entity is
part of the class of functions known as singularities. These can be thought of as derivatives
of the unit step function. We begin by finding the Fourier transform of a gating function.

Example 2.5
Evaluate the Fourier transform of

o) = {A |r| <a

0 otherwise
Find the transform both by performing the integration and by using a computer solution. The
function s(r) is illustrated in Fig. 2.8.

s(f)

- o

Figure 2.8  s(r) for Example 2.5.
Solution: From the definition of the Fourier transform, we have

S(f) = j- s()e 2™ dy

-0

J‘u A S Aeﬁﬂﬁl — g 2w
= e =4
-a j2uf
o gSn2ufo

mf

This transform is sketched in Fig. 2.9(a).
Note that while the Fourier transform is, in general, a complex function, the solution here
turned out to be purely real. We will see the reasons for this in Section 2.6.

‘We now attempt to obtain the same result using computer software. Although software
exists to do equations in symbolic form, we shall use Mathcad and substitute values for A and
a. For purposes of illustration, we shall let @ = 0.05 and A = 1/2a.. (This should result in a
Fourier transform with maximum amplitude equal to unity.)

The Mathcad instructions are as follows (the actual format for entering them depends
on whether you are using Windows™ and whether you have a mouse):

a:=.05
Faaict _2;5
1
A = S

f:= 0.'%"1%::
a
reer: = [ wetromenge
-
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Figure 2.9 Transform of s(t) for Example 2.5.

The resulting graph is shown in Fig. 2.9(b). Note that we have set Fmax so as to obtain five
zeros of the function. The increment on f determines the smoothness of the curve. We have set
this increment at 100 points between each pair of zeros. Of course, the smaller the increment,
the longer it takes to run the simulation.

Mathcad also has a fast Fourier transform (FFT) option. There are several forms of
the transform depending on whether the original data are real or complex. However, ap-
plication of the FFT function requires that the number of data points be a power of 2.
Since the preceding problem was so simple, and the data were given in the form of an
equation, we chose to simply program the Fourier transform integral rather than use the
FFT.
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Functions of the type illustrated in Fig. 2.9(a) are common in communication stud-
ies. To avoid having to rewrite this type of function repeatedly, we define the sinc function

sincty) = ﬂi’-x» 2.12)

In terms of this, the transform of Example 2.5 becomes

sin2mfo
nf

S(f)=A = 2Aasinc (2mfo)

Suppose we now wish to find the Fourier transform of a constant, s(rf) = A, for all 7.
We could consider this to be the limit of the pulse of Fig. 2.8 as a — . We attempt this
roundabout approach because the straightforward technique fails in this case. That is,
plugging s(f) = A into the defining integral for the Fourier transform yields

S(f) = f Ae 2™dy (2.13)

an integral that does not converge. From the result of Example 2.5, we see that as o — %,
the Fourier transform approaches infinity at the origin, and the zero-axis crossings become
infinitesimally spaced. Thus, it can only be timidly suggested that, in the limit, the height
of the transform goes to infinity and the width to zero. This sounds like a pretty ridiculous
function. Indeed, it is not a function at all, since it is not defined at f = 0. If we insist upon
saying anything about the Fourier transform of a constant, we must restructure our way of
thinking.

The restructuring begins by defining what is mathematically known as the impulse.
This is a member of a class of operations known as distributions. We will see that when
the impulse operates upon a function, the result is a number. This puts the distribution
somewhere between a function (which operates upon numbers to produce numbers) and a
transform (which operates upon functions to produce functions).

We use the Greek letter delta (8) to denote the impulse. While we will write 8(z) as if
it were a function, we avoid difficulties by defining the behavior of &(¢) in all possible situ-
ations.

The usual, though nonrigorous, definition of the impulse is formed by making three
simple observations. Two of these, already mentioned, are

8§ =0, t#0
8(t) > > =0

The third property is that the total area under the impulse is equal to unity:

J« dndt=1 (2.14)
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Since all of the area of 8(¢) is concentrated at one point, the limits on this integral can be
moved toward the origin without changing the value of the integral. Thus,

b
j 8(ndt =1 (2.15)

a

aslongasa <0Oand b > 0.
One can also observe that the integral of 8(¢) is U(f), the unit step function. That is,

f 1, t>0
J'_”S(‘r)d'r [0' e u(n) (2.16)

We mentioned that the definition comprised of the foregoing three observations was
nonrigorous. This is because an elementary study of singularity functions shows that these
properties do not uniquely define the impulse function. That is, there are other functions in
addition to the impulse that satisfy the three conditions. However, the conditions can be
used to indicate (not prove) a fourth condition. This condition then serves as a unique def-
inition of the delta function and will represent the only property of the impulse we ever
make use of. We shall integrate the product of an arbitrary function of time with &(z). We
obtain

J’ s(0d(1r) dt =j s(0)8(1) dt 1

Equation (2.17) says that we could replace s(¢) by a constant function equal to s(0) without
changing the value of the integral. This requires some justification.

Suppose that we have two new functions gi(s) and gz(r), and we consider the product
of each of these with a third function Ah(f). Suppase further that h(r) is zero over a portion
of the time axis. Then as long as gi(r) = ga(?) at all values of 7 for which A(r) is nonzero, it
follows that g\(Nh(r) = ga()h(r). At those values of 1 for which h(r) = 0, the values of gi(1)
and g>(1) have no effect on the product. Ong possible example is illustrated in Fig. 2.10.
For the functions shown, we see that

£1(Dh(r) = g,(Dh(r) (2.18)
lﬂl

l-_-l ' o= : t
1 N e

Figure 2.10 Example of k(r), gi(r), and ga(r).

Returning to Eq. (2.17), we note that §(#) is zero for all ¢ # 0. Therefore, the product of
8(r) with any function of time depends only ppon the value of that function at ¢ = 0.
Figyre 2.11 illustrates several possible functions that have the same product with 8(r) as
does s(r).
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Figure 2.11 Functions having
same product with 8(z).

Out of the infinity of possibilities, the constant function of time is a wise choice,
since we can factor it out of the integral to get

f it s(1)8(1) dt = 5(0) f " () dt = 5(0) (2.19)

This is a significant result, and we will refer to it as the sampling property of the impulse.
Note that a great deal of information about s(7) has been lost, since the result depends only
upon the value of s() at one point.

A change of variables yields a shifted impulse with the analogous sampling
property:

I g s(d(t — tp) dt = I stk + 1)d(k) dk = (1) (2.20)

Figure 2.12 shows 8(r) and 8(r — #o). The upward-pointing arrow is a generally accepted
technique to indicate an actual value of infinity. The number next to the arrow indicates
the total area under the impulse, known as the strengrh. In sketching the impulse, the
height of the arrow is made equal to the strength of the impulse.

() (1 —1g)

fp

Figure 2.12  Pictorial representation of impulse.

Equations (2.19) and (2.20) are the only things one must know about the impulse.
Indeed, either of them can be treated as the definition of the impulse.
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Example 2.6
Evaluate the following integrals:

(a)r 3 + 1) dr
: (b)r 3(r— INA + Dt
-1
5
(c)f 3t — D + 4t + 2) dt
3

(d) J:au -0t + 2)dt
Solution: (a) Straightforward application of the sampling property yields
. f.a(r)(ﬁ+|)d:=oz+l=|
(b) Since the impulse falls within the range of integration,
fls(:— IXF+ Ddt=12+1=2
(c) The impulse occurs at ¢t = 1, which is outside the range of integration. Therefore,

'3
I&t—l){r‘+4:+2)dt=0
3

(d) 8(1 = 1) falls at r = 1, since this is the value of ¢ that makes the argument equal to zero.
Therefore,*

J’“a(l—:)(t‘+2)dr=1‘+2-3

It is now a simple matter to find the Fourier transform of the impulse:
3(1) & J 8(t)e PPy = i _ =" =1 (2.21)

This is indeed a very nice Fourier transform for a function to have. One can guess that it
will prove significant, since it is the unity, or identity, multiplicative element. That is, any-
thing multiplied by 1 is left unchanged.

“Many arguments can be advanced for regarding the impulse as an even function. For one thing, it can be
considered the derivative of an odd function. For another, the fact that the transform is real and even indicates
that the impulse is an even time function, as will be explored in Section 2.6.
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It is almost time to apply all of the theory we have been laboriously developing to a
practical problem. Before doing that, we need simply evaluate several transforms that in-
volve impulses.

Let us return to the evaluation of the transform of a constant, s(r) = A. We observed
earlier that the defining integral

Ao j Ae 2™ gy (2.22)

does not converge. For f # 0, this integral is bounded by A/mf. For f = 0, the integral
“blows up.”

Since the integral defining the Fourier transform and that used to evaluate the in-
verse transform are quite similar, one might guess that the transform of a constant is an
impulse. That is, since an impulse transforms to a constant, a constant should transform to
an impulse. In the hope that this guess is valid, let us find the inverse transform of an im-
pulse. We have

3(f) & j 3(fe 2 ™df = | (2.23)

Our guess was correct: The inverse transform of 8( f) is a constant. Therefore, by applying
a scaling factor, we have

A & AY(S) (2.24)

If we take the inverse transform of a shifted impulse, we develop the additional transform
pair,

Ae?™ & AM(f - f,) (2:25)

This guess-and-check technique deserves some comment. We stressed earlier that
the uniqueness of the Fourier transform is extremely significant. That is, given S(f), s(r)
can be uniquely recovered. Therefore, the guess-and-check technique is a perfectly rigor-
ous one to use to find the Fourier transform of a function of time. If we can somehow
guess at an S(f) that yields s(r) when S(f) is plugged into the inversion integral, we have
found the one and only transform of s(¢). As in the preceding example, this technique is
very useful if the transform integral cannot be easily evaluated, whereas the inverse trans-
form integral can.

Example 2.7
Find the Fourier transform of s(r) = cos 2mfyr.
Solution: We make use of Euler's identity to express the cosine function in the form
cos 2y = L+ Lyt

The Fourier transform of the cosine is then the sum of the transforms of the two exponentials,
which we found in Eq. (2.25). Therefore,
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1 |
cos 2mfyt & 580"— fo + 5'6()c + fo)

This transform is sketched in Fig. 2.13.

S

Bl
|-

S Figure 2.13 Fourier transform of cosine
=fo fo wave.

We can now reveal a deception we have been guilty of: Although the Fourier trans-
form is specified by a strictly mathematical definition, and f is just an independent func-
tional variable, we have slowly tried to brainwash you into thinking of this variable as fre-
quency. Indeed, the choice of f for the symbol of the variable brings the word frequency to
mind. We have seen several Fourier transforms that are not identically zero for negative
values of f. In fact, we shall see in Section 2.6 that the transform cannot be zero for nega-
tive f in the case of real functions of time. Since the definition of frequency (repetition
rate) has no meaning for negative values, we could never be completely correct in calling f
a frequency variable.

Suppose we view the positive f~axis only. For this region, the transform of cos 2mfor
is nonzero only at the point f = f; (See Example 2.7.) Probably the only time in your ear-
lier education that you experienced the definition of frequency is the case where the func-
tion of time is a pure sinusoid. For this function, the positive f-axis appears to have mean-
ing when interpreted as frequency, so we shall consider ourselves justified in calling fa
frequency variable.

Another transform pair that will be needed in our later work is that of a unit step
function and its transform. Here, as in the case of a constant, if one simply plugs the func-
tion of time into the transform definition, the resulting integral does not converge. We
could again attempt the guess-and-check technique, but due in part to the discontinuity of
the step function, the technique becomes not very hopeful. The transform is relatively easy
to evaluate once one realizes that

+
UG = 1 + sgn (7)
2
where sgn is the sign function, defined by
o t >0
sgn (1) =
i 3\

U(r) is illustrated in Fig. 2.14.
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U]

—_

|-

Figure 2.14 Representation of U(1) in terms of sgn(r).

The transform of } is (3)8(f). The transform of sgn(r) can be evaluated by express-
ing sgn(?) as a limit of exponentials, as shown in Fig. 2.15. We have

sgn (1) = lim [e™“"'sgn ()]

1
R
— 1
>\
= Figure 2.15  sgn(7) as a limit of

exponentials.

Assuming that the order of taking the limit and taking the transform can be interchanged
(generally, if the result is bounded, we can do this), we obtain

Fsgn (0] = lim F[e™“"sgn ()]
a—0 2.27)

1 1 1
a0 [1210’ ta j2mf- a] Jjf
The transform of the unit step is then given by

1 1
Uu(r) & uf o 58( 5B, (2.28)

If you have been exposed to Laplace transforms, you may recall that the Laplace
transform of a unit step is 1/s. At first glance, it appears that the Fourier transform of any
function that is zero for negative ¢ should be the same as the one-sided Laplace transform,
with s replaced by j2mf. However, we see that in the case of s(r) = U(r), the two trans-
forms differ by a very important factor, (3)8(f). The explanation of this apparent discrep-
ancy requires a study of convergence in the complex s-plane.
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CONVOLUTION

We are now ready to investigate the “scary” operation referred to at the end of Section 2.3.
The convolution of two time functions r(z) and s(¢) is defined by the integral operation

i) s(r) = r Hm)s(t — Tydr = J- 3 (Tt — T)dr (2.29)

The asterisk notation is conventional, r(t)#s(¢) and is read “r(z) convolved with s(¢).” The
second integral in Eq. (2.29) results from a change of variables, and it proves that convo-
lution is commutative. That is, r(t)*s(f) = s()*r(1).

Convolution is basic to almost any linear system.

Note that the convolution of two functions of ¢ is itself a function of ¢, since 7 is a
dummy variable of integration. The integral of Eq. (2.29) is, in general, very difficult to
evaluate in closed form, as is demonstrated in the following example.

Example 2.8
Evaluate the convolution of r(t) with s(1), where r(t) and s() are the square pulses shown in
Fig. 2.16.
r(f) s(r)
1 1
-t -t
-1 1 -2 2

Figure 2.16 Functions for Example 2.8.

Solution: 'We note that the functions can be written in the form
in=U0c+D-Ut-1)

s)=Ui+2)—Ut-2)
where U(t) is the unit step function defined by

I t >0
Ui =

) 0, ¢ <0
The convolution is defined by
rtws() j Ho)s(e — 7) dr

We see that
M=Uc+1)-Uxr-1)
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t—D=Ut-+2)-Ut-1-2)
st — ) =Ux+ DU —7+2)—Ulr+ DUt —1-2)

-Ux-NDUE—1+2)+Uxz—-1DUGEt—-—7—2)
Therefore, breaking the integral into parts, we have

r(t)*s(r) = r Ut + DU — 7 + 2) dr
-J‘- Ux+ DUt —1— 2)dr

= Jﬁ Ur - DUt — 7+ 2)dr

—ac

+'r. Ur=-1DUt-7—2dr

We now note that U(t + 1) is equal to zero for T < —1, and U(t — 1) is zero for 7 < 1.
Taking this into account, we can reduce the limits of integration to yield

r(n)s(r) = I

U(x—1+2)dr—~J Ug—r—2)dn

=1

—J‘ U(r—-r+2)d-r+f Ut—v—2)dr
1 |

To derive this, we have replaced one of the step functions by its value, unity, in the range in
which the substitution applies. We now try to evaluate each integral separately. Note that

Hit e+ 2D=0, T2>1+2

Ht=n=2=0, 7 >t=12

Using these facts, we have

£ 1+ 2
j U(t—-r+2)d*r=j dr=1+3
=1

provided that t + 2 > —1, or equivalently, r > —3. Otherwise, the integral evaluates to zero.
Likewise, if r — 2 > —1, that is, # > 1, then

-2
rU(t—'r—-2)d-r=I dr=1-1
-1 -k
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Ift+2>1,thatis, t > —1, then
= +2
j U(.r--r+2)dr=f dr=1t+1
1 ]
Ift — 2> 1, that is, t > 3, then
' -2
f U(:—*r—2)a*r=J’ dr=1-3
1 1
Using these four results, we find that
e =0+ +3) - DU-1D-0@+ DU+ 1D+ (@ —-3)UE~-3)

The four terms on the right-hand side, together with their sum, are sketched in Fig. 2.17.
From this modest example, we can see that, if either (1) or s(f) contains step functions, the
evaluation of the convolution becomes quite involved.

//(r + Ut + 3) (t=-3)U(r-3) /
t
P !
-, 1 d
y+ DU@+ 1) —(t=-1U@r-1)

(1) * 5(1)
2

AR ,

FRAIEATY B R
-4-3-2-1 1234

|
i
-

Figure 2.17 Result of Example 2.8,

2.5.1 Graphical Convolution

We claim that, for simple r(z) and s(r) (what we mean by simple should be clear at the end
of this section), the result of the convolution can be obtained almost by inspection. Even in
cases where r(f) and s() are quite complicated or the waveshapes are not precisely known,
certain observations can be made about the convolution without actually performing the
detailed integration. In many communication applications, these general observations will
be sufficient, and the exact convolution will not be required.
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The inspection procedure is known as graphical convolution. We will arrive at the
technique by examining the definition of convolution. We repeat the left-hand equality of

Eq. (2.29):

20

r(t)#s(t) = r(T)s(t — T)dt

One of the original functions is r(t), where the independent variable is now called 7.

The mirror image of s(7) is represented by s(—7), that is, s(7) reflected around the
vertical axis.

The convolution equation now tells us that for a given ¢, we form s(z — 7), which
represents the function s(—7) shifted to the right by 7. We then take the product

r(T)s(t — 7)

and integrate it (i.e., find the area under it) in order to find the value of the convolution for
that particular value of t. The procedure is illustrated in Fig. 2.18 for the two functions of
Fig. 2.16 from Example 2.8. The ideal way to demonstrate graphical convolution is with
an animated motion picture that shows the two functions, one of which is moving across
the 7-axis. The motion picture would show the two functions overlapping by varying
amounts as ¢ changes.

Unfortunately, the constraints of book publishing do not allow us to present a mo-
tion picture. Instead, we illustrate a stop-action view of the phenomenon; that is, we show
a number of frames.

Figure 2.18 shows 12 separate frames of the would-be motion picture. In this partic-
ular example, it is not obvious that s(r) was reflected to form the mirror image, since the
original s(f) was an even function of t.

It is necessary to interpolate between each pair of values of ¢ shown in the figure.
Note that it is the area under the product that represents the result of the convolution. Fig-
ure 2.19 plots this area as a series of points, with straight-line interpolation between pairs
of points.

It should not be surprising that the result is piecewise linear; that is, the interpolation
results in straight lines. This is so because the convolution becomes an integration of a
constant, which results in a ramp function. With practice, only a few points are needed to
plot the resulting convolution. It is comforting to compare Fig. 2.19 with Fig. 2.17 and to
note that we obtained the same answer in both cases.

Example 2.9

Find the convolution of r(f) with itself, where the only information given about r(r) is that it is
zero for Itl > a. That is, r(f) is limited to the range between t = —a and t = +a. A represen-
tative r(t) is sketched in Fig. 2.20.

Solution: Not knowing r(#) exactly, we certainly cannot find the resulting convolution,
r()+r(1), exactly. To see how much information we can obtain concerning this convolution,
we attempt graphical convolution. Figure 2.21 is a sketch of #(7) and r(r — 7).

‘We note that as ¢ increases from zero, the two functions illustrated have less and less of
the T-axis in common. When ¢ reaches +2a, the two functions separate; that is, at r = 2a, we
have the situation sketched in Fig. 2.22. The two functions continue to have nothing in com-
mon for all r greater than 2a. Likewise, for negative 7, one can see that the product of the two
functions is zero as long as t < —2a.
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Figure 2.18 Graphical Convolution.
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Figure 2.19  Result of Graphical Convolution.

)

el o

Figure 2.20 Time limited ~(r) for Example 2.9.

(1) r(t=1)

- a | -0 +a

Figure 2.21 r(7) and r(t — 7) for Example 2.9.
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) n2-7) Product
x =
i . 4 SEUTCYRN O )
—a a a 3

Figure 2.22 Convolution product when t = 2a.

rit) » r(r)

el Bl o

~2a 2a

Figure 2.23 Typical Result of Example
25

Although we do not know r(#)*r(r) exactly, we have found the range it occupies along
the t-axis. The range is zero for ltl > 2a. A possible form of this result is sketched in Fig.
2.23. We emphasize that the sketch is not intended to indicate the exact shape of the function.
(Indeed, if the original function were triangular, the convolution would be parobolic.) The re-
sults of this example will be used later in the study of modulation systems.

Example 2.10

Use graphical techniques to convolve the two functions shown in Fig. 2.24. Verify your an-
swer using a computer approach.

) (0

-1 1 1 3

Figure 2.24 Two functions for Example 2.10.

Solution: Figure 2.25 shows the products and integrals for various values of 7. The samples
of the convolution, together with the interpolation between them, are shown in Fig. 2.26(a).
The resulting curve is parabolic, since the function being integrated can be thought of as a
ramp function.

Again, with practice, the foregoing result could be sketched with only a few key points.
For example, observing the shaded region of Fig. 2.25, we see that the result increases slowly
at first and then accelerates until the right edge of the square reaches the origin. The rate of in-
crease then gets smaller again, as each incremental move to the right adds a shorter and
shorter strip to the product.
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rie) » s(1)
+1
405 :’ :
p—— t - :
Figure 2.26(a) Graphical Convolution for
-05 |1 051 152 253 35445 Example 2.10.

We now use Mathcad to verify the graphical solution. The input code is as follows:

tii==3 . ~1.99. .2
U(t) :=F(t)
£{t) : ~ (eH1FPUOEFLY UL )+ (- t+1) 2 (U (L) -U(t-1))
g(t):U(t-1)-U(t-3)

Bra=T =N

1
c(tl) :=er(tau)?s(tl-tau)dtau

+1

Note that r(t) is the triangular pulse defined using gated ramps and s(t) is the square pulse. F(t)

is the Mathcad expression for the unit step. The resulting convolution, c(t1), is shown in Fig-
ure 2.26(b). Note that it matches the result we obtained using graphical convolution.

e(tl)

e
-+

1

-1 1 2 3 4
Figure 2.26(b) Result for Example 2.10.

We now investigate the operation of convolving an arbitrary time function with 8(r):
B(0)xs(r) = f d(7)s(r — m)dr = s(t — 0) = s(1) (2.30)

This shows that any function convolved with an impulse remains unchanged.
If we convolve s(r) with the shifted impulse, 8(r — 1), we obtain

Bt — to)es(r) = f 8(r — 1o)s(t — Tdr = 5t — 1,) @31)
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In sum, convolution of s(rf) with an impulse function does not change the functional form
of s(r). The only thing it may do is cause a time shift in s(¢) if the impulse does not occur at
t=0.

Now that we have a feel for the operation known as convolution, let us return to our
study of the Fourier transform.

The convolution theorem states that the Fourier transform of a function of time that
is the convolution of two functions of time is equal to the product of the two correspond-
ing Fourier transforms. That is, if

1) & R(f)
s(t) & S(f)

rn)xs(t) & R()S(f) (2.32)

The proof of the theorem is straightforward. We simply evaluate the Fourier trans-
form of the convolution:

Flr(n=s(n)] = f ne'ﬂ‘ﬂ[". g r(T)s(t — T)d‘r]dt

= f = r('r)[ f 5 e 2mhg(r — 'r)dt}d'r

We now make a change of variables in the inner integral by letting t — v = k. We then
have

(2:33)

F[r()*s(1)] = j mrme‘ﬁ"f'U s"(k)'fﬂﬂf*dk]abr (2.34)

The integral in the brackets is simply S(f). Since S(f) is not a function of 7, it can
be pulled out of the outer integral. This yields the desired result,

Flr(n=*s(n] = S(f) I r(r)e *"dr = S(IR(f) (2.35)

and the theorem is proved.

Convolution is an operation performed between two functions. These need not be
functions of the independent variable f; we could just as easily have convolved two
Fourier transforms together to get a third function of f!

H(f) = R(f)*S(f) = f R(K)S(f — k)dk (2.36)

Since the integral defining the Fourier transform and that yielding the inverse trans-
form are quite similar, one might guess that convolution of two transforms corresponds to




Sec. 25  Convolution 51

multiplication of the two corresponding functions of time. Indeed, one can prove, in an
analogous way to the previous proof, that

R()*S(f) & rns() (237

To prove this, simply calculate the inverse Fourier Transform of R(f)*S(f). Equation
(2.35) is called the time convolution theorem and Eq. (2.37) the frequency convolution
theorem. 3

Example 2.11
Use the convolution theorem to evaluate the integral

“sin3T sin(t— 1)
LU =
Solution: We recognize that the integral represents the convolution
sin 3¢ _ sin t

t t

The transform of the integral is therefore the product of the transforms of the two functions
(sin 3r)/t and (sin r)/t. These two transforms may be found in Appendix II. They and their
product are sketched in Fig. 2.27.

sl s[%]

‘II'

gl-
g

n 2w Product
.}

2w 2n

Figure 2.27 Transforms and Product for Example 2.11.
The function of time corresponding to the convolution is simply the inverse transform of the
product. This is seen to be
T sin
t
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Note that when (sin )/t is convolved with (sin 31)/t, the only change that takes place is
the addition of a scale factor . In fact, if (sin 1)/r were convolved with (sin 37)/m1, it would
not have changed at all! This surprising result is no accident: There are entire classes of func-
tions that remain unchanged after convolution with (sin r)/m. If this were not true, many of
the most basic communication systems could never function.

2.5.2 Parseval’s Theorem

There is little similarity between the waveshape of a function and that of its Fourier trans-
form. However, certain relationships do exist between the energy of a function of time and
the energy of its transform. Here, we use energy to denote the integral of the square of the
function. This represents the amount of energy, in watt-seconds, dissipated in a 1{) resistor
if the time signal represents the voltage across or the current through the resistor. Such a
relationship proves useful if we know the transform of a function of time and wish to
know the energy of the function: We do not need to go through the effort of evaluating the
inverse transform.

Parseval’s theorem, which states this kind of relationship, is derived from the fre-
quency convolution theorem. Starting with that theorem, we have

rns() <> R(f)*S(f)

Frnsn] = f r(t)s(t)e ™" dt (2.38)

= J % R(K)S(f — k) dk

Since Eq.(2.38) holds for all values of f, we can let f = 0. For this value of f, we then
obtain

In r(t)s(t)dt = f 3 R(k)S(—k) dk (2.39)

Equation (2.39) is one form of Parseval’s formula. It can be made to relate to energy by
further taking the special case of

s(r) = r¥(n
The Fourier transform of the conjugate, F[r*(1)], is given by the conjugate of the
transform reflected around the vertical axis, that is, R*(—f). You should take the time now

to prove this statement.
Using the preceding result in Eq. (2.39), we find that

f_ |P(0)| dr = f_ |R*(f)| df (2.40)
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We have used the fact that the product of a function and its complex conjugate is equal to
the square of the magnitude of the function.’ (Convince yourself that the square of the
magnitude is the same as the magnitude of the square of a complex number.)

Equation (2.40) shows that the energy of a function of time is equal to the energy of
its Fourier transform.

.6 PROPERTIES OF THE FOURIER TRANSFORM

We now illustrate some of the more important properties of the Fourier transform. One can
certainly go through technical life without making use of any of these properties, but to do
so would involve considerable repetition and extra work. The properties allow us to derive
something once and then to use the result for a variety of applications. They also allow us
to predict the behavior of various systems.

2.6.1 Real/Imaginary-Even/Odd

The following table summarizes properties of the Fourier transform based upon abserva-
tions made upon the function of time.

Function of Time Fourier Transform
A Real Real part even, imaginary part odd
B Real and even Real and even
" Real and odd Imaginary and odd
D Imaginary Real part odd, imaginary part even
E Imaginary and even Imaginary and even
F Imaginary and odd Real and odd

We now prove these properties. The defining integral of the Fourier transform can
be expanded using Euler’s identity as follows:

S = f s(t)e 2™ dy

s f s()c08 2ufidt — j ] " s(0sin 2nfuds 2.41)

=R+ jX

*The time signals we deal with in the real world of communication are real functions of time. However, as
in basic circuit analysis, complex mathematical functions are often used to represent sinusoids. A complex num-
ber is used for the magnitude and phase angle of a sinusoid. Therefore, although complex signals do not exist in
real life, they are often used in “paper” solutions of problems.
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R is an even function of f, since, when fis replaced with —f, the function does not change.
Similarly, X is an odd function of f.

If s(¢) is first assumed to be real, R becomes the real part of the transform and X is
the imaginary part. Thus, property A is proved.

If, in addition to being real, s(r) is even, then X = 0. This is true because the inte-
grand in X is odd (the product of an even and an odd function) and integrates to zero.
Hence, property B is proved.

If s(¢) is now real and odd, the same argument applies, but R = 0. This proves
property C.

Now we let s(f) be imaginary. X then becomes the imaginary part of the transform,
and R is the real part. From this simple observation, properties D, E, and F are easily
verified.

2.6.2 Time Shift

The Fourier transform of a shifted function of time is equal to the product of the transform of
that function with a complex exponential, That is,

s(t — 1y) © e 2"S(f) (2.42)

Proof. The proof follows directly from evaluation of the transform of s(r — 1).

Fs(t — 1)] = I % s(t — t)e P"dr = J‘ 3 s(r)e P o (2.43)

The second integral follows from a change of variables, letting T = (t — #o). We now pull
the part that does not depend on 7 to the front of the integral and note that the remaining
part is a Fourier transform of s(f). Finally, we get

FHst — 1] = e 2oS(f) (2.44)

Example 2.12
Find the Fourier transform of

1, 0<r<2
() =

0, otherwise

The function s(¢) is sketched in Fig. 2.28.
Solution: From the definition of the Fourier transform, we have

S = re‘””dt - e-w(eﬁ“f — e~ 2%f)
o j2uf

= - sin 2mf
mf
As expected, S(f) is complex, since s(1) is neither even nor odd.
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(0

Figure 2.28 s5(1) for Example 2.12.

The result of Example 2.12 could have been derived in one step using the answer
from Example 2.5 and the time-shift property. The s(¢) of Example 2.12 is the same as that
of Example 2.5 (with A = a = 1) except for a time shift of 1 sec.

2.6.3 Frequency Shift

The function of time corresponding to a shifted Fourier transform is equal to the product of
the function of time corresponding to the unshifted transform and a complex exponential.
That is,

S(f = f) & e*™s(r) (2.45)
Proof. The proof follows directly from evaluation of the inverse transform of

S(f = fo):

j T se foe ™ df = f " Stenm g (2.46)

In the second integral, we have made a change of variables, letting k = f — fo. We now
pull the part of the integrand that does not depend upon k in front of the integral and rec-
ognize that the remaining integral is the inverse Fourier transform of s(r). This yields

S(f — fo) © e”™s(p) (2.47)

Example 2.13 -
Find the Fourier transform of

g lt] <1
s(n) =

0, otherwise
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Solution: This s(7) is the same as that of Example 2.5 (with A = a = 1), except for a multi-
plying factor of e”™. The frequency shift theorem is used to find that the transform is the orig-
inal transform shifted by 1 unit of frequency. We therefore take the transform found in Exam-
ple 2.5 and substitute ( f — 1) for f:

sin2@(f— 1)

o =7 2= )

This result is illustrated in Fig. 2.29.

Figure 2.29 S(f) for Example 2.13.

Note that in Example 2.13, the function of time is neither even nor odd. However,
the Fourier transform turmed out to be a real function of time. Such a situation arises only
when the function of time is not real.

2.6.4 Linearity
Linearity is undoubtedly the most important property of the Fourier transform.

The Fourier transform of a linear combination of functions of time is a linear combination of
the corresponding Fourier transforms. That is,

as, (1) + bsy(t) & aS,(f) + bSy(f) (2.48)

where a and b are any constants.

Proof. The proof follows directly from the definition of the Fourier transform and
from the fact the integration is a linear operation:

j [as,(5) + bsy(t)]e 2™ds = aJ’ 3 s,(De 2y + br s,(De~2dr  (2.49)
= aS,(f) + bSy(f)

Example 2.14
Find the Fourier transform of
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1 -1<t<0
2 0=<it<l
o]t I A PP
0, otherwise
This function is sketched in Fig. 2.30.
(1)
|
i
2 -
1
i
|
1|
|
i
i
L Jr t
-1 1 1 2

Figure 2.30 s(r) for Example 2.14.

Solution: We use the linearity property and observe that s(1) is the sum of the function of
time in Example 2.5 with that in Example 2.12. Therefore, the transform is given by the sum
of the two transforms:

S(f) = i"5%"1[1 + e™2Y]

Since the given function of time would be even if shifted to the left by 0.5 sec, we can rewrite
this equation in a more descriptive form by factoring out e /™,

S(F) =2 sinZwﬁos'nfe_,M

2.6.5 Modulation Theorem

The modulation theorem is very closely related to the frequency shift theorem. We treat it
separately because it forms the basis of the entire study of amplitude modulation.

The result of multiplying a function of time by a pure sinusoid is to shift the original transform
both up and down by the frequency of the sinusoid (and to cut the amplitude in half).

Proof. We start the proof of this theorem by assuming that s(¢) is given, together
with its associated Fourier transform. The function s(r) is then multiplied by a cosine
waveform to yield

s(f)cos 2mfyr
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where the frequency of the cosine is fo. The Fourier transform of this waveform is given by
1 1 :
Fs(cos 2m fyr] = 2 Sf — fo) + 5 SU+ ) (2.50)

The proof of the modulation theorem follows directly from the frequency shift theorem.
We split cos 2mfpr into two exponential components and then apply the frequency shift
theorem to each component:

1 1
s(f)cos 21bel = —s(:)eﬂ"'fo' ) _s(r)e—ﬁwfa.r
¢ : 2.51)

1 1
© Es(f'_fo) + 5s(f+fo)

2.6.6 Scaling in Time and Frequency

We are rapidly approaching the point of diminishing returns in presenting properties of the
Fourier transform. At some point, it is worth dealing with the individual properties as they
arise. We shall terminate our exploration with a companion set of two properties referred
to as time and frequency scaling. The usefulness of these properties arises when you take a
function of time or a Fourier transform and either stretch or compress it along theé horizon-
tal axis. Thus, if, for example, you already know the Fourier transform of a pulse with
width two units (as in Fig. 2.28), you need not do any further calculations to find the
Fourier transform of a pulse of any other width.

Time Scaling

Suppose we already know that the Fourier transform of s(#) is S(f). We wish to find the
Fourier transform of s(ar), where a is a real scaling factor. Thus, if, for example, a = 2, we
are compressing the function by a factor of 2 along the t-axis, and if a = 0.5, we are ex-
panding it by a factor of 2. The result can be derived directly from the definition of the
Fourier transform as follows:

Fs(an)] = j s(at)e 2™ dt =j s(-r)e-ﬂ*'ﬁf"‘:—T (252)

The latter integral results from a change of variables, letting s = at. The integral is now
recognized as

F[s(an] = %S (’g) (2.53)

The result represents a complementary operation on the frequency axis and an am-
plitude scaling. Thus, if, for example, @ = 2, the time axis is compressed. In finding the




ks Sec. 2.7 Periodic Functions 59

ax: transform, we expand the frequency axis by a factor of 2 and scale the amplitude of the
§ : transform by dividing by 2.

Frequency Scaling

If it is already known that the Fourier transform of s(¢) is S(f), then the time signal that
has S(af) as its transform, where a is a real scaling factor, is given by

1
-1 o
F[saN] =, s(a) (2.54)
This is proved directly from the inverse Fourier transform integral and is left as an exer-
cise for the student.

Think about how you might have proven the frequency-scaling result from the time-
scaling property. (Hint: What if @' = 1/a in the time scale equation?)

ir

Y

2.7 PERIODIC FUNCTIONS

In Example 2.7, the Fourier transform of the cosine function was found to be composed of
two impulses, one occurring at the frequency of the cosine and the other at the negative of
this frequency. We will now show that the Fourier transform of any periodic function of
time is a discrete function of frequency. That is, the transform is nonzero only at discrete
points along the f~axis. The proof follows from Fourier series expansions and the linearity
of the Fourier transform.

Suppose we find the Fourier transform of a function s(z) that is periodic with period
T. We can express the function in terms of the complex Fourier series representation

W)=Y cem (2.55)
where
1
g

Previously, we established the transform pair

Ae?™ 5 AS(Sf - f,) (2.56)

From this transform pair and the linearity property of the transform, we have

Fs] = D, c, Fle] 2.57)
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This transform is shown in Fig. 2.31 for a representative s(t). Note that the ¢, are complex
numbers, so the sketch is intended for conceptual purposes only. If the function of time is
real and even, the ¢, will be real.

5

"I I%r r

=fo h A% 4,

Figure 2.31 Transform of periodic s(r).

The foregoing proof shows that the Fourier transform of a periodic function of time
is a train of equally spaced impulses, each of whose strength is equal to the corresponding
Fourier coefficient c,.

Example 2.15

Find the Fourier transform of the periodic function made up of unit impulses, as shown in Fig.
2.32. The function is

(1)
TITTA‘ITII“;,
Figure 2.32  Periodic s(f) for Example 2.15.

2

s =2, 8~ nT)

Solution: The Fourier transform is found directly from Eq. (2.57). We have

5= 2, edf - nfy)

where

1
fo—;
T

1 2
G e I s(te _mﬂfo’d‘
T '
g
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Within the range of integration, the only contribution of s(r) is that due to the impulse at the

origin. Therefore,
T
I J‘ 1 1
== B Mg = —
il S T
1z
Finally, the Fourier transform of the pulse train is given by
l o0
S =7 2 M=y
A= =
where
1
ey

The function of Example 2.15 has an interesting Fourier series expansion. All of the
coefficients are equal. Each frequency component possesses the same amplitude as every
other component. This is analogous to the observation that the Fourier transform of a sin-
gle impulse is a constant. The similarity leads us to examine the relationship between the
Fourier transform of a periodic function and the Fourier transform of one period of the
function.

Suppose that s(f) represents a single period of the periodic function s,(f). Then we
- can express the periodic function as a sum of shifted versions of s(1):

s =2, st —nT) (2.58)

b Since convolution with an impulse simply shifts the original function, Eq. (2.58) can be
_. 'm as

5,0 = s@* Y, 8(t — nT) (2.59)

Convolution in the time domain is equivalent to multiplication of the Fourier trans-
forms. The Fourier transform of the train of impulses was found in Example 2.15. Trans-
forming Eq. (2.59) then yields

S0 =503, 78~ nfy (2.60)

Equation (2.60) shows that the Fourier transform of the periodic function is simply a sam-
pled and scaled version of the transform of a single period of the waveform.
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PROBLEMS
Evaluate the Fourier series expansion of each of the periodic functions shown in Fig. P2.1.1.
se either the complex exponential or the trigonometric form of the series.

s(t)

e (1-2)?

=2 -1

LN} LR

(c)
Figure P2.1.1

2.1.2 Evaluate the Fourier series expansion of the function shown in Fig. 2.3.
2.1.3 Evaluate the Fourier series representation of the periodic function

5(1) = 2sin m + 3sin 2wt

2.1.4 The periodic function of Fig. P2.1.1(c) is expressed in a trigonometric Fourier series. Find
the error if only three terms of the Fourier series are used. Repeat for four terms and five
terms.

2.1.5 Find the Fourier series expansion of a gated sinusoid, as shown in Fig. P2.1.5. !

2.1.6 The triangular waveform shown in Fig. P2.1.1(b) forms the input to a diode circuit, as shown
in Fig. P2.1.6. Assume that the diode is ideal. Find the Fourier series expansion of the current
i)

2.1.7 In Fig. P2.1.7, find a Fourier series expansion of s(f) that applies for —7/2 <1 < /2.
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s(t)

cos 6wt

o
il

a
Al

i i

1 1

2.1.8 Find the complex Fourier series representation of s(f) = * that applies in the interval
0 < 1 < 1. How does this compare with your answer to Problem 2.1.1, Fig. P2.1.1(a)?

2.1.9 Find a trigonometric Fourier series representation of the function

s(f) = cosmt

in the interval 0 < r < 2.
@ Which of the following could not be the Fourier series expansion of a periodic signal?
5,(f) = 2cos 1 + 3cos 3t

55(1) = 2cos 0.5t + 3cos 3.5¢
55(f) = 2c0s 0.25¢ + 3cos 0.00054¢
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5,(t) = 2cos wt + 3cos 2t
55(f) = 2cos 7wt + 3cos 2wt

2.1.11 Find the error made in approximating Icos | by a constant, 2/7r. Then include the first sinu-
soidal term in the Fourier series expansion of Icos 71, and recalculate the error.
2.2.1 Find the complex Fourier spectrum of a half-wave rectified cosine wave (i.e., a waveform
with every other pulse as in Fig. 2.6).
Evaluate the Fourier transform of each of the functions of time given in Fig. P2.3.1.

s(n)
1
(a)
-2 2 4
1|50
(b) - 5 t
(c) —N 1
—pat

2.3.2 Evaluate the Fourier transform of the following functions of time:

5(1) = e *U)
55() = cos 2tU(r)
5(1) = te” U

2.5.1 Convolve e"U{—t) with e"*U(r). These two functions are shown in Fig. P2.5.1.

‘M s | &
l R |

Figure P2.5.1

onvolve together the two functions shown in Fig. P2.5.2, using the convolution integral.
Repeat using graphical techniques.
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59(1) 55(1)

-1 1

Figure P2.5.2

2.5.3 Find

J‘ 3 e~ 2U(t) dt

using Parseval’s theorem. Hint: Use the fact that
e UM = |e”'UW|?

2.5.4 Evaluate the following integral using Parseval’s theorem:

W - :
I 5":2 cos 1.000:%‘0.032,000:&

2.5.5 Show that if S(f) = 0 for |f] > f,, then

sin at
= s(1)
e

s(f) *

Evaluate the following integrals:

J'” Sin?ﬂﬁ(:—'r)d-r

e

r sin3('r-3)sin5(r—'r)d7

o T=3 t—rT
I 3t — 0 + ddt
2.6.1 (a) Write the convolution of s(f) with U(#) in integral form. See whether you can identify

this as the integral of s(1).

(b) What is the transform of s(1)*U(r)? Solve this using the convolution theorem.
2.6.2 Any arbitrary function can be expressed as the sum of an even and odd function; that is,

s(t) = s,() + so(8)
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where
s(1) + s(—1)
2

sol) = s(r) -zs(—r)

(a) Show that s.(r) is an even function and that so(r) is an odd function.
(b) Show that s(r) = s.(f) + so(t).
(¢) Find s.(r) and so(r) for s(t) = U(r), a unit step function.
(d) Find s.(r) and so(r) for s(t) = cos20mt
2.6.3 Given a function s(r) that is zero for negative ¢, find a relationship between s.(r) and so(?).
Can this result be used to find a relationship between the real and imaginary parts of the
Fourier transform of s(r)?
Evaluate the Fourier transform of cos5m, starting with the Fourier transform of coswt and
2.6.5 Given that the Fourier transform of s(z) is S(f):
(a) What is the Fourier transform of ds/dt in terms of S(f)?
(b) What is the Fourier transform of

s =

f_ s(t)dt

in terms of S(f)?
2.6.6 Use the time shift property to find the Fourier transform of

st + 1) — (1)
T

From this result, find the Fourier transform of ds/dr.

2.6.7 Asignal s(1) is put through a gate and truncated in time as shown in Fig. P2.6.7. The gate is
closed for 1 < t < 2, Therefore,

s(1), l<<2
Soull) =

0, otherwise
Find the Fourier transform of s.u(r) in terms of S(f).

)<
+ 3
a(t)C) 1<1<2 Gabs M,”

Figure P2.6.7
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2.6.8 (a) Find the derivative with respect to time of the function shown in Fig. P2.6.8.
(b) Find the Fourier transform of this derivative.
(¢) Find the Fourier transform of the original function from the transform of the derivative.

2.6.9 Find the Fourier transform of s(f) = sin2mfyr from the Fourier transform of cos2mfor and the

Figure P2.6.8
time shift property.

2.6.10 Find the Fourier transform of cos*2mfy from the frequency convolution theorem and the
transform of cos2mfyt. Check your answer by expanding cos*2mfyt using trigonometric
identities.

2.7.1 The function s(r) of Fig. P2.1.1(c) with 7 = 1 and 7 = 0.5 multiplies a function of time, g(1),
with G(f) as shown in Fig. P2.7.1(a).
(a) Sketch the Fourier transform of g,(r) = g(ns(r).
(b) Can g(1) be recovered from g.(1)?

() If G(f) is now as shown in Fig. P2.7.1(b), can g(r) be recovered from g,(1)? Explain your
answer.

hl—\
-2
>“§

(a) (b)
Figure P2.7.1



Linear Systems

3.0 PREVIEW
What We Will Cover and Why You Should Care

The previous chapter developed the basic mathematical tools required for waveform
analysis. We now apply these techniques to the study of linear systems in order to deter-
mine system capabilities and features. We then will be in a position to pick those particular
characteristics of linear systems which are desirable for communication applications.

This chapter begins by developing the concepts that are necessary to understand a
system function, which is a way to describe the behavior of a particular system. We then
relate the system function to the sinusoidal steady-state response of circuits. You should be
familiar with this from a course on basic circuits.

The chapter then explores several specific linear systems. We concentrate on the
ideal lowpass and bandpass filter, since we will be using these throughout the remainder of
the text. Because ideal filters cannot be built in the real world, we then turn our attention to
the approximations that must be made when practical systems are constructed.

The chapter concludes by examining the relationship between the mathematical the-
ory and the real world. Since the Fourier transform is a mathematical concept that does not
exist in real life, we examine the approximations that are possible using a laboratory spec-
trum analyzer.

Necessary Background
To understand the concepts presented in this chapter, you must be comfortable with the
Fourier transform. You may have to review Chapter 2 from time to time.
3.1 THE SYSTEM FUNCTION
We begin by defining some common terms. A system is a set of rules that associates an

output function of time with every inpur function of time. This is shown in block diagram
form in Fig. 3.1.
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1) s(0)

Figure 3.1 Block diagram of system.

The input, or source, signal is r(r); s(t) is the output, or response, signal due to the
input. The actual physical structure of the system determines the exact relationship be-
tween r(¢) and s(1).

A single-ended arrow is used as a shorthand method of relating an input to its result-
ing output. That is,

nn — s)

is read, *“an input r(f) causes an output s(¢).”

For example, suppose the system under study is an electric circuit. Then r(#) could
be an input voltage or current signal, and s() could be a voltage or current measured any-
where in the circuit. We would not modify the block diagram representation of Fig. 3.1,
even though the circuit schematic would have two wires for each voltage. The single lines
in the figure represent signal flow.

In the special case of a two-terminal electrical network, (1) could be a sinusoidal in-
put voltage across two terminals, and s(¢) could be the current flowing into one of the ter-
minals due to the impressed voltage. In this case, the relationship between r(r) and s(7) is
the complex impedance between the two terminals of the network.

Any system can be described by specifying the response s(t) associated with every
possible input r(¢). Obviously, this is an exhaustive process. We would certainly hope to
find a much simpler way of characterizing the system.

Before introducing alternative techniques of describing systems, some additional
basic definitions are needed.

A system is said to obey superposition if the output due to a sum of inputs is the sum
of the corresponding individual outputs. That is, given that the response (output) due to an
excitation (input) of ri(7) is si(#), and that the response due to ry(f) is s2(f), then the re-
sponse due to ri(f) + rar) is s1(t) + sa(2).

Restating this, we may say that a system which obeys superposition has the property
that if

r(t) = 5,0
and
ry(t) = s,(1)
then
r(@) + () = 5,00 + 550

Some thought should convince you that in order for a circuit to obey superposition,
the source-free, or transient, response (the response due to the initial conditions) must be
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zero. (Let r2(r) = O to prove this.) In practice, one often replaces a circuit having nonzero
initial conditions with one that has zero initial conditions. Additional sources are added to
simulate the contributions of the initial conditions.

A concept closely related to superposition is linearity. Assume again that ri(r) — 5(1)
and ry(1) = s2(7). The system is said to be linear if the relationship

ar(t) + bry(1) = as|(1) + bsy(1)

holds for all values of the constants @ and b. In the remainder of this text, we will use the
words linearity and superposition interchangeably.

A system is said to be time invariant if the response due to an input is not dependent
upon the actual time of occurrence of the input. That is, a system is time invariant if a
time shift in input signal causes an equal time shift in the output waveform. In symbolic
form, if

r(t) = s(1)
then

it = 1) = s(t = 1)

for all real fo.

A sufficient condition for an electrical network to be time invariant is that its compo-
nent values do not change with time (assuming unchanging initial conditions). That is, if
all resistances, capacitances, and inductances remain constant, then the system is time
invariant.

Returning to the task of characterizing a system, we shall see that for a time-invari-
ant linear system, a very simple description is possible. That is, instead of requiring that
we know the response due to every possible input, it will turn out that we need know only
the output for one test input.

We showed earlier that convolution of any function with an impulse yields the orig-
inal function. That is,

r() = r()*8(r)
3.1)

= j n()d(t — m)dr

Although one must always use extra caution in working with impulses, let us assume that
the integral can be considered a limiting case of a sum, so that

0] _alrlﬂ]n”_z” r(nAT)d(t — nA1)AT (3.2)
Equation (3.2) represents a weighted sum of delayed impulses. Suppose that this weighted
sum forms the input to a linear time-invariant system. The output would then be a
weighted sum of delayed outputs due to a single impulse.
Suppose now that we know the system’s output due to a single impulse. Let us de-
note that output as h(t), the impulse response. Then the output due to the input of Eq. (3.2)
is given by
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s(1) =A]11_To E r(inA7)h(t — nAt)AT (3.3)

n=-—x

If we take the limit of the sum, the latter becomes an integral, and we have

s(r) = j Hmh(t — m)dt = r(n)*h(1) (3.4)

Equation (3.4) states that the output due to any input is found by convolving that input
with the system’s response to an impulse. All we need to know about the system is its im-
pulse response. Equation (3.4) is known as the superposition integral equation.

The Fourier transform of the impulse is unity. Therefore, in an intuitive sense, the
impulse contains all frequencies to an equal degree. This observation hints at the impulse’s
suitability as a test function for system behavior. On the negative side, it is not possible to
4 produce a perfect impulse in real life. We can only approximate it with a large-amplitude,

very narrow pulse.
i Taking the Fourier transform of Eq. (3.4) yields

S(f) = R(fH(f)

S
H(f) =RT{(%

The Fourier transform of the impulse response is thus the ratio of the output Fourier trans-
form to the input Fourier transform. It is given the name transfer function or system func-
tion, and it completely characterizes a linear time-invariant system.

(3.5

3.2 COMPLEX TRANSFER FUNCTION

Sinusoidal steady-state analysis defines the complex transfer function of a system as the
ratio of the output phasor to the input phasor. A phasor is a complex number representing
the amplitude and phase of a sinusoid. The ratio of phasors is a complex function of fre-
quency. In the special case in which the input is a current flowing between two terminals
and the output is the voltage across these terminals, the complex transfer function is the
complex impedance between the two terminals.

As an example, consider the circuit of Fig. 3.2, where i;(¢) is the input and v(r) is the
output. The transfer function is given by

4 j1|- i /
B 3t
B s (3.6)
Alternatively, if i2(f) is the output and i\(¢) is the input, the transfer function becomes

1
W= m 3.7
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ir(1)

+ = ;\UL

i(n <> W) 10 2h

Figure 3.2 Circuit to illustrate transfer function.

We have used the same symbol, H(f), for the transfer function as was used in the
previous section to denote the Fourier transform of the impulse response. This is not acci-
dental: The two expressions are identical. This statement can be proven by considering a
system input of

n(r) = et (3.8)
This input is not physically realizable, because it is a complex function of time. Nonethe-
less, the system equations apply to complex inputs. We can compare the system output us-
ing sinusoidal steady-state analysis with that obtained using Fourier transform analysis.
Note that the Fourier transform of the complex input function is a shifted impulse. In this
manner, we can show that the two H( f) functions are identical.
Example 3.1

In the circuit of Fig. 3.3, the capacitor is initially uncharged. Find i(f), assuming that v(r) =
8 (1).

AAA A A i

Figure 3.3 Circuit for Example 3.1.

Solution: Since the input to the circuit is an impulse, we are being asked to find the impulse
response, h(f).

H(f) can be found using sinusoidal steady-state analysis, where the capacitor is re-
placed by an impedance of 1/j2w fC. The transfer function is then simply the reciprocal of the
circuit input impedance:

1 R
R + l/j2nfC 1 + j2mfRC

H(f) =
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We now need to find the inverse Fourier transform of H(f). There are a number of ways to do
this. One way is to look in a table of Fourier transforms, such as the one in Appendix II of this
text. Indeed, there are much more extensive tables available in various handbooks, and you
might be fortunate enough to find an entry that applies to your problem. A second technique is
to try to evaluate the inverse Fourier transform integral, either in closed form or using com-
puter approximations (e.g., Mathcad). Yet another way is to use the FFT. To do so, however,
you must become aware of its properties and the relationship between frequency sampling
and time sampling.

We shall use tables to solve this particular problem. We rewrite the equations for H(f)
borrowing the expansion technique commonly used in Laplace transform analysis:

1/R

1
HO) = R = T+ j2ufre

o) = i) = 80 — =z ")

This waveform is illustrated in Fig. 3.4.

in

IR

- ] -
R:C

Figure 3.4 i(¢) for Example 3.1.

Note that the impulse in i(#) has appeared without additional analysis effort. This is
noteworthy, since classical circuit analysis techniques handle impulses with a great deal of
difficulty.

The result of Example 3.1 is valid only for zero initial charge on the capacitor.
Otherwise, superposition is violated (prove it!), and the output is not the convolution of
k(1) with the input. '

This apparent shortcoming of Fourier transform analysis of systems with nonzero
initial conditions is circumvented by treating initial conditions as sources. The considera-
tion of initial conditions is not critical to most communication systems, so we will usually
assume zero initial conditions.
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3.3 FILTERS

In ordinary language, the word filter refers to the removal of the undesired parts of some-
thing. In linear system theory, it was probably originally applied to systems that eliminate
undesired frequency components from a time waveform. The term has evolved to include
systems that simply weight the various frequency components of a signal.

Many of the communication systems we discuss contain ideal distortionless filters.
We therefore begin our study by defining distortion.

A distorted time signal is a time signal whose basic shape has been altered. () can
be multiplied by a constant and shifted in time without changing the basic shape of the
waveform.

In mathematical terms, we consider Ar(t — fo), where A and #, are any real constants,
to be an undistorted version of r{r). Of course, A cannot equal zero. The Fourier transform
of Ar(t — 1o) is found from the time shift property:

Ar(t — 1) & Ae 2"OR(f) (3.9)
We can consider this the output of a linear system with input r(¢) and system function
H(f) = Ae ™o (3.10)

This is illustrated in Fig. 3.5.

Since H( f) is complex, we have plotted its magnitude and phase. The real and imag-
inary parts would also have sufficed, but would not have been as instructive,

Let us view Fig. 3.5 intuitively. It seems reasonable that the magnitude function
turned out to be a constant. This indicates that all frequencies of r(f) are multiplied by the
same factor. But why did the phase turn out to be a linear function of frequency? Why
aren’t the various values of phase all shifted by the same amount? The answer is clear
from a simple example. Suppose we wish to shift a 1-Hz sinusoid r(f) = cos 2mt by 1 sec-
ond. This represents a phase shift of 27 radians, or 360°. If we now wish to shift a signal
of twice the frequency, 7(r) = cos 4mt, by the same | second, we would have to shift the
phase by 41 radians, or 720°. If we shifted the second signal by only 360°, it would only
be delayed by 0.5 second instead of the required 1 second.

) HU) s(t)

Phase [ H
! [H(N)]

Slope = -2,

Figure 3.5 Characteristics of distortionless system.
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Now consider a general signal composed of many frequency components. If we de-
lay all components by the same angular phase, we would not be delaying them by the
same amount of time, and the signal would be severely distorted. In order to delay by the
same amount of time, the phase shift must be proportional to frequency.

3.3.1 Ideal Lowpass Filter

An ideal lowpass filter is a linear system that acts like an ideal distortionless system, pro-
vided that the input signal contains no frequency components above the cutoff frequency
of the filter. Frequency components above this cutoff are completely blocked from appear-
ing at the output. The cutoff frequency is the maximum frequency passed by the filter, and
we denote it as f,,.. The system function is then given by

AP, |f| <7, e+
e Hep)= Ae
0, 17| > £, $ta)-avif

The transfer function of the ideal lowpass filter is shown in Fig. 3.6. Note that since h(r) is
real, the magnitude of H(f) is even and the phase is odd.
The impulse response of the ideal lowpass filter is found by computing the inverse

Fourier transform of H(f):
: j
h(t) = f Ae ™ 2mfto @127t 4f
= (3.12)
& A sin 2mf, (1 — 1)
w(t — 1)
H()! PhH(f)]
3 i
_frn fm

Figure 3.6 Ideal lowpass filter characteristic.

This impulse response is shown in Fig. 3.7. The amount of delay, 1, is proportional to the
slope of the phase characteristic. The cutoff frequency is proportional to the peak of A(r)
and inversely proportional to the spacing between zero-axis crossings of the function. That
is, as f;, increases, the peak of /(1) increases, and the width of the shaped pulse decreases—
the response gets taller and skinnier.
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A & Vi
V g ™

\/ fo V L% Figure 3.7 Impulse response of ideal low-
pass filter.

3.3.2 Ideal Bandpass Filter

Rather than pass frequencies between zero and f,,, as in the case of the lowpass filter, the
ideal bandpass filter passes frequencies between two nonzero frequencies, fi and fy. The
filter acts like an ideal distortionless system, provided that the input signal contains no fre-
quency components outside of the filter passband. The system function of the ideal band-
pass filter is

Ae e f < |f| <fu
H(f) = (313)

0, otherwise

This function is illustrated in Fig. 3.8.

The impulse response of the bandpass filter can be found by evaluating the inverse
Fourier transform of H(f). Alternatively, we can save a lot of work by deriving the band-
pass filter impulse response from the lowpass filter impulse response and the frequency-
shifting theorem. If we denote the lowpass system function as Hi,(f), the bandpass func-
tion can be expressed as

+ +
= mfs =)+ S aa

IH()! PhLH(f))
1A v
|_| |—| b VR C, o
J Lf hesieedanter-frieme f
~fu —f A fu ~fu I s, 1

Figure 3.8 Ideal bandpass filier characteristic.
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Figure 3.9 shows the relationship between H( f) and Hy, (f).

We have illustrated the system functions as if they were real functions of frequency.
That is, for purposes of the derivation, we are assuming that #, = 0. This approach is justi-
fied by the time invariance of the system. When we are finished, we can simply insert a
time shift and the associated phase factor. Alternatively, you can view Fig. 3.9 as a plot of
the magnitudes of the functions and carry the exponential phase term through every step
of the derivation.

H(p Hylh)
el A
f >
-fu - AL =t | fa-A
2 2

Figure 3.9 Bandpass and lowpass characteristics.

If we define the midpoint of the passband (the average of f; and fy) as

fu= fi—ﬂ“; % (3.15)

then the impulse response is
h(f) = hlp(t)ep“f-" + hlp(')‘-’ —2mft

(3.16)
= 2hy(n)cos 2mfyt = 2hy(t)cos [m(f, + fit]
From Eq. (3.12),
hlp(r) il M (3.17)

™t

Combining Egs. (3.16) and (3.17), and reinserting the time shift (phase factor), we find the
impulse response of the ideal bandpass filter:

2A sin [w(fy — £, )0 — tp)lcos [w(f, + fu)t — 1))
(it — 1)

The impulse response is illustrated in Fig. 3.10. The outline of this waveform resem-
bles the impulse response of the lowpass filter. Note that as the two limiting frequencies
become large compared to the difference between them, the impulse response starts re-
sembling a shaded-in version of the lowpass impulse response and its mirror image. This
happens when the center frequency of the bandpass filter becomes large compared to the
width of its passband. This observation will prove significant in our later studies of ampli-
tude modulation.

h(t) = (3.18)
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h(n)

Figure 3.10 Impulse response of ideal bandpass filter.

3.4 CAUSALITY

Things are going much too well. We must now darken the picture by showing that it is im-
possible to build ideal filters. We do this by introducing the idea of causality. This refers to
the cause-and-effect relationship. The effect, or response, due to a cause, or input, cannot
anticipate the input. That is, a causal system’s output at any particular time depends only
upon the input prior to that time, and not upon any future values of the input. There are no
crystal balls in the real technical world.' For a linear system to be causal, it is necessary
and sufficient that the impulse response /(r) be zero for 1 < 0. It follows that the response
due to a general input r(r) depends only on past values of r(r). To verify this, we write the
expression for the output of a linear system in terms of its input and impulse response:

s(n) = J’ h(t)r(t — T)dt (3.19)

If h(r) = 0 for 1 < 0, Eq. (3.19) becomes

] t
s(r) = f h(T)r(t — 7)dr = f r(k)h(t — k)dk (3.20)
0 -0

The second integral in this equation results from a change of variables, where we let k =
t = 7. Equation (3.20) clearly shows that the output depends only on past values of the in-
put. This proves sufficiency. To prove necessity, we note that 8(f) = 0 forall 1 < 0. Ina
causal system, the inputs n(r) = 0 and r(r) = 8(r) must yield the same outputs, at least until
time ¢ = 0. That is, if the system cannot “anticipate” future values of the input, it has no
way of “telling” the difference between zero and &(7) prior to time ¢ = 0. But in a linear
system, an input that is identically equal to zero yields an output that is also identically
equal to zero. Therefore, h(r) must equal zero for r < 0, and the necessity part of the state-
ment is proven.

The study of causality is important because, in general, causal systems are physi-
cally realizable and noncausal systems are not (much to the dismay of astrologers, fortune-
tellers, and lottery players).

'There is a class of systems known as prediction filters. In fact, we use these later in the text in discussing
both source encoders for digital systems and data compression of speech signals. Although we use the word pre-
diction, there is nothing mysterious or noncausal about such systems.
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The foregoing criterion is easy to apply if A(z) is explicitly known. That is, one need
simply examine A(r) to see if it is zero for negative 7. In many cases, however, it will be
H(f) that is known, and the Fourier inversion to find k() may be difficult to perform. It
would therefore be helpful if the constraint on /() could be translated into a constraint on
H(f). We could then determine whether a system could be built without having to invert

H(f).
The Paley-Wiener criterion states that if
* _|mH(f) |
J'_m " +(2“f)2df < (3.21a)
and
f |H(H|2df < (3.21b)

then, for an appropriate choice of phase function for H(f), k(1) = 0 for t < 0.

Note that Egs. (3.21) do not take the phase of H( f) into account. The actual form of
h(1) certainly does depend upon the phase of H(f). Indeed, if a particular H(f) corre-
sponds to a causal system, we can make that system noncausal by shifting the original im-
pulse response to the left on the time axis. This shift corresponds to a linear change in the
phase of H(f), which does not affect Egs. (3.21). Thus, the Paley-Wiener criterion really
tells us whether it is possible for H( f) to be the transform of a causal time function (i.e., it
is a necessary, but not sufficient, condition). Assuming that Egs. (3.21) were satisfied, the
phase of H( f) would still have to be examined before final determination about the causal-
ity of the system could be made. Because of these considerations, we will use the Paley-
Wiener condition to make only one simple, but significant, observation.

Since the logarithm of zero approaches minus infinity, if H(f) = 0 for any nonzero
interval along the f-axis, then the first integral in Eq. (3.21a) does not converge. Therefore,
the system cannot be causal. Alas, all of our ideal lowpass and bandpass filters are non-
causal. Of course, we already knew this from observing the impulse responses h(t). For
this reason, practical filters must be, at best, approximations to their ideal counterparts.

The previous observation about H( f) is a special case of a much more general theo-
rem. Suppose h(¢) is such that

f |h(5)|? dr < oo (3.22)

Then if (1) is identically zero for any finite range along the r-axis, its Fourier transform
cannot be zero for any finite range along the f-axis, and vice versa. This is sometimes
stated as “a function that is time limited cannot be bandlimited.”

The foregoing statement leads to an important observation: Any function of
time that does not exist for all time (i.e., that is zero for any time interval) cannot be
bandlimited.

In the next section, we discuss some of the most common approximations that are
used in place of ideal filters. We will show that, provided that enough electrical elements
are available, the ideal characteristics can be approached arbitrarily closely.
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3.5 PRACTICAL FILTERS

‘We now present circuits that approximate the ideal lowpass and bandpass filters. Through-
out this section, we assume that the closer H( f) approaches the system function of an
ideal filter, the more the filter will behave in an ideal manner in our applications. This fact
is not at all obvious. A small change in H( f) can lead to relatively large changes in A(r).
One can examine the consequences and categorize the effects of deviation from the
constant-amplitude characteristic or from the linear phase characteristic of the ideal sys-
tem function. (See the discussion of distortion in Section 1.2.1.)
We begin by analyzing the lowpass filter.

3.5.1 Lowpass Filter

The simplest passive approximation to a lowpass filter is the single energy-storage device
circuit. An example is the RC circuit of Fig. 3.11. If the output is taken across the capaci-
tor, this circuit approximates a lowpass filter. The reason is that, as the frequency in-
creases, the capacitor behaves as a short circuit. The transfer function is

Upsfc 1

HD = o j2afc ~ 1 + 2mfRC —
The magnitude and phase are
1
Oh) il e i
I { l 1 + 2nfRC) (3.24)
6(f) = - tan"'Q2mfRC)
RA
; A l -
vin(t) G

VourlD
= -|- g Figure 3.11 RC circuit lowpass filter.

If we set RC to 1/2m, the magnitude of the transfer function drops to 1/V2 at a frequency
of 1 Hz. This is the 3-dB cutoff frequency of the filter (20 log(1/v2), which is approxi-
mately —3 dB).?

Figure 3.12 shows the magnitude and phase of the RC circuit transfer function. In
Fig. 3.12(a), we use a logarithmic frequency axis, while in Fig. 3.12(b) we use a linear fre-
quency axis. Superimposed on each set of curves is the equivalent gain curve for an ideal
lowpass filter with a cutoff frequency of 1 Hz. In particular, if we view the linear fre-
quency plot, we see that there is a dramatic difference between the RC approximation and
the ideal lowpass filter characteristic. (Keep in mind that in a logarithmic gain curve, a
drop of 20 dB is a decrease by a factor of 10.)

*The decibel (dB) is 20 times the logarithm of the amplitude ratio.




Sec. 3.5 Practical Filters 81

0.00 - —\ 0.0
"""-._. \ RC gain
~
-8.00 B T -18.0
\\
~
B Ideal lowpass
N
- -Iﬁ-m T\ i ﬁ"ersﬂin —36.0
g g
. .\
g \
-24.00 \\ -54.0
Y RC phase
.
-32.00 Sag -720
\‘h.
—40.00 | beood LERY] | { N V) [ | | IIIlIlI_golo
10m 100 m 1 10
Frequency (Hz)
(a)
0.00 0.0
LN
\ \
Y - 2
-8.00 Y i RC gain -18.0
\ \ /
\
v [™_Ideal lowpass \\
~ =16.00 i filter gain -36.0
3 \
\Q
~24.00 g -54.0
A
~
S o
-32.00 =<7 -72.0
~40.00 -90.0
0 10
Frequency (Hz)

(b)
Figure 3.12 Characteristic of RC circuit.

These curves, and the following response waveforms, were developed using MI-
CRO-CAP 1V, a computer simulation program. Similar curves would result using other
SPICE-based computer simulation programs or if we skip the simulation and plot the
functions in Eq. (3.23) using Mathcad or MATLAB.

We could continue to analyze the RC filter distortion using the techniques derived
earlier in this chapter. We choose instead to contrast the output of the RC circuit with that
of an ideal lowpass filter for several representative inputs.
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Let us first view the impulse response of the two systems. The impulse response of
the ideal lowpass filter is

_ sin 2w(r — 1)
h(1) e A 9 (3.25)
The impulse response of the RC circuit, with RC = 2, is
h(t) = e (3.26)

These two impulse responses are shown in Fig. 3.13, where we have arbitrafily chosen the
delay of the ideal filter to be 10 seconds so that the distinct plots can be easily seen.

2.00

1.40 h{1) RC circuit h(t) ideal lowpass filter

0.80

Figure 3.13 Comparison of impulse responses.

Let us now consider a square wave input to the two filters. We have simulated a
square wave of fundamental frequency i i Hz by using the ﬁrst five nonzero terms in a
Fourier series expansion (up to the harmonic at a frequency of i Hz).

The ideal lowpass ﬁlter with cutoff of 1 Hz passes only the first two nonzero terms
(i.e., frequencies of i Hz and i Hz). By contrast, the RC filter with 3-dB frequency at 1 Hz
significantly distorts these components. Figure 3.14(a) shows the input waveform, and
Fig. 3.14(b) shows both the ideal lowpass filter and the RC output function. Not only does
the RC filter distort the waveform in the passband, but it also admits significant energy
from the signal beyond the cutoff frequency.

In the preceding examples, we have seen several types of distortion. We shall revisit
distortion later, in the context of amplitude modulation, where we shall use the concepts of
group and phase delay to gain an intuitive feel for the effects of the channel on a transmit-
ted waveform. At this point, we would probably agree that an RC network is not a very
good lowpass filter, except in limited applications. This leads us to explore more complex
forms of practical filters.

There are several types of approximations to the ideal lowpass filter, each exhibiting
unique characteristics. Butterworth filters produce no ripple in the passband and attenuate
unwanted frequencies outside of this band. They are known as maximally flat filters, since
they are designed to force the maximum number of derivatives of H(f) (at f = 0) to be
zero. Chebyshev filters attenuate unwanted frequencies more effectively than Butterworth
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Figure 3.14 Comparison of square wave responses.

filters, but exhibit ripple in the passband. Other important classical filters include the ellip-
tic, parabolic, Bessel, Papoulis, and Gaussian filters.

We limit the current discussion to Butterworth filters; for more details on the broad
topic of filter design, the reader may consult various works listed in Appendix I. The am-
plitude characteristic of the ideal lowpass filter can be approximated by the function

1
O = G (3:27)

This function is sketched, for several values of n, in Fig. 3.15. We have illustrated only
the positive half of the f-axis, since the function is even. We have chosen f,, = 1/2m
(1 radian/sec) for the illustration, but a simple scaling process can be used to design a filter
for any cutoff frequency. Note that as n gets larger, the amplitude characteristic ap-
proaches that of the ideal lowpass filter.
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Figure 3.15 Butterworth gain functions.

‘We now examine the phase of H( f). The result of Problem 2.6.3 indicates that, fora
causal filter, the phase of the transfer function can be determined from the amplitude.
Knowing one, you can derive the other. Thus, for a causal filter, we are not free to choose
the amplitude and phase of H( f) independently. Equation (3.27), then, contains all of the
information needed to specify the filter.

If A(r) is real (as it must be for a real system), the real part of H(f) is even, while the
imaginary part is odd. Therefore,

H(f) = H* - f) (3.28a)
and
[H(I? = H(HH*(f) (3.28b)
This observation, coupled with Eq. (3.27), is sufficient to design Butterworth filters.
Example 3.2

Design a third-order (n = 3) Butterworth filter with f,, = 1/2m.
Solution From Eq. (3.27), we have

1
1+ @naf)P

Suppose we change this to the Laplace transform by letting s = j27f. We will then be in a
position to make observations relative to the poles and zeros of the function. We have

[H(H|? =

1
2 = - -
|H()|> = H®H( - 5) ng
The poles of |H(s)|* are the six roots of unity, as sketched in Fig. 3.16. They are equall
spaced around the unit circle. Three of the poles are associated with H(s) and the other three
with H(—s). Since the filter is causal, we associate the three poles in the left half-plane with
H(s). H(s) is then found from its poles to be

I 1
S=p)s—p)s—py) S+27+25+1

H(s) =

Given H(s), there are well-known techniques for synthesizing a circuit. If v(z) is the
sponse and i(r) the source, the preceding system function corresponds to the circuit of Fig
3.17(a). The component values are not realistic, since the cutoff frequency is very low. Fi,
3.17(b) shows the computer-simulated frequency characteristic of this circuit.
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Figure 3.17 Third-order Butterworth filter.
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Higher order filters would be implemented using ladder networks with additional
elements. That is, additional series inductor, parallel capacitor combinations would

appear.
We revisit Butterworth filters in the next section, when we examine active filters.

3.5.2 Bandpass Filter

The simplest passive approximation to a bandpass filter is the double energy-storage de-
vice circuit. An example of the RLC circuit is shown in Fig. 3.18.

- To— A l +
Vin(0) L c

Vourlf)
= -I- = Figure 3.18 RLC bandpass circuit.

If the output is taken across the parallel LC combination, this circuit approximates a
bandpass filter. The reason is that, as the frequency approaches zero, the inductor behaves
as a short circuit, and as the frequency approaches infinity, the capacitor behaves as a short
circuit. The circuit response therefore approaches zero at both extremes and peaks some-
where between the extremes. The transfer function is

J2mfL
R — 2ufY’RLC + j2=fL

H(f) = (3.29)

The magnitude of this is
1

VR[1/2mfL) = 2ufCF + 1
The magnitude peaks at 2mf = V1/LC. This point is known as the resonant frequency of
the filter. The ratio of the complex impedance to R is related to the Q of the circuit. Figure
3.19 shows a computer simulation of the circuit characteristics, where we have selected
R=L=C=1.

The impulse response of the RLC circuit is given by the inverse Fourier transform of
H(f). Therefore, forR=L=C =1,

h(r) = 1.15¢ "*sin(1.151) (3.31)

This should be compared to the impulse response of the ideal bandpass filter derived in
Eq. (3.18):

k(1)

|H(N| = (3.30)

_ 2Asin[w(fy — f,) @ — t))cos [w(fy + f)(t— )]

w(t — 1)
Figure 3.20 shows the impulse response of the RLC circuit and the impulse response of the
ideal bandpass filter, where we have chosen fy = 0.1 Hz and f; = 0.25 Hz, the 3-dB points

of the RLC circuit response. Note that the Q of this filter is extremely low, since the ratio
of the bandwidth to the center frequency is close to unity.
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Figure 3.20 Comparison of impulse responses.

As in the case of the lowpass filter, improvements are possible by including addi-
tional components. We shall reserve our presentation of the bandpass Butterworth filter to
the next section, where we show the active version of this filter.

'.AC'TIVE FILTERS

In Section 3.5, we examined some simple realizations of filters using inductors, capaci-
tors, and resistors. Such filters are called passive, since all component parts either absorb
or store energy.

A filter is called active if it contains devices that deliver energy to the rest of the cir-
cuit. Active filters do not absorb part of the desired signal energy, as do passive filters.
They are versatile and simple to design, and arbitrary causal transfer functions can be real-
ized. For some applications, such as audio filtering, the passive filter requires an impracti-
cally large number of inductors and capacitors.
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The basic building block of active filters is the operational amplifier (op-amp). The
op-amp has characteristics approaching those of an ideal infinite-gain amplifier: infinite
input resistance, zero output resistance, and infinite voltage gain. Practical op-amps suffer
from limited bandwidths.

The basic configuration of a single op-amp is shown in Fig. 3.21. We have omitted
the power-supply connections. We indicate input and feedback impedances by Z;, and Zg,
respectively. These could be single components (e.g., resistors, capacitors, or inductors) or
combinations of components.

Figure 3.21 Feedback configuration
— of op-amp.

Active-filter analysis and design is an essential part of a study of electronics. We
shall not take the time here to repeat that material. However, for purposes of illustration,
we present one representative lowpass and one representative bandpass filter. In each case,
we include the (computer-simulated) characteristics. The lowpass filter is shown in Fig.
3.22 and the bandpass filter in Fig. 3.23.

3.7 TIME-BANDWIDTH PRODUCT

In designing a communication system, an important consideration is the bandwidth of the
system. The bandwidth is the range of frequencies the system is capable of handling.

The bandwidth is related to the Fourier transform of a function of time. It is not di-
rectly definable in terms of the function, unless we use intuitive statements about how
quickly the function changes value.

Physical quantities of importance in communication system design include the min-
imum width of a time pulse and the minimum time in which the output of a system can
jump from one level to another. We will show that both of these physical quantities are re-
lated to the bandwidth. We start with a specific example and then generalize the result.

The impulse response of the ideal lowpass filter is

h(f) = Mfmu (3‘32)
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Figure 3.22 Active lowpass filter.

This /(¢) and the corresponding H( f) are shown in Fig. 3.24. We use this transform pair to
make two observations. First, the width of the largest lobe of A(r) is 1/f,,. This width is in-
versely proportional to the bandwidth of the signal. In fact, since the resulting bandwidth
(difference between lowest and highest frequency) is f,,, the product of the pulse width and
the bandwidth is unity.

The second observation regarding the lowpass filter requires that we find the step re-
sponse of the filter. Since a step is the time integral of an impulse, and the lowpass filter is
a linear system, the step response is the time integral of the impulse response. The step re-
sponse, a(r), is shown in Fig. 3.25. We now show that the rise time of this response is in-
versely proportional to the bandwidth of the filter. First we must define rise time. There are
several common definitions, each of which attempts to mathematically define the length of
time it takes the output to respond to a change, or jump, in the input. In practice, it is diffi-
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Figure 3.25 Step response of lowpass
filter.

cult to define the exact time at which the output has finished responding to the input jump.
We present one particular definition that is well suited to our application.

The rise time is defined as the time required for a signal to go from the initial to the
final value along a ramp with constant slope equal to the maximum slope of the function.
The latter is shown as a dashed line in Fig. 3.25. The maximum slope of a(r) is the maxi-
mum value of the derivative A(f). This maximum is given by 2 f,.. The rise time of the step
response is then simply

1
= (3.33)
27,
Since the bandwidth of the filter is f,, the rise time and bandwidth are inversely related,

and their product is equal to 0.5.

Although we have illustrated only the inverse relationship between rise time and
bandwidth (or pulse width and bandwidth) for the ideal lowpass filter, the observation ap-
plies in general. That is, rise time is inversely proportional to bandwidth for any system.
The product will not necessarily be 0.5, but will be a constant.

We now verify the relationship between rise time and bandwidth for a particular
definition of bandwidth and pulse width. Suppose that a function of time and its Fourier
transform are as shown in Fig. 3.26. We emphasize that the actual shape is not intended to
be that shown in the figure. Indeed, if the pulse is time limited, the transform cannot go
identically to zero over any range of frequencies. It is also unrealistic to think that the
functions are monotonic. We present the pictures only to help understand the definitions of
pulse width and bandwidth.

s(1)

Figure 3.26 Definition of pulse width and bandwidth.
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We define the pulse width T as the width of a rectangle whose height matches s(0),
and area is the same as that under the time pulse. This is illustrated as a dashed line in the
figure. Note that the definition is not meaningful unless s(0) is the maximum of the wave-
form.

Equivalently, we define the bandwidth BW using a pulse in the frequency domain,
as illustrated in the figure. We then have

s(t)dt
O (3.34)
I S(f)df
i
The product of these two is
J’ s(ndt j S(f)df (3.35)
TBW = "—= ==
5(0)S(0)
‘We now use the Fourier transform integral to find
5(0) = j s(r)e 2™y = f 4 s(f)dt (3.36)
-6 'f=0 —ce
The inverse transform integral is used to find
5(0) = J S(f)e *™df 7R J’ SCf)Hdf (3.37)
Substituting Eqgs. (3.36) and (3.37) into Eq. (3.35), we find that
TBW =1 (3.38)
The product of the pulse width with the bandwidth is unity; hence, the two parameters are

inversely related.

Clearly, the faster we desire a signal to change from one level to another, the more
space on the frequency axis we must allow. This proves significant in digital communica-
tion, where the bit transmission rate is limited by the bandwidth of the channel.

- 3.8 SPECTRAL ANALYSIS

The Fourier transform does not exist in real life. It is a mathematical tool that aids in the
analysis of systems. The FFT is one technique of approximating the Fourier transform of a
continuous function of time, but it is a computational fechnique in which the Fourier trans-
form is being evaluated by a mathematical algorithm.

There are severe limitations when one attempts to find the continuous Fourier trans-
form of a time signal using a real analog system. First, since any real system must be
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causal, the best one can hope to do is find the Fourier transform based on past input val-
ues; there is no way the limits of integration can extend over all time—past and future.

Suppose that /(¢) forms in the input to an ideal bandpass filter with H( f) as shown in
Fig. 3.27. The output transform is given by

Rf) fo <|f| < fu

(5 = { 0, otherwise G
The function s(7) is given by the inverse transform of S(f):
Tu =i
s() = f R(f)e*™df + f R( f)e*™ " df (3.40)
i o
H(f)
rr) H(P) (1) | |_|
| o Figure 3.27 Bandpass filter.

If fiz is very close to f; (i.e., if the filter is narrowband), we can assume that the integrand is
approximately constant over the entire range of integration. Therefore, if f,, is the center of
the filter passband, we have

: Xe) = (fg — TR0 ¥ RE= [ )e Pt (3.41)
Now, since R(—f.) = R*( fiv), we have
st = (fy = IR cosl2mfyt + [ R(S] (3.42)

Thus, the magnitude of the output is proportional to the magnitude of the input transform
evaluated at f;,, and the phase is shifted by the phase of R( f.\).

In many practical spectrum analyzers, the bandpass filter is swept across a range of
frequencies, and the magnitude of the output varies approximately with IR(f.

There are three primary sources of error. First, while the bandpass filter is narrow, its
bandwidth is not zero. This affects the resolution of the output. Second, the filter is causal
and nonideal, which introduces error. Finally, when the center frequency of the filter varies
with time (i.e., when it is swept), the output does not necessarily reach its steady-state
value. The filter rise time is inversely proportional to its bandwidth. Therefore, the nar-
rower the filter, the slower must be the sweep rate.

Example 3.3

Design a spectrum analyzer that can display the magnitude of the Fourier transform of the fol-
lowing function:

s(1) = 5 cos (2m X 1,000r) + 3 cos (2w X 1,100r)

Solution: Assuming that we can build a narrowband bandpass filter and sweep it across a
range of frequencies (we will see a much better way to do this in Chapter 6), the design of the



94 Linear Systems Chap. 3

spectrum analyzer consists of choosing the frequency range and bandwidth of the filter and
also choosing the rate at which the filter sweeps across the range of frequency.

Although we do not know s(r) in advance (if we did, why bother with a spectrum ana-
lyzer?), we must assume that we know something about the range of frequencies s(f) occupies
and also about the required resolution. In fact, if we wish the approximate transform to look
anything like the theoretical transform (two impulses), the bandwidth of the filter would have
to be much smaller than the 100-Hz spacing between frequency components. If it were not
small enough, the output would consist of components of each of the two frequencies, and we
would not be capable of resolving these frequency components. Suppose we choose a filter
bandwidth of 10 Hz and a center frequency sweep range of 900 Hz to 1,200 Hz.

We would probably display the result on a monitor. We do this by controlling the verti-
cal displacement with the filter output magnitude and using a ramp generator (time scale) for
the horizontal axis. The ramp must be synchronized with the filter sweep rate. The x-axis
would then display frequency, while the y-axis would display the magnitude of the transform.

In order to “paint” a picture on the screen, we must either continuously repeat the
sweep or add persistence (memory) to the trace. Either way, we wish to sweep across the
range of frequencies in the minimum amount of time,

If the filter bandwidth is 10 Hz, the rise time is on the order of 1/10 sec. We therefore
would not want to leave a particular range of frequencies in less than this period of time.
Otherwise, the display would show the transient response of the filter rather than the Fourier
transform magnitude function. The sweep rate should therefore be at least an order of magni-
tude less than 100 Hz/sec, or 10 Hz/sec. At this rate, it would take 30 seconds to sweep the en-
tire range, so for the desired level of resolution, we would have to use a high-persistence CRT.
Figure 3.28 illustrates the resulting spectrum analyzer output.

3-dB points

W N | lege b il

990 | 1,010 1,09 | 1,110
1,000 1,100

Figure 3.28 Spectrum analyzer output for Example 3.3.

f(Hz)

~ PROBLEMS

g = 3.1.1 You are given a system with input r(r) and output s(r). You are told that when r(f) = 0, s(1) is
not equal to zero. Show that this system cannot obey superposition.

3.1.2 A filter has the sinusoidal amplitude response shown in Fig. P3.1.2. The phase response is lin-
ear with slope — 2.
(a) Find the system response due to an input cos2r.
(b) Find the system response due to an input (sin27wi)/t.
(c) Find the system response due to an input (sin20m1)/t.
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Af)

f-
-10 10 Figure P3.1.2

3.1.3 Repeat Problem 3.1.2 for the amplitude response shown in Fig. P3.1.3.

A
1 o110

-10 ' 10 & Figure P3.1.3

3.1.4 The transfer function of a cosine filter with zero delay is

Bt = A+ aooey

Ju

(a) Find the impulse response A(r).
(b) Find the filter output due to an input

sin 7wt

xie) - cos 1,000 ¢
3.1.5 A system is shown in Fig. P3.1.5. Assume that 6(f) = —2mwffo. Expand A(f) in a series in or-
der to find the response due to a unit-amplitude, unit-width square pulse.

10
‘!'Wv

+ ‘I. -
r(r) 1F (1)
T Figure P3.1.5

@or the circuit shown in Fig. P3.2.1:
(a) Find H(f).

(b) Plot IH(f)! as a function of frequency.

(¢) What function is this circuit performing?
3.2.2 For the circuit shown in Fig. P3.2.2:

(a) Find H(f).

(b) Plot |H(f)l as a function of frequency.

(¢) What function is this circuit performing?
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c
IE.
¥ I +
<
Vialt) RZ Voull)
- - Figure P3.2.1
L
T ——
% I s
11 s
Vinlt) c RZ Voult)
_ b

3.2.3 You are given the system shown in Fig. P3.2.3. The output of the system is i(r). Find the phase
distortion when the input is given by

") = L:”coBZOOI

0.10 1h

+ 1 s(1)
(1) 97 X 107 T

@Widertheideal lowpass filter with system function as shown in Fig. P3.3.1. Show that the
response of this filter to an input (7/K)8(1) is the same as that to sin(Kr)/Kr.

Figure P3.2.3

H()
1

f
-KI2w Ki2w Figure P3.3.1

3.3.2 You are given the ideal lowpass filter with input as shown in Fig. P3.3.2. An error function is
defined as the difference between the input and the output; that is,

e(r) = r(n) — (1)
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r(t)

1

ODOH [_\ m rl"' p r(f) Lowm ‘{'L
b 2
4

filter
Figure P3.3.2
Find the error function if the filter cutoff frequency is
(a) fu=25Hz
(b) fu=35Hz

_ (¢) fa=45Hz
@You are given the ideal lowpass filter with input as shown in Fig. P3.3.3. The mean square er-
p ror is defined by

1 T
mse = ;j [s(H) = r())*dt
0

(a) Show that s(7) is the average value of r(r).
(b) Find the mean square error.

TE] e r(') Wmmm -’(l)
-1 j ndg up g f,=05

3.3.4 Find the impulse response for an ideal bandpass filter. Show that the filter bandwidth is in-
versely proportional to the width of the impulse response.

3.3.5 The periodic signal of Fig. P3.3.5 forms the input to an ideal bandpass filter with amplitude
and phase as shown. Find the function of time at the output of the filter.

(1) l__H'f(_;")l

I‘r t

5 1 6()

; -f
slope - 4w
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3.4.1 You wish to construct an ideal lowpass filter with
sin (¢t — 10)
ho() = ————
==
Because the system you build is causal, you actually have

hy®, t>0
0 TEO o <th

(a) Find H(f), and compare it to the system function of the ideal filter.
(b) Find the output when the input is

h(n-[

sin ¢
o

(c) Find the error (difference between output and input) for the input of part (b).

3.5.1 Compare the step response of an RC circuit (output taken across the capacitor) with that of an
ideal lowpass filter. Find the value of f, for the ideal filter (in terms of R and C), which mini-
mizes the integrated square error between the two step responses.

3.5.2 Design a Butterworth lowpass filter with a 3-dB cutoff at 500 Hz. The roll-off of the filter
must be such that the amplitude response is attenuated by at least 50 dB at a frequency of 3
kHz.

3.8.1 Design a spectrum analyzer that can display the magnijfude of the Fourier transform of the
function

s(r) = 5cos 2w X 10° + 3cos 2w X 10"t

40 P

b o



Probability and Random
Analysis

4.0 PREVIEW

What We Will Cover and Why You Should Care

Studying communication systems without taking noise into consideration is analogous to
learning how to drive a car by practicing in a huge abandoned parking lot. While it is a
valuable first step, it is not very realistic. Were it not for noise, the communication of sig-
nals would be trivial indeed. You could simply build a circuit composed of a battery and a
microphone and hang the connecting wire outside the window. The intended receiver (per-
haps on the other side of the globe) would simply hang a wire outside his or her window,
receive a very weak signal, and use lots and lots of amplification (e.g., op-amps without
feedback).

Of course, this example is unrealistic. In real life, the person at the receiver would
receive a complete mess made up of an infinitesimal portion of the desired signal mixed
with the signals of all other people wishing to communicate at the same time. Also mixed
with the signal would be the radiated waveforms caused by automotive ignitions, people
dialing telephones, lights being turned on and off, electrical storms, cats rubbing their fur
on rugs, sunspots, and a virtual infinity of other spurious signals. The real challenge of
communication is separating the desired signal from the undesired junk.

Anything other than the desired signal is called noise. Noise includes the effects just
described, but it also includes some things you normally would not think of as noise. For
example, a radar system attempting to track a particular object considers the signals re-
turned from other objects to be noise. Similarly, if you tune in one channel on a television
set and receive background images of adjacent channels, those background images are
noise.

The most common types of noise emanate from a combination of numerous sources.
In fact, the sources are so voluminous that one cannot hope to describe the resulting noise
in a deterministic way (e.g., with a formula). We must therefore resort to discussing noise
in terms of averages. The study of averages requires a knowledge of basic probability,
thereby justifying this chapter.

After studying this chapter, you will:

« understand the basics of probability theory
* be able to solve problems involving random quantities
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* have the tools necessary to evaluate the performance of communication systems in
the presence of noise

+ understand the matched filter, which is a building block in digital receivers.
Necessary Background

To understand basic probability, you need to know only elementary calculus. To under-
stand random processes (which are discussed later in the chapter), you also need to know
basic system theory.

4.1 BASIC ELEMENTS OF PROBABILITY THEORY

Probability theory can be approached either using theoretical mathematics or through em-
pirical reasoning. The mathematical approach embeds probability theory within a study of
abstract set theory. In contrast, the empirical approach satisfies one’s intuitions. In our ba-
sic study of communication, we will find the empirical approach to be sufficient, although
advanced study and references to current literature require extending these concepts using
principles of set theory.

Before we define probability, we must extend our vocabulary by defining some other
important terms:

An experiment is a set of rules governing an operation that is performed.
An outcome is the result realized after performing an experiment one time.
An event is a combination of outcomes.

Consider the experiment defined by flipping a single die (half of a pair of dice) and
observing which of the six faces is at the top when the die comes to rest. (Notice how pre-
cise we are being: If you simply say “flipping a die,” you could mean that you observe the
time at which it hits the floor.) There are six possible outcomes, namely, any one of the six
surfaces of the die facing upward after the performance of the experiment.

There are many possible events (64, to be precise). One event would be that of “an
even number of dots showing.” This event is a combination of the three outcomes of two
dots, four dots, and six dots showing. Another event is “one dot showing.” This event is
known as an elementary event, since it is the same as one of the outcomes. Of the 64 pos-
sible events, six represent elementary events. You should be able to list the 64 events. Try
it! If you come up with only 62 or 63, you are probably missing the combination of all out-
comes and/or the combination of no outcomes.

4.1.1 Probability

We now define what is meant by the probability of an event. Suppose that an experiment is
performed N times, where N is very large. Furthermore, suppose that in n of these N ex-
periments, the outcome belongs to an event A (e.g., consider flipping a die 1,000 times,
and in 495 of these flips the outcome is “even”; then N = 1,000 and n = 495). If N is large




Sec. 4.1 Basic Elements of Probability Theory 101

enough, the probability of event A is given by the ratio n/N. That is, the probability is the
fraction of times that the event occurs. Formally, we define the probability of event A as

gt bty
Pr{A} = lim 4 @1
In Eq. (4.1), n4 is the number of times that the event A occurs in N performances of the ex-
periment. This definition is intuitively satisfying. For example, if a coin were flipped many
times, the ratio of the number of heads to the total number of flips would approach 1. We
therefore define the probability of a head to be 3. This simple example shows why N must
approach infinity. Suppose, for example, you flipped a coin three times and in two of these
flips, the outcome were heads. You would certainly not be correct in assuming the proba-
bility of heads to be 1!

Suppose that we now consider two different events, A and B, with probabilities

Pr(A) = lim 2 and Pr{B} = lim -2 42)
Nowx N Nox N

If A and B could not possibly occur at the same time, we call them disjoint. For example,
the events “an even number of dots™ and “two dots™ are not disjoint in the die-throwing
example, while the events “an even number of dots” and “an odd number of dots™ are
disjoint.

The probability of event A or event B is the number of times A or B occurs divided
by N. If A and B are disjoint, this is

Pr(A or B) = lim 54—7:-1‘! = Pr(A} + Pr(B) @.3)

Equation (4.3) expresses the additivity concept: If two events are disjoint, the probability
of their sum is the sum of their probabilities.

Since each of the outcomes (elementary events) is disjoint from every other out-
come, and each event is a sum of outcomes, it would be sufficient to assign probabilities
only to the elementary events. We could derive the probability of any event from these
given probabilities. For example, in the die-flipping experiment, the probability of an even
outcome is the sum of the probabilities of “2 dots,” “4 dots,” and “6 dots.”

Example 4.1
Consider the experiment of flipping a coin twice and observing which side is facing up when
the coin comes to rest. List the outcomes, the events, and their respective probabilities.
Solution: The outcomes of this experiment are (letting H denote heads and T tails)

HH, HT, TH, and TT

We shall assume that somebody has used intuitive reasoning or has performed this ex-
periment enough times to establish that the probability of each of the four outcomes is i.
There are 16 events, of combinations of these outcomes:

(HH), {HT), (TH), {TT)

(HH,HT), (HH.TH), (HH,TT), (HTTH}, (HTTT), (TH,TT)
(HH,HT,TH}, {HH HT.TT}, (HH,TH,TT}, {(HT,TH,TT}

(HH HTTH,TT), and {6}
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Toe tal tne commmma wWithm e braces 1s read “orl” Thuas, the evemts | HH,HT) and \HT,HH)
i are identical, and we list this event only once. For completeness, we have included the zero
B event, denoted {¢}. This is the event made up of none of the outcomes and is called the null
event. We also include the event consisting of all of the outcomes, the so-called certain event.

Using the additivity rule, the probability of each of these events is the sum of the prob-
abilities of the outcomes comprising each event. Therefore,

Pr{HH) = Pr{HT) = Pr(TH) = Pr{TT} = : A
Pr{HH,HT) = Pr{HH,TH) = Pr{HH,TT} = Pr{HT,TH} = Pr(HT,TT}= Pr{TH,TT) =* als
Pr{HH,HT,TH} = Pr{HH,HT,TT) = Pr{HH,TH,TT) = Pr|HT,TH,TT} = i -
Pr{HHHT,TH,TT)= 1

Pri{¢} =0

nd

The next-to-last probability indicates that the event made up of all four outcomes is the cer-
tain event. It has probability 1 of occurring, since each time the experiment is performed, the
outcome must belong to this event. Similarly, the null event (the last probability) has proba-

bility zero of occurring, since each time the experiment is performed, the outcome does not
belong to the zero event.

4 4.1.2 Conditional Probabilities

We would like to be able to tell whether one random quantity has any effect on another.
: For instance, in the die experiment, if we knew the time at which the die hit the floor,
3 would it tell us anything about which face was showing? In a more practical case, if we
i knew the frequency of a random noise signal, would this tell us anything about its ampli-
. tude? These questions lead naturally into a discussion of conditional probabilities.
o Let us examine two events, A and B. The probability of event A given that event B
= has occurred is defined by

i Pr{A AND B
iy Pr{A/B) = *{—Pr*{}‘]—*}

(4.4)
For example, if A represented two dots appearing in the die experiment and B represented
an even number of dots, the probability of A given B would be the probability of two dots
: appearing, assuming that we know the outcome is either two, four, or six dots appearing.
! Thus, the conditional statement has reduced the scope of possible outcomes from six to
- three. We would intuitively expect the answer to be 1. Now, from Eq. (4.4), the probability
= of “A AND B" is the probability of getting two AND an even number of dots simultane-
ously. (In set theory, this is known as the intersection.) It is simply the probability of two
dots appearing, or s. The probability of B is the probability of two, four, or six dots appear-
ing, which is :. The ratio is 3, as expected.
5 Similarly, we could have defined event A as “an even number of dots™ and event B
' as “an odd number of dots.” The event “A AND B” would then be the zero event, and
Pr{A/B} would be zero. This is reasonable because the probability of an even outcome as-
suming that an odd outcome occurred is clearly zero.
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Two events, A and B, are said to be independent if
Pr{A/B} = Pr{A} (4.5)

Thus, if A and B are independent, the probability of A given that B occurred is simply the
probability of A. Knowing that B has occurred tells nothing about A. Plugging Eq. (4.5)
into Eq. (4.4) shows that if A and B are independent, then

Pr{A and B} = Pr{A}Pr(B} (4.6)

You have probably used this fact before in simple experiments. For example, we assumed
that the probability of flipping a coin and having it land with heads facing up was . Hence,
the probability of flipping the coin twice and getting two heads is § X i = i. This is true be-
cause the events are independent of each other.

Example 4.2
A coin is flipped twice. The following four different events are defined:

A is the event of getting a head on the first flip.

B is the event of getting a tail on the second flip.

C is the event of getting a match between the two flips.
D is the elementary event of getting a head on both flips.

(a) Find Pr{A}, Pr{B], Pr{C}, Pr{D}, Pr(A/B}, and Pr(C/D}.
(b) Are A and B independent? Are C and D independent?
Solution: (a) The events are defined by the following combination of outcomes:

A = |HH, HT)
B={HT TT}

C=(HH, TT)
D = (HH)

Therefore,

Pr{A} =Pr{B) =Pr{C) =}
Pr{D}) =i

(b) To find Pr{A/B} and Pr(C/D}, we use Eq. (4.4):

Pr{A/B) = P'———{‘::zl}) J
Pr{CANDC
pricip) - PEANDC)

The event {A AND B} is {HT}. The event {C AND D} is {HH}. Therefore,

Pr{A/B) = i = 0.5

Pr(C/D)=1=1

| i
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Since Pr{A/B) = Pr{A}, the event of a head on the first flip is independent of that of a tail on
the second flip. Since Pr{C/D} # Pr{C}, the event of a match and that of two heads are not
independent.

4.1.3 Random Variables

We would like to perform several forms of analysis on probabilities. It is not too satisfying
to work with symbols such as “heads,” “tails,” and *“two dots.” It would be preferable to
work with numbers. We therefore associate a real number with each possible outcome of
an experiment. For example, in the single-flip-of-the-coin experiment, we could associate
the number 0 with “tails” and 1 with “heads.” We could just as well (although we won’t)
associate  with “heads” and 207 with “tails.”

The mapping (function) that assigns a number to each outcome is called a random
variable.

Once a random variable is assigned, we can perform many forms of analysis. We
can, for example, plot the various outcome probabilities as a function of the random vari-
able. An extension of that type of plot is the distribution function F(x). If the random vari-
able is denoted by' X, then the distribution function F(x) is defined by

F(xo) = Pr{X = xy} 4.7)
We note that {X = x,} defines an event, or combination of outcomes.
Example 4.3
Assign two different random variables to the “one-flip-of-the-die™ experiment, and plot the
two resulting distribution functions.

Solution: The first assignment we will choose is the one that is naturally suggested by this
particular experiment. That is, we assign the number 1 to the outcome described by the face
with one dot facing up, we assign the number 2 to “two dots,” 3 to “three dots,” and so on. We
therefore see that the event {X = X;} includes the one-dot outcome if x; is between 1 and 2. If
Xp is between 2 and 3, the event includes the one-dot and two-dot outcomes. Thus, the distri-
bution function is as shown in Fig. 4.1(a).

F(x) F(x)

LI L L

o | = 1o |

Figure 4.1 Distribution function for Example 4.3.

'We shall use uppercase letters for random variables and lowercase letters for the values they can take on.
Thus, X = x; means that the random variable X is equal to the number x;.
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Let us now choose a different assignment of the random variable, one representing a
less natural choice:

i

Outcome Random Variable

One dot 1
Two dots L
Three dots 2
Four dots V2
Five dots 11
Six dots -

We have chosen strange numbers to illustrate that the mapping is arbitrary. The resulting dis-
tribution function is plotted as Fig. 4.1(b). As an example, let us verify one point on the
distribution function, the point for x = 3. The event {X = 3] is the event made up of the fol-
lowing three outcomes: one dot, three dots, and four dots. This is true because the value of the
random variable assigned to each of these three outcomes is less than 3.

A distribution function can never decrease with increasing argument. The reason is that
an increase in argument can only add outcomes to the event, and the probabilities of these
added outcomes cannot be negative. We also easily verify that

F(-=)=0 and F(+=)=1 (4.8)

4.1.4 Probability Density Function

The probability density function is defined as the derivative of the distribution function.
Using the symbol py(x) for the density, we have

_ dF(x)
pxlx) = S (4.9)

Since p(x) is the derivative of F(x), F(x) is the integral of p(x):

Xo
Flxp) = j Px(x) dx (4.10)

The random variable can be used to define any event. For example, {x, < X = x,}
defines an event. Since the events (X = x,) and {x, < X = x,} are disjoint, the additivity
principle can be used to prove that

Pr{X=x} + Prix, <X =x} =Pr{X =x)
or (4.11)

Prix, <X =x} =Pr{X =x,} — Pr{X = x;}
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Combining Eqgs. (4.10) and (4.11), we have the important result,

Prix, <X=ux,) = r Py(0)dx — J.x' Py(x)dx 4.12)

- f 2‘P,,(.t)d.tr
We now see why py(x) is called a density function: The probability that X is between any
two limits is given by the area under the density function between these two limits.

Since the distribution function can never decrease with increasing argument, its
slope, the density function, can never be negative.> Also, since the distribution function
approaches unity as its argument approaches infinity, the integral of the density function
over infinite limits must be unity.

The examples given previously (die and coin) result in density functions that contain
impulses. The random variables associated with such experiments are known as discrete
random variables. Another class of experiments gives rise to random variables with con-
tinuous density functions. This is logically called the class of continuous random vari-
ables. We present several frequently occurring continuous random variable density func-
tions in Section 4.2. For now, we examine the simplest of these functions, the uniform
density function. This function is shown in Fig. 4.2(a), where a and b are specified para-
meters. The height of the density must be such that the total area is unity.

plx) pB)

1 1

b-a 2

a b 2w
(a) (b)

Figure 4.2 Uniform density function.
/
Let us look at one practical experiment that results in a uniformly distributed ran-
dom variable. Suppose you were asked to turn on a sinusoidal generator. The output of the
generator would be of the form

v(r) = A cos 2mft + 0) (4.13)

Since the absolute time at which you turn on the generator is random, it would be reason-
able to expect that 0 is uniformly distributed between 0 and 2x. (This is true provided that
[, is much larger than the reciprocal of your reaction time.) It would thus follow the den-
sity function shown in Fig. 4.2(b).

*We could infer the same conclusion from Eq. (4.12). If the probability density function were negative
over any range of values, we could integrate the curve over that range to get a negative result. This would imply
that the probability of the variable being in that range is negative, but that is impossible.




-

Sec. 4.1 Basic Elements of Probability Theory 107

Example 4.4

A random variable is uniformly distributed between | and 3. Find the probability that the
variable is in the range between 1.5 and 2.

Solution: The density function is as shown in Fig. 4.2(a), where a is 1 and & is 3. In order
for this to integrate to unity, the height of the density must be :. The probability that the vari-
able is between 1.5 and 2 is simply the integral under the curve between these limits. Clearly,
this is equal to 5.

4.1.5 Expected Values

Expected values, or averages, are important in communication. The average of the square
of a voltage is closely related to the power associated with that voltage. The power of a
noise voltage is an important measure of the level of disturbance caused by the voltage.

The expected values that come up often enough to be given names are the mean,
variance, and moments of a random variable. We define these terms in this subsection.

Picture yourself as a professor who has just given an examination. How would you
average the resulting grades? You would probably add them all together and divide by the
number of grades. If an experiment is performed many times, the average of the random
variable that results would be found in the same way.

An alternative way to find the sum of grades is to take 100 multiplied by the number
of students who got 100 as a grade, add this to 99 times the number of students who got
99, and continue this process for all possible grades. Then divide the sum by the total
number of grades. Let us formalize this approach.

Letx,i=1,2,..., M, represent the possible values of the random variable, and let
n; represent the number of times the outcome associated with x; occurs. Then the average
of the random variable after N performances of the experiment is

Xog = —IA}EI nx; = z %xi (4.14)

L

Since x; ranges over all possible values of the random variable,

=N (4.15)

As N approaches infinity, n/N becomes the probability, Pr{x;}. Therefore,
Xog = D %Pr{x;) (4.16)

This average value is known as the mean, expected value, or first moment of X and is given
the symbol E{x}, X,,, m,, or x. The words “expected value” should not be taken too liter-
ally, since they do not always lend themselves to an intuitive definition. As an example,
suppose we assign 1 to heads and O to tails in the coin flip experiment. Then the expected
value of the random variable is :. However, no matter how many times you perform the ex-
periment, you will never obtain an outcome with an associated random variable of 3.

Now suppose that we wish to find the average value of a continuous random vari-
able. We can use Eq. (4.16) if we first round off the continuous variable to the nearest mul-
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tiple of Ax. Thus, if X is between (k — 1)Ax and (k + %) Ax, we round it off to kAx. The
probability of X being in this range is given by the integral of the probability density func-
tion:

(- Dac <o b+ Do - f(f"‘_*f)i’;,,mdx g

If Ax is small, this can be approximated by py(kAx)Ax. Therefore, Eq. (4.16) can be rewrit-
ten as

iz 5: kAxpy(kAx)Ax (4.18)

k= -

As Ax approaches zero, this becomes

My Py J: xpyl(x)dx (4.19)

Equation (4.19) is very important. It tells us that to find the average value of x, we simply
weight x by the density function and integrate the product.

The same approach can be used to find the average of any function of a random vari-
able. For example, suppose again that you are a professor who gave an exam, but instead
of entering the raw percentage score in your grade book, you enter some function of this
score, such as ', where x is the raw score. If you now wish to average the entries in the
book, you would follow the reasoning used earlier [Eqgs. (4.14) through (4.19)], with the
result that xpy(x) in Eq. (4.19) gets replaced by e'py(x).

In general, if y = g(x), the expected value of y is given by

an; e [g(x)]avg - j g(x)pX(x)dx (4.20)

Equation (4.20) is extremely significant and useful. It tells us that in order to find the ex-
pected value of a function of x, we simply integrate that function weighted by the density
of X. It is not necessary to find the density of the new random variable first.

We often seek the expected value of the random variable raised to a power. This is
given the name moment. Thus, the expected value of x” is known as the nth moment of the
random variable X.

If we first shift the random variable by its mean and then take a moment of the re-
sulting shifted variable, the central moment results. Thus, the nth central moment is given
by the expected value of (x — m,)".

The second central moment is extremely important, because it is related to power. It
is given the name variance and the symbol o2, Thus, the variance is
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£

o’ = E{(x — m)*) = J (x = m ) pylx) dx (4.21)

The variance is a measure of how far we can expect the variable to deviate from its mean
value. As the variance gets larger, the density function tends to “spread out.” The square
root of the variance, o, is known as the standard deviation.

Example 4.5

Suppose X is uniformly distributed as shown in Fig. 4.3. Find E{x}, E{x*}, E{cos x} and
E{(x — m,)*}.

Pxix)

2m

Figure 4.3 Density of x for Example 4.5.

Solution: We apply Eq. (4.20) to find

m™

% 1 2
E[x}=j xpx(x)dx=§J’ xdx=m
-= 0

% 2w
I

%

2n
E{cosx} = J €08 xpy(x)dx = %J‘ cosxdx =0
o 0

2w 2

s mBak L 2 e oS s
E{(x = m)} J’_m(x ) Pyl x)dx 2"?0(1 ) dx 3

4.1.6 Functions of a Random Variable

“Everybody talks about the weather, but nobody does anything about it.” As communica-
tion engineers, we ourselves would be open to the same type of criticism if all we ever did
was make statements such as “There is a 42-percent probability that the noise will be an-
noying.” A significant part of communication engineering involves changing noise from
one form to another in the hope that the new form will be less annoying than the old. We
must therefore study the effects of processing on random phenomena.

Consider a function of a random variable, y = g(x), where X is a random variable
with known density function. A representative function is shown in Fig. 4.4(a). Since X is
random, Y is also random. We are interested in finding the density function of Y.
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8(x) glx) = x2
4
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Figure 4.4 Representative g(x).
The event {x; <X = x,} corresponds to the event {y, <Y = y,},’ where

y; = g(x)) and y, = g(x,)

The two events are identical because they include the same outcomes. We are assuming
for the moment that g(x) is a single-valued function. Since the events are identical, their
probabilities must also be equal. That is,

Prix,<X=x)=Pr{y,<Y=y) (4.22)
and in terms of the densities,
X3 ¥z
j px(x)dx = J' Pyy)dy (4.23)
| N
If we now let x, get very close to x;, then in the limit, Eq. (4.23) becomes
px(x)dx = pyy)dy (4.24)
and lastly,
_ Px(x)
Py = (4.25)

If y, > y,, the slope of the curve is negative, and we would find (you should prove this re-
sult) that

Py = - ”;‘;‘—Lj;i 4.26)
Wemadcountforboﬁnofﬂmcambywriﬁng
_ pxlx)
Py = | dy/ a‘xl (4.27)

*We are assuming that y1 is less than y2 if x1 is less than x2. That is, g(x) is monotonically increasing and
has a positive derivative. If this is not the case, the inequalities would have to be reversed.
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Finally, writing x, = g"'(y,), and realizing that y, can be a variable (i.e., replace it with y),
we have

-1

e '®]

pAY) = ' Fom dx| (4.28)

If the function g(x) is not monotonic, the event {y, < Y < y,} can correspond to

more than one interval of the variable X. For example, if g(x) = x?, then the event

{1 <Y =4)isthe same as theevent {1 < X = 2} or {—2 < X = —1}. This is shown in
Fig. 4.4(b). Therefore,

2 =1 4
f Pxlx)dx + J px(x)dx = f pyy)dy (4.29)
1 1

-2

In terms of the density functions, this means that g~'(y) has two values. Denoting these
values as x, and x;,, we have

_ Px®) Px(x)
2= e, ¥ (avradl..., s

Example 4.6
A random voltage v is put through a full-wave rectifier. The input voltage is uniformly distrib-
uted between —2 volts and +2 volts. Find the density of the output of the full-wave rectifier.
Solution: Calling the output y, we have y = g(v), where g(v) and the density of V are
sketched in Fig. 4.5. Note that we have let the random variable be equal to the value of volt-
age.

g(v) )
1

-2 2
Figure 4.5 g(v) and p(v) for Example 4.6.

At every value of V, ldg/ldvi=1. Fory > 0, g”'(y) = £y. For y < 0, g"'(y) is unde-
fined. That is, there are no values of v for which g(v) is negative. Equation (4.30) is then used
to find

Py =py) +pA—y) y>0

pAY=0 y<0

This result is shown in Fig. 4.6.
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P

=

2 Figure 4.6 Density of output for Example
4.6.

4.2 FREQUENTLY ENCOUNTERED DENSITY FUNCTIONS

We introduced the basic concepts of probability in Section 4.1. The uniform density func-
tion was presented. While some experiments in communication lead to this density, the
majority of random variables we encounter follow densities other than uniform. The cur-
rent section explores several of the most frequently encountered densities.

4.2.1 Gaussian Random Variables
The most common density confronted in the real world is called the Gaussian (or normal)
density function. The reason it is so common is attributed to the central limit theorem, a

theorem we shall discuss in a few moments. The Gaussian density function is defined by
the equation

2
= ﬂ‘l
px(x) = V=exp [ ( ) ] (4.31)
where m and ¢ are given constants. The function is sketched in Fig. 4.7.

P(x)

Figure 4.7 Gaussian density function.

The parameter m dictates the center position, or symmetry point, of the density.
Evaluating the integral of xpy(x) would show that m is the mean value of the variable. The
other parameter, o, indicates the spread of the density. Evaluating the integral of
(x— m)*py(x) would show that o? is the variance of the variable, so o is the standard devi-
ation. As o increases, the bell-shaped curve gets wider and the peak decreases. Alterna-
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tively, as o decreases, the density sharpens into a narrow pulse with a higher peak. (The
area must always be unity.)

To evaluate probabilities that Gaussian variables are within certain ranges, we find it
necessary to integrate the density. However, Eq. (4.31) cannot be integrated in closed
form, although software such as Marhcad can easily be used. The Gaussian density is suf-
ficiently important that this integral has been computed and tabulated under the names er-
ror function (erf) and Q-function. The error function is defined as

erf(x) = VZ;J. e " du (4.32)
0

It can be shown that erf(cc) = 1. Therefore,

20468 2 By 2% o
V—;-,’e“’du=v;‘[]e "’du-V;Le"}du (4.33)

= erf(®) — erf(x) = 1 — erf(x)

For convenience, this last expression is tabulated under the name complementary error
Sfunction (erfc). Thus, the relationship between the error function and the complementary
error function is

erfc(x) = 1 — erf(x) (4.34)

Both the error function and the complementary error function are tabulated in Ap-
pendix IIL. The area under a Gaussian density with any values of m and o can be expressed
in terms of error functions. For example, the probability that X is between x, and x; is

Prix, < X < x,) J exp [ ee "')2] (4.35)
I’ xz = ﬁ .
Making the change of variables,

Xx—m

u= W (4.36)

we get
W
Prix, <X < x| = TJ’,‘?: e~ du
w ) 437)

i) xp-my 1 m
=3 rf(\/'za) 2°’f( Voo )
We have assumed that both x; and x; are greater than m, since the error function is not de-

fined for negative arguments. Example 4.7 will deal with a situation where this assump-
tion is not valid.
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A companion to the error function is the Q-function. It is sometimes called the com-
plementary error function, or co-error function. However, the Q-function differs from the
complementary error function of Eq. (4.34) by a constant multiplier and a scaling factor.
The Q-function is defined as

Q) = f QV;—,, e " du (4.38)
The integrand is a unit-variance, zero-mean Gaussian density function. Note that
o) = 1
Q(=x)=1- Q)
We can relate the Q-function to the error function by making a change of variables:

Qx) = V;—“_'f e gy = #J’ﬁe“”’dv
X X/
1 X
—Eerfc(VE)

The Q-function is tabulated in Appendix IV.

Both the Q-function and the error function contain the information necessary to
evaluate integrals of Gaussian density functions. Some feel that the Q-function is more
satisfying and easier to work with, since the integrand is a normalized Gaussian density.

Using the Q-function, let us now find the probability that a random variable is be-
tween two limits:

(4.39)

1 a2 (x — m)y?
Prix, <X=x)= f ex [ ]dx (4.40)
‘ ? " Vame b, L 2P
With the Q-function, the required change of variables yields
X—=m
u=
o
N AT o T
[y X Vam Ju-m
5 (4.41)

- ofa=m) - gf22)

Although the error function has traditionally been much more common than the
Q-function, there are indications that the Q-function will predominate in the future. It
makes absolutely no difference which one you use to solve a problem. (You’ll get the
same answer either way.) The only question you should have is which type of table is
more readily available. Of course, if you use the wrong table, you will get the wrong
answer.
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Now that we are familiar with the Gaussian density, let us return to the discussion of
why it occurs so frequently in the real world. It results whenever a large number of factors
contribute to an end result, as in the case of static in broadcast radio. Two conditions must
be satisfied before the sum of many random variables starts to appear Gaussian. The first
relates to the individual variances and to their infinite sum: The sum must approach infin-
ity as the number of variables added together approaches infinity. The second condition is
satisfied if the component densities go to zero outside some range. (This is a sufficient, but
not a necessary, condition.) Since all quantities we deal with in the real world have
bounded ranges, they satisfy the second condition.

Although we do not prove the central limit theorem here, one simple example is of-
ten given to indicate the reasonableness of the theorem. Suppose that we add together in-
dependent uniform random variables, where each is distributed between —1 and +1, as
shown in Fig. 4.8(a). This is an example of independent identically distributed (iid) vari-
ables. When the first two variables are added, it can be shown that the resulting density is
the convolution of the two original densities, as shown in Fig. 4.8(b). This doesn't yet look
very much like the Gaussian curve, but we have summed only two variables.

If a third variable is added, the ramp of Fig. 4.8(b) is convolved once more with the
uniform density to get the parabolic curve of Fig. 4.8(c). At this point, the curve bears a re-

px)

3
2

(a)

1| px)  plx)
2

=9 2
(b)

P(x) » p(x) = p(x)

-3 -2 -1 1 2 3
(c) Figure 48 The central limit theorem.
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semblance to the bell-shaped Gaussian density. As more and more variables are added, the
agreement becomes closer and closer. In fact, the series converges quite rapidly to a
Gaussian density, even if the densities we start with are not uniform.

Example 4.7

A binary communication system is a communication system that sends only one of two possi-
ble messages. A simple example of a binary system is one in which either zere volts or one
volt is sent. Consider such a system in which the transmitted voltage is corrupted by additive
atmospheric noise. If the receiver receives anything above : volt (i.e., the midpoint), it as-
sumes that a one was sent. If it receives anything below  volt, it assumes that a zero was sent.
Measurements show that if one volt is transmitted, the received signal level is random and has
a Gaussian density withm =1 and o =1. Find the probability that a transmitted one will be in-
terpreted as a zero at the receiver (i.e., find the probability of a bit error).

Solution: The received signal level has a Gaussian density with m = 1 and o? = ()2, Thus,
if we designate the random variable as V, we have

- 1P
)= f [ 2((35)2)]

| Since any value received below a level of 0.5 is called 0, the probability that a trans-
f mitted 1 will be interpreted as a 0 at the receiver is simply the probability that the random
variable V is less than 0.5. This is given by the integral

0.5 2 0.5
I Py (v)dv = ‘/;J‘ exp [~ 2(v — 1)]dv

To reduce this equation to a form that can be found in a table of error functions, we

make the change of variable
u=V20 - 1)
to get
V2
2

Pr (error) = Vl; e “du

This is not yet in the form of an error function. However, since exp(—u?) is an even function,
we can take the mirror image of the integral limits without changing the value of the integral:

] o0
Pr (error) = —g
(error) V—‘ﬂ' J‘ lzé e “du
This is now seen to be related to the complementary error function:

(2

2 ) =0.16

Pr (error) = % erfc

Thus, on the average, one would expect 16 out of every 100 transmitted 1’s to be misinter-
preted as (s at the receiver. This is an extremely poor level of performance.
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4.2.2 Rayleigh Density Function

The Rayleigh density function is defined as

iexp(_——_xz), x>0
K 2K* (4.42)

x<0

Pylx) =

where K is a given constant. Figure 4.9 shows the density function for two different values
of K.

Pdx)
K,

e .:

K> K,

X Figure4.9 Rayleigh density function.

The Rayleigh density function is related to the Gaussian density function. In fact,
the square root of the sum of the squares of two zero-mean Gaussian-distributed random
variables is itself Rayleigh. If we transform from rectangular to polar coordinates, the

radius is
r= V? + ;!

If x and y are both Gaussian, in most cases (the restriction is one of independence) r will
be Rayleigh. As an example, suppose that you were throwing darts at a target on a dart
board and that the horizontal and vertical components of your error were Gaussian distrib-
uted with zero mean (a fair assumption if you are not biased by wind, gravity, or a muscle
twitch). The distance from the center of the target to the position of the dart would then be
Rayleigh distributed.

The chi-square distribution is closely related to the Rayleigh. If we were to consider
r* as the variable instead of r, we would find that variable to be chi-square distributed. That
is, a chi-square distribution results from summing the squares of Gaussian variables. If we
sum two such variables, the result is chi square with rwo degrees of freedom. In general, if

=X+t + x4 .+ x?

and the x; are Gaussian with m = 0, z will be chi square with n degrees of freedom. If the
Gaussian variables all have o = 1, the actual form of the density is given by

ayreay- 0tk
T T T g e

pz) = (4.43)
0, z<0

The “!” in Eq. (4.43) indicates the factorial operation.
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4.2.3 Exponential Random Variables

Occasionally, we deal with random variables that are exponentially distributed. This oc-
curs in problems where we view a pattern of waiting times. (Such a pattern is important in
communication network traffic studies.) It also shows up in examining the life of some
systems, where we are interested in the mean time between failures (MTBF).

The exponential density is defined as

1
L gy x>0

pyx) = {" (4.44)
0, X0

This density is shown in Fig. 4.10. The parameter m is the mean value of the variable, as
can be verified by a simple integration. (Convince yourself that you can do this.)

Py(x)

3=

| 1 s

m 2m Figure 4.10 Exponential density function.

4.2.4 Ricean Density Function

In Section 4.2.2, we stated that the Rayleigh density function results when we take the
square root of the sum of the squares of two zero-mean Gaussian densities. When we ana-
lyze digital communication systems in the absence of a signal (i.e., when noise alone is
present), we often are dealing with variables that are Rayleigh distributed.

We also encounter situations where a transmitted signal is embedded in noise
(which adds in the channel). In these cases, our receivers will sometimes effectively take
the square root of the sum of the squares of two quantities. One of these will be zero-mean
Guassian distributed, but the other results from an addition of signal and noise. The quan-
tity we then observe is of the form

e=Vls+aF +5 (4.45)

In this equation, x and y are zero-mean Gaussian random functions, and s is the signal. If s
is zero, z follows a Rayleigh density function. If s is not zero, z follows a more complex
density known as a Ricean density. This density is given by the equation

p(2) = ﬁexp[ - #(z2 -~ sz)] Io(i';._;) (4.46)
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In Eq. (4.46), s is the value of the signal (this will normally be a specific time sample s(7)),
and I, is a modified Bessel function of zero order. We discuss Bessel functions in Chapter 6
(when we deal with FM). For now, you can think of them as functions you look up in a
table. You simply plug in s, z, and o to find the argument of the Bessel function, and then
you look in a table of Bessel functions. Note that when s = 0, Eq. (4.46) reduces to the
Rayleigh density [/,(0) = 0].

3 RANDOM PROCESSES

Some of the noise encountered in a communication system is deterministic, as in the case
of some types of jamming signals in a radar system. In these cases, the noise can be de-
scribed completely by a formula, graph, or equivalent technique. Other types of noise are
composed of components from so many sources that we find it more convenient to analyze
them as random processes. Each time the experiment is performed, we observe a function
of time as the outcome. This contrasts with the one-dimensional outcomes studied earlier
in the chapter.

We usually assume that additive noise is a random process that is Gaussian. This
means that if the process is sampled at any point in time, the probability density of the
sample is Gaussian. Such an assumption proves important, because if we start with a
Gaussian random process and put it through any linear system, the system output will also
be a Gaussian process. This fact will be used many times in examining the performance of
various digital communication systems.

In addition to knowing that the noise process is Gaussian, it will be necessary to
know something about the relationship between various time samples. We do this by ex-
amining the autocorrelation function and its Fourier transform, known as the power spec-
tral density.

Until this point, we have considered single random variables. All averages and re-
lated parameters were simply numbers. Now we shall add another dimension to the study:
time. Instead of talking about numbers only, we will now be able to characterize random
functions. The advantages of such a capability should be clear. Our approach to random
function analysis begins with the consideration of discrete-time functions, since these will
prove to be a simple extension of random variables.

Imagine a single die being flipped 1,000 times. Let X; be the random variable as-
signed to the outcome of the ith flip. Now list the 1,000 values of the random variables

Xy, X2, X3, ...y X909, X1,000

For example, if the random variable is assigned to be equal to the number of dots on the
top face after flipping the die, a typical list might resemble the following:

4|6|3!5| I l4|2;5.3, l .4,5,. "ee

Suppose that all possible sequences of random variables are now listed. We would
then have a collection of 6" entries, each one resembling the sequence shown. This col-
lection is known as the ensemble of possible outcomes. Together with associated statistical
properties, the ensemble forms a random process. In this particular example, the process is
a discrete-valued and discrete-time process.
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If we were to view one digit—say, the third entry—a random variable would result.
In this example, the random variable would represent that assigned to the outcome of the
third flip of the die.

We can completely describe the preceding random process by specifying the proba-
bility density function

P(xy, X, X3, ...y Xog9, X1,000)

This 1,000-dimensional probability density function is used in the same way as a one-
dimensional probability density function. Its integral must be unity:

I I [ P(Xs X Xayeees X995 Xy 0p0) X1 AXy...d%) gop = 1 (4.47)

The probability that the variables fall within any specified 1,000-dimensional volume is
the integral of the probability density function over that volume. The expected value of
any single variable can be found by integrating the product of that variable and the proba-
bility density function. Thus, the expected value of x, is

J J J' X1 P(Xy, Xy, X3, Xggg, Xy 000X dX;...dX) 000 (4.48)

This is known as a first-order average.

In a similar manner, the expected value of any multidimensional function of the
variables is found by integrating the product of that function and the density function.
Thus, the expected value of the product x,x; is

JJ J’ XXy P(X1y Xy X3yers Xoggr X1 000X dX5...dX 000 (4.49)

This is a second-order average.

We can continue this process for higher order averages. In many instances, however,
it proves sufficient to specify only the first- and second-order averages (moments). That is,
one would specify

E{x;} and E{xx;} for all i and j

Since we are interested in continuous functions of time, we now extend our example
to the case of an infinite number of random variables in each list and an infinite number of
lists in the ensemble. It may be helpful to refer back to the simple case (i.e., 1,000 flips of
the die) from time to time.

The most general form of the random process results if our simple experiment yields
an infinite range of values as the outcome and if the period between performances of the
experiment approaches zero.

Another way to arrive at a random process is to perform a discrete experiment, but
assign a function of time instead of a number to each outcome. When the samples of the
process are functions of time, we call this a stochastic process. As an example, consider an
experiment defined by picking a 6-volt dc generator from an infinite inventory in a ware-
house. The voltage of the selected (call it the ith) generator, v{(r), is then displayed on an
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oscilloscope. The waveform vi(1) is a sample function of the process. It will not be a per-
fect constant of 6 volts, due to imperfections il the generator construction and also due to
rf pickup when the wires are acting as an antenna. Since we assumie an unlimited inven-
tory of generators, there is an infinite number of possible sample functions of the process.
This infinite group of samples forms the ensemble. Each time we choose a generator and
measure its voltage, a sample function from the infinite ensemble results.

If we were to sample the voltage at a specific time t = f,, the sample v(z;) would be
a random variable. Since v(¢) is assumed to be continuotis with time, there is an infinity of
random variables associated with the process.

Having introduced the concept with the generator example, let us now speak in
general terms. Let x(f) represent a stochastic process. x(f) is then an infinite ensemble of
all possible sample functions. For every specific value of time t = 15, x(fy) is a random
variable.

Suppose we now examine the first- and second-order averages of the process. Note
that instead of having a discrete list of numbers, as in the die example, we have continuous
functions of time. The first moment is then a function of time. This mean value is given by

m(t) = Ex(1)) (4.50)

The second moments are found by averaging the product of two different time samples.
We use the symbol R, for this moment and call it the autocorrelation. The autocorrelation
is then given by

Rx(‘]"l) = E{X(fl).r(tz)} (45 l)

Both the mean and autocorrelation must be thought of as averages taken over the en-
tire ensemble of functions of time. To find m(ty), we must average all samples across the
ensemble at time f,. To find the autocorrelation, we must average the product of x(7,) and
x(t;) across the ensemble. This is generally difficult, and the ensemble averages are virtu-
ally impossible to ascertain experimentally.

In practice, we could find the mean by measuring the voltage of a great number of
generators dt time 7, and average the resulting numbers. For the example of dc generators,
we would expect this average to be independent of r,. Indeed, most processes we consider
have mean values that are independent of time.

A process with overall statistics that are independent of time is called a stationary
(or strict-sense stationary) process. If only the mean and second moment are independent
of time, the process is wide-sense stationary. Since we are interested primarily in power,
and power depends upon the second moment, wide-sense stationarity will be sufficient for
our analyses.

If a process x() is stationary, then the shifted process x(r — 7) has the same statis-
tics, independently of the value of T. Clearly, for a stationary process, m(t) cannot depend
upon f.

Viewing the autocorrelation of a stationary process, we have

R (t,8) = E(x(t)x(ty)) = E{x(t, — Da(t, — T)) 4.52)

In the last equality, we have shifted the process by an amount T. If we now let 7' = t,, we
find that

R(t,t) = E{x(O)x(t, = 1,)} (4.53)
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Equation (4.53) indicates that the autocorrelation of a stationary (the wide sense is suffi-
cient) process depends only on the time spacing f,—#, between the two samples. That is,
the left-hand time point can be placed anywhere, and as long as the right-hand point is
separated from this by f,—1#,, the autocorrelation remains unchanged. Since the indepen-
dent variable of the autocorrelation is effectively one dimensional instead of two dimen-
sional, we use the argument 7 and refer to the autocorrelation of a stationary process as
R.(7). Thus,

R,(7) = E{x(t)x(t — 1)} = E{x()x(t + 7)} (4.54)

The last equality results from adding 7 to each of the arguments. This shows that autocor-
relation is an even function.

If 1, and 1, are widely separated such thit x(r,) and x(r,) are independent, the autocor-
relation reduces to

R(7) = E(x(tx(t — )} = E{x(n)} E{x(t — 1)} = m’ (4.55)

The average value of a random function of time is the dc value, and most communi-
cation channels will not pass dc. (They contain bandpass filters.) Therefore, most of the
processes we consider have mean values equal to zero. In that case, the value of T at which
R(7) goes to zero represents the time over which the process is correlated. If two samples
are separated by this length of time, one sample has no effect upon the other.

Example 4.8

Suppose you are given a stochastic process x(f) with mean value m and autocorrelation R(7).
This tells you immediately that the process is at least wide-sense stationary. If it were not, the
mean and autocorrelation could not have been given in the form they were. Find the mean and
autocorrelation of the process

YO =x(t) — xt = T)

Solution: To solve problems of this type, we need only recall the definition of the mean
and autocorrelation and the fact that taking expected values is a linear operation. We then
have

my, = E{y(0)} = E{x(1) — x(t = T)}
= E{x(}~E(x(1=1)}
=m-—m, =0
Ry(7) = E{y()y(t + 7))
= E{[x(t) = x(t — D][x(t + 7) — x(t + 7 — NI}
= E{x(Nx(t + m)} — E{x(x(t + 7 — 1))
= Efx(t = Dx(t + 1)} +E{x(t — Dx(t + 1 — D)}
=R(7) = Rt — D) — Rt + D+R(7)
=2R(t) - R{v— T)— R(x+T)

We note that the process y(f) is wide-sense stationary. If this were not the case, both m, and R,
would be functions of ¢,
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Example 4.9

Consider the experiment of starting a sinusoidal generator of deterministic frequency f, and
amplitude A. The exact starting time is random. Thus, \

x(t) = A sin 2nfy + 0) :

where the phase 6 is a random variable with uniform density, as shown in Fig. 4.11. Find the il
autocorrelation of the random process. ‘ l

6
27 Figure 4.11 Density of phase for Example

4.9,

Solution: The autocorrelation is found directly from the definition:
R (1) = E{x(nx(t + 7)}
= E(A %sin 2mfyt + 0) sin [2mfy(r + 1) + 0]}

We can use trigonometric identities to rewrite this as
AZ
R(1) = E[?(cos 2mfyr — cos [2mfy(2t + 1) + B])]

The term (A*/2)(cos 2w fy7) is not random, so its expected value is itself. The expected value
of cos[2mf, (2t + 1) + 6] is found by integrating its product with the density of 8. For the en-
tire expression, we obtain

1 2 2w
R(1) = ZA *cos 2mfyr — A—f cos [27fy(2t + 7) + 0] dO
2 ar ),

The second term on the right represents the integral of a cosine function over two entire peri-
ods. This integral is equal to zero. Thus,

R(1) = %A Zcos 2mfyr

Time Averages

Suppose you were asked to find the average value of the voltage in the dc generator exam-
ple. You would have to measure the voltage of many generators (at any given time) and
then compute the average. Once you were told that the process is stationary, you would
probably be tempted to take one generator and average its voltage over a large time inter-




124 Probability and Random Analysis Chap. 4

val. Using either technique, you would expect to get 6 volts as the result. That is, you
would reason that

T
2
m, = E{((n)) = lim % f £ VAD) dt (4.56)
—s® =3

Here, v(1) is one sample function of the ensemble. This approach does not always result in
the correct answer. Suppose, for example, that one of the generators was burned out and
you happened to choose that particular generator. You would erroneously think that
m, = 0. :

Most of the processes we encounter have the property that any sample function con-
tains all of the essential information about the process. Such processes are known as er-
godic. The generator process is ergodic as long as none of the generators is “exceptional.”

A process that is ergodic must also be stationary. This is so because, once we agree
that all averages can be found from a single time sample, the averages can no longer be a
function of the time at which they are computed. Alternatively, a stationary process need
not be ergodic. (Consider the aforementioned burned-out generator.)

The autocorrelation of an ergodic process is given by

T
2
R() = E{x(0x(t + 7)) = lim %j P XOx(t + 7) dt (4.57)
— =

The autocorrelation is a function of time. We define G(f) as the Fourier transform of the
autocorrelation. G( f) is called the power spectral density for reasons that will become ob-
vious in a moment. We have

£

R (e ™dt (4.58)

G.() = FIR] = J’

The autocorrelation is then the inverse transform of the power spectral density:

R() = FG] = J GAfe ™ df =2 j GANe™df  (459)
= 0
In the last equality, we have doubled the positive half-range of the integral. This results
from the fact that the power spectral density must be real and even, since the autocorrela-
tion is even.
We can now relate the average power to the power spectral density:

P, = E{xX*(1)) = R(0) = 2 f G.f)df (4.60)
0

Equation (4.60) is a very important result. It says that to find the power of a random func-
tion of time, we integrate the power spectral density over all positive values of f (the fre-
quency variable) and then double the result.

The other important result we need is the effect that a filter has on the power of a ran-
dom signal. If a stochastic process forms the input to a filter, as shown in Fig. 4.12, the out-
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x(1) ) : ;
H(f) Figure 4.12  Stochastic process as input to

filter,

put is also a stochastic process. That is, each sample function of the input process yields a
sample function of the output process. We wish to find the statistics of the output process.
We begin with the mean value,

E{y(n)} = E{J’a h(T)x(t — 'r)d'r] (4.61)

The average of a sum is the sum of the averages. Therefore, with some broad restrictions
(a finite mean value and a stable system), we can interchange the order of taking the ex-
pected value and integrating. If we assume that x() is stationary, we have

-

h(DE(x(t — 7)) dr (4.62)

E{y(n) = f E{h(T)x(t — 1)} dt = j

= m,f h7) dv = m H(0)

Most of the random processes we encounter in this text have zero average value. If the in-
put to the filter has zero average value, the output mean is also zero.

We now evaluate the autocorrelation of the output process. We assume that the input
process is stationary. Then

R /(1.1 = E{y(t,)¥(1,))

- & (4.63)
= E{J h(T)x(t, — 'r)d'rf h(T)x(t, — 'r)d'r]

Once again, we interchange the order of taking the expected value and integrating. We
combine the two integrals (using two different symbols for the dummy variable of integra-
tion) to get

-

R (1,1;) = J h(T))dT, J’ E{x(t;, — T )x(t, — ) }h(7,)dT,

(4.64)

= f h(‘r,)d’r,j R(t, = t, + 7, — T)h(7,)dT,

Note that the result depends, not on the values of 7, and r,, but only on their difference.
Therefore, the output process is wide-sense stationary. The autocorrelation is a function of
only one variable, the spacing between the two time points. We have used the notation 7
for this spacing. Doing the same here, we find that the result becomes

R/(7) = I f R (7 — 7, + T)h(7))h(7,)dT d7, (4.65)
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Equation (4.65) shows that the output autocorrelation is the result of convolving the input
autocorrelation, first with h(r) and then with h(—t). Therefore,

R (1) = R(O*h(t)*h(—1) (4.66)

Taking the Fourier transform of this equation, and recognizing that the Fourier transform
of h(—r) is the complex conjugate of the transform of A(r), we have

G,(f) = GUNHH(HH*(f) = GLN|H)I (4.67)

Equation (4.67) has the intuitive interpretation. G(f) is the power spectral density. It
is not surprising that the output power spectral density is weighted by the square of the
magnitude of the transfer function, since this is what would happen to the power of a sin-
gle sinusoid that goes through the filter.

Example 4.10
A signal that is received is made up of two components: signal and noise. That is,

(1) = s(f) + n(r)

The signal can be considered a sample of a random process because random amplitude fluctu-
ations are introduced by turbulence in the air. You are told that the autocorrelation of the sig-

nal process is
R() = 2¢~H
The noise is a sample function of a random process with autocorrelation
R"(T) = 8-2'1']

Both processes have zero mean value, and they are independent of each other.
Find the autocorrelation and total power of r(t).
Solution: From the definition of autocorrelation, we have

R(7) = E{r(Or(t+7))
= E{[s() + n(0][s(r + Tn(z + 7]}
= E{s(Ds(t + 1)} + E{s(Dn(t + 1))
= E(n(0s(t + 7)) + E{n(On(t + 7))
Since the signal and noise are independent,
E{s(t + n(n)} = E{s(t + 1)}E{n(1)} = 0
and
E{s(Dn(t + 7)} = E{s()E{n(t + )} =0
Finally, the autocorrelation is
R(7) = R(™) + Rym) = 2~ + o2l
The total power of r(r) is R(0), or 3 watts.

Example 4.11 (the random telegraph signal)

Evaluate the autocorrelation of the random telegraph waveform, as shown in Fig. 4.13. This
is a binary waveform that can take on one of two values, +A or —A. The probabilities of each
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x(1)

L :

Figure 4.13 Random telegraph waveform.

of these values are equal (i.e., 1). Assume that transitions occur randomly and that there is an
average of A transitions per second. The probability that n transitions occur in a positive time i
interval 7 is given by a Poisson distribution, |

Pr(n,7) = &?:e"“
nt

Solution: We first find the autocorrelation of the process:
Ri(1) = E{x(Nx(t + 1)}

The product inside the braces is either +A? or —A”. The plus sign obtains if there is an even
number of transitions in the interval, and the minus sign obtains if there is an odd number. For
a given value of 7, the probability of an even number of transitions is found by summing
the Poisson probability distribution over all even values of n. Similarly, the probability of an
odd number of transitions is the sum of the Poisson distribution over all odd values of n.
Therefore,

(L

PR(even) = ¢~ ™ i =t

n=0
n=even

S
PROd) = e 3 O
n=]

The autocorrelation is then n=odd

R.(t) = A’Pr(even) — A” Pr(odd)

- Aze-k'r i -1 (AT)'I

n=0 n!

i A‘.'e-—he-l? = Aze—ZM

The result applies for positive time invervals. We know that the autocorrelation must be an
even function, so we can write the autocorrelation as

R (1) = A%~ 2
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This result is shown in Fig. 4.14.

R.(7)

A2

Figure 4.14 Autocorrelation of random

telegraph wave.

Suppose that x(7) is a stochastic process with a constant power spectral density, as shown
in Fig. 4.15. This process contains all frequencies “to an equal degree.” Since white light
is composed of all frequencies (colors), the process is known as white noise.

G

N,/2

-t Figure 4.15 Power spectral density of
white noise.

Suppose now that white noise forms the input to an ideal bandpass filter with a pass-
band extending from a low-frequency cutoff of f; to a high-frequency cutoff of fy;. Then
the power of the output for the filter is (refer to Eq. (4.67))

= S T N.
Pou ™ 2] G(NI|H()| df = 2J G(f)rdf = 2[ _zqdf= No(fu —f)  (4.68)
0 e e

The output of the bandpass filter consists of all components of the input lying within the
passband of the filter. The output power can therefore be considered to be that portion of
the input power in the frequency range between f; and f;. We see from Eq. (4.68) that this
is proportional to the bandwidth, with the proportionality factor being N,. Therefore, N, is
the power per Hz of the noise waveform. The total power in a band of frequencies is the
product of N, with the bandwidth.*

*The power spectral density of Fig. 4.15 is known as the two-sided power spectral density. Since the
power spectral density is real and even, and the equation for power contains a factor of two, we sometimes define
a one-sided power spectral density with a value twice that of the two-sided density. The one-sided density of
white noise therefore has a height of N, instead of Ny/2, and to find the power in a band of frequencies, we sim-
ply integrate (without the factor of two).
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The autocorrelation of white noise is the inverse Fourier transform of the power
spectral density. Therefore,

R (1) = %QS(T) (4.69)

The average power of a stochastic process is R.(0), which, for this case, is infinity. There-
fore, white noise cannot exist in real life. (Thankfully, signals with infinite power do not
exist; were this not the case, you probably would not be here to read this text.) However,
many types of noise that are encountered can be assumed to be approximately white.

Example 4.12

White noise forms the input to the RC circuit of Fig. 4.16. Find the autocorrelation and power
spectral density at the output of the filter.

R
+ | -
x(1) 0]

C
o T 5 Figure416 Circuit for Exampe 4.12.

Solution: The output power spectral density is the input density multiplied by the square of
the magnitude of the transfer function:

Ny/2
1 + 2nf )*C*R?

The output autocorrelation is the inverse Fourier transform of G,(f). Therefore,

Rie) = 2 (;u)

G(f) = G(NIH | =

2RC RC
Example 4.13
Repeat Example 4.12 for an ideal lowpass filter with cutoff frequency f,,, as shown in Fig.
4.17.

Solution: Once again, the output power spectral density is found from the input density by

H(f)
1

f  Figure4.17 1deal lowpass filter for Exam-
L I ple 4.13.

multiplying it by the square of the magnitude of the transfer function:
G(f) = GLH|H

{N.,/Z. |f| = }
0, otherwise
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The autocorrelation is the inverse Fourier transform of G, ( f). Thus,

sin 27f,, 7

N,
e = onie

The output power spectral density and autocorrelation are shown in Fig. 4.18.
G0N Ry(7)

N,
N2 SnNo

i
".fm fll /

=L
Yo

Figure 4.18  Autocorrelation and power spectrum for Example 4.13.

Suppose that in Example 4.13 the input process had a power spectral density as
shown in Fig. 4.19, where f; > f,,. The output process would then be identical to that found
in the example. Therefore, if a system exhibits an upper cutoff frequency, and the input
noise has a flat spectrum up to this cutoff frequency, we can consider the input noise to be
white. This will simplify the analysis.

G(f)
N,/2
/ N
e SN fdeiesied
o fi Figure 4.19 Nonwhite power spectral den-

sity.

Since the autocorrelation of white noise is zero for 1 # 0, two different time samples
of white noise are uncorrelated even if they are taken very close together. Thus, knowing
the sample value of white noise at one instant of time tells us absolutely nothing about its
value an instant later.” From a practical standpoint, this is an unfortunate situation. It
would appear to make the elimination of noise more difficult.

Up to this point, we have said nothing about the actual probability distributions of
the process. We have talked only about the first and second moment. There is an infinity of
random processes with the same first and second moments. (The analogy to mechanics is
that, given the center of gravity and moment of inertia of an object, the exact shape can be
any of an infinity of possibilities.) Each random variable x(,) has a certain probability den-
sity. By considering only the mean and second moment, we are not telling the whole story.

*The zero correlation is a necessary, but not sufficient, condition for independence. However, for Gauss-
ian processes, two uncorrelated samples are always independent.
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Because of the central limit theorem, most processes we encounter are Gaussian.
Once we know that a random variable is Gaussian, the density function is completely
specified by its mean and second moment.

We now examine several types of noise encountered in communication systems and
determine whether the white noise model is appropriate for these noise sources.

Thermal Noise

Thermal noise is produced by the random motion of electrons in a medium. The intensity
of this motion increases with increasing temperature and is zero only at a temperature of
absolute zero.

If the voltage across a resistor is examined using a sensitive oscilloscope, a random
pattern will be displayed on the screen. The power spectral density of this random process
is of the form

Alf
G(f) = 6—3|Jf|—_|_1 (4.70)

where A and B are constants that depend on temperature and other physical constants. Fig-
ure 4.20 shows the curve of Eq. (4.70). For frequencies below the knee of the curve, G(f)

is almost constant. If we operate in this frequency range, we can consider thermal noise to
be white noise. Thermal noise appears to be approximately white up to extremely high fre-

G(f)

f\ Figure 4.20 Power spectral density of ther-

r mal noise.

quencies, on the order of 10"* Hz. For frequencies within this range, the mean square value
of the voltage across the resistor [R(0)] has been shown to be

V2 = R(0) = 4kTRB @.71)

where k is Boltzmann’s constant (1.38 X 1072* J/°K), T is the temperature in degrees
Kelvin, R is the resistance value, and B is the observation bandwidth. This means that the
height of the spectral density over the constant region is 2kTR.

Of more practical concern is the actual power generated by a resistor. That is, if a re-
sistor is connected to additional circuitry, how much noise power is generated in that addi-
tional circuitry? We know from basic circuit theory that this depends on the impedance of
the external circuit. Specifically, the power transferred is a maximum when the load im-
pedance matches the generator impedance. This yields the maximum available power,
which (using a voltage divider relationship) is

7

N=—=kIB
4R
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with a corresponding power spectral density of

kT
Gif) =7 (“.72)
Equation (4.72) yields the power spectral density of the available noise power from a

resistor.

If we have a system with a number of noise-generating devices within it, we often
refer to the system noise temperature, T,, in degrees Kelvin. This is the temperature of a
single noise source that would produce the same total noise power at the output.

If the input to the system contains noise, the system then adds its own noise to pro-
duce a larger output noise. The system noise figure is the ratio of noise power at the output
to that at the input. It is usually expressed in dB. For example, a noise figure of 3 dB indi-
cates that the system is adding an amount of noise equal to that which appears at the input,
so the output noise power is twice that of the input.

Other Forms of Noise

Shot noise (or quantum noise) occurs because, although we think of current as being con-
tinuous, it is actually a discrete phenomenon. In fact, current occurs in discrete pulses each
time an electron moves across an observation point. A plot of current as a function of time
would resemble that of Fig. 4.21. Shot noise is the variation of current around the average
value. As in the case of thermal noise, the power spectral density of shot noise is approxi-
mately flat within the range of frequencies of interest to us.

i(r)

1]
l Figure 4.21 Shot noise.

Flicker noise (or 1/f noise) occurs in electronic devices. It arises out of surface im-
perfections resulting from the fabrication process. Its power spectral density decreases in-
versely with increasing frequency. Flicker noise is most important at low frequencies (be-
low about 100 Hz). Thus, although it cannot be approximated as white noise, it usually is
negligible at the frequencies at which communication systems operate.

4.5 NARROWBAND NOISE

Most communication systems with which we deal contain bandpass filters. Therefore,
white noise appearing at the input to the system will be shaped into bandlimited noise by
the filtering operation. If the bandwidth of the noise is relatively small compared to the
center frequency, we refer to this as narrowband noise. We have no problem deriving the
power spectral density and autocorrelation of this noise, and these quantities are sufficient
to analyze the effect of linear systems. However, we will often be dealing with multipliers,
and the frequency analysis approach is not sufficient, since nonlinear operations are pres-
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ent. In such cases, it proves useful to have a trigonometric expansion for the noise signals.
The form of this expansion is

n(r) = x(r)cos 2mfit — y(f)sin 2mfyt 4.73)

In equation (4.73), n(r) is the noise waveform and f; is a frequency (often the center fre-
quency) within the band occupied by the noise. Since the sine and cosine vary by 90 de-
grees, x(7) and y(¢) are known as the quadrature components of the noise.

Equation (4.73) can be derived by starting with exponential notation. We have

n(t) = Re|r(t)e ™| (4.74)

where r(t) is a complex function with a low-frequency bandlimited Fourier transform, Re
is the real part of the expression in brackets that follows it, and the exponential function
has the effect of shifting the frequencies of r(r) by fy. Expanding the exponential by means
of Euler’s identity and letting x(¢) be the real part of r(r) and y(z) be the imaginary part, we
have

n(t) = Re([x() + jy(1)] (cos 2mfyr + jsin 27fy))
= x(t)cos 2mfyt — y(f)sin 2mfyt

This is the same as Eq. (4.73).
Solving Eq. (4.73) explicitly for x(z) and y(7) is not simple. One way to do so is by
using Hilbert transforms.

(4.75)

Hilbert Transform

The Hilbert transform of a function of time is obtained by shifting all frequency compo-
nents by —90°. The Hilbert transform operation can therefore be represented by a linear
system, with H(f') as shown in Fig. 4.22.

IH(!
l
f
[H(f)
90°
f
-90°

Figure 4.22 Hilbert transform operation.




134 Probability and Random Analysis Chap. 4

Note that the phase function of a real system must be odd. The system function is
then given by

H(f)= —jsgn(f) (4.76)
The impulse response of this system is the inverse transform of H(f). This is given by
h(r) = - 4.77)
Tt

The Hilbert transform of s(¢) is then given by the convolution of s(r) with i(r). Let us de-
note the transform by §(r). Then

§n= — b j —sﬂdf (4.78)
oy e i
If we take the Hilbert transform of a Hilbert transform, the effect in the frequency
domain is to multiply the transform of the signal by H*(f). But H*(f) = =1, so we re-
turn to the original signal which is a change of sign. This indicates that the inverse Hilbert
transform equation is the same as the transform relationship, except with a minus sign.
Therefore,

s()= — -]- j Md'r 4.79)
Wi Lutimt
Example 4.14
Find the Hilbert transform of the following time signals:
(@) s(r) = cos2mfr + 6)
(b)

s(t) = .. r2-m cos 200 mt
(c)

_ sin2wt .

s(n sin 200 7t

Solution: Although the Hilbert transform is defined by a convolution operation, it is almost

always easier to avoid time convolution by working with Fourier transforms.
(a) The Fourier transform of s(r) is

() = i80S~ )+ BCF+ o) e 710

Note that the phase shift of 0 radians is equivalent to a time shift of 8/2f; seconds. We now
multiply this by —jsgn(f) to get

- 1 S
8(f) = 5 =80 = f) + UL + f)le 1%
The quantity in square brackets is the Fourier transform of a sine wave. Therefore,
) =sin(2wfor + 0)

This result is not surprising, since the Hilbert transform is a 90-degree phase-shifting opera-
tion.
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(b) Let
' sin 2t

x(1) -

The Fourier transform of s(7) is then
1
S(f) = %X(f— 100) + 5X(f+ 100)

Since X(f) is bandlimited to f = =1, the first term in S(f) occupies frequencies between 99
and 101 Hz, while the second term occupies frequencies between — 101 and —99 Hz. When
S(f) is multiplied by —j sgn(f), we find that

. 1 1

S(f)y=- EjX(f— 100) + 5jX(f+ 100)

The inverse transform yields

sin 2wt

§(0) = x(Nsin 200wt = sin 200 w ¢

(c) We use the fact that the Hilbert transform of a Hilbert transform is the negative of the orig-
inal function. Therefore, by inspection, we have

12 sin 2wt

§(1) = — x(ncos 200wt = cos 200 Tt

We are now ready to return to the solution of Eq. (4.73). If x(7) and y(r) are assumed to be
bandlimited to frequencies below f;, we can take the Hilbert transform of both sides of that
equation to get

7i(t) = x()sin 2mfyr + y(r)cos 2mfyt (4.80)

If Eq. (4.73) is multiplied by cos 27fyt and Eq. (4.80) is multiplied by sin 27fot, then when
the two expressions are added together, y(7) is eliminated, yielding :

n(t)cos 2mfyt + A(nsin 2mfyt = x(t)cos 2mfyr + sin 2mfyr] = x()  (4.81)
Similarly, we can reverse the multiplications to obtain
(1) = r(f)cos 2mfyt — n(t)sin 2mfyt (4.82)

Example 4.15

Show that the system of Fig. 4.23 yields the quadrature components at the output when the in-
put is narrowband noise.
Solution: The inputs to the lowpass filters are

ny(1) = 2x(t)cos 22mfyt — 2y(f)sin 2mfyreos 2mfyt
= x(t) + x(Dcosdmwfyr — y(nsin 4w fyt

and

ny() = — 2x(f)cos 2m fyrsin 2w fyr + 2y(f)sin®2mfyt
= — x(fsindwfyr + W1) — y(r)cos dmfyr
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n(') Lowpass X(l)
c O filter

cos 2mfo!

2n()

—sin 2mfyr

12(0) | Lowpass 0]
| filter Figure 4.23 System to generate quadrature
components.

The modulation theorem indicates that the Fourier transform of x(r)cos 4mfyt occupies a range
around a frequency of 2f;. This is also true of the other terms with 47f; in the argument of the
sinusoid. The lowpass filter is designed to pass the frequencies of x(f) and y(1), so it will reject
these high-frequency terms. The outputs are therefore as shown on the diagram.

The autocorrelation of x(¢) and y(f) can now be derived from Egs. (4.81) and (4.82):
R (1) = R(1) = R, (7)cos 2wfyr + (R W7 ##) sin 2w fyr (4.83)

Finally, we apply the modulation theorem to Eq. (4.83) to get
G(f) = G(f) = G(f — fo) + G(f + fo)

for fo ~ fu < |fl < fo + £

Equation (4.84) is the key result that will enable us to calculate the effects of noise on AM
and FM communication systems.

Example 4.16

Express the three narrowband noise processes of Fig. 4.24 in quadrature form, using f; as the
center frequency.

Solution: We use Eq. (4.84) to immediately sketch the power spectral densities of x(r) and
¥(1). These are shown in Fig. 4.25. The noise is then expressed as

(4.84)

n(t) = x(t)cos 2mfyt — y(f)sin 2w fyt

Gy Gl G
No N, N
i Sl H ﬂ /I [\
I '= f 1 f ] 1 f
fo fo | o
L} _I- I
fb"'fu fl) fm fu _;. fm
(a) (b) (©

Figure 4.24 Noise processes for Example 4.16.
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G) = Gy\f) G(f) = G(f) G(f) =G\
2Ny
Ny N
wf f > f
—f m f m 'f m f m _f m f m

Figure 425 Power spectral density of quadrature components for Example 4.16.

SIGNAL-TO-NOISE RATIO

In many communication studies, the probabilistic parameter of interest is the average
power. By itself, this quantity would not tell very much, since we could always modify the
average power of a signal by putting it through an amplifier or an attenuator. A problem
arises, however, because the received waveform usually consists of a desired signal plus
noise. If we amplify or attenuate the total received waveform, we do the same thing to the
noise as we do to the signal. The parameter of interest then is not the signal power, but the
ratio of that power to the power of the unwanted noise. This is the signal-to-noise ratio,
abbreviated as S/N or SNR.

M) | H) (8/N)ow

Figure 4.26 Signal-to-noise ratio.

Figure 4.26 shows a block diagram of a system with the input S/N and output S/N
indicated. The ratio of these two SNRs gives some measure of the effectiveness of the sys-
tem. We designate the ratio as ASNR, the signal-to-noise improvement of the system:

= /Ny
ASNR = "N (4.85)

ASNR is often expressed in decibels, or dB, as
ASNR ,; = 10log,,(ASNR) (4.86)
Example 4.17
A signal is given by
(1) = (1) + n(r)

where

s(r) = 5 cos 2w X 1,000r + 10 cos 2w X 1,100¢

The noise n(r) is white with power N, = 0.05 watt/Hz.
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The total received signal is put through a bandpass filter with passband between 990
and 1,110 Hz. Find the SNR at the filter output.
Solution: We can assume that, in the steady state, the entire signal s(r) appears at the output
of the filter. Thus, the output power is 25/2 + 100/2 = 62.5 watts. The noise power at the filter
output is found from

1110
’:=2J' G(f)df = 6 watts

990
The SNR is then
S/N =62.5/6=10.4=10.17 dB
Example 4.18
G
10 -
Bandpass filter
=f H
90 210 b
—A A Fo—_—
Gy(H ik
100 200
1
F
500

Figure 4.27 Bandpass filter and signals for Example 4.18.

The input to the bandpass filter shown in Fig. 4.27 is the sum of a signal and noise. The power
spectral density of the signal and of the noise are as shown. Find the S/N improvement of the
filter.

Solution: The input powers are found by integrating the corresponding densities:

Signal power in = 2,400 watts
Noise power in = 1,000 watts
S/Nin=24o0r4.8dB

The output power spectral densities, which are illustrated in Fig. 4.28, result from multiplying
the input densities by the square of the magnitude of the filter transfer function. Integration of
these densities results in the following output powers:

Signal power out = 2,0004? watts
Noise power out = 200A? watts
S/Nout=10or 10dB
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Gy G, H)
1042 + I psall

100 200 100 200

Figure 4.28 Output power spectral densities for Example 4,18,

The S/N improvement is
ASNR = 10/2.4=4.17 or 6.2 dB

Note that we could have found the S/N improvement by subtracting the input S/N from
the output S/N when both are expressed in dB. Note further that the answer is independent
of A. This is true because both the noise and the signal are multiplied by A, so the ratio is
unaffected.

.7 MATCHED FILTER

There are a variety of operations we may wish to perform on a received signal. In some
cases, we wish to filter the signal in order to remove as much noise as possible and there-
fore be left with a function of time that resembles the desired signal as closely as possible.
In other situations, we may wish to maximize the output SNR without regard to preserving
the shape of the signal waveform. That is, we may use a filter that significantly alters the
shape of both the signal and the noise in a way that increases the SNR. Such a filter dis-
torts the signal.

Analog receivers typically try to reconstruct the waveform as closely as possible,
while digital receivers attempt to “pull” the signal out of background noise without regard
to distortion.

In order to motivate this study, let us get way ahead of the game. Suppose you wish
to send a list of 1’s and 0’s by speaking the words one and none into a microphone. Then,
to send 1010, you would speak one-none-one-none. Noise adds to the transmitted signal,
so let us assume that the receiver has difficulty in distinguishing between the two different
words sent. Now suppose that you filter the received signal plus noise in a manner that
blocks a good portion of the noise. But in the process, you change the transmitted one sig-
nal into a waveform that, when placed into a speaker, generates the word start. The same
filter changes none to halt. Therefore, instead of hearing a highly noise-corrupted se-
quence consisting of repetitions of the words one and none, you hear a relatively uncor-
rupted signal consisting of start-halt-start-halt. You could still recover the original binary
sequence in spite of what would be considered severe distortion of the signal waveform.

The matched filter is a linear system that maximizes the output SNR. We designate
the input to the filter as s(¢) + n(f), and the resulting output is 5,(f) + ny(#). This is shown in
Fig. 4.29.
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(1) + n(r) e( 5o(T) + ny (D
H(f) O
e cods i Figure 4.29 Matched filter.

Since the system is assumed to be linear, s,(1) is the output due to an input of s(1),
and n,(t) is the output due to n(r). The filter is designed to maximize the ratio s%,(T)/n’,(T).
Because the denominator of this expression is random, we use the average value. The out-
put SNR is then

f ; S(HH(f)e? T df ;

2
e _L:o g}) = L= (4.87)
j |HHIPG,(f) df

The numerator of Eq. (4.87) is the square of the inverse Fourier transform of the product
of the input transform with the system function. Thus, it is the square of the deterministic
time sample s5,(7). The G,( f) in the denominator is the power spectral density of the input
noise. Thus, the denominator integrand is the power spectral density of the output noise.
Note that we are integrating from — = to +% instead of doubling the integral from zero to
=, We do this for reasons that will soon become clear.

We wish to choose H( f) so as to maximize Eq. (4.87). This is a difficult maximiza-
tion problem. (You cannot simply take the derivative and set it to zero, since we are trying
to find a function rather than a value.) The choice is simplified if we apply Schwartz’s
inequality to the numerator. In doing so, we will be able to solve for H( f) almost by
inspection.

Schwartz's inequality states that for all functions f(x) and g(x),

Iff{x)g(x) dx|* = f | £2x)] dx f |g%(x) | dx (4.88)

We will derive Schwartz's inequality for the special case of real functions by starting with
the observation that

J[ f(x) = Tg)* dx = 0

for all real f(x), g(x), and T (i.e., we are integrating a non-negative function). Expanding
this expression, we obtain

T# f g xdx — 2T J flx)gle) dx + jfz(x)a'x =0 (4.89)

The left side of Eq. (4.89) is quadratic in T. Since the value can never be negative, the qua-
dratic cannot have distinct real roots. Therefore, the discriminant cannot be positive. Thus,

4[ ff(x)s(x) d!f]2 5 Jf 2(x)dxfgz(x)dx =0 (4.90)
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and the inequality is established. Proving the inequality for complex functions is more dif-
ficult, so we ask you to accept the result in Eq. (4.88).

We now apply Schwartz’s inequality to Eq. (4.87). Hindsight is a wonderful thing:
Had you already solved this equation, you would know that we wish to cancel terms from
the numerator and denominator. To begin this process, we rewrite the numerator of Eq.
(4.87) as

2 2

=S

I SUHH(f)e ™" df Vo HOVG e T of

4.91)

The square root operation is unambiguous, since G,(f) can never be negative. Now apply-
ing Schwartz’s inequality, we get

2 x - 2
SJ [H(H|*G,(fHdf m—df (4.92)

f SCOH(f)e”™ T df G.(f)

Combining this with Eq. (4.87), we have

f |H(NH|*G,(f)df J [SCHI? 7 G, fHdf

p =

j_clﬂ(f )G, (f)df (4.93)

_ (" s
f_,G.,(f) &

Equation (4.93) fixes an upper bound on the SNR at the output of the filter. If we can
somehow guess at an H(f) that yields this maximum, we need look no further.

Before attempting the guess, let us recap the approach we are taking. We wish to
choose H(f) so as to maximize Eq. (4.87). This is a difficult mathematical problem to
solve. Instead of attempting a direct solution, we have placed an upper bound upon the
equation. If the SNR cannot exceed that bound, and we somehow find an H(f) that
achieves the bound, we have solved the original problem. (In general, there is no guaran-
tee that we can even achieve a bound of this type; however, in this case, we can.)

We have now reduced the problem to finding an H(f) that reduces Eq. (4.87) to Eq.
(4.93). We are asking you to be creative, and there is no road map for doing so. You need
to stare at the two expressions, hoping for an inspiration. [Indeed, except by hindsight, we
have no assurance that an H(f) exists that will achieve the bound of Eq. (4.93).]

The answer is (if you figured this out, your insight is excellent)

~pur SY)
G,(f)
S*(f) is the complex conjugate of S(f). If you were not able to see this answer, you might

wish to go back and assume that the noise is white (as we shall in a moment). That is, as-
sume that G,(f) is a constant. This makes the creative inspiration easier to achieve.

H(f) = e (4.94)




142 Probability and Random Analysis Chap. 4

Since H(f) appears as a square in both the numerator and denominator of Eq.
(4.87), any scaling factor can be applied to H(f) without affecting the SNR. That is, the
H(f) of Eq. (4.94) can be multiplied by any constant. We shall therefore rewrite this equa-
tion, inserting C for an arbitrary constant:

s S*S)
G.(f)

Alas, simple amplification does not improve the SNR, since both the signal and noise are
multiplied by the same amount.

Now let us assume that the input noise is white, so that G,(f) = Ny/2. The matched
filter of Eq. (4.95) then becomes

H(f) = Ce (4.95)

H( f) = i’—c e ~RmfT S*( f) nen Ce-ﬂwﬂ S§*( f) (4.96)
(1]

Note that because C is an arbitrary constant, it would create unnecessary bookkeeping to
write 2C/N, in Eq. (4.96). That is why we have replaced 2C/N,, with C. (We put the equals
sign in quotes so that you don’t draw the conclusion that C must be zero.)

We can find the SNR at the output of the matched filter (with white noise at the in-
put) directly from Eq. (4.93):

ey o 2 st
A f_mlsu)l o -,‘2“’ dt (4.97)

The last equality in Eq. (4.97) results from Parseval’s theorem.
The inverse Fourier transform of Eq. (4.96) yields the impulse response of the
matched filter:

h(i) = Cs(T = 1) (4.98)

This is found by noting that the inverse transform of §*(f) is s(—r) and the exponential
leads to a time shift. At this point, there is no assurance that this filter is physically realiz-
able (i.e., causal).

Example 4.19

Find the impulse response of the matched filter for the two functions of time shown in Fig.
4.30.
Solution:  A(r) is derived directly from Eq. (4.98). The result is shown in Fig. 4.31.

5(1) s(r)
1 2

/4t T

@ (b)
Figure 4.30  Functions of time for Example 4,19,
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hir) h(t)
1 1

T g Figure 4.31 Matched filter for Example
(a) (b) 4.19.

The actual function of time at the output of the matched filter can be found by con-
volving the input function with the impulse response. Therefore,

5,0 + n,(0) = [s() + n®n]* W)

and at time ¢t = T, we have
T
s,(T) + n(T) = J’ [s(v) + n(1)]s(7)dr
0

Thus, the matched filter is equivalent to the system of Fig. 4.32.

+ (1) —-{%)—- J;Tdr o
T

(1) Figure 4.32 Correlator.

The operation being performed by this system is called correlation (i.e., multiply
two functions of time together and integrate the product). For that reason, the matched fil-
ter is often referred to as a correlator. In a generalized sense, the filter is finding the pro-
jection of the input signal in the direction of s(#). Since the system is aligned in that direc-
tion, the output SNR is maximized.

Example 4.20

Find the output SNR of a matched filter, where the signal is
st)=A, for D <t<T
The noise is white with power spectral density Ny/2.
Solution: The matched filter achieves the SNR of Eq. (4.97). Therefore,

A e 2A°T
SNR = — S dt =
L

PROBLEMS

4.1.1 Three coins are tossed at the same time. List all possible outcomes of this experiment. List
five representative events. Find the probabilities of the following events:
|all tails}; {one head only}; {three matches}
. Find the probability that, if a perfectly balanced die is rolled, the number of spots on the
face turned up is greater than or equal to 2.
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4.1.3 An urn contains 4 white balls and 7 black balls. An experiment is performed in which 3
balls are drawn out in succession without replacing any. List all possible outcomes and as-
sign probabilities to each.

.n Problem 4.1.3, you are told that the first two draws are white balls. Find the probability
that the third is also a white ball.

4.1.5 An urn contains 4 red balls, 7 green balls, and 5 white balls. Another urn contains 5 red
balls, 9 green balls, and 2 white balls. One ball is drawn from each urn. What is the proba-
bility that both balls will be of the same color?

4.1.6 Three people, A, B, and C, live in the same neighborhood and use the same bus line to go to
work. Each of the three has a probability of i of making the 6:10 bus, a probability of i of
making the 6:15 bus, and a probability of i of making the 6:20 bus. Assuming indepen-

dence, what is the probability that they all take the same bus?
The probability density function of a certain voltage is given by
pv) = ve "UW)

where U(v) is the unit step function,

(a) Sketch this probability density function.

(b) Sketch the distribution function of v.

(c) What is the probability that v is between 1 and 2?

4.1.8 Find the mean and variance of the exponential distribution that is given by

px) = le"""‘ Ulx)

4.1.9 Find the density of y = lxI, given that p,(x) is as shown in Fig. P4.1.9. Also, find the mean

and variance of both y and x.
px)
0.2
=1 4 x Figure P4.1.9
Find the mean and variance of x, where the density of x is as shown in Fig. P4.1.10.
p(x)
I
[}
+ BEpg S
i
i
| | I

1 2 3 X Figure P4.1.10
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4.1.11 The density function of x is shown in Fig. P4.1.11. A random variable y is related to x as
shown. Determine the density function of y.

plx) ¥
2 : A
(a) (b)
Figure P4.1.11

4.1.12 Find the expected value of y = sin x if x is uniformly distributed between 0 and 2.
A random variable x has the probability density function

P_!(x) = Ae—lel

(a) What is the value of A?
(b) Find the probability that x is between —3 and +3.
() Find the variance of x.

4.1.14 Five different symbols, A, B, C, D, and E, are transmitted with equal probability. What is
the probability that the message ABCDE will be received?

4.1.15 Binary information is being received, where the probabilities of 0 and 1 are equal. Re-
ceived messages are divided into 5-bit words. What is the probability that the first received
message will contain at least one zero?

4.1.16 A random variable x has the probability density shown in Fig. P4.1.16. A new variable y is
defined as the magnitude of x:

y =

(a) Find the probability density of y, p(y).
(b) Find the mean value of y.
(c) Find the variance of y.

plx)

=3 1

Figure P4.1.16

@A Gaussian random variable has a mean value of 2. The probability that the variable lies be-
tween 2 and 5 is 0.3. Find the probability that the variable is between 1 and 3.

4.2.2 A Gaussian random variable has a variance of 9. The probability that the variable is greater
than 5 is 0.1. Find the mean of the random variable.
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424

4.25

4.2.6

4.2.10

4.2.11

4.2.12

4.2.13
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A zero-mean Gaussian random variable has a variance of 4. Find Xp such that

Pr{|x| > x} < 0.001
A random variable is Rayleigh distributed as follows:

px) = —exp( xz) U(x)

Find the probability that the random variable is between 1 and 3.

A Gaussian random variable x has zero mean and unit variance. A new variable is defined
by y=Ixl.

(a) Find the density of y.

(b) Find the mean value of y.

(¢) Find the variance of y.

A function is defined by

P W

Find the density of y if

(a) x is uniformly distributed between 0 and 3.

(b) p(x)=e"Ulx)

You are told that the mean rainfall pet year in California is 10 inches and that the standard

deviation in the amount of rain per year is 1 inch. Can you tell, from this information, what

is the density of rainfall in California? If so, roughly sketch this density function.

The random variable x is Rayleigh distributed. Find the mean, second moment, and vari-

ance.

The random variable x is uniformly distributed between — 1 and + 1. The random variable y

is uniformly distributed bétween 0 and +5. x and y are independent of each other. A new

variable, z, is formed as the sum of x and y.

(a) Find the probability density futiction of z.

(b) Find the mean and variancé of x, y, and z.

(¢) Find a general relationship among the means of x, y, and z.

(e) Repeat part (c) for the variance.

(a) Find and sketch the dcnsi{y of the sum of two independent random variables as fol-
lows: One of the variables is uniformly distributed between — 1 and + 1; the second
variable is triangularly distributed between —2 and +2.

(b) Compare the result of part (a) to a Gaussian density function, where the variance
should be chosen to make the Gaussian variable as “close” as possible to your answer
to part (a).

A voltage is known to be Gaussian distributed with mean value of 4. When this voltage is

impressed across a 4-(} resistor, the average power dissipated is 8 W. Find the probability

that the voltage exceeds 2 V at any instant of time.

(a) You are told that the integral of a zero-mean Gaussian density fromx = 10to x = = is
equal to 0.02, Find the variance of this random variable.

(b) Find the probability that x is between 1 and 3.

A Gaussian random variable x has a mean value of m and a variance of 4. You are told that

the probability that the variable is greater than 6 is 0.01. Find the mean value, m

A random variable k is uniformly distributed in the interval between —1 and +1. Sketch

several possible samples of the process
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x(1) = ksin 2wt
x(1) is a stationary process with mean value 1 and autocorrelation
R(r) = e M

Find the mean and autocorrelation of the process y(f) = x(r — 1).

4.3.3 Find the autocorrelation of the periodic process shown in Fig. P4.3.3. This signal has a
Fourier series given by

(1) = i%sinm

;/
.
4

Figure P4.3.3

4.3.4 x(1) is a stationary process with zero mean value. Is the process

¥ = (1)
stationary? Find the mean and autocorrelation of y(1).
4.3.5 Given a stationary process x(7), find the autocorrelation of

) = x(t — 1) + sin2mt

in terms of R (7).

4.3.6 x(r) is a stationary process with mean value m. Find the mean value of the output y(r) of a
linear system with A(f) = e "U(r) and x(r) as input. That is,

) = IM-:).:(: - T)dr
o
4.3.7 A random process is defined by
xf) = K¢ + K,

where K; is a deterministic constant and K, is uniformly distributed between 0 and 1
(a) Sketch several samples of this process.
(b) Find the mean of the process.
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4

() Write an expression for the autocorrelation of the process.
(d) Is the process stationary?
(e) If K, is now uniformly distributed between — 1 and + 1, what changes occur in your an-
swers to parts (b), (c), and (d)?
4.3.8 Which of the following could not be the autocorrelation function of a process?

1= | <1
Ryfr)i=

0, lr| > 1
Ry(1) = Ssin3t
1 |'r| < 2
RAT) =
0, |'r| > 2
sin
i

4.3.9 Find R.(7) in terms of R(7), where i(t) and e(r) are related by the circuit shown in Fig.
P4.3.9.

Figure P4.3.9
4.3.10 Given a constant a and a random variable f with density p,(f), form
x(f) = ae™™'
Find R.(7), and show that
G = laPph)
4.3.11 Find the autocorrelation and power spectral density of the wave
W) = Acos(2mf.r + 6)

where A and f, are not random and 8 is uniformly distributed between 0 and 2. [Hint: Use
the definitions of autocorrelation and expected value.]

4.3.12 You are given the RC circuit of Fig. P4.3.12 with input function as shown. You wish to
choose the value of R so that the total energy at the output is 50% of the input energy.
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vin(’ )

Vin Vout
IpF
P o
= . il

Figure P4.3.12

4.3.13 Use the result of Example 4.8 to find the autocorrelation of the process y(r) = dx/dt in terms
of the autocorrelation of x(¢). [Hint: You can use the definition of the derivative,

dx
=ity — Xt — 1)
;;m“_..___r—_

and 1'Hépital’s rule.]
4.3.14 Use an approach similar to that of Problem 4.3.13 to find

E{x'(x(t + 7)) and E{x'(t + (1)}

4.3.15 The random telegraph signal of Example 4.11 forms the input to an ideal lowpass filter with
cutoff at f,.. Find the ratio of output to input power as function of f,, and A.
4.4.1 x(t) is white noise with autocorrelation R,() = 8(t). It forms the input to an ideal lowpass
filter with cutoff frequency f,.. Referring to Fig. P4.4.1, find the average power of the output
signal.

(1) |Low pass| Y1)
filter

H(f)

T I Figure P4.4.1

4.5.1 Prove that the inverse Fourier transform of a Hilbert transform is

F 1 — jsgn(f)) =

s
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4.5.2 Find and sketch the Hilbert transform of the function shown in Fig. P4.5.2.

s(r)

P

Figure P4.5.2

4.5.3  Express the narrowband noise processes shown in Fig. P4.5.3 in quadrature form. For each
process, choose two different center frequencies, and sketch the power spectral density of
x(r) and y(1).

G, () G, (N

1 \
1 f Il — ,

100 105 110 99 100 101
() )

Sinusoid

Figure P4.5.3
454 (a) Find the matched filter for the signal
10cos2m X 1,000t 0 <t < 50 psec
s() =
0, otherwise
in white Gaussian noise with power of 10~* watt/Hz.

(b) Find the output SNR for this filter.
4.5.5 Find the cross correlation of narrowband noise with its Hilbert transform. That is, evaluate

E(n(a(c + 1))
in terms of the autocorrelation of n(t).

4.5.6 Show that the cross correlation between the in-phase and quadrature terms in a narrowband
noise expansion is given by

R, = R,()sin2mf7 — R (r)cos 2mf.®
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45.7

G

4.6.1

4.6.2

4.6.3

4.6.4

Two narrowband noise processes have power spectral densities as shown in Fig. P4.5.7.
Express each of these in quadrature form. For each process, choose two different center fre-
quencies, and sketch the power spectral density of x(f) and y(z).

G(f)
1

o 1,000 1,050 / . 900 1,100 7
(a) (b)

Figure P4.5.7

In a given communication system, the signal is s(f) = 20cos2mt. Noise of power spectral
density G,(f) = e "' is added to the signal, and the resultant sum forms the input to a filter.
(a) Find the SNR at the input to the filter.

(b) If the filter is ideal lowpass with a cutoff of 2 Hz, find the improvement in the SNR,
and express it in dB.

(c) If the filter is ideal bandpass with a passband from 0.9 to 1.1 Hz, find the improvement
in SNR, and express it in dB.

You are given the system shown in Fig. P4.6.2, which is composed of two cascaded filters.
s(¢) and n(r) are as given in Problem 4.6.1. H,(f) is a lowpass filter with cutoff of 2 Hz.
H,(f) is a bandpass filter with passband from 0.9 to 1.1 Hz. Find the improvement in SNR
of H,(f) and of Hy(f), and express these in dB. Now find the overall improvement in SNR
of the cascaded system, and compare it to the individual improvement in SNR of the two
filters.

s(1) + n(1)

H\(N i)

Figure P4.6.2

Repeat Example 4.18, assuming that the bandpass filter passes from 90 to 210 Hz instead of
from 10 to 200 Hz. Compare the results.

A received signal is given by

nr) = s(t) + n(@)
where
s(r) = Scos 2w X 3,000 + 15cos2m X 2,100¢
The noise n(r) is white with power N = 0.05 watt/Hz. The signal r(¢) is put through a band-

pass filter with a passband between 1,900 and 2,200 Hz. Find the signal to noise ratio at the
output of the filter.
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4.7.1 (a) Find the matched filter for the signal
5cos 2w X 2,000t 0 <1 < 0005
5 =

0, otherwise

in white noise with power spectral density Ny/2 = 0.1.
(b)  What is the output signal to noise ratio?
4.7.2  Asignal s(1), as shown in Fig. P4.7.2, is added to white noise with a power of 10* watt/Hz.
(a)  Design a matched filter for this signal.
(b)  What is the signal to noise ratio at the output of the filter?

s(1)

I | I\l i
3 4

Figure P4.7.2




Baseband
Transmission

PREVIEW
What We Will Cover and Why You Should Care

You have finally arrived at the first chapter dealing with communication. The previous
chapters have simply laid the necessary groundwork.

In this chapter, we deal with what is known as baseband transmission. The term
baseband refers to the frequency content of the signal. The frequencies used to transmit
baseband signals are relatively low. In Chapters 6 and 7, we explore techniques of sending
signals in which the transmitted frequencies are high.

Baseband transmission is used in a variety of communication systems, from tele-
phone loops to intercoms. Even if the type of communication used is not baseband, it is
important to understand baseband transmission as a stepping-stone to other techniques.

Necessary Background

A working knowledge of Fourier analysis is needed to understand most analog communi-
cation systems. This is important because we analyze signals both in the time domain and
in the frequency domain.

Analysis of the performance of systems (Section 5.5) requires random process
analysis.

1 ANALOG BASEBAND

When we use the term analog baseband, we are referring to analog signals with Fourier
transforms occupying frequencies extending to zero (dc). The reason for using the term
baseband is that the frequencies are not shifted to some other nonzero point on the fre-
quency axis. In later chapters, we explore techniques for shifting frequencies to a range
centered around a nonzero frequency.

Since baseband signals occupy relatively low frequencies, they are not suited for
transmission through bandpass channels. Baseband signals are typically transmitted
through wires or cables.
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Because telephones form the backbone of traditional communication systems, the
transmission of voice signals represents the most prevalent application of baseband analog
communication. We therefore concentrate initially on voice transmission.

The human ear is capable of hearing signals with frequencies in the range of about
20 Hz to 20 kHz. In fact, most people cannot hear the upper portion of this range, and a
particular person’s upper frequency cutoff decreases with age. It is probably no accident of
evolution that signals generated by human beings and their vocal cords fall within the au-
dible range. The magnitude of the Fourier transform of a typical speech waveform is
shown in Fig. 5.1. The location of the peak of the waveform depends on the physiology of
the speaker (i.e., the resonant frequency of the vocal cavity). It also depends on what the
person is saying and what language is being spoken. If, for example, the speaker whistles,
the speech waveform is a pure sinusoid and has a Fourier transform consisting of an im-
pulse at the frequency of the whistling. If the person hums at the same frequency, the
Fourier transform contains the fundamental frequency plus harmonics at multiples of that

frequency.

V(I

1 + I t » f(kHz) Figure 5.1 Fourier transform of typical
1 " 4 voice waveform.,

In the early days of telephony, experimentation showed that the portion of the
speech waveform between about 300 Hz and 3.3 kHz was sufficient both for intelligibility
of speech and for recognition of the speaker. That is, although this range is not considered
high fidelity, it permits both understanding of what is being said and identification of the
person saying it. High-quality music requires the presence of frequencies higher than 3.3
kHz—perhaps as high as 15 kHz or more. (AM radio transmits frequencies up to 5 kHz,
while FM radio transmits frequencies up to 15 kHz. The typical high-quality home enter-
tainment system responds to frequencies above 20 kHz.)

If you speak into a microphone and amplify the resulting waveform using electronic
circuitry, you have effectively built a simple analog baseband transmitter. If the output of
the transmitter is now connected to a wire channel, and the other end of the channel is con-
nected to a loudspeaker (perhaps through some amplification if the channel contains loss),
a complete baseband communication system results. Such systems are used in wire
intercoms.

5.2 THE SAMPLING THEOREM

A discrete signal is a signal that is not continuous in time. That is, it has values only at dis-
connected points of the time axis. If the discrete signal is analog, its values at any time it is
defined lie within a continuum of possible values.
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We wish to find a way of converting a continuous (not discrete) analog waveform
into a discrete signal. To do this, the time axis must somehow be made discrete. The con-
version of the continuous time axis into a discrete axis is accomplished by time sampling.
The sampling theorem states the following:

If the Fourier transform of a function of time is zero for f > f,, and the values of the function
are known for r = nT, (for all integer values of n), then the function is known exactly for all
values of 1.

This is remarkable: Knowing the value of the function of time at discrete time points al-
lows us to fill in the curve between these points precisely and accurately! Of course,
something this remarkable must have some limitations: You couldn’t be given two values
separated by hours and expect to fill in the curve between these points. Indeed, for the
samples to give all of the information, they must be “close enough™ to each other. The re-
striction is that the spacing 7 between samples be less than 1/2f,, where f, is the maxi-
mum frequency of the signal. Altemnatively, s(f) can be uniquely determined from its val-
ues at a sequence of equidistant points in time. The upper limit of 7}, 1/2f,,, is known as the
Nyquist sampling interval.

The upper limit on 7} can be expressed in a more meaningful way by taking the re-
ciprocal of T to obtain the sampling frequency, denoted f; = 1/T, in samples per second.
The restriction then becomes

1

Lo e
5 2fm

1
=
T I

5

[ = 2

Thus, the sampling frequency must be greater than twice the highest frequency of the sig-
nal being sampled. For example, if a voice signal has 4 kHz as a maximum frequency, it
must be sampled at least 8,000 times per second to comply with the conditions of the sam-
pling theorem. Twice the highest frequency is known as the Nyquist frequency.

Before going further, let us observe that the spacing between the sample points is in-
versely related to the maximum frequency f,. This is intuitively satisfying, since the
higher f, the faster we would expect the function to vary. The faster the function varies,
the closer together the sample points should be in order to permit reconstruction of the
function.

We present two proofs of the sampling theorem. The first is physical and intuitive,
while the second is more mathematical.

Proof 1. Figure 5.2 shows a pulse train multiplying the original signal s(7). If the
pulse train consists of narrow pulses, one would say that the output of the multiplier is a
sampled version of the original waveform. In actuality, the output depends not only on the
sample values of the input, but on a range of values around each sample point. The theory
does not require these extra values, which represent redundant information. However,
practical systems sometimes sample over a small range of time surrounding the actual
sample points. As we prove the theorem, it should become obvious that the multiplying
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(1) s{0)| = (1) p(1)

0 ﬂ” oo

T &0 3T, . AT,

pl1)
1

LELL DL

2T, T, T, 3T, 4T,

Figure 5.2 Product of pulse train and s(z).

function need not consist of perfect square pulses. In fact, the function can be any periodic
signal, and the pulse widths can approach zero (i.e., multiply by a train of impulses).

Multiplying s(r) by p(t) of the type shown in Fig. 5.2 is a form of time gating. It can
be viewed as the opening and closing of a gate, or switch.

Our goal is to show that the original signal can be recovered from the sampled
waveform s,(r). We do this by examining the Fourier transform of s,(¢). The sampling the-
orem requires that we assume that s(#) has no frequency components above f,.. The Fourier
transform of s(r), S(f), therefore cuts off at f,.. Figure 5.3 shows a representative shape for
this transform. While we use this triangular shape throughout the text, we do not mean to
restrict the actual transform to that shape.

S0

f
~fm S Figure 5.3 Representative S(f).

Since the multiplying pulse train is assumed to be periodic, it can be expanded in a
Fourier series. The p(f) shown is an even function, so we can use a trigonometric series
containing only cosine terms (although this is not necessary to prove the theorem). Thus,

s(1) = s(Op(r)

ol ,(,)[ao + 'Z:la,.coﬂ'lf’!f.'] (5.1
= ays(t) +'Za,.r(t)°052‘""!fx'
where
Bl _T1: (5.2)
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The goal is to isolate the first term in the final expression of Eq. (5.1), which is propor-
tional to the original s(r). We can undo the effects of any constant multiplier with an am-
plifier or attenuator.

Each of the terms in the summation of Eq. (5.1) is of the form of s(¢) multiplied by a
sinusoid. When a time signal is multiplied by a sinusoid, the result is a shift of all frequen-
cies of the signal by an amount equal to the frequency of the sinusoid. The frequency con-
tent of each term in Eq. (5.1) is then centered around the frequency of the multiplying si-
nusoid. (When we discuss AM, we will call this the carrier frequency.) The Fourier
transform of s,(7) is sketched in Fig. 5.4.

)
/#\T}i
a8 /.\ L B . O f
-, S %,

Figure 5.4 Fourier transform of sampled wave.

The shape centered at the origin is the transform of as(#), and the shifted versions
represent the transforms of the various harmonic terms. We see that the various terms do
not overlap in frequency, provided that f; > 2f,,. But this is nothing more than the condi-
tion given in the sampling theorem. Since the various terms occupy different bands of fre-
quency, they can be separated from each other using linear filters. A lowpass filter with a
cutoff frequency of f,, can be used to recover the ags(r) term.

Proof 2. The second proof we present is less intuitive than the first. We take the
time to explore it, since the approach supplies an insight into the mathematical principles
of sampling.

Since S(f) is nonzero along a finite portion of the f-axis, we can expand it in a
Fourier series in the interval

I <f<Jfm

In expanding S(f) in this manner, you should be careful not to let the change in notation
confuse the issue. The 7 used in the Fourier series is an independent functional variable,
and any other letter could be substituted for it. Performing the Fourier series expansion,
we obtain

S(f) = ic,e""z""'f (5.3)

n==

where

= — (5.4)
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The ¢, in Eq. (5.3) are given by

B L &t
& = af, ) SDe I (58

However, the Fourier inversion integral tells us that

o T
s(r) = J S(f)e”™d f = J S(f)e”*™'d f (5.6)
o -f-

In the rightmost expression in Eq. (5.6), the limits of integration have been reduced, since
S(f) is equal to zero outside of the interval between —f,, and +f,.. Upon comparing Eq.
(5.5) with Eq. (5.6), we see that

Equation (5.7) is the result we have been seeking. It says that the ¢, are specified by the
values of s(f) at the points ¢ = n/2 f,. Once the ¢, are known, S( f) is known, and once S( f)
is known, s(r) is known. We have thus proven the sampling theorem.

Although the proof is complete, we will carry the mathematics a step further to actu-
ally solve for s(1) in terms of the sample values. We substitute the ¢, of Eq. (5.7) into Eq.
(5.3) to get

ial S St i WA 1
S‘f"zf,...-_,’( Zf,.)‘ 05

We now find the inverse Fourier transform of S(f):

o 1 =
w= 3 il A= sperea
I (5.9)

IR ) Evem | sin2mf,t + nm)
T ‘( 2f,..)[ 2mf,t + now ]

Equation (5.9) is the final statement of the sampling theorem. We can use it to find the
value of s(r) at any point in time simply by knowing the sample values of s(r). That is, the
only unknowns on the right side of the equation are the sample values.

You can get a feel for the sampling theorem by sketching a few terms in Eq. (5.9).
We do this in Figure 5.5 for a representative s(r) and three sample points. Note that only
the term centered at each sampling point has non-zero value; all of the other components
go to zero at the sampling points. Between sampling points, we must calculate the sum of
the various terms from adjacent points.

Computer Exercise
The waveform shown in Fig. 5.5 was generated using computer software. We present the in-
struction set for both Mathcad and MATLAB.

-]
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-3 -2 - 0 1 2 3 4 Figure5.5 Terms from the sampling re-
t construction.

We have plotted three waveforms corresponding to samples of 1, 2, and 3 at t = —0.5,
t= — 1,and r = — 1.5, respectively. The Mathcad instruction set is:

t:i=—4,-3.99..4

s1(t) :=gin(2*w*t)+n/2*w*t+7

82(t) :=2*sin(2*w*t+2*w) /2*w*t+2*xw
83(t) :=3*gin(2*w*t+3*mw)/2*w*t+3*xw

Notes: Enter “:=" by simply pressing “:”. Enter “..” by pressing “;". Enter m by press-
ing CONTROL +p.

Then press “@" to create a graph. Enter “t” for the abscissa and “s1(t), s2(t), s3(t)"” for
the ordinate.
The MATLAB instruction set is:

t= —4:,01:4;
sl=sgin(2*pi*t+pi)./(2*pi*t+pi);
82=2*gin(2*pi*t+2*pi)./(2%pi*t+2*pi);
83=3*gin(2*pi*t+3*pi)./(2*pi*t+3*pi);
plot(t,sl.t,s2,t,s3)

Notes: The semicolon (;) after each instruction lines stops MATLAB from printing all
results immediately after pressing RETURN.

The period in front of the division sign is critical. If it is omitted, MATLAB presup-
poses that it is dividing two matrices (vectors).

The plot statement superimposes three graphs on the same set of axes.

Example 5.1

A bandlimited signal occupies the frequency range between 990 Hz and 1,010 Hz. A typical
Fourier transform is shown in Figure 5.6. Although the sampling theorem indicates that the
sampling rate must be higher than 2,020 samples per second, investigate the possibilities of
sampling at rates as low as 20 samples per second.

Solution: Figure 5.7 shows the Fourier transform that results from sampling at twice the
highest frequency (2,020 samples per second) and also at twice the bandwidth (20 samples
per second). We are assuming that all harmonics have equal amplitude (i.e., we assume sam-
pling with an ideal impulse train).
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”

I/\] f(Hz)  Figure 5.6 Bandlimited transform for
990 1,010 Example 5.1.
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(a) sample at 2,020 samples/sec

10" 20 "%
(b) sample at 20 samples/sec

Figure 5.7 Fourier transform of sampled waveforms.

Note that it is possible to recover the original signal when sampling at only 20 samples
per second, provided that the exact band of frequencies occupied is known. At this lower sam-
pling rate, it is not sufficient to know only the maximum frequency. Note also that if the lim-
its of the band were not multiples of the bandwidth, we would need to sample at a higher rate
to avoid aliasing. (We explore this phenomenon in the “Problems” section at the end of this
chapter.)

The preceding example shows that it is possible to recover a bandlimited signal by
sampling at a rate as low as twice the bandwidth of the signal.

Errors in Sampling The sampling theorem indicates that s(r) can be perfectly
recovered from its samples. If sampling is attempted in the real world, however, errors re-
sult from three major sources. Round-off errors occur when the various sample values are
rounded off in the communication system. Rounding off takes place in digital communica-
tion, where we send only discrete values. We will later call this error quantization noise,
and it is examined in detail in Chapter 8. Truncation errors occur if the sampling is done
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over a finite time. That is, the sampling theorem requires that samples be taken for all time
in the infinite interval, and every sample is used to reconstruct the value of the original
function at any particular time. The theorem does not say, “Give me two sample values,
and I'll tell you exactly how to draw a line connecting them.” In a real system, the signal is
observed over a limited time interval. We can define an error as the difference between the
reconstructed time function and the original function, and upper bounds can be placed on
the magnitude of the error. Such bounds involve sums of the rejected time sample values,
and some examples are included in the “Problems” section at the end of the chapter.

A third error results if the sampling rate is not high enough. This situation can be in-
tentional or accidental. For example, if the original time signal has a Fourier transform
that asymptotically approaches zero with increasing frequency, a conscious decision is of-
ten made to define a maximum frequency beyond which signal energy is negligible. In or-
der to minimize the resulting error, the input signal is often lowpass filtered prior to sam-
pling. Even if we design a system with a high enough sampling rate, an unanticipated
high-frequency signal (or noise) may appear at the input. In either case, the error caused
by sampling too slowly is known as aliasing, a name derived from the fact that the higher
frequencies disguise themselves in the form of lower frequencies. This is the same phe-
nomenon that occurs when a rotating device is viewed as a sequence of individual frames,
as in a television picture. As the rotation speed of the device increases, a point is reached
where the perceived angular velocity starts to decrease. Eventually, a speed is reached
(matched to the frame rate) at which the device appears to be standing still. Further in-
creases make the rotation appear to reverse direction.

Analysis of aliasing is most easily performed in the frequency domain. Before doing
that, we illustrate a simple example of aliasing in the time domain. Figure 5.8 shows a si-
nusoid at a frequency of 3 Hz. Suppose we sample this sinusoid at four samples per sec-
ond. The sampling theorem tells us that the minimum sampling rate for unique recovery is
six samples per second, so four samples per second is not fast enough. The samples at the
slower rate are indicated in the figure. But alas, these are the same samples that would re-
sult from a sinusoid at 1 Hz, as shown by the dashed curve. The 3-Hz signal is thus dis-
guising itself (aliasing) as a 1-Hz signal.

The Fourier transform of the sampled wave is found by periodically shifting and re-
peating the Fourier transform of the original signal. If the original signal has frequency
components above one-half of the sampling rate, these components fold back into the fre-
quency band of interest. Thus, in Fig. 5.8, the 3-Hz signal folded back to fall at 1 Hz.

1-Hz sinusoid 3-Hz sinusoid

Figure 5.8 Example of aliasing.
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Figure 5.9 illustrates the case where a representative signal is sampled by an ideal
train of impulses (we use this as the ideal theoretical limit of narrow pulses) at less than
the Nyquist rate.

Overlapping portions
S §, SN
# f f 44_ I
I
s(t) {% 5(0) Lowpass 0]
filter

s55(0)

Figure 5.9 Impulse sampling at less than Nyquist rate.

Note that the transform at the output of the lowpass filter is no longer the same as the
transform of the original signal. If we denote the filter output as s,(z), the error is defined as

e(r) = so(t) — (1) (5.10)
Taking the Fourier transform of both sides of Eq. (5.10) yields
E(f) = S(f) — S(f)
=S8(f—f) + S(f+ ) for f[<],

Observe that if S(f) were limited to frequencies below f,/2, the error transform would be
zero. Without assuming a specific form for S(f), we cannot carry this example further. In
general, various bounds can be placed upon the magnitude of the error function based
upon properties of S(f) for f > f/2. You can explore aliasing in more detail using com-
puter analysis in the “problems” section at the end of the chapter.

Example 5.2
A 100-Hz square wave (assume amplitude levels of 0 and 1) forms the input to the RC filter
shown in Figure 5.10. The output of the filter is sampled at 700 samples per second. Find the
aliasing error.
Solution: The square wave can be expanded in a Fourier series to yield

(5.11)

N 2 2
i e - — X
via (D) 3 wcos21r)< 100¢ 3_"e':mZ‘l:')(30(3-!-5“'::(:»5211' 500¢
1 - 5 e
=-+ Z (= 1) % = cos2mn X 100t
n=1,nodd nmw
The filter transfer function is

1 1
HD) = 5 JanfRC = 1 + J2mf 0.00167)
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Figure 5.10 Square wave and filter for Example 5.2.

The output of the filter is found by modifying each term in the input Fourier series. The am-
plitude is multiplied by the magnitude of the transfer function, and the phase is shifted by the
phase of the transfer function. The result is

V() = % + 0.45cos(2m X 100t — 45°) — 0.067cos(2w X 300t — 71.6%)

+ 0.025cos(2m X 500t — 78.7°) — 0.013cos(2mw X 700¢ — 81.9%)

Let us assume ideal impulse sampling. The result is that the component at 500 Hz ap-
pears at 200 Hz in the reconstructed waveform, and the component at 700 Hz appears at dc
(zero frequency). We shall ignore the higher harmonics. The reconstructed waveform is there-
fore given by

1
2 + 0.45cos(2m X 100r — 45°) — 0.067cos(2m X 300t — 71.6°)

+ 0.025cos(2w X 200t — 78.7°) — 0.013cos(— 81.9%)
The last two terms represent the aliasing error.

Example 5.3
Assume that the bandlimited function

sin207rt
ot

s(r) =

is sampled at 19 samples/sec. The sampling function is a unit-height pulse train with pulse
widths of 1 msec. The sampled waveform forms the input to a lowpass filter with cutoff fre-
quency of 10 Hz, as illustrated in Fig. 5.11. Find the output of the lowpass filter, and compare
it to the original s(r).
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H()
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1/19

=
-10 10 Figure 5.11 Sampling for Example 5.3.

Solution: We need to know only the first two coefficients in the Fourier series expansion of
the pulse train. These are

0.001
ay= 1o = 0019

sx 10" )
a, = 3sI cos2m X 19tdt = = sin(19 X 10~ *rr) = 0.038
~5%10°* ™

The Fourier transforms of the signals at points A, B, and C in Fig. 5.11 are shown in Fig. 5.12.
The output function of time is the inverse Fourier transform of S.( f) and is given by

= QOLSMZT 6,038 ™ cos19m
mt wt

so(1)
The second term in the result represents the aliasing error. Suppose we wish to find the maxi-
mum amplitude of this term. It should be obvious that this occurs at r = 0, but if you wished
to use a simple MATLAB program, the instructions would be as follows:

t==5:.01:=5;
§=.038*sin(pi*t)./(pi*t).*cos(19*pi*t);
MAX=max(s)

The maximum amplitude is 0.038 at 1 = 0, at which point the signal portion [the first term of
50(f)] has amplitude 0.019. Do not be tempted to calculate a percentage error by taking the ra-
tio of the amplitude of the error to the amplitude of the desired signal. Since the first term
goes to zero at periodic points, and the second term is not necessarily zero at these same
points, the percentage error would approach infinity. Errors are often analyzed by looking at
the energy of the function of time representing the error. Energy is the area under the square
of the function. We could therefore find the energy of the second term in the equation. Once

54N Ss) [Sc(

0.038 |-| 0.038
0,019 || L_o.019

f H f o
10 910 910

Figure 5.12 Fourier transform of sampling signals.
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this energy is found, it is divided by the total energy of the desired signal (the first term) to get
a percentage error. As an example, suppose we wanted to perform this operation over two side
lobes of the main signal. That is, we compare the signal to the aliasing error over the range of
time between —0.2 and +0.2 second. A simple MATLAB program calculates the SNR as the
ratio of mean square values:

T 22 .0)1 .23

sout=.019*sin(20*pi*t)./(pi*t)

salias=.038"sin*pi*t)./(pi*t)."cos*19*pi*t);
snr=(std(sout)*2+mean(sout)*2)/(std(salias)”2+mean(salias)"2)

snrdb=10*1ogl0(snr)

MATLARB returns an SNR of 14.804, or 11.704 dB. Note that we are using the fact that the
mean square value is the variance plus the square of the mean.

We conclude this section with the idea that the restriction on S(f) imposed by the
sampling theorem is not very severe in practice. All signals of interest in real life do pos-
sess Fourier transforms that are approximately zero above some frequency. No physical
device can transmit infinitely high frequencies, since all channels contain series induc-
tance and parallel (parasitic) capacitance. The inductance opens and the capacitance shorts
as frequencies increase.

DISCRETE BASEBAND
5.3.1 Pulse Modulation

When a signal is discrete, it can be thought of as a list of numbers representing the sample
values of an analog waveform. One way to send such a list through a channel is to send a
pulse waveform—one pulse is placed at each sampling point. Each pulse carries informa-
tion about the corresponding sample values. Each sample value can be conveyed as the
amplitude, width, or position of the pulse. If we choose the amplitude of the pulse, the re-
sult is known as pulse amplitude modulation (PAM). Figure 5.13 illustrates a periodic
pulse train s.(r), a portion of a typical analog signal s(7), and the result s,(f) of controlling
the pulse heights with the sample values.

Note that since the pulse tops are horizontal, the modulated waveform is nor simply
the product of the pulse train and the analog signal. Such a product would appear as in
Figure 5.14. It results when s(¢) forms the input to a gating circuit.

Both of the foregoing waveforms are considered to be pulse amplitude modulated
(PAM) waveforms; the waveform of Fig. 5.13 is called flat-top or instantaneous-sampled
PAM, while that of Fig. 5.14 is known as natural-sampled PAM. The former is instanta-
neous sampled because the pulse height depends only upon the value of s(¢) at the sam-
pling point, and not on the signal values across the range of the pulse width. Flat-top PAM
is generated with a sample-and-hold circuit. A simplified sample-and-hold circuit is shown
in Fig. 5.15.

In the figure, switch §; closes instantaneously at the sampling point, and the capaci-
tor charges to the sample value. The switch is then opened, and the capacitor remains at
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Figure 5,14 Product of pulse train and s(r).

that value until the closing of switch S; provides a discharge path. Practical sample-and-
hold circuits need additional electronics to provide the energy to charge the capacitor
rapidly (i.e., the series resistance is never zero) and to prevent slow discharge (leakage)
prior to switch S; closing.

We now calculate the Fourier transform of a PAM waveform in order to determine
the channel requirements. We begin by evaluating the Fourier transform of the natural
sampled waveform. The function s.(r) is expanded in a Fourier series to obtain

() = ag + Xn,coﬂn;f,t (5.12)

When this is multiplied by s(#), the result is a summation of products of s(#) with sinu-
soids:

SWs 1) = aps(t) + za.s(moszw (5.13)
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The Fourier transform of each term in the summation is the signal transform S( f), shifted
up and down by the frequency of the sinusoid (the modulation theorem). The transform of
s(f)sc(t) is sketched in Fig. 5.16, where we assume that s(r) has the transform shown in the
figure. f,, is the maximum-frequency component of s(r).

S,
S
> g A W T, G R /
fs I 5

A

Figure 5.16 Fourier transform of natural-sampled PAM.

The Fourier transform of instantaneous-sampled PAM is more difficult to evaluate.
The evaluation is simplified, however, by considering the hypothetical system of Fig.
5.17. We begin by sampling s(r) with an ideal train of impulses. We then shape each im-
pulse into the desired pulse shape—in this case, a square pulse with a flat top.

s(1) Sm(0)

/ h(r)
+Lu_, . i

Figure 5.17 Generation of instantaneous-sampled PAM.

The Fourier transform of the sampled signal at the input to the filter is found using
the sampling theorem. The Fourier series of the impulse train has equal Fourier coefficient
values for all n. The Fourier transform of the impulse-sampled waveform is therefore as
shown in Fig. 5.18. :

The Fourier transform of the filter output (instantaneous-sampled PAM) is simply
the produci of the Fourier transform of the impulse-sampled waveform and the transfer

54N
kSCH)  kS(f-f,)

Figure 5.18 Fourier transform of impulse-sampled waveform.
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function of the filter. The transfer function of the filter is shown in Fig. 5.19 and is found
from a table of Fourier transforms. (See Appendix II.)

Finally, the output transform is as shown in Fig. 5.20. Note that the low-frequency
portion of this transform is not an undistorted version of S( f).

H(f)
Figure 5.19 Transfer function of filter of
Fig. 5.17.
Sulf)
S
P\l s
I I Yn
Figure 5.20 Fourier transform of flat-top PAM.
Example 5.4
A signal is of the form
sin 7t
s(t) = -

It is transmitted using PAM. The pulse waveform s.(7) is a periodic train of triangular pulses,
as shown in Fig. 5.21. Find the Fourier transform of the modulated waveform.

Solution: Consider the system of Fig. 5.17. The output of the ideal impulse sampler has the
transform

Sy = % >, S(f - nfy)

where S(f) is the transform of sinwt/ms. S(f) is a pulse, as shown in Fig. 5.22(a). The filter
must change each impulse into a triangular pulse. Its impulse response is therefore a single
triangular pulse that has as its transform




Sec. 5.3 Discrete Baseband 169

5.0
1
T T r

Finally, the transform of the PAM waveform is given by the product Ss( f)H( f), as shown in
Fig. 5.22(b).

Figure 5.21 Pulse waveform for Example
54.
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Figure 5.22 Result for Example 5.4.
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A significant general observation to make about the transform of a PAM wave is that
it occupies all frequencies, from zero to infinity.

5.3.2 Time Division Multiplexing

It would be very impractical to have a separate channel for every signal to be communi-
cated. In telephone communication, this would mean a wire connection for every conver-
sation; if up to 100,000 simyltaneous calls between the United States and Europe were an-
ticipated, 100,000 channels (i.e., pairs of wires or satellite channels) would be needed. An
even more absurd example is provided by television: If 13 television stations wanted to
broadcast simultaneously (forgetting phf), we would need 13 parallel atmospheric sys-
tems—even the science fiction writers would have trouble with that. So we need a way to
share a channel among different users.
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Signals can be easily separated from each other if they are nonoverlapping in either
time or frequency. An example of separation in time occurs in the classroom when stu-
dents and the professor alternately share the communication channel: When a student
talks, the professor stops, and vice versa. An exact dual of this is separation in frequency.
Suppose one speaker has unusual vocal cords, and his or her voice occupies frequencies
between 1 kHz and 2 kHz. Suppose a second speaker is a baritone, all of whose essential
signal components are below 1 kHz. Filters (lowpass and bandpass) can easily separate
these two signals even if the two people speak simultaneously. We will deal extensively
with separation in frequency beginning with the next chapter. For now, we concentrate on
separation in time. Fortunately, over portions of the time axis the PAM waveform is zero,
so that separation in time is possible.

Time division multiplexing of signals with identical sampling rates can be viewed as
interspersing pulses. Figure 5.23 illustrates this process for two signals. Note that the
switches alternate between each of the two positions, making sure to take no longer than
one sampling period to complete the entire cycle. That is, two pulses are sent in each sam-
pling period, so the pulse rate on the channel is twice the sampling rate.

5)

Transmit 2 Receive Ij ii “
{08 '

Figure 5.23 Multiplexing of two channels.

Suppose that we now increase the number of channels from 2 to 10. Then the switch
becomes a commutator, as shown in Fig. 5.24. The switch must make one complete rota-
tion fast enough so that it arrives at Channel 1 in time for the second sample. The rotation
of the receiver switch must be synchronized with that at the transmitter. In practice, this
synchronization (known as frame synchronization) requires effort. If we knew exactly
what was being sent on one of the channels, we could identify its samples at the receiver.
Indeed, a common method of synchronization is to sacrifice one of the channels and send
a known synchronizing signal in its place. We shall see this in some of the digital trans-
mission systems in later chapters.

The only thing that limits how fast the switch can rotate, and therefore how many
channels can be multiplexed, is the fraction of time required for each PAM signal. That
fraction is the ratio of the width of each pulse to the spacing between adjacent samples of
a single channel. The trade-off design consideration is that the more narrow each pulse,
the wider will be the bandwidth of the resulting signal.
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Figure 5.24 Multiplexing of 10 channels.

Muitiplexing of Dissimilar Channels The commutator approach to multi-
plexing requires that the sampling rate of the various channels be identical. If signals with
different sampling rates must be multiplexed, two other general approaches can be taken.
One uses a buffer to store sample values and then spit them out at a fixed rate. This buffer
approach, which is also effective if the sampling rates are variable, is known as asynchro-
nous multiplexing. It is important to design the system so that the buffer always has sam-
ples to send when requested by the channel. This might require inserting stuffing samples
if the buffer gets empty. Alternatively, the buffer must be large enough so that it does not
overflow.

The buffer approach is also used if the various sources are transmitting asynchro-
nously. That is, suppose they are not always transmitting information. Then setting the
size of the buffer requires a probability analysis, and the resulting multiplexer is known as
a statistical multiplexer (stat MUX). The stat MUX represents an efficient technique for
multiplexing channels, since a source has a time slot only when it needs it. On the negative
side, since individual messages are not being transmitted at a regular rate, the messages
must be tagged with a user ID. If the channels are synchronous with samples occurring at
a regular and continuous rate, the stat MUX is not the best approach.

The second general approach involves sub- and supercommutation. This requires
that all sampling rates be multiples of some basic rate. Meeting such a requirement might
necessitate sampling some of the channels at a rate higher than what you would use with-
out multiplexing. For example, if you have two channels with required sampling rates of
8 kHz and 15.5 kHz, then in order to effect that combination, you might choose to sample
the faster channel at 16 kHz.

The concept of sub- and supercommutation is quite simple, and we illustrate it with
an example. Figure 5.25 shows a commutator wheel with 32 slots. Suppose we wish to
multiplex the following 44 channels:

1 channel sampled at 80 kHz

1 channel sampled at 40 kHz

18 channels sampled at 10 kHz

8 channels sampled at 1,250 Hz

16 channels sampled at 625 Hz
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—— To channel

Figure 5.25 Example of sub- and supercommutation.

All of the sampling rates are multiples of 625 Hz. Let us choose the basic rate of the com-
mutator wheel to be 10,000 rotations per second. Therefore, each of the 18 channels that
must be sampled at 10 kHz get one slot on the wheel. The channel that must be sampled at
40 kHz needs four equally spaced slots on the wheel, so it is sampled four times during
each 0.1-msec rotation of the wheel. Similarly, the 80-kHz channel needs eight equally
spaced slots on the wheel. These higher rate channels are multiplexed using supercommu-
tation.

The channels sampled at less than 10 kHz need to be sampled only on selected rota-
tions of the wheel. For example, a 1,250-Hz channel needs to be sampled once every 8 ro-
tations of the wheel, while a 625-Hz channel is sampled only once every 16 rotations. We
accomplish this using subcommutation wheels, as shown in the figure. The eight 1,250-Hz
channels are commutated together with a wheel rotating at a rate of 1,250 rotations per
second. Each 0.1 msec, one of the channels is connected to a cell on the main commutator
wheel. Similarly, the 16 625-Hz channels are commutated with a wheel rotating at 625 ro-
tations per second.

Clearly, a lot of design work had to go into this configuration. We have chosen num-
bers that work out perfectly. Life is usually not so nice, however, and manipulation is
needed to design the commutation system. In some ways, this process resembles finding
the lowest common denominator in combining fractions, but of course, it is orders of mag-
nitude more complex than this simple algebraic problem.
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5.3.3 Cross Talk

As shown in Figs. 5.19 and 5.20, the envelope of the Fourier transform of the PAM wave-
form follows a sin(f)/f curve. In fact, this envelope is the Fourier transform of a single
square pulse. The first zero of the envelope is at 1/Ar, where At is the width of each pulse.

The pulsed waveform may be transmitted through a coaxial cable. The signal is
transmitted with little distortion, provided that the upper frequency cutoff of the channel is
sufficiently high (at least several times 1/Ar).

Example 5.5

A discrete-time analog signal is created by sampling a speech waveform at 10,000 samples
per second. Each sampling pulse is 0.01 msec wide and is transmitted through a channel that
can be approximated by a lowpass filter with cutoff frequency at 100 kHz. Evaluate the ef-
fects of channel distortion.

Solution

Since the sampling is occurring at 10,000 samples per second, we will assume that the speech
waveform has a maximum frequency below 5 kHz. The reason for the two-to-one ratio was
discussed in Section 5.2. The transmitted signal consists of pulses 0.01 msec wide. If one of
these pulses forms the input to a lowpass filter with cutoff at 100 kHz, the output of the filter
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Figure 5.26 Pulse through lowpass filter.
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is as shown in Figure 5.26.' Thus, although the original pulse may be confined to its assigned
time interval, the filtering effects of the channel may widen the pulse to overlap adjacent
intervals.

The overlap from one time slot to adjacent time slots is known as intersymbol inter-
ference or crosstalk. The term crosstalk also applies to the leakage of signals from one set
of wires to an adjacent set of wires, as when multiple wires form part of one cable. We will
restrict our discussion to the overlap of time slots in multiplexed systems. There are sev-
eral ways of reducing the effects of intersymbol interference. Pulse spreading can be de-
creased by increasing the bandwidth of the system. Unfortunately, this is a luxury that re-
quires a flexibility we don’t often have. However, one parameter over which we do have
control is the shape of the pulses used to transmit the sample values.

As a start toward the analysis of desirable pulse shapes, suppose we transmit ideal
impulse samples. Suppose further that the channel can be modeled as an ideal lowpass fil-
ter. This shapes each impulse into a (sin 1)/t type of pulse, as shown in Fig. 5.27.

i) | s
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Figure 5.27 Pulse shaping by the channel.

Although the received waveform clearly extends into adjacent time slots, it has the
very nice property that interference is zero at the sample points. If the channel passes fre-
quency up to f,, the zeros of the spread pulse are spaced by 1/2f,. Thus, if we sample at the
Nyquist rate, the spread pulse goes through zero at all adjacent sample points. Figure 5.28
illustrates this for three adjacent sample values.

Note that while the pulses interact with each other, at each sampling point only one
(sin 1)/t curve is nonzero. All of the others go through zero at that point. The sum of the
various (sin 7)/f curves reconstructs the original signal s(¢), according to the sampling the-
orem. Although the ideal impulse transmission—ideal lowpass filter channel represents an
unrealistic assumption, the results apply as long as the combination of transmitted pulse
shape and channel characteristics results in a (sin 7)/r shape for the received pulse.

The ideal bandlimited pulse shape is impossible to achieve because of the sharp cor-
ners on the frequency spectrum. A compromise is the raised cosine characteristic. The
Fourier transform of this pulse is similar to the square transform of the ideal lowpass filter,
except that the transition from maximum to minimum follows a sinusoidal curve. This is
shown in Fig. 5.29. The value of the constant K determines the width of the constant por-

'"We have used a circuit simulation program, MICRO-CAP IV, to produce the output waveform. The channel
was approximated as a third-order Butterworth lowpass filter with normalized transfer function 1/(s* + 28 + 25 + 1).
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Figure 5.28 Ideal lowpass filter shaping.

Figure 5.29 Raised cosine frequency char-
acteristic.
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tion of the transform. If K = 0, the transform is that of the ideal lowpass filter. If K = 1,
the flat portion is reduced to a point at the origin. The function of time corresponding to
the Fourier transform is

h(t) = Asin21rfot cos2wKTf,

(5.14)

2mfyt 1 — (4Kf)?
This function is sketched for several representative values of K in Fig. 5.30.
ki)

Figure 5.30 Raised cosine impulse re-
sponse.

Note that for K = 0, the function is of the form (sin #)/t. This goes to zero at multi-
ples of 1/2 fo. For K = 1, the response goes to zero not only at these points, but also at
points midway between them (except for the first set of points around the origin). For
K = 1, the Fourier transform has frequency content up to 2 f. An ideal lowpass filter with
cutoff at that frequency has an impulse response with zeros every 1/4 f. Therefore, the dif-
ference between the raised cosine with K = 1 and the ideal lowpass filter with the same
cutoff is that the ideal filter has two additional zeros in its impulse response. Beyond the
point t = 1/2 f;, the zeros of both impulse responses coincide. It is much easier to build the
raised cosine filter than the ideal lowpass filter; indeed, the latter cannot be built in the real
world. The price we pay is intersymbol interference between adjacent samples (no inter-
ference more than one sample period away). We can compensate for this by using a tech-
nique known as partial response signaling. In digital communication, this is called duobi-
nary. It is a form of controlled intersymbol interference. Since we know the proportion of
one sample value that interacts with the next sample point, we can compensate by giving
our receiver memory.

5.3.4 Pulse Width Modulation

Let us again start with a signal that is a periodic train of pulses. Figure 5.31 shows an un-
modulated pulse train, a representative information signal s(7), and the resulting pulse
width-modulated (PWM) waveform. The width of each pulse varies in accordance with
the instantaneous sample value of s(¢). The larger the sample value, the wider is the corre-
sponding pulse. Since the pulse width is not constant, the power of the waveform is also
not constant. Thus, as the amplitudes of the signal increase, the power transmitted also
increases.
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Finding the Fourier transform of the PWM waveform is a complex computational
task. Part of the reason for this complexity is that PWM is a nonlinear form of modulation.
A simple example illustrates this. If the information signal is a constant, say, s(f) = 1, the
PWM wave consists of equal-width pulses. This is so because each sample value is equal
to every other sample value. If we now transmit s(r) = 2 via PWM, we again get a pulse
train of equal-width pulses, but the pulses would be wider than those used to transmit s(r)
= 1. The principle of linearity dictates that if the modulation is linear, the second modu-
lated waveform should be twice the first. But this is not the case, as is illustrated in Fig.
5.32. (You should stop here and take a moment to convince yourself that, by contrast,
PAM is a linear form of modulation.)
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If one assumes that the information signal is slowly varying (i.e., sampled at a fast
rate compared to the Nyquist rate), then adjacent pulses have almost the same width. Un-
der this assumption, an approximate analysis of the inodulated waveform is possible: The
PWM waveform can be expanded in an approximate Fouriet series. We shall not perform
the analysis here, but will explore it in the “Problems” section at the end of the chapter.

PAM and PWM are related to each other, and it is possible to construct systems that
convert from one form to the other. We can use a sawtooth generator to convert between
time and amplitude. The sawtooth waveform we employ is shown in Fig. 5.33.

T 1 ]
T 2r 3T 4T

Figure 533 Sawtooth waveform for PWM-to-PAM conversion.

The conversion process is illustrated in Fig. 5.34. Figure 5.34(a) shows a block dia-
gram of the generator, and Fig. 5.34(b) shows typical waveforms.

We start with an information signal s(¢). This is put through a sample-and-hold cir-
cuit to yield s(r). The sawtooth is shifted down by one unit in order to form s(r). The sum
of sy(f) and s:(1) is s3(¢). The times for which s:(r) is positive represent intervals whose
widths are proportional to the original sample values. We need only put the shifting saw-
tooth into a comparator with output of 1 for positive input and 0 for negative input. This
results in s4(1), the PWM waveform. The range of pulse widths can be adjusted by scaling
the original function of time. Our illustration assumes that the original s(r) was normalized
to lie between 0 and 1.

Since the heights of the pulses in PWM are constant, but the widths depend on s(7),
the power of the PWM waveform varies with the amplitude of s(r). For example, if s()
were a musical selection, less power would be required during soft parts of the music and
more power during loud parts. This reduces the efficiency of the communication system,
since the pulse amplitudes would have to be chosen to assure that the maximum power
does not exceed that permitted by the system.

When we investigate performance later in the chapter, we will find that PWM is dis-
turbed by noise less than PAM is.

5.3.5 Pulse Position Modulation

Pulse position modulation (PPM) possesses the noise advantage of PWM without the
problem of a variable power that is a function of the amplitude of the signal. An informa-
tion signal s(r) and its PPM waveform are illustrated in Fig. 5.35. We see that the larger the
sample value, the more the corresponding pulse deviates from its unmodulated position.
A PPM waveform can be derived from a PWM waveform. The relationship between
the two is that, while the position of the pulse varies in PPM, the location of the leading
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(or trailing) edge of the pulse varies in PWM. Suppose, for example, that we detect each
trailing edge in a PWM waveform. (We differentiate and look for large negative pulses.) If
we now place a constant-width pulse at each of these points, the result is PPM. This is il-
lustrated in Fig. 5.36.
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Figure 5,35 Pulse position modulation.

Clearly, both PWM and PPM are more complex than is PAM. The justification for
choosing one of these more complex systems is that it provides greater noise immunity
than does PAM. In PAM, additive noise directly affects the reconstructed sample value.
The disruption is less severe in PPM and PWM, where the additive noise must affect the
zero-crossings in order to cause an error. Along with their greater complexity, PWM and
PPM have other negative properties. In multiplexed (TDM) systems, one must be sure that
adjacent sample pulses do not overlap. If pulses are free to shift around or to get wider, as
they are in PPM and PWM, one cannot simply insert other pulses in the spaces and be
confident that no interaction will occur. Sufficient spacing must be maintained to allow for
the largest possible sample value. This decreases the number of channels that can be
multiplexed.

5.4 RECEIVERS
5.4.1 Analog Baseband Reception

Analog baseband reception consists of filtering the received signal, amplifying it, and
feeding the result into a transducer (e.g., a speaker). In the case of audio, the receiver is
simply an audio amplifier. In designing receivers, one needs to be concerned with filter
characteristics and noise. Noise is added in the channel, and additional noise is added by




Sec. 5.4 Receivers 181

s(n)
t t = t t !
T ar T AT 5T
PWM
+ t : rl H i
T 2T ir 4T 5T
d
2 PWM]

=t
L L
Iqi

-

-l e e —

~

——f = e - a—

s I

A 10 1 1

Ll L) L T Ll ’
T 2T r AT 5T

Figure 5.36 Conversion from PWM to PPM.

the electronics in the receiver. We consider the performance of receivers in the next sec-
tion. Receiver design is normally considered part of a study of electronics.

5.4.2 Discrete Baseband Reception

Reconstruction of the original signal from natural-sampled PAM follows directly from the
sampling theorem. Indeed, natural-sampled PAM is the type of signal processing we en-
countered in our first proof of the sampling theorem. Recovery of the original analog sig-
nal from its sampled version requires a lowpass filter. The natural-sampled PAM receiver
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is therefore as shown in Fig. 5.37. The process of converting a PAM waveform to the con-
tinuous analog waveform is known as demodulation.

PAM _|Lowpass s(f)  Figure 537 Natural-sampled PAM re-

filter ;
ceiver.

Demodulation of instantaneous-sampled PAM requires a little more work. We could
use a sample-and-hold circuit to recover a staircase approximation of the original wave-
form. The holding time is set equal to the sampling period. The result is shown in Fig. 5.38
for a representative s(r). The resulting staircase function can be lowpass filtered to get a
smooth approximation to the original waveform. We ask you to show in Problem 5.4.1
that this form of sample and hold is an approximation to a lowpass filter.
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The Fourier transform of instantaneous PAM is shown in Fig. 5.39(a). We derive it
by multiplying the sampled Fourier transform by H(f), the transfer function of the filter
that changes impulse samples to pulse samples. The baseband portion of the PAM Fourier
transform is of the form S(f)H(f). Therefore, s(f) can be recovered from s,(7) by using a
shaped lowpass filter where the transfer function is the reciprocal of H(f). This is shown
in Fig. 5.39(b). The filter with transfer function 1/H(f) is known as an equalizer, since it
cancels the effects of the pulse shaping.

Figure 538 Sample and hold for PAM de-
modulation,

1/H(f)
I\ :
—fm f m
(a) PAM transform
PAM 1
/H( n s(1)
(b) Equalizer Figure 5.39 Flat-top PAM demodulator.

The equalizer and lowpass filter demodulators do not require that the receiver re-
cover timing information. On the other hand, the sample-and-hold demodulator does re-
quire such timing information at the receiver. That is, the receiver must “know” when to
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sample the incoming waveform—at the original sample points. This requires symbol syn-
chronization. We consider synchronization in detail when we study digital reception later
in the text.

Reception of PWM or PPM can be viewed as a two-step process. We first convert
the received waveform into PAM and then use a PAM receiver, as described earlier in this
section. The conversion of PWM to PAM is accomplished using an integrator. For PWM,
we simply start the integrator at the sample point and integrate the received pulse. Since
the height of the pulse is constant, the integral is proportional to the pulse width. The out-
put of the integrator is sampled prior to the next signal sampling point, and the sample
generates a PAM waveform. The process is illustrated in Figure 5.40. There are two obser-
vations you should make regarding this figure: First, we are using the form of PWM that
sets the left edge of each pulse at the sampling point; second, the resulting PAM waveform
is delayed by one sampling period.

Conversion of PPM to PAM is also illustrated in Fig. 5.40. Here, we start the inte-
grator at each sampling point and set it to integrate a constant. The integrator stops when
the pulse arrives. Since the PPM pulse is at the trailing edge of the PWM pulse, there is no
essential difference between PWM and PPM reception.
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Figure 540 Conversion of PWM and PPM to PAM.
5 PERFORMANCE

We will learn to design a variety of communication systems. Performance evaluation
needs to apply to a wide range of system inputs. In analog communication, we normally
wish the output to be as close to the input waveform as possible. The more common mea-
sure of such closeness is the S/N power ratio, since the human ear is sensitive to this quan-
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tity. In general, the ear can hear additive disturbances if the ratio of S/N power is below a
certain threshold.

In digital communication, the normal measure of performance is the rate at which
bit errors occur.

5.5.1 Analog Baseband

The output SNR of a baseband analog receiver depends on the input SNR, the filtering
characteristic of the receiver, and the noise added by the electronics in the receiver.

The SNR at the input to the receiver depends on the characteristics of the channel
and of the noise that intrudes during transmission. We normally consider this additive
noise to be white Gaussian, so the total power of that noise is proportional to the system
bandwidth.

The noise added by the receiver is characterized by the noise figure. Thermal noise
is produced by the random motion of electrons in a medium.

If we have a system with a number of noise-generating devices within it, we often
refer to the system noise temperature T,, in °K. This is the temperature of a single noise
source that would produce the same total noise power at the output.

If the input to the receiver contains noise, the receiver then adds its own noise to
produce a larger output noise. The system noise figure is the ratio of the noise power at the
output to that at the input. It is usually expressed in decibels (dB). For example, a noise
figure of 3 dB indicates that the system is adding an amount of noise equal to that which
appears at the input, so the output noise power is twice that of the input.

We have concentrated on the noise added by the transmitter and the receiver. We
now turn our attention to the channel. The technique we use to analyze the additive noise
in the channel is typical of the way we will approach broadcast communication systems in
the chapters that follow. Let us assume a channel noise model as shown in Fig. 5.41. In
this model, the noise n(t) is added to the signal s(7), and the sum is lowpass filtered. The
lowpass filter is normally part of the receiver. We include it in the model because, without
it, the noise has significant components outside the frequency band of interest.

= Lowp
0 -F\? filter
+
n(t) Figure 5.41 Additive noise in baseband
White noise channel.

We assume that the additive noise is white with two-sided power spectral density
No/2. That is, the noise has a power of Ny watts/Hz. The noise power at the output of the
filter is then Nof,, watts, and

SNR = —* (5.15)

where P, is the power of the signal.

The performance of a baseband analog receiver also depends on nonlinearities in the
electronics. This is expressed in measures such as dynamic range and harmonic distortion.
The term dynamic range usually refers to the ratio (in decibels) of the strongest to the
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weakest signal that a receiver can process without noise or distortion exceeding acceptable
limits. Although this sounds like a simple concept, application to practical transmission is
quite complex. For example, the behavior df a receiver when a single sinusoid forms the
input may be quite different from that when the input is a complex sum of many signal
components. Keep in mind that we are discussing nonlinear effects, and the actual dy-
namic range of the receiver may depend upon characteristics of the input signal.

Harmonic distortion is normally measured by setting the receiver input to be a sin-
gle sinusoid. Nonlinearities in the receiver change this sinusoid to a periodic function with
harmonics. The ratio of the power of the harmonics to the power of the fundamental is a
measure of harmonic distortion.

5.5.2 Discrete Baseband

The SNR in a PAM signal depends on the form of the receiver. If the receiver simply sam-
ples the received waveform at periodic points in time, the sample values are

r(nT,) = s(nT,) + n(nT,) (5.16)
where n(r) is the additive noise. The SNR is then

s_¢ (.17

N n
The numerator of Eq. (5.17) is the average signal power, while the denominator is the aver-
age noise power. If the channel can be modeled as an ideal lowpass filter, the noise power is
simply NoBW, where N, is the noise power per Hz and BW is the system bandwidth.
Calculation of the SNR for PPM and PWM systems is more complex. Since we can
easily convert a PWM signal to a PPM signal, we shall calculate the SNR only for PPM.
Figure 5.42 shows an ideal square pulse and an approximation to a practical square pulse.

A

t
AT
(a) Ideal pulse

A -

!
AT :
Figure 542 Ideal and practical square
(b) Approximation to practical pulse pulse.

The job of the PPM receiver is to locate the trailing edge of the latter pulse. One way
to do this is with a comparator or threshold detector. A threshold is set, and when the sig-
nal breaks through it, we assume thdt we have located the trailing edge. The threshold
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value would normally be set at the midpoint, A/2, of the pulse amplitucie, and this value is
known as the slicing level. In the case of the ideal square pulse, as long as the additive
noise waveform never exceeds the slicing level in magnitude, the location of the trailing
edge will not be affected.

If we now add noise to the practical approximation to the square pulse, we have the
situation shown in Fig. 5.43, where we have focused upon the trailing edge of the pulse.

Figure 5.43 Noise affecting location of
trailing edge.

Similar triangles can be used to derive the relationship

{ I §
e i 5.18
n(t,) A 518
where A is the amplitude of the pulse, t, is the pulse rise time, and n(t;) is the additive
noise at the time the perturbed signal crosses the slicing level. We solve for the timing er-
ror to obtain

1
e= (i)n(:z) (5.19)
The mean square value of the error is then
2
&= (iﬂ) (1) (5.20)

Let us assume that the mean square value of the noise is given by the noise power per Hz
multiplied by the bandwidth. This presupposes additive white noise. The error is then

&= (ﬁ)z N,BW (5.21)

The pulse rise time is related to the bandwidth. If we assume the maximum possible
slope (a square pulse through a lowpass filter), we get the relationship

1
L
T 28w

Equation (5.22) is related to the sampling theorem. We also would like to relate the error
to the pulse energy instead of the amplitude, since many systems are energy limited. The

pulse energy is

(5.22)

E, =~ A’AT (5.23)
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The approximation improves as the rise time decreases. Combining Egs. (5.21), (5.22),

and (5.23) yields
- AT
= ——
4 4BWEPN° a0

Equation (5.24) is the desired result. It shows that the mean square timing error is in-
versely proportional to the system bandwidth. To convert the PPM waveform to an analog
signal, we change the pulse location to a pulse amplitude and then take the ratio of the
mean square value of the signal samples to the mean square value of the error. The noise
power is therefore related to the mean square timing error of Eq. (5.24). We explore this
relationship in the “Problems” section at the back of this chapter.

BLEMS

5.2.1 You are given the function

sint
). = ==
t

This function is sampled by the train of impulses, 55 (r) as shown in Fig. P5.2.1.

5,(0) = s(t)sy(1)

s5(1)
1
(R T 1 i
t
=27 -m w 2 3w
Figure P5.2.1

(a) What is the Fourier transform S.( f) of the sampled function?

(b) Find (1), the inverse Fourier transform of your answer to part (a).

(¢) Should your answer to part (b) have been a train of impulses? Did it turn out that way?
Explain any discrepancies.

(d) Design a system to recover the original s(f) from s,(r), and demonstrate that your system
works correctly for this example.

5.2.2 A signal s(r) with S(f) as shown in Fig. P5.2.2 is sampled by two different sampling func-
tions, sz (f) and ssr), where
s5a(t) = S;.(l = ;)

and

1
T=—
In
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Therefore, each of the two sampling waveforms is at one-half of the Nyquist minimum sam-
pling frequency. Find the Fourier transforms of the sampled waveforms, s./(f) and s.(r).

Now consider s(f) to be sampled by ss3(1), a train of impulses spaced 7/2 apart (i.e., at
the Nyquist rate). This new sampling function is the sum sz(r) + ss2(f). Show that the Fourier
transform of 5,:(¢) is equal to the sum of the transforms of s.(f) and s(7). That is, show that,
although the transforms of the original two sampled functions contain aliasing error, this er-
ror is not present in the sum. [Hint: You will have to keep track of phases.]

? 5310
a5 T 0
-T Th2r
% S(f)
S e b 0t e | O S
=12 2 3R
[0 < g o ¢
bbbt SEELLLL o
-T T 2r
Figure P5.2.2
5.2.3 The function
s(f) = cos2mt

is sampled every i second. Evaluate the aliasing error.
5.2.4 The signal

sin 2t

s(n) =

is sampled at 1.1 times the Nyquist rate. The sampling is performed for r between —1 and
+1 second. The signal is reconstructed using a lowpass filter. Find the truncation error.

5.2.5 The function
s(1) = cos2mt

is sampled at a rate of 2.5 samples/sec for r between 0 and 10 seconds. The signal is recon-
structed using a lowpass filter. Find the difference between the original and reconstructed
waveforms at the points ¢t = 4.9, r = 5, and 1 = 5.1 sec.

5.2.6 You are given a low-frequency bandlimited signal s(r). This signal is multiplied by the pulse
train s.(f), as shown in Fig. P5.2.6. Find the Fourier transform of the product s(r)s.(f). What
restrictions must be imposgd so that s(r) can be uniquely recovered from the product wave-
form?
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50

Figure P5.2.6

5.2.7 Asignal is given by
sin St = sin 10t
t L

s(r) =

This signal is to be sampled with a periodic pulse train consisting of narrow pulses.

(a) Find the Nyquist sampling rate. i

(b) Assuming that the sampling is done at the Nyquist rate, sketch the Fourier transform of
the sampled waveform.

5.2.8 The signal

s(f) = sin 1007

is sampled at the points ¢ = n/100. This represents sampling at the Nyquist rate of 100 Hz.
However, all of the sample values will be zero, and the original wave cannot be recon-
structed. Explain the reason for this situation.

5.2.9 Asignal is of the form

s(r) = sin 7t + 3sin 37wt

It is sampled at 1.5 times the Nyquist rate and transmitted using PAM. The pulse waveform,
sc(1), is a periodic train of triangular pulses, as shown in Fig. 5.21. Find the Fourier transform
of the modulated waveform.

5.2.10 Derive the dual of the time-sampling theorem—that is, a Fourier transform of a time-limited
signal s(¢) is completely known from its sample values. Find the minimum frequency spacing
between samples to permit reconstruction of the Fourier transform.

5.3.1 An information signal is of the form

sin 7t
m

51 =

Find the Fourier transform of the waveform that results if each of the two carrier waveforms
shown in Fig. P5.3.1 is pulse amplitude modulated with this signal.
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5¢,(0)
1 —] |

OOt

Se(0)

cos i/t
s s ke R AW A
-T -1/2 | 72 T 2r
Figure P5.3.1
5.3.2 The signal
5(t) = cos 2mt

is sampled every 0.4 sec and sent using natural-sampled PAM with pulse widths of 0.1 sec.
The channel can be modeled as an ideal lowpass filter with a cutoff at 10 Hz. Find the re-
ceived waveform. Also, find the reconstructed waveform after the receiver uses a lowpass fil-
ter to recover the original signal s(¢).

5.3.3 Consider a two-channel TDM PAM system where both channels are used to transmit the
same signal s(f) with Fourier transform S(f), as shown in Fig. P5.3.3. The system samples
s(1) at the minimum rate. Find the Fourier transform of the TDM waveform, and compare it
to the Fourier transform of a single-channel PAM system used to transmit s(1).

SN

|-
(ST

Figure P5.3.3

5.3.4 Three asynchronous sources transmit PAM waveforms to a buffer multiplexer. Each of the
sources transmits at a pulse rate that is Gaussian distributed with a mean value of 1,000
pulses/sec and a variance of 9. The channel is capable of transmitting 3,000 pulses per sec-
ond. How large must the buffer be such that the probability of overload is less than 1%?




Chap.

535

5.3.6

53.7

538

539

54.1

54.2

5 Problems 191

Three information signals are to be sent using time-division multiplexed PAM. Suppose that
the maximum frequency of each of the first two signals is 5 kHz and that the maximum fre-
quency of the third signal is 10 kHz. Design the multiplex system and draw a block diagram.
Ten signals are to be time division multiplexed and transmitted using PAM. Four of the sig-
nals have a maximum frequency of 5 kHz, two have a maximum frequency of 10 kHz, two
have a maximum frequency of 15 kHz, and two have a maximum frequency of 20 kHz.

(a) Design a multiplex system.

(b) How many pulses per second must be transmitted?

You wish to sample and time division multiplex 36 channels with the following maximum
frequencies:

One channel has a maximum of 10 kHz.

Three channels have a maximum of 5 kHz.

Eight channels have a maximum of 2.5 kHz.

Eight channels have a maximum of 300 Hz.

Sixteen channels have a maximum of 150 Hz.

Design a system using sub- and supercommutation. Make any reasonable approximations.
A discrete-time analog signal is created by sampling a speech waveform at 10,000 samples
per second. Each sampling pulse is 0.01 msec wide and is transmitted through a channel that
can be approximated by a lowpass filter with cutoff frequency at 50 kHz. Evaluate the effects
of channel distortion. Compare your answer to that of Example 5.5.

A PWM system multiplexes three signals derived from waveforms with the same maximum
frequency f,,. Sample values are normalized (to lie between zero and unity), and the width w
of each pulse is related to the normalized sample value s{nT;) by

w(nT,) = 1 + s(nT,) psec

(a) What is the maximum frequency f,, of the baseband signals that would permit this multi-
plexing to take place?

(b) What is the minimum bandwidth of the channel?

Show that a sample-and-hold circuit is an approximation to a lowpass filter, provided that the

sampling is performed at the Nyquist rate or higher. [Hint: You may wish to find the step re-

sponse of the sample-and-hold circuit and compare it to the step response of a lowpass filter.]

The system shown in Fig. P5.4.2 is similar to a sample-and-hold circuit, where the input can

be considered to be an impulse-sampled version of the original waveform.

(a) Find the impulse response of this system.

(b) Find the transfer function, and compare it to the transfer function of a lowpass filter.

A
Input /;;\ f dt Output
sg(r)

Dﬂlay TS

Figure P5.4.2



192 Baseband Transmission Chap. 5

5.4.3 Two signals,
5,(t) = cos 2t
§5(t) = cos mt + 2cos 2t

are sampled every 0.4 sec and are sent using multiplexed natural-sampled PAM. The channel

can be modeled as an ideal lowpass filter with a cutoff at 10 Hz.

(a) Find the received waveform.

(b) Find the reconstructed waveforms after the receiver uses a lowpass filter and demulti-
plexer.

(c) Repeat part (b), with 5,(f) changed to cos1.9.

5.4.4 You wish to investigate the use of a first-order lowpass filter (e.g., an RC circuit) to recover
the original time signal from a PWM waveform. You can assume that each PWM pulse has
its leading edge at the sample point. Analyze this system, and comment on how well it acts as
a demodulator.

5.5.1 Consider the system shown in Fig. P5.5.1. We wish to compare y() to x() in order to evalu-
ate the sample-and-hold circuit as a PAM demodulator. The comparison between y(r) and x(z)
is performed by defining an error

1 T
€ win j () — x(0))dr
/i 0

Find the value of this error term.

x()=sin 3 =t Sample and 0
hold: T=1sec |

I-.-Ill-H’(i)-:I =,

r|123

Figure P5.5.1

5.5.2 A sinusoidal signal
s(t) = sin 2wt

is sampled every 0.4 sec and transmitted using PPM.

(a) Design the PPM system (i.e., choose a pulse width and a relationship between pulse po-
sition and sample value).

(b) White noise of power No = 10~* watt/Hz adds during transmission. Find the mean square
timing error at the receiver.

(c) Find the approximate SNR after reconstruction at the receiver.




Amplitude Modulation

PREVIEW

What We Will Cover and Why You Should Care

This is the first of two chapters dealing with modulation techniques for analog communi-
cation. You will learn the basic concepts of modulation and examine the motivation for us-
ing various modulation schemes. After reading the chapter, you will:

* Understand amplitude modulation and the difference between suppressed and trans-
mitted carrier modulation

* Know how to construct modulators

* Know how to construct demodulators

* Know how standard broadcast AM radio works

* Understand the various types of AM stereo

* Know how to perform video transmission (e.g., TV)

* Possess the necessary tools to evaluate and compare the performance of systems.

Necessary Background

The earlier portions of this chapter require that you have an understanding of Fourier
transforms. You will need to know systems analysis in order to be in a position to design
modulators and demodulators. A working knowledge of random processes and probability
is needed to be able to evaluate system performance.

| CONCEPT OF MODULATION
Suppose you were given the job of transmitting either speech or baseband data through a
channel. The first question you should ask yourself is whether the signals must be modi-

fied before injecting them into the channel. If the answer is no, your job is very simple:
You must simply decide how to couple the signal into the channel (i.e., interface the two).

193
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For many channels, the answer will be yes, and the signal will have to be modified. The
Fourier transform of a typical speech waveform is sketched in Figure 6.1.

S(H)

+ t y ¢ i) Figure 6.1 Fourier transform of baseband
1 2 | 4 signals.

In the case of short-range transmission, as in the local loop of a telephone circuit or
in the path between the pre-amp and amplifier or between the amplifier and speakers of a
sound system, these baseband (low-frequency) signals are sent through wires. For longer
distances, it is sometimes difficult to use wires, since they require rights of way. Addition-
ally, since transmission is point to point, one must specify the location of every terminal,
In the case of television, the wire would have to terminate in the home of every prospec-
tive viewer (as in cable television). Mobile communication by wire is almost impossible.
(We say almost because some missiles actually trail a wire behind them that unwinds as
does a fishing line—but this is the exception.) For all of these reasons, broadcast commu-
nication has been a popular form of transmission.

Suppose we take an audio signal and attempt to transmit it through the air. Let us
choose a typical audio frequency of 1 kHz. The wavelength of a 1-kHz signal in air is ap-
proximately 300 km (about 180 miles). A quarter-wavelength antenna would then have to
be 75 km (45 miles) long, and erecting such antennas in backyards of homes would be a
bit impractical! But even if we were willing to erect them, we would still be left with two
very serious problems, The first is related to the characteristics of air at audio frequencies:
While propagation does occur at frequencies below 10 kHz, these frequencies are not effi-
ciently transmitted through air. Even more serious is the second problem: interference. Of-
ten, it is desirable to transmit more than one analog signal at a time. For example, many
local radio stations transmit broadcasts simultaneously. If they used quarter-wavelength
antennas, they would each have antennas 75 km long on top of their studios (or on moun-
taintops), and they would pollute the air with many audio signals. The listener would erect
an antenna 75 km high and receive a weighted sum of all of the signals (depending on rel-
ative distances and antenna patterns from the different transmitting antennas to the receiv-
ing antenna). Since the only information the receiver would have about the signals is that
they would all be bandlimited to the same upper cutoff frequency, there would be ab-
solutely no way of separating the signal from one station from those from all of the others.'

Given the preceding scenario, it is desirable to modify a low-frequency signal be-
fore sending it from one point to another. An added bonus arises if the modified signal is
less susceptible to noise than is the original signal.

"Walk into a crowded, noisy room, and try to distinguish one conversation from all of the others. Then
record the sounds in the room, and try again to distinguish the sounds, this time by listening to the recording. Ask
yourself why there is a difference.
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The most common method of accomplishing the modification is to use the low-
frequency signal to modulate (i.e., modify the parameters of) another, higher frequency
signal. Most commonly, this other signal is a pure sinusoid.

We start, then, with a pure sinusoid s.(¢) called the carrier waveform. It is given this
y name because it is used to carry the information signal from the transmitter to the receiver.
' Mathematically,

s(f) = A cos 2nft + 8) (6.1)

If £, is properly chosen, this carrier waveform can be efficiently transmitted. For ex-
ample, suppose you were told that frequencies in the range between 1 MHz and 3 MHz
propagate in a mode that allows them to be reliably sent over distances up to about 200
km. If you chose the frequency f. to be in this range, then the pure sinusoidal carrier would
transmit efficiently. The wavelength of transmission in the range of | MHz to 3 MHz is on
the order of 100 meters, and antennas of reasonable length can be used.

We now ask the question whether the preceding pure sinusoidal carrier waveform
can somehow be altered in a way that (a) the altered waveform still propagates efficiently
and (b) the information we wish to send is somehow superimposed on the new waveform
in a way that it can be recovered at the receiver. In other words, we are asking whether
there is some way that the sinusoid can carry the information along. The answer is yes, as
we now illustrate.

The right-hand side of Eq. (6.1) contains three parameters that may be varied: the am-
plitude A, the frequency f., and the phase 6. Using the information signal to vary A, f, or 6
leads to amplitude modulation, frequency modulation, and phase modulation, respectively.

We will show that efficient transmission is achieved for each of these three cases.
We will also show that if more than one signal is simultaneously propagated through the
channel, separation of the signals at the receiver is possible. In addition, we will find it
critical to illustrate a third property: The information signal s(f) must be uniquely recover-
able from the received modulated waveform; it would not be of much use to modify a car-
rier waveform for efficient transmission and station separability if we could not reproduce
s(t) accurately at the receiver.

This chapter concentrates on a thorough treatment of amplitude modulation. Parallel
treatments of frequency and phase modulation follow in the next chapter.

6.2 DOUBLE-SIDEBAND SUPPRESSED CARRIER

If we modulate the amplitude of the carrier of Eq. (6.1), the following modulated wave-
form results:

5,.(0) = A(t)cos 2mfr + 6) (6.2)

The frequency f; and the phase 6 are constant. The amplitude A(r) varies somehow in ac-
cordance with the baseband signal s(7)-the signal we want carried through the channel.

We simplify the expression by assuming that 6 = 0. This will not affect any of the
basic results, since the angle actually corresponds to a time shift of 6/27f.. A time shift is
not considered distortion in a communication system.
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If somebody asked you how to vary A(r) in accordance with s(r), the simplest answer
you could suggest would be to make A(f) equal to s(f). This would yield a modulated sig-
nal of the form

5,1 = s(t)cos 27f .t (6.3)

Such a signal is given the name double-sideband suppressed carrier (DSBSC) amplitude
modulation for reasons that will soon become clear.

This simple equating of A(¢) with s(f) does indeed satisfy the criteria demanded of a
communication system. The easiest way to illustrate this fact is to express s,(f) in the fre-
quency domain, that is, to find its Fourier transform.

Suppose that we let S(f) be the Fourier transform of s(r). We require nothing more
of §(f) than that it be the Fourier transform of a baseband signal. That is, §( ) must equal
zero for frequencies above some cutoff frequency f,. (The subscript m stands for maxi-
mum.) Figure 6.2 gives a representative sketch of S( f). We do not mean to imply that S(f)
must be of the shape shown; the sketch is meant only to indicate the transform of a general
low-frequency bandlimited signal.

S(N

-fn fn

Figure 6.2 General form of baseband S(f).

The modulation theorem is used to find S,(f):

S = Fiscos2nf) = 3[SU + ) + S = 1] 6.4)

This transform is sketched as Figure 6.3. Note that modulation of a carrier with s(r) has
shifted the frequencies of s(r) both up and down by the frequency of the carrier. This is

Sulf)

S e f

T

_f;.' 'fm -f; -f;.- +fn f;- -fn fc fc +f-

Figure 6.3 S,(f), the transform of s,(1).
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analogous to the trigonometric result that multiplication of a sinusoid by another sinusoid
results in sum and difference frequencies. That is,

cosAcosB = %cos(A 4+ B)+ %cos(A =i 5) (6.5)

If cos A is replaced by s(r), where s(r) contains a continuum of frequencies between 0 and
fm» the trigonometric identity can be applied term by term to yield a result containing all
sums and differences of the frequencies.

Figure 6.3 indicates that the modulated waveform s,,(f) contains components with
frequencies between f. — f, and f. + f,.. As long as signals in this range of frequencies
transmit efficiently and an antenna of reasonable length can be constructed, we have
solved the first of the two problems. Let us plug in some typical audio numbers. Let f,, be
5 kHz and f. be 1 MHz. Then the range of frequencies occupied by the modulated wave-
form is from 995,000 to 1,005,000 Hz.

The second objective is separation of the signals. We see that if one information sig-
nal modulates a sinusoid of frequency f;, and another information signal modulates a sinu-
soid of frequency f,, the Fourier transforms of the two modulated carriers do not overlap
in frequency, provided that f;, and f,, are separated by at least 2f,. This is illustrated in Fig-
ure 6.4. Since the signals are “stacked” in frequency, we refer to this situation as frequency

Sm1 () + Spalf)

Tl T A

=fer ~fa

Figure 6.4 Fourier transform of two AM signals.

division multiplexing (FDM). It is the exact dual of time division multiplexing (TDM),
which we introduced in Chapter 5.

If the frequencies of the two modulated waveforms are not too widely separated,
both signals can even share the same antenna. That is, although the optimum antenna
length is not the same for both channels, the total bandwidth can be made relatively small
compared to the carrier frequency. In practice, the antenna is usable over a range of fre-
quencies rather than just being effective at a single frequency. If this were not true, radio
broadcasting would not exist.

As an example, you don’t have to readjust the length of your car antenna whenever
you tune across the AM dial. The effectiveness of the antenna does not vary greatly from
one frequency limit to the other. Instructions accompanying early car antennas suggested
that their length be shortened to about 75 centimeters when changing from AM to FM.
(Don’t try doing this if you have the type of antenna that is sandwiched within the wind-
shield.) Modern receivers have sufficient sensitivity that such tuning is no longer neces-
sary, even with frequency changes of two orders of magnitude.
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If signals are nonoverlapping in time, gates or switches can be used to effect their
separation. For AM, the signals are nonoverlapping in frequency, and they can be sepa-
rated from each other by means of frequency gates (bandpass filters). Thus, a system such
as that shown in Fig. 6.5 could be used to separate the two modulated carriers of Fig. 6.4
from each other.

The extension of this system to more than two channels should be obvious. Even if
many modulated signals were transmitted over the same channel, they could be separated

Hy(N)
1 = -2/
HD 51(1) cos 2mf 1 | '

t I
~fer ‘ Ja

1 JN 2f,,
5a(1) cos 2mf, of I__I " f

Figure 6.5 Separating two nonoverlapping channels.

HyN

at the receiver using bandpass filters that accepted only those frequencies that were pres-
ent in the desired modulated signal. This is true, provided that the separate carrier frequen-
cies are wide enough apart to prevent overlapping of the Fourier transforms. We see from
Fig. 6.4 that the minimum spacing is 2f,. In practice, a spacing larger than this is desirable
for two reasons: First, even though we may view the information signal as limited to fre-
quencies below f,, no matter how sharply we lowpass filter it, the signal still has some
components above f,,. Second, if the minimum spacing is used, the bandpass filters that
separate out the desired channel must be perfect, with flat response in the passband and an
infinite roll-off.

Example 6.1
An information signal is of the form
sin 2wt

The signal amplitude modulates a carrier of frequency 10 Hz. Sketch the AM waveform and
its Fourier transform.
Solution: The AM waveform is given by the equation

sin 2

.0 = cos 20t

This function is sketched in Fig. 6.6.
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S (1)

2m

Figure 6.6 AM waveform for Example 6.1,

We note that when the carrier, cos 20, is equal to 1, 5,(f) = s(#), and when the carrier
is equal to =1, 5,(t) = —s(). In sketching the AM waveform, we start by drawing s(r) and its
mirror image, —s(), as a guide. The AM waveform periodically touches each of these curves
and varies smoothly between the periodic points. In this manner, we develop the sketch of the
waveform. In most practical situations, the carrier frequency is much higher than that illus-
trated in this example. In fact, it is so high that if you observed s,(r) on an oscilloscope, you
would not be able to see the back-and-forth oscillations unless you greatly expanded the time
axis. Instead, you would see the s(r) and —s(r) outlines and what looks like shading between

them.
S

| 1
Figure 6.7 Fourier transform of s(r) for Example 6.1.

The Fourier transform of the information signal s(r) is shown in Fig. 6.7. It is found in

the table in Appendix II.
The transform of the modulated waveform is given by the following equation, where

we have applied the modulation theorem:

S(f— 10) + S 10
Sipy= =10+ S+ 10

This is shown in Fig. 6.8.

We have indicated that an AM wave of the type discussed could be transmitted effi-
ciently and that more than one signal could share the channel. A critical property that must
still be addressed is whether the information signal, s(¢), can be uniquely recovered from

the AM waveform.
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g 9 11

Figure 6.8 Fourier transform of modulated waveform.

Chap. 6

Since §,,(f) was derived from S(f) by shifting all of the frequency components of
s(1) by f, we should be able to recover s(f) from s,,(7) by shifting the frequencies again by

the same amount, but this time in the opposite direction.

The modulation theorem states that multiplication of a function of time by a sinu-
soid shifts the Fourier transform of the function both up and down in frequency. Thus, if
we remultiply s,(t) by a sinusoid at the carrier frequency, the Fourier transform shifts back
down to its low-frequency baseband position. The multiplication also shifts the transform
up to a position centered about 2f;, but this part can easily be rejected using a lowpass fil-

ter. The process is illustrated in Fig. 6.9.
The recovery of s(¢) is described by the following equations:

(1) cos 2mfa 81 Lowpass
filter

1
3 s(n)

cos 2mft 4

L s el

-2f, 2f.
Figure 6.9 Recovery of s(r) from s,(1).

sp(t)cos2mft = [s(r)cos2nf tlcos2nft
= s(t)cos’2mf .t

_ 30 + s(®)cosdmft
2

In Eq. (6.6), we have used the trigonometric identity

2y wdoyid
cos’(A) = 2 + - cos(24)

(6.6)

(6.7)
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The output of the lowpass filter is therefore s()/2, which is an undistorted version of s(r).

This process of recovering s(r) from the modulated waveform is known as demodu-
lation. We have taken the time to begin our discussion of demodulation now, rather than
waiting until Section 6.5, where we will have more to say about it. Indeed, if s(f) could not
be recovered from s,(t), there would be no reason to go on.

DOUBLE-SIDEBAND TRANSMITTED CARRIER

In the previous section, we studied double-sideband suppressed carrier AM. We found that
the waveform resulting from the multjplicgtion of the information signal with a carrier si-
nusoid possesses desirable properties. In particular, the modulation process shifts frequen-
cies from a band around dc to a band around the carrier frequency. This permits efficient
transmission and also allows simultaneous transmission of more than one signal.

We now explore a modification of AM in which we add a portion of the pure sinu-
soidal carrier to the modulated waveform. We will see in Section 6.5 that this addition
greatly simplifies the demodulation process.

Figure 6.10 shows the addition of a pure sinusoidal carrier to the double-sideband
suppressed carrier waveform. The resulting waveform is

s,,(1) = s(t)cos 27f.t + Acos 2mf.t (6.8)

+/£\s(t)cos21rf‘1 + A cos 2wf i

+

cos 2mft
Figure 6.10 Addition of a carrier term.

This is known as double-sideband transmitted carrier (DSBTC). The type of AM dis-
cussed in the previous section did not include an explicit carrier term. That is why it is la-
beled suppressed carrier. We begin by examining the function of time and its Fourier
transform.

The Fourier transform of transmitted carrier AM is the sum of the Fourier transform
of suppressed carrier AM and the Fourier transform of the pure carrier. The transform of
the carrier is a pair of impulses at *f,. The complete transform of the AM wave is there-
fore as shown in Fig. 6.11.

52
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Figure 6.11 Fourier transform of AM
transmitted carrier.
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The function of time can be sketched if we first combine terms in Eq. (6.8). Doing
so, we can rewrite the waveform as

5,(1) = [A + s(t)]cos 2mf (6.9)

This function is sketched in the same manner as that used to draw the suppressed carrier
waveform. We first draw the outlines at [A + s(1)] and —[A + s(r)]. The AM waveform
periodically touches these two curves. We then fill in with a smooth, oscillating waveform.
This is illustrated for a sinusoidal s(r) [e.g., someone whistling into a microphone] in
Figure 6.12.

Figure 6.12(a) shows the sinusoidal s(r), Fig. 6.12(b) shows the AM waveform for a
value of A less than the amplitude of s(), and Fig. 6.12(c) shows the waveform where A is
greater than the amplitude of s(1).

Efficiency

We ask you to accept for now the fact that the addition of the carrier makes demodulation
easier. The price we pay is in efficiency: A portion of the transmitted power is used to send
a pure sinusoid that does not carry any useful information about the signal.
We see from Eq. (6.8) that the carrier power is the power of Acos2mf.s, or A%/2 watts,
The power of the signal portion is the power of s(r)cos2mf.#, which is the average of s%(r)
divided by 2. The average of s*(f) is simply the power of s(), or P,. Therefore, the signal
power is P/2. The total transmitted power” is the sum of this and A%/2.
We define efficiency, m, as the ratio of the signal power to the total power. The effi-
ciency is then given by
PJ/2 P
9 6.10
(A”+ P)/i2 A’ +P, =
As an example of the application of Eq. (6.10), suppose we view the AM wave of Fig.
6.12(c) and set A equal to the amplitude of the sinusoid. P, is then A*/2, and the efficiency is
A%/2
N % (6.11)
The efficiency depends on the size of the modulated term compared to the size of the
pure sinusoidal carrier term. We define a dimensionless quantity m as the ratio of the max-
imum amplitude of the modulated term to the amplitude of the carrier. That is,

= M (6.12)

A

The quantity m is known as the index of modulation. Viewing Fig. 6.12, we see that if the
envelope of the waveform extends down to the zero axis, the index of modulauon is 1. As
the index of modulation decreases, the efficiency also decreases. The index is sometimes
expressed as a percentage by multiplying by 100.

n=

*The square of the sum contains a cross product, but if the average of s(1) is zero, the average of this prod-
uct is also zero.
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6.4 MODULATORS

Figure 6.13 presents the block diagram of an amplitude modulator. The system of Fig.

6.13(a) produces double-sideband suppressed carrier AM, while the systems of Figs.

6.13(b) and 6.13(c) produce double-sideband transmitted carrier AM.

s(1)

s(f) cos 2w/t = 5,,(1)

cos 2mf 1t

(a) Suppressed carrier

% O [A + s(n)]cos 2mfit = 5, (1)
Pl
ot ) o
cos 2mf 1
(b) Transmitted carrier
) /C[-) [A + s(f)) cos 2mf.t = 5, (1)
A cos 2mf s

Figure 6.13 Block diagram of amplitude modulator,

You may ask why we devote an entire section of the text to modulators if Fig. 6.13
tells the whole story. Indeed, if we were simply interested in drawing system block dia-
grams, there would be no need to go any further. However, if you ever intend to imple-
ment any system design, you must have some idea of the components that go into each
block in the system block diagram. The diagrams of Fig. 6.13 represent a departure from
the systems considered earlier in the text. The modulator represents the first time we have
come across a system that is not linear. This makes its implementation very different from
that of linear filters.

Why is modulation not linear? Any linear system has an output whose Fourier trans-
form is the product of the Fourier transform of the input and H( f), the system function. If
the Fourier transform of the input is zero over some range of frequencies, the output trans-
form must also be zero for this range of frequencies. In other words, a general property of
linear systems is that they cannot generate any output frequency that does not appear in
the input. Since amplitude modulation shifts frequencies to a new range, no linear system
can perform such an operation.
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The synthesis of a system that is not linear is, in general, complicated. Fortunately,
simplifications are possible in the case of the modulator. We begin with two classes of in-
direct amplitude modulator: the gated and the square law modulators.

The gated modulator uses the fact that multiplication of s(f) by any periodic func-
tion produces a series of AM waves at carrier frequencies that are multiples of the funda-
mental frequency of the periodic function. We illustrate this in Figure 6.14. The output of
the multiplier is given by

x (6.13)
s(Hp(r) = S(t)[ao + Ea,.cosamfcf)]

n=1

s(1) s(np(n) Bandpass filter
H()
l pl) H(f)
2f;~ *4 2,
; o4
AT |
g
| Fs(0p(n)]|
¢
! Bl VAN
fu kot 3

Figure 6.14 Gated modulator.

In Eq. (6.13), f. is the fundamental frequency of the periodic waveform (the reciprocal of
the period), and the a, are the Fourier series coefficients. We have assumed that p(#) is an
even function to avoid having to write the sine terms in the series. The bandpass filter of
Fig. 6.14 blocks all but one term in the series, with the result that the output is an AM
waveform. We have shown the filter as being tuned to the fundamental frequency, but it
could have been tuned to one of the harmonics, thereby resulting in an AM waveform at
that higher carrier frequency. In practice, we would favor the lower harmonics, since the
Fourier coefficients decrease in magnitude with increasing n. At some point, the output
AM waveform would be so small that it would be lost in the circuit noise.

What have we accomplished? If we cannot build a multiplier to take the product of
(1) and a cosine waveform, what makes us think we can build the multiplier of Fig. 6.14?
The answer lies in a specific choice of p(t): a periodic pulse train gating function, as
shown in Fig. 6.15. Since p(r) is always either 0 or 1, the multiplication can be viewed as a
gating operation, where the input is switched on and off.

The output of the bandpass filter is found by expanding p(f) in a Fourier series and
finding a,. The modulator output is then

5,0 = %s(r)cos 2wf.t (6.14)



206 Amplitude Modulation

pn

i
T

L
Je

e +

Figure 6.15 Gating with a pulse train.

Equation (6.14) has been written for a gating function that spends half of its time high
and half at zero. In fact, an AM wave will be produced for any value of the duty cycle.

The gating function can be implemented either passively or actively. Figure 6.16
shows two passive implementations. Figure 6.16(a) shows a simple switch that periodi-
cally shorts out the input. When the switch is open, the output equals the input. When
the switch is closed, the output is zero. The resistance is the resistance of the source.
The disadvantage of mechanical switching is that § must switch at a rate equal to the
carrier frequency (or a submultiple of it if we select a harmonic). If our carrier fre-
quency is in the megahertz range, mechanical switching is not practical.

Figure 6.16(b) presents a variation of the switch circuit in which the switching is
accomplished using a diode bridge circuit. When cos 27t is positive, the point labeled
B is at a higher potential than the point labeled A. In this condition, all four (ideal and
matched) diodes are open circuited, and the circuit is equivalent to that of Fig. 6.16(a)
with the switch open. On the other hand, when cos 2r ft is negative, point A is at a

- R 7
0 s/ e
(a)
R

+
s(1) A B e

- +
_ cos 2mfi
(b)

Figure 6.16 Implementation of gating function.



Sec. 6.4 Modulators 207

s(6) Sy (1)

Carrier
O square O
wave

(a) Modulator

s()

S

Carrier

S (1)

Hnmﬂjh :
Al




208 Amplitude Modulation  Chap. 6

higher potential than point B, and all four diodes are short circuits. This is equivalent to
the switch being closed. The only limit to the rate of switching is imposed by the fact that
practical diodes are not ideal (i.e., they have a nonzero capacitance).

The gating can also be accomplished using active electronic devices such as transis-
tors operating between cutoff and saturation. A cutoff transistor acts as an open switch,
while a saturated transistor acts as a closed switch.

The ring modulator is a variation of the gated modulator. The circuit is shown in
Fig. 6.17(a). The carrier, a square wave, is fed into the center taps of the two transformers.
The output is a gated version of the input and needs only be filtered to produce AM. We il-
lustrate sample waveforms in Fig. 6.17(b).

The second broad class of modulator we consider is the square-law modulator. This
modulator takes advantage of the fact that the square of a sum of two functions contains a
cross-product term that is the product of the two functions. That is,

[s,(5) + 5,(017 = s2(t) + s3(5) + 25,(1)5,(2) (6.15)
If 5,(1) is the information and s,(¢) is the carrier, we have
[s(r) + cos 2mfi4]* = s%(t) + cos 22mf.t + 2s(t)cos 2mf.t (6.16)

The third term on the right-hand side of Eq. (6.16) is the desired AM waveform. We must
find a way of separating it from the other two terms. We know that separation will be sim-
ple if the terms are nonoverlapping either in time or in frequency. Clearly, they overlap in
time, so our only hope is to look toward frequency.

T ST W T,

e 2 fe 2fe
ASE U AL, Figure 6.18 Fourier transform of squared-
g sum signal.

Figure 6.18 shows the Fourier transform of the signal in Eq. (6.16). The impulses at
the origin and at 2f, result from expanding the square of the cosine by means of the
trigonometric identity

29 1 4 3
cos ‘B = 2 + 2c:c-s 20 (6.17)
The continuous shape shown at low frequency represents the Fourier transform of s(r).
We do not know the exact shape of s(#), but only that its Fourier transform is limited to fre-
quencies below f,,. The Fourier transform of s%(7) is limited to frequencies below 2f,,. One
way to show this is to observe that the transform of s(f) is the convolution of S( f) with it-
self. Graphical convolution easily shows that this transform goes to zero at 2f,. Another

way to show it is to consider s(7) as a sum of individual sinusoids at frequencies below f,.
When this sum is squared, the result is all possible cross products of terms. Trigonometric
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identities tell us that this leads to sums and differences of the various frequencies. None of
these sums or differences can exceed 2f,, if the original frequencies do not exceed f,.
Figure 6.18 indicates that as long as the carrier frequency exceeds 3f,,, the terms do
not overlap in frequency, and the AM waveform can be separated using a bandpass filter. In
most practical situations, the carrier frequency is much higher than f,, so the condition is
easily met. Figure 6.19(a) shows the overall block diagram of the square-law modulator.
This block diagram contains a summing device, a squarer, and a bandpass filter. You al-
ready know how to build a bandpass filter. Summing devices can be active or passive. Any
resistive circuit with two sources produces (through superposition) weighted sums of these
sources throughout the network. Alternatively, summing op-amp circuits can be used.
Square-law devices are not quite that simple. Any practical nonlinear device has an
output-versus-input relationship that can be expanded in a power series. This assumes that
no energy storage is taking place; that is, the output at any time depends only en the value
of the input at that same time, and not on any past input values. With y(#) as outputand x(r)
as input, the nonlinear device obeys the relationship

W) = ag + ax(t) + ax(1) + ax’(1) + (6.18)

The term we are interested in is a,x*(r). If we could somehow find a way of separating this
term from all the others, the nonlinear device could be used as a squarer.
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Unfortunately, the various power terms overlap both ih time and frequency. (Take
the time to verify this! It requires only simple trigonometry and basic Fourier transform
theory.)

The nonlinear device must essentially be a squarer; the a, in Eq. (6.18) must have
the property that

a, << a,, for n>2

There are several things to note about the nonlinearity before we move on. The first is that,
if the n = 1 and n = 2 terms in the series predominate, the result is transmitted carrier
AM. Further, if the a, are not insignificant for n > 2, AM is still possible if s(r) is made
very small. Then s(f) << s(r) for n > 1, and the transmitted carrier AM terms will pre-
dominate. This is not a desirable situation, because of the small amplitudes that result.

Semiconductor diodes have terminal relationships that are good approximations to
square-law devices over limited operating ranges. Figure 6.19(b) shows a simple imple-
mentation of the square-law modulator, where the RC combination filters out the higher
frequency term and the transistor provides the nonlinearity. We will see later that this same
circuit configuration can be used to demodulate certain AM waveforms.

In reality, it is not difficult to build a modulator, provided that efficiency is not criti-
cal. In fact, most circuits produce modulation products even when these are not wanted.
Superposition dictates that sums of signals will appear in a circuit, and practical linear de-
vices always have some inherent nonlinearity. Designers of linear circuits go through a lot
of effort to reduce unwanted modulation products.

We can relax the constraints on the nonlinear device by constructing the balanced
modulator. Figure 6.20 shows a block diagram and one possible implementation of such a
modulator. This system adds the carrier to s(r) and places this sum through a nonlinear de-
vice. The operation is then repeated using —s(r) as the informdtion signal. The difference
of the two outputs is taken, resulting il a cancellation of the terms due to odd powers in
the expansion of Eq. (6.18). We illustrate the process by examining the cubic term in the
equation. When we expand

[s(s) + cos 2mf.1]?
the term that overlaps the frequency band of the AM waveform is
s*(1)cos 2mfit

This term remains unchanged when —s(r) is substituted for s(¢). The result is that it cancels
from the output of the balanced system. The desired term, s(1)cos 27f.1, changes sign wh
—s(1) is substituted for s(7). Therefore, the operation of taking the difference has the effee&
of doubling the desired term. A similar approach is used to show that higher odd powers'
do not create undesired terms in the output. The balanced modulator is particularly effec- "'.I
tive if the nonlinearity has strong linear, square, and cubic terms, and all higher terms in |
the series are negligible. We should note that, since the first-order term is eliminated, the
output of the balanced modulator is suppressed carrier AM.

A practical implementation of a square-law modulator is shown in Fig. 6.21. This
common-emitter transistor circuit uses the nonlinearity of the transistor to produce the
product of the signal and the carrier. The tuned circuit in the collector filters out the unde-
sired harmonics.

(1)

-8(r)

cos 2
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Figure 6.20 Balanced modulator.
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The waveshape modulator can be thought of as a brute-force device. If you wan

to modulate a flow of water in a hose, you could hold your hand on the valve and kee,

turning it back and forth. An analogy to this simple system exists in electronics. You can
envision building a power amplifier (or oscillator) that produces the carrier. Then simply
vary the supply voltage to this amplifier in a manner that follows the information signal.
The collector-modulated circuit of Fig. 6.22 does just this. The waveform appearing at the
top of the RLC tuned collector circuit is the sum of V¢ and the information signal. We are
therefore essentially varying the supply voltage in accordance with s(f). The output is
bandpass filtered to eliminate harmonics created by nonlinear operations of the transistor.
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Figure 6.22 Collector-modulated circuit.
6.5 DEMODULATORS

We divide demodulators into two broad classifications: coherent and incoherent. Coherent
demodulators must be configured to take advantage of all information received, including
the amplitude and timing of the waveform. Incoherent demodulators do not need to estab-
lish absolute timing (phase) relationships.

Coherent Demodulation

We have previously observed that s(¢) is recovered from s,(f) by remodulating s,,(t) and
then passing the result through a lowpass filter. This yields the demodulator system whose
block diagram appears in Fig. 6.23. Such a system is known as a synchrenous demodula-
tor. It gets its name from the observation that the oscillator is synchronized in both fre-
quency and phase with the received carrier. Since the multiplier in the figure looks no dif-
ferent from the multiplier used in the modulator, we might expect variations of the gated
and square-law modulators to be applicable.

S (1) Low 1
- m::' 3 (1)

5.1
Figure 6.23 AM demodulator.
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6.5.1 Gated Demodulator

We first investigate the use of the gated modulator for demodulation. The gated demodula-
tor is shown in Fig. 6.24. The function p(r) is a gating function consisting of a periodic
train of unit-amplitude pulses. It can be expressed in a Fourier series as

plt) = ay + D, a,c08 2mnft (6.19)
n=1

The input to the lowpass filter is then

s, (Op(H) = s(r)cosz-nfj[ao + Ea,,cos anf,t]

= ays(r)cos2mf.t (6.20)

& S(Tr) za,[cos(n — 12mf + cos(n + 1)2mf 1]
n=1

The output of the lowpass filter is

1
$,(0) = 5 a,s(0) (6.21)
and demodulation is accomplished.
® Gate
im L
: hacia e
P

Figure 6.24 Gated demodulator.

We have illustrated the operation of the gated demodulator for suppressed carrier
AM. If we substitute A + s(z7) for s(t) in Eq. (6.20), we see that the gated demodulator pro-
duces an output

5,0 = -;-a,[A + 5(0) (6.22)

This represents the original information signal, shifted by an amplitude constant. If the
system contains ac-coupled devices, the constant will not appear in the output. If all am-
plifiers in the system are dc coupled, we may wish to remove the constant using a rela-
tively large series capacitor that charges to the average value of the signal. We are assum-
ing that the average value of the information, s(r), is zero. If this were not true, removal of
the constant would also remove some of the signal. Fortunately, most s(f) information sig-
nals have zero dc value.
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6.5.2 Square-Law Demodulator

We investigate the effect of adding the AM wave to a pure carrier term and then squaring
the sum. This yields

[s,(1) + Acos2mf 1] (6.23)
Equation (6.23) can be rewritten as

+ Alcos2mft)? = + APcos®2mf,
{[s(0) + Aleos2mfr)* = [s(r) + AVcos’2mf s (6.24)

_ Is() + AP + [s(r) + APcosdnf s
2

The second term in Eq. (6.24) is an AM wave with a carrier frequency of 2f. Hz. It can
therefore be easily rejected by a lowpass filter. The first term can be expanded as
2
S0, A
2

3 + As(r) (6.25)

Unfortunately, the frequency content of s(r) overlaps that of s(), and the two terms cannot
be separated. However, suppose we used a lowpass filter to isolate the entire term

[s(t) + AP

2 (6.26)

from Eq. (6.24). Note that this lowpass filter must pass frequencies up to 2f,. We have then
recovered the square of the sum of A and s(f). We could subsequently take the square root
of this to get

0.707|s(r) + A| (6.27)

Taking the magnitude of a signal represents a severe form of distortion. As a simple
example, suppose the signal were a pure sinusoid. Then the magnitude would be a full-
wave rectified sine wave with fundamental frequency twice the original frequency. The
rectified signal no longer contains a single frequency, but includes harmonics. If we lis-
tened to their sound in a speaker, the original sinusoid would be a pure tone, while the full-
wave rectified sine wave would be a raspy tone one octave higher, due to the harmonic
content. If the original signal were composed of a mixture of many frequencies, the distor-
tion effect would be far more severe. Indeed, full-wave rectified voice is not intelligible.
(Try it in the lab!)

But suppose A is large enough such that s(r) + A never goes negative. In that case,
the magnitude of s(t) + A is equal to s(r) + A, and we have accomplished demodulation.
This means that the added carrier at the receiver must have an amplitude greater than or
equal to the maximum negative excursion of s(f).

Effects of Frequency Mismatch

The demodulators we have been discussing require that we generate a replica of the carrier
at the receiver. The replica must be synchronized with the received carrier. (Frequency and
phase must be matched.) Let us investigate the consequences of frequency and phase mis-
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matches. We illustrate the phenomenon for a suppressed carrier AM wave. Suppose that
the local oscillator of Fig. 6.23 is mismatched in frequency by Af and in phase by A6. The
output of the multiplier is then

s,(Dcos[2m(f, + Af)r + A8]
= s(f)cos2nf rcos[2m(f. + Af)r + A8] (6.28)

1 s(l)[cos[ZwAft + A6) i cos[2m(2f. + At + AO]]

2 2

Since Eq. (6.28) forms the input to the lowpass filter of the synchronous demodula-
tor, the output of this filter is

cos(2mAft + AB)

s5,(0) = s(1) 2

(6.29)

This results because the second term of Eq. (6.28) has frequency content around 2f. + Af
and is therefore rejected by the lowpass filter. Equation (6.29) represents a signal s() mul-
tiplied by a sinusoid at Af Hz. We can assume that Af is small, since we attempt to make it
equal to zero. The modulation theorem then indicates that s,(f) has a Fourier transform
with frequencies ranging up to f,, + Af. Thus, even though the lowpass filter is designed to
pass frequencies only up to f,, it is reasonable to assume that this entire term passes
through the filter (since Af << f,,).

Note that if the phase and frequency are perfectly adjusted, Eq. (6.29) reduces sim-
ply to s(r)/2, as we already knew for the synchronous demodulator.

Suppose first that we are able to match the frequency precisely, but that the phase is
mismatched. Equation (6.29) then reduces to

_ s(f)cos AB

s,(0) 2

(6.30)

This is an undistorted version of s(¢), so we would normally not be concerned. However,
as the phase mismatch approaches 90°, the output goes to zero. If noise is added to the sig-
nal, the attenuation presented by the cosA# term could become a significant negative fac-
tor. That is, as A deviates from zero, the signal to noise ratio decreases.

One method of making the receiver insensitive to phase variations (i.e., making it
robust) is to use the quadrature receiver, as shown in Fig. 6.25. We have indicated a phase
shift of A6 on both the sine and cosine multiplier signal. Equivalently, we could have indi-
cated this phase shift on the input carrier.

Using trigonometric identities, we find the outputs of the two lowpass filters to be

5,(0 = %s(t)cos A6

i (6.31)
5,(0) = —Es(t)sin AB

L) W,
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Figure 6.25 Quadrature receiver.

After taking the square root of the sum of the squares, we find that
1 1
$,(0) = JVsi(0) = 2]s(0) (6.32)

As in the case of the square-law demodulator, undistorted demodulation is possible only if
s(t) = 0. This means that the quadrature demodulator works only for transmitted carrier
AM. Indeed, for that mode of transmission, we will find much simpler ways to demodu-
late a signal. We present the quadrature demodulator only to develop this important build-
ing block for later application.

Let us return to Eq. (6.29) and assume now that the phase has been perfectly
matched, but that the frequency is mismatched. The output of the synchronous demodula-
tor is then

i3 s(r)cos 2mwAft

2 (6.33)

S,(1)
The frequency mismatch is usually small (we try to make it zero), so the result will be a
slowly varying amplitude (beating) of s(z). If, for example, s(r) is an audio signal and the
frequency mismatch is 1 Hz, the effect would be to multiply s(t) by a 1-Hz sinusoid. This
is like taking the volume control of your radio and smoothly varying it from zero to maxi-
mum twice each second! Clearly, it is totally unacceptable. With a carrier frequency of 1
MHz, the 1-Hz mismatch represents only one part in 10°. But suppose you were an expert
at frequency matching, and your mismatch was only 10~ Hz. Then your volume goes
from maximum to zero once every 500 seconds. Unless we can derive the exact carrier
from the incoming wave, or unless both the transmitter and receiver carriers are derived
from the same source, synchronous demodulation is doomed to highly limited use.

6.5.3 Carrier Recovery in Transmitted Carrier AM
‘We have seen that synchronous demodulation requires perfect matching of the frequency

and a phase mismatch that does not approach 90°, Frequency matching is possible if the
AM waveform contains a periodic component at the carrier frequency. That is, the Fourier
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transform of the received AM waveform must contain an impulse at the carrier frequency.
This is the case with transmitted carrier AM.
We assume that the received signal is of the form

s(f)cos 21if 1 + Acos 2mft (6.34)

One way to extract the carrier is with a very narrow bandpass filter tuned to the carrier
frequency. In the steady state, all of the carrier term will pass through this filter, while
only a portion of the modulated carrier will go through. The Fourier transform of the
filter output is

S(f=f) + S(f+F) + AS(f + ) + AB(f - f)
7

S, = (6.35)

This equation applies for the range of frequencies in the passband of the filter, that is,
f.—BW/2<f<f +BW/2

The inverse transform is then

£+ BW/2
5,(f) = Acos2mft + I S(f — f)cos2ufidf (6.36)
I —BW2
The integral in Eq. (6.36) is bounded by
L5 _(rBw 637)

2nt

The smaller the bandwidth of the filter, the closer is the output to the pure carrier term.

An alternative to the narrow filter is a phase-lock loop, illustrated in Fig. 6.26. The
phase-lock loop is discussed in detail in the next chapter. For now, we merely indicate that,
if properly designed, the loop will lock on to the periodic component in the input to pro-
duce a sinusoid at the carrier frequency.

Input
PHASE
COMPARATOR vol)

vco

Figure 6.26 The phase-lock loop.

The implementation of the synchronous detector for transmitted carrier AM is
shown in Fig. 6.27. Figure 6.27(a) shows the bandpass filter used for carrier recovery, and
Fig. 6.27(b) shows the phase-lock loop.
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(1) cos 2mft + A cos 2mfu
Lowpass =
filter
Sendbust ~A cos 21rf€t
filter
(a)
5(7) cos 2mf.r + A cos 2mf s
Lowpass
filter b
Phase- | ~A cos 2mft
lock
loop
Figure 6.27 Carrier recovery in transmit-
(b) ted carrier AM.

6.5.4 Incoherent Demodulation

Coherent demodulators (detectors) require reproduction of the carrier at the receiver.
Since the exact carrier frequency and phase must be matched at the detector, accurate tim-
ing information is needed.

If the carrier term is sufficiently large in transmitted carrier AM, it is possible to use
incoherent detectors that do not have to reproduce the carrier or determine timing informa-
tion. Let us suppose that the amplitude of the carrier is large enough so that A + s(1) = 0.
We sketch a typical AM waveform in Fig. 6.28.

Square-law Detector

We noted earlier that the square-law demodulator is effective for the waveform presented
in Fig. 6.28. We repeat that demodulator as Fig. 6.29. The output of the squarer is

[A + s(O) + [A + s(t)]*cosdmf.t
2

The output of the lowpass filter (which passes frequencies up to 2f,) is

(A + sF
2

[A + s(t)cos®2mft = (6.38)

5,(0) = (6.39)
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2

Figure 6.29 Square-law detector for transmitted carrier AM,

If we now assume that A is large enough such that A + s(7) never goes negative, the output
of the square rooter is

s5,(0 = 0.707[A + s(1)] (6.40)
and demodulation is accomplished.

Rectifier detector

The squarer can be replaced by other forms of nonlinearity. In particular, consider the rec-
tifier detector shown in Fig. 6.30. The rectifier can be either half wave or full wave. We
will consider the full-wave variety here and ask you to examine the half-wave rectifier in
one of the problems at the end of the chapter.

5 (1) T 51(0) ~A + 5(0)
[Rea] e
H(f)
I e
_fm fm

Figure 6.30 Rectifier detector.
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Full-wave rectification is equivalent to the mathematical operation of taking the ab-

solute value. The output of the rectifier is then
510 = |A + s(0)||cos2nf 4] (6.41)

but since we assume that A + s(f) never goes negative, we can remove one set of absolute
value signs to get

5i(t) = {A + 5()}|cos2mf| (6.42)

The absolute value of the cosine is a periodic wave, as shown in Fig. 6.31. Its fundamental
frequency is 2f.. We rewrite s,(r) by expanding the rectified cosine in a Fourier series:

5,(0) = [A + s()]lay + a,cosdmft + a,cos8uft + -] (6.43)
The output of the lowpass filter is then
5,(1) = aglA + s(] (6.44)

and demodulation is accomplished.

l Figure 6.31 Rectified sine wave,

Before leaving the rectifier detector, we will point out the mechanism by which this
detector reconstructs the carrier waveform. Figure 6.32 shows that full-wave rectification
of the AM wave is equivalent to multiplying the waveform by a square wave at the carrier
frequency. That is, the process of taking the absolute value flips around the negative por-
tion of the carrier. This is equivalent to multiplication by — 1. Therefore, the rectifier,

1 = ‘

t

FULL-WAVE
RECTIFIER

Figure 632 Myltiplication by square wave vs. full-wave rectificgtion.
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which does not need to know the exact carrier frequency, is performing an operation that is
equivalent to multiplication by a square wave carrier at the exact frequency and phase of
the received carrier. We leave it as an exercise at the end of the chapter to show that a syn-
chronous demodulator can operate by multiplying the wave either by a cosine matching
the carrier or by a square wave matching the carrier.

6.5.5 Envelope Detector

The final detector we examine is by far the simplest. Let us observe the transmitted carrier
AM waveform of Fig. 6.33. If A + s(r) never goes negative, the upper outline, or enve-
lope, of the AM wave is exactly equal to A + s(r). If we can build a circuit that follows this
outline, we will have built a demodulator.

L ,Lf Figure 6.33 Transmitted carrier AM wave-
- form.

L.

It may be helpful to borrow an example from mechanics. Suppose that instead of
representing a voltage waveform as a function of time, the curve represented the shape of
a wire. One can envisage a cam moving along the top surface. If the cam is attached by
means of a shock absorber, or viscous damper device, it will approximately follow the up-
per outline of the curve. This is shown in Fig. 6.34. The behavior is much the same as that
of an automobile suspension system. You want the car to follow the outline of the road,
but you do not wish it to track every ripple and bump in the road surface.

Direction of motion

Damper

«+—— Cam

Figure 6.34 Mechanical outline follower.
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The higher the carrier frequency, the more smoothly the cam will describe the upper
outline of the curve, provided that it can respond fast enough to follow the shape of the
outline. (You would probably not want your car to fly through the air between peaks of the
road surface.) The outline, or envelope of the waveform, has a maximum frequency of f,,,
while the ripples (the carrier) have a frequency of f.. Intuition tells us that as long as
f: >> f, we can design the mechanical system.

We now construct the electrical analogy to this mechanical system. The mass of the
cam is represented by a capacitor. (F = ma = mv' is replaced by i = Cv' for a capacitor.)
The viscous friction provides a force proportional to velocity, much as a resistor provides
a voltage proportional to current. Finally, the cam is not attached to the wire; the wire
(road) can push upon the cam, but cannot pull it. This is a mechanical diode. The equiva-
lent circuit is then as shown in Fig. 6.35.

>t

+ .

€in = Sy (1 - €out

Figure 6.35 Envelope detector.

The circuit of Fig. 6.35 is known as an envelope detector. When properly designed,
it serves as a demodulator and is clearly far simpler to build than the demodulators we
have discussed previously.

We first examine the operation of the envelope detector and then explore the appro-
priate choice of parameter values. Let us begin by removing the resistor, as shown in Fig.
6.36(a). This circuit is known as a peak detector.

The analysis of the peak detector requires only two observations: (a) The input can
never be greater than the output (for an ideal diode), and (b) the output can never decrease
with time. The first observation is true because, if the input did exceed the output, the
diode would be supporting a positive forward voltage. The second observation follows
from the fact that the capacitor has no discharge path. Figure 6.36(b) shows a transmitted
carrier AM waveform (the carrier frequency has been drawn much lower than it would be
in practice, for illustrative purposes) and the output of the peak detector. The output is al-
ways equal to the maximum past value of the input.

5y (1) eoult)

S (D) T €oult)
U !

(a) ()
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If a discharging resistor is now added to the circuit, the output follows an exponen-
tial curve between peaks of the AM wave. This is shown in Fig. 6.37. If the time constant
of the RC circuit is appropriately chosen, the output approximately follows the outline of
the input curve, and the circuit acts as a demodulator. The output contains ripple at the car-
rier frequency (residual radio frequency), but this does not cause a problem, since we are
interested only in frequencies below f,,.

N S (1)
1
+ + oyl

S (1) T Eoull)
= B '

Figure 6.37 Addition of a discharging resistor.

The RC time constant must be short enough that the envelope can track the changes
in peak values of the AM waveform. The peaks are spaced at intervals equal to the recip-
rocal of the carrier frequency, while the heights of these peaks follow the information, s(r).
We can consider a worst case where s(¢) is a pure sinusoid at a frequency of f,,. This would
provide the fastest possible change in peak values. At this frequency, the peaks vary from
a maximum to minimum in 1/2f,, sec. It takes an exponential function 5 time constants to
get within 0.7 percent of its final value. Therefore, if we set the RC time constant to 10
percent of 1/f,,, the envelope detector can follow even the highest frequency. For example,
with an f, of 5 kHz, the time constant would be set to 1/50 msec, or 20 psec. This rule of
thumb represents a first cut at envelope detector design. We chose the highest envelope
frequency and viewed the waveform peaks (maximum and minimum). In reality, a sinu-
soid has its maximum slope in the middle and minimum slope at the extremes. Therefore,
choosing the time constant on the basis of extremes means that our detector will not track
all carrier peaks in between these extremes. We are saved by noting that typical informa-
tion signals spend only a small fraction of their time at the highest frequency. Also, the
large difference between carrier and envelope frequency allows a lot of leeway in choos-
ing the time constant. If the information signal s(r) is such that we expect significant peri-
ods near the highest frequency (as in the case, for example, of a soprano singing a particu-
larly high-pitched selection), we could safely choose a time constant considerably smaller
than that previously indicated.

Example 6.2

Design an envelope detector for use in demodulating a transmitted carrier AM waveform.
Suppose the carrier frequency is | MHz and the information signal is a voice waveform.
Solution: Once the diode is selected, all that is required in the design of the envelope detec-
tor is to choose the values of R and C in the circuit.

The highest frequency of the envelope of the AM waveform is f,, which we will as-
sume is 5 kHz for voice. The envelope detector must be capable of responding to the fastest
possible changes in the signal. The period of a 5-kHz waveform is 0.2 msec, and our guide-
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line calls for choosing an RC time constant that is 10 percent of this value, or 20 psec. This

choice will not guarantee that the envelope detector output hits all of the peaks of the carrier.

However, since a certain amount of ripple at 1 MHz will not hurt the system, we can afford to

- shorten the time constant. For example, a time constant of 10 psec would allow the signal to

come within 0.005 percent of the final value in tracking the fastest envelope frequency, and

the carrier response would decrease only to 0.975 of the peak (i.e., the exponential decay over

one period of the carrier). Even though the envelope is very rarely at the maximum frequency

for any sustained period of time, we can certainly afford to play it safe and design for a rather

short time constant. The fact that a system is designed for audio does not mean!that all trans-

mitted signals will be voicelike. Rather, it means only that they will occupy audio frequencies.

Once the time constant is chosen, it is necessary to specify the type of diode, the resis-

tance and capacitance, and the power rating of the components. The resistance is normally

s chosen with a view toward input and output impedance matching. For the input to the enve-

s lope detector, we would like R to be as large as possible to avoid loading the previous cir-

: cuitry, Let us choose R = 1 k). Then, to achieve a time constant of 10 psec, the capacitor
value must be 0.01 pF

6.5.6 Integrated Circuit Modulators and Demodulators

3 Several integrated circuit (IC) manufacturers have produced balanced modulators and de-

¥ modulators. Among these are the Signetic MC1496/MC1596 and the Analog Devices
ADG630. These ICs contain differential amplifiers either that are driven into saturation or
that simulate an electronic commutator (a device that alternately multiplies by positive
and negative values). The reader may consult the literature for details of the electronics;
we will concentrate upon applications in this text.

Figure 6.38 shows the MC1496 used as a transmitted carrier amplitude modulator.
The same circuit can be used to generate suppressed carrier AM by choosing different re-
sistor values in the carrier adjust circuitry.

The MC1496 is also used for demodulation of transmitted carrier AM. The circuit is
shown in Fig. 6.39. The carrier for this operation is derived by driving the high-frequency
amplifier into saturation, thereby providing an amplified and limited output that resembles
a square wave at the carrier frequency. This carrier feeds into one of the MC1496 inputs,
along with the AM wave into the other. The output must be lowpass filtered to recover the
information signal.

6.6 BROADCAST AM AND SUPERHETERODYNE RECEIVER

The electromagnetic spectrum has been described as a natural resource. The dictionary de-
fines resource as “‘something that lies ready to use or that can be drawn upon for aid or to
take care of a need.” Natural resource is defined as “those actual and potential forms of
wealth supplied by nature.” The electromagnetic spectrum does indeed lie ready for use to
take care of a need—the need to communicate. Also, it is a potential form of wealth, and
while it is not expendable in the sense in which oil and natural gas are, it does get used up
in the sense that only a limited number of users can employ it at any one time.

S (0)C
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Figure 6.39 Transmitted carrier AM demodulator.
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For these reasons, it has become necessary to regulate this valuable resource. Not
only the transmission, but also the reception, of electromagnetic waves, is regulated. Inter-
esting legal issues surround the reception of police radio or scrambled satellite entertain-

: ment channels. In the early days of satellite entertainment, stories circulated about a man

. who was sued for erecting a backyard antenna to receive satellite signals countersued the

broadcaster for injecting signals onto his private property without his permission! Thus,
. we provide additional job security for lawyers. speriiely 1
& When U.S. regulatory bodies were debating technical solutions to eavesdropping on
% cellular telephone conversations, they opted instead simply to make it illegal to intercept
o such signals. (You can draw your own conclusions about the effectiveness of this ap-
.?" proach) Nonetheless, the need for regulation is universally acknowledged. The Interna-
HI tional Telecommunications Union (ITU), based jn Geneva, Switzerland, is charged with
3| worldwide regulation of the airwaves; its membership extends across most nations
% throughout the world. The ITU has designated broad bands of frequency and has issued
3 regulations within each band. The bands are as follows:

VLF 3-30 kHz

_f LF 30-300 kHz
) MF 300-3,000 kHz
o HF 3-30 MHz
r VHF 30-300 MHz
e UHF 300-3,000 MHz
£ SHF 3-30 GHz
i‘” EHF 30-300 GHz

VLF transmissions are in the form of surface waves, and they can travel over long dis-

=

The regulatory body within the United States that sets rules (within the ITU general
rules) is the Federal Communications Commission (FCC). The commission’s regulations
fill many volumes, which are available in technical libraries.

In the United States, the AM broadcast band extends from 535 to 1,605 kHz. Other
parts of the world have a slightly higher upper frequency cutoff (1,606.5 kHz). Within the
band, stations are licensed by the FCC to operate commercial broadcast services. Trans-
mission is by transmitted carrier AM, and the maximum information frequency, £,,, is spec-
ified as 5 kHz. Assigned carrier frequencies must therefore be separated by 10 kHz. With
this spacing, the entire band can support up to 107 stations. Licensing of stations depends
on many factors, the most important being the location of the antenna, radiated power, an-
tenna pattern, and times of broadcast.

The location of the antenna is important because a low-power station in a rural area
may have fewer constraints than a high-power station in a large metropolitan area where
many broadcasters are competing for the limited frequency space. If two high-power sta-
tions were assigned adjacent carrier frequencies, the filtering demands on the receiver
would be excessive. The height and altitude of the antenna, of course, also affect the range
of transmission.

5 tances. Radio-frequency energy in this band is capable of penetrating oceans, so the band
.N: is used in submarine communications. The VHF and UHF bands are used for television.
4 Additionally, cellular telephones use portions of the UHF band. We shall concentrate on
3 the MF band around 1 MHz.
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The rac}:‘qted power affects the range of transmission as well. Accordingly, the FCC
must be careful not to assign identical carrier frequencies to two separate stations whose
broadcasts will be received at the same point.

The antenna pattern affects the range as a function of bearing from the antenna. For
example, a 5-kW station that broadcasts omnidirectionally creates far less interference
with a station 500 km away than does a 5-kW station that beams all of its power in that
particular direction.

The time of broadcast affects the range of transmission. The transmission character-
istics of air at medium frequencies depend on temperature and humidity, which generally
differ from day to night. Indeed, it is not uncommon for a station that is heard at distances
up to 150 km during the day to be received 500 km away after dark. Therefore, some sta-
tions are licensed to operate only during daylight hours.

With the preceding gs an introduction, we are now in a position to understand the
operation of the standard broadcast AM receiver. We probably will not be able to repair
one (a technician with a familiarity of electronics is needed for that), but we certainly can
understand its block diagram.

Several basic operations can be identified in any broadcast receiver. The first is sta-
tion separation: We must pick out the one desired signal and reject all the other signals.
The second operation is amplification: The sig:}iﬂ%::sted by the radio antenna (on the
order of 1 V) is far too weak to drive the electronicsin the receiver without first being
amplified. The third operation is demodulation: The incoming signal is amplitude modu-
lated and contains frequencies centered about the carrier frequency.

Separating one channgl from the others requires a very accurate bandpass filter with
a sharp frequency cutoff characteristic. Suppose, for example, that we wish to listen to a
station with carrier aj 1.01 MHz (1010 on the AM dial). That station actually occupies
1.005 to 1.015 MHz in frequency. The adjacent stations occupy 0.995 to 1.005 and 1.015
to 1.025 MHz, so the bandpass filter must be very close to ideal. The FCC deals with this
situation by avoiding licensing of powerful stations in adjacent frequency slots. Nonethe-
less, the receiver must be capable of distinguishing among closely separated local stations
when they do exist. Assuming that the listener would want to tune the receiver to any sta-
tion in the band, the filter would have to be adjustable. That is, the band of frequencies that
it passes must be capable of variation.

To make a bandpass filter approach the ideal characteristics, we need multiple stages
of filtering; a single RLC circuit does not have a high enough Q to accomplish the station
separation. The tuning of multiple-section filters is no easy task, however. For example, you
might have to vary three unequal capacitors in a particular manner to achieve adjustment of
the center frequency of a third-order Butterworth filter. Early AM receivers contained such
filters and typically had three tuning dials (variable capacitor controls) that had to be simul-
taneously adjusted. The family gathered around the wireless, and the head of the household
(in those days, probably a man) would twiddle the three knobs, It was a major cause for cel-
ebration when a station (complete with crackling sounds) appeared at the speaker.

Fortunately, Edwin Armstrong changed all of this when he invented the superhetero-
dyne receiver in 1918. This simple device eliminated the need for complex adjustment of
the filter and ushered in the radio era.

Recall that multiplication of a signal by a sinusoid shifts all frequencies up and
down by the frequency of the sinusoid. Because of this, station selection can be accom-
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plished by building a fixed bandpass filter and shifting the input frequencies so that the sta-
tion of interest falls in the passband of the filter. Looked at another way, we construct a
viewing window on the frequency axis. Then, instead of moving this window around to
view a particular portion of the axis, we keep the window Stationary and shift the entire
axis. The shifting process is known as heterodyning, and the resulting receiver is the su-
perheterodyne receiver. The process of heterodyning is applicable to other forms of modu-
lation (e.g., FM).
A block diagram of an AM broadcast receiver is shown in Fig. 6.40.

| _tunable tunable
e local oscillator
tuned tuned Tuned , -
l'fl fi if ﬂ if - if awelope .ud:m E
7- amplifier | | amplifier | | amplifier 7 detector amplifier g I

5(0 50 s s4(1) s5(1) se(1)

Figure 6.40 AM broadcast receiver.

In the figure, the antenna receives a signal that is a weighted sum of all broadcasted
signals. After some filtering, which we will examine in a moment, the incoming signal is
amplified in a radio frequency (rf) amplifier. The signal, s,(r), is then shifted up and down
in frequency by multiplying by a sinusoidal generator, called the local oscillator. The
shifting or heterodyning operation is also known as mixing.

The output of the heterodyner is applied to the sharp bandpass filter consisting of
multiple filtering stages. This filter is normally combined with amplifiers. The fixed band-
pass filter is set to 455 kHz, called the intermediate frequency (if), and has a bandwidth of
10 kHz, matching that of each station. This frequency is not within the AM broadcast band
and is specified by the FCC. If stations were authorized to broadcast at this carrier, some
of the signal would enter the if portion of the receiver (since every piece of wire acts as an
antenna) and would be heard on top of the desired station. In most receivers, the if filter is
made up of three tuned circuits that are aligned so as to generate a Butterworth filter char-
acteristic (poles around a semicircle in the s-plane). At s4(¢), we have a modulated signal
whose carrier frequency has been shifted to 455 kHz and that has already been amplified
and separated out from the other signals.

Let us now determine the required frequency of the local oscillator. Suppose you
wish to listen to a station at the lower end of the dial, say, a carrier frequency of 540 kHz.
To shift this frequency to 455 kHz, you would have to multiply by a sinusoid of either 85
or 995 kHz. Now suppose you wish to listen to a station at the top of the dial, with carrier
at 1,600 kHz. Then the local oscillator setting must be either 1,145 or 2,055 kHz. To tune
in any station in the band, the oscillator must be tunable over the range from 85 to 1,145
kHz or the range from 995 to 2,055 kHz.
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The second of these ranges is selected for practical reasons. The local oscillator is
set at the sum of 455 kHz and the desired carrier frequency. The resulting oscillator must
tune over a range where the highest frequency is a little more than two times the lowest. If
the first range had been selected, the highest frequency would be 13.5 times the lowest. It
is much easier to construct variable oscillators for ranges that vary by a factor of 2 to |
than by a factor of 13.5 to 1. The higher range might require a range switch.

The iver then puts s4(f) through an envelope detector and then amplifies the sig-
nal (usually using push-pull power amplifiers) before applying it to a loudspeaker. After
detection, the signal is at audio frequency (af). Some filtering may be done to provide tre-

t problem not mentioned earlier is that heterodyning produces both an
upshift and a downshift in frequency (i.e., sums and differences). While one of these shifts
moves the desired station into the if window (450 to 460 kHz), the other moves another
band of frequencies into the same window. This undesired signal is called an image, and
eliminating it is not very difficult.

As an example, suppose you wish to listen to a station at a carrier frequency of 600
kHz. Then the local oscillator is set to 600 + 455 = 1,055 kHz. Multiplication by this si-
nusoid places the desired 600-kHz station right into the if filter passband. But there is an-
other station at a carrier of 1,055 + 455 = 1,510 kHz that, when multiplied by the local
oscillator, will produce a component at 455 kHz. This image station would be heard right
on top of the desired station.

The separation between the image and the desired station is twice the if frequency,
or 910 kHz. This places the image 91 frequency slots away from the desired station. The
89 stations between the two are eliminated by the if filter.

A bandpass filter with a bandwidth of less than 1,820 kHz would accomplish the
separation. Such a filter must pass the desired station while rejecting the station 910 kHz
away. The filter must be tunable, but it need not be a sharp bandpass filter. We do not care
what it does to the 89 stations between the image and the desired signal. A single tuned
stage is therefore sufficient. This is shown in Fig. 6.41.

HA 2x
if frequency

/\ » ,,

Desired
listening frequency

Figure 6.41 Image rejection process.

In practice, when the tuning dial on a receiver is turned, this sloppy RF rejection fil-
ter is tuned at the same time that the frequency of the local oscillator is changed. Before
electronic tuning, the shaft of the tuning dial connected to two separate variable-capacitor
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sections. One of/these formed part of the image rejection filter, and the other formed part
of the tuning circuit of the local oscillator. This is indicated in Fig. 6.40 as a dashed line
connecting the two functions.

Integrated Circuit Receiver

Many of the functions of the superheterodyne AM radio receiver have been implemented
using integrated circuits. One examplg is the TEA5550 AM radio circuit from Signetics.
This chip contains the balanced mixer,\if amplifier, detector, rf amplifier, local oscillator,
and automatic gain control seen in the superheterodyne receiver. Its block diagram and
pin configuration are shown in Fig. 6.42. We have discussed all of these functions except
automatic gain control (AGC). As you tune a receiver across the AM dial, the various sta-
tions that come in have different voltage levels. The level depends on the transmitted
power, the distance from the transmitter, the antenna pattern of both the transmitter and
the receiver, and the frequency characteristics of the channel. To minimize the amount of
adjustment of the volume control as we change from one station to another, and to de-
crease time-varying volume effects, a form of feedback is employed in most radio re-
ceivers. The output amplitude is sensed (using a lowpass filter with a time constant on the
order of several seconds), and the level is fed back to the various amplifier stages to affect
the Q points. As the level increase, the Q points are adjusted to reduce amplification, thus
providing a form of negative feedback that tends to keep the output level constant.

Mixer if
output input
o e (@]
3 7 8
balanced amplifier Detector
mixer
f 1 f ; AGC
input © amplifier Oscillator amplifier
Iﬁ
O
To
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circuitry

Figure 6.42 Integrated circuit AM receiver.
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When the AM radio receiver chip is used as part of a radio, external circuitry is re-
quired. In particular, fabrication of capacitors of the size needed is not practical on the IC.
We must therefore configure external circuitry for the oscillator and tuning portions of the
system. (See application manuals from IC manufacturers for details of the actual circuitry
for using the IC in a radio receiver.)

6.7 ENVELOPES AND PRE-ENVELOPES

We have referred to the envelope of a waveform as an outline that follows the peaks of the
carrier. The envelope detector attempts to follow this outline. Our intuitive definition
could be formalized as follows:

Given s(f)cos2mf,t, where the frequencies s(r) are much less than f,, the envelope is defined as
the absolute value of s(r).

This definition is based on observation of the time waveform.

The foregoing intuitive definition is not very satisfying, since it applies only to a
narrow class of signals. We shall now explore a mathematical definition of the envelope
that is identical to the intuitive definition for the class of functions to which the intuitive
approach applies.

The pre-envelope (also known as the complex envelope or analytic function) of a
waveform r(r) is defined as the complex function of time whose Fourier transform is given
by

Z(f) = 2U(SIR(S) (6.45)

where U(f) is the unit step function and R(f) is the transform of r(¢). That is, the trans-
form of the pre-envelope is zero for negative f and twice the original transform for positive
f. The symbol z(r) is commonly used to represent the pre-envelope function. Note that z(r)
cannot be a real function of time, since the magnitude of its transform is never even.

Example 6.3

Find the pre-envelope of r(f) = cos 2mf1.
Solution: The Fourier transform of r(r) is given by

1
R(f) = 318 =1 + 8(f + fo))

The transform of the pre-envelope is then
L1 )= NIl
The function of time corresponding to this transform is
z2(r) = e

You have seen this function in sinusoidal steady-state analysis in your circuits course. When
you wish to find the response of a circuit to a sinusoid, you replace the sinusoid with a com-
plex exponential. You do this primarily to carry the amplitude and phase in a single operation,
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rather than having to track sines and cosines through the system. However, in reality, you are
substituting the pre-envelope of the sinusoid }o\the actual function of ti

We now express z(f) in terms of r(t). That is, we translate the Fougier transform trun-

cation process of Eq. (6.45) into an equivalent operation in the time in. We start with
1) = 2r(t)*F~[U(Sf)] (6.46)
The inverse Fourier transform of U(f) is found from the table in appendix II:
1 1
U(f}(—)—z—a(f) _E‘n—jt (6.47)
Finally,
1 =]
= *— - .
z(n) = 2r(1) - 8(1) + 2r(n) 2mft
s (6.48)
. ML B

Note that the real part of z(¢) is the original function of time, r(z), just as the real part of
e is cos 2mft. The imaginary part of z(r) is given by the convolution of r(r) with 1/t
This convolution is useful in a number of applications and is known as the Hilbert trans-
Jform of r(t). The symbol for the Hilbert transform of a function of time is the same letter as
that denoting the function, with the addition of a caret. Thus, the Hilbert transform of r(t)
is H(1).

The Fourier transform of 1/t is sgn( f). Therefore, taking the Hilbert transform of a
function of time is equivalent to taking the mirror image of the portion of the Fourier
transform to the left of the origin. Using this fact, we can see clearly how the pre-envelope
results from Eq. (6.48). Taking the Fourier transform of that equation yields

Zf) = R(f) + R(f)sgn(f) = R(f) + R(f) (6.49)

where f?( f) is the Fourier transform of H7). For positive f, Z( f) is 2R(f), while for nega-
tive f, it is zero.
The Hilbert transform arises whenever we perform a truncation of a portion of the
frequency axis. We will see it again when we study single sideband in the next section.
The envelope is defined as the magnitude of the pre-envelope.

Example 6.4

Find the envelope of r(r) = cos 2nf.t.
Solution: The pre-envelope of r(r) was found in Example 6.3 to be

() = 2
The magnitude of this function is equal to unity. Therefore, the envelope of the function is a

constant, 1. We already knew this from our intuitive definition of the envelope, since the func-
tion of time represents an unmodulated carrier wave.
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Example 6.5 =
Find the envelope of
5,(1) = s(f)cos 2mf s

Solution: We must first find the pre-envelope of the function. The Hilbert transform is
found by inverting the negative-f portion of the Fourier transform, S,.(f):

5.0 = S.(Psaa() = 518G = £) = S+ )]

In writing this equation, we have assumed that S(f + f;) lies completely to the left of the ori-
gin. This result therefore applies as long as f,, < f.. The inverse Fourier transform of 5,,(f) is
given by

§,,(1) = js(t)sin 2nf.t
The pre-envelope is given by
Z,,(0) = s()cos 2mf.t + js(t)sin 2mf 1
The envelope is the magnitude of the pre-envelope, or
|za(8)| = Vs ()cos 2mf,t + sin 22mf 1]

= Vs(1) = |s(n)]

This agrees with our intuitive definition. However, note that the intuitive definition requires
that f. >> f,,, while the mathematical definition requires only that f. > f,.

We have established a definition of envelope that applies to any function of time. A
worthwhile, although very difficult, task would be to analyze the envelope detector circuit
with general-input functions of time and compare its output to the (mathematical) enve-
lope of the input.

The intuitive definition that applies when the envelope is slowly varying will prove
sufficient for our work in AM. The concept of the pre-envelope proves useful in detection
theory, which we explore in later chapters of the book dealing with digital communication.

SINGLE SIDEBAND (SSB)

In the AM systems we have studied, the range of frequencies required to transmit the sig-
nal is the band between f. — f,, and f; + f,.. The frequency f; is the carrier frequency, and f,
is the maximum frequency of the baseband signal s(¢). The total bandwidth is then 2f,,. The
frequency spectrum is a “natural resource” whose conservation is critical. The more fre-
quency bandwidth required for each channel, the fewer number of stations can communi-
cate simultaneously. Wouldn't it be lovely if we could find a way to send information us-
ing less than 2f,, of bandwidth?

Single sideband is a technique that allows transmission in half of the bandwidth re-
quired for AM double sideband. In Fig. 6.43, we define that portion of S,,(f) which lies in
the band above the carrier as the upper sideband. The portion below the carrier is the lower
sideband. A double-sideband AM wave is composed of a lower and an upper sideband.
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Smlf)

m upper
: sideband__ sideband

1
} f d
I fe

Figure 6,43 Definition of sidebands,

We can use the properties of the Fourier transform to show that the two sidebands
are dependent on each other. The transform of the AM wave is formed by shifting S(f),
the transform of the signal, up and down in frequency. The lower sideband is formed from
the negative-f portion of S( f), and the upper sideband is the positive-f portion of S(f). We
assume that the information signal s(¢) is a real function of time. Therefore, the magnitude
of S(f) is even and the phase is odd. The negative-f portion of S(f) can be derived from
the positive-f portion by taking the complex conjugate. Similarly, the lower sideband of
s,(t) can be derived from the upper sideband. Since the sidebands are not independent, it
should be possible to transmit all essential information by sending only a single sideband.
This is the essence of single-sideband communication.

Figure 6.44 shows the Fourier transforms of the upper and lower sideband versions
of the AM wave, denoted s,.,(f) and s,,,(7), respectively. The double-sideband AM wave is
the sum of the two sidebands:

S = 51(D + S(1) (6.50)

SMU’) sllh(f)

y kel de

e fe = fe

Figure 6.44 Single-sideband Fourier transforms.

Since the single-sideband waveform resides in a subset of the band of frequencies occu-
pied by the double-sideband waveform, it automatically satisfies two of the requirements
of a modulation system. That is, by proper choice of the carrier frequency, we can move
the modulated waveform into a range of frequencies that transmits efficiently. We can also
use different bands for different signals, thereby allowing simultaneous transmission of
multiple signals. ‘

The synchronous demodulator can be used to demodulate single sideband. This can
be shown either pictorially in the frequency domain or mathematically in the time domain.
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Looking first at frequencies, we know that multiplication by a sinusoid shifts the Fourier
transform both up and down by the frequency of the sinusoid. Figure 6.45(a) shows the
Fourier transform that results when s,.,(r) is multiplied by a sinusoid at a frequency of f.,
and Fig. 6.45(b) shows a similar result for the lower sideband signal. In both cases, a low-
pass filter would recover a replica of the original information signal.

snsb(f)
e | P f
F | oi
i e N\
/ \ / \
/ \ / b
” ‘\ / \\
s F ES""‘"U) cos 2"}fc‘] X
! \ / \\
/ \ / \
/ \ / \
4 \ 4 3
=2 l 2f,
(a)
Slsh(f)
=k I / I
’ fe N\ Foacty
/ \ / \
/ \\ / \
/ b ) / \
I’ Rl \\
/ ’ - e by ¥ \
/ \
’ L F [8,(1) cos 2nf s 1Y,
,’ \\ /' \\
/ \ 45 \
N N .7, Sy
=2f, | 2,

(b)
Figure 6.45 Demodulation of single sideband.

We can illustrate this same result in the time domain by multiplying the single-
sideband waveform by a cosine at the same frequency as the carrier. Before continuing,
however, we need to derive an expression for the single-sideband waveform that is a func-
tion of time.

We begin by expressing the lower sideband Fourier transform as a product of the
double-sideband transform with a bandpass filter function. The filter passes only the lower
sideband:

Siw(f) = S,(NHH(f)

_ SU LU+ 1) = SU = LIUS = f) + S(fF = f)
2

(6.51)
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We next express each unit step function of Eq. (6.51) in an alternate manner, using the
sign (sgn) function:

U(f+fc) s _I...+s—gnz(-f_+.-_f_L) (6.52)
1= U(f-f) =1_—&";(£__fc)

We can now relate these expressions to the Hilbert transform. Recall that the Fourier
transform of the Hilbert transform is given by

S(f)sgn(f)
J

S(f) = (6.53)

Substituting Egs. (6.52) and (6.53) into (6.51) yields

L[S(f+ 1) +5(f = $F=f)=8F+7f
Swiry = J[BLL A0 U2 S 4]

Both ratios in brackets in Eq. (6.54) should look familiar. The first is in the form of
the Fourier transform of an AM wave. The positive and negative frequency shifts repre-
sent multiplication of s(r) by a cosine function. The second ratio corresponds to the func-
tion of time that is produced when s(7) is multiplied by a sine wave. The result is that the
lower sideband signal is given by

(6.54)

S0 = %s(r) cos2mfr + -21*§(r)sin21'rf‘1 (6.55)
The upper sideband can be derived from the lower sideband by observing that the sum of
the two sidebands is the double-sideband AM waveform. Therefore,

Susp(t) = 8,(t) — 510 (6.56)

= %s{t)coshfcr - *;' §(r)sin2mf 1

Now that we have functions of time for the single-sideband waveforms, we can re-
turn to the analysis of the synchronous demodulator. We use the time domain expression
of Egs. (6.55) and (6.56) for the single-sideband wavefornis:

s(f)ycos?2mf.t + §(r)sin2f, tcos2mf 1
2

The plus sign applies to the lower sideband and the minus sign to the upper sideband. We

use trigonometric expansions to express Eq. (6.57) as

s(r) + s()cosdmft * §(t)sindmf s
4

The output of the lowpass filter with this quantity as input is simply s(r)/4, so we have ac-
complished demodulation.

Syp(f)cos2mft = (6.57)

sup()cos2mft = (6.58)
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Recall that in double sideband, we did not particularly favor the synchronous de-
modulator, since a phase mismatch led to attenuation and a frequency mismatch resulted
in a very serious form of multiplicative distortion. Such a mismatch in single sideband is
also serious, but slightly more forgiving than in the case of double sideband.

If the phase is mismatched, Eq. (6.58) becomes

syp(Dcos2m(f, + Afy = %s(t)cosz'rrfctcos%r(fc + A0y

1 (6.59)
i) 2 §(rysin2mf tcos2m(f. + Ab)r

The output of the lowpass filter is then

s(r)cos A6

4 (6.60)

As in the case of double-sideband AM, the phase mismatch causes an attenuation.
If the frequency is now mismatched, Eq. (6.58) becomes

sp(t)cos 2n(f. + Af)t =

s(t)cos 2mAft $ s(t)ycos 4m(f. + Af)
4 4

o 3(r)sin 2wAft s S(nsind4m(f, + Af)
4 4

(6.61)

It is clear that only the first and third terms go through the lowpass filter. If only the first
term appeared in the output, the effect would be the same as that experienced in double
sideband. However, the addition of the Hilbert transform term changes the output. The
specific form of that change can be seen if we consider the special case of a sinusoidal
modulating signal. That is, let s(r) = cos2mf,,t. The output of the lowpass filter is then pro-
portional to cos2( f,, = Af)r, with the plus sign obtaining for lower sideband and the mi-
nus sign for upper sideband. (You can prove this either from Eq. (6.61) or by writing the
single-sideband waveform as a single sinusoid at a frequency of either f. — f;, or f, + f,.
depending upon whether lower or upper sideband is being considered.) The effect of the
frequency mismatch is therefore a frequency offset in the demodulated wave. If the infor-
mation signal is a sum of sinusoids, the demodulated signal will be a sum of shifted sinu-
soids. Thus, in the general case, we see an overall shifting of frequencies of s(f) by the
amount of the frequency mismatch. You might think that this results in a change in pitch of
the sound, but such is not the case. For example, suppose you hummed into a microphone.
Then the resulting waveform would be periodic with a fundamental frequency equal to the
frequency at which you are humming. Harmonics would occur at multiples of this fre-
quency. If each frequency component is shifted by the same amount, the relationship
among the harmonics is destroyed, and the resulting sound changes. The effect upon mu-
sic is generally considered to be unacceptable. The effect upon voice is sometimes accept-
able, since the resulting sound is usually intelligible (at least, for small Af relative to the
frequencies that are present). Some have described the effect as a “Donald Duck” voice.




238 Amplitude Modulation Chap. 6

Therefore, while mismatches are to be avoided, the effects may be considered less devas-
tating than in the case of double sideband.

With double sideband, we made demodulation simpler by adding a carrier. We can
also add a carrier to the single-sideband waveform, recognizing that the carrier would be
at the edge of the band of frequencies occupied by the waveform. The carrier could be ex-
tracted using a filter at the receiver, or a phase lock loop could be used.

Can we use an incoherent detector, such as the envelope detector? To answer this
question, let us examine transmitted carrier lower sideband, which is given by

s(1) S(£)sin 27rf 1

Siu(t) + Acos 2mft = [A Gr ——]cos LA B 5 (6.62)

2

The envelope of this waveform is found by combining the cosine and sine into a single si-
nusoid with a time-varying amplitude and phase. The envelope is given by

‘/A+1 T 6.63
[ 2s(z)] [2 §(r)] (6.63)

In general, this does not look anything like s(r). However, if the constant A is very large,
the first term predominates, and the expression is approximately equal to A + s(1)/2. Of
course, large values of A mean inefficient operation, with most of the transmitted energy
going into the carrier. Therefore, a system of this type finds limited application.

6.9 VESTIGIAL SIDEBAND

The advantage of single over double sideband (SSB and DSB) is the former’s economy of
frequency usage. That is, SSB uses half the corresponding bandwidth required for DSB
transmission. The primary disadvantage of SSB is the difficulty in building a transmitter
or an effective receiver for it. One problem is that when we attempt to build a sharp filter
to remove one of the sidebands, the phase characteristic of the filter develops ripple. The
closer one approaches the amplitude characteristic of the ideal filter, the worse becomes
the phase characteristic. One area in which frequency conservation becomes critical is
television, where bandwidths are orders of magnitude greater than those used for voice
transmission. Phase distortion in a video signal causes offset of the resulting scanned im-
age, and this is seen as ghost images on the screen. The eye is much more sensitive to such
forms of distortion than is the ear to equivalent forms of voice distortion. We therefore
have reason to explore a compromise between SSB and DSB.

Vestigial sideband (VSB) possesses a frequency bandwidth advantage approaching
that of single sideband without the disadvantage of difficulty in building a modulator. It is
also easier to construct a demodulator for this form of communication.

As the name implies, VSB includes a vestige, or trace, of the second sideband. Thus,
instead of completely eliminating the second sideband, as in the case of SSB, we eliminate
most, but not all, of it.

Suppose we begin with DSB but filter out one of the sidebands. In contrast to SSB,
with VSB we use a filter that does not closely approach the ideal infinite roll-off. The re-
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sult might resemble Fig. 6.45, where we show the double-sided transform, the filter char-
acteristic, and the output transform that is generated.
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Figure 6,46 Vestigial sideband generator.

Suppose now that this output signal forms the input to a synchronous (coherent) de-
modulator. Then, when the VSB signal is multiplied by a cosine at the carrier frequency,
the Fourier transform shifts both up and down by the carrier frequency. The part that shifts
down passes through the lowpass filter. The part that shifts up resides around 2f; and is re-
jected by the filter. The filter output then has a transform given by

S(OH(f + f) + H(f = f)]
4

Equation (6.64) can be used to set the conditions on the filter. The bracketed sum is
shown in Fig. 6.47 for a typical filter transfer function H( f). This filter transfer function,
H( f), must display odd symmetry for frequencies around the carrier such that the sum of
the two terms approximates a constant characteristic. The tail of the filter characteristic
must be asymmetric about f = f.. That is, the output half of the tail must fold over and fill
in any difference between the inner-half values and the value for an ideal filter.

Suppose that we add a carrier term to a vestigial sideband signal. The vestigial side-
band transmitted carrier waveform is then of the form

s(1) + A cos 2nft (6.65)

This carrier term can be extracted at the receiver using either a very narrow bandpass filter
or a phase lock loop. If the carrier term is large enough, an incoherent detector (e.g., an en-
velope detector) can be used. We said this same thing in regard to SSB, where the carrier
had to be much larger than the signal. In DSB, the carrier need only be of the same order
of magnitude as the signal. The required carrier size for VSB is between these two ex-
tremes. While the addition of a strong carrier significantly decreases efficiency, the ease of

Solf) = (6.64)
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Figure 6.47 Bandpass filter constraint for vestigial sideband.

construction of an envelope detector makes this the system of choice in television, which
we discuss in Section 6.12.

6.10 HYBRID SYSTEMS AND AM STEREO

‘We now investigate a hybrid modulation technique that permits a new form of multiplex-
ing of signals. We have repeatedly stated that signals can be separated, provided that they
do not overlap in time or in frequency. Double-sideband AM maintains frequency separa-
tion in order to keep channels from interfering with each other, but it uses twice the band-
width of single sideband. The latter fact, however, hints that it might be possible to send
two double-sideband AM signals that overlap in both time and frequency and yet still be
able to separate them at the receiver. Indeed, quadrature amplitude modulation (QAM)
accomplishes this.

Suppose we have two information signals s,(f) and s,(f), each of which is limited to
frequencies below f,,. We now modulate two carriers of exactly the same frequency with
these two signals. However, the carriers are in phase quadrature (90° out of phase) with
each other. The sum of the two AM waveforms is then

8,1 (1) + 5,200 = s,(r)cos2mft + s5,(r)sin2wf + (6.66)

Even though the two AM waveforms overlap in both frequency and time, they can be sep-
arated by the receiver shown in Fig. 6.48. The signal at the input of the upper lowpass
filter is

5,(f) = 5,(t)cos 22nf.t + s,(1)sin 2mf tcos 2mf.t
1 (6.67)
= —z{s,(r) + 5,(t)cos 4mf 1 + s,(1)sin 4mf.1)
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Figure 6.48 QAM receiver.

To derive the rightmost expression of Eq. (6.67), we applied trigonometric identities to the
products of sines and cosines in the preceding expression. The output of the filter is then
s 1(')’2.

The signal at the input of the lower lowpass filter is

s5,(1) = s,(Hcos2mfssin2mf.t + s,(f)sin’2mf.t (6.68)
1
= -2-[sl(t)sin41|:fct + 5,5(f) — sy(t)cosdmf 1]

The signal at the output of the filter is then s,(¢)/2, and separation is accomplished. Of
course, this scheme requires perfect phase control at the receiver to avoid having one sig-
nal interfere with the other. Hence, since phase carries some of the information, incoherent
detection cannot be used; we must be able to recover the carrier precisely.

Example 6.6

A QAM scheme of the type shown in Fig. 6.48 is used to simultaneously transmit two wave-
forms in a channel in the frequency range f. = f,. The oscillators in the receiver are in error
by Af. Assuming that the information signals are sinusoids of equal amplitude, find the maxi-
mum value of A8 such that the interference (cross talk) is limited to —20 dB.

Solution: We rederive Eqs. (6.66) and (6.67) for the receiver shown in Fig. 6.49. The output
of the upper filter is now

%[sl(t)cos AB + s,(1)sin AB]
and the output of the lower filter is
';-[—s,(:)sin AB — s,(f)cos AB]

The ratio of the amplitude of the undesired term to that of the desired signal is sinA6/cosA#8.
Note that as the phase error approaches zero, this ratio also approaches zero, as we would

S —



242 Amplitude Modulation Chap. 6

hope. In order for the interference to be 20 dB below the desired signal, the amplitude ratio
must be 0.1. That is,

sin A6
cos Af

The phase mismatch must be less than tan'(0.1) = 5.7°.

tan A = 0.1

filter

cos (2mfs + AB)

sin (2mf.1 + AB)

i

Figure 6.49 QAM receiver with phase
mismatch.

AM Stereo

The idea behind AM stereo is to send two independent audio signals within the 10-kHz
bandwidth allocated by the FCC to each commercial broadcast station. Additionally, the
FCC requires compatibility with monaural receivers. Thus, if the two audio signals repre-
sent the left and right channels of a stereo system, a monaural receiver must recover the
sum of these two signals.

Quadrature amplitude modulation represents one technique to send two signals si-
multaneously. If the two signals are designated as s;(f) and sg(1), the composite signal can
be written as

q(1) = s;()cos 2mf t + sp(t)sin 2mf s (6.69)

If both 5,(¢) and sg(r) are audio signals with a maximum frequency of 5 kHz, g(r) occupies
the band of frequencies between f. — 5 kHz and £, + 5 kHz, a total bandwidth of 10 kHz.
The composite signal can then be rewritten as the single sinusoid

q(t) = A(f)cos [2nfr + 6(1)] (6.70a)

where

Al = V;L(') * En(‘)

£ ’)) (6.70b)
5,(0)

The envelope detector in a monaural AM receiver would produce A(f). This is a distorted
version of the sum of the two channels and does not meet the compatibility requirement.

B(r) = —um"(
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We therefore need to investigate how we might modify the system. The modification does
not prove difficult, and we will delay presenting it until we continue with the analysis of
this system as if it met the requirements for AM stereo.

Figure 6.50 presents a block diagram of the stereo modulator and demodulator. The
dashed block in the demodulator contains a phase lock loop that is used to recover the car-
rier. In fact, the output of the phase lock loop is cos(2mf.r — 45°). The various functions of
time in the figure are as follows:

5,(r) = cos (2mf s — 45°)
55(f) = cos 2mf 1
55(f) = sin 27ft

s54(1) = s,(cos*2mf.t + sg(t)sin 2mf scos 2mf .t

) % (6.71)
s5(1) = s,(0)sin 27f rcos 2mf .t + sp(t)sin “2mft

1

s¢() = ESL(')
1

54(1) = 533(')

Now that we see that the two channels can be separated, we present several specific
techniques which assure compatibility. One technique (proposed in two different forms,
by Belar and by Magnavox) angle modulates the carrier with one audio signal and ampli-
tude modulates the resulting modulated carrier with the second signal. The angle modula-
tion is narrowband. (We discuss angle modulation in the next chapter.)

Figure 6.51 presents one possible AM/FM configuration: a simplified version of the
Belar AM stereo system. The frequency deviation of the FM is Af = 320 Hz, which is
much less than the maximum audio frequency of 5 kHz. This assures that the resulting
modulated signal can be kept within the 10-kHz assigned band. The system meets the
compatibility requirement, since an envelope detector will recover the sum signal. The
limiter in the receiver removes the amplitude modulation, leaving an FM wave with ap-
proximately constant amplitude.

The idealized system of Fig. 6.51 requires some modification to make it practical.
Timing is important in a stereo system. If the L — R and L + R channels are not synchro-
nized, the original signals cannot be recovered without distortion. Since the paths tra-
versed by the L — R and L + R signals do not take identical lengths of time, it is necessary
to insert a time delay in one of the lines so that the two signals can be properly aligned at
the output.

A more complex technique of stereo transmission starts by amplitude modulating a
frequency-modulated carrier with the sum signal, L + R, as in the preceding system. How-
ever, the carrier is not angle modulated with the difference signal. Instead, the angle mod-
ulation is performed in such a way that the information in the left channel is carried on the
lower sideband and that in the right channel on the upper sideband. To do so requires a rel-
atively complex system involving a 90° phase shift between L + R and L — R signals and
also employing automatic gain control (AGC) circuitry. One advantage of this system is
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Figure 6.50 Quadrature modulation stereo system.

Chap. 6

that it is possible to produce a stereo effect with two monaural receivers merely by tuning
one receiver slightly above, and the other slightly below, the carrier.

Yet a third technique is a refinement of the QAM stereo system discussed at the be-
ginning of this section. Recall that the problem with that system was one of compatibility:
A monaural receiver would recover the square root of the sum of the squares of the left
and right signals, a distorted version of the sum waveform.
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Figure 6.51 AM/FM system for AM stereo.

A compatible QAM (C-QAM) system (a simplified version of the Motorola configu-
ration) is shown in Fig. 6.52. The system begins with a QAM signal whose two compo-
nents are the sum and difference waveforms. The signal at 5,(7) is

5,0 = Vla + s,(t) + sg®F + [s,() — sx(OF
6.72)

3 cos(Z‘Ich‘ fxn [A + 5,(8) + sg(0)
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We now perform an operation to replace the square root by the sum signal. That is, we
restore

- 1 - -1 5, (0) — sg(0) ) ;
50 =[A + 5,00 sg(1)] cos (211' 'l tan [ 2t a0+ b (6.73)
This is done by limiting the amplitude of the QAM waveform [Eq. (6.66)] to a constant
and then amplitude modulating with the sum signal.

The system of Fig. 6.52 produces a signal that meets the compatibility requirement
since an envelope detector recovers the sum signal. The problem is that the stereo receiver

s(0)

M

A

T

R

1 e AM |
X MODULATOR

spl0)

Figure 6.52 C-QAM system for AM stereo.

must perform a complex function. Given the waveform of Eq. (6.73), the receiver must
first replace the L + R factor by the square root factor of Eq. (6.72). The information to do
this restoration of the QAM waveform is present because the sum signal exists as the en-
velope and the difference signal can be found by detecting the phase and combining it
with the sum signal waveform. The problem is that the receiver must perform these opera-
tions with relatively simple circuitry. The receiver uses a phase lock loop to detect the
phase and then remodulates the received waveform with that phase.

6.11 PERFORMANCE

In the process of communicating a signal, noise arises in various ways. The information
signal s(r) is corrupted by some noise before it even reaches the modulator in the transmit-
ter. This noise is generated by electronic devices in the modulator. Thus, the signal at the
output of the modulator is of the form

[s(t) + n,(0]cos 2mf.t (6.74)
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where n(1) is the additive noise. Additional noise exists because the carrier sinusoid is not
a pure cosine wave, but contains harmonic distortion because of nonlinearities.

The modulated signal is affected by multiplicative noise in the process of being
transmitted from transmitter to receiver. This type of noise is due to turbulence in the air
and reflection of the signal. The turbulence causes the characteristics of the transmission
medium to change with time. The reflections, when recombined with the primary path sig-
nal, either add to or subtract from the strength of the signal. With the multiplicative noise
taken into account, the signal at the receiving antenna is of the form

ALl + ny(@)s, (1) (6.75)

where ny(1) is the multiplicative factor of n and we assume that the transmitted signal is
su(t) (i.e., we have neglected the modulator noise).

The AM signal also is affected by additive noise during transmission. This noise is
generated by a multitude of sources, including passing automobiles, static electricity,
lightning, power transmission lines, and sunspots. If one could listen to it, it would sound
like the static one hears over the radio, with occasional crackling sounds added. Assuming
that the transmitted signal is s,,(7) (i.e., neglecting the types of noises discussed earlier in
this section), the received signal is of the form

As, (0 + ny1) (6.76)

where ni(1) is the additive noise.

Additional noise occurs in the receiver. Electronic devices and components are
present, thus generating thermal and shot noise. Further, the wires in the receiver act as
small antennas, thereby picking up some transmission noise. For purposes of analysis, this
receiver noise can be treated as additive and included in n;(1), as long as it occurs prior to
detection in the receiver.

Of the various types of noise introduced, additive transmission noise is generally the
most annoying. It normally contains the most power of all. This is not to imply, however,
that other types of noise are not critical: Multiplicative transmission noise (turbulence) be-
comes significant as frequencies approach those of light, so that, to a certain extent, UHF
television signals are affected by such noise. Also, very low-frequency multiplicative
noise causes fading in microwave systems.

6.11.1 Coherent Detection
Double Sideband

We first examine the case of double-sideband suppressed carrier transmission and syn-
chronous demodulation. We assume that we have been able to match the carrier frequency
and phase exactly.

The received waveform at the input to the receiver is

rt) = Ks(f)cos 2wf.t + n() (6.77)

where K is a constant that accounts for attenuation during transmission and n(r) is the ad-
ditive noise. We assume that n(r) is white Gaussian noise with two-sided power spectral
density Ny/2. That is, the noise power is N, watts/Hz.
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Let us begin by finding the signal to noise ratio at the input to the synchronous de-
modulator of Fig. 6.53. The synchronous demodulator contains a bandpass filter that did
not appear in our earlier discussions. This filter is known as a predetection filter. In a theo-
retical analysis it is redundant, since any frequencies rejected by it would also be rejected

5(8) + ny(0) 55(1) + ny(0)

(1)~ Bacipass Lowpmss {
filter filter

cos 2mf s Figure 6.53 Synchronous demodulator.

by the final lowpass filter. It is included both for practical reasons and to simplify the
analysis. The electronic device that performs the multiplication could get overloaded and
driven into saturation if the input contained too much energy outside of the band of inter-
est. Additionally, the white noise at the input to the system contains (ideally) infinite
power. Including it as well would also complicate the analysis.

The signal power at the input to the detector is the average power of Ks(r)cos2wf 1.
This is one half of the average of the square of the cosine amplitude, or

K2s2(t K2pP
where P, is the average power of s(f). The average power of the filtered noise is N, times
the bandwidth of the filter, or 2f,N,. The input signal-to-noise ratio, SNR;, is then

K’P
BB » svpapemmiin
SNR, NS, (6.79)
We now wish to derive the signal to noise ratio at the output. The signal at the output of
the synchronous demodulator is Ks(r)/2, and its average power is K*P /4. To find the noise
at the output of the detector, we must turn our attention to the time domain. That is, since
the demodulator performs the non-linear operation of multiplication, we can no longer
track noise power through the system using the power spectral density.
The bandlimited noise at the detector input can be expanded into its quadrature
components thus:

n(1) = x(f)cos 2wf.t — y(t)sin2wf (6.80)

The power spectral densities of x(r) and y() are calculated as in the example in the Section
4.5. These are shown in Fig. 6.54. The noise at the input to the lowpass filter is

ny(f) = [x(r)cos 2wf.r — y(r)sin2mf, tlcos 2mf. 1

o x(r) + x(t)cos dwf.t — yo)sindwf ¢
2

(6.81)
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where we have used the trigonometric identities

1 1
cos2mf.t = — + —cosdm f.t

2 oA
and (6.82)

1

sin 2w f tcos 2mft = 2 sin4mf.t
to obtain the rightmost expression in Eq. (6.81).
G,(f) G(N =GN
t s s f f f
- zN 4 fn
f;,-“fm fr + fm

Figure 6.54 Quadrature expansion of noise.

The only term in Eq. (6.81) that passes through the lowpass filter is the first term, so
the noise at the output of the detector is x(¢)/2. The power of this is the power of x(r) di-
vided by 4. The power of x(t) is found by integrating G,( f), so the total noise power at the
detector output is Nyf,/2. We found the signal power to be K’P /4, so the output signal-to-
noise ratio is

K’P,
SNR,, = 2N, (6.83)
Comparing this to Eq. (6.79), we find that
SNR, = 2SNR;, (6.84)

The demodulation process has doubled the signal to noise ratio. Let us try to give an
intuitive justification of this result. In double sideband, the two sidebands are related to
each other. Thus, knowing one of the sidebands, you can derive the second. The synchro-
nous demodulator essentially realigns the two sidebands to add to each other, so the effect
upon the signal is similar to adding a signal to itself. This coherent addition doubles the
amplitude and therefore multiplies the power by a factor of four. On the other hand, the
noises in the two sidebands are unrelated (i.e., independent). When these two noise
sources are added, it is like adding two independent noise processes. In that case, the mean
square values add, and the power doubles. The signal power has increased by a factor of
four, while the noise power has only doubled. Therefore, the signal to noise ratio doubles.
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Single Sideband

We now repeat the foregoing analysis for single sideband. The received signal is of the
form

_ Ks(t)cos 2mf t = K§(t)sin 2wf .t

1) 2

+ n(n) (6.85)
where, once again, K is a constant that accounts for attenuation during transmission and
n(r) is the noise at the output of the predetection filter of Fig. 6.53.

The signal power at the input to the detector is the average of the square of the signal
portion of r(¢). This is equal to

K2[s*(t)cos*mft + §2()sin’2wf 1]
4

o K22s(1)8(r)cos2mf tsin2wf 1
0 4

(6.86)

where the bar represents the average of the fﬁnction over time. The last term is equal to
zero, since the average of the cosine multiplied by the sine is zero. (Take the integral over
one period.) The squares of the sinusoids have an average value of i, so the input signal
power becomes

K3P, + Py

! e i (6.87)

8

where P, is the power of s(t) and P; is the power of the Hilbert transform §(z). The Hilbert
transform results from putting s(r) through a filter with H(f) = —jsgn(f), as shown in
Fig. 6.55.

The output power spectral density is given by

Gy(f) = |H(O|PGf) (6.88)

The square of the magnitude of the filter characteristic is unity, so the power of the Hilbert
transform is the same as the power of the original signal. Therefore, the input signal power
is found from Eq. (6.87) to be K*P,/4. The input noise power is N, multiplied by the band-
width of the bandpass filter, or N, f,.. The signal to noise ratio at the detector input is then

2
SNR, = {N—?g- (6.89)
0/ m

We now turn our attention to the detector output. The signal at the output is given by
Ks(t)/4. If we expand the detector input noise in a quadrature expansion, as in Eq. (6.80)
for double sideband, the output noise is again given by x(1)/2. However, the power spectral
density of x(r) is not the same as that given in Fig. 6.54. Figure 6.56 shows the power spec-
tral density of x(r).
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Figure 6.55 The Hilbert transform.
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Figure 6.56 Power spectral density of quadrature noise.

The output signal power is K*P,/16, and the output noise power is Nyf,,/4. The out-
put signal to noise ratio is then

KP
. et 6.90
aN,f,, St

SNR,
which is the same as the signal to noise ratio at the detector input. That is,
SNR, = SNR; (6.91)

This result distinguishes single sideband from double sideband. Indeed, one would expect
to get some benefit from using twice the bandwidth.




252 Amplitude Modulation Chap. 6

Example 6.7
A baseband signal s(r) = 5co0s2,0007 is transmitted using DSBSC and demodulated using a
synchronous demodulator. Noise with a power of 10~ watt/Hz is added to the signal prior to
reception. Find the signal to noise ratio at the output of the receiver.

Solution: We do not have any information about the attenuation due to the channel or due
to the antenna patterns. We shall make the unrealistic assumption that the received signal is
identical ta the transmitted signal. We can then scale the signal to noise ratio according to the
square of apy attenuation factor.
The signal to noise ratio is found directly from Eq. (6.79):
KP, 2 %2572
4Nyf, 4% 107* X 1,000

6.11.2 Incoherent Detection
Transmitted Carrier AM

We now consider the case of transmitted carrier where the carrier amplitude is large
enough to permit incoherent demodulation. The demodulator we examine is the envelope
detector shown in Fig. 6.57.

The received waveform is of the form

r) = K[A + s()]cos2nft + n(r) (6.92)

SNR, =

= 625 — 18dB

K[A + s(n)lcos 2nft + n(r) ENVELOPE
DETECTOR

B(r)

Figure 6.57 Envelope detector for transmitted carrier AM.

The signal power at the input to the detector is K?P/2. Note that A is not considered to be
part of the signal, since it carries no information. The power of the noise at the detector in-
put is 2N, f;, and the input signal-to-noise ratio is

K’P
;o —
SNR, NS, (6.93)
Note that this is identical to the input signal-to-noise ratio for double-sideband synchro-
nous demodulation [Eq. (6.79)].
To find the output of the detector, we expand the input noise into quadrature form
and then combine terms into a single sinusoid. We obtain

[KA + Ks(f) + x(O]cos2wfe — y(t)sin2wf,t

(6.94)
= B(t)cos[2nf,t + B(1)]

where

B() = VIKA + Ks() + x()P + Y0 (6.95)

b &1 )
i (KA ¥ Ks() + x(:)) 6
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The output of the envelope detector is B(r). Unfortunately, this contains nonlinear opera-
tions, which lead to higher order noise components and cross products between signal and
noise. We cannot obtain any general results for the output signal to noise and would have
to assume a specific form for s(¢) in order to carry the analysis further.

We shall try to gain some insight into the situation by considering the limiting cases
of input signal to noise ratio. That is, we will consider the case where the signal is much
larger than the noise, and we will also consider the opposite situation.

It is helpful to view Eq. (6.94) in phasor form. Figure 6.58 illustrates this, with the
abscissa aligned with the cosine. If A + s(r) is much larger than the noise, B(f) can be ap-
proximated by

B(t) = K[IA + s(1)] + x(1) (6.97)

This can be seen either from Eq. (6.95) or from Fig. 6.58, where we assume that y(r) <<
K[A + s(n)] + x(1).

B\ﬂ o)

Figure 6.58 Phasor diagram of envelope
K\(A +s(n) + x(r) detector input.

We now need to find the signal to noise ratio at the output of the detector. We can
save time by noting that the output of Eq. (6.97) is exactly twice the output of the synchro-
nous demodulator for double-sideband suppressed carrier. Since both the signal and noise
ratio are doubled, the signal to noise ratio remains unchanged from that given in Eq.
(6.83):

K’P
SNR, = —*+ 6.98
T g
The ratio of output SNR to input SNR is therefore the same as for double-sideband coher-
ent demodulation. That is,

SNR, = 28NR; (6.99)

This identical result can be deceiving. We must bear in mind that the price we are
paying is lower efficiency. In comparing the various systems, it is important to do so under
equivalent conditions. We can get an approximate result by assuming that s(f) is a pure
sinusoid, cos2f,.r. Since this sinusoid has a maximum negative excursion of — 1, the min-
imum value of A is 1. Using this value, we find that A + s(¢) is given by

1 + cos2wf,t (6.100)

The signal power at the output is : watt, and the power of the dc term in the output is 1
watt. Thus, the true signal to noise ratio at the output is one-third of that found in Eq.




254 Amplitude Modulation Chap. 6

(6.98). In comparing systems, we therefore often use the following expression for incoher-
ent detection:

e, o0

We now consider the other extreme in incoherent detection, that is, a very low signal
to noise ratio. To analyze this situation, we will redraw Fig. 6.58, but this time referenced
to the noise signal. That is, we add the signal vector to the larger noise vector. The re-
aligned diagram is shown in Fig. 6.59. Note that the angle between the signal and noise is

SNR, =

1 Y1)
0(r) = tan~'[= 6.102)
0 ( xm) (
The resultant vector is approximately given by
VX3 + yX) + KIA + s()]cos8(r) (6.103)
2:(.1)
x(n
Figure 6.59 Figure 6.58 redrawn for low
Vad(t) + () SNR.

The only place where the signal appears is in the last term, and it is multiplied by a random
noise term, cosB(r). Thus, we have both additive and multiplicative noise. It can be shown
that 6(7) is uniformly distributed between 0° and 360°. It should therefore not be surprising
to observe that the signal cannot be recovered from the envelope detector output.

As the signal to noise ratio decreases from a high value, a threshold is reached. For
signal to noise ratios above this threshold, the output signal to noise ratio is linearly re-
lated to the detector input signal to noise ratio. For signal to noise ratios below this thresh-
old, the dependence approaches a quadratic relationship. That is, for each decrease in in-
put signal to noise ratio by a factor of 2, the output signal to noise ratio decreases
approximately by a factor of 4.

6.12 TELEVISION

Public television had its beginnings in England in 1927. In the United States, it started
three years later, in 1930. These early forms used mechanical scanning of the picture to be
transmitted. That is, a picture was changed into an electrical signal by scanning the entire
image along a spiral starting at the center. The scanning was accomplished by means of a
rapidly rotating wheel with holes cut in it. As the wheel rotated, light from various parts of
the total picture passed through the holes.

During this early period, broadcasts did not follow any regular schedule. Such regu-
lar scheduling did not begin until 1939, during the opening of the New York World’s Fair.
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The concepts of television and picture transmission spread into many exciting areas;
facsimile transmission, satellite broadcasts, video telephone, video-text, and cable TV rep-
resent only a few examples. A cable TV revolution is occurring, with two-way communi-
cation links becoming common. We can anticipate that TV will eventually replace the
newspaper, supermarket, baby-sitter, theater, and perhaps (heaven forbid!) the university
campus. The theory to be presented here, although geared toward broadcast TV, is applic-
able to most forms of picture transmission.

A Picture Is Worth A Thousand Words?

Nonsense! A picture is equivalent to far more than a thousand words. While we could rig-
orously define the information content of a picture using concepts from the science of in-
formation theory, we will not do that here. Instead, we will subdivide the picture into small
components similar to words.

Suppose we divide a picture into squares, where each square is a certain shade. The
number of squares in any given area determines the resolution. For example, Fig. 6.60(a)
shows a picture of the letter A, where 81 squares have been used to define the picture. In
Fig. 6.60(b), the same letter is shown with the number of squares increased to 342. The re-
sult is improved resolution.

(b)

Figure 6.60 Definition of picture elements.

The number of squares used in U.S. television is set by the FCC at 211,000 picture
elements (pixels). This is divided into 426 elements in each horizontal line and 495 visible
horizontal lines in each picture. The job of television transmitters is then to step through
the 211,000 picture elements and send an intensity value for each one. The receiver inter-
prets these transmissions and reconstructs the picture from the 211,000 intensity levels.
This information must be updated rapidly to simulate motion. (We confine our attention
here to monochrome (black-and-white) television.)

A conventional TV receiver is not much different from a conventional analog labo-
ratory oscilloscope. A beam of electrons is shot toward a screen and bent by deflection
plates. When a negative charge is placed on a plate, the electron beam is repelled. In the
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oscilloscope, we apply a sawtooth waveform to the horizontal deflection plates to sweep
the beam from left to right (creating a time axis) and then more rapidly back to the left.
This traces a line. In TV receivers, we add a second dimension to the sweep. While the
beam is rapidly sweeping from left to right on the screen, it is less rapidly sweeping from
top to bottom. The net result is a series of almost horizontal lines on the screen, as
sketched in Fig. 6.61. This is known as the TV raster. We are describing traditional analog
scanning TV. Digital television has the option of controlling the choice of picture elements
using digital counting circuitry. Picture elements are not necessarily bombarded with an
aimed electron beam, but could be implemented as individual LED or LCD elements
arranged in a matrix and digitally scanned. Nonetheless, conventional TV remains the
norm for the present. Even in the future, it will represent an educational historical study of
how a significant problem was solved.

— Vertical deflection
\ voltage
s e
Horizontal deflection
voltage 2

Figure 6.61 Generation of TV raster.

The screen has 495 horizontal lines in order to comply with the FCC regulation. Af-
ter scanning the entire screen from top to bottom, the beam returns to the top of the screen,
taking the equivalent time of an additional 30 lines to do so. We can therefore think of the
picture as having 525 lines, 30 of which occur during the vertical retrace time.

We now assign timing to this process. The human eye requires a certain picture rate
(the number of times the entire screen is traced each second) to avoid seeing flicker, as in
early motion pictures. The minimum number is somewhere near 40 per second. United
States TV uses 60 frames per second. (Color TV actually uses a number slightly less, ap-
proximately 59.94 Hz.) This matches the frequency of household current and is chosen so
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as to minimize the effects of the video equivalent of 60-Hz hum. That is, if the 60-Hz
power signal is not completely filtered out of the video, it causes a slight gradation of
brightness over the height of the picture. If this gradation is stationary, the eye probably
will not notice it. However, with a frequency mismatch, the gradation will exhibit a migra-
tion in the vertical direction (a rolling), and the likelihood of detecting it increases. We
emphasize here that the numbers being presented are the U.S. standard (this applies to the
United States, Canada, the Netherlands, Brazil, Colombia, Cuba, Japan, Mexico, Peru,
Surinam, and Venezuela). Many of the standards in use in other parts of the world include
625 lines and a frame frequency of 50 Hz.

At 525 lines/frame and 60 frames/sec, the product of these is 31,500 lines/sec. The
reciprocal of this is the time per line, 31.75 psec/line. Of this 5.1 psec are used for hori-
zontal retrace, leaving 26.65 psec for the visible part of each horizontal line. Dividing this
by the 426 elements in a line yields the time per element of 0.0625 psec/element, or 16
million elements/sec. The system therefore must be capable of transmitting 16 million in-
dependent shades (black, white, gray, and so on) per second. In the worst case, we may
wish to display a perfect checkerboard design of alternating black and white squares. The
system would then jump from the darkest to lightest shades and back again 16 million
times a second.

If we now think of this light intensity information as a signal, we see from Fig. 6.62
that it has a fundamental frequency of 8 MHz. The square wave actually has a maximum
frequency of infinity, but if we round it to a sinusoid, the human eye would still see the
checkerboard design. Thus, no matter what modulation scheme we use to transmit this
pattern, at least 8 MHz of bandwidth is required.

siilimnn

Figure 6.62 Intensity signal for checkerboard pattern.

-

Here the law steps in again, and the FCC mandated a maximum video signal band-
width of 4.2 MHz. Alas, how can these seemingly contradictory specifications (60
frames/sec to avoid flicker, 211,000 picture elements for proper resolution, and a 4.2-MHz
maximum bandwidth) be met?

Engineers had observed many decades of the development of motion pictures in
which a similar predicament occurred. In standard motion pictures, only 24 different pic-
tures are shown each second. But 24 flashes/sec on the screen would appear to flicker con-
siderably. Contemporary motion picture projectors flash each image twice. (The film
moves into position and the shutter opens and closes twice before the film moves again.)
Thus, the frame rate is 48/sec, although the rate of presenting new pictures is 24/sec.

Television’s founders decided to play a similar trick. They cut the signal frequency
in half by cutting the number of lines per second in half, from 31,500 to 15,750 lines/sec.
However, it was necessary to fill the entire screen each & sec to avoid flicker. The tech-
nique for cutting the line frequency in half without changing the frame frequency is
known as interlaced scanning. During the first @ sec, the odd-numbered lines are traced
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(ending with i line). The beam then returns to the top center of the screen to trace the
even-numbered lines in the next & sec. Thus, while it takes % sec to send the frame consist-
ing of all 211,000 picture elements, the screen is scanned twice (each scan is called a field)
during this period. The eye fills in the missing rows and detects no flicker. There is somg
loss of resolution on fast-moving gbjects, but this was deemed appropriate for
conventional TV.

Signal Design and Transmission

We now translate the foregoing information into an electrical signal format. If we plot
light intensity as a function of time, a staircase function resplts. Figure 6.63 shows an ex-
ample of the letter T in dark black, followed by a period in light gray. The associated sig-
nal is also shown; for simplicity, interlaced scanning has not been included, and the num-
ber of lines has been drastically reduced. '

_\

Horizontal Deflection
Voltage

video signal

= R e

Figure 6.63 Video signal for particular message.

In broadcast TV, the information (video) signal would be a similar staircase function
with minimum step width 0.125 psec. In the actual video signal, the voltage corresponds
to the light intensity, and the receiver uses this voltage to control the electron gun. The
higher the voltage applied to a grid placed between the gun and screen, the fewer is the
number of electrons that hit the screen and the darker is the spot. As an additional modifi-
cation, the staircase function is smoothed to reduce the bandwidth. The eye cannot tell the
difference between a smooth or rapid transition in the signal during 0.125 psec. After all,
this corresponds to only @ of the width of the TV screen.

There is an additional aspect to this electrical video signal known as blanking:
While the beam on the cathode ray tube is retracing, it is desirable that the electron stream
be turned off so that the retrace is not seen as a line on the screen.

Taking all this into account, the video signal corresponding to the picture shown in
Fig. 6.63 is redrawn as Fig. 6.64.
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Horizontal blanking Vertical blanking
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Figure 6.64 Video signal with addition of blanking.

Synchronization

The transmitter rapidly traces from left to right and from top to bottom many times each
second. It sends a record of light intensity as a function of time. The receiver must be sure
that it is placing the transmitted intensity element in the same location on the screen as in-
tended in transmission. If the beam in the receiver does not start a scan at the same instant
that the received waveform does, the picture will appear split at best and totally scrambled
at worst. A method is thus required for synchronizing the two sweeping operations. This is
done by means of synchronization pulses added to the video signal. The pulses are added
during the blanking intervals, thereby not affecting what is seen on the screen. Figure 6.65
shows the signal of Fig. 6.64 modified with the addition of synchronization pulses. Two
types of synchronizing pulses are shown in Fig. 6.65. The narrow pulses are horizontal
synchronizing pulses, and the wide pulses are vertical synchronizing pulses.

Horizontal sync Vertical sync

| TURUIA L .

Figure 6,65 Video signal with addition of synchronization,

The receiver separates these pulses from the remaining signal through the use of a
threshold circuit. The horizontal and vertical pulses are then distinguished by means of a
single RC integrator circuit. The integral of the wider vertical sync pulses is larger than
that of the narrowgr horizontal sync pulses. The separate pulses are then used to synchro-
nize (trigger) the horizontal and vertical oscillators.

Modulation Techniques

The video signal has a maxiqum frequency of about 4 MHz. The FCC allocates 6 MHz of
bandwidth to each television channel, and this space must contain both the video and au-
dio sections of the transmitted signal. Obviously, the use of double-sideband AM must be
rejected, since this would require over 8 MHz of bandwidth for each channel.
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Single-sideband transmission is also rejected. Its generation requires a very sharp
filtering of the double-sideband signal to remove one of the sidebands. However, it is diffi-
cult to control the phase characteristic of a filter that has a very sharp amplitude character-
istic. In designing practical filters, we can approach either the phase or amplitude charac-
teristics as closely as desired, but to achieve both simultaneously is extremely difficult. In
audio applications, phase deviations are not very serious. They represent varying delays of
the frequency components of the message, and the human ear is not sensitive to such vari-
ations. In a video signal, these varying delays would be manifest as shifts in position on
the screen. These are commonly referred to as ghost images and are highly undesirable.

The video portion of the TV signal is sent using vestigial sideband. A carrier is
added that is large enough to allow the use of an envelope detector for demodulation. The
entire upper sideband and a portion of the lower sideband are sent.

Figure 6.66 shows the frequency composition of a TV signal. Note that the audio
and video are frequency multiplexed, and their carriers are separated by 4.5 MHz. The au-
dio is sent using FM, which is described in Chapter 7.

6 MHz

1.25 MHz
Picture 4.5 MHz Sound

. — 0}
camier ([T —— |+~ carrier

Figure 6.66 Frequency composition of TV signal.

Functional Block Diagram of TV Receiver

We are now in a position to examine the overall block diagram of a black-and-white TV
receiver, which is shown in Fig. 6.67. The composite (video plus audio) signal is received
by the antenna and is amplified by an RF amplifier. It then enters the tuner, which includes
a mixer and an IF filter, just as in the case of the superheterodyne radio receiver. The fre-
quency band allocated to commercial TV in the United States is shown in Table 6.1.

Most large cities with many active TV stations use channels 2, 4, 5,7, 9, 11, and 13.
Examination of the table of frequency allocations shows that this choice leaves a fre-
quency separation between adjacent active stations, thus easing the requirements for de-
sign of the IF filters.

The IF frequency used for TV is 40 MHz. After IF amplification and filtering, the
signal enters the video detector, which is simply an envelope detector. During this stage of
processing, the sound signal is separated. Since the sound carrier is 4.5 MHz above the
picture carrier, a filter (called a sound trap) is used to separate the sound signal from the
video signal. The sound is sent by FM, so we defer discussion of the demodulating and
processing of it until Chapter 7.
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Figure 6.67 Block diagram of monochrome TV receiver.

The synchronizing pulses are separated from the video signal by means of a thresh-
old circuit (clipper) known as the sync separator. The vertical sync pulses are then distin-
guished from the horizontal by an integrator. Both sets of pulses are used to trigger the
corresponding sweep oscillators. As an added bonus, the retrace portion of the horizontal
deflection voltage (with a very large slope due to a 5.1-psec retrace time) is used to gener-
ate the very high voltage (over 20 kV) required on the CRT anode to pull the electrons in a
straight line toward the face of the tube. This high voltage is generated by differentiating
the retrace ramp using what is known as a flyback transformer (an inductor, so voltage is
proportional to the derivative of current).

TABLE 6.1 FREQUENCY ALLOCATIONS FOR BROADCAST TV

Frequency Range
Channel (MHz) Comments
2 54-60
3 60-66
4 66-T2
5 76-82 Note gap between 4 and 5
6 82-88 Between 6 and 7 is FM radio,
aircraft, government, railroad,
and police
7 174-180
8 180-186
9 186-192
10 192-198
11 198-204
12 204-210
13 210-216

14-83 470-890
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Color Television

Color TV takes advantage of the theory behind the color wheel. All colors, including
_ and white, can be formed as combinations of the three primary colors. It is interesting to
- note that the theory of resolving colors into components dates back to Sir Isaac Newton (a
scientist), Johann Wolfgang von Goethe (a poet), Thomas Young (a physicist), and Her-
mann von Helmholtz (a physicist). The term primary colors can be interpreted in a couple
of ways. The primary colors of the spectrum are red, green, and blue, while the primary
colors of paints are red, yellow, and blue. Television chose the primary colors of the spec-
trum, since phosphors that glow these colors when bombarded with an electron beam are
readily available.

The color TV receiver can be thought of as three separate TVs, one generating red,
one generating blue, and one generating green. By mixing these in varying strengths, any
color can be formed.

Traditional color CRTs actually contain three separate electron guns, one for each
color. The transmitted signal must therefore be capable of generating three separate video
signals to control each of the guns.

But certainly, you are asking where the two additional signals can be squeezed.

Monochrome transmission already uses all of the bandwidth allowed for TV. We need a
system to transmit all three video signals without increasing the 6-MHz bandwidth, yet at
the same time allowing compatible transmission. That is, a black-and-white TV receiver
should receive the correct composite image, not just one of the colors.
; The answer to this dilemma lies in a frequency analysis of the video signal. If we ex-
amine the Fourier transform of a black-and-white video signal, we find that it resembles a
train of impulses. An actual signal for one frame contains 525 horizontal traces. Since
8! most pictures contain some form of vertical continuity (that is, the content of one horizon-
L tal line closely resembles that of the next horizontal line), the video signal is almost peri-
|

Sl Bl b

odic with a fundamental frequency of 15,750 Hz (the number of lines per second).

If the video signal were exactly periodic, its Fourier transform would be a train of
impulses at multiples of the fundamental frequency. Since it is almost periodic, the Fourier
transform consists of pulses (not impulses) centered around multiples of the line fre-
quency. The more periodic the time signal, the sharper are the pulses in frequency.

Since the Fourier transform approaches zero between multiples of the line fre-
quency, additional information can be placed in these spaces through the use of a form of
frequency multiplexing. The additional information needed for color transmission modu-
lates a carrier that is midway between two multiples of the line frequency. This is assured
by using a carrier with a frequency that is an odd multiple of half of the line frequency.
The figure used is 3.579545 MHz, which is the 455th harmonic of half of the line fre-
quency. The two additional signals are combined and transmitted using quadrature AM.

To make the signal compatible with monochrome receivers, the three signals are not
the three primary colors. Instead, the basic system transmits brightness (known as lumi-
nance), position in the color spectrum (hue), and how close the color is to a pure single
frequency (saturation). The hue and saturation are combined with the luminance in a ma-
trix operation that has the goal of making it easy to reproduce the three separate colors at
the receiver and, at the same time, matching characteristics of our human color perception.
The system does not provide perfect separation, and if the picture lacks vertical continuity
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over a span of time, the colors will interact. The combination scheme used in the United
States is known as the National Television Systems Committee (NTSC) standard. This
standard is used by 32 countries in the world. Some other parts of the world combine the
colors according to different standards, notably the phase-alternation line (PAL), which is
used in 63 countries, and sequential color and memory (SECAM), used in 42 countries.
Sixteen countries have only black-and-white television, and 9 have no television at all
(1988 figures). The bandwidth of the luminance signal is limited to 4.2 MHz, while the
bandwidths of the other two signals are 1.5 MHz and 500 kHz. Again, this is a compro-
mise and results in some loss of performance. For example, if you ever watched a movie
on TV that used red for the titles, you probably noticed a decrease in resolution. The letters
became fuzzy. The sharp corners of the letters represent frequency components above the
cutoff of the signal sending this information.

High-definition TV

At the time that standards were developed for television, few people dreamed of its evolu-
tion into a type of universal communication terminal. While these standards are acceptable
for entertainment video, they are not sufficient for many evolving applications, such as
videotext. For those, we require a high-resolution standard. High-definition TV (HDTV) is
a term applied to a broad class of new systems. These systems have received worldwide
attention. Indeed, the U.S. government put seed money into this consumer-related devel-
opment in the hope of generating global competition and to be a catalyst in spurring the
growth of new systems.

Of course, if we want to start from scratch, we can set the bandwidth of each chan-
nel to a number greater than 6 MHz, thereby achieving higher resolution. In fact, the Japan
Broadcasting Corporation has done just that by assigning 10 MHz per channel and using
compression techniques to achieve further improvement. The Japanese system permits
1,125 lines per frame, with 30 frames per second as 60 fields per second. (We will discuss
compression techniques in Chapter 9.)

In the United States, the FCC has ruled that any new HDTV system must permit
continuation of service to contemporary NTSC receivers. This significant constraint ap-
plies to terrestrial broadcasting (as opposed to videodisc, videotape, and cable television).

Developments in digital signal processing and high-speed RAMs have opened up
interesting possibilities for increasing resolution while staying within the 6-MHz alloca-
tion per channel. For example, the number of lines could be increased if the frame rate
were decreased. If the parameters for each pixel are stored, processing can be performed
between frames. In the simplest example, the system could interpolate values between
frames and create estimates of intermediate values. Indeed, more sophisticated compres-
sion algorithms can now be implemented, including variations of the powerful techniques
currently applied to facsimile.

Other HDTV systems relax the 6-MHz constraint. For example, a VHF channel
could be combined with a UHF channel, thus providing a total bandwidth of 12 MHz.
Other systems involve transmission from direct-broadcast satellites. The one common
thread among the various proposals is that the number of lines per frame is generally twice
the current rate. o




264 Amplitude Modulation Chap. 6

As of this writing, none of the competing systems has received anything near uni-
form support. The situation is such that the technical aspects of the problem are merged
with social and economic issues. We can only hope that we do not end up with a multitude
of incompatible systems.

6.2.1 Given an information signal r(r), with
R(f) = A(f)e™ )

(i.e., R(f) is complex), find the Fourier transform of
r(t)cos 2wf ¢t
Also, find the Fourier transform of

’(r)m(zm:“ + 11)

6.3.1 The signal shown in Fig. P6.3.1 amplitude modulates a carrier of frequency 10° Hz.

(a) If the modulation is DSBSC, sketch the modulated waveform.

(b) The modulated wave of part (a) forms the input to an envelope detector. Sketch the out-
put of the detector.

(c) A carrier term is now added to the DSBSC waveform. What is the minimum amplitude
of the carrier such that envelope detection can be used?

(d) For the modulated signal of part (c), sketch the output of an envelope detector.

(e) Draw a block diagram of a synchronous detector that could be used to recover s(r) from
the modulated waveform of part (a).

(f) Sketch the output of the synchronous demodulator if the waveform of part (c) forms the

input.

(1)

2
1

1 R, M i

Fig. P6.3.1

6.4.1 You are given the voltage signals s(f) and cos2mf; 1, and you wish to produce the AM wave.
Discuss two practical methods of generating this AM waveform.

6.4.2 A system is as shown in Fig. P6.4.2. Note that the system resembles a gated modulator, ex-
cept that the gating function goes between +1 and — | instead of between + 1 and 0, and the
bandpass filter has been replaced with a lowpass filter.

Can this system still produce an AM waveform? If your answer is yes, find the mini-
mum and maximum values of fi pr in order for the system to act as a modulator. If your an-
swer is no, show all work that made you arrive at this conclusion.
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s(0 Lowpass

10-6

Fig. P6.4.2

6.5.1 The signal

2sin 2mt
r

() =

modulates a carrier of frequency 100 Hz. A signal of the form

sin 199 mr
t

adds to the AM waveform, and the sum forms the input to a synchronous demodulator. Find
the output of the demodulator.

6.5.2 The waveform v;,(r) shown in Fig. P6.5.2 forms the input to an envelope detector. Sketch the
output waveform.

n(n =

Vin(‘)

~N
\ - o _[_ +
ual P TN Vin(1) 10 If voul(®)
e By 21 SRR, e
| 1 2 3 4 3

Fig. P6.5.2

6.5.3 You are given the system shown in Fig. P6.5.3. An AMTC waveform forms the input. p(r) is
the periodic function, and S(f) is as sketched. X(f), ¥(f), and Z(f) are the Fourier trans-
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forms of x(r), ¥(r), and z(r), respectively. Assume that f. >> f,. Assume also that s(f) never
goes negative. (The impulse at the origin in S(f) indicates a dc value.)

(a) Sketch IX(f). ‘

(b) Sketch I¥(f)I.

(e) Sketch IZ( f)I.

H(f)
Sll) x(1) I—l : ¥ | ENVELOPE | 0
y DETECTOR
p(t) ! !212\\
s 4 : o4
R
-
—fm | fm
Fig. P6.5.3
6.5.4 The input to an envelope detector is
r(t)cos 2w f.t

where (1) is always greater than zero.

(a) What is the output of the envelope detector?

(b) What is the average power of the input in terms of the average power of r(1)?
(c) What is the average power of the output?

(d) Discuss any apparent discrepancies.

6.5.5 Replace the local carrier in a synchronous demodulator with a square wave at a fundamental
frequency of f.. Will the system still operate as a demodulator? Will the same be true if peri-
odic signals other than the square wave are substituted for the oscillator?

6.5.6 An AMTC signal s,(1) is given by

s = [A + s(Dlcos @uft + 8)

This AM waveform is applied to both of the systems shown in Fig. P6.5.6. The maximum
frequency of s(1) is f,,, which is also the cutoff frequency of the lowpass filters. Show that the
two systems yield the same output. Also, comment on whether the two lowpass filters in the
system of part (b) can be replaced by a single filter either following or preceding the square
root operation.

6.5.7 A synchronous demodulator is used to detect an amplitude-modulated suppressed carrier
double-sideband waveform. In designing the detector, the frequency is matched perfectly, but
the phase differs from that of the received carrier by A6, as shown in Fig. P6.5.7. The phase
difference is random and Gaussian distributed with a mean of zero and variance of o>. When
the phases are matched, the output is s(r)/2. What is the maximum variance of the phase error
such that the output amplitude is at least 50% of this optimum value 99% of the time?




Chap. 6 Problems 267

Smlt) Lowpass
filter

cos (2mfut +8)
(a)

Sm() Lowpass
filter

cos 2mf 4
S} Lowpass
filter
sin 2mwft
(b)
Fig. P6.5.6
s(f) cos 21 X 106 Lowpass
[r—

filter

cos (2m X 106t +8)

Fig. P6.5.7

6.5.8 Show that the rectifier detector of Fig. 6.32 demodulates transmitted carrier AM when the
rectifier is half wave,

6.5.9 The system illustrated in Fig. P6.5.9 performs a simple scrambling operation: reversing fre-
quencies. (That is, dc switches to the highest frequency, while the highest frequency
switches to dc; frequencies near f,, flip to a location near zero.)

(a) Sketch the Fourier transform of the output signal ¥(f).

(b) Find the output time signal if
r(f) = 5cos 100w + 10cos 200w + 3 cos 1,000 7t

(c) Design a system that can recover the original signal r(r) from the scrambled output of the
system.

nn Lowpass

filter 0

cos 2w, Fig. P6.5.9
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6.5.10 Consider the carrier injection system shown in Fig. 6.10. The information signal is
) = cosd4mt + cos20m + cos40wt + cos 60

Suppose that the bandpass filter in the receiver is tuned to the carrier frequency with a band-
width that passes 3 Hz on either side of this frequency. Thus, the reconstructed carrier is per-
turbed by a 2-Hz signal. Find the output of the system. Now define the error as the difference
between this output and an appropriately scaled version of #(1). Find the percentage of error.
6.5.11 A quadrature receiver is shown in Fig. P6.5.11. The local oscillators have shifted by 30°, as
indicated. Find the output of the receiver if an AMTC signal forms in the input as shown.

Lowpass
filter QR
cos (2mft + 30°) :
+3(0)] cos /g + 6) @Q—v 3
+
sin 2mwf.r + 30°)
Lowpass
filter SR
Fig. P6.5.11

6.5.12 You have a friend who is a guitar player. Your friend asks you to design a system that will
help in the tuning of a guitar. Specifically, you dre asked to design a system that accepts two
inputs,

cos(2mfyr); cos [2m(f, + Afy + 8]
and produces an output which is a dc signal that is proportional to the frequency difference
A f. The phase angle 6 is unknown. Draw a block diagram of your system.

6.5.13 You wish to design a Doppler radar system. A sinusoidal generator continuously generates
the signal,

s() = Acos 2w f.t
This signal is transmitted to a speeding car, and the reflected signal is of the form
() = Beos [2m(f, + Af)]
The situation is shown in Fig. P6.5.13. The frequency difference is
Af = 10s

where s is the speed of the car in miles per hour.

You wish to display the speed of the car on a voltmeter that reads from 0 to 100 volts,
and you wish the voltage reading to be the same as the speed. That is, if the car is traveling at
50 miles per hour, you want the meter to read 50 V. You have a laboratory full of equipment,
including filters, multipliers, and any other type of device you need. Design the system.
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4X ‘ Reflection:

Beos [2m (fa+ A1)

Generator:
A cos 2wfd Fig. P6.5.13

6.6.1 Design a superheterodyne receiver that operates on AM signals in the band between 1.7 and
2 MHz. As a minimum, your design must include selection of an IF and design of the hetero-
dyne circuitry.

6.6.2 Figure P6.6.2 shows a dual conversion receiver. Assume that the first IF frequency is 30
MHz and the second is 10 MHz. Assume further that the receiver is designed to demodulate
a band of channels between 135 and 136 MHz, each of which is 100 kHz in bandwidth.

(a) Suggest the range of frequencies for the local oscillators.
(b) Determine all possible image station frequencies.
(¢) How would you remove the unwanted image stations?

: Filter Filter Env.
Filtor if1 if2 det.
cos 2mfi o)f cos 27f) oaf
Fig. P6.6.2

6.6.3 Twenty-five radio stations are broadcasting in the band between 3 MHz and 3.5 MHz. You
wish to modify an AM broadcast receiver to receive the broadcasts. Each audio signal has a
maximum frequency f,, = 10 kHz. Describe, in detail, the changes you would have to make
to the standard broadcast superheterodyne receiver in order to receive the broadcast.

6.7.1 Determine the envelope of the waveform
s(t) = cos 10wt + 17cos 30wt cos 1000 =7

6.8.1 Starting with the transform of a lower sideband single-sideband wave
1
Su(f) = 5 HOIS = f) + S(f+ fIl

where H( f) is as shown in Fig. P6.8.1, prove that synchronous demodulation can be used to
recover s(f) from s4(1).
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e fe
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Fig. P6.8.1

6.8.2 Show that the system of Fig. P6.8.2 produces a single-sideband (lower sideband) waveform.
What changes would you make to the system to produce the upper sideband waveform?

cos 2mf.t i
-;-eos 27 ———— (2)—— Ssp(0)
—90° -
e
Fig. 6.8.2

6.9.1 A vestigial sideband (VSB) signal is formed by amplitude modulating a carrier with the sig-
nal s(f) shown in Fig. P6.9.1. A pure carrier term of amplitude 2 is added to the result. The
double-sideband signal is then filtered with the system function shown. Assume that f,, is
large enough to pass all significant harmonics of the upper sideband. An envelope detector is
used for demodulation. Find the minimum value of £, such that the error is less than 10%.
Define the error as the difference between the demodulated signal and s(r). The percent error
is the ratio of error power to signal power.

s(r) H(f)
T

-l

Y
-
i

0.1

-] }

L ftha
ft“fv

Fig. P6.9.1

6.11.1 An information signal s(r) = 5cos1,000m¢ is transmitted using single-sideband suppressed
carrier and is demodulated using a synchronous demodulator. Noise with power spectral
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density G,(f) = N,/2 = 107* adds to the signal during transmission. Find the SNR at the
output of the receiver, in dB.

A signal
s(n) = 20cos 1,000 7t + 10 cos 2,000 mt

is transmitted using single sideband. Noise of power spectral density G,(f) = Ny/2 = 107*

adds during transmission.

(a) Sketch a block diagram of the required receiver.

(b) Find the SNR at the output of the receiver.

(¢) Suppose a bandpass filter with passband between 400 and 1,100 Hz is added to the out-
put of the receiver. Find the improvement in SNR of this filter.

A signal
s(f) = 4sin (200w + 10°)

is transmitted using double-sideband transmitted carrier, double-sideband suppressed carrier,
and single sideband. Noise of power spectral density G,(f) = Ny/2 = 107? adds during
transmission. Find the SNR at the output of the appropriate receiver for each case. (Assume
that an envelope detector is used for double-sideband transmitted carrier.)

A signal s(¢) is transmitted using single-sideband AM. The power spectral density of s(7) is as
shown in Fig. P6.11.4. White noise of spectral density N,/2 adds during transmission. Find
the SNR at the output of a synchronous demodulator.

Gy(f)

10

e

I Im Fig. P6.11.4
A DSBSC waveform with f,, = 5 kHz and f, = 1 MHz is transmitted. Nonwhite noise with
power spectral density as shown in Fig. P6.11.5 adds to the signal prior to detection with a
synchronous demodulator. Find the SNR at the output of the detector, assuming that the
power of the signal, s(r), is 1 watt.

G,(f)

107°

} =f
2MHz Fig. P6.11.5

Discuss the trade-off decision required to increase the vertical resolution of commercial TV
by 10%.




