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1. Introduction

Functional Magnetic Resonance Imaging (fMRI) us-
ing Blood Oxygen Level Dependent (BOLD) con-
trast is an established method for making inferences
about regionally specific activations in the human
brain [7]. From measurements of changes in blood
oxygenation one can use various statistical models,
such as the General Linear Model (GLM) [8], to
make inferences about task-specific changes in un-
derlying neuronal activity.

In previous work [21, 23, 22] we have developed a
spatially regularised General Linear Model (GLM)
for the analysis of fMRI data which allows for the
characterisation of regionally specific effects using
Posterior Probability Maps (PPMs). This spatial
regularisation has been shown [23] to increase the
sensitivity of inferences one can make.

This paper reviews our body of work on spatially
regularised GLMs and describes two new develop-
ments. These are (i) an approach for assessing mul-
tivariate contrasts and (ii) a method for choosing
the thresholds that generate PPMs. The paper is
structured as follows. Section 2 reviews the theo-
retical development of the algorithm. This includes
a description of a Variational Bayesian algorithm
in which inference is based on an approximation
to the posterior distribution that has minimal KL-
divergence from the true posterior. Sections 3 and 4
describe the new approaches for assessing multivari-
ate contrasts and PPM thresholding. In section 5
we present results on null fMRI data, synthetic data
and fMRI from functional activation studies of au-
ditory and face processing. The paper finishes with
a discussion in section 6.

2. Theory

We write an fMRI data set consisting of T time
points at N voxels as the T ×N matrix Y . In mass-
univariate models [8], these data are explained in
terms of a T × K design matrix X, containing the
values of K regressors at T time points, and a K×N

matrix of regression coefficients W , containing K re-
gression coefficients at each of the N voxels. The
model is written

Y = XW + E (1)

where E is a T ×N error matrix.
It is well known that fMRI data is contaminated

with artifacts. These stem primarily from low-
frequency drifts due to hardware instabilities, aliased
cardiac pulsation and respiratory sources, unmod-
elled neuronal activity and residual motion artifacts
not accounted for by rigid body registration meth-
ods [25]. This results in the residuals of an fMRI
analysis being temporally autocorrelated.

In previous work we have shown that, after re-
moval of low-frequency drifts using Discrete Cosine
Transform (DCT) basis sets, low-order voxel-wise
autoregressive (AR) models are sufficient for mod-
elling this autocorrelation [21]. It is important to
model these noise processes as parameter estima-
tion becomes less biased [11] and more accurate
[21]. Together, DCT and AR modelling can account
for long-memory noise processes. Alternative proce-
dures for removing low-frequency drifts include the
use of running-line smoothers or polynomial expan-
sions [17].

2.1 Model likelihood

We now describe the approach taken in our previous
work. For a P th-order AR model, the likelihood of
the data is given by

p(Y |W,A, λ) =
T∏

t=P+1

N∏
n=1

N(ytn − xtwn; (2)

(dtn −Xtwn)T an, λ−1
n )

where N(x;m,C) is a uni/multivariate Normal den-
sity with mean m and variance/covariance C, n in-
dexes the nth voxel, an is a P × 1 vector of au-
toregressive coefficients, wn is a K × 1 vector of re-
gression coefficients and λn is the observation noise
precision. The vector xt is the tth row of the design
matrix and Xt is a P ×K matrix containing the pre-
vious P rows of X prior to time point t. The scalar
ytn is the fMRI scan at the tth time point and nth
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Figure 1: The figure shows the probabilistic depen-
dencies underlying our generative model for fMRI
data. The quantities in square brackets are con-
stants and those in circles are random variables. The
spatial regularisation coefficients α constrain the re-
gression coefficients W . The spatial regularisation
coefficients β constrain the AR coefficients A. The
parameters λ and A define the autoregressive error
processes which contribute to the measurements.

voxel and dtn = [yt−1,n, yt−2,n, ..., yt−P,n]T . Because
dtn depends on data P time steps before, the likeli-
hood is evaluated starting at time point P + 1, thus
ignoring the GLM fit at the first P time points.

Equation 2 shows that higher model likelihoods
are obtained when the prediction error ytn−xtwn is
closer to what is expected from the AR estimate of
prediction error.

The voxel wise parameters wn and an are con-
tained in the matrices W and A and the voxel-wise
precisions λn are contained in λ. The next section
describes the prior distributions over these parame-
ters. Together, the likelihood and priors define the
probabilistic generative model, which is portrayed
graphically in Figure 1.

2.2 Priors

The graph in Figure 1 shows that the joint proba-
bility of parameters and data can be written

p(Y,W, A, λ, α, β) = p(Y |W,A, λ)p(W |α) (3)
p(A|β)p(λ|u1, u2)
p(α|q1, q2)p(β|r1, r2)

where the first term is the likelihood and the other
terms are the priors. The likelihood is given in equa-
tion 2 and the priors are described below.

2.2.1 Regression coefficients

For the regressions coefficients we have

p(W |α) =
K∏

k=1

p(wT
k |αk) (4)

p(wT
k |αk) = N(wT

k ; 0, α−1
k D−1

w )

where Dw is a spatial precision matrix. This can be
set to correspond to eg. a Low Resolution Tomog-
raphy (LORETA) prior, a Gaussian Markov Ran-
dom Field (GMRF) prior or a Minimum Norm (MN)
prior (Dw = I) [9] as described in earlier work [23].
These priors are specified separately for each slice
of data. Specification of 3-dimensional spatial pri-
ors (ie. over multiple slices) is desirable from a
modelling perspective but is computationally too de-
manding for current computer technology.

We can also write wv = vec(W ), wr = vec(WT ),
wv = Hwwr where Hw is a permutation matrix.
This leads to

p(W |α) = p(wv|α) (5)
= N(wv; 0, B−1)

where B is an augmented spatial precision matrix
given by

B = Hw(diag(α)⊗Dw)HT
w (6)

This form of the prior is useful as our specification
of approximate posteriors is based on similar quan-
tities.

The above Gaussian priors underly GMRFs and
LORETA and have been used previously in fMRI
[26] and EEG [18]. They are by no means, how-
ever, the optimal choice for imaging data. In EEG,
for example, much interest has focussed on the use of
Lp-norm priors [3] instead of the L2-norm implicit in
the Gaussian assumption. Additionally, we are cur-
rently investigating the use of wavelet priors. This
is an active area of research and will be the topic of
future publications.

2.2.2 AR coefficients

We also define a spatial prior for the AR coefficients
so that they too can be spatially regularised. We
have

p(A|β) =
P∏

p=1

p(ap|βp) (7)

p(ap|βp) = N(ap; 0, β−1
p D−1

a )
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Again, Da is a user-defined spatial precision matrix,
av = vec(A), ar = vec(AT ) and av = Haar where
Ha is a permutation matrix. We can write

p(A|β) = p(av|β) (8)
= N(av; 0, J−1)

where J is an augmented spatial precision matrix

J = Ha (diag(β)⊗Da) HT
a (9)

This form of the prior is useful as our specification
of approximate posteriors is based on similar quan-
tities.

We have also investigated ‘Tissue-type’ priors
which constrain AR estimates to be similar for vox-
els in the same tissue-type eg. gray matter, white
matter or cerebro-spinal fluid. Bayesian model se-
lection [22], however, favours the smoothly varying
priors defined in equation 7.

2.2.3 Precisions

We use Gamma priors on the precisions α, β and λ

p(λ|u1, u2) =
N∏

n=1

Ga(λn;u1, u2) (10)

p(α|q1, q2) =
K∏

k=1

Ga(αk; q1, q2)

p(β|r1, r2) =
P∏

p=1

Ga(βp; r1, r2)

where the Gamma density is defined as

Ga(x; b, c) =
1

Γ(c)
xc−1

bc
exp

(
−x

b

)
(11)

Gamma priors were chosen as they are the conjugate
priors for Gaussian error models. The parameters
are set to q1 = r1 = u1 = 10 and q2 = r2 = u2 = 0.1.
These parameters produce Gamma densities with a
mean of 1 and a variance of 10. The robustness of,
for example, model selection to the choice of these
parameters is discussed in [22].

2.3 Variational Bayes

The central quantity of interest in Bayesian learning
is the posterior distribution p(θ|Y ). This implies es-
timation both of the parameters θ and the uncertain-
ties associated with their estimation. This can be
achieved using standard Markov Chain Monte Carlo
(MCMC) [12] procedures to produce samples from
the posterior. Brain imaging data sets are, however,

prohibitively large (typically N = 50, 000, T = 200)
making MCMC impractical for routine use. We have
therefore adopted an approximate inference proce-
dure which is computationally efficient. This allows
inferences to be made within minutes rather than
hours. The approach is called Variational Bayes
(VB), a full tutorial on which is given in [16]. In
what follows we describe the key features.

Given a probabilistic model of the data, the log of
the ‘evidence’ or ‘marginal likelihood’ can be written
as

log p(Y ) =
∫

q(θ|Y ) log p(Y )dθ

=
∫

q(θ|Y ) log
p(Y, θ)
p(θ|Y )

dθ

=
∫

q(θ|Y ) log
[
q(θ|Y )p(Y, θ)
p(θ|Y )q(θ|Y )

]
dθ

= F + KL. (12)

Here, q(θ|Y ) is to be considered, for the moment, as
an arbitrary density. We have

F =
∫

q(θ|Y ) log
p(Y, θ)
q(θ|Y )

dθ, (13)

which is known (to physicists) as the negative vari-
ational free energy and

KL =
∫

q(θ|Y ) log
q(θ|Y )
p(θ|Y )

dθ (14)

is the KL-divergence [6] between the density q(θ|Y )
and the true posterior p(θ|Y ).

Equation 12 is the fundamental equation of the
VB-framework. Importantly, because the KL-
divergence is always positive [6], F provides a lower
bound on the model evidence. Moreover, because
the KL-divergence is zero when the two densities
are the same, F will become equal to the model evi-
dence when q(θ|Y ) is equal to the true posterior. For
this reason q(θ|Y ) can be viewed as an approximate
posterior.

The aim of VB-learning is to maximise F and so
make the approximate posterior as close as possible
to the true posterior. To obtain a practical learning
algorithm we must also ensure that the integrals in
F are tractable. One generic procedure for attaining
this goal is to assume that the approximating density
factorizes over groups of parameters (in physics this
is known as the mean-field approximation). Thus,
we consider:

q(θ|Y ) =
∏

i

q(θi|Y ) (15)

= q(θi)q(θ\i)
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where θi is the ith group of parameters and θ\i de-
notes all parameters not in the ith group. The distri-
butions which maximise F can then, via the calculus
of variations, be shown to be [16]

q(θi|Y ) =
exp[I(θi)]∫
exp[I(θi)]dθi

(16)

where

I(θi) =
∫

q(θ\i|Y ) log p(Y, θ)dθ\i (17)

Note that, importantly, this means we are able
to determine the optimal analytic form of the com-
ponent posteriors (using equation 16). This is to
be contrasted with Laplace approximations where
we fix the form of the component posteriors to
be Gaussian about the maximum posterior solution
[20].

The above principles lead to a set of coupled up-
date rules for the parameters of the component pos-
teriors, iterated application of which leads to the
desired maximisation. Further, by computing F for
different models, we can perform model selection.
This provides a mechanism for fine-tuning models.
For example, the choice of hemodynamic basis set
[22] or the order of the autoregressive models [21].

It is also possible to approximate the model evi-
dence using sampling methods [12, 4]. In the very
general context of probabilistic graphical models,
Beal and Ghahramani [4] have shown that the VB
approximation of model evidence is considerably
more accurate than the Bayesian Information Cri-
terion (BIC) whilst incurring little extra computa-
tional cost. Moreover, model selection using VB is
of comparable accuracy to a much more computa-
tionally demanding method based on Annealed Im-
portance Sampling (AIS) [4].

2.4 Approximate Posteriors

This paper uses the Variational Bayes framework
[19] for estimation and inference. We describe the al-
gorithm developed in previous work [23] in which we
assumed that the approximate posterior factorises
over voxels and subsets of parameters.

Because of the spatial priors, the regression coef-
ficients in the true posterior p(W |Y ) will clearly be
correlated. Our perspective, however, is that this
is too computationally burdensome for current per-
sonal computers to take account of. Moreover, as
we shall see in section 2.4.1, updates for our ap-
proximate factorised densities q(wn) do encourage
the approximate posterior means to be similar at

nearby voxels, thereby achieving the desired effect
of the prior.

Our approximate posterior is given by

q(W,A, λ, α, β) =
∏
n

q(wn)q(an)q(λn) (18)∏
k

q(αk)
∏
p

q(βp)

and each component of the approximate posterior is
described below. These update equations are self-
contained except for a number of quantities that are
marked out using the ‘tilde’ notation. These are
Ãn, b̃n, C̃n, d̃n and G̃n which are all defined in Ap-
pendix B of [21].

2.4.1 Regression coefficients

We have

q(wn) = N(wn; ŵn, Σ̂n) (19)

Σ̂n =
(
λ̄nÃn + B̄nn

)−1

ŵn = Σ̂n

(
λ̄nb̃T

n + rn

)
rn = −

N∑
i=1,i 6=n

B̄niŵi

where B̄ is defined as in equation 6 but uses ᾱ in-
stead of α. The quantities Ãn and b̃n are expec-
tations related to autoregressive processes and are
defined in Appendix B of [21]. In the absence of
temporal autocorrelation we have Ãn = XT X and
b̃T
n = XT yn.

2.4.2 AR coefficients

We have

q(an) = N(an;mn, Vn)

where

Vn =
(
λ̄nC̃n + J̄nn

)−1

(20)

mn = Vn(λ̄nd̃n + jn)

jn = −
N∑

i=1,i 6=n

J̄nimi

and J̄ is defined as in equation 9 but β̄ is used instead
of β. The subscripts in J̄ni denote that part of J̄
relevant to the nth and ith voxels. The quantities C̃n

and d̃n are expectations that are defined in equation
50 of [21].
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2.4.3 Precisions

The approximate posteriors over the precision vari-
ables are Gamma densities. For the precisions on
the observation noise we have

q(λn) = Ga(λn; bn, cn) (21)

1
bn

=
G̃n

2
+

1
u1

cn =
T

2
+ u2

λ̄n = bncn

where G̃n is the expected prediction error defined
in Appendix B of [21]. In the abscence of temporal
autocorrelation we have

G̃n = (yn −Xŵn)T (yn −Xŵn) + Tr(Σ̂XT X) (22)

For the precisions of the regression coefficients we
have

q(αk) = Ga(αk; gk, hk) (23)
1
gk

=
1
2

(
Tr(Σ̂kDw) + ŵT

k Dwŵk

)
+

1
q1

hk =
N

2
+ q2

ᾱk = gkhk

For the precisions of the AR coefficients we have

q(βp) = Ga(βp; r1p, r2p) (24)
1

r1p
=

1
2

(
Tr(VpDa) + mT

p Damp

)
+

1
r1

r2p =
N

2
+ r2

β̄p = r1pr2p

2.5 Practicalities

For the empirical work in this paper we set up the
spatial precision matrices Da and Dw, defined in sec-
tion 2.2, to produce GMRF priors. We also used AR
models of order P = 3.

The VB algorithm is initialised using Ordinary
Least Square (OLS) estimates for regression and au-
toregressive parameters as described in [21]. Quanti-
ties are then updated using equations 19,20,21,23,24.
These equations can then be iterated until conver-
gence, which is defined as less than a 1% increase in
F , the objective function. For the empirical work in
this paper, however, we fixed the number of itera-
tions to 4.

Expressions for computing F are given in [22].
This is an important quantity as it can also be used

for model comparison. This is described at length
in [22].

The algorithm we have described is implemented
in SPM version 5 and can be downloaded from [1].
Computation of a number of quantites (eg. C̃n, d̃n

and G̃n) is now much more efficient than in previous
versions [23]. These improvements are described in a
separate document [27]. To analyse a single session
of data (eg. the face fMRI data) takes about 30
minutes on a typical modern PC.

2.6 Spatio-temporal deconvolution

The central quantity of interest in fMRI analysis is
our estimate of effect sizes, embodied in contrasts
of regression coefficients. A key update equation in
our VB scheme is, therefore, the approximate pos-
terior for the regression coefficients. This is given
by equation 19. For the special case of temporally
uncorrelated data we have

Σ̂n =
(
λ̄nXT X + B̄nn

)−1
(25)

ŵn = Σ̂n

(
λ̄nXT yn + rn

)
where B̄ is a spatial precision matrix and rn is the
weighted sum of neighboring regression coefficient
estimates.

This update indicates that the regression coeffi-
cient estimate at a given voxel regresses towards
those at nearby voxels. This is the desired effect
of the spatial prior and it is preserved despite the
factoristion over voxels in the approximate posterior
(see equation 18). Equation 25 can be thought of
as the combination of a temporal prediction XT yn

and a spatial prediction from rn. Each prediction
is weighted by its relative precision to produce the
optimal estimate ŵn. In this sense, the VB up-
date rules provide a spatio-temporal deconvolution
of fMRI data. Moreover, the parameters control-
ling the relative precisions, λ̄n and ᾱ are estimated
from the data. This means that our effect size
estimates derive from an automatically regularised
spatio-temporal deconvolution.

2.7 Global scaling

Before statistical analysis, brain imaging data are
usually scaled in some way. In the SPM software
package [1], for example, imaging data are, by de-
fault, scaled according to the following procedure.
Firstly, the global mean value is computed

g =
1

TN

T∑
t=1

N∑
n=1

unt (26)
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where unt are fMRI values at voxel n and time point
t. Scaled images are then computed as

ynt =
100
g

unt (27)

If we express an activated voxel as

ua = ub + ∆u (28)

where ub is the baseline value and ∆u is the absolute
amount of activation then the difference in scaled
image data is then given by

ya − yb =
100(ub + ∆u)

g
− 100ub

g
(29)

=
100∆u

g

So, differences in scaled image values correspond to
changes in the original data that are expressed as
percentages of the global mean. Because estimated
regression coefficients are just estimates of differ-
ences in scaled image values, eg. the difference be-
tween conditions, then they too have this interpreta-
tion. The regression coefficients in GLMs (and con-
trasts of them, see next section) reflect effect sizes as
a percentage of g. This is important as these effect
sizes can be plotted in Posterior Probability Maps
(see section 5).

3. Contrasts

After having estimated a model, we will be inter-
ested in characterising a particular effect, c, which
can usually be expressed as a linear function or ‘con-
trast’ of parameters, w. That is,

c = CT w (30)

where C is a contrast vector or matrix. For exam-
ple, the contrast vector cT = [1 − 1] will allow us
to look at the difference between two experimental
conditions.

Our statistical inferences will be based on the ap-
proximate distribution. Because this factorises over
voxels we can write

q(c) =
N∏

n=1

q(cn) (31)

where cn is the effect size at voxel n. Given a con-
trast matrix C we have

q(cn) = N(cn;mn, Vn) (32)

with mean and covariance

mn = Cŵn (33)
Vn = CT Σ̂nC

Bayesian inference based on this posterior can then
take place using confidence intervals [5]. For univari-
ate contrasts we have suggested the use of Posterior
Probability Maps (PPMs). Before discussing this
at length in section 4, we describe a new approach
that allows us to make inferences about multivariate
contrasts. That is, where cn is a vector.

3.1 Multivariate contrasts

The probability α that the zero vector lies on the
1− α confidence region of the posterior distribution
at each voxel is computed as follows. We first note
that this probability is the same as the probability
that the vector mn lies on the edge of the 1 − α
confidence region for the distribution N(mn; 0, Vn).
This latter probability can be computed by forming
the test statistic

dn = mT
nV −1

n mn (34)

which will be the sum of vn = rank(Vn) indepen-
dent, squared Gaussian variables. As such it has a
χ2 distribution

p(dn) = χ2(vn) (35)

This procedure is identical to that used for making
inferences in Bayesian Multivariate Autoregressive
Models [13]. We can also use this procedure to test
for two-sided effects, that is, activations or deacti-
vations. Although these contrasts are univariate we
will use the term ‘multivariate contrasts’ to also in-
clude the assessment of these two-sided effects.

4. Thresholding

In previous work [9] we have suggested deriving Pos-
terior Probability Maps (PPMs) by applying two
thresholds to the posterior distributions (i) an ef-
fect size threshold, γ, and (ii) a probability thresh-
old pT . Voxel n is then included in the PPM if
q(cn > γ) > pT .

If voxel n is to be included then the posterior ex-
ceedance probability q(cn > γ) is plotted. In this
paper, we instead propose plotting the effect size it-
self, cn.

We also propose the following procedure for ex-
ploring the posterior distribution of effect sizes.
Firstly, plot a map of effect sizes using the thresholds
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γ = 0 and pT = 1− 1/N where N is the number of
voxels. We refer to these values as the default thresh-
olds. Then, after visual inspection of the resulting
map use a non-zero γ, the value of which reflects ef-
fect sizes in areas of interest. It will then be possible
to reduce pT to a value such as 0.95.

Of course, if previous imaging analyses have in-
dicated what effect sizes are physiologically relevant
then this exploratory procedure is unnecessary. Al-
ternatively, one could stick with the default thresh-
olds.

4.1 False positive rates

If we partition effect-size values into two hypothesis
spaces H0 : c ≤ γ and H1 : c > γ then we can
characterise the sensitivity and specificity of our al-
gorithm. This is different to classical inference which
uses H0 : c = 0. A False Positive (FP) occurs if we
accept H1 when H0 is true.

If we use the default threshold and the approxi-
mate posterior were exact then the distribution of
FPs is binomial with rate p = 1/N . The mean and
variance of the binomial distribution are Np and
Np(1−p). The expected number of false positives in
each PPM is therefore N × 1/N = 1. The variance
is N × 1/N × (1 − 1/N) which is approximately 1.
We would therefore expect 0, 1 or 2 false positives
per PPM. We suggest that this is sufficiently high
specificity for brain imaging analyses.

Of course, the above result only holds if the ap-
proximate posterior is equal to the true posterior.
But given that all of our computational effort (see
section 2.4) is aimed at this goal it would not be
too surprising if the above analysis were indicative
of actual FP rates. This issue will be investigated
using Null fMRI data in the next section.

5. Results

5.1 Null data

This section describes the analysis of a Null data set
to find out how many false positives are obtained
using PPMs with default thresholds.

Images were acquired from a 1.5T
Sonata(Siemens, Erlangen Germany) which pro-
duced T2*-weighted transverse Echo-Planar Images
(EPIs) with BOLD contrast. Whole brain EPIs
consisting of 48 transverse slices were acquired every
TR=4.32s resulting in a total of T = 98 scans. The
voxel size is 3× 3× 3mm. All images were realigned
to the first image using a six-parameter rigid-body
transformation to account for subject movement.

Figure 2: Left: Design matrix for null fMRI data.
The first column models a boxcar activation and the
second column models the mean. There are n = 1..98
rows corresponding to the 98 scans. Right: Image
of regression coefficients corresponding to synthetic
activation added to null data. In this image black is
0 and white is 1.

We then implemented a standard whole volume
analysis on images comprising N = 59, 945 voxels.
We used the design matrix shown in the left panel
of Figure 2. This design is used in the following
section. Use of the default thresholds resulted in no
spurious activations in the PPM. We then repeated
the above analysis but with a number of different
design matrices.

These were based on the epoch design in Figure 2
but each epoch onset was jittered by a number be-
tween plus or minus 9 scans, sampled from a uniform
distribution, and the epoch durations were drawn
from a uniform distribution between 4 and 10 scans.
Ten such designs were created and VB models fitted
to the null data. For designs 1 to 10, the numbers
of false positives were 0,0,1,2,4,0,0,1,0 and 0. This is
close to what we’d expect from the binomial analysis
described in section 4.1.

5.2 Synthetic data

We then added three synthetic activations to a slice
of null data (z = −13mm). These were created using
the design matrix and regression coefficient image
shown in Figure 2 (the two regression coefficient im-
ages, ie. for the activation and the mean, were iden-
tical). These images were formed by placing delta
functions at three locations and then smoothing with
Gaussian kernels having FWHMs of 2, 3 and 4 pix-
els (going clockwise from the top-left blob). Images
were then rescaled to make the peaks unity.

In principle, smoothing with a Gaussian kernel
renders the true effect size greater than zero every-
where because a Gaussian has infinite spatial sup-
port. In practice, however, when implemented on
a digital computer with finite numerical precision
most voxels will be numerically zero. Indeed, our
simulated data contained 299 ‘activated’ voxels ie.

7



Figure 3: Left: Effect as estimated using VB Right:
Effect as estimated using OLS. The true effect is
shown in the right plot in Figure 2. In these im-
ages, black denotes 0 and white 1.

Figure 4: Plots of exceedance probabilities p(cn > γ)
for two thresholds. Left: γ = 0. Right: γ = 0.3. In
these images, black denotes 0 and white 1.

voxels with effect sizes numerically greater than zero.
This slice of data was then analysed using VB.

The contrast c = [1, 0]T was then used to look at
the estimated activation effect. This is shown in
the left panel of Figure 3. For comparison, we also
show the effect as estimated using OLS. Clearly, OLS
estimates are much noisier than VB estimates.

Figure 4 shows plots of the exceedance probabil-
ities for two different effect-size thresholds, γ = 0
and γ = 0.3. Figure 5 shows thresholded versions
of these images. These are PPMs. Neither of these
PPMs contain any false positives. That is, the true
effect size is greater than zero wherever a white voxel
occurs. This shows, informally, that use of the de-

Figure 5: PPMs for two thresholds. Left: The de-
fault thresholds (γ = 0, pT = 1 − 1/N) Right: The
thresholds γ = 0.3, pT = 0.95. In these images,
black denotes 0 and white 1.

Figure 6: Design matrix for analysis of the audi-
tory data. The first column models epochs of au-
ditory stimulation and the second models the mean
response.

fault thresholds provides good specificity whilst re-
taining reasonable sensitivity. Also, a combination
of non-zero effect-size thresholds and more liberal
probability thresholds can do the same.

5.3 Auditory data

This section describes the use of multivariate con-
trasts for an auditory fMRI data set. This data set
comprises whole brain BOLD/EPI images acquired
on a modified 2T Siemens Vision system. Each ac-
quisition consisted of 64 contiguous slices (64x64x64
3mm x 3mm x 3mm voxels). A time series of 96
images was acquired with TR=7s from a single sub-
ject.

This was an epoch fMRI experiment in which
the condition for successive epochs alternated be-
tween rest and auditory stimulation, starting with
rest. Auditory stimulation was bi-syllabic words pre-
sented binaurally at a rate of 60 per minute.

These data were analysed using VB with the de-
sign matrix shown in Figure 6. To look for voxels
that increase activity in response to auditory stimu-
lation we used the univariate contrast c = [1, 0]T .
Figure 7 shows a PPM that maps effect-sizes of
above threshold voxels.

To look for either increases or decreases in activity
we use the multivariate contrast c = [1, 0]T . This in-
ference uses the χ2 approach described earlier. Fig-
ures 8 shows the PPM obtained using default thresh-
olds.
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Figure 7: PPM for positive auditory activation.
Overlay of effect-size, in units of percentage of global
mean, on subjects MRI for above threshold voxels.
The default thresholds were used, that is, we plot cn

for voxels which satisfy p(cn > 0) > 1− 1/N .

Figure 8: PPM for positive or negative auditory ac-
tivation. Overlay of χ2 statistic on subjects MRI
for above threshold voxels. The default thresholds
were used, that is, we plot χ2

n for voxels which sat-
isfy p(cn > 0) > 1− 1/N .

5.4 Face data

This is an event-related fMRI data set acquired by
Henson et al. [15]. The data were acquired during
an experiment concerned with the processing of im-
ages of faces [15]. This was an event-related study
in which greyscale images of faces were presented for
500ms, replacing a baseline of an oval chequerboard
which was present throughout the interstimulus in-
terval. Some faces were of famous people and were
therefore familiar to the subject and others were not.
Each face in the database was presented twice. This
paradigm is a two-by-two factorial design where the
factors are familiarity and repetition. The four ex-
perimental conditions are ‘U1’, ‘U2’, ‘F1’ and ‘F2’
which are the first or second (1/2) presentations of
images of familiar ‘F’ or unfamiliar ‘U’ faces.

Images were acquired from a 2T VISION sys-
tem (Siemens, Erlangen, Germany) which produced
T2*-weighted transverse Echo-Planar Images (EPIs)
with BOLD contrast. Whole brain EPIs consisting
of 24 transverse slices were acquired every two sec-
onds resulting in a total of T=351 scans. All func-
tional images were realigned to the first functional
image using a six-parameter rigid-body transforma-
tion. To correct for the fact that different slices were
acquired at different times, time series were interpo-
lated to the acquisition time of the reference slice.
Images were then spatially normalized to a standard
EPI template using a nonlinear warping method [2].
Each time series was then high-pass filtered using
a set of discrete cosine basis functions with a filter
cut-off of 128 seconds.

The data were then analysed using the design ma-
trix shown in Figure 9. The first 8 columns contain
stimulus related regressors. These correspond to the
four experimental conditions, where each stimulus
train has been convolved with two different hemo-
dynamic bases (i) the canonical Hemodynamic Re-
sponse Function (HRF) and (ii) the time derivative
of the canonical [14]. The next 6 regressors in the
design matrix describe movement of the subject in
the scanner and the final column models the mean
response.

The model was then fitted using the VB algo-
rithm. Figure 10 plots a map of the first autoregres-
sive component as estimated using VB. This shows a
good deal of heterogeneity and justifies our assump-
tion that that AR coefficients are spatially varying.
The estimated spatial variation is smooth, however,
due to the spatial prior.

Figure 11 shows a PPM for ‘Any effect of faces’.
This was obtained using the multivariate contrast
matrix shown in Figure 9.
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Figure 9: Lower part: Design matrix for analysis of
face data, Upper part: Multivariate contrast used to
test for any effect of faces.

Figure 10: Image of the first autoregressive coeffi-
cient estimated from the face fMRI data. In these
images, black denotes 0 and white 1.

Figure 11: PPM showing above threshold χ2 statis-
tics for any effect of faces
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6. Discussion

In previous work[10], we have compared the sensitiv-
ity and specificity of classical inference to Bayesian
inference with Minimum Norm (MN) priors. This
comparison was made possible by looking at the ex-
pected properties of the Bayesian estimators across
an ensemble of data sets, and showed that the
Bayesian inference was no more sensitive than the
classical inference.

Bayesian inferences can be used, however, to look
for effects greater than a physiologically relevant size
eg. 0.5% of the global mean. These inferences can be
presented visually using Posterior Probability Maps
(PPMs) and have high intrinsic specificity. Also, one
can use Bayesian inference to assess the absence of
an experimental effect [10].

We have since developed a Bayesian inference
framework based on spatial priors which has been
reviewed in this paper. This prior embodies our
knowledge that evoked responses are spatially homo-
geneous and locally contiguous. The approach may
be viewed as an automatically regularized spatio-
temporal deconvolution algorithm.

As compared to standard approaches based on
spatially smoothing the imaging data itself, the spa-
tial regularisation procedure has been shown to re-
sult in inferences with higher sensitivity [23].

In this paper we have also described a new PPM
procedure for making inferences about multivariate
contrasts. This allows us to make inferences about
(i) hemodynamic responses that are characterised by
multiple basis functions (ii) main effects and inter-
actions in factorial fMRI designs and (iii) two-sided
effects. The procedure uses the same χ2 approach
that has previously been used in the context of Mul-
tivariate Autoregressive (MAR) models.

PPMs provide a visual representation of the pos-
terior distribution of effect sizes across the brain.
They are generated using an effect size threshold
and a probability threshold. These two thresholds
convert a Gaussian posterior distribution at each
voxel, specified by two quantities - the mean and
variance, into a single quantity that can be mapped
eg. the exceedance probability, effect size or statistic
value. One can create PPMs using various effect-size
thresholds, which can be chosen on the basis of prior
knowledge about what is physiologically revelant in
a given experimental context. One can also vary the
probability thresholds used, although 0.95 would be
a typical value. The use of these different thresh-
olds allows for a visual exploration of the posterior
distribution.

However, it is also useful to categorize responses

into regions which are or are not activated. Such
categorization is usually unavoidable when report-
ing neuroimaging results because one has to choose
which regions to report in tables and, indeed, dis-
cuss. In this paper we have therefore described a
simple new procedure for setting the thresholds that
generate PPMs. These ‘default thresholds’ com-
prise an effect size threshold of zero and a proba-
bility threshold of 1 − 1/N where N is the number
of voxels in the volume. Use of PPMs with ‘default
thresholds’ resulted in low false positive rates for null
fMRI data, and physiologically plausible activations
for auditory and face fMRI data sets.

A comprehensive Bayesian thresholding approach
has been implemented by Woolrich et al. [24]. This
work uses explicit models of the null and alternative
hypotheses based on Gaussian and Gamma variates.
This requires a further computationally expensive
stage of model-fitting, based on spatially regularised
discrete Markov Random Fields, but has the bene-
fit that false-positive and true-positive rates can be
controlled explicitly.
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