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Good Morning Colleagues

• Are there any questions?



  

Logistics

• Assignment 2 underway

• Next week’s readings - due Monday night
– Forward/inverse kinematics

– Aibo joint modeling

– Frame-based control



  

Controlling a Simple System

• Consider a simple system:  

– Scalar variables x and u, not vectors x and u.
– Assume x is observable:  y = G(x) = x
– Assume effect of motor command u:  

• The setpoint xset is the desired value.
– The controller responds to error:  e = x  xset

• The goal is to set u to reach e = 0.



  

The intuition behind control

• Use action u to push back toward error e = 0
– error e depends on state x (via sensors y)

• What does pushing back do?
– Depends on the structure of the system

– Velocity versus acceleration control

• How much should we push back?
– What does the magnitude of u depend on?

Car on a slope example



  

Velocity or acceleration control?

• If error reflects x, does u affect x or x ?
• Velocity control:   u  x    (valve fills tank)

– let x = (x)

• Acceleration control:  u  x    (rocket)
– let x = (x v)T



  

The Bang-Bang Controller

• Push back, against the direction of the error
– with constant action u

• Error is  e = x - xset

• To prevent chatter around e = 0,

• Household thermostat.  Not very subtle.



  

Bang-Bang Control in Action

– Optimal for reaching the setpoint

– Not very good for staying near it



  

Hysteresis

• Does a thermostat work exactly that way?
– Car demonstration

• Why not?

• How can you prevent such frequent motor 
action?

• Nao turning to ball example



  

Proportional Control
• Push back, proportional to the error.

– set ub so that 

• For a linear system, we get exponential 
convergence.

• The controller gain k determines how 
quickly the system responds to error.



  

Velocity Control

• You want to drive your car at velocity vset.

• You issue the motor command u = posaccel

• You observe velocity vobs.

• Define a first-order controller:

– k is the controller gain.



  

Proportional Control in Action

– Increasing gain approaches setpoint faster

– Can lead to overshoot, and even instability

– Steady-state offset



  

Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– Why not?



  

Steady-State Offset

• Suppose we have continuing disturbances:

• The P-controller cannot stabilize at e = 0.
– if ub is defined so F(xset,ub) = 0

– then F(xset,ub) + d  0, so the system changes

• Must adapt ub to different disturbances d.



  

Adaptive Control

• Sometimes one controller isn’t enough.

• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Why?



  

Adaptive Control

• Sometimes one controller isn’t enough.

• We need controllers at different time scales.

• This can eliminate steady-state offset.
– Because the slower controller adapts ub.



  

Integral Control

• The adaptive controller                      means

• Therefore

• The Proportional-Integral (PI) Controller.



  

Nonlinear P-control

• Generalize proportional control to

• Nonlinear control laws have advantages
– f has vertical asymptote:  bounded error e

– f has horizontal asymptote:  bounded effort u

– Possible to converge in finite time.

– Nonlinearity allows more kinds of composition.



  

Stopping Controller

• Desired stopping point:  x=0.
– Current position:  x

– Distance to obstacle: 

• Simple P-controller:  

• Finite stopping time for  



  

Derivative Control

• Damping friction is a force opposing 
motion, proportional to velocity.

• Try to prevent overshoot by damping 
controller response.

• Estimating a derivative from measurements 
is fragile, and amplifies noise.



  

Derivative Control in Action

– Damping fights oscillation and overshoot

– But it’s vulnerable to noise



  

Effect of Derivative Control

– Different amounts of damping (without noise)



  

Derivatives Amplify Noise

– This is a problem if control output (CO) 
depends on slope (with a high gain).



  

The PID Controller

• A weighted combination of Proportional, 
Integral, and Derivative terms.

• The PID controller is the workhorse of the 
control industry.  Tuning is non-trivial.
– End of slides includes some tuning methods.



  

PID Control in Action

– But, good behavior depends on good tuning!
– Nao joints use PID control



  

Exploring PI Control Tuning



  

Habituation
• Integral control adapts the bias term ub.

• Habituation adapts the setpoint xset.
– It prevents situations where too much control 

action would be dangerous.

• Both adaptations reduce steady-state error.



  

Types of Controllers

• Open-loop control
– No sensing

• Feedback control  (closed-loop)
– Sense error, determine control response.

• Feedforward control (closed-loop) 
– Sense disturbance, predict resulting error, respond to 

predicted error before it happens.

• Model-predictive control (closed-loop) 
– Plan trajectory to reach goal.  
– Take first step.  
– Repeat.

Design open and closed-loop
controllers for me to get out
of the room. 



  

Dynamical Systems
• A dynamical system changes continuously 

(almost always) according to

• A controller is defined to change the 
coupled robot and environment into a 
desired dynamical system.



  

Two views of dynamic behavior

• Time 
plot 
(t,x)

• Phase 
portrait 
(x,v)



  

Phase Portrait:  (x,v) space
• Shows the trajectory (x(t),v(t)) of the system

– Stable attractor here



  

In One Dimension

• Simple linear system

• Fixed point

• Solution  

– Stable if  k < 0

– Unstable if  k > 0



  

In Two Dimensions

• Often, we have position and velocity:

• If we model actions as forces, which cause 
acceleration, then we get:



  

The Damped Spring

• The spring is defined by Hooke’s Law:

• Include damping friction

• Rearrange and redefine constants



  

Node 
Behavior



  

Focus 
Behavior



  

Saddle 
Behavior



  

Spiral 
Behavior

(stable 
attractor)



  

Center 
Behavior

(undamped 
oscillator)



  

The Wall Follower

(x,y)



  

The Wall Follower
• Our robot model: 

   

       u = (v  )T       y=(y  )T           0.

• We set the control law  u = (v  )T = Hi(y)



  

The Wall Follower

• Assume constant forward velocity v = v0

– approximately parallel to the wall:    0.

• Desired distance from wall defines error:

• We set the control law  u = (v  )T = Hi(y)
– We want e to act like a “damped spring”



  

The Wall Follower

• We want a damped spring: 
• For small values of 

• Substitute, and assume v=v0 is constant.  

• Solve for 



  

The Wall Follower
• To get the damped spring

• We get the constraint 

• Solve for .  Plug into u.

– This makes the wall-follower a PD controller.

– Because:  



  

Tuning the Wall Follower

• The system is  

• Critical damping requires 

• Slightly underdamped performs better.
– Set k2 by experience.

– Set k1 a bit less than 



  

An Observer for Distance to Wall

• Short sonar returns are reliable.
– They are likely to be perpendicular reflections.



  

Alternatives

• The wall follower is a PD control law.
• A target seeker should probably be a PI 

control law, to adapt to motion.

• Can try different tuning values for 
parameters.
– This is a simple model.
– Unmodeled effects might be significant.



  

Ziegler-Nichols Tuning
• Open-loop response to a unit step increase.

• d is deadtime.  T is the process time constant.

• K is the process gain.

d T K



  

Tuning the PID Controller

• We have described it as:

• Another standard form is:

• Ziegler-Nichols says:



  

Ziegler-Nichols Closed Loop
1. Disable D and I action (pure P control).

2. Make a step change to the setpoint.

3. Repeat, adjusting controller gain until 
achieving a stable oscillation.

• This gain is the “ultimate gain” Ku.

• The period is the “ultimate period” Pu.



  

Closed-Loop Z-N PID Tuning

• A standard form of PID is:

• For a PI controller:

• For a PID controller:



  

Summary of Concepts

• Dynamical systems and phase portraits

• Qualitative types of behavior
– Stable vs unstable;  nodal vs saddle vs spiral

– Boundary values of parameters

• Designing the wall-following control law

• Tuning the PI, PD, or PID controller
– Ziegler-Nichols tuning rules

– For more, Google:  controller tuning



  

Followers

• A follower is a control law where the robot 
moves forward while keeping some error 
term small.
– Open-space follower

– Wall follower

– Coastal navigator

– Color follower



  

Control Laws Have Conditions

• Each control law includes:
– A trigger:  Is this law applicable?

– The law itself:  u = Hi(y)

– A termination condition:  Should the law stop?



  

Open-Space Follower

• Move in the direction of large amounts of open 
space.

• Wiggle as needed to avoid specular reflections.

• Turn away from obstacles.

• Turn or back out of blind alleys.



  

Wall Follower

• Detect and follow right or left wall.

• PD control law.

• Tune to avoid large oscillations.

• Terminate on obstacle or wall vanishing.



  

Coastal Navigator

• Join wall-followers to follow a complex 
“coastline”

• When a wall-follower terminates, make the 
appropriate turn, detect a new wall, and 
continue.

• Inside and outside corners, 90 and 180 deg.

• Orbit a box, a simple room, or the desks.



  

Color Follower

• Move to keep a desired color centered in the 
camera image.

• Train a color region from a given image.

• Follow an orange ball on a string, or a 
brightly-colored T-shirt.



  

Problems and Solutions

• Time delay
• Static friction
• Pulse-width modulation
• Integrator wind-up
• Chattering
• Saturation, dead-zones, backlash
• Parameter drift



  

Unmodeled Effects

• Every controller depends on its simplified 
model of the world.
– Every model omits almost everything.

• If unmodeled effects become significant, 
the controller’s model is wrong,
– so its actions could be seriously wrong.

• Most controllers need special case checks.
– Sometimes it needs a more sophisticated model.



  

Time Delay

• At time t,
– Sensor data tells us about the world at t1 < t.

– Motor commands take effect at time t2 > t.

– The lag is dt = t2  t1.  

• To compensate for lag time,
– Predict future sensor value at t2.

– Specify motor command for time t2.

t1 t2t

now



  

Predicting Future Sensor Values

• Later, observers will help us make better 
predictions.

• Now, use a simple prediction method:
– If sensor s is changing at rate ds/dt,
– At time t, we get s(t1), where t1 < t,
– Estimate s(t2) = s(t1) + ds/dt * (t2 - t1). 

• Use s(t2) to determine motor signal u(t) that 
will take effect at t2.



  

Static Friction  (“Stiction”)
• Friction forces oppose the direction of motion.

• We’ve seen damping friction:  Fd =  f(v)

• Coulomb (“sliding”) friction is a constant Fc 
depending on force against the surface.
– When there is motion,       Fc = 
– When there is no motion,  Fc =  + 

• Extra force is needed to unstick an object and 
get motion started.



  

Why is Stiction Bad?

• Non-zero steady-state error.

• Stalled motors draw high current.
– Running motor converts current to motion.

– Stalled motor converts more current to heat.

• Whining from pulse-width modulation.
– Mechanical parts bending at pulse frequency.



  

Pulse-Width Modulation
• A digital system works at 0 and 5 volts.

– Analog systems want to output control signals 
over a continuous range.

– How can we do it?

• Switch very fast between 0 and 5 volts.
– Control the average voltage over time.

• Pulse-width ratio  =  ton/tperiod.  (30-50 sec)

ton

tperiod



  

Pulse-Code Modulated Signal
• Some devices are controlled by the length 

of a pulse-code signal.
– Position servo-motors, for example.

0.7ms

20ms

1.7ms

20ms



  

Integrator Wind-Up
• Suppose we have a PI controller

• Motion might be blocked, but the integral is 
winding up more and more control action.

• Reset the integrator on significant events.



  

Chattering

• Changing modes rapidly and continually.

– Bang-Bang controller with thresholds set too 
close to each other.

– Integrator wind-up due to stiction near the 
setpoint, causing jerk, overshoot, and repeat. 



  

Dead Zone

• A region where controller output does not 
affect the state of the system.
– A system caught by static friction.
– Cart-pole system when the pendulum is 

horizontal.
– Cruise control when the car is stopped.

• Integral control and dead zones can combine 
to cause integrator wind-up problems.



  

Saturation

• Control actions cannot grow indefinitely.
– There is a maximum possible output.

– Physical systems are necessarily nonlinear.

• It might be nice to have bounded error by 
having infinite response.
– But it doesn’t happen in the real world.



  

Backlash

• Real gears are not perfect connections.
– There is space between the teeth.

• On reversing direction, there is a short time 
when the input gear is turning, but the 
output gear is not.



  

Parameter Drift

• Hidden parameters can change the behavior of 
the robot, for no obvious reason.
– Performance depends on battery voltage.

– Repeated discharge/charge cycles age the battery.

• A controller may compensate for small 
parameter drift until it passes a threshold.  
– Then a problem suddenly appears.

– Controlled systems make problems harder to find



  

Unmodeled Effects

• Every controller depends on its simplified 
model of the world.
– Every model omits almost everything.

• If unmodeled effects become significant, 
the controller’s model is wrong,
– so its actions could be seriously wrong.

• Most controllers need special case checks.
– Sometimes it needs a more sophisticated model.
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