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In the analysis of electric servo drive motors, the equations for the motor indicates the 
presence of two time constants. One is a mechanical time constant and the other is an 
electrical time constant. Commercial servo motor specifications usually list these two 
time constants. However, it should be cautioned that these two time constants as given in 
the specifications are for the motor alone with no load inertia connected to the motor 
shaft. Since these two time constants are part of the motor block diagram used in servo 
analysis, it is important to know the real value of the time constants under actual load 
conditions. 
 
There are two types of servo motors to consider. The first is the classical dc servo motor 
and the second is the ac servo motor often referred to as a brushless dc motor. The 
brushless dc motor is a three phase synchronous ac motor having a position transducer 
inside the motor to transmit motor shaft position to the drive amplifier for the purpose of 
controlling current commutation in the three phases of the motor windings.  
 
A derivation of the motor equations and the electrical and mechanical motor time 
constants will be discussed for the dc motor followed by the ac motor. The dc motor 
equivalent diagram is: 
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              Figure 1 
 
 Where:  
 eI    =   Applied voltage (volts) 
 ia    =   Armature current (amps) 
 JT   =   Total inertia of motor armature plus load (lb-in-sec2) 
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 Ke  =   Motor voltage constant (v/rad/sec) 
 KT  =   Motor torque constant (lb-in/A) 
 La   =   Motor winding inductance (Henries) 
 Ra  =   Armature resistance (ohms) 
 TL  =   Load torque (lb-in) 
 Vm =   Motor velocity (rad/sec) 
 α   =   Acceleration (rad/sec2) 
 
 
 
The steady state (dc) equations are: 
 
  ei   =  iaRa + KeVm  (Voltage equation)    (1) 
  
  T   =  Torque  =  iaKT  =  Jα    (Torque equation)   (2) 
  
For the general case, the differential equations are: 
 

 ei  =  iaRa + La
dt
dia  + KeVm      (3) 

         Laplace operator  S = 
dt
d      (4) 

 ei  =  Raia + LaSia + KeVm      (5) 
 
 ei  =  (Ra + LaS)ia + KeVm      (6) 

 ei  =  ( 1S
R
L

a

a
+ )Raia +KeVm      (7) 

 
 Also:  T  =  KTIa  =  JTα   =  JTVmS     (8) 
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 Combining equations gives: 
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 Rearranging results in: 
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 This last equation can be represented in block diagram form as: 
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Figure 2 
 

The closed loop equation (
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= ) for the above block diagram is: 
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  Rearranging gives: 
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  Dividing by KeKT gives: 
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From the last equation, the motor mechanical time constant, tm, is: 
 

 tm =  
Te

Ta

KK
JR    [sec]       (15) 

 
The total inertia, JT, is the sum of the reflected inertia to the motor shaft plus the motor 
inertia. The resistance, Ra, is the motor winding resistance plus the external circuit 
resistance. Thus the motor mechanical time constant is summarized as: 
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Also, the motor electrical time constant is: 
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Therefore, the closed loop motor equation can be expressed as: 
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From the general equation for a quadratic: 
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 where:  mω  = emtt/1   
 
The damping factor is: 
 
 δ =0.5 tm mω  = 0.5 tm emtt/1  = 0.5 em tt /     (20) 
 
The mechanical and electrical time constants for a brushless dc motor have the same 
basic equations with some variations. For a brushless dc motor with a wye connected 
motor, the eletrical circuit is: 
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Figure 3 
 
The mechanical time constant is:  
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where: 

 Ke(PHASE) = Motor voltage constant = 
1.73

K L)e(L −    



 −

RAD
secV   (22) 

 KT  =  Motor torque constant  



 −

A
inlb     (23) 

 RM(L-L)  =  Motor resistance [ohms]     (24) 
 ∑ − L)M(LR  = Total motor circuit resistance  =  1.35RM(L-L) [ohms]  (25) 
 
 ∑ ∑ =×= − [ohms]0.5RR L)M(LM(PHASE)     (26) 
 
 LL-L  =  Motor inductance  =  [Henries] 
 

JTOTAL  =  Motor armature inertia plus the reflected load inertia at the motor  
      shaft  =  [lb-in-sec2] 

 
Most manufacturers give the electrical parameters in line-to-line values. Thus some of 
these values must be converted to the phase values as shown above. Summarizing, the 
mechanical time constant can be computed as: 
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The electrical time constant for the brushless dc motor is computed as: 
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Another factor affecting the mechanical time constant is the temperature. Most 
manufacturers specify the motor parameters at 25 o C (cold rating). This implies that the 
magnet and wires are both at room temperature. However, the motors used in industry 
will operate hotter which could reach a magnet temperature of 80 o C to 90 o C in a 40 o C 
ambient. The winding temperature is considerably more than that. Some means must be 
used to compensate for the motor parameters rated at 25 o C. For those manufacturers that 
offer the hot rating on motor specification parameters, they should be used to calculate 
the time constants. The parameters of motor resistance, torque constant, and voltage 
constant should be adjusted, if needed, for the hot rating. The motor resistance will 
increase; the torque constant and voltage constant will decrease. However, contrary to 
their implied name both time constants are not of constant value. Rather, they are both 
functions of the motor’s operating temperature.  
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 The electrical resistance of a winding, at a specified temperature, is determined by the 
length, gauge and composition (i.e, copper, aluminum, etc.) of the wire used to construct 
the winding. The winding in the vast majority of industrial servomotors are constructed 
using film coated copper magnet wire. Based on the 1913 International Electrical 
Commission standard, the linear temperature coefficient of electrical resistance for 
annealed copper magnet wire is 0.00393/oC. Hence, knowing a copper winding’s 
resistance at a  specified reference or ambient temperature, the windings at temperatures 
above or below this ambient temperature is given by: 
R(T) = R(T0)[1+0.00393(T-T0)]    (eq a) 
Where : 
T = Winding’s Temperature (0C) 
T0 = Specified Ambient Temperature (0C). 
Using equation (a), a 1300C rise (1550C-250C) in a copper winding’s temperature 
increases its electrical resistance by a factor of 1.5109. Correspondingly, the motor’s 
mechanical time constant increases by this same 1.5109 factor while its electrical time 
constant decreases by a factor of 1/1.5109 = 0.662. In combination, the  motor’s 
mechanical to electrical time constant ratio increases by a factor of 2.28 and this increase 
definitely affects how the servomotor dynamically responds to a voltage command.  
In consulting published motor data, many motor manufacturers specify their motor’s 
parameter values, including resistance, using 250C as the specified ambient temperature. 
NEMA, however, recommends 400C as the ambient temperature in specifying motors for 
industrial applications, Therefore, pay close attention to the specified ambient 
temperature when consulting or comparing published motor data. Different 
manufacturers can, and sometimes do, use different ambient temperatures in specifying 
what can be the identical motor. 
In the same published data servomotors are generally rated to operate with either a 1300C 
(Class B) or 1550C (Class F) continuous winding temperature. Although motors with a 
Class H, 1800C temperature rating are also available. Assuming the motor’s resistance 
along with its electrical and mechanical time constants are specified at 250C, it was just 
demonstrated that all three parameters significantly change value at a 1550 C winding 
temperature. If the motor’s winding can safely  operate at 1800C the resistance change is 
even greater because equation (7.4-24) shows that a 1550C rise (1800C-250C) in winding 
temperature increases its electrical resistance by a factor of 1.609. Hence, if the 
servomotor’s dynamic motion response is calculated using the 250C parameter values 
then this calculation overestimates the motor’s dynamic response for all temperatures 
above 250 C. 
In all permanent magnet motors there is an additional affect that temperature has on the 
motor’s mechanical time constant only. As shown in eq (a) a motor’s mechanical time 
constant changes inversely with any change in both the back EMF, Ke, and torque 
constant, KT. Both Ke and KT have the same functional dependence on the motor’s air 
gap magnetic flux density produced by the motor’s magnets. All permanent magnet 
motors are subject to both reversible and irreversible demagnetization. Irreversible 
demagnetization can occur at any temperature and must be avoided by limiting the 
motor’s current such that, even for an instant, it does not exceed the peak current/torque 
specified by the motor manufacturer. Exceeding the motor’s peak current rating can 
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permanently reduce the motor’s Ke and KT thereby increasing the motor’s mechanical 
time constant at every temperature including the specified ambient temperature. 
Reversible thermal demagnetization depends on the specific magnet material being used. 
Currently, there are four different magnet materials used in permanent magnet motors. 
The four materials are: Aluminum-Nickel-Cobalt (Alnico), Samarium Cobalt (SmCo), 
Neodymium-Iron-Boron (NdFeB), and Ferrite or Ceramic magnets as they are often 
called. In the temperature range, -600C < T < 2000C, all four magnet materials exhibit 
reversible thermal demagnetization such that the amount of air gap magnetic flux density 
they produce decreases linearly with increasing magnet temperature. Hence, similar to 
electrical resistance, the expression for the reversible decrease in both Ke(T) and KT(T) 
with increasing magnet temperature is given by : 
Ke,T(T) = Ke,T(T0)[1-B(T-T0)]      (eq b) 
In equation (b), the B-coefficient for each magnet material amounts to : 
  B(Alnico)= 0.0001/0C 
 B(SmCo) = 0.00035/0 C 
 B(NdFeB) = 0.001/0C 
 B(Ferrite) = 0.002/0C 
Using equation (b) it can be calculated that a 1000C rise in magnet temperature causes a 
reversible reduction in both Ke and KT that amounts to 1 percent for Alnico, 3.5 percent 
for SmCo, 10 percent for NdFeB. And 30 percent for Ferrite or Ceramic magnets. 
Like the motor’s electrical resistance, most motor manufacturers specify the motor’s Ke 
and KT using the same ambient temperature used to specify resistance. However, this is 
not always true and it is again advised to pay close attention as to how the manufacturer 
is specifying their motor’s parameter values. 
Combining the affects of reversible, thermal demagnetization with temperature dependent 
resistance, the equation describing how a permanent magnetic motor’s mechanical time 
constant increases in  value with increasing motor temperature amounts to: 
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Notice in (eq c) that the magnet’s temperature is assumed equal to the motor’s winding 
temperature. Actual measurement shows that this assumption is not always correct. 
Motor magnets typically operate at a lower temperature compared to the winding’s 
temperature. However this conservative approximation is recommended and used. 
An example will be given to illustrate a change in time constants. To raise the mechanical 
time constant to a 1550C temperature rating inside a Ferrite magnet motor, for example, 
the resistance increase will be- 
R(1550C)= R(250C)  + 0.00393/0C x (155-25) x R(250C) = 1.5109 R(250C) 
The voltage constant Ke and torque constant KT  will be lowered.  Since the magnet 
material is 100C-150C cooler than the windings the Ke and KT will be-  
Ke (1400C) = Ke(250C) – 0.002/0C x (140-25) Ke(250C) = 0.77 Ke(250C) 
The mechanical  time constant will increase by- 
tm (1550C) = 1.5109/(0.77)2 =  2.54 tm (250C) 
 
 
 


