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S N Bose (1894-1974), best known for his seminal
contribution to quantum statistics, left behind a
substantial body of original work in the form of
papersina widerange of fields including chemistry,
spectroscopy, thermoluminescence, statistics,
group theory, mathematical physics and Einstein's
unified theories, collected in the first part of this
volume, with annotative introductions on the
papers by distinguished scientists from a later
generation.

Bose played a significant role in laying the
foundations of science teaching and research at
the two major universities of eastern India in the
first half of the century, Calcutta and Dhaka (now
in Bangladesh). It was in Dhaka in 1924 that he
devised the new counting method for light-quanta
which reconciled Einstein's concept of light-quanta
with Planck’s law. Within the next six months
Einstein wrote three papers showing that Bose's
method, when slightly extended tomaterial atoms,
yielded the correct quantum theory of ideal gases.
The new counting method has come tobe known as
the Bose-Einstein statistics. Particles whose

behaviour is described by the Bose-Einstein
statistics have been named bosons after Bose.

Asateacher, Bosedeveloped afairly comprehensive
model for education in India that focussed on the
dissemination of a scientific culture in the country
through the regional vernaculars; and was
equipped to negotiate with the developmental
needs of the nation. His lectures and addresses
and miscellaneous pieces, collected in the second
part of this volume (several of them translated
from Bengali for the first time) provide glimpses
into his various emotional and intellectual
concerns, passions and obsessions, and friendships,
documented in the long biography that is the most
exhaustive to date, and brings together a lot of
material gathered from various sources including
the Einstein papers stored at Jerusalem and the
archives of Dhaka University, and rarely seen
pieces of correspondence.
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Foreword

The Satyendra Nath Bose National Centre for Basic Sciences was established by the
Department of Science and Technology, Government of India, in 1986 as a memorial to
the Indian scientist Satyendranath Bose. On the occasion of his birth centenary in
1994, the Centre has prepared the present volume incorporating his scientific papers,
some selected miscellaneous pieces and addresses, and a biography. Bose wrote and
published in four languages : Bengali, English, German and French. Though we have
included the original German and French articles, we have provided their English
translations also. His writings in Bengali have been collected and brought out by
Bangiya Vijnan Parishad, an institution he helped to establish. We have included
translations of some of these articles which may be of interest to a general reader.

Several biographical accounts of S N Bose were available. We found that the list of
scientific papers was incomplete in all of them, and that not enough attention had been
given to his work in Dhaka after his return from Europe. Two published papers — one
in German (1927) and another in English (1929) from this period — are included in our
collection. Enakshi Chatterjee and Santimay Chatterjee have given a fuller account of
his activities in Dhaka — establishing physics laboratories, and helping develop
modern research in physics and chemistry.

In some respects S N Bose’s career is the story of the triumph and tragedy of Indian
sciencé in the first half of the twentieth century. His brief encounter with Europe in
the twenties assured his place among the Teat scientists. He tried to strengthen the
scientific base in India but he found little financial and spiritual sustenance. He
himself described these two aspects very well, when he said that he was like a comet
which came once but never returned, and he seemed to be living on the Moon.

Some comments by later Indian workers about the scientific papers are also in-
cluded; these hopefully will help an inquisitive young research worker in placing the
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scientific papers in the right perspective.

A long list of acknowledgements preceding this foreword covers most of the indi-
viduals and organizations who have helped us in several ways. Special thanks are due
to the Department of Science and Technology, Government of India, for financial
support to the S N Bose National Centre for Basic Sciences for activities in the
Centenary year, of which the present publication is one.

The volume is divided into two parts — the first part aimed at a more specialist
readership, containing his scientific papers, with introductory commentaries by later
workers in the specific fields; and the second part designed for a more general
readership, with the exhaustive biography, his public lectures and addresses, and
miscellaneous pieces (several of them translated from Bengali for the first time).

C KMAJUMDAR

Director

S N Bose National Centre for Basic Sciences
Calcutta



The Equation of State of a Real Gas

1 OntheInfluence of the Finite Volume of Molecules on the Equation of State (1918)
2 On the Equation of State (1920)

In a doctoral dissertation to the University of Leiden in 1873, J D van der Waals
proposed a modified equation of state of a real gas. He included two effects : the
excluded volume effect due to strong range repulsion and an intrinsic pressure due to
weak long range attraction. The work was praised by J C Maxwell who proposed the
well-known Maxwell construction to remove the unstable part of the isotherms. The
van der Waals equation was enormously successful in explaining critical phenomena,
critical indices and the liquefaction of gases. By 1910 experimentalists, however, began
to find deviations from the predictions; two constants were not enough, and people
started looking for improvements. In 1901 K Onnes introduced the virial coefficients
to represent the isotherms. But the simplicity of the approach of an equation of state
with a few parameters was too attractive : more than fifty equations of state have been
proposed. M N Saha and S N Bose used thermodynamics, especially the Boltzmann
formula for entropy, in their characteristic way to arrive at their equation of state. The
Boltzmann formula would appear again in Bose’s other works. The modern theory of a
gas at high density starts from the cluster development of H D Ursell and J E Mayer
(J E Mayer and M G Mayer, Statistical Mechanics, J Wiley and Sons, New York 1977,
Second edition, pp.229 ff.).

C KMAJUMDAR
S N Bose National Centre for Basic Sciences, Calcutta.
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Classical Mechanics

1 The Stress-Equations of Equilibrium (1919)
2 On the Herpolhode (1919)

The equilibrium of isotropic elastic solid bodies is discussed in the well-known book by
AE H Love, A Treatise On the Mathematical Theory of Elasticity, Fourth Edition, Dover,
New York 1927, ch V. Here in pp. 134-5, J H Michell’s equations are given. V Cerutti’s
method is described in ch X, pp. 237-40. The problem of the sphere'is discussed in ch
XI. After the publication of the paper in 1919 Bose lost interest in the problems of
elasticity and never returned to them in published work.

The force-free motion of a body about a fixed point is discussed in books of classical
dynamics (eg E T Whittaker, A Treatise on the Dynamics of Particles and Rigid Bodies,
Fourth edition, Cambridge University Press, Cambridge 1961) in terms of elliptic
functions. Poinsot’s construction gives a simple geometrical description of the motion.
Bose proved a geometrical property without using elliptic functions. The same method
was also found by W van der Woude.

C KMAJUMDAR
S N Bose National Centre for Basic Sciences, Calcutta.
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Quantum Theory

1 On the Deduction of Rydberg’s Law from the Quantum Theory of Spectral
Emission (1920)

2 Plancks Gesetz und Lichtquantenhypothese (1924)

3 Wirmegleichgewicht im Strahlungsfeld bei Anwesenheit von Materie (1924)

4 A Note on Dirac Equations and the Zeeman Effect (1943)

Bose’s contribution to Quantum Theory consists of four papers, two of which are on
atomic physics and two are about quantum statistical mechanics. This covers the period
1920-1943. Of these, the best known is the paper on Bose statistics for the photon gas
(Z f Physik 26, 178 (1924)). A brief critical appreciation of these papers follows:

In the first paper On the Deduction of Rydberg’s Law from the Quantum Theory of
Spectral Emission, the Bohr-Sommerfeld method of quantization of action

§ pjdg; = njh

is used to generate Balmer terms

N
m + o+ (p/m?)

for any series for any atom. Bose starts with a monopole plus a dipole as the best
approximation of the potential seen by a valence electron :
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e2 e Lcos 0

A" ( r ) = - —r- + r2

The calculations involve abelian integrals which have to be suitablyepproximated.
Bose also has an effective expression for the Rydberg constant in terms of the funda-
mental constants, but is either unaware of (or disinclined to cite) A Haas who first
obtained the relation ( A Haas, quoted in Introduction to Theoretical Physics, vol 1I,
Constable, London 1948).

In the paper A Note on Dirac Equations and the Zeeman Effect (Indian J Phys. 17,
301 (1943)), written together with K Basu, the problem of the energy levels of a
hydrogenic atom in an inhomogeneous magnetic field is solved using Sonine polyno-
mials. The calculations are elegant and straightforward and lead to the quadratic
dependence of the perturbed energy levels on the magnetic field.

The celebrated paper Plancks Gesetz und Lichtquantenhypothese ( Z f Physik 26,168
(1924)) of S N Bose introduces the new photon statistics and deduces the Planck
distribution as the equilibrium distribution for photons. Bose considered complexions
of photons as the primary characterization of the state rather than which photon had
which energy. Photons were treated as strictly indistinguishable.

With the modification that Bose introduced into the calculation we obtain the correct
thermodynamics of the photon gas. That one step was the basis of the new synthesis
between the wave and the particle properties of photons, and with it, the foundations
of quantum field theory. After Bose’s paper came an avalanche of developments: the
extension of Bose’s theory to particles of arbitrary mass and non-zero chemical poten:
tial by Einstein, the Fermi-Dirac statistics for electrons, the quantization of the
electromagnetic field by Heisenberg and Pauli, and quantum electrodynamics by Dirac.

To put Bose’s synthesis in its proper setting it is good to recall that in the nineteen-
twenties there were two items of unfinished business, one regarding photons as
particles and the other concerning statistical mechanics of identical particles. In both
cases uneasy makeshift solutions were generally accepted instead of definitive solu-
tions. In the old dichotomy between particles and waves for describing light there were
highly persuasive arguments on both sides, but it was thought that a crucial experi-
ment was the determination of the relative speed of light in two media with different
refractive indices. It appeared that if light consisted of particles, the speed in the
optically denser medium should be greater; if it consisted of waves,this speed should
be lesser. Fizeau’s experiment on the speed of light in water thus seemed to find
evidence definitively for the wave theory! Yet, what of the postulated photons? How do
we reconcile the notion of a photon with its discrete momentum and energy to its lesser
speed in water than in air? We must conclude that photons may be particles, but they
do not behave as particles are naively expected to behave. A revision of the concept of
a particle ought to be made. We now know that extended particles also bend towards
the normal in a medium in which it moves slower; so Fizeau’s experiment could not
really distinguish between extended particles and waves.
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The other item of unfinished business is even older. It concerns itself with the
statistical mechanics of identical particles. In calculating the partition function and
the entropy, one finds that thé entropy is not a strictly additive quantity: when we mix
two volumes of an ideal gas at the same temperature and pressure the resultant
entropy is larger than the sum of the two entropies.This Gibbs’ paradox shows that
such a collection of identical particles is not a satisfactory model for an ideal gas.
Instead of heeding this warning signal people ‘fixed’ the trouble by an ad hoc procedure
in dividing the partition function by the factorial of the number of particles, thus
condoning the Maxwell--Boltzmann statistics. The genuine need for a reexamination
of the implications of the strict identity of the particles was not appreciated until Bose,
three decades yet to be born.

Elementary particles were originally introduced as the stuff from which the world
was made. They were to be immutable entities. But the photon was clearly an entity
which could be created or destroyed. Where does a photon come from and where does
it go? And how can we really understand creation and destruction? What is the
implication of strict identity of photons? In what sense and to what extent can we think
of light as a collection of photons? All these questions were answered at one stroke by
Bose, who asked us to consider the many-photon states to be counted as states with
equal probability. Photons were thus particles all right, but particles for which strict
identity was to be recognized by considering as distinct only those cases in which the
distribution of photons over phase cells were distinct.

Photons thus became nothing but levels of an underlying field. Creation or destruc-
tion of photons is merely a ‘movement’ of the field. Photons are then manifestations of
the potentialities of the radiation field: the dichotomy between the field and the particle
thus ceases. Two have become one.

Automatically the embarrassment of the Gibbs paradox is resolved: the paradox was
just telling us that the strict identity of particles must be taken into account. But if
photons are but the differences between the levels of the radiation field, they are all
identical! And the process of creation and destruction is thought of as a change in the
state of the field, the ‘motion’ of the field. If we have equations of motion of the field,
we have the means of describing the creation and destruction of photons. It took two
more years for Heisenberg and Pauli to write down the equations of motion for the
radiation field and another year for Dirac to construct a theory of the emission and
absorption of photons. In Dirac’s work the oscillators of Planck were at last identified.
The formulation of the equations of motion of the electromagnetic field had still
unsatisfactory features. Many others contributed to the resolution of this problem,
among them Dirac, Heisenberg and Pauli, Fermi and Gupta.

In the course of his work on the quantum theory of radiation Dirac introduced the
now familiar notion of creation and destruction operators which increase or decrease
the number of quanta in a state. These creation and destruction operators, introduced
as the operator coefficients of the quantized field operator, do not commute with each
other but instead satisfy a commutation relation which transcribes the commutation
relations between field quantities as formulated by Heisenberg and Pauli. Dirac had
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already discovered that the commutator bracket in quantum mechanics was the
natural analogue to the Poisson bracket in classical mechanics. It reaffirms the Bose
hypothesis that photons obey the Bose statistics.

When Bose advanced his hypothesis the only species of elementary particles that
were identified were the electron, the proton, the neutron and the photon. Of these only
the photon obeys Bose statistics. The photon number is not covered and it is a zero
mass particle. Both of these impart special characteristics to the statistics of photons.
Among the Bose systems available then was Helium. In this case the particle number
is conserved; and the particles are nonrelativistic. So we need to extend Bose’s ansatz.
This was done by Einstein in the same year. To conserve the particle number we have
to introduce a non-zero chemical potential. For photons the chemical potential is zero.
In the case of an ideal Bose gas with non-zero chemical potential there is a critical
temperature below which a finite fraction of the gas condenses into a single quantum
state. This condensed phase, discovered by London, should exhibit superfluid proper-
ties; and London suggested that superfluid helium should be related to this Bose-Ein-
stein condensation phenomenon.

Einstein arranged for the translation and publication of Bose’s paper on the statis-
tics of photons and added a remark endorsing it as ‘substantial progress.’ Both in his
original letter to Einstein and in his subsequent correspondence Bose addressed the
great man as ‘teacher’ and accords him great respect; and that is as it ought to be. It
is in the definition of the teacher, as understood in the classical Indian tradition, that
he remove all the doubts of the student and weld his understanding into a harmonious
unity: such a teacher is the one worthy of adoration.

To that Teacher who removes all my doubts, welds my vision into a unity
and thus enables me to gaze on secret knowledge; to that One my homage.

Einstein does not seem to have told Bose how his theory could be extended to a theory
of ideal Bose gases by introducing a chemical potential and making use of a general
energy-momentum relation. Einstein formulated this extension in one of his papers.

Bose followed up this paper by another more detailed and more ambitious paper. In
his first paper, Bose had used a ‘static derivation’ of an equilibrium configuration as
the most probable configuration. In the second paper, he used a ‘dynamic derivation’
in which the equilibrium configuration is the one in which transitions into and out of
each state balance each other. For the special model of a two-level Bohr atom and
monochromatic radiation, Einstein had shown (Phys Z 18, 12 (1917)) how one can
understand the Planck distribution when one takes into account both the stimulated
and the spontaneous emission on the one hand and stimulated absorption on the other.

Bose generalized this to arbitrary atoms with arbitrary numbers of discrete energy
levels and radiation of all possible frequencies: the essential elements in the derivation
are the conservation of energy in collisions and the ratio of the rates of emissions and
absorption. These were correctly computed by Bose. (Unfortunately, for some strange
reason, Bose seems to have different values for the absolute transition rates which
prompted Einstein to append a critical comment to the paper.)
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In these two papers done before the birth of quantum mechanics as we know today,
Bose laid the foundations of a quantum theory of the electromagnetic field.

E C G SUDARSHAN
University of Austin at Texas
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Chemistry

1 Messungen der Zersetzungsspannung in nichtwdésserigen Losungsmitteln (1927)
2 Reaction of Sulphonazides with Pyridine (1943)

To an outsider it might seem odd that a theoretical physicist of Bose’s stature, who was
intensely trying to understand the basic laws of physics, would now and then take time
off and spend days in a dingy chemical laboratory. One might reasonably expect a
theoretical physicist like him to get interested in the nature of the chemical bond or in
the properties of electrolytic solutions — a problem fruitfully tackled by his friend and
classmate J C Ghosh; but strangely, he showed no interest in any of these theoretical
challenges. Rather, he liked to synthesize and analyze chemicals useful to contempo-
rary society. He was obviously guided by a nationalistic feeling. A part of his interest
in down-to-earth chemistry might have been inherited from his father who founded a
small chemical industry. His close association in his formative days with Acharya P C
Ray, who championed the cause of Indian chemical industries, might also have played
a role.

In Dhaka University he set up a working organic chemistry laboratory and encour-
aged his students to synthesize a number of important drugs like emetine, sulpha
drugs, etc.Most of these works are either not published at all or published without his
name. Only occasionally did his name appear, such as in Science and Culture with P K
Dutta, where the reaction between sulphonazides and pyridine was studied. His
interest in organic chemistry continued after his return to Calcutta University. In an
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article in Science and Culture 10, 1974, p. 295, A Chatterjee has recalled some of Bose’s
forays in organic chemistry, particularly alkaloid chemistry.

At Dhaka, Biswas and Bose developed a simple instrument to measure the polari-
zation voltage and decomposition voltage of some electrolytes in non-aqueous solvents,
where a simple manual commutator was used to alternate the direction of current and
thus reduce polarization errors at the electrodes. At Calcutta University he set up an
X-ray laboratory and helped chemists with structural problems. Professor J N Muk-
herjee, the noted colloid chemist and classmate of Bose, prepared a map of clays of
different parts of India. The structural aspects of these clays were studied in Bose’s
laboratory. He encouraged the organic chemists to determine molecular structures
through X-ray analysis.

Although Bose’s works in chemistry do not carry the mark of a genius, these show
the versatility of the man and his eagerness to solve the problems of the country as
well as his colleagues and students.

) MIHIR CHOUDHURY
Indian Association for the Cultivation of Science,Calcutta

3 Germanium in Sphalerite from Nepal (1950)
4 Extraction of Germanium from Sphalerite Collected from Nepal—Part I (1950)
5 Extraction of Germanium from Sphalerite Collected from Nepal—Part II (1950)

The invention of the transistor brought to reality the inventor’s dream of realizing an
electron device by controlling the motion of electrons available in ample quantity inside
a solid. Power was no longer required to be wasted in obtaining controllable electrons
in vacuum. The active device for electronics could now be made much smaller and the
life expectancy of electronic equipment made much larger. '

The first transistor was made with polycrystals of germanium (element number 32
in the Periodic Table) discovered by the German chemist Winkler in 1886 and named
after his country. As germanium transistors were expected to replace vacuum tubes in
all electronic circuits, S K Mitra concluded in his Presidential Address at the Forty-
second Indian Science Congress held in 1955 at Baroda that ‘the future stage, if one
may venture to make a prophecy, will be the era of the uses and applications of the
element germanium.” But germanium was mostly recovered from chimney dust col-
lected from refineries of lead, titanium and zinc in the USA and in the UK from
chimneys of all kinds of industries using coal which in Britain had a large germanium
content. There were not many other sources of germanium and so scientists were
exploring all possible sources. It is no wonder that Bose, being aware of all current
developments, endowed with a very sharp foresight, and committed to the national
interests, encouraged his student R K Datta to look for sources of germanium in
minerals. This work resulted in three letters, in which is described the procedure used
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for extracting germanium from sphalerite collected from Nepal and the suitability of
the ores as a source of germanium. The three letters should be considered as important
original contributions to the technology of germanium and establishing sphalerite as
a good source of germanium. The only pity is that the work was not apparently followed
up, and no semiconductor industry grew in India, although Bose did identify the
problem within a year of the invention of the transistor.

B RNAG

Institute of Radiophysics and Electronics
University of Calcutta
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Spectroscopy

Beryllium Spectrum in the Region A 3367-1964 (1929)

The spectrum of the beryllium atom is similar to that of the helium atom and should
have been easier to analyze. It is well-known that He I shows singlets and triplets and
He II (with one electron detached) shows doublets. But early observations did not
resolve the triplets clearly. One sees the same kind of controversy in Be I and Be Il in
this paper.

The way the spectra were clarified by earlier workers seems almost miraculous
today. We also note that after returning from Europe in 1926, Bose organized a
spectroscopic laboratory at Dhaka. (Another paper published in 1927 deals with
experimental work inelectrochemistry.)

C KMAJUMDAR
S N Bose National Centre for Basic Sciences, Calcutta
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Statistics

1 On the Complete Moment-coefficients of the D*-statistic (1936)
2  On the Moment-coefficients of the D*-statistic and Certain Integral and Differ-
ential Equations Connected with the Multivariate Normal Population (1937)

Though Statistics — as a scientific method — was known in India even at the beginning
of the present century, significant statistical studies and researches were initiated
during the twenties by the late Professor P C Mahalanobis. While working as a
Professor of Physics at Presidency College, Calcutta, Mahalanobis took up several
data-analytic studies on a wide variety of real-life problems and followed them up to
develop several theoretical models and inferential tools. He could inspire quite a few
brilliant young men in physics and mathematics to work on theoretical as well as
applicational aspects of Statistics. Some of those drawn to Statistics — directly or
indirectly by Professor Mahalanobis — later changed their initial academic pursuits
to concentrate on Statistics. Others, like Professor Satyendranath Bose, continued with
their original vistas but made remarkable contributions to statistical theory and
absorbed statistical concepts and tools in their subsequent works.

While working on some anthropometric data on statures of Anglo-Indians, Professor
Mahalanobis (1936) came up with an idea of generalized distance between two popu-
lations — more or less on the lines of Karl Pearson’s coefficient of racial likeness (1921).
He defined the famous D%-statistic for this purpose in terms of the mean vectors (of the
characteristics measured in the two groups) and the covariance matrix. It was intended
to be a quantity determined entirely in terms of the sample values of the variates. And
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for judging the significance or otherwise of such a sample value of the statistic its
sampling distribution had to be worked out. R C Bose (1936) derived an exact distri-
bution of a modified form of the DZ-statistic in which population variances and
covariances were substituted for the corresponding sample estimates. He used the
expression of the density function (in terms of Bessel functions) to obtain the moment
coefficient, which turned out to be the same as those calculated earlier by Professor
Mahalanobis (1936), using approximate methods.

Fascinated by the new idea of generalized distance and the nuances of the mathe-
matics used by R C Bose, S N Bose (then working in the University of Dacca) looked at
the problem (1936) and came up with a recurrence formula for moments of the modified
DZ%.statistic to obtain the exact moments without using the density expression and
investigated some properties of the moment coefficients. He could also offer a different
equation which can yield moments of even fractional orders (expressible not by a
polynomial but by an infinite series) — entities that have found many important uses
later.

Professor Bose continued his interest in the mathematics of this problem. In his
1937 Sankhya 2¥)aper he started with some algebraic identities among the moments of
the modified D*-statistic deduced from their differential forms and derived an integral
equation connected with these moments. He investigated the fundamental differential
equation satisfied by the multivariate normal distribution in its various forms —
spherical, parabolic and product. He also offered a series solution of the differential
equation.

The contents of the two papers in Sankhya (1936 and 1937) speak of the depth of S
NBose’s vision about a new problem and its mathematical fallouts. It may be pointed
out, however, that the results derived by S N Bose have not created a big impact on
statistical aspects of multivariate analysis, since the basic shortcoming of the modified
DZ.statistic considered by him renders the results somewhat less useful. The differen-
tial equation satisfied by the multivariate normal distribution has not found its way
into later investigations on characterizations. In fine, the papers by S N Bose on
D2-statistic have been rarely cited or used.

S P MUKHERJEE
Centenary Professor of Statistics
Calcutta University
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The Ionosphere

1 Anomalous Dielectric Constant of Artificial Ionosphere (1937)
2 On the Total Reflection of Electromagnetic Waves in the Ionosphere (1938)

Various theories of the propagation of radio waves through the ionosphere were
developed during 1930-1938 based on either the ray treatment or the wave treatment.
The refractive index comes out in general to be a complex quantity which is a function
of the electron number density and collision frequency which are functions of height.
Consequently, the solution of Maxwell’s equations becomes highly complex. Appleton
deduced certain conditions of reflection by assuming that the refractive index must
vanish,

However, since the refractive index is complex, other criteria were formulated by
various workers (D R Hartree, Proc Camb Phil Soc 25, 47,1929: ibid. 27 143, 1931; Proc
Roy Soc A131, 428,1931; Fosterling and Lassen,Ann d Physik 18, 26, 1933; H G Booker,
Proc Roy Soc A 155, 235, 1936; M N Saha and R N Rai, Proc Nat Inst Sci Ind 8, 359,
1937; M N Saha, R N Rai and K B Mathur, Proc Nat Inst Sci Ind 4, 53, 1938).

R N Rai (Proc Nat Inst Sci Ind 8, 307, 1937) suggested that a better criterion of
reflection would be that the group velocity of the wave vanishes. This gave him a new
condition in addition to those of Appleton, a condition that was experimentally confir-
med by Pant and Bajpai (Science and Culture 2, 409, 1937), L. Harang (Terr Mag 40,
29, 1937) and R Jonaust, Abadie and Joigny ( L'onde electrique 16, 185, 1937).

Experiments also indicated that apart from totally reflecting electromagnetic waves
the ionosphere also partially reflected and partially transmitted these waves. More-
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over, for very long waves, the complex refractive index can change within one wave-
length and reflection can occur even though the refractive index is not zero. These
features could not be explained by any of the theories.

Both Appleton’s and Rai’s conditions of reflection were obtained by neglecting the
effect of damping, an essential feature of the physical process. The questions that arose
were: (1) do both these conditions follow as consequences of the Maxwell-Lorentz theory
and (2) what are the conditions of reflection when collisional damping cannot be
neglected? These are the problems that Bose set about to tackle in the 1938 paper.

Instead of Maxwell’'s equations with a complex refractive index, Bose used the
microscopic equations of the Maxwell-Lorentz theory and the method of characteristics
used by Hadamard, Debye and others. The method is general and can also be used for
the propagation of light in a material medium. However, Bose’s results were expressed
in symbols unfamiliar to workers in ionospheric physics. It was M N Saha and K B
Mathur ( Ind Jour Phys 18, 251, 1939) who gave a critical assessment of Bose’s results
in a form easily comprehensible to them. They showed that Bose’s treatment gives the
same results as those of previous workers for the case of vertical propagation. However,
in the presence of collisions the nature of the complex refractive index and polarization
became complicated, and Bose’s conditions do not give accurate results.

In 1960 H K Sen and A A Wyller (J Geophys Rev 65, 3931, 1960) used the Chapman-
Enskog method and the Boltzmann equation to ebtain the effect of the velocity
dependence of the collision frequency in a closed analytic form.

Earlier in 1937 Bose and S R Khastgir had investigated the conditions under which
the value of the dielectric constant of an ionized medium exceeds unity (anomalous
behaviour) and carried out simple experiments with ionized air in a discharge tube
(artificial ionosphere) to show that the dispersion formula alone cannot explain the
observed anomalies.

EDITORS
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Mathematical Physics

Studies in Lorentz Group.(1939)
The Complete Solution of the Equation:

D =

2%
Vo - - K
¢ ctat? ¢

3 OnanIntegral Equation Associated with the Equation for Hydrogen Atom (1945)

= - 4np(xyzt) (1941)

The three papers are on various problems in mathematical physics: the first deals with the
properties of the matrix group O (4,C) in its defining representation, with consequences for
the physical Lorentz group SO (3,1); the second develops a particular technique, involving
integration in the complex plane & la Sommerfeld, for solving the inhomogeneous Klein-
Gordan equation; and the third is concerned with the Schrsdinger equation for the Coulomb
problem, analyzed as an integral equation in momentum space. These papers were written
in 1939, 1941 and 1945 respectively. A few introductory comments regarding each are
presented.

It is most easily seen from the infinitesimal approach, provided that one works with
complex linear combinations of the basis elements, that thé Lie algebra of SO(3,1) formally
splits into two commuting SU(2) or angular momentum like algebras. This helps in the
construction of all the finite dimensional irreducible matrix representations of SO(3,1), and
the connection of SL(2,C) also becomes clear. One sees on the way the possibility of formally
expressing a finite element as a product of two commuting factors, in the complex sense.
To realize all this without using infinitesimal techniques, however, requires considerable
ingenuity. This is what is attempted in the 1939 paper of Bose. He in fact examines the
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much larger group of all complex orthogonal transformations in four dimensions, namely
the group 0(4,C). The key idea is to deal with symmetric elements of O (4,C) and find ways
of characterizing and factoring them; and for antisymmetric matrices, exploiting the
properties of self-dual and antiself-dual sets of matrices. It is the latter that actually lead
to the commuting structure referred to above. From the discussion of O(4,C), Bose descends
to the case of SO(3,1) by imposing the requisite reality conditions, and thus connects up
the spinor approach based on SL(2,C), as typified in the familiar statement
(1/2,1/2) = (1/2,0) x (0,1/2) : the four-vector representation of the Lorentz group is the
product of the two basic spinor representations.

Turning to the second paper, it is basically an exercise using relativistically invariant
solutions of the Klein-Gordan equation to solve a problem for which H J Bhabha in an
earlier paper had presented a solution in a particular form. At the time the paper was
written, namely 1941, the technology associated with the wave equation using Stiickelberg-
Feynman functions, invariant Green’s functions, retarded and advanced ones, etc., were
presumably not yet widely known and used. The interest in Bose’s paper lies in its use of
complex contour integration methods, a favourite of Sommerfeld, to get solutions of the
inhomogeneous Klein-Gordan equation in Kirchhoff-like form.

The third (1945) paper is devoted to a discussion of the quantum mechanical Coulomb
problem in momentum space. It has been known for a very long time, through the work of
V Fock and V Bargmann, that if the Schriodinger equation for energy eigenfunctions is
expressed in momentum space, it has the form of an integral equation, and moreover it
makes the higher symmetry in the problem manifest. Thus the SO(4) symmetry for bound
states, and SO(3,1) for scattering states, can be explicitly exhibited by suitable energy-
dependent choices of variables. (It is curious, however, that Bose does not refer to Fock’s
and Bargmann’s papers at all). Bose however proceeds somewhat differently realizing that
the energy-dependent choice of variables would discriminate between bound and scattering
states. He exploits methods of Hobson involving solid harmonics and operator calculus to
explicitly solve the integral equation, after reducing it essentially to a radial problem (in
momentum space). An interesting feature of his expressions is that the quantization of the
bound state energies, and also the fact that the angular momentum quantum number is
bounded above essentially by the principal quantum number, both arise from the require-
ment that the momentum space eigenfunction be single-valued, rather than that it be
normalizable. It is the latter condition that is normally used in a configuration space
solution to the problem. His method of course leads to both bound and scattering state wave
functions. At the end of the paper, a completeness statement involving the former alone is
developed. One presumes therefore that this is distinct from the usual physical notion of
completeness of eigenfunctions of the Hamiltonian operator, since that would have brought
in the scattering states also.

Allthree papers show a taste and knack for clever algebraic and analytic manipulations,
even though the problems addressed are circumscribed in scope.

N MUKUNDA
Indian Institute of Science, Bangalore.
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Unified Field Theory

Les identités de divergence dans la nouvelle théorie unitaire (1953) [30.3.53]
Une théorie du champ unitaire avec I'y = 0 (1953) [18.7.53]

3 Certaines consequences l'existence du tenseur g dans le champ affine relativiste
(1953) [18.7.53]

The affine connection in Einstein’s new unitary field theory (1954) [ 29.9.52 ]
Solution d’une équation tensorielle intervenant dans la théorie du champ uni-
taire (1955) [Receipt date not mentioned]

The papers are listed in chronological order. The journal receipt date is
given within brackets.

N =

Ov

The general theory of relativity established itself as a satisfactory description of
gravitation. The only other interaction that was then known was the electromagnetic,
and a natural sentiment was to bring the electromagnetic and gravitational interac-
tions under one umbrella — to be more precise, to geometrize the electromagnetic field
as well.

Einstein, however, demanded much more from a unified field theory. He was
committed to the field idea and was never reconciled to quantum mechanics with its
basic indeterminacy. He expected that matter itself would ultimately resolve into a
field and, as singularities mean a breakdown of the field concept, there should be no
singularities in a truly unified field theory. Again, when Kaluza’s five-dimensional
geometry appeared, the idea was that our observations were limited to four dimensions
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and thus were essentially of an incomplete nature. One might wonder whether this
incompleteness could account for quantum indeterminacy.
What, by the way, is a unified theory ? We may quote Einstein’s definition :

Neither the field equation nor the Hamiltonian can be expressed as a sum
of several invariant parts but are formally unified entities.

There were a host of unified field theories — one may compare the ever-changing
theories with the changing models of cars. But they all had one similarity. The
4-dimensional Riemannian geometry has ten independent variables (the metric tensor
components g;; ), just sufficient for the gravitational field whose source, the energy-
momentum-stress tensor, has also ten components. So, to incorporate the electromag-
netic field, one must have some additional geometric variables. These additional
variables were introduced in a number of ways, e.g.

(a) In the Weyl theory, it was postulated that the norm of a vector changes in a
parallel displacement according to the law.

2 - o dxt
1 ¢zdx

and the vector ¢; was identified with the electromagnetic potential vector.
(b) In Kaluza’s five-dimensional formalism the metric tensor has 15 components.
(c) The fundamental tensor g;; was assumed to be complex, so that there were 20
variables.
(d) The fundamental tensor was assumed to be non-symmetric and the affinities

r ;z which define parallel displacement were also taken to be non-symmetric. There

were thus altogether 80 variables.

Over a number of years different forms of the non-symmetric theory were developed
by Schrédinger and Einstein. One particular form gained wide publicity as it was
announced by Einstein first in the popular press in December 1949 and then presented
in the 1950 edition of his book Meaning of Relativity as an Appendix. In his papers Bose
used the adjective ‘new’ before unified field theory without indicating specifically which
particular theory he had in mind. It seems clear that he referred to this theory.

We give a table to pinpoint the salient points of this theory as compared to the
general theory of relativity :

GTR UFT
1. Symmetric metric tensor g,, and symmetric Non-symmetric g,, and T ﬂw [ What is the
affinities '] . metric tensor ? No specific statement is made

in the book but it became common to identify
the symmetric part of g,, with the metric
tensor and the antisymmetric part was related
to the electromagnetic field, as we shall
presently see. ]
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guv;a =0 -

1
1"50 = 5 gy.a (guv,o"'gua,v—gvu,a)‘

Field equations obtained from the variational
principle

5[ &R, "g d*x =0

where R, , (the Ricci tensor) is

R,y= rﬁargv"lﬁv 1"Baﬂ"’rﬁa,v_]-‘;ilv,tnt:Rvp. .

The variation can be performed in two ways :

(1) g"V’s are to be varied and the relation
between I's and g,,’s assumed.

(2) g &TIs are independently varied—the
relations between I's and gy,’s appear as
one set of field equations.

uvia = 0

(ie. Spv,a—8pv rﬁa‘gup %y = 0).

[ The-solution of these 64 equations, i.e.
expressing T'’s in terms of 8y v and their
derivatives, was an extremely difficult
problem and was given independently by Bose,
Einstein and Kaufman, Hlavaty and Tonnelat.
Later there were also other workers in the
field including R S Mishra.]

Field equations obtained from the variational
principle

GIgi"u,-k‘f:E d‘x = 0,

&"’s & T'’s varied independently. The tensor
Uip is

uip = Ry —% [(ri,k‘ rk,i) +T; rk]

T = ré, and
_1T8 [ 1 s s s t 8
Rip=Tj rak+§[ri_s,k+rg§,i]"rikrs_t_rtk.s

where underlining indicates the symmetric
part and the hook the antisymmetric part. The
tensor u;; is selected by some ad hoc conditions
introduced by Einstein which may be
summarized in the form

up; = uy, (I')

ujp, = Ry (A)

where

A5k=1‘fk—%(l‘,~8£-r,,s£) 80 that

A\fj = 0. The conditions were not justified by

any theoretical consideration. Bose therefore
sought to work with a different variational
principle. However, this led to a much more
complicated set of equations which involved
two arbitrary constants.
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4. Field equations Field equations
Ruv=0. Rik=0a (a)
The equations satisfy four differential g, =0, (b)
: ez —
identities. r=o. ©

The equation I'; = 0 was introduced ad-hoc on
the ground that this does not cause an over-
determination. The equations (b) and (c¢)

together give (V=g g% ), = 0. This led
Einstein to identify g@ with the dual of the

electromagnetic field tensor—there is no free
magnetic pole.

5. Iffields other than gravitational were present, The electromagnetic field is already taken care
additional terms were introduced in the of. No mention is made of other fields.
Lagrangian and the field equations then Unification is thus not complete.
became

1
Ruv - § R gw, = kTuv'

6. Physical conclusions drawn all agree with No physical conclusions could be drawn.
observations. Indeed, Pauli remarked (1958), ‘Whether the
field equation. . . can actually be connected

with physics at all is rather doubtful’

Before going over to the subject matter of these papers, it is somewhat interesting
to note that at least four of these papers were produced within the span of less than a
year. That was something unusual in Bose’s career. Never before had he written so
many papers in a year and never before had he contributed as many as five papers in
a single field. One may wonder whether these works kindled Bose’s enthusiasm to a
degree he had never experienced in his whole life. And mark, five papers in four
different journals — was it all fun with Bose !

The first paper concerned the divergence identities in the unified field theory we
have just outlined. Long before, Hilbert (1924) had proved that the set of equations
obtained from a variation principle would not be independent but there would be four
divergence identities satisfied by them. For non-symmetric theories Einstein obtained
the identities by a method which was rather complicated. Bose showed that they could
be obtained in a somewhat more general manner by following Hilbert’s procedure.

In the second paper Bose used a much more complicated Lagrangian. Einstein’s
Lagrangian was obtained on the basis of somewhat arbitrary arguments and then the
equation I'; = 0 appended, justifying this by the rather curious reason that it would
not make the equation set overdetermined. Bose’s equations were naturally more
complicated and were not supplemented by the ad hoc condition I'; = 0. However, the
equation system involved two arbitrary constants and hence they were not quite
appealing. Neither Bose nor any of his students investigated these equations.
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THE INSTITUTE FOR ADVANCED STUDY

PRINCETON, NEW JERSIT

vctober 4th,1952

SCEOOL OF MATMIMATICS

Professor S.N.Bose

University College ¢of Sclence
92, Upper Circular Road
Calcutta,9, Indlia.

Dear Professor Bose:

Thank you for your lettar of Sgptember Zoth.
I am glad ter seo that you are intercstei in this theory and
that you have devoted so much.work and penetration to the

solution of the equatlion
J&?vﬁ "

I bellieve, to be sure, that the solutipon of
those equations is not of great help toward the answer of the
question: Do the sinzularity-free solutions of the equation
system have physicsl meaning? Ara there at all singularity-free
solutions which correspond to the atomlstic character of matter
and radiation? It seems to me that the mathematical methods
avallable at present are not powerful enough to answer this questlon.

Yowaver, I am now firmly convinced that the
equation-system

,:;é"('a o

Aeg =0 )?g‘,c + e, #Rs:,/‘ =0
represents the only formally e tural generalization of the
relativistic law of gravitation.

¥ith kind regards,

sincerely yours,
-
4 z-’;—o‘%~

Albert Einstein.

Einstein’s letter of 4 October 1952 to Bose
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Einstein’s letter to Bose in Paris from Princeton, dated 22 October 1953, commenting

on Bose’s paper ‘A Unitary Field Theory . . .’ for Le Journal de Physique; by courtesy of
The Jewish National and University Library, Jerusalem.
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The remaining three papers are all on the equation
Suv,a—gpvT Ny —gup Th, = 0.

In the third paper Bose considered the above equation as first order partial differ-
ential equations for g,,. Then the condition of integrability is guy o8 = &uv,pa- This
condition reduced to equations involving I's and g,,, but free of the derivatives of g,,,.
They were explicitly worked out by Bose. This was a more or less routine investigation
and did not lead to any very impressive result.

In the last two papers in the list Bose was interested in solving the above equations,
regarding them as coupled algebraic equations for I'’s, taking the g,,’s as known. The
problem is to find the solution not for particular coordinates but in a form which will
hold in all coordinate systems. This was then a challenging problem especially in view
of a remark by Schrédinger (1947) :

In the general case it is next to impossible to give a tensorial solution of
these equations.

The adjective ‘tensorial’ in Schriodinger’s remark is not quite correct for I'’s are
themselves not tensors ; what he meant was that the solution must hold in all
coordinate systems. However, Schrodinger was soon proved to be unduly pessimistic.
Mme Tonnelat, Hlavaty in 1953, Bose, Einstein and Kaufman in 1954 and later on
many workers including Mishra gave solutions. Although Bose’s paper was published
somewhat later than the first papers of Tonnelat and Hlavaty, Bose’s first paper was
communicated in September 1952, earlier than the publications of Tonnelat and
Hlavaty. Indeed, all three were ignorant of the works of others and their methods were
also different. Again, while Einstein had received a pre-publication manuscript from
Bose and was aware of the work of Hlavaty, he and Kaufman proceeded without
splitting g,, and Ik, into their symmetric and anti-symmetric parts, unlike the proce-
dure adopted by Bose and others. Strangely, some later workers like Mavrides, Kichens-
samy and even Mishra (1976) comment on the works of Tonnelat and Hlavaty, but they
seem to ignore the works of Bose and also of Einstein and Kaufman.

IMPORTANCE OR MOTIVATION OF THESE WORKS

One may wonder what one can gain by these solutions. The first answer is that a pure
mathematician’s motivation arises simply from the mental desire to solve a problem
just as the mountaineer climbs the Everest simply because ‘it is there’.

Perhaps some of the eminent mathematicians had the idea that once the s are
found in terms of g,,, these values of I would be plugged into the expression for R,
and one could attempt a general solution of the equation R,, = 0. However, even in the
much simpler case of general relativity, such a general solution of R,, = 0 cannot
be obtained and in reality has not even been attempted. What, therefore, one has to do
is either to assume some symmetry and in that case the calculation of I’s becomes not
that difficult (and has been done by Bonnor, Papapetrou and others), or to deduce
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some general theorems. Thus to Einstein the crucial problem was: ‘Do the singularity-
free solutions of the equation system have physical meaning ? Are there at all singu-
larity-free solutions which correspond to the atomistic character of matter and
radiation ?” From this viewpoint the solution of those equations is not of great help.
[ Here those equations refer to the equations whose solution Bose presented in a letter
to Einstein and we have just now considered. ]

But, if the solution of the I’s was not important from the point of view of the theory,
one may ask: why did then Einstein and Kaufman give a solution ? The fact is, it came
as a by-product of their investigation of the following problem. The universe we observe
has three space-like and one time-like dimension. So, in order to be physically accept-
able, the signature must be 2 or, in other words, the metric tensor determinant must
be negative. Einstein and Kaufman considered provisionally g,,, to be the metric tensor
and then investigated if this has the correct signature — do the field equations ensure
that this signature will be maintained everywhere ? Their answer was in the affirm-
ative, and in course of the proof they found the solution of the equations g, ; = 0.

As we come to the close of our discussion of Bose’s works in unified field theories,
some disturbing questions come to mind. Did Bose share Einstein’s attitude towards
quantum mechanics ? Did Bose believe that a viable unified field theory based on
geometry can really come about while most physicists thought these attempts were
futile ? Bose has left nothing in writing which can throw any light on these matters.
In fact, his papers were purely mathematical exercises without any reference whatso-
ever to physics.

A K RAYCHAUDHURI
Former Professor,
Presidency College, Calcutta
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Thermoluminescence

A Report on the Study of Thermoluminescence (1955)

Thermoluminescence means the phenomenon of emission of light (infrared or ultravio-
let radiation included) other than pure thermal radiation, by a system under thermal
stimulation. It is evidently related to energy states of the physical system, the relative
transition probabilities and related electronic processes. When a system is excited by
any method and a part of the excitation energy is stored in it, the system.is termed
thermoluminescent if it releases, on heating, a part or whole of the stored energy in
the radiant form. The phenomenon of thermoluminescence exhibits a very large variety
of behaviours, corresponding to different substances with variations in impurity
contents or other imperfections. Thus, it is not surprising that thermoluminescence in
all its details is a comparatively poorly understood phenomenon even in the case of
simple materials.

Thermoluminescence appears to have been first observed by Boyle about three
hundred years ago. Since the publication of Randall and Wilkins’ work in 1945 there
has been a steady accumulation of data in this field as well as attempts at theoretical
interpretation of the experimental results in the light of the modern theory of solids,
which already met with striking success in allied fields. The applicational pcssibilities
of thermoluminescence in geological and archaeological work, dosimetry, or as a
research tool in science and industry, have been already demonstrated by the tremen-
dous growth in the number and variety of work in this field in the last fifty years.
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Although extensive work has been carried out with thermoluminescence as a
research tool, most of such work consists of the determination of trap depths and their
changes under varying experimental conditions, but the results are far from satisfac-
tory for a clear understanding of the electronic processes occurring inside the solid.
The identification of the trapping and emitting centres, responsible for the different
glow peaks, remains as yet a challenging problem in most of the phosphors. It was felt
by Bose ( and other pioneers in the field) that the physical interpretation of the results
of investigations on thermoluminescence would be facilitated if the spectral composi-
tions of the thermoluminescence and afterglow emission could be compared with the
luminescence of the phosphor under study. The research workers in this field had been
trying to find out the spectral compositions of thermoluminescence and afterglow
emission with the help of filters; naturally, the results were indicative of the fact that
the spectral composition of the emission undergoes changes during the process of
thermoluminescence or afterglow decay in many cases but the data were not of
convincing precision.

The duration of thermoluminescence is generally of the order of a minute and
afterglow emission, comparatively poor in intensity, may also change in spectral
composition as the intensity changes with time. The difficulties of interpretative work
were thus essentially due to the lack of a suitable measuring device and experimental
techniques. Bose saw the crux of the problem, and designed a rapid scanning spectro-
photometer of comparatively high sensitivity to meet the requirements of the experi-
mental workers in this field. The design and fabrication of the scanning
spectrophotometer was reported by Bose at the International Conference on Crystal-
lography held in Paris in 1954.

The spectrophotometer is capable of scanning the entire spectral range of visible
and near-ultraviolet radiation in 0.9 seconds, and the spectral distribution of emission
either in afterglow decay or thermoluminescence can be displayed on the screen of a
cathoderay oscilloscope. It was thus possible to observe the changes in the spectral
composition of emission during any time-varying process like thermoluminescence. The
instrument performs the dual role of a spectrograph and a microphotometer, and can
very conveniently be adapted to carry on studies of (i) fluorescence and phosphores-
cence, (ii) thermoluminescence spectra, (iii) the temperature dependence of lumines-
cence (both fluorescence and phosphorescence), (iv) the correlation of colour centres
and other known trapping centres with luminescence, (v) the development of emission
centres in the phosphor during X-ray and cathoderay irradiation, and (iv) near-infrared
absorption and emission spectra etc. The possibilities of the scanning spectrophotome-
ter have however not been fully exploited till date.

The special features of the work initiated by Bose at the Khaira Laboratory in
Physics in Calcutta were the luminescent and related properties of solids and frozen
liquids under excitation by low energy electron beams as well as X-rays. The excitation
is limited to a thin surface layer in the case of irradiation by low energy electrons, while
for X-rays or other high energy excitations the entire volume of the crystals is affected.
The two methods of excitation should thus bring out the distinctive differences in the
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effects of impurities , self-absorption and energy transfer processes, on the luminescent
and allied properties of solids. Some work was also attempted on the luminescence of
solids under soft X-ray excitation; and attempts were made to correlate the data on
valence band spectra with those on colour centres and luminescence of simple solids.

Adapted from H N Bose, On the Pioneering Works of
Professor S N Bose in the Field of Thermoluminescence,
in the Proceedings of the Seminar on The Scientific
Contributions of Professor S N Bose, Cal Math Soc
1943, pp. 111-121.
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Bose Statistics : a historical perspective

a. Planck’s derivation of his law of black-body radiation

In order to appreciate the novelty and importance of Bose’s work in its historical
perspective, it is necessary first to give a brief account of Planck’s original derivation
[Planck, 14 December 1900] of the law of black-body radiation,

8rnhv? 1 (1)
v,T) =
p(v,. D) B SVAT_

which he had discovered empirically a few weeks earlier (7 October 1900). It consisted
of three steps.
First, he established the relation

8mv? (2)

between the energy density p, of incident radiation at temperature 7', whose frequency
lies between v and v +dv, and the average energy U, of a resonator of the same

frequency v at temperature T, on the basis of classical electromagnetic theory. Com-
paring (1) and (2}, he found U, :

hv (3)
Uy = 77 .
ehv/kT -1
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In the second step he determined the entropy of these oscillators by integrating
TdS=dU where T is taken from (3) as a function of U (for fixed v). He obtained

UV UV Uv Uv (4)
S = k[[1+hv ] In (1+hv]— v In hv]'
The third step was the revolutionary one. He introduced two ideas at this stage that

he himself considered as ‘acts of desperation’. He assumed that the total energy
Uy =N U, of N oscillators (resonators) was made up of finite energy elements € such

that Uy =Pe with P a large number. Then he searched in Boltzmann’s work for a
permutation measure Wy (the total number of complexions or distributions) of P

discrete equal energy values € among N oscillators that would correspond to the right
hand side of (4) when used in Sy =k In Wy. He found

_(P+N-1)! (5)
Wy = PI(N-1)!"

Using P/N = U, /e , Sy = N S and applying Stirling’s formula, he obtained

{( Uv} ( UVJ U, U\,} (6)
S =k 1+—jn|1+— |- — In —]|.
€ € € €

Since S is a function of (U, /v) only, it follows from (4) and (6) that
e =hv.

This is how quantum theory was born. Planck had no more justification for using
the formula (5) than that it gave him the result that he was after : *. . . a theoretical
interpretation had to be found at any price, however high it might be,” he wrote to
Robert William Wood in October 1931. [Mehra and Rechenberg, 1982, 1, 1, 50]. Actually,
Planck’s combinatorial approach differed from Boltzmann’s probabilistic method in
that Planck associated Wy with Sy, the equilibrium entropy, without maximizing it.

.For Boltzmann Wy was the number of possible complexions corresponding to the
macrostate which can be realized by the largest number of complexions. As pointed out
by Ehrenfest, a strict adherence to the accepted principles of statistical mechanics
would have led Planck to the classical law of Rayleigh and Jeans! [Ehrenfest, 1905]

b. Einstein’s light-quantum hypothesis

In 1905 Einstein argued on the basis of his analysis of energy fluctuations of radiation
obeying Wien’s law that such radiation had statistical properties similar to material
particles and so must consist of discrete light-quanta of magnitude (R/N,) Bv = hv.
[Einstein, 1905] This light-quantum hypothesis was immediately applied by him to
give areasonable explanation of several radiation phenomena, specially the photo-elec-
tric effect. Since these conclusions contradicted the classical electromagnetic theory
on which Planck attempted to base his theory of heat radiation, Einstein considered



Bose Statistics : a historical perspective 37

Planck’s theory ‘in some way a counterpart’ to his own theory. He subjected Planck’s
derivation to a critical analysis and came to the following conclusion :

We must therefore regard the following law as the basis of Planck’s quantum
theory of radiation : the energy of an elementary resonator can only assume
values which are integral multiples of (R/N,) Bv ; the energy of a resonator
changes in jumps by absorption or emission in integral multiples of (R /N,)
Bv. . . . If the energy of a resonator can alter only in jumps, then for the
evaluation of the average energy of a resonator in a radiation cavity, the
usual [electromagnetic] theory cannot be used, for the latter does not admit
any distinctive energy values for a resonator. [Einstein, 1906]

Two years later Lorentz also came to the same conclusion [Lorentz to Wien, 6 June
1908; Mehra and Rechenberg, 1982, 1, 1, 98]. Planck attempted to modify his theory
to take into account the quantum of action without violating any aspect of classical
electrodynamics, but it gradually became clear from his studies and those of others that
it was impossible to establish the theory of black-body radiation entirely on the
foundation of Maxwell’s classical electrodynamics and the statistical mechanics of
Maxwell and Boltzmann.

c. Debye’s derivation of Planck’s law

In 1910 Debye gave a new derivation of Planck’s radiation law in which he sought to
avoid the inconsistencies (as viewed from Maxwell’s theory) of Planck’s earlier deriva-
tions as pointed out by Einstein [Debye, 1910]. Instead of using the relation (2) between
the radiation density p, and the average energy of the oscillator U,, Debye calculated
‘the probability for a given state of radiation and therefore as is well known, the
entropy, using the properties of the state alone without employing resonators.’ In
agreement with Rayleigh and Jeans, he calculated the number N, dv of elementary
states or vibrational modes (Hohlraum oscillators) contained in a volume V and
obtained

8nv:Vdy (8)

c3

N,dv =
Assuming that an amount of energy hv gets distributed over each of these vibrations

according to an arbitrary distribution function £, , he obtained

3 (9)
8"’;" £, dv.
C

pydv =

Now, ‘analogously to Planck’, Debye assumed that the probability of distributing
N, f, dv quanta of energy hv among N, dv vibrations was given by

_ (Nydv+N, fodv)! (10)
T N, AW ! Ny fodv) !

Oy

He then calculated the distribution function £, in the following way. He calculated the
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maximum of ®, with the constraint that the energy remained constant. From this he
calculated the equilibrium entropy S, to be &2 In (© ¥**). Finally, using the definition
of entropy to be (dS,/dp,) = T™ ', he obtained

1 (11)
fv = VAT _ 1"

Together with (9), this yielded Planck’s radiation formula (1).

Two important features of Debye’s derivation need to be emphasized as bagkground
to Bose’s derivation that came fourteen years later. First, it became clear from his
derivation that Planck’s law follows simply from the assumption that the energy
transfer from matter to the heat radiation and vice versa is quantized in units of Av
and that no knowledge of the properties of material resonators is needed. In other words,
the quantum hypothesis only determined the transfer of energy from one mode of the
radiation to another. This was in keeping with Planck’s ideas but not Einstein’s.
Second, he used Planck’s definition of the probabilities ®,, without analyzing its

significance.

d. Indistinguishability of Planck’s quanta

In 1911 Ladislas Natanson [1911] subjected the Planck-Debye combinatorial procedure
to a critical analysis and showed that it was equivalent to distributing P indistinguish-
able energy elements € among N ‘receptacles of energy’ distinguished only by the
numbers j of quanta in them so that N; receptacles contain j quanta each, subject to-
the constraints £ N; = N and £jN; = P. He found

J J

@, dv)! (12)
v<T o p .

n N

Jj=0

Contrary to popular belief, therefore, the indistinguishability of the quanta had already
been tacitly assumed by Planck and Debye and this was first noticed by Natanson
already in 1911.

Ehrenfest and Kamerlingh Onnes [1914] also came to a similar conclusion in 1914.
They however claimed that Planck’s procedure was equivalent to distributing P indis-
tinguishable energy elements € among N distinguishable resonators and arrived at the
expression

0. = N-1+P)! (13)
VT PI(N-1)!

which is equivalent to the expressions (10) and (12) when N>>1. They then proceeded
to clarify the distinction between Planck’s energy quanta which were statistically not
independent (they called them ‘non-disjointed quanta’) and Einstein’s hypothetical
light-quanta which were believed to be statistically independent of one another (‘dis-
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jointed quanta’). The concluded : ‘Planck’s formal device (distribution of P energy-ele-
ments € among N resonators) cannot be interpreted in the sense of Einstein’s light-
quanta.’

e. The introduction of phase space cells by Planck

Planck himself had come to the view on his own that classical statistical mechanics
had to be modified in order to yield his radiation formula (1) rather than that of
Rayleigh and Jeans. He reported his important conclusion at the Solvay Congress held
in Brussels in 1911. According to Gibbs, the probability of finding a single particle in

the element d® p d® ¢ of the six-dimensional phase space is given by

e E/RT didsq (14)
J.e— E/kT d3p d3q

where E= E(p,q) is the energy of the system. For a classical one-dimensional oscillator,
E = p?/2m + B ¢°/2 and so the average energy of such an oscillator is £T. However, if
E can take only the discrete values E, =n € =n hv with n=0,1,2 . . ,, then

I E, e BT (15)

n €
U= e/kT__l’

s o En/kT e
n

in agreement with (3). It was this straightforward derivation that led Planck for the
first time to make the explicit statement that the energy of an oscillator (and not only
its average energy) was an integral multiple of Av. It also led him to interpret the
constant k as a finite extension of the elementary area in phase space. The motions of
one-dimensional classical oscillators can be described by a family of concentric ellipses

1 1
of semi-axes (2E/B) % and (2 m E) /2. Since these oscillators can have any energy E, the
ellipses form a continuum. However, if it is assumed that these ellipses are separated
from each other so that the nth ellipse encloses an area

jjdpdq:nh, (16)

then the energies of the oscillators must be integral multiples of Av. Planck therefore
drew the revolutionary conclusion that energy quanta were a consequence of the
fundamental condition

E+e (17)

IJ dpdq =h.
E

This implied a revision of the basic tenets of classical mechanics. He declared : ‘The
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framework of classical mechanics, even if combined with the Lorentz-Einstein principle
of relatjvity, is obviously too narrow to account for all those physical phenomena which
are not directly accessible to our coarse senses . . . One should therefore confine oneself
to the principle that the elementary region of probability 2 has an ascertainable finite
value and avoid all further speculation about the physical significance of this remark-
able constant.’ In other words, all attempts at finding a classical mechanical explana-
tion of A must be abandoned. As we shall see later, to Bose these considerations (with
which he was familiar) brought home extremely important lessons that would influence
his own seminal contribution to the subject. First, he took serious note of the conclusion
that classical electrodynamics was essentially incompatible with Planck’s radiation
formula. Second, since the quantum states of a particle were not continuously distrib-
uted throughout phase space (as in classical dynamics), he concluded that their number
could be counted by simply dividing the total volume of phase space by A2, the volume
of an elementary cell. Finally, he took seriously Planck’s claim that classical statistical
mechanics had ta be modified in a special way in order to cenform to the requirements
of quantum theory.

f. Spontaneous and induced transitions

The next important step was taken by Einstein in 1916. In 1913 Niels Bohr had
proposed his model of the atom with stationary states with discrete energy values
[Bohr,1913, b,c]. The transitions between any pair of these states were assumed to be
caused by the exchange of energy quanta hAv between the atom and the radiation field
described by classical electrodynamics. Einstein gave an elegant derivation of Planck’s
radiation formula by considering Bohr atoms in thermal equilibrium with radiation in
a cavity but without making any use of classical electrodynamics [Einstein, 1916a). He
used Boltzmann’s principle to write the probability W, for an atom to be in a stationary
state with quantum-number n in the form

W, = g, exp (— :—;.) , , (18)

g, being the statistical weight of the state. He then assumed that a stationary state n
may pass to a stationary state m of higher energy (¢, > €, ) by absorbing a light-

quantum of frequency v, ,, , the rate of transition being B, N, p, (N, being the number

of atoms in the stationary state n and B} a proportionality constant characterizing the
absorption of radiation of frequency v, ,,, in the presence of external radiation of density
p.). Transitions from a stationary state m of higher energy to a stationary state n of
lower energy by the emission of a light-quantum of frequency v, , = v,, could,
however, take place in two ways. Atoms can emit this radiation independent of the
external field, their number being A}, N,, (A, being the constant of proportionality).
About this Einstein said : ‘One can hardly think of it in any other way except as a
radioactive reaction.’ It came to be known later as ‘spontaneous emission.” Atoms can
also be induced to emit radiation by the external field, the rate being B, N,, p,. Einstein
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called this ‘negative radiation’. In thermal equilibrium one must have
AL N, +B;, N, p,) = B N, p, . Using (18) to calculate N, /N,,, one gets

AL 8m + Py [BT & exp (E-"'—;,i"-)~ B, gm] . (19)

At this stage Einstein had to take his guidance from classical theory by essentially
applying the ‘correspondence principle’ according to which classical theory should be a
limiting case of quantum theory. In the classical limit p, goes to infinity as the

temperature T goes to infinity for fixed v (Rayleigh-Jeans law, p, a T). This gave
B, gn = By g,. With this condition (19) could be written as.

Ay / By, (20)
exp [(ep,—€,) 7ET}1"

Pv =

Then Einstein used Wien’s displacement law to infer that A}, /B;, must be proportional
to v°, and the Rayleigh-Jeans law in the limit of low frequencies to determine the
constant of proportionality to be 8 n £/c®. Thus he obtained the relation

. 8mhv: (21)
An = 3 By,
c
and
Epm—€n=hv (22)

which is Bohr’s frequency condition. These two relations when substituted into (20)
gave Planck’s law. This is a remarkable derivation that uses an admixture of the
light-quantum hypothesis and Bohr’s atomic theory which Bohr regarded as being
imcompatible, Wien’s radiation law and therefore implicitly the Maxwell-Boltzman
distribution for the light-quanta, and the correspondence principle which was a heu-
ristic principle without any fundamental basis. Einstein concluded by saying : ‘T admit
freely, of course, that the three hypotheses concerning outgoing and incoming radiation,
do not at all become substantiated results by the mere fact that they lead to Planck’s
radiation formula. But the simplicitly of the hypotheses, the generality with which the
consideration can be carried through easily, as well as the natural connection of the
consideration employed with the limiting case of Planck’s linear oscillator (in the sense
of classical electrodynamics and mechanics), persuaded nie to regard it as very probable
that all this constitutes the fundamental outline of the future theoretical derivation.’
Although the hypotheses concerning the outgoing and incoming radiation turned out
to be correct to a large extent (though not entirely so, as we shall see later), the future
derivation (given by Bose) did not make use of them at all. In fact, they became the
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major bone of contention between him and Bose.

By 1916 the light-quantum hypothesis had received a measure of empirical support
from Millikan’s verification of Einstein’s photo-electric equation. Millikan’s paper
[1916b] appeared in the March 1916 issue of the Physical Review. Einstein quickly
realized from his new derivation of Planck’s law that atoms seemed to interact with
radiation as if single atoms collided with light-quanta of energy Av and directed
momentum hv/c. He wrote to his friend, Michael Besso :

The fundamental thing is that the statistical consideration, which leads to
Planck’s formula, has become unified and thereby as general as one can
imagine, since one has not assumed anything about the nature of the
mediating molecules other than the most general quantum idea. From it
follows the result (which was not contained in the paper I sent you) that in
each energy transfer from radiation to matter the momentum Av/c is also
transferred to the molecule. Hence we conclude that every such elementary
process is a completely directed event. With that the light-quanta must be
considered as being substantiated. [Einstein to Besso, 6 September 1916;
Mehra and Rechenberg, 1982, 1, 2, 515]

However, Einstein was not really satisfied. In a subsequent paper he remarked :

The weakness of the theory lies, on one hand, in the fact that it does not
bring us closer to a connection with the undulatory theory, and, on the other
hand, in the fact that it leaves the instant and direction of the elementary
processes to chance. [Einstein, 1916b, 1917]

g€. Reactions to the light-quantum hypothesis: discovery of the Compton
effect

The majority of physicists, in fact, did not take the light-quantum hypothesis seriously,
even after Millikan’s work. Millikan himself remarked in his 1916 paper on the
photo-electric effect : ‘Yet the semi-corpuscular theory by which Einstein arrived at this
equation seems at present to be wholly untenable.” The main difficulty lay, as Einstein
himself realized, in accounting reasonably for the interference and diffraction phenom-
ena observed with all kinds of radiation in terms of light-quanta. Evidence in favour
of the wave theory was overwhelming and mounting. In 1912 Max von Laue, Walter
Friedrich and Paul Knipping had settled the issue in favour of X.-rays being electro-
magnetic waves of extremely short wavelengths through the phenomenon of interfer-
ence of X-rays in crystals [von Laue, Friedrich and Knipping, 1912]. In 1913 Planck,
Nernst, Rubens and Warburg who wished to bring Einstein to Berlin, wrote to the
Prussian Ministry of Education:

That he may sometimes have missed the target in his speculations, as, for
example, in his theory of light-quanta, cannot really be held against him.
For in the most exact of natural sciences every innovation entails risk.
[Clark, 1972, 215]

Bohr had his own reasons for not favouring the light-quantum hypothesis though
he realized from the beginning that the laws of electrodynamics had to be abandoned
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for a proper description of quantum phenomena. The hypothesis ran counter to his
plans to build atomic theory on the basis of the correspondence principle.

The general acceptance of the light-quantum hypothesis eventually came in 1923
through the work of Debye [1923] and Compton [1923]. Compton realized that the shift
in the wavelength of X-rays scattered by atoms that he observed could not be under-
stood in terms of the classical wave theory of scattering but only in terms of elementary
processes of scattering of light-quanta by the electrons in atoms, in which both energy
and momentum were conserved. Debye also arrived at the same conclusion inde-
pendently. Arnold Sommerfeld who was then visiting the University of Wisconsin as
Carl Schurz Professor of Physics came to know about Compton’s results. On 21 January
1923 he wrote to Bohr : ‘The most interesting scientific news I have learned in America
is a work of Arthur Compton in St. Louis. According to it the wave theory of X-rays
would finally have.to be given up.’ [Mehra and Rechenberg, 1, 2, 529] Wherever he
went, Sommerfeld referred to Compton’s work and its importance for the quantum
theory. On his return to Germany he continued to advocate Compton’s work. Several
months later he wrote to Compton : ‘Your discovery of the change in wavelength of
X-rays also occupies the scientific community in Germany most deeply. I met Einstein
and Kossel in August, and we mainly discussed your effect.’ [Sommerfeld to Compton,
October 1923; Mehra and Rechenberg, 1982, 1, 2, 530]

h. Pauli’s derivation of Planck’s law

Wolfgang Pauli came to know of Compton’s discovery in the summer of 1923 when he
came to Hamburg on several weeks’leave of absence from Copenhagen. He immediately
got interested in the problem of thermal equilibrium between radiation and free
electrons. Lorentz had reported in the first Solvay Conference that he could not
establish the condition of thermal equilibrium for electrons having a Maxwellian
velocity distribution [Lorentz’s report in Langevin and de Broglie, 1912]. Pauli wished
to re-examine the problem by considering reversible collisions between electrons and
directed light-quanta, obeying the laws of conservation of energy and momentum. Pauli
[1923] was able to show that thermal equilibrium characterized by Planck’s law was
possible for electrons having a Maxwellian distribution provided the probability of
collisions per unit time was given by

Ap,+Bp,p., (23)

where A and B are the coefficients of Einstein’s radiation theory [Einstein, 1917] and
p, and p,. the densities of radiation before and after the collision respectively. Pauli

showed that the first term was dominant for radiation satisfying Wien’s law while the
second term was more important for radiation of longer wavelengths satisfying the
Rayleigh-Jeans law. Pauli interpreted this as the effect of interference fluctuations of
classical waves. Einstein and Ehrenfest welcomed Pauli’s work and clarified and
generalized it to cases in which the elementary processes involved more than two light-
quanta [Einstein and Ehrenfest, 1923]. In particular, they discussed the ‘paradoxical’
second term in (23) ‘which implies that the number of the elementary processes of
scattering occurring per unit time at an electron (which is at quasi rest) increases faster
than being proportional to the radiation density p’ of frequencies v/, which the



44 S N Bose : The Man and His Work

radiation quantum possesses after being modified by the elementary process.’ They
concluded that this term followed from a detailed considertion of all interaction
processes between radiation and electrons, including the induced emission of light
(Einstein’s ‘negative radiation’).

i. Bose’s derivation

While the leading European and American physicists were skeptical, even hostile to
Einstein’s light-quantum hypothesis, two unknown young physicists in India, M N
Saha and S N Bose grasped its importance and started using it with great success.
Within two years of Einstein’s 1917 paper from which he drew the revolutionary
conclusion that a light-quantum carried directed momentum Av/c, M N Saha, a close
friend of Bose, applied it to explain the existence of radiation pressure on objects of
molecular size [Saha, 1919]. On the basis of the classical theory Nicholson [1914] and
Klotz [1918] had shown that radiation pressure on particles of molecular size should
become totally ‘evanescent’. Saha applied ‘quantum theory in the place of the old
continuous theory of light. Instead of assuming that “light” is spread continuously over
all points of space,’ he supposed that ‘they are localized in pulses of energy Av . .. Let
this pulse encounter a molecule m and be absorbed by it. Then in doing so the molecule
will be thrust forward with an impulsive momentum of Av/c, (c=velocity of light); for
we may suppose the pulse to have the mass Av/c? and the momentum Av/c; the
absorption of the pulse by the molecule may be taken as a case of inelastic impact, the
whole momentum being communicated to the molecule. The velocity with which the
molecule will move forward = hv/mec.’ Saha concluded that ‘radiation-pressure may
exert an effect on the atoms and molecules which are out of all proportion to their actual
sizes.’ This must have been the first application of Einstein’s hypothesis that light-
quanta carried a directed momentum Av /c.

In March 1924 Saha visited Dhaka and stayed with Bose. While teaching postgradu-
ate students Bose had keenly felt the need for a derivation of Planck’s law free of
logical difficulties. Saha drew Bose’s attention to the papers of Pauli [1923] and their
connection to Einstein and Ehrenfest [1923] and their connection to Einstein’s paper
0f1917. In an interview with J Mehra [Mehra and Rechenberg, 1, 2, 565] Bose recalled :
‘What seemed to be happening in Pauli’s work was that in order to apply the quantum
conditions you had to know exactly what was going to happen afterwards.” Stimulated
by his discussions with Saha, Bose began to study carefully the works of Planck
[1900,1910], Peter Debye [1910,1923], Einstein [1917], Arthur Compton [1923], Pauli
[1923] and Ejnstein and Ehrenfest [1923]. This resulted in two papers that he wrote
in June 1924 [Bose, 1924a, 1924b]l and sent to Einstein for his views and for publication
in Zeitschrift fiir Physik. Einstein translated both of them into German and had them
published in Zeitschrift fiir Physik in 1924. To both of them he added his own comments.

It is clear from these two papers of Bose which he always regarded as integral parts
of each other that he clearly recognized the following points :

(1) The fundamental assumptions of the quantum theory are incompatible with
the laws of classical electrodynamics [Bose, 1924a].

(2) All previous derivations had made use of relation (2) ‘between the density of
radiation and the average energy of an oscillator, and they make assumptions
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about the number of degrees of freedom of ether, which enters the above
equation (the first factor on the right hand side). This factor could however be
derived only from the classical theory. This is an unsatisfactory feature in all
derivations and it is not surprising that efforts are made again and again to
give a derivation free from this logical flaw.’ [Bose, 1924a]

(3) Even Einstein’s 1916/1917 derivation, although ‘remarkably elegant’, makes
use of ‘Wien’s displacement law and Bohr’s correspondence principle. Wién’s
law is based on classical theory and the correspondence principle assumes that
the quantum theory agrees with the classical theory in certain limiting cases.’
[Bose, 1924al.

(4) ‘In all cases it appears to me,’ wrote Bose [1924a] ‘that the derivations are not
sufficiently justified from a logical point of view. On the other hand, the
light-quantum hypothesis combined with statistical mechanics (as adapted by
Planck to conform to the requirements of quantum theory) appears sufficient
for the deduction of the law independent of classical theory’ (our italics). In
other words, the incompatibility between Einstein’s light-quanta (‘disjointed
quanta’) and Planck’s law (implying ‘undisjointed quanta’) can be removed by
adapting the statistical mechanics of light-quanta to conform to the require-
ments of quantum theory, as proposed by Planck.

(5) ‘The problem of thermodynamic equilibrium of radiation in the presence of
material particles can however be studied using the methods of statistical
mechanics, independently of any special assumption about the mechanism of
the elementary processes on which the energy exchange depends.’ [Bose, 1924b]

Bose therefore proceeded in four steps.

First step: He took Einstein’s light-quantum hypothesis seriously and treated black-
body radiation as a collection of light-quanta enclosed in a volume V. If there are N,

light-quanta of energy hv, (s =0 s =), the total energy E is

E=3XNhv,=V [ pyadv. (24)
s

p, can be determined from this simple relation if N, is known. So, the problem is to

determine N,. ‘If we can give the probability for each distribution characterized by
arbitrary values of N,, then the solution is determined by the condition that this
probability is a maximum subject to the subsidiary condition’(24) [Bose,1924a]. Bose
then proceeded to find this probability.

Second step: Before he could do that, he needed to compute the number of states of
a light-quantum whose frequency lies between v, and v, + dv,. In order to be able to do
this, he extended Planck’s idea of dividing up the phase space of a material oscillator
into elementary cells of volume A® to the phase space of light-quanta. In other words,
he extended Planck’s first quantization’ of material oscillators to the radiation field
itself. This was the most novel and crucial input. Emboldened by Compton’s discovery,
he assumed the momentum of a light-quantum of frequency v to be hv/c in the direction
of its motion. He must have also been aware of Saha’s success in explaining radiation



46 S N Bose : The Man and His Work

pressure on molecular-size objects with the help of this hypothesis [Saha,1919]. The
instantaneous state of such a light-quantum, he stated, is characterized by a point in
six-dimensional phase space which is constrained to lie on the surface of a cylinder
defined by

h2 V2 (25)
pi+pi+p: = czs :

Then the phase space belonging to the frequency interval dv; is

h3 V2 (26)
3 Vdv;, .

2
h hdv
fdxdydzdp,dpydpz=4nV(%J cs=41t

Dividing this by A%, the ‘ultimate elementary region’ [Bose to Einstein, 4 June 1924],
Bose obtained 4nVv? dv,/c®. Then the following statement occurs : ‘In order to take into
account the fact of polarization, it seems however appropriate to multiply this number
once again by 2’ (our italics) to obtain 8nVv? dv,/c® as the number of cells belonging to
dv,. No explanation is offered as to how this ‘fact of polarization’, an essentially
classical concept, can be understood in terms of the light-quantum hypothesis, al-
though Bose claimed to deduce this factor independent of the classical electrodynamics
[Bose to Einstein, 4 June 1924]. Bose had always maintained privately that he did offer
a quantum theoretic explanation but Einstein removed it from his translation and
substituted it by the statement about the polarization factor. In his letter to Bose,
Einstein simply wrote : ‘You are the first person to derive the factor quantum theoreti-
cally, even though because of the polarization factor 2, not wholly rigorously’ [Einstein
to Bose, 2 July 1924]. What was the explanation that Bose claimed to have offered? It
was that light-quanta carried an intrinsic spin that could take only the values + h/2n.
There is only one recorded evidence of this because Bose’s original manuscript in
English is missing from the Einstein archives. It appears in a paper by C V Raman
and S Bhagavantam [1931]. The paper is entitled ‘Experimental Proof of the Photon
Spin’. They write :
In his well-known derivation of the Planck radiation formula from quantum
statistics, Prof. S.N. Bose obtained an expression for the number of cells in
phase space occupied by the radiation, and found himself obliged to multiply
it by a numerical factor 2 in order to derive from it the correct number of
possible arrangements of the quantum in unit volume. The paper as pub-
lished did not contain a detailed discussion of the necessity for the intro-
duction of this factor, but we understand from a personal communication
by Prof. Bose that he envisaged the possibility of the quantum possessing
besides energy hv and momentum Av/c also an intrinsic spin angular
momentum 1k /2r round an axis parallel to the direction of its motion. The
weight factor 2 thus arises from the possibility of the spin of the quantum
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being right-handed or left-handed, corresponding to the two alternative

signs of the angular momentum. There is a fundamental difference between

this idea, and the well-known result of classical electrodynamics to which

attention was drawn by Poynting and more fully developed by Abraham that

a beam of light may in certain circumstances possess angular momentum

. . . Thus, according to the classical field theory, the angular momentum

associated with a quantum of energy is not uniquely defined, while accord-

ing to the view we are concerned with in the present paper, the photon has

always an angular momentum having a definite numerical value of a Bohr

unit with one or other of the two possible alternative signs.
Why did Einstein remove Bose’s explanation? Probably he felt it was too radical and
unnecessary at that stage. However, instead of removing it altogether, he could have
added a suitable comment to the one he did make at the end of the paper. In fact, he
did not hesitate to add a dissenting note to Bose’s second paper [1924b] as we shall see
later.

Be that as it may, let us proceed with Bose’s derivation. Having divided the phase
space volume belonging to the frequency range v, and v, + dv, by h®, he wrote : ‘the
total number of cells must be regarded as the number of possible arrangements of a
quantum in a given volume’ (our italics). Classically there are infinitely many ways of
arranging or distributing a particle within a phase space cell of finite extent corre-
sponding to the infinitely many points contained within it. However, according to
Planck, as we have seen, quantum states are not continuously distributed in phase
space but are separated from one another by finite amounts determined by A. Thus, an
elementary cell of volume h® can contain at most one quantum state, and the problem
of counting the number of quantum states reduces to the counting of these elementary
cells. This is a totally new interpretation of the factor A, = 8% v2 Vdv,/c’. (In classical
wave theory it is the number of transverse standing modes in the interval dv, in a
volume V.) In his covering letter to Einstein Bose wrote :

Respected Sir,

I have ventured to send you the accompanying article for your perusal and opinion. I am
anxious to know what you think. You will see that I have tried to deduce the coefficient in
Planck’s law independent of the classical electrodynamics, only assuming that the

ultimate elementary regions in Phase-space have the content A3,
[Bose to Einstein, 4 June 1924].

On 12 July 1924 Einstein wrote to Ehrenfest : ‘The Indian Bose has given a beautiful
derivation of Planck’s law, including the constant [i.e. 8av¢/c® 1.’

Third Step: Having demonstrated that the factor 8xv?/c® in Planck’s law corresponds
to the total number of quantum states of radiation, Bose then proceeded ‘to calculate
the thermodynamic probability (macroscopically defined) of a state’ in the sense of
Planck (our italics). This is equal to the number of different microscopically defined
states by means of which the macroscopic state can be realized. If all the cells (states)
were considered to be distinct from one another, the answer would be A,! However, this
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is not the case. Since each cell is to be counted as a single quantum state, if follows that
the permutations of the light-quanta within a cell do not produce new states. Conse-
quently, the cells can be partitioned into distinct classes characterized solely by their
occupation numbers. Let there be a particular distribution of N, quanta among A, states
such that there are p  states that are empty, p § states with one quantum, p ; states
with two quanta, and so on. Then, following Boltzmann and the usual procedure of
statistical mechanics for these states (not the quanta), one can immediately write down
the possible number of such distributions as

A, ! 27
pi'pitps! ...

W, =

which is precisely the expression (12) given by Natanson. The ‘thermodynamic prob-
ability’ of ‘the state defined by all p;’ is then clearly W = T W, which is equivalent to

the Debye-Planck expression (10).
Fourth step : Bose then followed the standard procedure, already followed by Debye

[1910], of maximizing In W subject to the constraints E = Z N;hv;and N, = z rp; to
obtain Planck’s law. Notice that the total number of photons N = z N, and there is no

constraint on N. It turns out that the constraint on N, is not necessary, but Bose did
not notice this.

Notice that the only departure of the expression (27) from the usual Boltzmann
expression lies not in the product of factorials in the denominator but in putting the
multiplicative factor (g;)" corresponding to the possible arrangements of r quanta
within each cell i having g; levels equal to unity, as demanded by the division of phase
space into elementary cells of volume A2, (In his second paper [1924b] written more or
less at the same time as the paper under discussion and received by Einstein only five
days later, Bose used these factors, as we shall see later, for material particles obeying
Maxwell-Boltzmann statistics.) This is precisely the adaptation of statistical mechan-
ics by Planck ‘to conform to the requirements of the quantum theory’ that Bose referred
to in the third paragraph of his paper.

Was Bose aware of the analysis of the Planck-Debye definition of the probability by
Natanson and by Ehrenfest and Kamerlingh Onnes? One cannot tell. He certainly did
not refer to their papers. It is reasonable, however, to assume that he was not aware
of the latter work because if he had been, he would have explained how their conclusion,
namely that Planck’s formal device (distribution of P energy elements € among N
resonators) cannot be interpreted in the sense of Einstein’s light-quanta’ [Ehrenfest and
Kamerlingh Onnes, 1914, p.873], could be reconciled with his own starting point,
namely the combination of the light-quantum hypothesis with Planck’s counting device.
The explanation, of course, lies in the fact that Planck’s law reduces to Wien’s law in
the limit Av/kT >> 1, and that it is only in this limit that the light-quanta have
Maxwell-Boltzmann behaviour as inferred by Einstein. It is one of those quirks of
history that Einstein should have been able to infer the quantum nature of radiation
from its approximate classical statistical behaviour in a certain domain and thus
missed the true nature of its statistics. It was left to Bose to discover it, possibly
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uninhibited by the analysis of Ehrenfest and Kamerlingh Onnes and their conclusion.
Hence Einstein’s enthusiastic welcome of Bose’s work as an important and new support
to his favourite light-quantum hypothesis, making it compatible with Planck’s law.

j. The birth of a new statistics: Einstein applies Bose’s method to ideal gases

Bose’s counting of states, of course, implied a new statistics for the light-quanta.
Neither he nor Einstein seemed to have quite grasped the importance of this initially.
In his letter of 2 July 1924 to Bose, Einstein compliments him for being the first to
derive the factor A, quantum theoretically but does not write a word about the new
statistics. ‘In my opinion,’ wrote Einstein in a footnote to Bose’s paper, ‘Bose’s deriva-
tion signifies an important advance. The method used here gives the quantum theory
of an ideal gas as I will work out elsewhere.’ He extended Bose’s method to material
particles in three communications to the Prussian Academy in Berlin on 10 July 1924,
8 January 1925 and 29 January 1925 [Einstein, 1924, 1925a, 1925b] without informing
Bose or asking for his collaboration. Bose came to know of the comment in the footnote
shortly before he left for Europe and of the first of the communications to the Prussian
Academy on his arrival in Europe in October 1924. In the first paper this is how
Einstein described Bose’s method :

[First] : The phase space of an elementary object (here of a monatomic
molecule and in Bose’s case of a light-quantum), associated with a given
(three-dimensional) volume, is divided into “cells” of extension 3. [Second] :
If many elementary objects are present then their (microscopic) distribu-
tion, which plays a role in thermodynamics, is determined by the particular
manner how the elementary objects are distributed among the cells.
[Third] : The “probability” of a macroscopically defined state (in the sense
of Planck) is equal to the number of different microscopic states by means
of which the macroscopic state can be thought to be realized. [Fourth] : The
entropy of the macroscopic state and, therefore, the statistical and thermo-
dynamic behaviour of the system is determined by Boltzmann’s theorem
relating entropy and probability.’ [Einstein, 1924, p.261]

Again, there is no mention of the new statistics! In applying Bose’s method to
ordinary material atoms, Einstein had to introduce an additional parameter (the
chemical potential which vanishes for light-quanta) to take into account the conserva-
tion of their number. He drew a very important conclusion from this:

According to the theory presented here, Nernst’s theorem is satisfied in the
case of ideal gases. To be sure, our formulae cannot immediately be applied
to extremely low temperatures, for we have assumed in their derivation
that the p? change only relatively infinitely little if s is altered by 1. Still
one recognizes at once that the entropy must vanish at the absolute zero of
temperature. The reason is that then all molecules are in the first cell; and
for this state there exists only one distribution of molecules according to our
counting method. Hence our assertion is immediately proved to be correct.
[Einstein, 1924, p.265] (our italics)
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This is a conclusion of far-reaching consequence, yet there is no mention of any new
statistics for the molecules; the emphasis is on Bose’s counting method for states (one
quantum state per cell). It was only six months later on 8 January 1925 that Einstein
discussed the difference between the counting methods of Boltzmann and Bose and
recognized the fact, already pointed out by Ehrenfest [1924], that the new statistics for
molecules was inconsistent with their statistical independence. However, while Planck
[1925] considered the analogy with radiation a weak point in Einstein’s gas theory, the
statistics of radiation and that of material particles being completely different in his
opinion, Einstein regarded this result differently. He concluded : ‘This result repre-
sents in itself a support of the view concerning the deep natural relation between
radiation and gas, since the same statistical treatment which leads to Planck’s formula
establishes — when applied to ideal gases — the agreement with Nernst’s theorem.’
[Einstein, 1925a, p.7] (our italics) He was of the opinion that an understanding of the
‘mysterious influence’ among the molecules would come in the future.

k. The birth of wave mechanics

Based on the new counting method, he showed in his second paper communicated on
8 January 1925 that the mean square energy fluctuation of the gas molecules is given
by an expression which is the sum of two terms, one corresponding to the Maxwell-
Boltzmann statistics of non-interacting molecules and the other to interference fluc-
tuations associated with wave phenomena. (There exists in the Einstein Archives in
the Jewish National and University Library, Jerusalem, a two page calculation done
by Bose entitled ‘Fluctuation in density’ which ends with this fundamental result. The
document is undated and exists in the Scientific Correspondence File Folder ‘B-Misc.-
IT’. Bose was in Paris from 18 October 1924 until the first part of October 1925.) From
this he immediately drew attention to the importance of Louis de Broglie’s Doctoral
thesis (which he had heard of from Paul Langevin and asked for a copy which he
received and read in December 1924 [Jammer, 1966, 249]) in which de Broglie had
attached wave properties to ponderable matter in analogy with the wave-particle
duality of radiation. Einstein wrote : ‘I shall discuss this interpretation in greater detail
because I believe that it involves more than a mere analogy.’ He then went on to explore
various consequences of de Broglie’s hypothesis.

When Erwin Schriodinger whose principal research during his early years in Zurich
(1921-27) was on the statistical thermodynamics of ideal gases, read Einstein’s first
paper [1924a] on the quantum theory of an ideal gas, he also did not understand that
the molecules were being treated as being indistinguishable. On 5 February 1925 he
wrote to Einstein suggesting a possible error in his probability formula. Einstein
replied explaining that the ‘quanta or molecules are not treated as independent of one
another’ and even gave a little diagram to explain the difference between Bose’s
counting method and that of Boltzmann. He concluded his letter with the emphatic
statement: ‘There is certainly no error in my calculation.’[Walter Moore, 1989, 1831 It
was Einstein’s remark in his second paper that de Broglie’s idea ‘involves more than a
mere analogy’ that really induced Schrodinger to study the ‘de Broglie-Einstein undu-
latory theory’ as he called it at that time, and eventually led to his discovery of wave
mechanics in 1926 [Schrédinger, 1926a, 1926b and 1926c]. Schridinger later said that
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‘wave mechanics was born in statistics.’ (our italics) [Walter Moore, 1989, 188] He also
wrote to Einstein on 23 April 1926 : ‘By the way, the whole thing would not have started
at present or at any other time (I mean, as far as I am concerned) had not your second
paper on the degenerate gas directed my attention to the importance of de Broglie’s
ideas.’ [Jammer,1966, 257]

1. Further developments

Meanwhile in July 1925 Werner Heisenberg had sent a paper to Zeitschrift fiir Physik
in which he gave a preliminary account of matrix mechanics [W Heisenberg,1925].
Schrodinger proved the complete equivalence of his wave mechanics and the Heisen-
berg-Born—Jordan matrix mechanics [Schrédinger, 1926d]. A whole train of rapid
developments occurred. Pauli discovered his Exclusion Principle within six months of
Bose’s paper [Pauli, 1925]; Fermi published his paper on the statistics of particles
obeying Pauli’s principle in early 1926 [Fermi, 1926]; Dirac linked the Bose and Fermi
statistics of particles to the symmetry properties of their wave functions and named
them ‘bosons’ and ‘fermions’[Dirac, 1926]; in 1927 Dirac invented ‘second quantization’
of the electromagnetic field [Dirac, 1927] which was soon followed by a similar method
for Fermi fields developed by Jordan and Wigner [1928]; later Pauli [1940] proved the
spin-statistics theorem in relativistic quantum field theory; Pauli [1927] also applied
Fermi-Dirac statistics to the paramagnetism of an electron gas and Sommerfeld
[1927,1928] applied it to the electrons in a metal; and Fritz London [1938] suggested
that the superfluidity of liquid helium (*He) was related to Einstein-Bose condensation.
Thus the developments of Schrodinger’s wave mechanics and that of quantum statis-
tical mechanics were directly triggered off by Bose’s first paper followed by Einstein’s
far-sighted extension of his method to ideal gases of material particles and his
championing of de Broglie’s ideas which soon received experimental confirmation in
the hands of Davisson and Germer {1927] and G P Thomson [1927].
Years later this is how Schrodinger summed up the position :

The two equivalent ways of looking at (7.19) either as counting the number
of quantum states of a particle, or as counting the number of wave-mechani-
cal proper vibrations of the enclosure, interest us for this reason. The second
attitude makes us think of the ‘n;s particles present in state o’ as of a proper
vibration (or a ‘hohlraum’ oscillator to use a customary phrase) in its n.th
quantum level. (This attitude really corresponds to so-called second quan-
tization or field quantization.) ns becomes a quantum number and the
stipulation that the system of quantum numbers

ny ng, n.?,..., ng,...
determines only one state of the gas, not a class of

n!

states, ceases to be a strange new adoption, and comes into line with the
ordinary view about quantum states and their statistical weight (viz. equal
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for any two of them).

It is the first, the particle attitude, that has suggested the term ‘new
statistics’ which is frequently used. And that is why this idea of new
statistics did not, originally, arise in connexion with heat radiation, because
here the wave point of view was the historical one, the classical one—nobody
thought of any other at the outset. The wave picture was considered to be
(and historically was) the classical description. The quantization of the
waves therefore duly appeared to be a ‘first’ quantization and nobody
thought of anything like ‘second quantization’.

Not until the idea of photons had gained considerable ground did Bose
(about 1924) point out that we could, alternatively to the ‘hohlraum’ oscil-
lator statistics, speak of photon statistics, but then we had to make it ‘Bose
statistics’. Very soon after, Einstein applied the same to the particles of an
ideal gas. And thereupon I pointed out that we could also in this case speak
of ordinary statistics, applied to the wave mechanical proper vibrations
which correspond to the motion of the particles of the gas [Schriodinger,
1952, 49-501].

We wish only to point out, as explained above, that Bose did not actually ‘speak of
photon statistics’ — it was implied by his counting of quantized photon states, and this
only became gradually clear with Einstein’s application of Bose’s counting method to
ideal gases, although Ehrenfest and Natanson had already pointed this outin 1911 and
1914 respectively in relation to Planck’s counting method of December 1900 which Bose
showed was applicable to light-quanta.

m. Did Bose make a ‘shot in the dark’?

Some recent widely read scientific biographies have given rise to the impression that
Bose made ‘a shot in the dark’ with three assumptions all of which turned out to be
correct but none of which he tried to justify ‘by arguments of any kind; they seemed to
appear intuitively to his mind, perhaps because his thoughts were uncluttered by the
ongoing controversies of the European physicists.’ [W. Moore, 1989, 181; A. Pais, 1982,
428] The assumptions were that photons were (a) massless particles capable of existing
in two states of polarization, (b) indistinguishable and (¢) their number was not
necessarily conserved. The record must be put right. That photons are massless
particles with energy Av and directed momentum Av/c was proposed by Einstein and
only used by Bose. That they exist in two possible ‘polarization states’ was inferred by
Bose from phase space considerations which yield for the number of quantum states
between v, and v, +dv, the factor 4nVvZ dv,/c® rather than 8zVvZ dv, /c%, the factor
that occurs in Planck’s formula. Actually, as we have already discussed, in order to
account for this factor of 2, Bose had proposed that photons carried one unit of intrinsic
spin which could only take the values +1. Whoever had heard of particles with
polarization? Moreover, ‘polarization’ was a wave concept which Bose wanted to avoid.
However, Einstein quietly dropped it and the statement regarding the polarization
factor was most probably inserted by him. Since Bose’s original manuscript in English
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is missing from the Einstein archives and Bose did not keep a copy, there is no way to
verify this.

How about ‘indistinguishability’? Again, as we have seen, although Bose did not
explicitly use the word ‘indistinguishable’ which is by itself rather vague, he did use
Planck’s division of phase space into elementary cells of volume A’ to justify his
counting method for states (which implied indistinguishability of the quanta), namely
that there cannot be more than one quantum state in an elementary cell. ‘In any case,’
he wrote, ‘the total number of cells must be regarded as the number of possible
arrangements of a quantum in the given volume.” What is not usually appreciated in
usual expositions of Bose statistics is that Bose did not count the number of ways of
distributing individual photons over a set of states. Instead, he calculated the thermo-
dynamic probability of a macroscopic state by counting the number of ways in which
the macroscopic state can be thought to be realized through given distributions of the
number of photons over the micro-states (phase space cells).

Finally, what about non-conservation of photons? This is a non-issue. Since, like
Debye [1910], Bose considered the statistical thermodynamics of an open system of
radiation in thermal equilibrium and did not include the molecules of matter with
which this radiation constantly exchanged energy (which he did in his second paper
which we shall turn to presently), there was no question of conservation of energy
quanta even if treated as massless particles. In his 1917 derivation of Planck’s law
Einstein did not impose the conservation of light-quanta which he certainly regarded
as massless particles interacting with molecules. Since Bose was not doing anything
new or different in this respect, there was no original or deep comment he could have
made on this issue. Nevertheless, it is true that Bose, like most others who have made
revolutionary contributions, did not, and could not be expected to, understand the full
implications of their discoveries.

n. Bose’s second paper (1924)

We now turn to his second paper [1924] on ‘Thermal Equilibrium in Radiation Field
in the Presence of Matter ', also translated into German probably by Einstein himself.
This paper, completed on 14 June 1924, i.e. more or less at the same time as the first
paper, consists of two parts. In the first part Bose derived general conditions for
statistical equilibrium of a system consisting of matter and radiation, independent of
any special assumptions about the mechanism of the elementary radiative processes. In
the second part he proposed a new expression for the probability of these elementary
radiative processes which differed from that of Einstein. Einstein considered this
hypothesis not to be ‘applicable’ to elementary radiative processes and gave two reasons
for it in a footnote to the paper. As a consequence, the paper has been largely ignored.
However, Bose remained firmly of the opinion for the rest of his life that Einstein had
not done him justice.

Bose started off by giving a quick critical review of the most important derivations
of Planck’s law until then given by Debye [1910], Einstein [1917], Pauli [1923], and
Einstein and Ehrenfest [1923] on the scattering of radiation by electrons. Bose consid-
ered Debye’s 1910 derivation not to be ‘completely independent of classical electrody-

namics’ since he derived the factor 8nvZ Vdv,/c® from the normal modes of the ether.
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He considered the derivations of Einstein [1917], Pauli [1923] and Einstein and
Ehrenfest [1923] to be dependent on ad hoc special assumptions about the probability
of elementary radiative processes. ‘The problem of thermodynamic equilibrium of
radiation in the presence of material particles,” he wrote, ‘can however be studied using
the methods of statistical mechanics, independently of any special assumption about
the mechanism of the elementary processes on which the energy exchange depends.

In this way we obtain a general relation which is valid for all special assumptions about
the elementary processes and their probabilities.’ This is in keeping with Kirchhoff’s
law. He then went on to say: ‘If it is possible to write down the thermodynamic
probability for any particular distribution of quanta of radiation and the probability
for any arbitrary energy distribution among the particles, then the thermodynamic
probability for the bigger system consisting of matter and radiation is simply the
product of the two probabilities. The condition of equilibrium is simply that the
resulting probability must be a maximum.’” For the thermodynamic probability for
radiation, Bose used the expression

(A, +N,dv)! (28)

W=T A,'N,dv!

where A, = 8nVv2 dv/c® which, he stated, had been derived earlier. As references he
quoted his own paper and that of Debye [Debye 1910]. (It is curious that the reference
to his previous paper is given as ‘The author, to appear in Phil Mag’. This is because
Bose had submitted his paper first to the Philosophical Magazine. Not hearing from
them for a while, he sent a copy to Einstein. While translating Bose’s second paper, the
translator obviously forgot to change the reference of the earlier paper to Zeitschrift
fiir Physik 26, 178-181, 1924). Although expression (28) is indeed the Ansatz used by
Debye, it does not appear in Bose’s first paper! Instead, the corresponding expression
that appears in his first paper is (27), the form given by Natanson. As we have seen
earlier, the two are mathematically equivalent, but Bose did not care to explain this,
probably because this result must have been fairly well known in the literature in those
days.
For the thermodynamic probability for material particles. Bose writes:

This can be found easily. We want to generalize our assumptions a little so
that the case of the Bohr atom with discrete energy levels as well as the
case of translational energy of particles can be included. Let the phase space
be divided into cells. For every cell there is a probability g that a particle
occupies it. The g’s are in general equal except for the case of Bohr’s atoms.
The thermodynamic probability for any arbitrary distribution ni, nz ete
among the different cells is,

N g:’ g;’ N (29)
ny!lng! ...
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(our italics). Unlike in the case of radiation (expression (27), Bose now uses the factor

IT g} for material particles and obtains the classical Maxwell-Boltzmann distribution.
i

In other words, he treats material particles as in classical (distinguishable) statistical
mechanics but light-quanta according to quantum (indistinguishable) statistical me-
chanics.

Finally, he writes down the thermodynamic probability for the total system as the
product of (28) and (29) :

! "TN 1 3
W= A, + N, 1_Ig,,.N (30)
AV NV, np!
with
INhv+ZnrEr = E (81)
and
INr = N. (32)

He then considers an elementary process in which a particle passes from the rth cell
to the sth cell while a light-quantum of frequency v changes into a light-quantum of
frequency v.” The stationarity of W subject to the conditions (31) and (32) gives

. N \ N, 33
ﬁ_ n v n (33)

= I ———--
& v Nv+Av &s v’ Nv’+Av'

where
LT hV-Xhv+E,-E, =0. (34)

Bose then demonstrated that (33) indeed generalized the results of Pauli [1923] and
Einstein and Ehrenfest [1923] without the need for any ad hoc assumptions regarding
the elementary radiative processes designed to give Planck’s formula. In particular, in
the case of Bohr’s atoms considered by Einstein in 1917, equation (33) reduces to

n, N, _n (35)
& N,+A, g

which is Einstein’s condition derived on the assumption that atoms in higher energy
levels make transitions to lower energy levels in two ways:
1. Aspontaneous transition as in radioactivity independent of the state of the external
radiation field.
2. An induced transition whose probability depends on the state of the external
radiation field.
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Transitions from lower to higher energy levels always take place by induced absorption
whose probability depends on the state of the external radiation field. Further, Einstein
had to postulate certain relations (namely, the opposite limiting Wien and Rayleigh-
Jeans laws) among these transition probabilities to obtain Planck’s law. Bose’s deriva-
tion is independent of all these assumptions. It is for this reason that Einstein took
the trouble to have the paper translated into German and communicated it to Zeit-
schrift fiir Physik. However, his disagreement with Bose started from the next part of
the paper in which Bose proposed a new expression for the probability of an interaction
between a particle and a quantum of radiation.

Bose’s starting point was the following observation which he considered to be
fundamental :

.. .even in a collision no interaction is as probable as the occurrence of any
special interaction. . . From the classical theory. . . one would expect that
there is some interaction whenever a quantum and a material particle come
together. Therefore here it is a question of a departure from classical theory.

The assumption made above, that even in a collision no interaction need
occur, is quite analogous to the assumption of the stability of stationary
states which is so fundamental to Bohr’s theory of line emission and can
be traced back to the same origin—the probability of existence of the
stationary states of the particles. It is interesting to remark in this connec-
tion that in the analogous case of a collision of an electron with an atom,
experiments show that the electron goes through the atom without chang-
ing either the interatomic or its own motion. (our italics)

Bose was obviously referring to the Ramsauer-Townsend effect. He saw a simple
way of realizing the non-classical possibility in Planck’s cellularization of phase space.
Let p, be the number of cells with r quanta. ‘In order that the radiation and particle
may interact, it must be in a cell occupied by a quantum. The particular cell which the
molecule under consideration occupies will pass through all possible states if we
observe it long enough, that is, sometimees it is empty, sometimes occupied by 1
quantum, sometimes by 2 quanta etc. The duration of these events will be finally
proportional to the equilibrium values of p,, p; etc. When r quanta and a particle are
together, then either an exchange of energy takes place or nothing happens.’ (our italics)
Therefore r + 1 different events are possible, namely the exchange of 1 quantum of
energy, 2 quanta etc or no exchange at all. Therefore the total number of possible events
is

Po+2p,+3pa+... =A,+N ,dv,=Z@+1p,. (36)

r

The number of cases in which interaction or energy exchange occurs is

p1+2p1+3p3+....= Nsdvs=2rp,. (37)
r
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Consequently the probability of an interaction is

Trp, N dv, (38)

T Xr+1)p, A, +N,dv,’

This is Bose’s second fundamental result.

Having derived this result, Bose then considered Einstein’s 1917 problem, namely
Bohr atoms exchanging energy with the radiation field. In order to be consistent with
the fundamental equilibrium condition (35), he found it was sufficient to consider (a)
transitions from lower to higher states through absorption of quanta of characteristic
frequency v and (b) transitions from higher to lower states to be spontaneous, i.e.
independent of the external radiation field. The additional assumption of induced
emission (negative radiation) processes was not necessary. Let the strength of induced
absorption be B. Then the probabillity of induced absorption is

N,dv (39)
B A, +N,dv’

Let the coefficient of spontaneous emission be a. Then for equilibrium one gets

N, dv (40)
nr B A, +N,av 7

which agrees with (35) provided g, B = g, o. A substitution of the value of n,./n, then
gives Planck’s law. Bose then treated the cases considered by Pauli [1923] and Einstein
and Ehrenfest [1923] and showed that the fundamental equilibrium condition (33)
followed from the probability law (38) without requiring any further assumptions.

In a note added to the paper Einstein gave two reasons why he thought Bose’s
hypothesis about the probability of elementary radiative processes was not ‘applicable’.
In his letter of 3 November 1924 Einstein summarized the two reasons. ‘Your principle
is not compatible with the following two conditions:

1) The absorption coefficient is independent of the radiation density.
2) The behaviour of a resonator in a radiation field should follow from the statistical
laws as a limiting case.” [Einstein to Bose, 3 November 1924]

Let us see to what extent these criticisms were fair. As far as the first point is
concerned Einstein was referring to Beer’s law. Bose’s probability law, however, pre-
dicted a dependence of the absorption coefficient on the radiation density , decreasing
with it. ‘If the behaviour had been such,’ wrote Einstein in the note, ‘then it would
certainly have already been discovered in the case of infra-red radiation from hot light
sources.’ This is hard to believe. The departure from classical behaviour predicted by
Bose’s principle should occur only when N, /A, << 1, i.e. for very low intensity
radiation. It is now well known that the departures from classical behaviour predicted
by quantum optics are not seen even when the intensity of light is extremely low,
unless the source happens to be of a special kind (like a single-photon source). The
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reason is that light from all classical sources is in a coherent state in which the number
fluctuation is extremely large (Poissonian or higher). Therefore only light from ‘single-
photon states’ (Fock states) and ‘squeezed states’ and other such ‘sub-Poissonian
situations’ show departures from classical behaviour. [Aspect, 1987; Loudon, 1983]
Such light sources were certainly unknown in 1924.

The second point concerns the ‘correspondence principle’ (not necessarily Bohr’s)
which in this case implies that a radiation field can transfer positive as well as negative
energy to a resonator, depending on the phase. ‘The probabilities of both these transi-
tions must depend on the density of radiation, that is, on N, as opposed to Bose’s
hypothesis,’ wrote Einstein. The discovery of masers and lasers after the Second World
War eventually vindicated Einstein’s contention. It was nevertheless eventually an
empirical rather than a sound theoretical refutation. Although the ‘correspondence
principle’ was used as a heuristic tool with great success by Einstein, Planck and later
the Copenhagen school prior to the discovery of quantum mechanics around 1925/1926,
it is no longer regarded as a fundamental principle. In fact, quantum mechanics itself
is known not to satisfy this principle. [Liboff, 1980; Cabrera and Kiwi, 1987; Bohm and
Hiley, 1985] For example, the nodes of the eigen-solutions inside a box do not disappear
for arbitrarily high quantum numbers so that a classical particle cannot pass through
such points. Also the cross-section for hard sphere scattering has no classical limit.
Einstein was aware of this and used it against quantum mechanics as well.

o. Bose’s third (unpublished) paper (1925)

Although Bose was unhappy, particularly with the first point ragarding Beer’s law, he
accepted the second point, modified his stance and wrote a third paper which he sent
to Einstein from Paris on 27 January 1925. He sent him a letter under separate cover
in which he wrote :

It seems that the hypothesis of negative Einstrahlung stands, which, as you have yourself
expressed, reflects the classical behaviour of a resonator in a fluctuating field. But the
additional hypothesis of a spontaneous change, independent of the state of the field, seems
to me not necessary. . .

Iam rather anxious to know your opinion about it. I have shown it to Professor Langevin
here and he seems to think it interesting and worth publishing.

It was never published. Neither did Bose keep a copy of the paper, nor is there one
in the Einstein Archives as far as one can ascertain. So, the precise contents and details
will remain unknown. Bose arrived in Berlin in October 1925 and discussed his new
ideas with Einstein. Einstein was so convinced of the necessity and reality of the two
independent processes of emission of light from atoms (spontaneous and induced) that
he could not agree with Bose that one of them, the former, was unnecessary to assume
in deriving Planck’s law. To Bose, the process of emission of light appeared as a single
physical process and the division into two independent processes appeared artificial.
The assumption of one, he claimed, would automatically imply the other in thermal
equilibrium, given the special statistical property of the radiation field. Initially Bose
started with spontaneous emission as input but later changed his position. It was clear
to Bose that Planck’s law was a consequence of the special statistical property of the
radiation field itself and was independent of the mechanisms of energy transfer with
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atoms and molecules. This was indeed his capital contribution to physics and forms
the substance of his first paper and the first part of his second paper. To Einstein, on
the other hand, it appeared that Planck’s law was a consequence of special mechanisms
of energy transfer between the radiation field and molecules and that thermal equilib-
rium was impossible without both induced and spontaneous emission. This was indeed
the lesson he derived from his 1916/1917 papers which he considered to contain ‘the
fundamental outline of the future theoretical derivation.” Einstein was compelled to
regard spontaneous emission as being independent of the state of the radiation field
and an inherent property of atoms and molecules because in 1917 he was unaware of
the special quantum statistical property of the radiation field. It is strange that even
after championing Bose’s method he failed to see Bose’s point about spontaneous
emission. To Bose it was clear that it depended on the ‘environment’ in which the atom
or molecule was placed. He wrote in his second paper [1924] :

From classical theory one would expect that no stationary states are
possible and that an interaction or coupling (Bohr) between ether and the
excited atom and the radiation connected with it is always present. On the
other hand, in order to explain spectral emission we must assume it to be
possible that no interaction (emission) occurs. Because of the existence of
stationary states we are therefore led to assign to every stationary state a
probability coefficient or a mean life-time.

Recall the expression (38) for the fundamental probability P. It can be written as
n/(n+1)wheren = N, /A, is the average number of quanta per cell. Forn >> 1,
P tends to unity, the classical limit in which stationary states are not possible. It follows
from this that the average life-time of a stationary state (and therefore the probability
of spontaneous emission) depends on the average radiation density n. Bose used to
recount to his students Einstein’s objection to this. ‘Suppose there were only one
hydrogen atom in the universe in an excited state,” Einstein once remarked to Bose,
‘don’t you think it would radiate spontaneously and come down to its ground state?
Bose did not disagree, but nevertheless, felt that such a gedanken situation did not
capture the situation in a Hohlraum or cavity. It was Bose’s intuition that eventually
turned out to be right in the end, not Einstein’s. Firstly, in Dirac’s method of ‘second
quantization’ (Dirac, 1927) which is widely used in quantum field theory today, one
starts with a classical electromagnetic field in which the equality of the probabilities
of induced emission and absorption (determined by the Fourier coefficients in the
plane wave expansion) is built in, and obtains the spontaneous emission term as a
consequence of the fundamental commutation rules. Although this is not exactly what
Bose had proposed, it fits in with his basic contention that spontaneous emission is a
consequence of the quantal property of the radiation field itself and need not be
introduced as an independent hypothesis concerning the radiating atoms. Einstein’s
initial reaction to Dirac’s contribution was also decidedly negative. [Pais, 1982, 441]

Secondly, in quantum electrodynamics spontaneous emission is not a property of an
isolated atom but of an atom-vacuum system and can be significantly inhibited or
enhanced by placing the atoms in a suitable environment. In quantum electrodynamics
the vacuum is not empty and devoid of everything—it is full of virtual particles



66 S N Bose : The Man and His Work

appearing and disappearing, interacting with one another; it provides a non-trivial
physical ‘environment’ to an atom. A whole new branch of quantum optics called ‘cavity
quantum electrodynamics’ has developed since about 1987 utilizing dramatic changes
in spontaneous emission rates to construct new kinds of microscopic masers that
operate with a single atom and a few photons or with photons emitted in pairs in
a two-photon transition. This is what two of the pioneers in the field have to say :

Ever since Einstein demonstrated that spontaneous emission must occur if
matter and radiation are to achieve thermal equilibrium, physicists have
generally believed that excited atoms inevitably radiate. Spontaneous emis-
sion is so fundamental that it is usually regarded as an inherent property
of matter. This view, however, overlooks the fact that spontaneous emission
is not a property of an isolated atom but of an atom-vacuum system. The
most distinctive feature of such emission, irreversibility, comes about be-
cause an infinity of vacuum states is available to the radiated photon. If
these states are modified — for instance, by placing the excited atom
between mirrors or in a cavity— spontaneous emission can be greatly
inhibited or enhanced.

Recently developed atomic and optical techniques have made it possible to
control and manipulate spontaneous emission. [Haroche and Kleppner,
1989]

In his third unpublished paper Bose had gone further. He wrote in his letter of 27
January 1925 to Einstein :

I have tried to look at the radiation field from a new standpoint and have sought to
separate the propagation of Quantum of energy from the propagation of electro-magnetic
influence. I seem to feel vaguely that some such separation is necessary if Quantum theory
is to be brought in line with Generalized Relativity theory.

The views about the radiation field, which I have ventured to put forward, seem to be
very much like what Bohr has recently expressed in May Phil Mag 1924. But it is only a
guess, as I cannot say honestly to have exactly understood all he means to say about virtual
fields and virtual oscillators.

This letter shows that Bose was one of the first persons Lo have formulated the idea
of an ‘empty wave’(an electromagnetic wave propagating in space and time but carrying
no energy-momentum). He was certainly the first person to have intuitively seen its
relationship with the principle of General Relativity, although the connection is not
clear. Einstein already had the idea of an empty wave in his light-quantum hypothesis
according to which ‘a ray of light expands starting from a point, the energy does not
distribute on ever increasing volumes, but remains constituted of a finite number of
energy quanta localized in space and moving without subdividing, and unable to be
absorbed or emitted partially.’ [Einstein, 1905]

If the localized quanta carry all the energy and momentum, what happens to the
electromagnetic waves which can produce interference? There was no clear-cut answer.
The problem was so acute that Einstein referred to these waves as Gespensterfelder
(ghost waves) guiding the photons. [Bohr, 1945, 206] Louis de Broglie also had a similar
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idea in his concept of phase or pilot waves ‘guiding the propagation of the energy’ and
enabling a ‘synthesis of the waves and the quanta.’ [de Broglie, 1923, 549] Slater also
arrived at a similar notion. As he recalled : ‘A number of scientists — W [illiam] F
[rancis] G [ray] Swann, among others — had suggested that the purpose of the electric
field was not to carry a continuously distributed density of energy, but to guide the
photons in some manner. This was the point of view which appealed to me, and during
my visit at the Cavendish Laboratory in the fall of 1923, I elaborated on it. [Slater,
1975, 9] Slater who believed in the existence of light-quanta as well as electromagnetic
waves found the following way out of the difficulty : ‘I decided you could only have a
statistical connection between them because you couldn’t set up a vector to represent
the photon in electromagnetic theory : that you would have the intensity of the wave
governing the probability of finding the photon there. And I wanted to have the wave
emitted during the stationary state so as to get it emitted over a long enough period so
that it would have a suitable spectral distribution.’ [Slater, loc.cit., 30]

When Slater arrived in Copenhagen on 21 December 1923 to collaborate with
Hendrik Kramers and Niels Bohr, he was prevailed upon by them to relinquish
Einstein’s light-quantum hypothesis but to retain his idea of electromagnetic waves
emitted by oscillators during their stationary states and carrying no energy. They
coined the name virtual oscillators for them. The collaboration resulted in the famous
Bohr-Kramers—-Slater proposal [Bohr, Kramers, Slater, 1924] which Bose referred to
in his letter to Einstein. In the BKS proposal the conservation of energy (and momen-
tum) was abandoned for individual transition processes in atoms but was retained as
a statistical concept. Most interestingly, they wrote : ‘the transitions which in [the
Einstein theory of 1917] are designated as spontaneous are, in our view, induced by
the virtual field.’ Bose must have noted this with satisfaction and this must have been
one reason why he regarded the BKS proposal to be ‘very much like’ his own. The theory
was however quickly falsified by experiments carried out by Bothe and Geiger [Bothe
and Geiger, 1925] and Compton and Simon [Compton and Simon, 1925a, b] which
established the conservation of energy and momentum in individual processes. Never-
theless, their ideas were reformulated and generalized by Born [1926] in his well known
statistical interpretation of the wave function in quantum mechanics, an idea now
universally accepted. This is what Heisenberg wrote about its historical antecedent :

‘The probability wave of Bohr, Kramers and Slater. . . was a quantitative version of
the old concept “potentia” in Aristotelian philosophy. It introduced something standing
in the middle between the idea of an event and the actual event, a strange kind of
physical reality just in the middle between possibility and reality.

Later, when the mathematical framework of quantum theory was fixed, Born took
up this idea of the probability wave and gave a clear definition of the mathematical
quantity in the formalism.’ [Heisenberg, 1958, 29]

On 16 July 1946 , twenty-one years after he received Bose’s letter of 27 January
1925 from Paris, Einstein wrote to Schridinger about the latest status of the unified
field theory (of electromagnetism and gravitation based on the General Principle of
Relativity):

‘It is indeed correct that the energetics occurs quite differently here compared to
Maxwell-Poynting. I consider, however, that in this respect the Maxwell theory is really
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false on account of quantum actualities. In light the energy exists in something like
quasi-singularities. The wave field as such should therefore not be the site of energy.
One must simply require this and be happy that in the new theory the transverse wave
field is indeed present but as such transports no energy.’(Our italics) [Moore, 1989, 427]

There is no mention of Bose, his letter or his third paper which Einstein must have
rejected outright, although the facsimile of Bose’s letter supplied by The Jewish
National and University Library, Jerusalem, shows that he had marked the phrase
‘have sought to separate the propagation of Quantum of energy from the propagation
of electro-magnetic influence’ within parentheses.

Louis de Broglie’s original interpretation 'of Schrédinger’s equation [de Broglie,
19271 was given a firmer basis by Bohm [1952]. In the de Broglie-Bohm ‘casual
interpretation’ particles are thought to exist independent of observation, embedded in
a wave field y which satisfies the Schrodinger equation, with a density (over the

statistical ensemble) of value lwlz. One can show that this approach can explain the
interference pattern observed in double-slit experiments without abandoning the
notion of well-defined particle trajectories. [Philippidis, Dewdney and Hiley, 1979]
Experiments for testing certain consequences of ‘empty waves’ have been proposed
[Selleri, 1990, ch. 4] and some have already been carried out [Zou, Grayson, Wang and
Mandel, 1992]. However, such experiments have not yet ruled out all versions of ‘empty
wave’ theories [Vigier and Holland, 1991].

Bose remained ever grateful to Einstein (whom he always addressed as ‘Sir’ or
‘Master’) for his encouragement and the interest he had taken in his first paper.
Nevertheless, deep within himself, he felt a resentment that rankled all through his
life. Three of his most perceptive and original ideas were scotched by Einstein :

1. The idea of the photon spin which is now established beyond doubt. (That Bose
proposed the idea in his first paper in 1924 cannot as yet be established beyond
every shred of doubt, although circumstantial evidences are strong.)

2. The idea that spontaneous emission is not an inherent property of an isolated
atom, totally independent of the radiation field, also confirmed by experiments
since 1987.

3. The idea of the propagation of electromagnetic influence carrying no quanta of
energy, an area of current theoretical and experimental activity.

Bose could not publish a single paper during his two years in Europe at a time when
physics was going through a turmoil and one of its most exciting periods. He returned
to Dhaka a disheartened man and did not publish anything in theoretical physics for
the next twelve years !

The author is grateful to N Mukunda, V Singh and J C Pati for a critical readmg
of the manuscript and suggesting improvements.

PARTHA GHOSE
S N Bose National Centre for Basic Sciences, Calcutta
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On the Influence of the Finite Volume of Molecules on the Equation of State! By
MEGH NAD SaHA, M. Sc., and SATYENDRA NATH Basu, M. Sc., Lecturers on
Mathematical Physics, Calcutta University.

It is wellknown that the departure of the actual behaviour of gases from the ideal

state defined by the equation.p = NKG

is-due to two causes : (1) the finiteness of the

volume of the molecules, (2) the influence of the forces of cohesion, i.e. the attractive
forces amongst the molecules. van der Waals was the first to deduce an equation of

state in which all these factors are taken into account; according to van der Waals,
we have

NKO a
p::v—_-:—b——-—;z- see see vee (l)

where b == 4 X volume of the molecules, a defines the forces of cohesion.

In all subsequent modifications of this equation (Clausius, Dieterici, or D. Berthelot)
the changes which have been proposed all relate to the influence of the cohesive forces;

the part of the argument dealing with the finiteness of molecular volumes is generally
left untouched.

But it has been found that the results of experiments do not agree with the predic-
tions of theory if we regard a and b as absolute constants. Accordingly it has been
proposed to regard both @ and b as functions of volume and temperature.*

But before proceeding to these considerations, it is necessary to scrutinize whether
the influence of finite molecular volumes is properly represented by the term 5. From
theoretical considerations, the conclusion has been reached that this is not the case.
The argument is as follows :

According to Boltzmann’s theory,
the entropy S = K log W+4-C,

where K = Boltzmann’s gas-constant, W = probability of the state. Let us now
calculate the probability that a number N of molecules originally confined within the
volume V, and possessing finite volumes, shall be contained in a volume. ¥. Neglecting

the influence of internal forces, the probability for the first molecule is % ,for thesecond
Yo

niolecule the probability is II, ”ﬁ , where f = 8 X volume of asingle molecule, for when
o—

+ Communicated by the Authors.
*Compare van der Waals, Proc. Amst. 1916 ; Van Laar, Proc. Amst. Vol. xvi, p. 44.




76

S N Bose : The Man and His Work

the first molecule is in position, the space enclosed by a concentric sphere of double
the radius of the molecule will not be available for the second molecule. The avail-

able space is therefore ¥ —pg, whence the probability is VV_:g . Introducing similar
{

considerations for the rest of the molecules, we have

vV V—p V-2 V-N—I8

W=—. ,—1. —
Vo Vo—B Vo—28""V,—N—-18

(2)

We are, of course, neglecting those cases in which partial overlapping of the
regions occupied by two or more molecules occurs; for the number of such cases can
at best be a small fraction of the total number. Even cases of actual association
do not include these, for in that case, two discrete molecules become merged into one,
without their outer surfaces being actually in contact.

From the relations 8§ = K log W+C

s\
and (‘—av )., =7
we can easily verify that

K6 V—
P = — 7 log Vnﬂ
RO V—2b

As a first approximation, when b is small compared to v, we obtain p =%I_§f

(Boyle-Charles-Avogadro Law), and as a second approximation we obtain

NKG

P=——7 (van der Waals correction).
We also note that
- z _Pp
pV = NKG6. T where z =-%6 e (4)

To account for the infiuence of internal forces, we multiply, following the lead of

__a
Dieterici, the above expression (3) by ¢ ¥X% having the same significance as. before.
From this equation of state, we can easily verify the following results for the
eritical point :

Critical volume, V,= 6-2_0—1 b = 3.166b,

__ NK¢
2.V,

K = 3.513.
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The corresponding values of V, from the van der Waals arid the Dieterici equations

2 .
are (3b, 2b) respectively, and of K are ( —g— = 2.66, 22— 3.695 ) respectively.

As a matter of fact, for the simpler gases, the value of ‘X’ obtained in this paper

o €2
agrees better with the experimental results that the Dieterici value , we have for

1

oxygen* K = 3.346, for nitrogent K = 3.53, for argont K = 3.424, for xenon**

K =13.605. We need not consider the van-der-Waals value _z_,'for it fails entirely.

The most serious drawback to Dieterici’s equation is, according to Prof. Lewis
(vide Lewis’s Physical Chemistry, vol. ii. p. 117) that it makes b or the limiting volume

> while the limiting volume, obtained by the extrapolation of Cailletet-Mathias

mean density line to the temperature 0 = 0°K is about -%— The value of b obtained

Ve therefore agrees better with this value.

3:16

It is yet premature to predict what influence this investigation will have on the
speculations concerning the variability of the volume of molecules with temperature.
A more detailed investigation dwelling upon this point, and the application of the
formula (4) to Amagat’s (pv, p) curves, will be communicated shortly. Meanwhile

in this paper, viz.,

- a
we point out that the factor ¢ %% has been introduced into the expression for

‘p’ only as a provisional measure, though it is considered that thisstep, thoughnot quite
exact, is one in the right direction. In the next paper an attempt will be made to
introduce energy into probability calculations.
Sir T. N. Palit Laboratory of Science,

Calcutta.

Note added in proof—On consulting the literature on the subject, we noticed that in
several papers in the Amsterdam Proceedings (vide vol xv, p. 240et seq.), Dr. Keesom
of Leyden had also made attempts to deduce the equation of state from Boltzmann’s
entropy principle. But, in the expression (2) for W, he introduces, before differentia-

tion, an approximation in which terms up to second order in % are retained only.

In this way, he arrives at the van der Waals’ form v—b for the influence of finite mole-
cular volumes. In obtaining our present equation of state (4), no such approximation

has been made. (M. N. SAHA and S. N. Basu.)
*Mathias and K. Onnes, Proc. Amst. Feb. 1911. .

tBerthelot, Bull. de la Soc. France de Phys. 167 (1901)

{Mathias, Onnes, and Crommelin, Proc. Amast. 1913, p- 960, Vol. xv.

**Paterson, Cripps, Whvtlaw-Grav. Proc. Rov. Soc. Lond. A. lxxvi, p. 579 (1912).
Reprinted from Phil Mag Ser 6, 86, pp. 199-203, 1918 (Taylor and Francis, London).
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The Stress-Equations of Equilibrium

By
SATYENDRANATH BASU.

(Read April 6th, 1919)

It was shown by Mitchell that the six stress-coefficients in an isotropic medium
satisfy six equations of the type :

1 0 1 o
Vit 115 0::? =0, Y+ T—W'B@%x 0

These equations however have not been used for solving the general problems of
Elasticity. It is shown here, that the equations can be successfully integrated in
the case of a semi-infinite body bounded by a plane. In the case of the sphere the equ-
tions can be conveniently transformed, in a different form, which then admit of inte-

gration in an infinite series of spherical harmonics.

(1) The semi-infinite solid bounded by z = 0

The surface tractions X, Y, Z, are supposed to hawe given values over the
plane 2 = 0

Consider the equations

12Oy, 1 PO
VSX’+1+aax6z OVZ+1+—a’ =0

1 00
V2Y+1+0' oyoz =0.

Since © is a harmonic function the general solution can be wtitten as

_ 1,00
X =— $(1+0) > oz oo

___1 ao
Yo=—oiTe) g+ Y o (1)
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— 1 3@
Zl A 2(1+0,) +Zzo;

where X,,., Y,, Z,, are harmonic funetions which have given values X,Y,Z,, over
the plane z = 0.

The functions are therefore uniquely determined; they are in fact:

1 ¢ Y,
Xzo 2” az J..f z dxd.'/, Yzo - 2 az II 7‘— dxdy’
1 9 Z,
Z, = 57 55 [ = dxdy,
also since
X, )Y,
oz T ay + az =0
we have from (1)
1 12@ 1 9 oN
2(1+0) 0z T om '3;:( % + dy + 0z ) 0
where
==j'j' ’ dedy, M = | | ‘dxd N=[] ’dxdy,
and

O= l‘:a[aw+6y+6g].

Thus X,, Y,, Z,, © are all determined.

The solution may be afterwards completed, and U, V, W found out as in Cerrutti’s
method.

(2) The problem of the sphere.
Consider the three equations

1 %0
VXt 115 5 =0

1 0%
2 190
v X”+1+a' oxdy 0,

180
2 AL O
viX, +l+a‘ dx0z 0.
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Multiplying by z, y, 2, and adding we have

[zv’Xm+yV’Xu+zV'X']+1—:-o-[ 6z’+ ;a:aoy'*' gx‘?z] 0,

or,

VX AYE, + X0+ 11 ( 2aety a,,+z 2R -2 (et l)=o

Now since
X, | 9X,
ax + 0y + az
we have
1 @ 0 I
VX o s (52 —©) =0
Similarly we have
] 1 4 a .
viHrY,)+ iFo 3y ("'-5?- -© ) =4, - (2)
2 0
VeIt s g(r 5 —0) =0 |
where r -g;@— — @ is also a harmonic function.

The form of the equations is exactly similar to the preceding equations.

(3) The sphere of radius a, has given firactions X,, Y, Z _, over the surfuce.
Assuming =20,
n
where @, is a solid homogenoous harmonic of the nth degree,

r E—Q—— O=Z-10Q.

also remembering that
v¥r*—a?)F, = 2(2n-+3)F,, where F, is a solid homogeneous harmo-

nic of the nth degree, we see the solutions of the equation (2) can be expressed in the

form

1 - (n—1)

X = —5Te) = il

(r—a®) 21 0x,,
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. 1 - n—1 . 0.

Yy = 50t 2 Tmxi Y 3y T
_ 1 v n—1 2___ 2 aOn

2 = ~glite) 2 Bagl )5, T2

where X,q, Y9, Z,, are harmonic functions which have given values over the surface
of the sphere r = a and hence are completely determined.If

Xo=2X,, Yo=37Y,, Z,=22%,;

we have
_ (r?—a?) n—1 00, .
X, = T 2(140) z 2n41 Oz *taZ X,
_ (r*P—a?) . n—1 00,
r¥, = _2(l+a')2‘2n+l 3y +aX ¥,
_ _(r—af) 5 n—1 00,
2= ~aTFo) = il gz TOE Zw
Again
9 ad 9
3 ("Xr)+53—/ (rYr)‘{‘E‘ (rZ,)
19X, oYy, dY, Y,
—z[ ox +ay”+ oz ]+ [ax + dy % ]

07, _
+Z[ ax + a + a ]+X3+Yy+zz_o,

it follows that

—_ 1 n—1 aOn On a@n
o= (1+a)z(2n+1)[ S Ik i e vl

+a2‘.( 6:::,,+6y,, az )

or

_ 1 n(n+1) 0X,
O—, 140 z 2n+1 O,,+a2‘.< ox + ay + oz )
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So that

(1+o)2n+1)+n(n—1)

ZOn [ G (Ifo) ‘¥

where

— aXn-!-l aYn+1 azn 1

Vn=—%g dy + 6z+ )
So that
a(2n-+1)(1+a)

O = TFe@nF D Fnla=T) V»'

Thus X,, Y,, Z,, © are all determined in terms of the known value of X,, Y,,
Z,, on the surface.

Reprinted from Bull Cal Math Soc 10, pp. 117-121, 1919 (Calcutta Mathematical Society).



On the Herpolhode

By
SATYENDRANATH BASU

(Read August 31st, 1919)

M. de Sparre has shown that the horpolhode of Poinsot contains no point of in-
flexion; his proof was based upon the properties of elliptic functions. Various other
proofs of the theorem have since been given by Mannheim, Saint-Germain?, Routh?,
Le-Cornut and others.

The following simple proof of the theorem is based solely on the dynamical consi-
derations of the Poinsot motion; hence it might appear interesting and instructive.

Let A, B, C be the three principal moments of inertia of a body fixed at a point
0; let 0I and 0T’ be the two instantaneous axes, at time ¢ and t+dt, I, I, ete., on the
invariable plane trace out the horpolhode, length of 0I, 0I', etc. being proportional
to the resulting angular velocity at all times.

At a point of inflexion of the horpolhode, there will be a stationary tangent, i.e.,
the total change of the vector II' will be then along its own length.

Remarking that II' has components proportional to 7;)1 dt, u.zg dt, u.)s dt, along the
three moving principal axes, the condition reduces to

W —WaWy+WaWy __ Wa— Wty +W Wy _ Wy— W Wy+wWaWy __ A say. (1)

w, Wy W
We have from Euler’s equations

Aw, = (B—C)wgn,
Bw, = (C—A)waw,
Cws = (A— B)wyw,;

1An exactly similar proof of the theorem discussed in this paper hes been given by Prof. W. Van
der Woude in a paper entitled “Over de Herpoloide Van Poinsot”, published in Nieuw Archief voor Wis-
kunde, Tweede Reeks, Deel X1I, Eerste Stuk, pp. 94, 95 (1919). It appears however from an enquiry

that this journal was not received in the library of the Suciety before the beginning of November, 1919
—8. K. B.

2Compte Rendu—1885
SAdvanced Dynamics.
4Bulletin de Soc. Math. de France—1906.
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from which
Aw, = (B—O)(wqwy+wgws)
B.“"a = (O—A)(“.’swl‘*’”‘hws)

L Cuwy = (A—B)w, wy+waw,)
Substituting in (1) we have

Y8 (A+B+C)—22 (0+A4—B) = A(B—C)
Wy Ws
and two similar equations.

So that
Y1 (B—O)YB+C—A)+ "2 (C—AXC+A—B)+ 22 (A—B)A+B—C) =0
wy Wo Wy

But remembering that
Aw, wy+ Bwawy+Cuwgwy = 0

we have

Wy Wy Wyt Wathy

BC(B—C) _ CA(C—A4) ABA—B)

hence substituting, we get as a necessary condition for the point of infiexion

BC(B—-C)YB+(C—A) CA(C—-AC+A—B) AB(A—B)}A+B—-C)
2 + w2 + 3 =
w} 2 Wy

0

which is obviously impossible because B +C—~A,C+A—B, A+B—C, are all positive,
so that the left-hand side is an essentially positive quantity.

Reprinted from Bull Cal Math Soc 11, pp. 21-22, 1919 (Calcutta Mathematical Society).



ON THE EQUATION OF STATE.

To the Editors of the Philosophical Magazine.
Sirs, —
In a paper published in the ‘Philosophical Magazine’ for August 1918 it has been
shown that from Boltzmann’s theory of entropy we can arrive at an equation of state
RG, log ( 2b) NEKpv

p: — 2b 1—— V = e . (1)

Amongst other applications of this theorem it was shown that the value of the criti-

g, 2 8 . . .
cal constant K = 51; would be E:ef =3.53, instead of van der Waals’ ga.nd Dieteriei’s
ch e

62
5= 3.69.

A table was given showing that in the case of the most of the elementary gases

. . . 8
the value 3.533 corresponded better with experimental results than elther—?,— or 3.69.

The list comprised He, N,, 0,, Xe, but not Hydrogen, about which the experi-
mental data were not satisfactory.

Recently the critical data for Hydrogen have been re-determined in the Laboratory
of Prof. K. Onneés (vide Proc. K. Akad. Wetenschappen. Amsterdam, Vol. xx. 1917).
It has been found that

0. = 33°.18K, d,= .0310, p, = 12.8 atmospheres;
from these data, K = 3.35.

It is superfiuous to add that this value of K is in much better agreement with the

2
value 3.53 than with either the value% = 2.66 or % = 3.69, thus corroborating the

belief expressed in the aforesaid paper that the equation (1), though not final, marks
a step in the right direction.
University College of Science, MEGH NAD SAHA.

Calcutta, India. SATYENDRA NATH BASU,

Reprinted from Phil Mag Ser 6, 89, p. 456, 1920 (Taylor and Francis, London).



On the Deduction of Rydberg’s Law from the Quantum Theory of Spectral
Emission.¥ By SATYENDRA NATH Basu, M. Sc., University Lecturer in Physics,
University College of Science, Calcutta.

It is well known that Rutherford’s' model of the atom has been fruitful in explain-
ing many facts connected with atomic radiation. In the simplest case of hydrogen,
with a nucleus consisting of a single positive charge, and an electron, Dr. Bohr has
successfully applied the quantum theory to explain the Balmer series of hydrogen
spectra. The mathematical problem of finding the spectral series for any atomic system
has since been clearly formulated by Sommerfeld, and the quanta condition has
been generalized in a form suitable for system with any number of degrees of freedom.
If ¢4, 95, 95, -.- ¢, are co-ordinates to fix the position of the electron responsible for
emission, and p,, p,, Ps, ..., P, are the corresponding generalized momenta, any
statical path, according to Sommerfeld, is characterized by the conditions

[ pidgy = nit, | Puday =i, [ p.dg, = nsh

where n’s are whole numbers and % is Planck’s constant, the integral being extended
generally over the complete orbit. The radiation is supposed to take place when
the electron jumps from one statical path to another. The difference in energy, at
the same time, flows away in the form of a homogeneous radiation of frequency v,
which can be calculated from the Bohr equation Av = W,—W,. Sommerfeld has
successfully applied this conception in explaining the fine strycture of hydrogen lines.
It is clear, however, that the problem of theoretically calculating the spectrum of any
atom other than hydrogen is beset with difficulties of a formidable nature. It is exactly
analogous to the dynamical problem of “n” bodies, where only in favourable cases
we are able to find solutions. Nevertheless, from a purely experimental standpoint,
we know that the visible radiation from any element can be classified in definite series.
The frequency of any line in the series can be expressed as a difference of two terms,
each of which has the form

¥y
(mFatBim?)

where m is a whole number and « and # are two constants depending upon the element
and the nature of the series. So that if we are to explain the formation of the series

* Communicated by the Author.
+-Bohr, Phil. Mag. July 1913,
**Sommerfeld, Ann. der Physik, li (19186).
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from theoretical considerations following Bohr and Sommerfeld we must look upon
each member multiplied by “A”’ as giving the energy of the atomic system when the
radiating electron moves in a definite statical path. The complexity. of the inner
atomic field under which the radiating electron moves is to be looked upon as bringing
in the terms involving « and #. So it seems interesting to see what will be the corr-
responding expression for energy in a system by which the complex nature of the
internal field may be approximately represented. In the case of any atom we have,
in general, a condensed nuclear charge of +ne (where n is the atomic number) surrounded
by rings of electron at different distances. The number of electrons in total must be
also equal to » in order to secure that the atom is electrically neutral in the ordinary
state.

In X-ray emission the electron displaced comes from the inner rings; in the case
of visible radiation, however, we have reasons to think that the displaced electron
responsible for radiation comes from the outermost ring—the valenoy electrons, as
they have been designated by Sommerfeld. When excited for radiation, we can sup-
pose that the electron in the outermost ring is removed to a greater distance from the
centre than the others, so that the force acting upon it may be regarded as the
resultant of the various forces exerted by the central charge and the remaining
electrons. The potential at any point can be regarded as given by

where r is the distance from the centre and r, is the distance from the s-th electron.
If we neglect the influence of the moving electron upon the arrangement of the others
surrounding the nucleus, it isclear that the potential can be approximately represented

. Theresultant field might be looked upon as due to a single positive

charge together with a doublet of strength L in a certain fixed direction which we
take as our Z-axis. If we neglect the disturbing effect of the outer electron, L may
be taken to be approximately fixed in direction and in magnitude in the small interval
of time during which the active emission takes place.

We may, therefore, take as our model a system consisting of a positive charge
and a doublet of strength L. We proceed to calculate the energy in a statical path on
the above simplified hypothesis.

The kinetic energy of the moving electron is obviously
T = 5 [mi* - mrrri sin 2 6 67);

the potential energy

87
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e el,cos @
V = —7+-—r8——.

Two integrals can be at once written down :

mr? gin® 6 = ¢,

m[rd-+r3G84r2 sin ? O] — 22' + 2Lerc;os A w.

To get another integral, we write

gt_ (mr*d)—mr® sin 6 cos 0¢.2 =

or

s d : c}cos @ .
3 2 A =
mrﬁw(mr 6) S5 0 melL sin 6 = 0.
Integrated, it gives

2
G

(mr0)'+ '

+2meL cos 8 = ¢,.

The expressions for three impulses mr, mr26 and mr® 8in%d¢d can now be written
down : in terms of the constants of integration we have

m? sin %0¢ = c,

. 2
mrif = J cg— sixf;B —2meL cos 0

i
mr = ?J—er2+2m%—c,.

The quanta conditions can be written down as

| me2 sint 0g dp = no, ()
I mr30 d6 = ngh, e (2)
jm}dr = ngh, e (3)

— W being twice the total energy of the system. The integrals are to be extended

over the whole range within which the expression within the square root remains posi-
tive.
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The integration.
From (1) we have obviously

C_nlh.
17 op >

of the two remaining expressions, (3) can be integrated most easily :

ngh = f —’17 ,J — Wmrt+2me?r—c, dr

gives after integration

ngh = 2m [e2 ( —;% )‘— c: ]

The second integral can be written as

_”_27& =] = j,/ (cq—c8)—cox®—2meLa(1 —a2)

by putting cos § = .

dz
1—2z2

The right-hand side is to be integrated throughout the region, when the cubic
remains positive. It cannot be integrated in finite terms; an approximation suitable
for our purpose can, however, be made, assuming 2meL to be small compared with
(cg—c?) = A. To see what this means we are to remember that c;—c? is of the dimen-
sion of A?; so that 2meL must be small compared with A2, or L must be small compared

2
with f%. Now, if «, — £, .and v are taken as the three roots of the cubic, the cubic

can be written down as

Dy —z)a—z)z+p),

where v is the greatest of the positive roots and D = 2meL. The limits of the integral

are obviously a and —p,

> ' d
I = j' ,JA—csxz—Dz(l——xz) l—zxz'
-8

in fact,

Hence
ﬂ =_1_ ]‘a _ —xdx
9 2 2 VDily—zNa—2)z+ph))’
or
;II) _ 1 [ I (y—afde f dz J
2D | ) a—aiptay 7 ) r—efa—a)iEtAy
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Supposing
o—z = (a+p) cos? 6,

Btz = (x4 p) sin? 6,

we get

w[2
o 1 - in3 6+ 46
D=V lrz o[ [y+A—(a+p) ein* 6]

nfe

2 de
4 of [(r+A)—(@+B) sin® ]

[(y+ﬂ)'E (m2. 2L

~ i K2 NEE) ] ,

where F and K are the usual elliptic integrals, defined by
w/2
E(n/2,k) = j \/l_:k_’sin'ﬂdﬂ
0
w2

Km[2, k) = I'F T

On the assumption that D is small, we have

2«/—

D,_'_D(c;% %)
a—‘JA (cﬁ A)v

p=NE +5 @A)

So that, expanding Z and K and making necessary approximations, we have finally
ol nD [ 34

0D ~ 4

2

ldfxi = 7 [c}—c,].

I= I ,J (c,—c{')c,z_’
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So that we have

noh
2

7w (2melL)?

= 7(ct—cy)+ 16~ o (3c2—cy).

Now, collecting all the quanta conditions, we have

n.h
6= o H

So that we have

1 (meLl)® s 3n At __(nytng)h
ct 4c3/® < 47r21 c2> R ;
and
m * ngh
2\ __ Ty i
¢ ( W) 2n T
Assumin,
g o = yh
2m
we have yh | (meL)¥2my [inf he yhe ] _(mytny) .
27 4y5hd 472 nt | 2n
or
272 meL 1
< ;2 > -5 (3'4%—?/2) = n1+n2'
C&lling 2772meL 2
(e
we have i
(MmN _ kb
e ( W) - 27T (n8+y),
where

fo 4
y + 7 (3nf—y?) = ny+n, ;

we have approximately
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) 1__.__3L___
y = (mtng) + 5 (ny+ny )3[ (ny+-ng)? ]

So that
4mieim

[nl+n,+n3+ ™ +n2)3( 1— mﬁ’%)]a

W =

So that the energy in the statical path
n’e‘m
3n 2
[n1+nz+na+ (7l +n2)s ( 11— (———--———nl_l_ns)z )]

if we suppose that the spectrum is due to ionized atoms in which the field can be
approximately represented as a central charge of £ = pe and a doublet of different
strength L'.

We have, by a similar reasoning, energy in a statical path

. 2n* e2Em
B 5 o IR
{ MMyt (n 1+'n2)s ( ! (ny+mny)? >}
— —-p’Nh

(et i (1 )

where N = Rydberg number.

As a result of numerous investigations on the nature of the spectral series, it has
been shown that for many elements the different series can be grouped according
to the following schemes :

P-Series :
v = (1.5, 8)—(m, p,) } m=2,3,4...
—(m’ Pz)
II. Subordinate Series :
v = (2, py)—(m-+°5, )

m=2 34
v = (2, pg)—(m+-5, s)
1st Subordinate Series :
v = (2’ pl)—'{m’ d)
Companion ;
v = (2a pl)'—'(m’ dl)
m=3,4,5.

v = (2, p;)—(m, d").
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Symbol (m, f) stands for

N
(ﬁ%i)—z according to Rydberg, and (

B2
m—+f+ 7n—2>
according to Ritz.

The frequency of the lines emitted thus appears as the difference of two terms,
each of which is to be regarded as corresponding to the energy in a definite statical
path, on the Quantum theory. Sommerfeld* has recently given reasons for assuming
that in any series of statical orbits corresponding to the different kinds of s, p, and d
terms the azimuthal quanta generally preserve a certain definite value, whereas the
radial quanta can have all values from 0 to co; he thus. shows that in s, p and d terms
the azimuthal quanta generally have values 1, 2, and 3 respectively.

Making the above assumptions in our formula, we see that the expression of the

Nh
(ny+ny+n5+A4)2
berg formula. The constants 4, however, depends only upon n; and n,; it dimini-
shes for increasing values of the azimuthal quanta; so that they decrease progres-
sively in the s, p, and d terms. Moreover, our form shows that 4 depends upon
n, and n, separately, so that for the same value of n,+n, we may have different
values of the constant. Thus, if we suppose n,+n, =1 we have two values
corresponding to the vaues 1, 0 and 0, 1; for n;4n, = 2 we have three values; and
so on. Thus we see, even on Sommerfeld’s assumption, for the constancy of the
azimuthal quanta we shall have two different s, three different p, four different d
terms. At least two different values of p and three different values of d seem to
be required by the series fermula, which is essential for the explanation of doublets
and triplets of constant frequency difference**. We thus see that our model serves at
least as a qualitative explanation of the following facts :

(1) The progressive decrease of the characteristic numbers in the s, p, and d

terms,

(2) The existence of different sets of s, p, and d terms for the same element.

It is clear, however, that our simplified assumption will not fit in any actual case

exactly. The complex nature of the internal field can in no case be properly repre-

sented by a simple term, L c:: 0, in the Potential. Moreover, we have reason to believe

energy comes out as — in the same form as required by the Ryd-

that the internal arrangement of the electrons itself will be influenced, in a large measure,
by the motion of the outer electron, which we have neglected in our formula. In
fact, Landét has tried in a recent paper to take account of this disturbance in the

* Sommerfeld, Verh. d. Phys. Ges. May 1919,

** If we exclude the case ny = 0—i.e., if we assume that the motion in a plane containing the
axig of the doublet is excluded—we get the proper number of s, p, d terms as observed in the case of the
alkali metals and the doublet system of alkaline earths.

+ Landé, Phys. Zeit. 1909.
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comparative simple case of the helium series. But at the same time, it is hoped that
the calculation, in this comparatively simple case, will serve to illustrate at least
some general principles at which we have arrived by an experimental study of the
spectral series.

SuMMARY

In this paper an attempt has been made to deduce the laws of regularity in the
spectral series of elements on the basis of Bohr’s quantum theory of spectral emission.
Starting from Sommerfeld’s assumption that the ordinary line-spectra of elements are
due to the vibration of one outer electron (the valency electron), it has been shown
that the field of the nucleus and the remaining (n—1) electrons may be represented
by the Potential V =— — —|— &cos_ﬁ i.e., the field due to a single charge plus a
doublet of strength L. The axis of the doublet is variable, but the emission is supposed
to take place so quickly that in that short time the axis does not appreciably change.

The quanta conditions have been applied according to Sommerfeld’s rule,
nh = I p; dg;, and the energy of the system has been reduced to the quanta numbers.
The energy comes out in the form

Nh
W._—_— —, n 2 =
(ntngtap’ "TE Y

in the paper, where ng is the radial quantum, n is the azimuthal quantum, and z is
given by an equation of the sixth degree, involving only the azimuthal quantum,
and is a function of » only.

It has been next shown that if, in accordance with Sommerfeld’s principle, we
assume n = 1 for the s-orbits, n = 2 for the p-orbits, » = 3 for the d-orbits, n = 4
for the b-orbits, then, with a very simple assumption, we obtain a single value for the
energy of the s orbits, a double value for the energy in the p-orbit, a treble value for
the d-orbit. Then, applying Bohr’s law Av = W,—W ., we arrive at Rydberg’s laws
of the regularity in spectral series, in the case of the alkali metals.

Exact calculations are not tried on account of the uncertainty of the value of L ;
but it has been pointed out that the values of s, (py, ps), (d,, d3, d5) progressively de-
crease, as is actually the case.

If the value of L be supposed to vary with n, the radial quantum, then probably
the above calculations would lead to Ritz’s law.

Reprinted from Phil Mag 40, pp. 619-627, 1920 (Taylor and Francis, London).



Plancks Gesetz und Lichtquantenhypothese.

Von Base (Dacca-University, Indien).
(Eingegangen am 2. Juli 1924.)

Der Phasenraum eines Lichtquants in bezug auf ein gegebenes Volumen wird in
oZellen“ von der Grofe h3 aunfgeteilt. Die Zahl der moglichen Verteilungen der
Lichtquanten einer makroskopisch definierten Strahlung unter diese Zellen liefert
die Entropie und damit alle thermodynamischen Eigenschaften der Strahlung.

Plancks Formel fiir die Verteilung der Energie in der Strahlung
des schwarzen Korpers bildet den Ausgangspunkt fiir die Quantentheorie,
welche in den letzten 20 Jahren entwickelt worden ist und in allen
Gebieten der Physik reiche Friichte getragen hat. - Seit der Publikation
im Jahre 1901 sind viele Arten der Ableitung dieses Gesetzes vor-
geschlagen worden. Es ist anerkannt, daf die fundamentalen Voraus-
setzungen der Quantentheorie unvereinbar sind mit den Gesetzen der
klassischen Elektrodynamik. Alle bisherigen Ableitungen machen Ge-

brauch von der Relation

8x1vidy
3

ovdv = E,

d. b. von der Relation zwischen der Strahlungsdichte und der mittleren
Energie eines Oszillators, und sie machen Annahmen iiber die Zahl der
Freiheitsgrade des Athers, wie sie in obige Gleichung eingeht (erster
Faktor der rechten Seite). Dieser Faktor konnte jedoch nur aus der
klassischen Theorie hergeleitet werden. Dies ist der unbefriedigende
Punkt in allen Ableitungen, und es kann nicht wundernehmen, daf immer
wieder Anstrengungen gemacht werden, eine Ableitung zu geben, die
von diesem logischen Fehler frei ist.

Eine bemerkenswert elegante Ableitung ist von Einstein angegeben
worden. Dieser hat den logischen Mangel aller bisherigen Ableitungen
erkannt und versucht, die Formel unabhingig von der klassischen Theorie
zu deduzieren. Von sehr einfachen Annahmen iiber den Energieaustausch
zwischen Molekiilen und Strahlungsfeld ausgehend, findet er die Relation

. Omn
oy = Em— &

e ¥T —1
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Indessen muB er, um diese Formel mit der Planckschen in Uberein-
stimmung zu bringen, von Wiens Verschiebungsgesetz und Bohrs Korre-
spondenzprinzip Gebrauch machen. Wiens Gesetz ist auf die klassische

Theorie gegriindet, und das Korrespondenzprinzip nimmt an, daB die
Quantentheorie mit der klassischen Theorie in gewissen Grenzfillen
tibereinstimme.

In allen Fillen scheinen mir die Ableitungen nicht geniigend logisch
gerechtfertigt. Dagegen scheint mir die Lichtquantenhypothese in Ver-
bindung mit der statistischen Mechanik (wie sie durch Planck den
Bediirtnissen der Quantentheorie angepalt worden ist) fiir die Ableitung
des Gesetzes unabhiingig von der klassischen Theorie hinreichend zu sein.
Im folgenden will ich die Methode kurz skizzieren.

Die Strahlung sei in das Volumen V eingeschlossen und ihre Ge-
samtenergie £ sei gegeben. Es seien verschiedene Sorten von Quanten
von der jeweiligen Anzahl N, und Energie hwv, vorhanden (s = 0 bis
8 = oc). Die Totalenergie E ist dann

E = S Nhv, = V| g,dv. (1)
t

Die Losung des Problems verlangt dann die Bestimmung der N,, welche
@» bestimmen. Wenn wir die Wahrscheinlichkeit fiir jede durch be-
liebige N, charakterisierte Verteilung angeben konnen, dann wird die
Losung durch die Bedingung bestimmt, da8 diese Wahrscheinlichkeit bei
Wahrung der Nebenbedingung (1) ein Maximum sein soll. Diese Wahr-
scheinlichkeit wollen wir nun aufsuchen.

h
Das Quantum hat ein Moment vom Betrage -—3—’3 in der Richtung

seiner Fortbewegung. Der Momentanzustand des Quantums wird cha-
rakterisiert durch seine Koordinaten z, y, # und die zugehorigen Momente
Pz Py P-; diese sechs GroBen konnen als Punktkoordinaten in einem sechs-
dimensionalen Raum aufgefaft werden, wobei wir die Beziehung haben
h2 112
p: + p; + pzs = —CT'9
vermoge welcher der genannte Punkt auf einer durch die Frequenz des
Quants bestimmten Zylinderfliche zu bleiben gezwungen ist. Zum



Plancks Gesetz und Lichtquantenhypothese

Frequenzbereich dv, gehort in diesem Sinne der Phasenraum

hv\2hd K3 y?
j.dx dy dz dp, dp, dp, = V. 41(-01’) —c_v — _491:—5; Vdv.

Wenn wir das gesamte Phasenvolumen in Zellen von der Grofe h® ein-
2
teilen, gehoren zum. Frequenzbereich dv also 4= V% dv Zellen. In

bezug auf die Art dieser Einteilung kann nichts Bestimmtes gesagt werden.

Indessen muB die Gesamtzahl der Zellen als die Zahl der moglichen An-
ordnungen eines Quants in dem gegebenen- Volumen angesehen werden.
Um der Tatsache der Polarisation Rechnung zu tragen, erscheint es da-
gegen geboten, diese Zahl noch mit 2 zu multiplizieren, so daf wir fiir
vidy

c3

die Zahl der zu dv gehorigen Zellen 8z V erhalten.

Nun ist es einfach, die thermodynamische Wahrscheinlichkeit eines
(makroskopisch definierten) Zustandes zu berechnen. Es sei N¢ die Zahl
der zum Frequenzbereich dv® gehdrigen Quanten. Auf wie viele Arten
konnen diese auf die zu dv?® gehorigen Zellen verteilt werden? Sei p?
die Zahl der vakanten Zellen, p% die Zahl derer, die ein Quant enthalten,
p% die Zahl der Zellen, die zwei Quanten enthalten usf. Die Zahl der
moglichen Verteilungen ist dann

————Aa!— wobei A*’=87”]2
AN ct

doe,

und wobei
Ne=0.p5 +1.p5+2p5...
die Zahl der zu d1® gehérigen Quanten ist.
Die Wahrscheinlichkeit des durch samtliche p¢ definierten Zustandes

ist offenbar Aol
H_pf)! Pl

8

Mit Riicksicht darauf, daB wir die p? als groe Zahlen betrachten kinmen,

haben wir

Ig W= > Algdr — > Xp'lgpt,
8 8 r
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wobel

A8 = Z n.
Dieser Ausdruck soll ein Maximum sein unter der Nebenbedingung
E=>Nhy®; N = er:.
Die Durchfilbrung der V;ﬂaﬁon liefert die B;dingungen
grgﬁpj(l—}—lgp’r): 0, gaNcW=o
>épr =0 ON = Xrép.
Hieraus folgt ’ ’

SIS oma +len + 19 + 5 Sho Srap =o.

Daraus folgt zunichst

_me
p:=B‘e B .
Da aber
_ 1A LAY
At = \Be ¢ =B‘<l—e l’) .
-
so ist

kA
Bs = A.‘ <1 — 6 p ).
Ferner hat man

_hA\ . ra¥
Ne=Xrp = 2rA8<1—e ﬁ)e P
r . r
i
_ Ase P
—— _E’
1—e £
Mit Riicksicht auf den oben gefundenen Wert von 4* ist also
p _an
8xhy dv? e B
E = 2 7 —
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Mit Benutzung der bisherigen Resultate findet man ferner

S = k[.ﬂ‘?;erlg(1 —e%)],

8

08 1
5E = 7' folgt, daB 8 — kT'. Setzt

man dies in obige Gleichung fiir E ein, so erhdlt man

8:rlh1ﬂs 1
E = ; 3 |4 I s,
e¥T —1

woraus mit Riicksicht darauf, daB

welche Gleichung Plancks Formel dquivalent ist.
(Ubersetzt von A. Einstein.)

Anmerkung des Ubersetzers. Boses Ableitung der Planck-
schen Formel bedeutet nach meiner Meinung einen wichtigen Fortschritt.
Die hier benutzte Methode liefert auch die' Quantentheorie des idealen
Gases, wie ich an anderer Stelle ausfiihren will.

Reprinted from Z Physik 26, pp. 168-171, 1924 (Springer — Verlag, Heidelberg).
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Planck’s Law and the Light-Quantum Hypothesis

Bose (Dacca-University, India)
(Received 2 July, 1924)

The phase space of a light-quantum in a given volume is divided up in ‘cells’ of size R3.
The number of possible distributions of the light-quanta of a macroscopically defined
radiation among the cells gives the entropy and with that all the thermodynamic
properties of the radiation. :

Planck’s formula for the distribution of energy in the radiation of a blackbody forms
the starting point for the quantum theory which has been developed in the last 20 years
and has been very fruitful in all parts of physics. Since its publication in 1901 many
methods for the derivation of this law has been proposed. It is recognized that the
fundamental assumptions of the quantum theory are incompatible with the laws of
classical electrodynamics. All derivations till now use the relation

8xvidy

c? ,

Qv dv =

that is, the relation between the density of radiation and the average energy of an
oscillator, and they make assumptions about the number of degrees of freedom of the
ether, which enters the above equation (the first factor on the right hand side). This
factor could, however, be derived only from the classical theory. This is an unsatisfac-
tory feature in all derivations, and it is not surprising that efforts are made again-and
again to give a derivation free from this logical flaw.

Einstein has given a remarkably elegant derivation. He has recognized the logical
flaw in all previous derivations and has tried to deduce the formula independently of
classical theory. Starting from very simple assumptions about the energy exchange
between molecules and the radiation field, he finds the relation

Cmn
97 = lm— !n
e T —1

In order to make this formula agree with that of Planck he has to use Wien’s displace-
ment law and Bohr’s correspondence principle. Wien’s law is. based on classical theory
and the correspondence principle assumes that the quantum theory agrees with the
classical theory in certain limiting cases.

In all cases it appears to me that the derivations are not sufficiently justified from
alogical point of view. On the other hand, the light-quantum hypothesis combined with
statistical mechanics (as adapted by Planck to comform to the requirements of quan-
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tum theory) appears sufficient for the deduction of the law independent of classical
theory. In the following I shall sketch the method briefly.

Let the radiation be enclosed in a volume V and its total energy be E. Suppose there
are different types of quanta each having number N, and energy Av, (s =0 to s = e ).
The total energy is then

E= S Nhv,= V|g,dv. (1)
]

The. solution of the problem then requires the determination of of N, which in turn
determine p, . If we can give the probability for each distribution characterized by
arbitrary values of N,, then the solution is determined by the condition that this
probability is a maximum subject to the subsidiary condition (1). We now want to find
this probability.

hv
The quantum has a momnentum of magnitude -c—s in the direction of its motion. The

instantaneous state of the quantum is characterised by its coordinates x, y, z and the
corresponding momenta p,, p,, p,. These six quantities can be considered to be the
coordinates of a point in a six dimensional space, where we have the relation

k3P
Py ¥

p: + p) + p? =

c

by virtue of which the point is forced to lie on the surface of a cylinder determined by
the frequency of the quantum. The phase space belonging to the frequency interval
dv, is.

hv’hdv___ h3q?

{dz dy dz dp, dp, dp, = V. 4;:(7) = 4n Y vay.

cd

2
If we divide the total phase space volume in cells of size A%, then4n V v_3 dv cells will

belong to the frequency interval dv. Nothing definite can be said about the method of
this division. In any case, the total number of cells must be regarded as the number of
possible arrangements of a quantum in the given volume. It seems, however, appropriate

to multiply this number once again by 2 in order to take into account the fact of
2

polarization, so that we obtain 8 n V M ;i Y as the number of cells belonging to dv.
c

Now it is easy to calculate the thermodynamic probability (macroscopically defined)
of a state. Let N° be the number of quanta belonging to the frequency range dv* . In

how many ways can these be distributed among the cells belonging to dv* ? Let pj, be
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the number of empty cells, p] those which contain one quantum, p3 those which contain
two quanta and so on. The number of possible distributions is then,

A% 8 m?

———————, where A'=—
il pit...

——dv,

and
Ne—=0.p% +1.p% +2p5...
is the number of quanta belong to the range dv° .
The probability of the state defined by all pj is clearly

A
Hpg,ng!...'

8

Taking into account that we can consider p; to be large numbers, we have

lg W= > 4lgd*— > > plgr,
& 8 r

where
8 e 8
42 = rz pe.
This expression must be a maximum with the constraints

E=SNiv; N=3Srp.
Carrying out the variation, we obtain the conditions

> S opt (1 +1gph) = 0, 9 Nthyt = 0

>0pt =0 SNt = Xlrdp.

From this it follows that

2.]261»;(1 + 1gp? + %) +%2hv’ >rdpt = 0.

Next it follows from this that

— Tas
Pt =DBte¢ P .
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But since _rhA _ A\ —
A = > Beg 8 =B‘(1—e ﬂ) ,
r

therefore
~rt
We further have
AN\ _rraA
N‘=r2rp: = grA‘(l-—-e g le ¢
i
_ Are
= _ﬂf_.
1—e P
Taking into account the value of A® found above, we get
3 Yl
8xhv® dv e P
E = .
2 a7 Y
1—e £

Using the results found so far, one further finds

§ = k[g——g‘i'lg(l _F ]

Whence, using the relation 'gg- —% if follows that B = & T'. Substituting this in the
equation for E, we get
8x h 1
? s

which is the same as Planck’s formula.

(Translated by A. Einstein)

Translator’s remarks :
In my opinion Bose’s derivation signifies an important advance. The method used
here gives the quantum theory of an ideal gas as I will work out elsewhere.

English translation of Z Physik 28, pp. 168-171, 1924 (Springer — Verlag, Heidelberg).



Wirmegleichgewicht
im Strahlungsfeld bei Anwesenheit von Materie.

Von S. N. Bose in Ramna (Indien).

(Eingegangen am 7, Juli 1924)

Die Wahrscheinlichkeit eines beliebigen Zustandes eines aus Strahlung und Molekeln bestehenden
Systems wird berechnet, und es werden hieraus die Bedingungen fur das statistische Gleichgawicht abge-
leitet. Im Anschluf hieran werden neue Ausdriicke fur die statistische Wahrscheinlichkeit der Elsmen.
tarvorginge vorgeschlagen, welche der Wechselwirkung zwischen Strahlung and Materie entsprechen.

Debye!’ hat gezeigt, daf das Plancksche Gesetz mit Hilfe der statistischen
Mechanik abgeleitet werden kann. Seine Ableitung ist jedoch insofern nicht véllig
unbhingig von der klassischen Elektrodynamik, als er Gebrauch macht von dem
Begriff der Eigenschwingungen des Athers und annimmt, dag hinsichtlich der Energie

8zvd
PS;

das Spektralgebiet zwischen v und v4-dv ersetzt werden kann durch V dv Reso-

natoren, deren Energie nur Vielfache von hv betragen kann. Man kann aber zeigen,
dag die Ableitung so abgeindert werden kann, daf man liberhaupt keine Anleihen

2
bei der klassischen Theorie zu machen braucht. 8:: V dv kann gedeutet werden

als die Anzahl Elementargebiete des schesdimensionalen Phasenraumes fiir die Quanten.
Die weitere Rechnung bleibt im wesentlishen dieselbe.

Einstein hat sich einer anderen Methode bedient. Er. betrachtet die Wechsel-
wirkung zwischen den materiellen Telichen und dem Strahlungsfeld. Kennt man die
Energieverteilung untr den materiellen Teilchen, so kann man das Gesetz der schwarzen
Strahlung ermitteln aus der Bedingung der Stationaritit dieser Verteilung beim
Austausch von Energie zwischen Materie und Strahlung. Dieser Austausch sit
weiterhin eine Folge gowisser Elementarprozesse. Kine geeignete Formulierung
der Eigenschaften und Wahrscheinlichkeit des Elementar prozesses ermoglicht es,
das Plancksche Gesetz abzuleiten, wenn man die Energieverteilung unter den Teilchen
als gegeben ansieht. In seiner ersten Arbeit? sind die materiellon Gebilde Bohrsche
Atome, die nur einer diskreten Reihe stationdrer Zustinde fihig sind. Energieaus-
tausch findet statt infolge von Emissionsund Absroptionsprozessen und gleichzeitigen
ﬁbergingen der Atome von einem Zustand zu einem anderen. Er hat dargetan,

dag das Plancksche Gesetz sich ergibt, wenn den Emissions- und Absorptionsprozessen
gewisse Wahrscheinlichkeiten zugeschrieben werden. Neuerdings hat aber das Problem

(1) Debye, Ann. d. Phys. 33, 1427, 1810.
(2) Einstein, Phys. ZS. 18, 121, 1917.
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des thermischen Gleichgewichts zwischen dem Strahlungsfeld und freien Elektronen
Wichtigkeit erlangst durch die Arbeiten von Debye® Compton und anderen, die
sich mit der Zerstreuung der Strahlung durch Elektronen befassen, Pauli® hat dieses
Problem in einer interessanten Arbeit diskutiert. Als Elementarprozef betrachtet
er die Streuung, durch die ein Quant, das in einer bestimmten Richtung fliegt und
innerhalb eines bestimmten Spektralintervalls.liegt, sich in ein anderes Quant eines
anderen Spektralintervalls und von verschiedener Richtung verwandelt. Gleichzeitig
andert ein Elektron, das sich mit einer gewissen Geschwindigkeit in einer bestimmten
Richtung bewegt Grofe und Richtung seiner Geschwindigkeit. Fiir alle diese Pro-
zesse gilt das Erhaltungsgesetz von Impuls und Energie. Pauli hat gezeigt, dag,
wenn die Wahrscheinlichkeit dieses Elementarprozesses (4p-+Bpp')dt ist, wo p und
p’ die Strahlungsdichten der Frequenzen v und v/, 4 und B unabhingig von g and ¢’
aber abhinging von der Art des betrachteten Stofes sind, dieses Wahrscheilichkeits-
gesetz zum Planckschen Gesetz fiihrt, falls fiir das Elektronéngas das Maxwellsche
Verteilungsgesetz giiltig ist. Einstein unde Ehrenfest haben das Paulische Ergebnis
noch verallgemeinert(®). Sie betrachten einen Prozef, bei dem ein Molekiil order ein
Elektron Quanten hv,, kv, usw. absorbiert und gleichzeitig hv{, hvy ...emittiert.
Es wird angenommen, daf die emittierten und absorbierten Quanten bestimmte
Richtungen haben. Zugleich andert sich auch Grogfe und Richtung der Geschwin-
digkeit des betreffenden Molekiils. Energie und Impuls bleiben aber erhalten. Das
Wahrscheinlichkeitsgesetz von Pauli wird folgenderma £ on verallgemeinert :

AW, = Ib,pIl(a;4-b; py)dt,
AW, = l(a,+byp))TI(B; p1)dt.

fir den direkten und inverson Prozeg.

Er zeigt, daf Gleichgewicht vorhanden ist, wenn gewisse Beziéhungen zwischen
den Koeffizienten bestehen. Dies ist sowohl eine Verallgemeinerung seines friitheren
Gesetzes fur Bohrsche Atom wide des Gesetzes von Pauli

Das Problem des Warmegleichgewichts in einem Strahlungsfeld in Anwesenheit
von materiellen Gebilden kann aber nach den Methoden der statistischen Mechanik
behandelt werden, unabhingig von jeder besonderen Hypothese iiber den Mecha-
nismus der Elementarprozesse, auf denen der Energieaustausch beruht. Wir gelangen
so zu einer allgemeinen Beziehung, die giietig ist fiir alle speziellen Hypothesen iiber
die Elementarprozesse und ihre Wahrscheinlichkeiten. Wenn es moglich ist, die
thermodynamische Wahrescheinlichkeit fiir irgend eine spezielle Verteilung der

(3) Debye, Phys. ZS. 24, 161, 1923.
(4) Compton, Phys. Rev. 21, 483, 1923.
(8) Pauli, ZS. f. Phys. 18, 272, 1923.

(6) Einstein und Ehrenfest, ZS. f. Phys. 19, 301, 1923.
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Quanten im Strahlungsfeld und die Wahrscheinlichkeit fiir irgend eine willkiirliche
Verteilung der Enerige unter den materiellen Teilchen niederzuschreiben, dann ist
die thermodynamische Wahrscheinlichkeit des gréferen Systems, das Materie unc
Strahlung umfapt, einfach das Produkt der bieden Wahrscheinlichketien. Die Glei-
chgewichtsbedingung lautet einfach, daf die resultierende Wahrscheinlichkeit ein
Maximum sein muf. Das Gleichgewichts-problem kann somit in einer ganza ganz
anderen Weise betrachtet werden. Statt geeignete Hypothesen uber Elementarpro-
zesse, die das Plancksche Gesetz ergeben, aufzustellen, versuchen wir, die Relation
abzuleiten, zu der alle Hypothesen fuhren mussen, wenn das Plancksche Gesetz fur
das Strahlungsfeld und das Maxwellsche Gesetz fiir die materiellen Teilchen gelten

sollen. Die Beziehung, die wir suchen, ist offenbar aquivalent mit der der zuvor
aus der Bedingung, daf die thermodynamischche Wahrscheinlichkeit fir das grof
ere System ein Maximum ist, aabgeleiteten. Um das Problem in der angedeuteten
Weise zu liisen, mussen wir den Ausdruck fiir die thermodynamische Wahrschein-
lichkeit fir die Strahlung und fiir die materiellen' Teilchen haben.

Thermodynamische Wahrscheinlichkeit fir das Strahlungsfeld. Sie wurde in
einer fruherent Arbeit” abgeleitet. Wenn die Zahl der Quanten im Spektralbereich
v und v-+dv gleich N dv ist, so ist sie :

_ g (Av+N,dv)!
W_EI ANdv!

2
wo 4, = %T:— V dv bedeutet. Es ist leicht zu sehen, daf dieses Wahrscheinlich-
keitsgesetz zum Planckschen Gesetz fiihrt, wenn wir die Bedingung aufstellen, daf
W bei gegebener Energie ein Mximum sein mup.

Thermodynamische Wahrscheinlichkeit fiir materielle Teilchen. Man kann sic
unschwer finden. Wir wollen unsere Voraussetzungen ein wenig verallgemeinern,
um sowohl den Fall Bohrscher Atome mit diskreten Energieniveaus als auch den Fall
der Verteilung der Translationsenergie bei materiellen Teilchen®’ zu umfassen. Wir
nehmen an, der Phasenraum sie in Elementargebiete geteilt. Zu jeder Elementarzelle
gebort eine bestimmte Zahl g, die die Wahrscheinlichkeit angibt, dag irgend ein
Teilohen sich darin befindet. Die g sind im algemeinen einander gleich, ausgenommen
den Fall Bohrscher Atome. Die thermodynamische Wahrscheinlichkeit irgend einer
willkurlichen Verteillung #,, n, use uber die verschiedenen Zellen ist :

Nighgy?

(7) Der Verfaeser, erscheint im Phil. Mag. Siche auch Debye, Ann. d. Phys. 33, 1427, 1910.
(8) Bohr, Z8S. f. Phys. 18, 117, 1923.
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Die Bedingung des Wahrscheinlichkeitsmaximums bei gegebener Gesamtenergie
und Zahl der Teilchen ist :

_E
n, = Cg, e KT

Jetzt sind wir in der Lage, die thermodynamische Wahrscheinlichkeit fiir das
gesamte System zu berechnen. Sie ist offenbar :

_n AN o g N
W—I;I AN, I;I‘ np! ’
WO
2 N,hV,—}-Z nTET == E
und
EnT=N.

Beim Gleichgewicht ist W ein Maximum, wobei die Gesamtenergie und die Zahl
der Teilchen als gegeben anzusehen ist.
Wir betrachten den Elementarprozef :

n, verwandelt sich in n,—1 und =, in n,4-1; Nvl, sz ... vermindert sich um 1

und N_,, N, ... wichst um 1.
1 V2

Die Bedingung der Stationaritat von W verlangt, daf W sich dabei nicht éndert.

Der betrachtete Elementarproze kann aufgefaft werden als der fJbergang eines
Teilchens vom r-ten zum s-ten Zustand. Die Verinderung, die das Strahlungsfeld

dabei erleidet, kann angesehen werden als das Ergebnis einer Zerstreuung nach einem
Zusammenstof.

Die gesuchte Bedingung lantet :

mp MmN I
gr » NVr+AVr g V'Nv' —|—A,, ()
wo Zhv' —Zhv+E,—E, = 0.
Diese Gleichung ist offenbar aquivalent mit
n, b,pv, ", b1p,
P H_—__-q = H 7 1 7 7
g atbip, g T dy+Vp,
wo
G enVhy Mg Vo hy
b = Sncahv, = 8w & hy'.

Dies kann auch geschrieben werden :

n,11b,pv, (a1 +b; €', ) = 116 p}1(a;+b,p, ),
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wenn
Ir = Gs-

Das ist die verallegemeinerte Gleichung, die fur Elementarprozesse von der Art,
wie sie Einstein und Ehrenfest® betrachetet haben, gilt. Nach der hier gegebenen
Ableitung ergibt sich die Beziehung als eine Folgerung aus der Bedingung, dag beim
Gleichgewicht die Wahrscheinlichkeit ein Maximum sein mugB. Wenn aber der Mecha-
nisms des Elementarprozesses uns gestattet, die Gleichung direkt niederzuchreiben

fuhrt die Substitution des Wertes fur das Verhiltnis " zum Planckschen Gesetz.

nl
Es is jedoch klar, daf Gleichung (I) fundamentaler ist als die transformierte
Form von Einstein. Die nachfolgende Betrachtung wird zeigen, daf eine einfache
Uberlegung den Wert des Wahrscheinlichkeitskoeffizienten in der gewiinschten
Form liefert.
Der Fall des Bohrschen Atoms.

Das ist der Elementarprozef, den Einstein‘!? in seiner fruheren Arbeit betrachtet -
hat.

Die fundamentale Gleichung (I) reduziert sich hier auf

n, N, 7,

9 A+N, g
Einsteins urspriingliche Gleichung lautet :
1,b,0,d8 = n,(ai+byp.)dt v (D)

oder

’

a,n,

=
Py n,by—n,b,

Nimmt man ferner an, dag

, a, hv3
9.0, = g,b; und T)Ti = 8m 5

so folgt das Plancksche Gesetz.

Um seine Gleichung (I) abzuleiten, nimmt er an, dag Atome von héheren Ener-
gieniveaus zu Zustanden niederer Energie auf zwei Wegen iibergehen konnen :

1. Eine Art von spontanem ﬁberga.ng, wie bein einem radioactiven Prozeg,
dessen Wahrscheinlickkeit unibhangig vom Zustand des Strahlungsfeldes ist.

(9) Einstein und Ehrenfest, a. a. 0.
(10) Einstein, Phys. ZS. 18, 121, 1917,
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2. Ein durch die charakteristische Strahlung induzierter ﬁberga.ng, dessen
Wahrscheinlichkeit vom Zustand des Feldes abhingt.

Der U'berga.ng von einem niederen zu einem héheren Energieniveau erfolgt durch
Absorption, deren Wahrscheinlichkeit vom Felde abhingt.

Weiterhin werden gewisse Benziehungen zwischen den Koeffizienten postuliert,
damit das Plancksche Gesetz herauskommt. Diese Beziehungen konnen nicht auf
einfache Weise begriindet werden.

Das gleiche Problem kann auf die folgende Weise behandelt werden, bei der viele
von den vorkommenden willkiirlichen Annahmen beseitigt werden.

Wir setzen auch voraus, dag der Ijberga.ng von niederen zu héheren Niveaus
stets durch Absroption von Quanten einer charakteristischen Frequenz erfolgt.

A. Der ﬁbergang von héheren zu niederen Niveaus ist eine Art von spontaner Anderung,
dessen Wahrscheinlichkeit iinabhangig vom Strahlungsfeld ist. Die zweite Hypo-
these von Einstein (negative Einstrahlung) ist nicht erforderlich. B. Wir wollen

versuchen, den Wahrscheinlichkeitskoeffizienten fiir ﬁberga.ng A zu berechnen.

Die Zahl der Elementargebiete, die den in Betracht kommenden Quanten ents-
prechen, ist A,. Die Gesamtzahl der vorhandenen Quanten ist N,dv. Diese sind aber
nicht gleichférming iiber den Phasenraum verteilt. Sei p, die Zahl der leeren Zelien, p,
die mit 1 Quant, p, die mit 2 Quanten usw. besetzten. Damit die Strahlung und das
masterielle Teilchen in Wechselwirkung treten kénnen, mugf is dem Blementargebiet
sein, das von einem Quant besetzt ist. Das besondere Elementargebiet, in dem sich
das betrachtete Molekiil befindet, wird, wenn wir es lange genug beobachten, alle mog-
lichen Zustinde durchlaufen : d.h. manchmal ist es leer, manchmal wird 1 Quant
vorhanden sein, manchmal 2.usw. Die Dauer dieser Ereignisse wird Schleiflich
proportional zu den Gleichgewichtswerten von p,, p,... Wenn r Quanten und ein
Teilchen zugleich vorhanden sind, dann gibt es entweder einen Energieaustausch
oder gar nichts. Somit sind 741 verschiedene Ereignisse moglich, namlich
Energieaustausch von 1 Quant, 2 Quanten usw. oder kein Austausch

Daher ist die Zahl der moglichen Fille :
Pot+2p,+3p+... = A, +Ndv, = Z(r+41)p,.

Die Zahl der Fille, in denen Wechselwirkung eintritt, ist :
Pr+2py+... = Nyv, = Zrp,.
Somit ist die Wahrscheinlichkeit einer Wechselwirkung :
Zrp, N, dv,

“Z(r+1)p,  A,+Ndv,
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Nun mussen wir die sgezielle Art der Wechselwirkung in Rucksicht ziehen, d.h.
die Absorption, die zu unterscheiden ist von Zerstreuung. Die Wahrscheinlichkeit

hierfiir sie £.

Die Wahrscheinlichkeit der Absorption ist :

pErp, y N dv
3(r+1)p, A,+Ngdv ~

Der Wahrscheinlichkeitskoeffizient fiir einen fJberga.ng vom Typus B ist offenbar

irgend eine Konstante, die den Ubergang von dem speziellen hoheren Zustand zu
dem speziellen niederen Zustand bestimmt. Diese Konstante sei a.

Die Gleichgewichtsbedingung kann dann geschrieben werden :

N,dv
"B TN ™
was mit der fundamentalen Gleichung (I) iibereinstimmt, wenn wir annehmen, dag
grﬂ = gsx.

Es ist klar, dag die Substitution von ;:1 zum Planckschen Gesetz fithrt.

Der Fall von Pauli.
Er ist einfach zu behandeln. Die Wahrscheinlichkeit einer Wechselwirkung ist

Zrp, .

r+1)p, "
von v, in v, falls eine Wechselwirkung statthat. Fiir die inverse Transformation

wire vorhin sei der -Wahrscheinlichkeitskoeffizient fiir Zerstreuung

seien die entsprechenden Koeffizienten = _;119; und S
f
Beim Gleichgewicht ist also :
_Ngv, N,dv, .
" AN, — " TN,
Nehmen wir ferner an, daf % = B¢ so erhalten wir die fundamentale Glei-
chung (1).

Der Fall von Einstein urid Ehrenfest.

Die Wahrscheinlichkeit einer gleichzeitigen Wechselwirkung ist das Produkt
der Einzelwahrscheinlichkeiten, also gleich :

N, dv,

R o
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Analog sei ﬁ:l} :Z " die Wahrscheinlichkeit fir den speziellen Akt der Zerstreuung,

und cin dhnlicher Ausdruck gelte fiir die inverse Streuung, woraus sich das Ubrige
leicht ergibt.

Bemerkungen. Aus unserer Rechung gehit hervor, da B die Wahrscheinlichkeit
einer Wechselwirkung eines Teilchens mit einem Quantum in einem Strahlungsfeld
‘—/ﬁ%— nicht einfach proportional zur Zahl der vorhandenen Quanten ist, wie
man auf den ersten Blick vermuten koénnte. Es ist leicht zu sehen, dag diese Annahme
zum Wienschen Gesetz fithren wiirde, wie Pauli erkannt hat', Pauli‘sa,h sich deshalb
genotigt, eine andere Form fiir den Wahrscheinlichkeitskoeffizienten nzuunehmen.
Die von Pauli angenommene und von Einstein und Ehrenfest verallgemeinerte Form
erscheint aber als ganz willkurliche Hypothese, da man sich kein einfaches Bild von
dem Zustandekommen eines solchen Ausdrucks machen kann. Die andere hier
vorgeschlagene Form ist siemlich einfach und kann auf Grund elementarer Uberle-
gungen gerechtfertigt werden. Es wird auch die Notwendigkeit vermieden, Fela-
tionen zwischen den Koeffizienten selbst annehman zu miissen. Bei der Ableitung
des Wahrscheinlichkeitskoeffizienten fiir die Wechselwirkung (oder Kopplung, wie
Bohr sagt) wurde angenommen, daf selbst bei einem Zussmmenstof der Fall, dag
keine Wechselwirkung eintritt, gerade so wahrscheinlich ist, wie der Fal irgend einer
spezielen Kopplung Diese Annahme ist ein fundamentaler Punkt in der hier gege-
benen Ableitung. Nach der klassischen Theorie wiirde man erwarten, daf irgend
eine Wechselwirkung eintritt, wenn ein Quant mit einem materiellen Teilchen zusam-
mentrifft. Eshandelt sich also um eine principielle Abweichung von der klassischen
Theoire. Diese Hypothese ist aber (wie mir scheint) ganz dhnlich wie die Hypothese,
die man gewohnlich iiber die Stabilitat der stationaren Zustinde macht. Die klassische
Theorie lie fle uns erwarten, daf keine stationiren Zustinde moglich sind, und dag
stets Wechselwirkung oder Kipplung (Bohr) zwischen Ather und erregtem Atom
und damit verbundene Strahlung vorhanden ist. Auf der anderen Seite mussen wir,
um die spektrale Emission zu erklaren, den Fall als moglich annehmen, daf keine
Wechselwirkung (Emission) eintritt. So kommen wir dauz, wegen der Persistenz
der stationaren Zustande jedem beliebigen stationdren Zustand einen Wahrschein-
lickkeitskoeffizienten oder eine mittlere Lebensdaur zususchreiben.

Die oben benutzte Hypothese, daf aich bei einem Zuszmmenstof keine Wech-
selwirkung eintreten kann, ist ganz analog der Annahme der Stabilitit der stationiren
Zustéinde, die so grundlegend fiir die Bohrsche Theorie der Linienemission ist, und
kann auf die gleiche Ursache zuriickgefuhrt werden : Die den materiellen Teilchen
innewohnende Wahrscheinlichkeit der Persistenz ihrer stationdren Zustinde. In

(11) Pauli, Z.8 f. Phys., aa 0).
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diesem Zusammenhang ist es interessant, zu bemerken, daf wir beim analogen Fall
des Zusammenstofes eines Elektrons und eines Atoms experimentell Fille nachweisen
konnen, wo bei Zusammenstofen das Elektron durch das Atom hindurchgeht, ohne
die intraatomare Bewegung oder seine eigene zu verandern.

Die Beziehung g,f = g, .

Die Koeffizienten, oder wie Bohr'? sie nennt, Gwichte g werden eingefuhrt, wenn
Valenzelektron im Atom eine entartet bedingt periodische Bewegung ausfuhrt. Diese
numerischen Koeffizienten geben nach Bohr einfach an, auf wieviel verschiedene
Weisen man von einer benachbarten nichtentarteten Bewegung zu der speziellen
entarteten Bewegung als Grenzfall gelangen kann. Nehmen wir diese Koeffizienten
einfach als proportional zur Zahl der ﬁberga.ngsmtiglichkeiten von einem bestimmten
zu dem betrachteten Zustand an, so ist die obige Beziehung fast selbstverstindlich.
Es gibt g, Wege, auf denen ein ﬁberga.ng von irgend einem r-ten zu dem betrachteten
s-ten Zustand durch Absorption méglich ist. "Analog gibt es g, Uberginge zu
niederen Zustinden infolge von Emission. Der Wahrscheinlichkeitskoeffizient hat
dann den Faktor g, der Wahrscheinlichkeitskoeffizient der Emission den Faktor G
Wenn wir ferner annehmen, daf die Wahrschelichkeit einer Transformation durch
‘Strahlung auf einem bestimmten Wege die gleiche ist wie der Wahrscheinlichke-
itskoeffizient der Emission, wenn das Atom in bestimmter Weise zu niederen
Zustinden iibergeht, so ergibt sich sofort die fragliche Relation!®.

Manindra Physikal Laboratorium,Dacca-Universitat, 14 Juni 1924.

Ich halte Boses Hypothese uber die Wahrscheinlichkeit der Strahlungselementar-
vorgange aus folgenden Grunden fur nicht zutreffend.

Fiir das statistische Gleichgewicht zwischen einem Bohrschen Zustande zu einem
anderen gilt, wie Bose dargelegthat, die Beziehung

n N, _m
9, A+N, g,

Daraus folgt, daf die Wahrscheinlichkeiten fir die Ubergange r—s und s—r
der linken bzw. rechten Seite dieser Gleichung proportianal sein missen. Die Uber-
gangswahrscheinlichkeiten fiir.ein Molekiil miissen sich also (wenn wir der Einfachheit

4,
AI’+N 1 4
verhalten. Mehr kann aus der Kenntnis des thermodynamichen Gleichgewichts

halber die statistichen Gewichte beider Zustéinde gleich 1 setzen) wie : 1

(12) Bohr, Z.8 f. Phys., 8.8.0.
(18) Vgl. in diesem Zusammenbang P. Hertz, Repert. d. Phys., statistische Mechanik, 1. Bd.,
Tell 2, 8. 549.
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nicht entonommen werden. Nach der von mir auftestellten Hypothese sollen diese
Wahrscheinlichkeiten N, (d.h. der Strahlungsdichte) bzw. 4,+ N, proportional sein,

N,
nach der Hypothese Boses 41N, bzw. 1.

Nach der letzteren Hypothese kann die aiifere Strahlung wohl einen Ubergang
von Zustande Z, kleinerer Energie nach dem Zustande Z, gréferer Energie bewirken,
nicht aber umgekhrt einen ﬁbergang von Z, nach Z,. Dies widrespricht aber dem
mit Recht allgemein anerkannten Grundsatz, dag die klassische Theorie einen Grenzfall
der Quantentheorie darstellen miisse. Nach letzterer kann namlich ein Strahlungs-
feld auf einen Resonator sowohl positive als auch negative Energie iibertragen (je
nach der Phase), und zwar beides gleich wahrscheinlich. Die Wahrscheinlichkeiten

beider ﬁbergange miissen also von der Strahlungsdichte, d.h. von N, abhingen,
im Gegensatz zu Boses Hypothese. Inwiefern die Qunatentheorie die klassische
zum Grenzfall hat, hat Planck in der letzten Auflage seines Buches iiber Strahlungs-
theorie ausfiihrlich erdtert.

Zweitens mii te nach Boses Hypothese ein kalter Korper ein von der Strahlungs-
dichte abhiingiges (mit ihr abnehmendes) Absorptionsvermdgen besitzen. Die Korper
sollten in Kaltem Zustande ‘nicht-Wiensche’ Strahlung schwiicher absorbieren als
weniger intensive aus dem Giiltigkeitsbereich der Wienschen Strahlungsformel. Dies
wiire bei ultraroter Strahlung heifer Lichtquellen gewif schon entdeckt worden, wenn
es sich so verhielte.

A. Einsten

Reprinted from Z Physik 27, pp. 384-393, 1924 (Springer — Verlag, Heidelberg).
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The probability of an arbitrary state of a system consisting of radiation and molecules
is calculated and from it the conditions for statistical equilibrium are derived. Further,
new expressions for the statistical probability of elementary processes, appropriate for
the interaction between radiation and matter, are proposed.

Debye! has shown that Planck’s law can be derived using statistical mechanics. His
derivation is, however, not completely independent of classical electrodynamics, be-

cause he uses the concept of normal modes of the ether and assumes that for calculating

7'|:V2

cﬁ

resonators whose energy can be only multiples of Av. One can however show that the

derivation can be so modified that one does not have to borrow anything from the
2

, 8nv . .
classical theory. ns Vdv can be interpreted as the number of elementary cells in
c

the energy the spectral range between v and v +dv can be replaced by Vdv

the six dimensional phase space of the quanta. The further calculations remain
essentially unchanged.

Einstein has used another method. He considers the interaction between material
particles and the radiation field. If one knows the energy distribution among the
particles, then one can derive the law of black-body radiation from the condition of
stationarity of this distribution when there is an exchange of energy between matter
and radiation. This exchange is moreover a result of certain elementary processes. With
a suitable formulation of properties and the probability of these elementary processes
one can derive Planck’s law, if the energy distribution among the particles is assumed
to be known. In his first paper? the material particles are Bohr atoms which can have
only a series of discrete stationary states. The energy exchange occurs because of
emission and absorption processes and the simultaneous transitions of atoms from one
state to another. He has shown that Planck’s law is obtained when the emission and
absorption processes have certain probabilities. Recently the problem of thermal
equilibrium between radiation and and free electrons has acquired added importance
through the studies of Debye?, Compton®* and others, which deal with the scattering of
radiation off electrons. Pauli® has discussed this problem in an interesting paper. As
an elementary process he considers the scattering of an electron by a quantum which
moves in a definite direction and has a frequency in a given spectral range and is
converted into another quantum with a different frequency and moving in a different
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direction. Simultaneously an electron which moves with a certain velocity in a given
direction changes the magnitude and the direction of its velocity. The laws of conser-
vation of energy and momentum hold for all these processes. Pauli has shown that if
the probability of this elementary process is (Ap + Bpp’) dv where p and p’ are radiation
densities for frequencies v and v, A and B are independent of p and p’ but depend on
the nature of collision, this probability law leads to Planck’s law, provided Maxwell’s
distribution is valid for the electron gas. Einstein and Ehrenfest® have further gener-
alized Pauli’s result. They consider a process in which a molecule or an electron absorbs
quanta hv,, Avy, etc. and simultaneously emits kv, hvy ... It is assumed that the
emitted and absorbed quanta have definite directions. The magnitude and the direction
of the velocity of the molecule under consideration also change at the same time. Energy
and momentum are however conserved. The probability law of Pauli is generalized as
follows,

dW, = IIb, g, Il(a; + bi01)d¢,
d W, = Il(a, + b, 9,) IT(b} 1) d¢t,

for the direct and the inverse processes. They show that equilibrium is obtained if
certain relations between the coefficients exist. This is a generalization of Einstein’s
earlier result for Bohr atoms and also of Pauli’s result.

The problem of thermodynamic equilibrium of radiation in the presence of material
particles can, however, be studied using the methods of statistical mechanics, inde-
pendently of any special assumption about the mechanism of the elementary processes
on which the energy exchange depends. In this way we obtain a general relation which
is valid for all special assumptions about the elementary processes and their prob-
abilities. If it is possible to write down the thermodynamic probability for any special
distribution of quanta of radiation and the probability for any arbitrary energy
distribution among the particles, then the thermodynamic probability for the bigger
system containing matter and radiation is simply the product of the two probabilities.
The condition of equilibrium is simply that the resulting probability must be a
maximum. The problem of equilibrium can thus be loocked at in a completely different
way. We try to derive the relation to which all assumptions must lead when Planck’s
law for radiation and Maxwell’s law for particles hold instead of making assumptions
about elementary processes adopted to give Planck’s law. The relation which we are
looking for is clearly equivalent to the previous one which is derived from the condition
that the thermodynamic probability for the bigger system is a maximum. In order to
solve the problem in the way indicated, we must have the expressions for the thermo-
dynamic probability for radiation and the material particles.

Thermodynamic probability for radiation :
This has been derived earlier’. If N, dv is the number of quanta in the frequency range
vand v +dv, then the probability is,
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_ o (4 Ny
W= I,,Y 4, Nydv'! '’
2
whereA , = 8 1t3v Vdv. It is easily seen that this probability law leads to Planck’s law
c

if we impose the condition that for a given energy W should be a maximum.

Thermodynamic probability for particles :

This can be easily found. We want to generalize our assumptions a little so that the
case of the Bohr atom with discrete energy levels as well as the case of the distribution
of translational energy of particles can be included. Let the phase space be divided in
to cells. For every cell there is a probability g that a particle occupies it. The g’s are in
general equal except for the case of Bohr’s atoms. The thermodynamic probability for
any arbitrary distribution n,, n, etc. among the different cell is,

I yn
Nighgs...
n, ! n,!

The condition that the probability be maximum for a given total énergy and number
of particles is,

- £
n, = Cg,c *T.

Now we are in a position to calculate the thermodynamic probability for the total
system. It is clearly

4, + Ny! 7 97T N!

W =11
s A Nyl ¢ nrp! '
where
sthv*"‘znTET:E
and znr: N.

At equilibrium W is a maximum, the total energy and number of particles being
given. ’

We consider the following elementary process : n, changes to n, - 1 and n, to
ns+1; Ny, Ny, .. reduce by 1 and Ny, , Ny, increase by 1.

The condition of stationarity of W requires that W does not change on account of this
process.

The elementary process under consideration can be considered as the transition of
a particle from the rth to the sth state. The change which the radiation field undergoes
can be looked upon as the result of a scattering after a collision. The required condition
reads
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nr I Nu,. g N,
gr s Ny £ Ay, Gs v Nu + Au §9)

where Shv' —Shv + E, — E, = 0.

The equation (I) is evidently equivalent to

ny b 0 N b'lg'v

SRR g QUG Y4/ WRI=NAL R g A

9r a; + b0, Js ai 4 by o\
where 2 ’ 'a

('(1 v ‘(il_—— ,

_1_——_8,1(-:5}”}, bi_Bn—ci‘hv'

This can also be written as
.f Tl,— Hbl 9111 H (a'l + b;l 9‘,1/) - ”8 Hb; 0;’17 (u] + bl 91')’
i
9r = gs
This is the generalized equation which holds for elementary processes of the type
considered by Einstein and Ehrenfest®. According to the derivation given here the
relation follows from the condition that for equilibrium the probability must be a
maximum. However, if the mechanism of the elementary process allows us to write

down the equation directly, the substitution of the value for the ratio ’—'zi gives Planck’s

S

law.

It is however clear that the equation (I) is more fundamental than the original one
of Einstein. The following discussion will show that simple considerations give the
value of the probability constants in their desired form.

The case of Bohr’s atoms :

This is the elementary process which Einstein had considered in his earlier paper?. The
fundamental equation (I) here reduces to

& NV _— ns
gr 4, + N, s
Einstein’s original equation states

n. b, 0.dt = n, (a1 + by 0,)dil

or
a1 M,
& = b, — ngb;
If we assume further that )
. a hvs
grb, == g,b; and —+ = 8mw—,

3

S
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then Planck’s law follows :

To derive his equation (I), Einstein assumes that atoms in higher energy levels make
transitions to lower energy levels in two ways :

1. A type of spontaneous transition as in a radioactive process, whose prob-
ability is independent of the state of the radiation field.

2. A transition induced by the characteristic radiation, whose probability de-
pends on the state of the radiation field.

The transition from a lower to a higher energy level is the result of an absorption
whose probability depends on the radiation field. Further, certain relations between
the coefficients are postulated so that Planck’s law follows. These relations cannot be
justified in a simple way.

The same problem can be treated in the following way removing many of the
arbitrary assumptions.

We also presume that the transition from a lower to a higher state takes place
through an absorption of a quantum of characteristic frequency.

A. The transition from higher to lower levels is a spontaneous change, whose
probability is independent of the field of radiation. The second assumption
of Einstein (negative radiation) is not necessary.

B. We shall try to calculate the probability coefficients for the transition A.

The number of cells corresponding to the quanta under consideration is A,. The total

number of quanta present is N, dv. They are however not distributed evenly in phase
space. Let p, be the number of empty calls, p; with 1 quantum, p, with two quanta etc.

In order that the radiation and a particle may interact, it must be in a cell occupied
by a quantum. The particular cell which the molecule under consideration occupies will
pass through all possible states if we observe it long enough, that is, sometimes it is
empty, sometimes occupied by 1 quantum sometimes by 2 quanta etc. The length of
these events will be finally proportional to the equilibrium values of p,, p;. When r

quanta and a particle are together, then either an exchange of energy takes place or
nothing happens. Therefore r + 1 different events are possible, namely energy exchange
of 1 quantum, 2 quanta etc. or no exchange. Therefore the number of possible cases is

Pot2p +3py+ - = 4y + Nedvs = Z (r +1) pr.

The number of cases in which interactions occur is,

P1+2p+ - = Nedvy = 27pr.
Consequently the probability of an interaction is,
Srp, Ny, .
S(r+Dp. 4o+ Ndv,
Now we must take into consideration the special nature of the interaction, that is,

absorption which is to be distinguished from scattering. Let the probability for this be
B. The probability for absorption is
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BXrp. 8 N, dv
S(r+ 1)p, A, + N, dv
The probability coefficient for a transition of type B is evidently any constant which

determines the transition from the particular higher state to a particular lower state.
Let this constant be a.

The equilibrium condition can then be written as

n, B N,dv
"M 4,4+ N,dv

which agrees with the fundamental equation (I) if we assume that

== 0Ny,

grB = gs .

n
It is clear that substituting the value of — ,.one gets Planck’s law.

Pauli’s case.

This can be easily discussed. The probability of an interaction is as before
zrp,

Z(r+1)p,

is an interaction. Let the corresponding coefficients for the inverse process
z rpy

. Let B & be the probability coefficient for scattering from v, to v, if there

and B¢ . Then at equilibrium

E(r+1)p,
v + Ngdvy
”'r ﬁ:’ Nsd s — ns ﬂ: s d s .
A8+Nsdvs As'+Ns'd”Us'
Let us assume further that B 5 = B $; then we obtain the fundamental equation (I).

Einstein and Ehrenfest’s case.

The probability of a simultaneous interaction is the product of individual prob-
abilities and therefore equal to

N,dv,
As + Ns’dvs

Analogously let B 31,2 " be the probability for scattering and let a similar expres-

sion hold for the inverse scattering. The rest then easily follows.
Remarks. N. dv

Our calculations show that the probability ———— of an interaction between a
A,+N,dv

I

particle and a quantum in a radiation field is not simply proportional to the number
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of the quanta present as one would presume at first sight. It is easy to see that this
assumption leads to Wien’s law, as realized by Pauli®. He found it necessary to assume
another form for the probability coefficients. However the form assumed by Pauli and
generalized by Einstein and Ehrenfest appears to be completely arbitrary because one
cannot easily see how such an expression can be derived. The form suggested here is
quite simple and can be justified on the basis of elementary considerations. The
necessity of assuming relations between the coefficients themselves is also avoided. It
was assumed in deriving the probability coefficients for the interaction (or coupling,
as Bohr says)that even in a collision no interaction is as probable as the occurence of
any special interaction. This assumption is a fundamental point in the derivation given
here. From the classical theory one would expect that there is some interaction
whenever a quantum and a material particle come together. Therefore here it is a
question of a departure from classical theory. This hypothesis is (as it appears to me),
however, very similar to the assumption one usually makes about the stability of
stationary states. From classical theory one would expect that no stationary states are
possible and that an interaction or coupling (Bohr) between ether and the excited atom
and the radiation connected with it is always present. On the other hand, in order to
explain spectral emission we must assume it to be possible that no interaction (emis-
sion) occurs. Because of the persistence of stationary states we are therefore led to
assign to every stationary state a probability coefficient or a mean lifetime.

The assumption made above, that even in a collision no interaction need occur, is
quite analogous to the assumption of the stability of stationary states which is so
fundamental to Bohr’s theory of line emission and can be traced back to the same
origin—the probability of existence of the stationary states of the particles. It is
interesting to remark in this connection that in the analogous case of a collision of an
electron with an atom, experiments show that the electron goes through the atom
without changing either the interatomic or its own motion.

The relationg, B = g, .

The coefficients or as Bohr calls them, the weights g, are introduced when the
valence electron in the atom executes a finite degenerate periodic motion. These
numerical coefficients give, according to Bohr, in how many ways from a neighbouring
non-degenerate orbit one can arrive at the special degenerate orbit as the limiting case.
Let us assume that these coefficients are simply proportional to the number of
possibilities of transition from a definite state to the state under consideration ; then
the above relation is almost obvious. There are g, possible ways for a transition from
an rth state to the given sth state through absorption. Similarly thereare g, transitions
to the lower states as a result of emission. The probability coefficient B has then the
factor g,, the probability coefficient for emission the factor g,. If we further assume that

the probability of a transformation through radiation in a definite way is the same as
the probability coefficient for emission when the atom makes transitions to lower states
in a definite way, then the relation in question follows immediately®.

Manindra Physical Laboratory, Dacca University, June 14, 1924.
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I consider Bose’s hypothesis about the probability of elementary radiation precesses as
not appropriate for the following reasons.

For the statistical equilibrium between two states of a Bohr atom the following
relation holds, as given by Bose :

n, N, My
gr A4, + N, g,

It follows that the probabilities for the transitions r— s and s— r respectively on the
left.and the right hand side of the equation must be proportional to each other. The
transition probabilities for a molecule must therefore (if for simplicity we put the

v
A,+N,
can be learnt from the knowledge of the thermodynamic equilibrium. According to my
assumptions these probabilities should be proportional to N, (i.e. the radiation den-

statistical weights of both the states equal to 1) behave as

: 1. Nothing more

N,
sity) and A, + N, respectively, whereas according to Bose’s assumption, A and 1
v v

respectively.

According to the latter assumption the external radiatian can indeed cause a
transition from a state Z, of lower energy to a state Z, of higher energy, but not the
reverse transition from Z; to Z, . This, however, contradicts the generally and rightly
accepted fundamental principle that the classical theory should be a limiting case of
the quantum theory. According to the latter a radiation field can transfer to a resonator
positive as well as negative energy (depending on the phase) and indeed with equal
probability. The probabilities of both the transitions must depend on the density of
radiation, that is, on N, as oppsed to Bose’s hypothesis. Planck has discussed in detail

in the latest edition of his book on the theory of radiation to what extent the classical
theory is the limiting case of the quantum theory.

Secondly, according to Bose’s hypethesis a cold body should have an absorbing
capacity dependent on the density of radiation (decreasing with it). Bodies in cold state
should absorb “non- Wien” radiation to a weaker extent than less intense radiation as
defined by the range of validity of Wien’s radiation formula. If the behaviour had been
such, then it would certainly have already been discovered in infra-red radiation from
hot light sources.

A. Einstein
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Messungen der Zersetzungsspannung in nicht-
wisserigen Losungsmitteln.

Von
Susil Chandra Biswas und Sn. Bose.
Aus dem Englischen iibertragen.
(Mit 5 Figuren im Text.)

(Eingegangen am 18, 11. 26.)

Uber die Zersetzungsspannungen von Salzen in nichtwisserigen
Losungsmitteln liegen nur sehr wenige Untersuchungen vor. Patten
und Mott!) haben die Kurven der Zersetzungsspannung von Lithium-
chlorid in Alkoholen, Aceton und Pyridin unter Beriicksichtigung der
Vorgdnge an Anode und Kathode aufgenommen. Kiirzlich haben
Miiller und Duschek?), ferner Millers), H6lzl und andere die Zer-
setzungsspannung bei LoOsungen von Silbernitrat in Pyridin untersucht
und die Zersetzungsspannung des Lithiums in Lésungen von Lithium-
chlorid und Lithiumnitrat in Pyridin. Diese Untersuchungen ergaben
fiir Pyridin betrdchtlich héhere Werte der Zersetzungsspannung als fiir
wisserige Losungen. Doch waren sie ohne rotierenden Kommutator
im Stromkreis angestellt und die elektromotorische Gegenkraft erscheint
daher durch das dem grossen Ubergangswiderstand der an der Elek-
trodenoberfliche haftenden Schicht entsprechende Potential vergrossert.
Ganz kiirzlich hat Newbury in einer Vertffentlichung iiber ,Uber-
spannung und Ubergangswiderstinde“+) festgestellt, dass ,die gesamte,
dem Durchgang des Stromes von Elektrode zu Elektrolyt sich entgegen-
stellende Hemmung aus zwei verschiedenen Teilen besteht, wovon der
eine reversibel ist (reine ﬁberspannung) und der andere irreversibel
(Ubergangswiderstinde). Die ohne Verwendung eines Kommutators an-
gestellten Messungen der Uberspannung pflegen mit einem Fehler von
0.5 bis etwa 2 Volt behaftet zu sein“. Pearce und France$), sowie
1) Journ. Phys. Chem. 8, 153 (1904); 12, 49 (1908).

%) Monatsh. f. Chemie 43, 75 (1822). 4) Proc. Roy. Soc. 443 A,«436 (1225).
3) Monatsh, f. Chemie 43, 429 (1923). $) Journ. Phys, Chem. 18, 729 (1914).
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Mortimer und Pearce!) haben bei Silbernitrat Einzelpotentiale und
Gesamtspannung in reinen und gemischten Losungsmitteln untersucht,
und zwar in Methylalkohol, Athylalkohol, Pyridin und Wasser, sowie
in bindren Gemischen dieser Stoffe. Dabei fanden sie, dass die Eigen-
schaften der biniren Gemische von Alkoholen mit Pyridin der Mischungs-

Rubrer
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i | i
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X
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Mithamperemeter zyr Messung
Hierwans aes elektrolysierenaen Stromes

Fig. 1.
regel folgen, wihrend bindre Gemische von Wasser mit Methylalkohol,
Athylalkohol und Pyridin meist ein ausgesprochenes Maximum oder
Minimum der hier in Betracht kommenden Eigenschaften aufweisen.

Dies deutet auf eine gegenseitige Beeinflussung der beiden Ldsungs-
mittel hin.

1) Journ. Phys, Chem. 21, 275 (1917).
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Im folgenden sollen die Ergebnisse dargelegt werden, die bei der
Untersuchung der Entladungsspannung von Chlorwasserstoff und einigen
Alkalihalogeniden in reinem Methylalkohol sowohl als auch in Mischungen
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von Methylalkohol und Wasser erhalten wurden.

Der Methylalkohol
war von Merck acetonfrei bezogen, wurde etwa 12 Stunden iiber Kalk
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Stromstirken wurde ein Préazisions-Milliamperemeter verwendet.

Die Ergebnisse sind aus den Fig. 2, 3,4 und b ersichtlich, worin
sie als Stromspannungskurven niedergelegt sind. Die Kurven fiir die
Zerselzungsspannungén in wiisseriger Losung (bei entsprechender Kon-
zentration) sind ebenfalls eigenen Messungen entnommen und stehen
in guter Ubereinstimmung mit fritheren Arbeiten anderer Autoren?).

Tabelle 1. IKJ.
1 norm. KJ in CHy. OH 1 norm, KJ in Hy0
Entladungsspan-| Stromstirke | Entladungsspan-| Stromstirke
nung in Volt in 10-% Amp. nung in Volt | in 1075 Amp.
0-148 5.6 0194 1.7
0-261 27.8 0441 1107
0-294 67.5 0-606 164.7
0318 92.2 0794 195-8
0-332 141.8 1.0468 2370
0-338 181.8 1.116 744.0
0354 2560-0 1-152 12000
0-369 3720
0-409 610-0
0-448 9700

Tabelle 2. KBr.

0-132 norm. KBrin CHy. OH

0-066 norm. KBrin CHy. OH

0-132 norm. KBr in H»0

Entladungs- Stromsl&rk fintladungs- st iir] Entladungs- su Lirk
mslérke romstiirko omstiirke
spannung |, . spunnung . spannung . ~
in Volt in 108 Amp in Volt in 105 Arop. in Volt in 10-5 Amnp.
0194 869 03 1.12 0-264 0
0-386 7.7 0493 4.2 0-408 14
0-688 154 0-726 9.6 0.692 5-32
0-646 320 0-800 23.0 0-6o 16-8
0-688 68-0 0-846 370 0-699 37.8
0-767 90-0 0-933 54.0 0-779 87.8
0-780 104-0 1-019 68.8 0-836 94.5
0.-797 136.0 1.074 878 0.939 108.0
0-821 162-6 1-173 1148 1-173 118.0
0-849 206-6 1.24 135.0 1439 120.0
1.679 166-0
1.692 1956-8
1614 236.3
1.642 296-0
1.656 348.0
1.665 423.0

127

Yy Parkin, piractical methods of Ejectrochemistry, (Da mir dies Buch nicht mehr
zuginglich ist, kann jch die Scitenzahl nieht angeben.)
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Tabelle 3. LzCL
1 norw. LiCl in CHy.OH }0-1 norm. LiCl in CH;.OH 1 porm. InCl in Hy0
Entladungs- Entladungs- Entladungs- .
spannung .Stromslﬂrke spannung .Slrorzx:tiirke spannung §trom§5t¢rke
in Volt in 10~5 Amnp. in VoIt in 10-5 Amp. in Volt in 10~5 Amp.
0-444 9.94 0-206 1.12 0-207 0
0-768 344 0-586 8.4 0-649 6.72
0.917 654-0 0-794 224 0.884 156-26
1.089 104-6 0-925 42.7 1.051 48.5
1.163 1550 1024 6527 1-108- 114.8
1.188 297.6 1-113 81.2 1.812 137.8
1.221 3720 1.138 101-25 1.916 2130
1.254 4697 1.16 138.25 1.946 292.0
1.318 565-0 1.177 16875 1.966 4400
1-504 613-8 1-18 200.0 1.992 628.0
1.672 660-0 1.19 229-66 2015 790.0
1-864 730.0 1.212 274.0 2.046 12100
1-913 855-6 1.22 311.0
1.97 967-0 1.229 366.0
1.984 11160 1.236 388.8
2.0148 1302.0 1.243 443.8
1-244 480-0
1.2564 9272
1.27 625.0.
1.277 683.0
1.287 8000
Tabelle 4. HCI.

Zersetzungsspannung der Salzsiure in 05 norm. Ldsungen.
V = Entladungsspannung in Volt, « = Stromstirke in 10-5 Amp.

1000/, CH; . OH 900/, CHy.0OH 700/, CHy .OH 500/, CH; . OH
109/4 FH,O 300/, H,0 800/, H.O
V a 14 a J a V . a

0-123 2.1 0-145 2.8 0-201 14 0-173 0-84
0.362 56 0-269 4.2 0-538 4.2 0-327 1-54

0-404 9.8 0-404 9.8 0.678 12.6 042 2.8

0-436 16.0 0478 140 0.769 20.8 0703 -8

0.47 21.0 0-67 221 0-829 36.4 076 13.7

0-482 278 0619 266 0-893 00-6 0-865 231

0499 3567 0-694 364 094 621 0.956 40-6

0.614 42.0 0-756 48.0 0.947 82.4 '1.062 63-4

0.5630 49.36 0-807 62-0 1.067 1074 1.167 94.5
0.543 666 0.842 4.0 1.105 1431 1.243 112.256
0-893 91.0 1.215 2005 1.291 141.76

0-937 119.0 1.26 225.8 1-32 195.8

0-99§ 1550 1.317 353-4 1-341 2325

1.037 1950 1.33R 478.9 1-345 2744

1.867 6184 1-356 326.5
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Tabelle 4 (Fortsetzung).

300/, CHy . OH 100/, CHy . OH .

700/y H:O 909/y Hy0 1008/, #;0

V a 14 a Vv a
0.153 0-84 0-203 028 0-34 42
0-276 2.66 0-249 14 0-604 126
0-403 42 0.47 56 0-929 81.0
0.467 42 0-601 84 1116 10125
0-601 77 0687 161 1.298 1186
0748 9.8 0.844 33.6 1.355 229.5
0.892 19.8 0.948 54.0 1.376 423.12
1.013 3r.4 1104 776 14 6789
1.073 462 1-26 81.0 1-404 924.6
1.294 81.0 1.331 1485 1434 13532
1332 1553 1.366 287.7
1.352 229.5 1.387 451.0
1363 272.0 1-404 6300
1.3%6 5115
1.393 6870

Die Versuchsergebnisse.
Kaliumjodid (vgl. Tabelle 1 und Fig. 2).

Kaliumjodid wurde . in ungefdhr normaler methylalkoholischer
Losung verwendet. Die gefundene Zersetzungsspannung liegt bei nur
032 Volt. Die Anodenfliissigkeit wurde durch die heftige Jodabschei-
dung schnell angefirbt. In wisseriger Losung wurde die Zersetzungs-
spannung von normalem Kaliumjodid bei 1.12 Volt gefunden (Parkin
fand 1.14 Voit).

Kaliumbromid (vgl. Tabelle 2 und Fig. 3).

Etwa O0-1 und 0.05 norm. Lésungen von Kaliumbromid in reinem
Methylalkohol ergaben eine Zersetzungsspannung von 0-68 bzw. 0.71 Volt.
Offensichtlich steigt hier die Zersetzungsspannung mit der Verdiinnung.
In wisseriger Losung liegt der Wert fiir 0-1 norm. Kaliumbromid bei
1.54 VoIt (nach Parkin in normaler LOsung bei 1.61 Volt).

' Lithiumchlorid (vgl. Tabelle 3 und Fig. 4).

Bei 0.1 norm. Lithiumchlorid zeigt die Kurve nur einen scharfen
Knickpunkt und zwar bei etwa 1.2 Volt; bei einfach norm. Losung,
ebenfalls in reinem Methylalkohol, tritt bei etwa 1.90 ein zweiter Knick
auf. Nun ergibt eine einfach normale Losang von Lithiumchlorid im
Wasser bei 1.95 Volt einen Knickpunkt. So kénnte man vielleicht an-
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nehmen, dass in der einfach normalen Lithiumchloridldsung in reinem
Methylalkohol Spuren von Wasser enthalten sind, die durch das stark
hygroskopische Salz selbst hinein gebracht wurden.

Chlorwasserstoff (vgl. Tabelle 4 und Fig. 5).

Chlorwasserstoff wurde in etwa 0.5 norm. Lésung untersucht und
zwar sowohl in reinem Methylalkohol und reinem Wasser, als auch
in Mischungen der beiden von verschiedenem Prozentgehalt (10, 30,
50, 70 und 909/, Wasser). In reinem Methylalkohol wurde die Zer-
setzungsspannung bei 0-41 Volt ermittelt. Bei reinem und 909/, igem
Methylalkohol zeigte sich nach Erreichung der Zersetzungsspannung
bei 04 bzw. 1.0 Volt deutlich die Wirkung des Chlors auf die Anode.
Aus Fig. 5 ist die Anderung der Kurvenform bei den Gemischen deut-
lich zu ersehen.

Erorterung des Einflusses von Gemischen.

Beim Chlorwasserstoff hat der Zusatz von Wasser zu Methylalkohol
einen sehr deutlichen Einfluss auf die Zersetzungsspannung dieser Siure.
Nun werden durch den Zusatz' eines zweiten Losungsmittels die Eigen-
schaften der Ionen des Elektrolyten immer dann sehr verdndert, wenn
zwischen ihnen und dem ersten Ldsungsmittel eine engere Bindung
moglich war. Dies hat Kraus?) an der Leitfiahigkeit von Sdurelésungen
in Alkohol festgestellt, und zwar bei Zusatz von Wasser sowohl als
von Salzen, die zur Komplexbildung neigen. Steigt der Prozentgehalt
des Wassers in den methylalkoholischen Lésungen der Salze bis zu
309, und mehr, so tritt nach dem Knickpunkt bei etwa 1.0 Volt noch
ein zweiter zwischen 1.3 und 1.33 Volt auf, der der Zersetzungsspan-
nung der Salzsiure in reinem Wasser entspricht. Fiir 1009/, igen
Wassergehalt liegt die Zersetzungsspannung bei 1.0 Volt und fiir reinen
Methylalkohol bei 0.41 Volt, wobei die Salzsiure in allen Fillen

1) yEigenschaften von Systemen mit elektrischer Leitfihigkeit. S. 176 bis 184:
Leitfahigkeit von Elektrolyten in Lésungsmittelgemischen, Zeitachr. f. physik. Chemie. CXXY.
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0-5 normal war. Demnach #ndert sich die Zersetzungsspannung der
Salzsdure nicht fortschreitend mit steigendem Wassergehalt, sondern
die Mehrzahl der Kurven zeigt zwei ausgeprigte Knickpunkte bei 1.0
und 1-33 Volt. Da in reinem Methylalkohol der Knick bei etwa 0-41 Volt
liegt, muss man den bei 1.0 Volt woh! der Bildung eines Komplexes
in dem Losungsmittelgemisch zuschreiben.

Der Einfluss des Wasserzusatzes auf Lithiumechlorid in Pyridin ist
von Patten und Mott?!) untersucht worden. Ihre Resultate sind nicht
massgebend, da bei ihren Versuchen die Elektroden sich mit einer isolie-
renden Schicht iiberzogen hatten. Die von ihnen erhaltenen Kurven
entsprechen in ihrer Gestalt den hier wiedergegebenen. Miiller, Ho1z12)
und andere untersuchten die Entladung des Lithiums in Losungen von
Lithium in Pyridin mit 5 und 109/, Wasser. Die erhaltenen Kurven
waren vielfach geknickt und unregelméssig. Sie schreiben dies der
Abscheidung von Lithiumhydroxyd zu. Lithiumchlorid geht mit Wasser
iiberdies bekanntermassen Molekularverbindungen ein, demnach not-
wendigerweise auch mit einer Losung von Methylalkohol und Wasser3).

Der Einfluss des Wasserzusatzes auf methylalkoholische Losungen
von Kaliumjodid und Kaliumbromid kann die Gestalt der Kurven nicht
sehr éndern, da die Ionen dieser einfach gebauten Salze schwerlich
mit dem stark assoziierten Methylalkohol zur Komplexbildung neigen
werden. Die Leitfdhigkeit wurde jedenfalls durch Wasserzusatz nicht
stark ver#dndert.

Erorterung der Stromspannungskurven.

Die Stromspannungskurven in alkoholischer Ldsung zeigen sémt-
lich einen einzigen charakteristischen Knickpunkt, der ziemlich scharf
ausgeprigt ist. In wésserigen Losungen wurden zwei deutlich verschie-
dene Knickpunkte festgestellt, wovon der eine, und zwar der bei der
kleineren Spannung, nicht mit sichtbarer Zersetzung parallel geht, was
bei dem zweiten aber untriiglich der Fall ist.

1) A.a. 0.
2) A.a. 0.
3) Kraus, a. a. 0.
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Die Werte der Entladungsspannung wurden in Alkohol sehr viel
niedriger gefunden als in Wasser. Andere Untersuchungen an Pyridin-
lssungen ergaben viel hohere Werte als in wisseriger Losung. Miiller
gibt fiir 1 norm. Lithiumchlorid in Pyridin 3.8 bis 40 Volt ‘als Zer-
setzungsspannung an und fiir 0.1 norm. Losung 4.5 Volt, Patten und
Mott fanden 4.0 und 4.15 Volt als gesamte Polarisationsspannung der
Zelle in Pyridin- bzw. Acetonldsung, wihrend der von uns in Methyl-
alkohol gefundene Wert fiir 0.1 norm. Lithiumchlorid nur 1.2 Volt
betrigt.

Fir die hier untersuchter Substanzen zeigt sich in methylalkoho-
lischer Losung die gleiche Reihenfolge der Zersetzungsspannung wie
in wisseriger, sie nehmen in der Reihe LiCl, XBr, HCI, KJ sténdig ab.

Zusammenfassung.

1. Fiir Kaliumjodid, Kaliumbromid, Lithiumchlorid und Chlorwasser-
stoff wurden in reinem Methylalkohol Stromspannungskurven aufge-
nommen, die Zersetzungsspannungen bestimmt und die Kurven mit
denen in wisseriger Losung verglichen

2, Bei Lithiumchlorid wurde festgastellt, dass schon die Gegenwart
von Spuren Wassers die Gestalt der Zersetzungskurve #ndert.

3. Es zeigte sich, dass die Werte fiir die Zersetzungsspannung von
Losungen in reinem Methylalkohol tiefer liegcn als in wisserigen
Losungen, aber dieselbe Reihenfolge zeigen, n#&mlich absteigend von
Lithiumchlorid {iber Kaliumbromid zu Chlorwasserstoff und Kaliumjodid.

Reprinted from Z Phys Chem 128, pp. 442-451, 1927 (Johnson Reprint Corporation, NY).



Measurements of the Decomposition Voltage in
Non-aqueous Solvents

Susil Chandra Biswas and S. N. Bose

(The text contains 5 diagrams)
(Received on 18.11.26)

Very few findings are available on the decomposition voltage of salts in non-aqueous
solvents. Patten and Mott! have recorded curves for the decomposition voltage of
lithium chloride in various alcohols, acetone and pyridine, taking due consideration of
the process taking place at the anode and the cathode. In the recent past Mueller and
Duschek? and then Muller® and Hoelzl and others examined the decomposition voltage
in the solutions of silver nitrate in pyridine as well as the decomposition voltage of
lithium in solutions of lithium chloride and lithium nitrate in pyridine. These results
for pyridine showed considerably higher values for the decomposition voltage than
those for the aqueous solutions: They were, however, taken without the installation of
arotating commutator in the circuit ; it seems therefore that the opposing electromotive
force was increased by the potential corresponding to the large contact resistance of
the layer sticking to the surface of the electrode. Very recently Newbury in a publication
about the Overvoltage and the Contact Resistances* has established that ‘the total
barrier opposing the flow of current from the electrode to the electrolyte consists of two
different parts : out of these one (the pure overvoltage) is reversible and the other (the
contact resistance) is irreversible. The readings of overvoltage without using a com-
mutator are usually afflicted with an error of 0.5 to 2 volts.’ Pearce and France® as well
as Mortimer and Pearce® investigated the individual potentials and the overall voltage
for silver nitrate in pure and mixed solvents. These examinations were carried out in
methyl alcohol, ethyl alcohol, pyridine and in water as well as in binary mixtures of
these substances. These investigations revealed that whereas the binary mixtures of
alcohols with pyridine followed the rules for the mixtures, the mixtures of water with

Fig. 1 : (see the German original)

Riihrer = stirring rod Rollen = pulleys

Motor = motor Kathode = cathode
Anode = anode Gefdllsdraht = step-down coil
Kommutator Schliissel Kompensations anordnung

commutator switch compensator arrangement
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Galvanometer mit Nebenschulss shunted galvanometer milliammeter for
bzw. Milliamperemeter zur Messung des = measuring the electrolysing
elektrolysierenden Stromes current

methyl alcohol, ethyl alcohol and pyridine mostly showed a pronounced maximum or
a minimum in the properties considered here. This fact suggests mutual influence of
the two solvents. The results as obtained from the examination of the discharge voltage
of hydrogen chloride and a few alkali halides in pure methyl alcohol as -well as in
mixtures of methyl alcohol and water are presented below.

Fig. 2 and Fig. 3 : (see the German original)
(Stromstirke in = Current intensity in )10°% Amp

Fig. 4 and Fig. 5 : (see the German original)
(Stromstiirke in = Current intensity in)10"° Amp
I1. N/2 HC! in 90% methy! alcohol, etc.

Acetone-free methyl alcohol was obtained from Merck. It was allowed to stand for about
12 hours over lime and was then distilled once more.

The experimental set-up used is clear from Fig. 1. The electrodes were made of thick
platinum plate and were coated with platinum black. The current could be reversed
almost 3300 times per minute with the help of the rotating commutator C. This enabled
the measurement of the polarization voltage of the cell when the electrolysing current
after every reversal had passed through the cell only for a period of 0.009 seconds. The
strength of the current sent through the cell was measured by a carefully calihrated
shunted galvanometer. A precision milliammeter was used for measuring stronger
currents. '

The results are clear from the Figs. 2,3,4 and 5, where they are set down as
current-voltage curves. The curves for the decomposition voltages in aqueous solutions
(with respective concentrations) were similarly obtained from appropriate measure-
ments and they tally well with earlier works of other authors.”.

Table 1. KI

1 N KI in CH;3.0H 1N KI in H;O

Discharge potential | Current strength in | Discharge potential | Current strength in
in volts 10° Amp in volts 10 Amp

(For numerical values, see the German original.)
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Table 2. KBr
0.132 N KBr in CH;.OH 0.066 N KBr in CH; .OH 0.132 N KBr in H,0
Discharge Current Discharge Current Discharge Current
potential strength potential strength potential strength
in volts in 1‘0'5 Amp in volts in 10 Amp in volts in 10® Amp

(For numerical values, see the German original.)

Table 3. LiCl

1N LiClin CHy .OH 0.1 NLiCl in CH; .OH 1 N LiCl in H;O
Discharge Current Discharge Current Discharge Current
potential strength potential strength potential strength
in volts in 10° Amp in volts in 10° Amp in volts in 10° Amp

(For numerical values, see the German original.)

Table 4. HCI

The decomposition voltage of the hydrochloric acid in 0.5 N solutions
V = discharge potential in Volts, a = current strength in 10°8 Amp.

100% CH; .OH 90% CH; .OH 70% CH3; OH

10% H,0 30% H,0

50% CH; .OH

50% H,0

Vv a \ 4 a \'’4 a

A’ a

(For numerical values, see the German original.)

The Results of the Experiments

Potassium iodide (Cf. Table 1 and Fig. 2)

A nearly 1N solution of potassium iodide in methyl alcohol was used. The reading for
the decomposition voltage lies in the vicinity of only 0.32 Volt. The anode liquid became
quickly tinged by the heavy iodine deposition. The decomposition voltage of 1N potas-
sium iodide in an aqueous solution was found to be 1.12 Volt (Parkin found it to be 1.14

Volt).
Potassium bromide (Cf. Table 2 and Fig. 3)

Approximately 0.1 and 0.5 N solutions of potassium bromide in pure methyl alcohol
yielded decomposition voltages of 0.68 and 0.71 Volt respectively. Apparently the
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decomposition voltage increases here with dilution. In the aqueous solution it was in
the vicinity of 1.54 Volt for 0.1N potassium bromide (according to Parkin it is 1.61 Volt
for a 1N solution).

Lithium chloride (Cf. Table 3 and Fig. 4)

In the case of a 0.1N lithium chloride solution the curve shows a sharp bend in the
neighbourhood of about 1.2 Volt. In the case of a 1N solution in pure methyl alcohol, a
second bend similarly appears in the neighbourhood of 1.90 Volt. A 1N solution of
lithium chloride in water shows a bend in the vicinity of 1.95 Volt. One could therefore
assume that there are traces of water present (coming from the strongly hygroscopic
salt) in a 1N lithium chloride solution in pure methyl alcohol. On the contrary, the
majority of the curves show two marked bends in the vicinity of 1.0 Volt and 1.33 Volt.
Since in the case of methyl alcohol the bend lies in the neighbourhood of 0.41 Volt, one
must attribute the bend in the vicinity of 1.0 Volt to the formation of a complex in the
mixture of solvents.

The influence of adding water to lithium chloride in pyridine was examined by
Patten and Mott’. Their results are not decisive as the electrodes became coated in
their experiments with an insulating layer. The shapes of the graphs produced by them
correspond with the ones reproduced here. Mueller, Hoelz1'° and others examined the
discharge of lithium in solutions of lithium in pyridine with 5 and 10% water content.
The graphs thus produced contained several bends and were irregular. They attribute
this fact to the deposition of lithium hydroxide. Moreover, it is well known that lithium
chloride enters to form a molecular compound with water and therefore necessarily
also with a solution of methyl alcohol and water!?.

The addition of water to the solution of potassium iodide and potassium bromide in
methyl alcohol cannot influence the curve in such a way as to"change its shape very
much, because the ions of these simply built salts will be scarcely inclined to form
complexes with the strongly associated methyl alcohol. In any case the conductivity
was not much changed because of the addition of water.

Discussion of the Current Voltage Curves

The current voltage curves in alcoholic solutions show a single sharply pronounced
characteristic bend. In aqueous solutions two distinctly different bends were estab-
lished of which the one with the lower voltage does not go along with a visible
decomposition which is unmistakably the case with the other one.

The values for the discharge potential were found to be very much lower in alcohel
than those in water. Other studies on pyridine solutions have yielded much higher
values than the ones for an aqueous solution. Mueller states 3.8 to 4.0 Volt to be the
decomposition voltage for a 1 N lithium chloride solution in pyridine. For a 0.1 N
solution he states it to be 4.5 Volt. Patten and Mott found 4.0 Volt and 4.15 Volt to be
the total polarization potential of the cell in pyridine and acetone solutions respec-
tively. In contrast, the value for 0.1 N lithium chloride in methyl alcohol was found by
us to be only 1.2 Volt.

The decomposition voltage for substances studied here show the same sequence in
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a methyl alcohol solution as in an aqueous solution. They decrease steadily in the
sequence of LiCl, KBr, HCI, KI.

Summary

1. Current voltage curves were obtained for potassium iodide, potassium bromide,
lithium chloride and hydrogen chloride in pure methyl alcohol. The decomposition
voltage was determined ; the curves were compared with those for aqueous solutions.
2. It was established for lithium chloride that even the presence of traces of water
changes the shape of the decomposition voltage curve.

3. It wasseen that the values for the decomposition voltage in solutions of pure methyl
alcohol are lower than those in aqueous solutions but show the same sequence, namely
descending from lithium chloride to potassium bromide, hydrogen chloride and potas-
sium iodide.

References
(rearranged sequentially)

1) Journ. Phys. Chem. 8, 153 (1904) ; 12, (1908).

2) Monatsh. f. Chemie 43, 75 (1922).

3) Monatsh. f. Chemie 43, 429 (1923).

4) Proc. Roy. Soc. 443 A, 486 (1925).

5) Journ. Phys. Chem. 18, 729 (1914).

6) Journ. Phys. Chem. 21, 275 (1917),

7) Parkin, Practical Methods of Electrochemistry (Since the book is no more accessible
to me, I cannot give the page number).

8) Eigenschaften von Systemen mit elektrischer Leitfahigkeit (Properties of Systems with
Electrical Conductivity.), pp. 176-184 : Conductivity of Electrolytes in Mixtures of
Solvents.

9) loc. cit.

10)loc. cit.

11)Kraus, loc. cit.

English translation of Z Phys Chem 125, pp. 442-451, 1927 (Johnson Reprint Corporation, NY).



Beryllium Spectrum in the Region X 3367-1964. By S.N. Bosk, Professor of Physics, Dacca
University, and S.K. MUKHERIEE, Assistant Lecturer in Physics, Dacca University*.

[Plates I1. & IIL.}

HE beryllium spectrum is remarkable owing to the small number of lines that have been observed in

T the visible and the ultra-violet. The earlier measurements are somewhat conflicting. Exner and Haschek

could not find some of the lines observed by Rowland and Tatnall ¥. Glaser } investigated the spectrum by
sparking between the metal tips, but he also could not corroborate the earlier observations.

Recently Millikan and Bowen § subjected the spectrum to a thorough analysis by their method of hot
spark, and extended it up to 1943 A.U. They classified some of the important lines, and gave the term values
both of Be IT and Be I.

It was with a view to study the spectrum thoroughly, under different conditions of excitation, that the
present work was undertaken.

The instrument that we have used almost exclusively for the work is Hilger's Quartz Spectrograph, type
E 1. In the near ultra-violet between the regions 2400-1850 it is almost an ideal instrument for spectrum
analysis, combining a high dispersion with a high light-value. We have extended our observations to the
visible region; but here, because of the low dispersion, the measurements were not more accurate than by
"1 A.U., though we could very easily identify the lines and thus verify the observations of the previous
workers. ' _

Most of the observations were made on the arc spectrum, and obtained by feeding the nitrate or the metal
in a carbon arc. We have used both ordinary and Hilger's extra pure carbon rods, and the presence of traces
of iron has been an advantage in furnishing suitable standard lines in the different regions. In the extreme
ultra-violet we have used copper arc and spark as comparison spectra, and in some cases the silicon lines
almost always present in. carbon spectra were helpful in making accurate measurements.

The plates used were IIford Empress and Ordinary up to 2175. In the extreme ultra-violet we tried
sensitization with machine oil, but the lines were a little broad. As our aim was to resolve very narrow
doublets, we could only get the best results by using Schumann plates as supplied by Hilger.

The materials used were, at first, certain old samples of beryllium nitrate and metal from Merck's, which
were found to contain lead, aluminium, and silver as impurities. Later, owing to the kindness of Professor
Mark, of Badische Anilin Fabrik, we were enabled to get a different sample of the metal. But this was found
to contain traces of rare earths, notably scandium and yttrium. By a comparison of the different samples the
lines due to contamination were eliminated, and we give our results tabulated below (vide Table 1.).

As may be seen, we could go almost to the same limit as Millikan and Bowen by their hot-spark method,
and, incidentally, we have discovered that the following lines, 2351, 2175,2126, 2056, and 2033, given as
singlets by Millikan and Bowen, are clearly doublets of approximate wave-number difference 2.6. Most
probably these are triplets due to the triplet P-terms, and our spectrograph could only separate Py from P>
+ P3. The wave-number difference thus measured is the distance of P from the centre of gravity of P»- and
P3- lines, and as such has a slightly higher value.The lines 1998 and 1964 just appeared-as doublets, but owing
to their hazy character the measurements of the doublet separation were not possible. We could verify the
earlier measurements of Rowland and Tatnall as well as the line of Glaser, viz. A 4672°9. Incidentally, we
have discovered a few new lines whose wave-lengths are given in Table 1. The line 3019 appeared as a
doublet, the line 2986 as a triplet, and the lines 3110 and 2738 as singlets.

* Communicated by the Authors.
+ Kayser, Handbuch d. Spectro. vol. v.
1 Glaser, Ann. d. Phys. (4) Ixvii. pp. 73-88 (1922). § Millikan and Bowen, Phys. Rev., Aug. 1926.
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We have made some observations by feeding a fair amount of metal or the salt in the arc, and we could
observe that the lines 3321, 2651, 2494, and 21’25 with their components were reversed in some cases, thus
showing that the p-level is probably the common origin of the lines as classified by Millikan and Bowen. In

rare occasions, however, the line 3131, usually attributed to Be II, could be reversed. The line 2348 (1S-2P)
is always reversed in the arc.

We have tried the spark spectra in air, where, owing to rapid oxidation, we could make very little progress.
We have also tried sparking between the tips of the metal, enclosed in a partially evacuated vessel with quartz
window; and even then we could not go beyond 2175. In this way,however, we have got an interesting band
spectrum, which we believe to be due to beryllium and which consists of bands degraded to the red. The fine
structures of the band have not yet been measured, and we give in Table II. the measurements of the edges.

There does not seem to be any line of Be between 4700 up to the extreme red. We are now continuing
the work in the infra-red, and hope to be able to corroborate the solitary work of Theo Volk * in the region.

The following table gives the wave-lengths (in La, vac.) of the lines between A3367-1964, with the
frequency difference between the componenis, and also the lines (in I.a) of Rowland and Tatnalll, together
with the few lines marked * observed by us as new :—

TABLE L

Bose & Rowland & Bowen &
Mukherjee Tatnall Millikan v
I a. 1. a, vac.

3367.55 3367.579 - -
*3110.91 - - -
*3019.54 - - -
*3019.33 - - -

2986.63 -

2986.44 2986.426 - -

2986.08 2986.057 - -

2898.26 2898.242 - -
*2738.08 - - -

2351.40 } - 2351.50 2.50

2351.54

2175.712

2175.84

2126.30

2126.42

2056.65

2056.77

2033.23 . 2033.43 2.66

2033.34

1998(a) - 1998.19

(a) - 1964.81

- 2175.72 2.64

- 2126.57 2.66

- 2056.71 2.60

The lines marked (a) appear in plates, but their measurements are unsatisfactory owing to the absence of standards in this region.

*Dissert. Tiibingen, 1924 (Dresden bei Teubner). 17 pp.
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Bosz & MUKHERJEE. Phil. Mag. Ser. 7, Vol. 7, P1. IL.
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A. Carbon arc fed with Be Salt.
B. Iron are.
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Bosk & MUKHERJEE. Phil. Mag. Ser. 7, Vol. 7. P1. I11.
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In the accompanying plates (Pls.II, and II1.) I. and 111 are contact-prints from Schumann plates; I1. and IV,
(a) are microphotographic enlargements for showing the fine structure; 1v., contact-print from ordinary plate;
v. and VI. are slightly enlarged prints to show the new lines.

The following table gives the wave-lengths (in I.a) of the edges of the band; those marked (a) are fully
developed with their fine structures:—

TABLE II.
| SR 2474.2 6.t 2285.8
2(a)...... 2446.0 Tvevvnnnes 2260.8
3(@) ... 2419.2 . SO 2238.3
4 (a)...... 2325.1 9 2221.7
5() ... 2299.4 10(a)..... 2189.0

Reprinted from Phil Mag Ser 7, 7, pp. 197-200, 1929 (Taylor and Francis, London).
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TENDENCIES IN THE MODERN THERORETICAL PHYSICS.

The ultimate aim of Scientific inquiry is to arrive at a
minimum number of hypotheses which will explain the maxi-
mum number of facts. The hypotheses should obviously not
contradict one another. At the present moment, however, we
see two contradictory theories, in the domain of Physics. On
the one hand we have the classical theory based on the dyna-
mical laws of Newton. On the other hand we have the Quan-
tum theory first introduced by Planck, which has been differently
formulated by different Scientists; while the Classical Theory
explain satisfactorily all problems relating to motion and inter-
action of big masses as well as the problem of propagation of
radiation, the Quantum Theory has succeeded with the help of
a few principles in co-ordinating a large amount of experimental
material ascumulated in the various domains of spectroscopy,
X.-rays, ete. It has succeeded best in all problems dealing with
the ultimate constitution of matter, or in problems dealing with
the interaction of matter with radiant energy. As a result of
work of the last twenty-five years, we seem to be much nearer
to understanding the problem of matter. The periodic classifica-
tion of Mendeljeff does not now appear.as an unexplained
riddle and the huge amount of spectroscopic material can now
be classified and explained with the help of a few fairly simple
principles. The task that faces the Physicists to-day is how best
to harmonise the seeming discord of the two theories, which are
at the present moment utilised to explain the physical pheno-
mena. It is a difficult task, and the first step towards fulfilment
will be to place i a clear light the differences that characterise
them : for this purpose it is necessary to trace the history of
the development of our physical ideas indicating the various
points where fresh hypotheses had to be introduced bhefore the
next move towards progress could be made.

Theoretical Physics may be said to have begun its
career as a Science with the formulation of the famous laws of
motion by Newton. The mathematical formulation of this
principle leads to a series of differential equations in which we
equate certain quantities which depend upon the state and
nature of the body under investigation with certain other
quantities which we interpret as forces arising out of the
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interaction of other bodies. The solution of these differential
equations introduces a certain number of arbitrary constants
which depend upon the initial state of the system investigated.
These constants once known determine completely the subse-
quent history of the system under observation. Newton’s
original equations involved the use of the cartesian co-ordinate
system, but very soon these equations were transformed into a
form in which the arbitrary character of the co-ordinates was
removed, and finally Hamilton and Jacobi introduced the
characteristic function, which reduced the problem of solving the
equations of dynamics to the solution of a single partial
differential equation. Simultaneously, with the help of the
concept of the Variational Calculus, we arrived at the celebrated
Hamilton’s Principle, by which the whole problem of dynamics
was reduced to the problem of making a certain integral an
extremum, within certain suitable limits.

The writing down of the set of differential equations, or
of the single-partial differential equation of Jacobi requires how-
ever the knowledge of the laws of interaction of various bodies
on one another. The exact formulation of these laws seem
therefore to be the immediate aim of the earlier classical
Physicists. These laws once known allow us to apply to any
problem the general dynamical methods, whereby the problems
of Physics are reduced to problems of pure mathematics. 1In the
laws of gravitation, in the law of Coloumb and of Ampere, we
have some classical examples ; in every case it is endeavoured
to express the force in terms of the relative co-ordinates, and
the velocities of the interacting masses. ,

The laws of dynamics were originally formulated to ex-
plain the motion of observable bodies. When with the progress
of knowledge the discrete nature of the constitution of matter
was evident, the natural endeavour has then been to extend to
those ultimate particles (the atoms, protons, electrons), the same
dynamical laws which have been so successfully applied to the
study of big masses. As the aim of Physics is to explain the
observed physical phenomena, in terms of the motion of the
ultimate particles, a consistent application of the dynamical
methods has been responsible for the whole structure of classi-
cal Physics.

Before the methods of classical dynamics could be applied
important developments in two directions had to be made. The
problem of specifying the law of interaction of the different
particles, when we have to take account of the immense number
of the constituent particles raised difficulties which were re-
solved and the problems made more amenable to analysis by
the introduction of the conception of the Field. It was dis-
covered that instead of basing the description of interaction on
the various laws, (tormulated on the action-at-a-distance basis),
a much simpler and a better treatment could be obtained by the
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introduction of certain auxiliary magnitudes—The scalar or
the vector potential, or The Electric or Magnetic intensities.
These quantities vary with the position in space, as well with
time. The characteristic functions determining the field were
found in the case of electro-magnetism to satisfy a certain
linear set of partial differential equations, whereas the relation
between the magnitudes introduced, and the reacting masses
may be expressed by a certain type of equation of the second
order. These auxiliary magnitudes thus came to be looked upon
as having their seat in a hypothetical medium which was
postulated to pervade all space, and the partial differential
equations which connect them came to be looked upon as related
in some way to the physical properties of the hypothetical
medium, the Ether. By the introduction of the concept of
energy and momentum density, the abstract conception of ether
seemed to gain in substantial reality. This was further
strengthened when it was shown that it was possible to bring the
partial differential equations in line with the usual dynamical
equations, in as much as they appeared to be deducible from
the Hamilton’s principle if certain quantities were identified with
the potential and the kinetic energies of the medium. Thus we
come to the classical conception of Ether, and the electro-
magnetic equations of Maxwell which served as the starting
point of the modern Electron-Physics. Gravitation, however, did
not immediately fall in line with the other field theory, until
the formulation of the generalised Relativity-Principle by
Einstein. Of this we shall have occasion to speak later on.
There was however another difficulty which stood in the
way of immediate application of the classical methods to the
problems of Physics. The dynamical laws seem at first ap-
plicable to the motion of the ultimate particles, which them-
selves however always escape direct observation. What we
observe is to be looked upon as the resultant of a large number
of elementary events; and the measurable microscopically
sensible magnitudes cannot also be regarded as determining
uniquely the component microscopic elements. Thus, from the
classical standpoint, the necessary magnitudes for uniquely cha-
racterising the state of the system remain largely undetermined,
and the Physical laws connecting observable things cannot be
regarded as immediately deducible from the dynamical laws, at
any rate without the introduction of further hypotheses. The
method of statistical mechanics was developed to tackle this
fundamental difficulty. The earlier method consisted in re-
garding the ultimate particles as practically independent systems.
Each system is characterised by certain values of co-ordinatesand
momenta. Under their mutual interaction, Space and momenta
cordinates of the individual systems are supposed to vary within
certain limits, The actual physically observable magnitudes
are determined by the distribution of the systems among the
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different physically possible states. Mathematically this dis-
tribution is visualised by the distribution of the representative
points of the individual systems in a phase space, which is sup-
posed to be decomposed into a certain number of elementary
phase-cells. The actual position of any particular represen-
tative point inside the phase-cell, is supposed to have no effect
on the value of the phenomenologically observable magnitudes.
The equilibrium-state of a physical system can thus be related
to a particular distribution of the representative points in the
phase cells which occurs most frequently, or remain longest
during the period of observation. By this way the important
physical idea of entropy can be connected wtih the probability
of distribution in the Phase-Space, and important Thermodyna-
mical laws can be looked upon as certain statistical laws which
are necessary consequences of the very large number of individual
components. When the results of classical dynamics are
combined with this concept of statistics, we get certain very
general laws, regarding the partition of energy. Though at
first, these results seemed to agree with the facts observed,
subsequent and more exact experiments have shown them to be
erroneous.

I bave already referred to the equations of classical mecha-
nics which determine the motion of a material particle, as well
as the field equations, which connect the vector magnitudes
serving to describe the electro-dynamical field. Though it was
attempted to bring these equations in line with the dynamical
laws by showing that they also can be deduced from Hamilton’s
Principle, a fundamental difference between the two sets of
equations was clearly brought out during the early part of this
century.. The dynamical equations of Newton possess an in-
variant group of transformation, the Galilean Group, which
expresses the equivalence of all inertial systems as frames of
reference for the desoription of motion. The field equations
of Maxwell however, have a different invariant group, the
Lorentzian group. The space and time co-ordinates enter
symmetrically into these equations, or rather the space-time
symmetry can be brought out by introducing after Minkowski
an imaginary time ict., as the fourth co-ordinate. The Lorent-
zian group of transformation can be represented by a rotation
of axes in a four dimensional orthogonal space, which leaves
the invariant distance unaltered. By extending the con-
ception of vector quantities of the usual three dimensional space
to four dimensions, the field equations can be given an invariant
form. The recognition of this formal equivalence of the time
and space co-ordinates ushers in the ideas of relativity. This
equivalence now-a-days is regarded as axiomatic, and furnishes
a test which all physical laws have to satisfy in order to be
exact. By generalising this conception further, and by giving
up the condition of orthogonality Einstein was able to present
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a field theory of gravitation. The two different field theories
have however remained essentiaily distinct though attempts
have repeatedly been made to fuse them into one single
unitary theory.

I have now indicated to you the principal steps by which
the classical theory arrived from its first elementary stage to the
present developed state. I shall now tell you of the difficulties
that arose successively and which led to the formulation of the
quantum theory. The conceptions of energy and momentumn
have been early deduced from the dynamical laws and have
played very important roles in the subsequent development of
the Science. For example the Hamilton-Jacobi differential
equation requires for the mathematical expression the writing
down of total energy of the system in terms of the momenta,
whereas the integrand in the Hamilton’s Principle is the
difference between the potential and the kinetic energy of the
system. The introduction of the concept of enecrgy seems
necessary for the applicability of the general dynamical laws,
and we have seen how the field equations can be made compatible
with the dynamical laws by interpreting a certain magnitude as
the energy-density of Ether. As a necessary corollary to the
equations however it follows .that there will be a continuous
interchange of energy between the uitimate particles composing
matter and the surrounding radiation field. The principle of
equipartition of energy which follows as a necessary consequence
of the.idea, leads us however to entirely wrong results when
applied to the problem of equilibrium of radiation-field with
matter. In order to explain the distribution of energy-in the
black-body radiation spectrum, as well as to explain the problem
of generation of radiation we have been compelled to _make
certain assumptions regarding the constitution of the radiation-
field, and about the equilibrium states of material particles,
which directly contradict our classical ideas. This has led to
the introduction of the Quantum theory in Physics. The

energy in the monochromatic radiation field, has to be assumed.

to exist in definite quanta. The study of the constitution of
matter has led us to the conception of the atom as a compara-
tively stable structure built out of the nucleus and electrons.
These electrons according to the earlier formulation of the
quantain theory are to be supposed as rotating in certain
characteristic orbits ; whereas such a constitution on the classical
theory will necessarily continually radiate and lose energy, we
bave to assume here that such a structure keeps generally intact
its energy-content and also that there are a series of discrete
radiation-free states characterised by a discrete series of values
of the energy content. An interchange of energy can only take
place, when the atomic system passes from one distinct state to
another resulting in an emission or an absorption of radiation.
The passage of the atom from a higher energy state to a lower is
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associated with an emission of a monochromatic radiation whose
frequency is given by the relation

W,—W’=hn.

where W, and W’ are the characteristic energies of the two
states.

Modern development of spectroscopy seems to indicate
that the state of a system may be defined by the introduction of
certain sets of quanta members, each set being associated with
a definite constituent electron of the atomic system. No two
electrons of the atomic system may have the same group of the
quanta-numbers, and the successive building up of the different
atoms may be looked upon as a gradual increase in the number
of electrons in the outer orbit, each electron coming to occupy
a place characterised by a different group of quanta num-
bers.

These few principles which are so contradictory to the
ideas of classical dynamics have proved to be invaluable in the
development of modern Physics. To them we owe the scientific
classification of the spectroscopic terms, explanation of the
Periodic classification, etc., etc. The direct and simple way in
which the different problems, which have long baffled the attempt
of classical physics, find their explanations in the new theory
shows that it contains a large element of truth, and the most im-
portant problem of the present time is to find a way of re-
conciling the two theories. It has become evident also that no
one theory will be able to entirely replace the other. For
example the conception of the field, which has been developed
originally from the classical standpoint, seems to contain also
a great element of truth. The large mass of experimental
material connected with the problem of propagation of radiation,
seems to find in the field theory a very simple and direct expla-
nation, which appear so difficult to explain from the Quantum-
theoretical standpoint.

The solution of the dilemma seems to lie in suitably
uniting the field and the quanta-theories, which will ultimately
form a more general theory of which the two theories may
then be regarded as limiting cases. We have in recent years
already some indications of tentative attemptfs in the same
direction. One may attempt to visualise the radiation-field as
simply determining the interaction of the different particles and
give up the classical concept of energy and momentum-density
in Ether. Consistent with our ideas of the quantum theory we
may regard that the energy in the field is only discretely
distributed throughout the space, (somewhat after the ideas of
J. J. Thomson). The motion of these quantas of energy may
be supposed to be guided as it were by the field, and it may be
supposed to take place along the direction of the Poynting
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Vector. The same field which guides the motion of the quanta
may be also supposed to control the motion of the electrons in
the different orbits. The nature of the field itself should be
determined by some equations depending upon the distribution
of the charges. Such a field theory will have as its task the
explanation not only of the fundamental relation E=hv, but
also of the occurrence of the discrete quanta-states and the
different quanta-members.

That the idea of discrete energy-states is not inconsistent
with a continuous ficld-theory seems to follow from the recent
developments of the wave-mechanics (Schrodinger, Dirac).
In the classical theory. the impossibility of the existence of
stationary electron-orbits follows from the result that an
accelerated electron gives rise according to it to an electro-
magnetic field such that the surface integral of the Poynting
Vector at a great distance does not vanish. The result is
interpreted as indicating a continuous loss of energy from the
moving electron which makes stationary orbits impossible. One
can think however, that if there are other electrons present the
resultant field may be such that the electron may in the average
gain as much energy from the surrounding field as it loses by
radiation, or in other words the resultant electro-magnetic field
due to all the moving electrons may be such that the integral
of the Poynting-Vector vanishes. Such a hypothetical solution
of the field-equations which make the field vanish at infinity
may be thus likened to a stationary vibration rather than to a
divergent wave-train. Itis clear, however, that the distribution
of the charges will have to be suitably made and their motions
definitely related in phase with one another in order that such
a thing may be possible. The electro-magnetic field may then
be supposed to be in resonance after de Broglie. What
Schrodinger succeeds in establishing may be likened to finding
exactly such a law of distribution of charges. The quanta
conditions then may be fittingly compared with the resonance
conditions. Dirac seems to have succeeded in deducing a set
of four linear partial differential equations which correspond to
facts more closely. The four functions or rather eight of them
give us the distribution of the hypothetical charges and currents
in the electro-magnetic field necessary to establish resonance-
conditions. The field itself in these two theories determines also
the distribution or rather the statistically equivalent distribu-
tion (in space as well as in velocity) of the charges in the
field.

One may hope that the final solution of problem may be-
found and the proper set of equations which will determine the
radiation-less field may be determined with the help of the
ideas of the generalised relativity theory. If an unitary field’
theory which could explain gravitation and electro-magnetism
could be found, one would hope to obtain thereby not only
the solution of the quanta-problem, but perhaps also of a more
fundamental problem, the relation of charge with gravitational
mass, and explanation of the difference in mass of the proton
and the electron.

Reprinted from Proc Ind Sci Cong 16, pp. 55-62, 1929 (Asiatic Society of Bengal).



ON THE COMPLETE MOMENT-COEFFICIENTS OF THE
D>-STATISTIC.

BY SATYENDRA NATH BOSE
PROFESSOR oF PHYsICS, UNIVERSITY OF DAcCcCA.

The D2-statistic was defined by Mahalanobis! to measure the divergence between
two statistical populations, and the moment-coefficients were also calculated by him
by approximative methods. Rajchandra Bose? has found the exact distribution of
the D2-statistic* which can be expressed in terms of Bessel functions. He has wused
the actual distribution function to obtain the moment-coefficients, and has shown that
the results previously obtained by Mahalanobis are exact. In the present note a
recurrence-formula for the D?-statistic has been obtained directly without assuming

the distribution, and certain properties of these moment-coefficients have been
investigated.

2. Let (a,, @y, .... ap) and (a], a;, .... @;) be the observed mean values in two
samples I, and I, of size », and n, respectively drawn from two normal p-variate
correlated populations with mean values (a,, @, ... a,) and (a], a;, ... a,) respectively.
The distribution of the differences in observed mean values (a,—aj, a;—ay, ... a,—a;)
can be written in the form :—

- —’%[Bll{(al—ai)——(al—a;)}2+ . 2B12{ (@ —af) —(@1—ay)} {(a2 —ap) ~(az—ap)} + ... ]
Const. Xe
x d(a,—ay), d(@—ay)...d(a,—ay) . (20

where g and B (1,j = 1, 2, ... p) are certain functions of the population variances
and co-variances whose values have been given by Rajchandra Bose® and

2 1 1
Then the D2-statistic is defined by
2
2 — D2 _ "
D? = D? - ... (2.31)

* In this paper p and n have been used in the place of P and » in the earlier papers of P. C. Maha-
lanobis and Raj Chandra Bose. The D2-statistic was intended to be and was defined as a quantity deter-
mined entirely by the sample values of the variates. Raj Chandra Bose has investigated the exact
distribution and 8. N. Bose the moment-coefficients of a modified form of the D2-statistic in which the
population values of the variances and co-variances have been substituted for the corresponding sample
estimates.—Editor, Sankhya.
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1 ,

The population value of D? is A? which isdefined by

1 6j=P ) )
7 S, Blos—ai)ey—aj)] .. (24)

Az —

3. If we put
(@;—a;) = x;, and (g—af) = §;

we can write

D? = 2B [B125+Pagx2+ ... 2015220+ ...] . (3.1)
A“=;%[A&Hﬁm%+~ﬂ%ﬁéﬁ~4 . (3.2)

If we now use a linear transformation which changes the quadratic form
J_

Qﬁu (Birx;) to (Fi+y5+ ... y3) o (3.3)

then the same transformation will change

1 4=
= 8T (BEE) to (BHmEt .2 . (3.4)
2#*}1

where (7;, 1, ... 1,,) are connected with (&;, &,, ... &,) by the same linear transformation
which connects (y,, ¥,, ... ¥,) and (xy, %,, ... 2,)

Also %’."Sap(ﬂ,-jx,-ij) will be transformed to (y,m+¥m,+...Yp7p) ... (3.5)
1,j=1

We can then write
1p-Df = yi+yi+ ...y2 e (3.8)
1p- A% = ni4mi+ ... 9 - (3.7)
Equation (2.1) can then be written in the form :—

~"P [D}+42~2D1. A cost)
Const. X e xXdv .. (3.8)

where dV = dy,, dy, ... dy,
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4. Let p/(D}) be the k-th raw moment of D%, and let

Mk=

- - ”T” (D3+83~2D;.A cos 0]
I Dfte 14
]

where the single sign of integration stands for the p-fold integration.

Then m(DY) = C.M,
we also write npld =14
b —t(D34+A2—2D,.A cos 6)
and My= [ D¥e ' d
0
Then
oM, —(tD§+A?—2D,A cos 6)

Sa = —2 [ DiA—Dscos O)e av

oA

—HD AT~
= —20A-M, 42t [ DF*1-cos 6 - e {Dj+A1—2DsA cos 0) .,

Again
Wk — — [ DEDI+AI—2D, - Acosp)e ™" P20 gy
A[OM
= —Mk-l'l—A’ * Mk+—t- [ﬁh+2t . A . Mk]
Therefore
A M, oM
Myn =0 Mt 58 ~ a0

6. Now actually

a
My = [ e~Mn=m0+ Gammdt =) gy, ay, ... dy,
]

m\P/2
)
Therefore
oM, _ _ pmpP* _p-(a)f* _p-M,
at ~— 22)PHIA T ) FHA T g
My _ g

(4.1)

(4.2)

(4.3)

(4.11)

(4.4)

(4.41)

(4.5)

(4.51)

(4.6)

(5.1)

(5.2)

(6.3)
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Also #o(D}) =c- M, =1 and therefore

¢ = (1%)"' . (5.4)

We can use the above initial values to calculate M,, M,, ... M, etc., and hence
with the help of equation (4.2) obtain the raw moments (about any arbitrary origin)
of D?* which can be written in the form :—

, t \7/2
pD?) =(_) M, .. (5.5)

n

6. It will be convenient to use new variables
u=A2 and s=1/t .. (6.1)
Equation (4.6) can now be written as

B g O

My ,=u " M+4us 38

(6.2)

Remembering that M, = {m - 8)*/2, we note from the form of equation (6.2) that M,
is a homogeneous function of order (k4 4p) in v and s.

Therefore
oM, oM, oM,
M, = uwM42us _61-; +2s[ X4 s a:]
oM, ,
=u-M+2u-s- e +2s(k+4p)- M,;, by Euler’s theorem ... (6.3)
Thus
oM
M, =[s2k+p)+ulM +2u.s. au" ... (6.4)
Writing briefly u; for u;(D?), we have
, M
M = W (6.5)
Equation (6.4) may now be written in the form :—
: : o
Prr1 = [8(2k+p)+ulus+2u - 8 i v ... (6.8)

This is the fundamental recurrence formula. We notice that y; is a homogeneous
function of the k-th degree in s and .
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The general expression for y; can be easily obtained.
P = Cpr ubtc,_y o uble g4, o S¥ . (1.1)

Then from equation (6.6) we get
Hir1 = Cpuf*1tcpy H(p+4k)eJut: s+ e g+ (p+4k—2)c o JuF 1 824

+eo+(p+2k+2)0;Tu. 8 +(p+2Kk)co. 8+ .. (1.2)
From this equation we can immediately write down the coefficients occurring in
Hi —
Hoeereonnns 1
Hleeeennnns Lp

Honeernnnnn 1, 2(p4-2), p(p+2),
Hieovenne. 1, 3(p+4), 3(p42)(p+4), Pp+2)(p+4) ete.

Lre{p+2(k—1)} {p+2(k—2)}...p]...... e (1.49)

Remembering that v = A2, and s = 1/2¢{ = 2/(np) we finally obtain the general formula
for the k-th raw moment-coefficient :—

. 2.k 2k—2 2.k —9 o
pD}) = A% Cl(p:;) k=2) w2y 2 c2(1"4"2’:&2?2)(1% k—4) | au

k —_— ———
2*. (p+-2k 23&;;? 4) ...(p+2)p .. (1.8)

+ot

=Lt. A*.F (’—k; —k—}p+1;a; (7.6)

4a)
a—> o

npA?

The two formulae (7.5) and (7.6) are in agreement with the results obtained by
Rajchandra Bose? in equations (8.9) and (8.91) on p. 152 of Sankhyad, Vol. 2, Part 2.

8. It is clear from the preceding considerations that u(D?)’s, whose recurrence
formulae have been calculated, belong to a Gaussian distribution in p-variables;
it may be therefore interesting to deduce certain mathematical properties of these
functions.
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We start from the recurrence formula
Misr = [8(2k+p)+uluz+ 2us %’;—’; e (6.7)
Putting u; = (2s)* - Y (u/2s) and using x = u/2s as the new variables, we have
Yin(@) = [(k+3p)+alyulz) +-ay(x) .. (8.1)
Multiplying by e?. 2¥+#-1, we have

o Yy (0) = (e )]

or e*- ¢ty (x) = 2% (% [e*- ak+iPyr(x)] ... (8.2)

By regular descent, since ¥y(x) = 1, it follows easily that

e* - 2HPY(r) = (x2 -’%)k[e" * 2] e (8.3)

which may be regarded as a solution of the recurrence formula.

If we put ¢t = 1jxz = 2s/u, we get,
= (29)F. Yp(@) = (2st)*. e~V . ¢P (——i> [t/ - ¢-#7] ... (8.4)
which is identical with (8.6) in Rajchandra Bose’s Pa,per."

Starting from the equation (8.3) and denoting by y, the expression e*x#?, and

by D, the operator x? 4

e easily find that y satisfies the differential equation

1
—i

= ( p- ;1—+1)y-

Operating on both sides of this equation by D**! and remembering that D%y
= Yri(x) one easily finds that y,(x) satisfies the differential equation

2 SV (pta) r kg =0 .. (8.5)

If Yi—z) = (=1)* - fi (@),
fr (x) satisfies the differential equation

x ‘fiZI; +(%p——x)—%k-+kfk=0 ... (8.8)
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The solutions are easily seen to be polynomials of order k, when k is an integer,
and these in case of (8.6) have been studied by Sonine, Gegenbauer, and others. The
differential equations have also been studied by Whittaker and others, and give rise
to solutions of the confluent hypergeometric types.

9. There is an alternative method of arriving at the differential equation for u’,
which is here appended as the method is capable of wide generalisation.

The Gaussian distribution function

1 —Z(zr. . yr)2/2t

F = W. , wherer =1,2,3,...p

can be easily seen to satisfy the differential equation

BF  9°F 0*F oF
—a-x—%—-*—wz—-’-...‘}—w: 25{ e (9.1)

where instead of (z,, %, ... Z,), we may also take (y,, ¥; ... y,) a8 variables.

The expression e~ 1@ ¥ % genoted by F also satisfies the differential

(2nt)ir *
equation
0*F = 0°F d oF
o +'3§§_ Frenes +—5g}; = 2W e (9.11)

Now, since this differential equation is linear which-means that if ¥, ¥,, ... eto.
are each a solution of the differential equation then ¥, +4y,+... ete. is a solution of
the same equation, and since an integral is nothing but a sum, therefore,

1 - -
V(Y Yoo oon Ypo b) = I Hzy, @y, ...2p) - (2”—”";- ¢ 2 (xr—yn)?/2t dxy, dxy...dxp) ... (9.2)

1

hi . .
which consists of a sum of terms like ———( Pyt

e EErmUN oo oh satisfying the dif-

ferential equation and each multiplied by a term like ¢z, 2, ... x,) - dz, d, ... dz, not

depending upon the independent variables the y’s, is easily seen to satisfy the
equation (9.11).

Therefore

. 1 —N(zp—
MYy Yz - Yps 1) = I (i +23+...25)F - Cmy » TSy Xdz,. dz,...dz, (9.3)

also satisfies the same differential equation.
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An orthogonal transformation of (z’*) and (y™) will not change the integrand;
also making a transformation

N 3 ey
I o o4

multiplies the integral by A%*. Hence
By Yoo - Ypr 1) = i +E+... 43, 1] o (9.41)
Putting vi+yi+ ...y = R? . {(9.42)
it follows that Wk (Y1 Yas .- Yp, B) = pa(R2, 1) ... (9.5)
also i (AR, At) = b (RE, 1) ... (9.51)

or y; is a homogeneous function of (R?, t) of the kth degree. Therefore p; is a homo-
geneous solution of the kth degree of (R2, ) alone of the equation (9.1). Making a
change of variables to R and angle-coordinates in a p-dimensional space, y; is seen to
satisfy the differential equation

L0 [ O, 0u
B o B )= 2 e (9.6)

This transformation is seen easily as [12 - F = Div. grad F, and when F is a function
of R alone, the expression follows as the hyper-spherical element perpendicular to
R is proportional to R?-!. Thus

1 ] oF Pup  p—1 Oy Oz
e.p_ 1 0 [poa. _ . — o 9t
O F = 7 - g | &2 S R iy e (97)

Finally choosing R? = 2z, yy = (2t)* . Yri(x) . (9.8)

the differential equation of i, (x) is easily seen to be

T o) 2ty = 0 e (09)

x

whioch is identical with the equation (8.5)

10. The method sketched above enables one to calculate the moment functions
even when k is not an integer; actually however, unless k’s are integers, x;’s will not
be expressed by a polynomial but by an infinite series. The differential equation

itself determines all the constants except one, which can be determined from simple
considerations.
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I will conclude my remarks by deducing certain properties of the general differ-
ential equation, which will be useful for determining the form of the general distribution
function about which I wish to make some remarks in future.

Consider the equation

0*F  0*F 0*F 9 oF

2 T A —_—
O, F = 0x? + 6x2 T oz 7 ot (10.1)

Suppose ¥ is a solution of the differential equation, we then seek a solution of the
equation of the form F = ¢ . y.

Then
2 2 ox oy
V(05X =x (OR9)+2Dy, Dy =2 [ygf4x. 2 ] . 0
o YO X+ADYDY = 2T - (103)
. 1 —2ap/2t oy z,
Now if ¢‘ = W. e s then ax’ =——it'. ¢' ‘oo (104)

Therefore x satisfies the differential equation

2
(3 x = [zl af +, ax +. —|—t ] ... (10.5)

Suppose F(z,, x,, ... ¥, t) is a solution of the equation

oF
O3 F =25 ... (10.8)
Then Y@y, @, ... Ty, 1) = F(2y[t, 24ft, ... 2pft, —1]t) ... (10.7)

will satisfy the differential equation (10.5), for putting z, = z,/t, and ¢ =—1}¢, it
follows that

=V .. (10.8)
, 0
‘[’ + Za, 37’# S ‘;—f: ... (10.81)
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02 ¥— T[ % .. ] = 12 [D,? F— 2%1; ]=0 ... (10.82)

11. This theorem enables us to construct solutions of the fundamental differential
equation of the form

1 —Zz2

('2—7'“—)—*;.3 . H(”x’l x—s EZ —i> cee (11.1)

t’e’ ot ot

where H(z,, %, ... 7,,t) is a solution of the same differential equation (9.1).

We have seen that u,(R?, t) the moment functions, are solutions of the differential
equation (9.1)

= (20)F. Y (R2[2t) = 2t%. Yri(y) . (11.2)

where ¥,(y) satisfies the differential equation (8.4). Therefore,
=T T R S RT3 TR
""( Pt )"'( l)'t""‘&"[ 2t3(—1/t) ]
= (=1)*. 2t} Y(—y) .o (1L.3)

where (—1)%. ¥,(—y) = f(y) which satisfies the equation (8.5).

If y = Za%/2t, and (—1)* ¢ (—y) are the polynomials of Sonine-Gegenbauer,
it follows that

(2771t)h" eV (— 1. Yl —y) are solutions of (9.1).

12. A distribution function which satisfies the fundamental equation, and is of
a certain type can be written in the form

(27;)},; eV, [1 C,. ‘/’1( y) e (—1)E. C,. '/.f!(tT"l)_,_ ]where y = Sa2/2t

Certain orthogonal properties of the Sonine polynomials will be useful to recall here.
The functions Sy(x) = (—1)% C;. Y(—x) satisfies, we have seen the differential
equation

d S as
v tp—2) — k. 8 =0 ~e (8.5)
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which can be written in the self-adjoint form,

;5 ( i, %L:* ) vl e28, = 0 .. (12.2)

from which the orthogonal properties follow at once.
Taking two polynomials of orders k and ', we. have

(k—k') j et 2?1, 8, Sy dr =0 .. (12.3)
0
Hence if k#£Fk, I ez a1 8§, Spy.dx=0 ... (12.31)
[}]
also fe—z Lo SHa)dr £0=A =1 . (12.32)

]

since the arbitrary constant in the definition of the polynomial may be so adjusted as
to make 4 = 1, which we may call the normalised polynomials.

Suppose the distribution funotions to be ¢z, 2, ... z,,t) then the distribution
function in R? is obviously
R+dR
f My, 25 ... 2y, t)dey ~day ... do, .. (12.4)
R

taken between the hyper-spheres of radii R and (R+dR).
It will take the form

A - (R, t) - RP-1-dR = (D, t) - Di?-1-dD when D = R®. .. {(12.41)

We shall call ¢'(D, ¢) the distribution function, when the number of variables
is p.

Then [ (D, t) - D¥-1-dD = 1 .. (12.5)
0
j D*. (D, t). D¥?-1.dD = p(t) .. (12.51)

0

It is also clear that if y = D/2¢, then substituting the expansion of S, (y) which can be
easily obtained from the differential equation or from the expression for yz found before,
we get
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[ (@0F - 8yu)- WD, 1). D1 ap

@®

=, [ [D—kap+i—1) D1 @0+ D otk 1)pt+h—2) D2 (2t
0
+...] X¥(D, 1) - Diz-1. aD .. (12.6)
=0,=[,L,; k(}p_*-k—}l,uk . (28)+ eto . ] .. (12.61)

This expression is thus calculable in terms of the moments of the different orders
up to k.

Assuming now

WD, 0 = oo [ 14+ 1 800+ G S+ S+ o (2)

and remembering that the above series is so chosen that each term, and therefore the
whole series, if convergent, satisfies the differential equation [_‘_1‘2,17’ = 20F/0t, we have:

[ w(D, 1) D1 2028yy)- aD

= | g T+ G2 S+ sen yr- dy
1
= (21”)}? * 2kAk

= o - FEEEZD oy HED gk 1yapet k-2 20+ 029)

From (12.6) since y = D|2t, we get finally

P
A, = (»212’—,} . O [,u,: M) P ] .. (12.9)
which determines the constants 4, in the distribution formula in terms of the moments.
Hence the distribution function can be calculated in terms of the moments. Rayj-
chandra Bose’s distribution function obviously can be put in the form indicated above,
the actual calculation would give interesting integral relations involving the Bessel
functions.
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INTRODUCTION.

In a previous paper! I have considered certain recursion formulee and relations
between the moment-coefficients of the DZ-statistic. Starting with certain further algebraic
identities between the moment-coefficients of different orders of the D?.statistic, I reach a
number of fundameontal integral and differential equations connected with the multi.
variate normal distribution. A number of solutions of these equations are discussed in

the present paper.

1 “QOn the Complete l\;I;n;nt-Coeﬁicients of the D2-statistic.”” Sankhya, Vol. 2 (4), 1936, 385-396.
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ALGEBRAIC IDENTITIES DEDUCED FROM THE POLYNOMIAL FORM OF THE
MOMENT-COEFFICIENTS OF THE D2-STATISTIC.

1. I start with the identities that exist between the moment-functions of the
different orders of the D?2-statistic, which can be regarded as the square modulus
statistic for a Gaussian distribution in p-variates.

It has been already proved? that

~Zp(zr—yr)2/2t

. e
pill2) = I(m%—{—z%-—l—...—{—:c%)". T av o (L)
where af a2l =12 ... (L.11)
and YiyE+.. yE = A2 (or u) e (L12)

and yu, is a homogeneous function of (A%, 2¢) of the k-th degree of the form? :
mll?) = FE+klk+p/2—1) - B(20) 4.

T(k+1) - T(k+p/2) - B"(20) T(k+p/2), .
T T ) TR+ 1—-r) Tk T p/2—7) Ty @ e (12)

It should be noted here that in (1-2) and in subsequent equations we are writing
M for p; and B for A? for convenience of printing.

+...+

It is easily seen by direct algebraical methods that

A (=1 Ii(lf—(;—/’ﬁ. (2 = B, e (L1.3)

So that the various identical relations between u’s involving p and ¢, which will be called

the identities of the first type, can be written in the form (B)¥' = (B ), or symboli-
cally, (k%) = 0. These identities can be written down by taking any two expressions

B, and B,., and their existence is self-evident from their form.

Also since B,’s are polynomials in p or in (2¢), by taking any three expressions
p* = B,, f® = B,, and f° = B,, we can eliminate (8, p) or (B,t) and thus arrive at
identities involving alternatively either x’s and t’s or #’s and p’s. These identities
can be written as

[abc], = 0, [abc], = 0 ete. .. (1.4)

where the suffix denotes the variable which has been eliminated in the process.

2 Sankhya, 2(4), 1936, p. 392, equation (9).
3 Sankhya, 2(4), 1936, p. 389, equation (7.5).
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Finally by taking any four of the expressions we can eliminate £, p and ¢, arrive
at relations between p's alone, which can be written as
fabed} =0 ... (L.5)

These idential relations are interesting, and may be regarded as characteristic
of the modulus distribution of the Gaussian type.

Direct algebraical computation will easily verify the following typical relations :—

2pt2— 4ty H(pg—p?) = 0 ... (L.51)

[123], = 8pyt+ 8t — o) +(a—Bpapta+-213) e (1.62)

The expression '(1234) = 0 is more complicated; by taking B,, B,, B,, B,;, and
putting

Ay = ph—pa, Ay = p3—3pypa+24%
} .. (L.61)
and Ay = py—4apts—3p5 12050, —6ui

the existence of the following two quadratic equations can be proved,

8 t2+8A,t+ Ay = 0
} . (1.62)
and At Ag—A,12 = 0

from which the bracket (1234) = 0 follows as the ¢-eliminant of the equations.

ALGEBRAIC IDENTITIES DEDUCED FROM THE DIFFERENTIAL FORM OF
THE MOMENT-COEFFICIENT.

2. It is satisfactory to note here that the identities of the above type, which can
be arrived at by laborious algebraical methods, can be deduced much more simply
by the following analytical procedure, which furnishes the raison d’étre of identities
of the above types, and especially of the existence of the quadratic equations. This
method also allows us to investigate the inverse problem, namely, the nature of the
distribution function for the modulus when the identities of the above kind are postu-
lated for the moment-functions.

We start from the differential form of the moment-coefficiont deduced before?
for the D2?-statistic :—

— ko it gz, |G \E el/t. 4—p/2 o (2.0)
e = (2st)Fe et g 7 ( )

4 Sankhya, 2(4), 1936, p. 390, equation (8.4).
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where ¢ = 2s/u according to the present notation.

Then it follows from the fact that 4, is a homogeneous function of (23, u) of the
k-th degree, that

—d \k
Pe_ o B By () = 1 tm.( dtd) (e t-2%) L. (2.2)

(2st)F — (ut?)F T w2k

So that (t) is a polynomial of —k-th degree in ¢ alone. Also the differential form of
¥(t) can be transformed into an integral form. Assuming that

@

= Z(t) = j e ¢x) dz . (2.3)

0

o1/t
;]

where ¢(z) is a function whose properties we shall investigate later, it follows that

U (8) =—ZI(T)-(—%)" e plo) du e (2.31)
0

which can be written in the form :—

Ix"- e d(x) dx
K

vy = (2.32)
_" e~ ¢(z) dx
[V}
From this it follows that
¥ () Ie"“- Pz) dx = jz* e~ Mz) da o (2.41)
0 0
Hence by differentiation with regard to ¢, we have
d @ LJ @®©
_g_k_. j’e-zt. M) de—y, j re? dz) dz = — J‘x"“- e P(xydz ... (2.42)
0 0 0
Remembering the general form of ¥, in (2.31) it follows that
dy,
7d—t—k= V1 ¥ — Yin w. (2.43)
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This is fundamental relation which allows us to calculate the various differential
coefficients of ¥’s in terms of y’s of different orders. Thus

‘l,(%l =y? — ¥, %— =2y} — 3y We + ¥
(2.51)

T O = 1t S0+ g — v

Since (17,2) is a linear function of ¢ it follows that the following differential rela-
tions are true.

Bnt?) _ o Bt @)
- =0, =0, —F =0 . (252)

2. 42 ¢-1 —1—45 d’ﬁl + 2¢.1 =0 ]

dr dt
> . (2.61)
.Yy d¥yry _
i =0
k r_1 k_g
and generally ¢ d 'ﬁl + 2kt lfit“}ffl +k(k—1) %}:‘f—l'= 0 e (2.62)

If we now remember that the differential coefficients of y,’s are expressible in
¥¥'s of different orders, and that ¥’s are only p’s divided by powers of ¢, the existence
of the quadratic equations of the type found by algebraical method is evident. This
at the same time allows us to write.down the equations with much less labour.

Using equations (2.51) and equation (2.2), we have
32y} — 3P Yat¥a) (YT — )+ 294 = 0 (2.63)
2.63
(61— 12y 1y + Y3+ 4y — V) 48U 2P — 38U e+ ¥ - 3(YE— ) = O }

Now substituting the values of i’s in terms of x’s the above two equations reduce
respectively to (2.65) and (2.68) given below

#2183 —3p p1o+413)

w38

4t(pi—ps) | 2
e L R =0 v (2.64)
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which can be written, by substituting 2s/« for ¢, in the form
81182+ 8(pF — po)s+(2p3 — By prott3) = 0 .. (2.65)
and (uf—p3)s? (23— Spapa+pa)s + (112068 — 1208 pg+ 213 dpypra—p) .. (2.86)

These are the quadratic equations arrived at by direct elimination and referred to in
(1.62)

The fundamental { } expression alluded to before in (1.5) can also be written
in a form involving the differential co-efficients of ¥, ’s of different orders.

k
Thus writing = j—(—ﬂ,"ﬁ-l- .. (270

we have also two relations like

‘Z"_(d!f.xt_’) =0 ‘ﬂf;ﬁ —0 o (281)

t

which can be written in the form
yi- o2k Yi-t et k(E—1YE =0
¥y 3420 Yt - tto(o—1)Yi =0 }

Hence the following relation which is equivalent to (1.5) can be arrived at as the
t-eliminant of the above two quadratic equations :—

[H{k—1)y5 - Y23 —olo—1)ga-2- yaAp
= dfko(c—1)Y1! - Yit—ok(o— 1371 - Y10 - Yy i—kys Y1) .. (29)

There is however one fundamental relation. The other relations deduced should
therefore reduce to the fundamental one calculated above, where the different relations
between u’s of different orders are taken into account.

(2.82)

THE INTEGRAYL EQUATION CONNECTED WITH THE MOMENT-COEFFICIENTS
AND ITS SOLUTIONS.

3. Ishall now take up the integral form of y,(t)

Iz"-e‘“.gﬁ(w)-dz
Y =2 o (2.32)
I e - d(z)  dx

0

The form shows that y,(t)’s are moment-functions of a certain x-distribution and
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a knowledge of ¢(x) will determine the distribution function to which (¢)’s can be
related. In other words ¢)(x) will determine the p.’s with which ,(t)’s are simply
connected. The existence of the algebraic identities between the u's follows from two
separate hypotheses—(1) the existence of the above integral relation. and (2) the linear

form of y,(t) - (£)%. We can therefore see what form of ¢(2) (which for the present dis-
cussion can be regarded as arbitrary at first) is determined by the hypothesis that
Y¥y(t) - 12 is a linear function of ¢.

Since
I z-e ™ g(x) dx
) = - (3.10)
I e - d(x) - da
That is, "
AOR je-ﬂ-¢(x)-dx= [x-e—ﬂ-qs(x)-dx .. (3.11)
0 1} .
The assumption of the linear form of (t) - 2 implies that
(At+B) j e Px) - dx = j x - 1t P(z) - d .. (8.12)
0 0
or Ie"‘[z-q&(x) “t2—A4 -t Mx)—B - Hx)] - dx =0 <. (3.13)

1]

The above relation can be transformed by integration by parts. Thus

j e x Plx) 3 dx = [—t 2 P(z) e — %{xgb(x)}-e"‘éo-{— I Td;—{xq‘)(z)}- e dx

0

(3.21)
Similarly

&

[t e ga) dz = [—g(a) e"‘]:—l- [ S da .. (3.22)
0 [1]

The relation (3.13) implies

[t 2 flay € —— (eple)} e + A pla) ]
[}

+ [ oL oy —a- 2O _p #i@) faz =0 ... (3.29)
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Thus

o (=a g5 — Gat1—igta } + [ oo (& topen — 4 %—ng) o

(3.24)

This shows that ¢(z) is a regular solution existing up to infinity of the following
differential equation :

_‘_;_l'_ [z Ba)]—A- 1%‘9_ —B-gz)=0 e (3.25)

if (g—g) is finite and either 4 = 1, or ¢(z) = 0, when z = 0.

The differential eqﬁa.’oion

& wp-a % B0 . (3.25)

can be transformed by the substitution

z = RYp . (3.26)
So that
__ 2R-dR d _p  d
dx = ———p——, and —d—-x——ﬁ' ——dR ces (3.27)

Hence the equation becomes

¢ (24-3) dp 4B-¢
dRY R dE ~ =0 .. (3.28)

The different cases for different positive and negative values of A and B can be
easily seen to be solvable in terms of the functions of the type J,(r) or J, (tr).

When 4 = p[2, B = 1, the case reduces to that of the D?-statistic. The differ-
ential equation then becomes

e -3
d}g (pR ) .,dd%_qg:o, when p =4 .. (3.31)

The solution can be easily seen to be of the form A -R®»-¥/2.]1 . .(R)

or ) = A - (24/2)PD2. [, . (2/7) .. (3.32)

Therefore if A is so chosen that
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1t g
;p/z =4 j (V)P Ly o)(2V/7) e - dw .. (3.33)
0
then A- j ope (2y/2)PD2 L, o (24/2) e dz (3.34)
Pilt) = : elit 1—Pi2
or vty = 4 - j @k - eV L P2 L (24 /g)P-DR L [ o (24/7) - dx ... (3.35)
0
Remembering that  ¥(t) = e _ C .. (3.36)

Wehave ¢, = 4 - I(2stx)" @ (UB/) gPIY(Q /) P-RB . [0 o(24/7) d ... (3.87)
0

Assuming (2stx) = r? as a new variable, then

-
< : . d(r?
U, =4- I p2k - = 28) (PI2 L £ /(12 2st)yP-D/2 « [y 0 124/(r2[2s8)} - —(ﬁgtl (3.38)
0
Remerbering that
28 2 r2A2 r2 rA
Nl = = — 3.39
P=av om st 2\/ 2st 8 (3.39)
a
r2 (A2 128 5 rPi2dy ‘ rA
we have u, = A - j 5 e (A2+rDi2e  gp-r2 K('pii)'/z'li(l'—m <—8—> wo (3.41)
0
S ok, ,—(A24r2)2s rA

= gw-0. 4. | T Loy ( ?> .. (3.42)

Now putting s = 1/n, we have

o
2% .

pp =200 4 - | &Wﬁz LeTHMATET) o (rA) - dr ... (3.43)

0

Thus the y’s can be regarded as the moment functions for the distribution
—3n (A2 412)

dF = const. n - e—A(FW 7P Iy, o(nrd) - dr ..o (3.44)

which agrees with R. C. Bose’s formula.5

5R. C. Boseo : **On the Exact Distribution and Moment co-efficients of the D2-Statistic’’. Sankhya,
2(2), 1936, p. 149, equation (6.4).
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SpuERICAL ForRM oF THE FUNDAMENTAL DIFFERENTIAL EQuATION CONNECTED
WITH THE MULTIVARIATE NORMAL POPULATION.

4. T shall now discuss the differential equation

*F | OF #F _, OF
—a-?l+%zé_+ ------ +FR§ '—"2 at v (4‘1)

which may be regarded as the fundamental equation for the distribution function of
the multivariate normal population in p-variates.

If F is a function of (R, t) where

R? = 2% tai4al+... +a} v (4.2)

then F satisfies the differential equation

p—1 OF  ~ OF
BT R R =% & e (43)

. Tae DIFFERENTIAL EQUATION IN PARABOLIC FORM.
5. When F is a function of the form

F@i+ag+...+7, a2 +...+a,2,, t)
by suitably choosing one axis say y,, perpendicular to the hyperplane
T+ Qg ayZy =0 ... (6.1)
and similar orthogonal axis-system as before, F takes the form

F(R: yla t) or F(yl» ?l%++y§, t)
The equation (4.1) can be transformed to the form

PF 1 9 ,. OF\ _ OF
FEte o (P ) =% (6.2)
where =yttt . +ys . (8.2)

Further decomposition can be carried on in the same way.

If F is of the form F(z,, z,, R, t); the differential equation can be written in the form

oF o0*F 1 d s, oF o, oF
=Tt e (ws So) =2 o e (54)

where ©? = 22 +2%+...+22, and so on. .. (5.5)
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THE DIFFERENTIAL EQUATION IN THE PRODUCT ¥ROM.
6. If F(x, x,, ...x,, t) can be written as the product of two functions
P15 Ty . Zpy 1) ~ Do (Tyiy, Tpyp, oon Xy, T) ... (6.1)
then the fundamental differential equation (4.1) breaks up at once to the form

qill [Dg b, — 2 %fl] + (}1; [ DreteeepPs — 2 - %?ti] -0 .. (62)

so that the functions ¢, and @, satisfy respectively equations of the form

2
DRr by — 2+ 20 = F(t, a)g,

)
and iy o — 2 22— — Ft, a)y  (63)
Now these equations are transformable to the forms
—}(F(t, a) dt d —3fF(t, a) dt
e L A

(6.4)

) }(F(t, a) td d 3 [ Fit,a)de

OftyeepPs. € fEt @ =2‘ﬁ—[¢2°e f ¢ ]

Therefore if L, and L, are solutions of the equations (6.4), their product L, « L,
is a solution of the original equation (4.1). It is easily seen that

e—x?[2t
Y
satisfies the differential equation
otF oF
) T it 6.5
= =% o (6.5)
Hence
e
is a solution of the equation in p-variables i.e. of the equation
oF
2p 5. 9
OaF = 2 3 ... (6.6)
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FurTHER REDUCTION OF THE PARABOLIC FORM TO POLAR FORM

7. The equation (5.2) can be written in the form

#F  #F , p—2 OF __ OF
ox? + or? + r  or 2 at (7.1)
Since R? = r34a} .o (1.11)

we can introduce in place of r and z,, variables R and 0 defined by the equations

r=Rsinfd and z; = Rcosf e (71.2)
Then

o0*F oF °F 1 dF 1 0°F

T g T am TR IRTR (7.31)
and
or . oF cos@ OF
5 =0 ot (7.32)
The transformed equation in R, # becomes
0*F 1 OF 1 0*F  (p—2) . OF  cosf OF oF )
TR R Gt Beng 0 R T R ar )= g ()
or
0*F (p —l). (p 2) ) 1 0¥ _ OF
IR or+ oot O G g g = 2 g e (134
Since 2 - xk + w= R? e (741
. 0*F  8*F  §*F (p 3 oF _, OF )
the equation PE + R -+ e 2 5 .. (7.42)
can be transformed by the substitutions
w=Rcosf, x = RsinGcos¢g, z,= Rsinfsing ... (71.51)
1 0 oF 1 d . oF 1 0*F
to - R? . wZ .
o gr (B Gx )t mame "9 (0 7 )T B pre

+

- 3)[0F Cces g SN0 0Ky aF
R ol

Rsin 6 0s 6 ot -
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Equation (5.2) could be investigated by assuming a solution of the form
F = f(R, 1) - P(0) o (1.81)

so that the equation breaks up in the form

®f (p—1) of N _ .of 2P
TR R TR 2o M G

+H(p—2)-cot O %-}—/\P: 0

—
-1
[=2]
| &)

~—

The equation (5.4) could be similarly investigated by assuming a solution of the form
F = f(R,t)- P(f) - Q) o (1.1

so that the equation (7.42) breaks up into the threc equations

*  (w—1) of _/\,f__,,_c_?[ )
ORE R R TRVT
02 ,
3;%+""Q=U > ... (1.8)

L 0/ig. @y 90 . 09 0
sin000< sin 0 a0 >+ sin2 @ 90 —(p—3) - tan ¢ £ +AQ= 0 ]

SoLUTIONS OF THE DIFFERENTIAL EQUATICN 1N DIFFERENT CASES.

8. We shall first consider the equation of the type (4.1). The existence of a simple
solution of the type

o—Zr(2F20)

(8.11)
(2mt)?/2

= F,
is verified by direct substitution.

We shall have occasion to make use of the theorem of Appell and Brill, which has
been proved in the case of p-variables earlier®, that if H(z,, x,, ... « , t) is a solution
of the differential equation (4.1), then

—‘Zf(x3/ 2t)

' x x. x 1
H'(@y, g oo - . 2y 1) = H(S, 2, %2, T) .. (8.12)

e
is also a solution.
Therefore in the case of a spherically symmetric solution of the type

H(R% t) = H(xy, x5, ... Zp, 1) ... (8.13)

¢ Sankhya, 2(4), 1936, p. 393, equation (11.1).
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—2,(x2/2t) R t
[ —_ e i —
H'(x), 2y, ..., 2, 1) = W.H( T )

is also a solution.

We therefore transform the equation

#F_ p—1 OF _ OF
oRF T R OR T “ &

by the substitution B* = y, and the equation becomes

oF oFr oF
2y dy? +p'6y = Ta

Further putting 2¢ = T, it becomes

o 2. oF aF

First consider the equation (4.3). If we assume
F = ¢eM - Y(R)
Y¥(R) satisfies the differential equation
a*;& p—1 oy
- TR R =W
whose solution can be written in elther of the forms

oM
—go=on Liw-» (BV/2A)

e-—)‘t
—gowa Yie-a(BV2A)

Therefore, from (8.13) and (8.14) we get two further types of solutions.

out the transformation suggested it is seen that

e‘z(”f/") e-Mt
goaa 1P Lig-a{v (24) - B]4

@
e‘z('?/”) oMt
and (@mpA RO 1PN Jip-n {V(24) - Rt}

are also solutions of the equation (4.3).

(8.14)

(4.3)

(8.16)
(8.17)

(8.18)

(8.21)

(8.22)

(8.23)

(8.24)

Carrying

(8.25)

(8.26)
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Hence writing A = £?/2, we have as solutions

e—(§2+R2)[2

i @y Ro-on Lie-a(RE/Y) .. (8.27)
—(R2—¢§2)[2¢
and 7 (ezﬂ)p/a . RP-872 Jip-2(RE[E) ... (8.28)

We shall now seek polynomial types of solution. Stating from the formula
(4.3) and putting

y=R,T =2t ... (8.31)
we get
0 F p OF _ OF
YV'op T %y T T (8:32)
Let us put F =Tt ¢y'T) ... (8.33)
. oF , OF o aw  O% _ .
Since _a_y__=Tk-1.¢’ay2 = Tk-2. ", Mﬁ=k-T"1-¢—y-T"2'¢
(8.34)
the equation (8.32) becomes
y - T*2¢"+(p/2) - T*1- ¢’ = kT*1- ¢—y- T* 2. ¢ ... (8.35)
or dividing by 7*-! and putting y/T = s ... (8.36)
8- det+{(p/2)+8} - —k - =0 e (8.37)

This equation has been already discussed in a previous paper.?

It is easily seen that with integer values of %, it gives polynomial solutions. These
solutions are denoted by u,(y, T) here. They are identical with the moment-func-
tions discussed at some length in the earlier paper.® The solutions can be written in
the form

T* « w(y/T) ... (8.41)
The application now of (8.12), allows us to deduce solutions of the type

e—BY2 1
—apr e S(8), where s = y|T — R2/2t . (8.42)

7 Sankhya, 2(4), 1938, p. 390, equation (8.5).
8 Sankhya, 2(4), 1936 pp. 387—390.
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and s Sp+{(p/2)—s8}* Sy+k- -8, =0 .. (8.43)
We therefore see that

e—R2/2t

1
@R g Sy, T) .. (8.44)

is also a solution where S,(y, T') is a homogeneous polynomial in (y, 7).

We shall now seek relations between solutions of type (4.3) and (5.3) with type
(8.44). We note that since (8.44) is a solution of the fundamental equation (4.3),
writing

R=y 2%=T ... (8.45)
we see that
e—yIT . .
L= e S (y/T) satisfies the equation (8.32) ... (8.46)
. 0L p 0L oL
that is, Y oy + 5"y — T (8.47)
This 1esult will be useful later on.
Consider the fundamental equation (8.32) in y T).
O O oy
Y v T2 oy = ar .. (8.32)
If we write ¥ = eT. Fly) ... (8.51)
we can see that
| 0°F p OF .
Yy —a—y—{-l—T —a—y—' =A-F ves (8.52)
The form of the equation shows that
Y =T F(dy) ... (8.53)
is a solution of (8.52) where F(y) satisfies the equation
2
*F  p OF F ... (8.54)

Appell’s theorem applied to this form gives us a solution of the form

-p/2

y . e—nzlzz . gNT. F(Ay/T) ... (8.55)
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-p/2 2/2
)

or t - F(ARYT) ... (8.56)

Remembering that T = 2t, and putting A = A? ... (8.57)
the solution reduces to

t7/2 . g—(R2+A2)/2t . F - (A2R?/41) ... (8.54)

Remembering again that 7 = 2¢, we see that the solution of (8.54) is of the form

t=P/2 . g—R22t . g—A2(2t . Y(AR/t) .. (8.61)

Now a solution of the above type gives rise to a distribution

dF = H - dz, - dx, ... dx, ... (8.62)

where H is a solution of the equation. Therefore
dF = A - e—(R*+4%)[2t . {~2/2 . y(AR[t) - RP-D/2 ... (8.63)
If we compare the result with that in the earlier paper, it is easily seen that the function
V(AR[t) = A - (nAl)=P-2/2- [, 4 (nld) ... (8.64)

using the notation of R. C. Bose’s paper®.

If we remember that n = 1/t, l = R, A = A the identity of the solution can
also be easily seen.

By transforming the equation

#?F  p OF _
Z _a'—Z_‘+~2— ‘é‘z_ —_ F e (8.72)

by the substitution Z = x%/4, we have

?F (p—1)  OF _
Tt w = F (8.73)
Since I,/x satisfies the equation
0*°F | (2n+1) OF
st = F .. (8.74)
the solution of the above is easily seen to be
A ptr-dne. Ii(p_g)(z) - (8.75)

ON THE SERIES SOLUTION OF THE DIFFERENTIAL EQUATION.

9. I have assumed in an earlier paper the possibility of expansion of solutions
or the equation (4.1) as series of the type!®

9 Raj Chandra Bose: ‘“‘On the Exact Distribution and Moment-coefficients of the D2-statistic’
Sankhyd, 2(2), 1936, p. 148, equation (6.4). 10 Sankhya, 2(4), 1936, p. 396, equation (12.7).
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e—Rzj2t ]

%y 4y — 7 SURY2)

where ¥, denotes a summation over all values of £ from | to~co, and S, denotes a
Sonine polynomial of the k-th order

The justification for the statement will be given here, and I shall, by actually
developing the distribution function, arrive at the same result as before. A distribu-
tion function of the type

1712 . ¢—(§2+R?)[2 . F(E2R2/4T?)

where R? = 2? + % + ... + 2, necessarily implies that
[ 78 e—@ RN F(ERY 4t - R dR = | . (9.12)

Assume now that R%}2t =Z, and E}2t=a e. (9.13)

The integral then takes the form

o

209-2)/2 . J' £-P12 . =040 . F(az) - 2P-2 . P2 g7 —= 1 . (9.14)
0

or 2UP-2)/2 . o8 j e*: Flaz) - 27372 . dp = 1 e (9.15)
0

Therefore so long as a remains finite

J' e~ 2P-0/2% Flaz) . dz = 2-(P-2/2. ¢2 — finito e (9.186)
0

Therefore a constant ¢ can be found such that

«©

f et 2P-2/2 . [F(az)—c]  dz = 0 . (9.17)
)
so that if we congider the function F(az)—c = F(2) ... (9.18)
we have Ie” P23 . F (2)-dz=0 e. (9.19)

[}
Now the Sonine polynomials Si(z) satisfy the differential equation

d®S:
dz?

p . dSk . _ ¢
+( : ——z) S ke 8 =0 . (9.21)
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or written in the self-adjoint form

;_z (e _‘fl*;’L-) kS et =0 . (9.22)

We see that e~ - 2(P—-2/2 s the density function for the orthogonal set of polyno-

mials. Hence follows the possibility of expansion of a function Fi(z) which satisfies
the equation

[ e=? 2P0 F(2) - dz = 0 ... (9.23)
0

Assuming therefore that F(az) = 2, Ap + Si(2) . (9.24)

the co-efficients A; will be (because of the orthogonality of the polynomial functions
S, mentioned earlier) found to be given by

F(az) - Sy(2) - e* - 2P-2/2 . dz

4, =

e=? 2222, 8,(2) - dz

Let us suppose that the functions are normalized such that

f ek 22212 §22) - dz = 1 ... {(9.26)
0

Then A, = °§° Flaz) - Sy{z) - 7% - 2\#7-22 . {3 . (9.27)
0

To calculate 4, we at first write az = x; then ... (9.28)

A4, = T F(x) - Si(zla) - a=Pi2 . e=3/% . 1\ P-2/2 . dy .. (9.31)
0

As noted in Sankhya, 2(4), 1836, pp. 394, L = q—(»+2k)/2 . g=%/% . S (z/a) ... (9.32)

satisfies the differential equation

L p 0L _ L

ot 2% T a e (9:33)

Ak = IF(x) s P22 [, . dy .. (9.41)
0
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o

174 A, aL
. da (‘&f’) = £I"’ TR F(z) > de . (9.42)
t 2
= | x”"“”z'F(w)'[w- gzz; +£. gf ]-dx e (9.43)

0

Now by successive integration by parts, because the quantities outside the sign fo
integration vanish at both limits, it easily follows that

a | A, P 9 P

2 ( =~ )= (g L- [ @ F) — %-_a;(xw—l-F)] de ...  (9.44)
— P . P2 p LOF 7
=L [axz +-L2- 50 da .. (9.45)

0tF p . OF _ F(22)
ox? 2 o0z  z

As (9.48)

we have now

8

d [ A\ T
- ( a: >= jL cgP-32. F . dr = l;a-(w:h/z - e . S (x]a) - ' P-VAF , - dx
(9.51)
Writing # = az as before, we have
—5%—( ;1'—1;_ ) El; Ie =2+ S(z) - 2P-2/2 . F(az) - dx .o (9.52)
0
d (4 4,
Therefore we have 3a - (—a,—) = .. (9.81)
or A, =C:a*- ¢ ... (962)
To detrmine the constant C in the expressicn for 4, we observe that
IF (az) - e=2-2P-D2. 8 (2) dz=C-af e .. (9.63)

0

But when a is very small C-a*-¢* = C:a*-(1+a+a?/2+4...) = C-at ... (9.64)

Therefore C-at= I B,-a*-2F-e %2003, §.(2) - dz ... (9.85)
0
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where B, is the coefficient of 2* in the expansion of F(z) as a power series, as terms of
lower order in F{a z) below 2*, will contribute zero values because of the orthogonal
properties of s(z)’s

o o

Now as Iz" cet 2P/ §(2)  dz = ;k [ g% P2 SZ.(2) - dz = }—l/k ... (9.66)

0

where v, is the coefficient of the highest term in the series of normalised Sonnine
polynomials, we have

. ak k
C-ab = B, 5 or C=§k‘ o (9.71)

To calculate therefore the coefficients of B, and y, we consider the differential
equation which F(z) satisfies, that is,

d2F p OF

rad —a*'zE— -+ '2" . T?Zh = F(Z) (981)
Assuming a series solution F=3%B,-2* . (9.82)
is easily seen that k-(k—1)-B, + 4p-k-B, =B, .. (9.83)
or k-(k+4p—1)- B, = B,_, .. (9.84)
or B, — BT (p/2) (9.85)

I'(k+1) - T'(k+3p)

Therefore from (9.24), (9.62), (9.66) and (9.85) we have

_ [(p/2) cak . S

F(az) = B, & IO T) [T 3p) ak e+ S (2) ... {9.86)

where 8'(z) = S2)/vs .. (9.87)

Putting now a = §%2t, and z = R?%2t .. (9.88)
we see that
2 P2

F < aTtl:_ ) = F(0) =~ T T II;(?D{?()k—f-gp) e £22t . (E2[2t)k - S (R?/2t) ... (9.89)

2
or  F(z) = F(0)Z F(k—}-f)(?ll?()k—f-ép) 822 - (B2t - S, - (%t— x) . (9.91)
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Therefore the type of solution is of the form

e~ (E2+R?/2t

———n—— F(ER?/4t%)
2 —R2/[2¢ 2k .
= FO)E 3 +11;(p{,()k rwv e " (;3), .8, . (RY/2t) . (9.92)

which agrees with the previous result!!, if we remember the expression
A = E% = gy — Bk + 4p — 1) pyy(20) +... o (9.93)

It follows from the above analysis that the general form of the distribution function
in (R, t) can be assumed to be of the form

A
z " @mtypre {Ao + g S (BY20) +

Le SR+ ... ) . (9.94)
where 8;, S,, ... S, are what can be called Sonine polynomials. The coefficients
Ay, Ay, A, ... etc. can be calculated in any particular case, when the moments of the
modulus distributions are known. The distribution-function in Sankkya'? may thus
be seen to fall in the g:eneral class, as I have shown by a direct expansion of the expres-
sion, and also by identification of the two results.

It is interesting to stydy the general types of solutions of the equation

DEF =2 % for different types of complexity; certain results already arrived at will

be published in due course.

11 Sankhya, 2(4), pp. 395—396.
12 Sankhya, 2(4), 1936, pp. 395-396,

Reprinted from Sankhya — Ind J Stat 8, Pp. 105-124, 1937 (Statistical Publishing Society, Calcutta).



Recent Progress in Nuclear Physics

S.N. Bose

Professor of Physics, Dacca University.

PHYSICAL science is at present passing through
a remarkable phase of radical and revolutionary
changes. Time-honoured concepts are crumbling
down under the shock of remarkable discoveries.
The familiar ideas of force, mass, and energy have
undergone remarkable transformations and the dy-
namical laws which seemed at one time to provide
the ultimate basis for the mechanical explanation of
the material universe have now been replaced to a
large extent by quantum-mechanical rules and prob-
ability-calculations. Controversy now rages round
the validity of the very principle of causality with-
out which science would have seemed impossible a
few years ago. It is therefore not surprising that the
old concept of the atom as the ultimate indivisible
unit of a chemically simple stuff has been replaced
by the modern idea of a complicated structure con-
sisting of a positively charged material core, the
nucleus, which itself in ultimate analysis appears to
be heterogeneous, enveloped in a cloud of negative
electrons, which possess more or less definite amounts
of energy and momentum, determined by quantum-
mechanical rules.

The Electron and the Periodic Table

Ishall endeavour in this brief discourse to present
before you a brief history of the various experi-
ments which have compelled the modern scientists
to adopt this structure for the chemical atom in place
of the familiar and simple concepts of Lucretius or
of Dalton. The beginnings of the change in our point
of view may be said to have been initiated about 40
years ago by the discovery of the electron in 1895.
The experiments which led to its discovery estab-
lished at the same time its presence as a universal
constituent in all kinds of atoms. The intimate

connexion between electricity and matter being
thus established once for all, the subsequent
endeavours of the physicists and the chemists have
been directed towards explaining the divergent prop-
erties of the chemical substances in terms of elec-
tricity and electrical forces.

It will be obviously impossible in this brief
compass to give an adequate account of all the
results so far achieved in this region-where physi-
cists and chemists have worked side by side, and I
shall therefore confine myself to a bare mention of
the principle facts which have led the way to the
modern conceptions about the atom. The ancient
atomic theory was formulated mainly on the basis of
chemical evidence. The analysis of innumerable
substances, which either occur as such in nature or
are artificially produced in the laboratory, has es-
tablished the existence of about 92 simple sub-
stances, the so-called elements, whose atoms by
combining and re-combining among themselves in
various proportions have given rise to all the vari-
ous substances we see around us. Without losing
their individual distinctive features, many of these
elements show among themselves remarkable simi-
larities in their chemical properties. These have
been intensively studied by the chemists, and the
main results can be conveniently represented by
arranging all the elements in a series of horizontal
and vertical rows, in the so-called periodic table of
Mendeljieff.

The remarkable feature of this arrangement is
that whereas the atomic weights of elements in-
crease steadily as we go down the series, marked
similarities in the chemical propéxties recur at more
or less regular intervals, i.e., as soon as we come to
elements which lie in the same vertical column of
the rectangular array. The atomic number in the
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scheme plays as important or rather a more impor-
tant role than the atomic weight of elements. No
explanation of this regularity can obviously be found
in the simple Daltonian theory. Nor was there any
prospect from the chemical side alone of arriving at
the explanation of the mysterious regularity in the
chemical behaviour of elements.

The discovery of the electron however inaugu-
rated novel methods of attack for the solution of the
puzzle. The presence of electrons carrying negative
charges, as constituent of all atoms, as well as the
electrical neutrality of the atom as a whole, had
brought the interesting question of the electrical
structure of the atom to the fore-front. After the
discovery of the electron the atom for the physicist
could no longer continue to be a simple substance.
The problem of its composition, i.e., the distribu-
tion of mass and charge inside it, demanded an
urgent solution, and speculations were at work
regarding its structure even before adequate data
were obtained for drawing probable conclusions.

Closely following on the discovery of the elec-
trons, came the discovery of radium and the radio-
active elements. Along with the familiar and stable
elements which seem to persist unchanged through
geological periods of time, the discovery of the
phenomenon of radioactivity established the exist-
ence of the so-called unstable elements. Though
these behave as ordinary elements in all chemical
reactions, they are found to disintegrate spontane-
ously and give birth to new elements of smaller
atomic weights, which in turn explode, regenerate
fresh elements, and the series of elements of de-
creasing atomic weights is continued till the whole
process comes to a stop with an element of ordinary
stability at the end. During this process of succes-
sive disintegration the radioactive elements emit
swiftly moving charged particles (the so-called o~
or B-radiation). They also emit in general penetrat-
ing y-radiations of the type of X-rays. The a-par-
ticles were early recognized as the nuclei of helium
atoms which carry two units of positive charge
whereas the B-rays were found to be swift electrons
which move with velocities approaching the veloc-
ity of light. Though it was found impossible to
control the phenomena of spontaneous disintegra-
tion of the elements, their very existence revealed

the composite nature of at least the heavy atoms, and
made the hypothesis of a structure for all atoms out
of comparatively simpler substances a very prob-
able one.

The swiftly moving positively charged a-par-
ticles, emitted during the process of radioactive
decay, furnished the physicists with a very conve-
nient weapon for attacking the problem of the con-
stitution of atoms. Lord Rutherford conceived the
brilliant idea of sending these swiftly moving
charged particles as probing agents inside the at-
oms, where their mass and enormous kinetic energy
would enable them to penetrate far into the myste-
rious interior, before they would be deviated out of
their straight course by the intense Coulombian
fietd of force.

The determination .of the distribution of the
scattered particles in various azimuths would, he
hoped, enable the physicists to obtain a fairly cor-
rect picture of the distribution of mass and charge
inside the atom. The first experiments in this direc-
tion were carried out in Rutherford's Laboratory at
Manchester by Geiger and Marsden, and they at
once afforded valuable information regarding the
probable constitution of the atoms.

The physicists had already arrived atan estimate
of the atomic size from various considerations.
The kinetic theory indicated the radius to be about
10-8cm. The experiments of Geiger and Marsden
now revealed that the mass of the atom must be
regarded as concentrated within a sphere of a much
smaller radius, say (10712 to 10~!3cm.). This central
core was also found to be positively charged, and its
magnitude was approximately estimated at half the
atomic weight of the element. This experiment of
Geiger and Marsden enabled the physicists to form
a fairly correct idea about atomic exterior. The
planetary atomic model suggested by Rutherford,
where a positively charged nucleus controls elec-
trons revolving in orbits controlted by Coulombian
forces, gained thus a universal acceptance among
the scientists and proved a valuable and fruitful
hypothesis. Detailed discussion of the subsequent
developments will lead us too far away from our
main theme. I shall therefore mention in the briefest
of terms the principle achievements which we owe
to this model. In 1913 Bohr showed that the optical



Recent Progress in Nuclear Physics 187

spectra of elements could be explained on the basis
of the above model if the electronic constituents of
the atoms were supposed to move in definite or-
bits—determined mainly by electrostatic forces and
by subsidiary quantum-laws. The study of the X-ray
spectra of elements enabled Moseley at about the
same time to settle with certainty the magnitude of
the charge of the nucleus and also the number of
electrons in outside orbits. The fundamental nature
of the atomic number in the Mendeljieff's table
received thereby a rational interpretation, and no
interpolation, or change of arrangement in the se-
ries, could be conceived of at any subsequent pe-
riod, as the sequence of atoms in the table followed
the integral sequences of increase of atomic charges.
The idea of the spinning electron gave a rational
explanation of the periodicities in the Mendeljieff's
table. The electrons were revealed to be grouped in
different closed shells round the central core and the
chemical properties of the elements could be defi-
nitely correlated to the number of the electrons in
the outermost incomplete shells. The elements of
the same vertical column were found thus to have
more or less identical external structure, which
explained the similarities observed in their chemi-
cal properties.

Structure of the Nucleus

In 1925 came important theoretical develop-
ments. The modern wave-mechanics was formu-
lated which enabled the physicists to replace the
former tentative calculations by exact mathematical
analysis and the differentempirical procedures were
unified into asingle consistent analytical discipline.
Though all the questions which have been raised by
the study of the physical and chemical behaviour of
elements may thus be said to have obtained more or
less satisfactory solutions, the problem of the struc-
ture of nucleus had however been scarcely touched
till the beginning of the present decade.

It is not difficult to find reason for this delay in
the development of nuclear physics. The nuclei of
elements lié hidden behind a protective cloud of
electrons. The intensity of the Coulombian field
also increases very rapidly by about 1010 times as
we approach from the outside to the neighbourhood

of the nucleus. The bombardment of atoms by
swiftly moving electrons had not produced any
fruitful results so far, and in order that positively
charged particles could overcome the enormous
repulsive force and approach the nucleus within a
reasonable distance sufficient to produce signifi-
cant perturbations in the nuclear regions and pro-
duce sensible results, swift particles with tremen-
dous velocities appeared at fisrt sight necessary,
which were only available in small amounts from
radioactive processes that continue yet to be beyond
our control. The smallness of the nuclear size makes
also the chances of close collision very very remote
so that the percentage yield of any definite result by
the bombardment of «-particles is very small in-
deed. Nevertheless since only the chemical proper-
ties of elements appeared to be governed by the
nuclear charge, an artificial transmutation of ele-
ments could be hoped for, if one were able either to
push a charged particle in the interior of the nucleus
or to bring a charged particle in its immediate
proximity, so that the disturbance thus set up might
possibly induce spontaneous transmutation of the
atom.

In order to ensure stability against the disruptive
influences of the Coulombian forces, the presence
inside the atom of attractive forces of unknown
origin appeared also necessary. These attractive
forces are most probably sensible at distances com-
parable with the linear dimensions of the nucleus, so
that only a careful study of the large deflections of
a-particles from single and close encounters with
light atoms might be, expected to give some infor-
mation about the nature of these attractive forces. A
successful carrying out of the above programme
required the development of a special technique for
the study of such atomic encounters. The early
method of directly counting the scintillations to
estimate the large angle scattering of a-particles as
followed by Geiger and Marsden was further im-
proved upon by Chadwick and Bieler in the labora-
tory of Rutherford at Cambridge. A direct measure-
ment of the nuclear charge and an estimate of the
nature of the electric forces acting on a-particles in
the immediate neighbourhood of light nuclei were
rendered possible by the study of scintillations
produced by the scattered particle.
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The expansion apparatus of Wilson supplied
another valuable method of attack. Under suitable
circumstances, the tracks of the colliding particles,
the nucleus and the a-projectiles, before and after
collision, could be directly photographed, and the
interchange of momentum and energy between the
colliding particles could be directly estimated from
the measurement of stereoscopic pictures of such
encounters. In case such collisions brought about
artificial disintegration, the record of the explosion
in the chamber photograph enabled us in many
cases to follow the details of the process unequivo-
cally.

The method of directly counting the scattered
particles by the scintillations produced on screens
has been replaced in recent times by simple, reli-
able, and automatic methods of counting the swift
particles like o-particles or protons with the help of
the Geiger Counter and proportionate amplifiers.
The rapidity of advance during-the last few years
has been in large part due to the great improvements
in the technical methods of attack.

Nuclear Disintegration; the Neutron

Already however in 1919 Rutherford had ob-
tained by the simple scintillation method the first
evidencesof artificial disintegration. Nitrogen nucleus
bombarded by swiftly moving a-particles appeared
to give rise to streams of swiftly moving protons or
nuclet of hydrogen, and subsequent work along the
same direction had revealed the occurrence of this
phenomena of artifical disintegrations during the
bombardment of about twelve of the lightest ele-
ments.

By studying the phenomena of disintegration of
nitrogen in a Wilson Chamber, Blackett was able in
1925 to give a satisfactory account of the details of
the process. This nuclear reaction seems to arise out
of a capture of the o—particle by the nucleus of
nitrogen, whereby an H-particle escapes out of the
nucleus and a new atom, an isotope of oxygen, is
produced, according to the scheme

14 4 1 17
N7+ He;— H+ Oy’ .

Two capital discoveries in recent years have

revolutionized the subject and accelerated thc
progress of nuclear physics. Bothe in 1930 observed
that beryllium when bombarded by «-rays from
polonium gave rise to a markedly penetrating radia-
tion which appeared to be of the y-ray type. In a
subsequent examination of this effect by M and
Mme Curie Joliot in Paris and Chadwick in Cam-
bridge in 1932, an important part of this radiation
was found to consist of a stream of swift, uncharged
particles, called neutrons, which have about the
same mass as the proton. As it is uncharged the
neutron does not directly ionize the gas in its path,
but only reveals its presence indirectly by the recoil
of the nucleus with which it collides. And since the
transfer of momentum is largest when the mass of
the colliding nucleus is about the same as the mass
of the neutron, the secondary ionization by recoil, as
produced in hydrogen or in paraffin-lined ioniza-
tion-chambers, is much larger than in an ionization-
chamber filled with a heavier gas. This peculiarity
of behaviour has served to differentiate the neutron
radiation from wave radiations of the y-ray type,
which also usually accompany the phenomena of
neutron emission. Most of the nuclei of the light
atoms also emit neutrons when bombarded by swiftly
moving a-particles. This strange type of particles is
in itself an important agent for effecting artificial
transformation of other nuclei, mainly because it
is uncharged and as such is not handicapped by the
presence of the intense Coulombjan forces. It can
thus approach and penetrate into the nuclei of even
the heavy atoms, and thereby bring out interesting
transformations in novel ways about which I shall
speak later on.

Potential Barrier

The perfection of wave-mechanical methods
has induced various theoretical workers to apply
the new ideas in problems™of nuclear physics,
especially in investigating the collision of charged
particles with the atomic nuclei. The simultaneous
presence of a Coulombian field of repulsion and an
attractive force of unknown origin at short dis-
tances inside the nucleus gives rise to what is tech-
nically called the potential barrier. The intense
attractive forces inside the barrier scrve to keep the
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charged particles inside the nucleus. Beyond the
distance where the height of the barrier rises to a
maximum, the attractive forces cease to be sensible,
and the field may be ragarded as repelling charged
particles according to the law of inverse squares.
Any charged particle wanting to penetrate inside the
nucleus will have to surmount the barrier, and
according to the classical theory, it will have to have
a kinetic energy sufficient to come over the top of
the barrier.

Based on arguments similar to the above, one
estimated (before the advent of the wave-mechan-
ics) that a minimum acceleration-potential of a few
million volts would be necessary to produce suffi-
cient acceleration in particles, before they are able
to cross the barrier. The estimate however proved
erroneous and excessive.

A noteworthy contribution of the theoretical
physicists (recent wave-mechanics) in this subject
has been to predict a small but appreciable probabil-
ity for penetration of protons across the barrier of
light elements, even when they have energies of the
order of a few hundred thousand e.volts. The predic-
tion seemed to bring artificial transmutation on a
large scale within the range of possibilities, and this
theoretical conclusion was tested experimentally by
Cockroft and Walton in 1932 who had been able to
generate a proton stream of about 100,000 volts, in
a vacuum tube, by step-wise acceleration. Their
experiments at once met with complete success and
the evidence of disintegration of the lithium nucleus
subsequent to the capture of a proton was obtained
by bright scintillations produced on the screen by
the o-particles that were generated by disintegra-
tion. This initial success of the Cambridge physi-
cists has been followed up by other workers in
Germany, France, and America, and it has become
clear that considerable progress in artificial disinte-
gration can be achieved by bombarding elements
with swiftly moving protons and other nuclei accel-
erated suitably by application of high voltages.
Investigators of nuclear physics have concentrated
their energies on the production of suitable high
voltages, and notable success in this direction has
been achieved inrecent years. Three different meth-
ods have been mainly followed in producing-the
necessary high voltage : firstly, the original method

of Cockroft and Walton, which consists in acceler-
ating the particles in the vacuum tubes in stages with
suitably insulated transformers; secondly, the method
of Lawrence, who has developed a peculiar method
of multiple acceleration of ions in a synchronized
magnetic and electric alternating field; and thirdly,
the electrostatic method of Van de Graff. Consider-
able progress has been achieved by the application
of all the three methods and a lot of interesting
results have ben obtained by the bombardment of
atomic nuclei, by suitably accelerated projectiles. I
have already mentioned before the production of
neutrons from the light elements by the bombard-
ment of o-particles. Results of great significance
were obtained as soon as these particles were used
by workers in nuclear physics. In curious contrast
with the swiftly moving a-particles and the artifi-
cially accelerated proton streams, and other corpus-
cular rays, the capacity of the neutron to produce
artifical transformations increases, in most cases,
with the diminution of its velocity. Doubtless this is
connected with the fact that its small velocity en-
ables the particle to stay longer in the immediate
neighbourhood of the nucleus and thus to bring
about more far-reaching changes.

Induced Radioactivity

It has been established by the work of Fermi and
other members of the Italian school that a few
collisions of neutrons with hydrogen nuclei (present
in either a free or a combined state) are sufficient to
establish a sort of thermal equilibrium, so that the
neutrons on the average attain, after a few colli-
sions, the averave velocity of hydrogen particles at
room-temperature. Whereas the transmutation of
elements to stable varieties of other elements had
been previously noticed or conjectured, during the
bombardment by a-particles, or protons, Curie and
Joliotdiscovered in 1933, that unstable and hitherto
unknown isotopes of light elements are produced by
the bombardment of light nuclei with o-particles.
These unstable nuclei subsequently break up in the
same way as ordinary radioactive elements, and
phenomena of induced radioactivity are found to
obey the same laws, and decay in the same charac-
teristic way as the natural activities of the well-
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known radio-elements. The identity of these artifi-
cial bodies can also be often established by purely
chemical methods. In their pioneer work Curie and
Joliot discovered that unstable isotopes of nitrogen,
silicon, and phosphorus are formed by the bombard-
ment of Be, Al, and Mg: these however emit, curi-
ously enough, positive electrons though the phe-
nomena of disintegration proceeds like the familiar
B- ray disintegration of radioactive elements. The
discovery that new radioactive elements can be
produced by artificial transmutation has given a
tremendous impetus to the study of the nuclear
reactions. The task of following such nuclear changes
is a very much easier one, as sensitive physical
apparatus like the Geiger Counter can be utilized to
detect and measure such changes. This pioneer
work of Curie and Joliot has been greatly extended
by Fermi and other workers in Italy. They have
observed that slow-moving neutrons are in most
cases quite effective in producing similar changes
and of generating radioactive isotopes. Extensive
work in this line has been done and a large number
of new radioactive atoms have been discovered.
These however almost always emit § -particles, i.e.,
ordinary negative electrons instead of positrons.

Deuteron—the Isotope of Hydrogen

With the discovery of deuterons, the isotope of
hydrogen, a new kind of corpuscle has been utilized
for bombardment of atomic nuclei. Acclerated deu-
teron streams have been utilized both in England
and America and they have proved very much more
effective as agents for transmutation than the origi-
nal proton rays of Cockcroft and Walton. Bombard-
ment by deuterons also produces radioactive bodies
and this method has been increasingly used inrecent
times to study the phenomena of induced radioac-
tivity. The earlier methods of production of new
radioactive bodies had to utilize a natural radioac-
tive source for the supply of the suitable bombard-
ing agents; this had necessarily limited the amount
of the yield even when the process of canalization
was utilized for diminishing the velocity of the
neutrons and thereby to bring about an enormous
increase of output. The yield of radioactive stuff by
the bombardment of deuterons has been naturally

very much greater. For example, in a day's exposure
a yield of radioactive isotope of sodium has been
reported to have been obtained by Livingstone whose
activity equals that of 1 gramme of radium. Deu-
teron bombardmeni has therefore a great future both
in the therapeutical application of radioactivity to
medical research as well as in the investigation of
nuclear problems.

Whereas bombardment of corpuscies has been
almostalways utlized for producing nuclear changes,
results similar to photo-ionization have been ob-
tained by Chadwick and Goldhaber. By utilizing
hard-y-radiation from ThC these investigators have
been able to decompose the hydrogen isotope into
neutron and proton. The liberated neutron can be
detected by its ability to produce induced radioac-
tivity in suitable elements, or by a properly con-
ducted ionization measurement. By hard X-rays
emitted in tubes run at more that 1.5 million-volts
pressures, the workers in Berlin have been able to
eject neutron streams from beryllium, whose pres-
ence has been similarly demonstrated by the gen-
eration of radio-iodine in ethyl iodide. These pre-
liminary results have great theoretical significance;
Chadwick has been able from a tentative determina-
tion of the thresh-hold value of the frequency of the
Y-rays necessary to decompose deuterons, deter-
mine the mass of the neutron as well as the strength
of the binding of the two fundamental particles.

Conclusion

In this lecture I have attempted to give a rapid
review of the principle results obtained in the field
of nuclear physics in recent times. I shall conclude
my remarks by mentioning two remarkable results
that have been obtained by the bombardment of
thorium and uranium, the two heaviest of the ele-
ments with neutrons. I have already observed that
the production of new radioactive bodies could, in
many cases, be proved by chemical methods; this
serves at the same time to determine the chemical
properties of the new substance, and its position in
the periodic table. By the bombardment of uranium,
Fermi originally reported the production of new $-
ray emitting elements whose chemical behaviour
seems to point to their positions beyond uranium
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itself in the Mendeljieff's table. This has been cor-
roborated by Meitner. According to these workers
the table of elements is artificially extended by this
process beyond uranium itself—according to the
scheme

238, 1
Ug ™+ ng

N 17239 N . 239
» > Ug, > Eka Rhenium ER93

——> Eka 08239-—-———)Eka Irzz9
9
a truly remarkable result.

By a study of the product of the disintegration of
thorium by neutron bombardment Curie has estab-
lished the existence of a new series of radioactive
elements whose mass numbers are in the form 4n +
1. This analogous series of radioactive bodies is not
known in nature, and its discovery can be regarded
as completing our ideas of radioactive disintegra-
tion of heavy elements.

It will be evident from what I have reported
above that enormous experimental materials have
accumulated in the field of nuclear physics within
recent years. Sufficient materials are now available
for the theoretical physicists to speculate about the
process of atom-building from elementary particles,

and the preliminary work in this direction has al-
ready begun. The neutron and the proton seem to be
the two exclusive constituents of all atomic nuclei.
The o-particles can themselves be looked upan us
composite bodies, built up again from neutrons and
protons.

Though the idea of the elementary atom has
undergone revolutionary changes in recent years, in
a certain way the progress achieved has been satis-
factory, as it has simplified the number of ultimate
and fundamental particles to only two, insteadof the
92 elements of the older atomic theory. This idea of
the evolution of the material world from compara-
tively few primordial stuffs is not however new.
Here, as in other fields of physics, old ideas have
returned, renovated in a new garb and clothed with
more significance. The quantum theory of photons
has to a certain extent resuscitated the ancient ¢or-
puscular theory of Newton. The recent develop-
ments of the nuclear physics have brought back the
old Proutian hypothesis, of the evolution of all
elements from one or rather two primordial stuffs—
the proton and the neutron.*

*Delivered as the Adharchandra Memorial Lecture at
the Calcutta University Science College on the 21st
December 1936.

Reprinted from Seci & Cult 2, pp. 473-479, 1937 (The Indian Press Ltd, Calcutta).



Anomalous Dielectric Constant of Artificial Ionosphere

In arecent communication in Nature, Mitra and
Roy! have pointed out an interesting feature in the
ionospheric dispersion formula. They have shown
that the formula can yield values of the dielectric
constant of an ionized medium greater, equal to, or
less than unity depending on the degree of ioniza-
tion, collisional frequency and the exciting wave
frequency. They therefore hold that the value of
dielectric constant of an ionized gas greater than
unity which has been recorded by many investiga-
tors for comparatively large ionizations is only an
outcome of the complete dispersioti formula. The
object of this note is twofold. Taking the iono-
spheric dispersion formula we shall first deduce the
conditions under which the dielectric constant may
assume values greater or less than unity and sec-
ondly we shall show that in the experiments where
anomalous values of the dielectric constant of an
ionized gas have hitherto been obtained, the experi-
mental conditions are such that the dispersion for-
mula alone cannot explain the anomaly.

The dispersion formula is given by

2
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p-—| =1+ ,

p o+iff

where o = -
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Separating the real and imaginary parts, we have
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Now the left-hand side is always a proper fraction;

therefare, if 4 |a| >1, ie Jof >-25 we have
then always

—&<4 |o4 >1,ie pi<l.
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If however Ia' <25, u®>1 will require the
further condition

2 2
—L>4|al or ,62>4a x
o+ 1-4a

Calling 2N,

m

p, = s VN =2-8x10*yN,
m

=p?2 or
P,

we have 4 Ial = ﬁ; and we can say that if
Py
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p>p, =2'8x10* \/IV, pis always less than unity,
whereas if p < 2'8 x 10* 4/N, or |0L| <25,
for u> > 1, we must have

4
Ve
p.-p

i..e..thecollisional frequency must exceed the value

p2

22
3} p,—p
Thus the equations show that even when p < 2°8 x

104 \/IV , there exists acritical collisional frequency
which has to be executed if Q is to be greater than
unity.

164 =——

DIELECTRIC CONSTANT
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SQUARE OF WAVELENGTH (§Q. CM.)
Fig. 1
In the experiments recently performed in this
laboratory, we have obtained results similar to those
of Appleton and Childs2. Using a wavelength of
about 3'8 metres the dielectric constant of ionized

air in a discharge tube has been found to be less than
unity when the tube current is small. As the ioniza-
tion is increased by increasing the tube current, the
dielectric constant at first decreases and then in-
creases gradually and even becomes greater than
unity. The maximum electron density N in our
discharge tube has been within 107, Taking N=107,

p=5 % 108, we get |0c| = 7'8. This is much greater
than 25 so that the dielectric constant must be less

than unity. Even when N=108, locl ='78 and the

dielectric constant should be theoretically less than
unity.

In Fig. I are plotted the calculated values of the
dielectric constants against A2 for some definite
values of N and v . Curve (2) which corresponds to
Mitraand Banerjee's3 experimental conditions shows
aturning point at A of the order 9m (A2 is of the order
8x105 sq.cm.) which is very different from the
experimental value A of the order 6m (A2 is of the
order 3'6x103 sq.cm.). In the experiments of Ali
Imam and one4 of us, which have been recently
repeated by a different method, the turning point
appears unmistakably at A of the order 4m (A2 is of
the order 1'6x105 sq.cm.). Curve (1) which approxi-
mately corresponds to our experimental conditions
shows however the turning point at A of the order
12m (A2 is of the order 14x105 sq.cm.). It appears
extremely doubtful if the disposition of the experi-
mental apparatus can account for such wide dis-
crepancy. It is likely that there must be some other
explanation of these experimental results.

Physics Department,
Dacca University.
13.11.37

S.N. Bose,.
S.R. Khastgir.

1. Mitra & Roy, Nature, 140, 586, 1937.
2. Appleton & Childs, Phil, Mag. 10, Dec. 1930.
3. Mitra & Banerjee, Nature, 136,512, 1935.

4. Imam & Khastgir, Phil. Mag. May 1937 and
Ind. Jour. of Physics. 10, Part 1, Feb. 1937.

Reprinted from Sei & Cult 8, pp. 335-337, 1937 (The Indian Press Ltd, Calcutta).



ON THE TOTAL REFLECTION OF ELECTROMAGNETIC
WAVES IN THE IONOSPHERE

By S. N. BOSE,
Dacca UNIVERSITY.

(Received for publication, April 5, 1938)

The conditions under which the electromagnetic waves get totally reflected
in the upper atmosphere appear still worth a closer investigation. The usual proce-
dure has been to attribute to the medium a refractive index which is caloulated
according to the classical method of Lorentz from the mechanical equations of motion
of electrons. In an absorbing medium, this refractive index is a complex quantity,
and depends not only on the properties of the medium but also on the frequency of
the waves : as prdgressive waves through the ionosphere are damped, the co-efficient
of damping will also enter into the expression of the refractive index. The usual
Appleton-Hartree condition for total reflexion has been deduced by neglecting the
damping, as a first approximation, and by putting the refractive index equal to zero.
Discussion of the conditions when the damping is not negligible, gets very complicated
indeed. Certain workers in Allahabad have suggested the further condition that
the group-velocity of the wave-train is zero when total reflection takes place. This
is a reasonable hypothesis, but the method by which the group-velocity is calculated
neglects damping, an essential factor in the physical process. It appears also that the
calculation of the group-velocity of waves in an absorbing medium is not amenable
to the ordinary methods unless the damping is negligible, an approximation which,
as has been already pointed out, does not seem to agree closely with experience. It
seems therefore necessary to change the method of analysis and to take, instead of
the equations of Maxwell with a complex refractive-index, the microscopic equations
of Lorentz as basis for calculation. The method sketched here is a general one
suitable for problems of refractive-index of material media as well as for discussion
of propagation of waves in the ionosphere. It seems further amenable to modifications
to suit the requirements of modern wave mechanics.

We take the familiar equations of Lorentz

I 8E _ pV I 0H .
—c-—at——curlH—— iy -—a—t--}—curlE'—-O.

div £ =p, and div H =0,

The density and the convection current, p and pV, can be regarded as decom-
posable into two parts p,, and p_ and (pV), and (pV)_, respectively, which thus takes
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account of the corpuscular distribution of positive and negative charges. A wave
disturbance in the medium can be considered by putting

E = Ey+EeS, H= Hy+He’; p, = pl+q.e5 p_ = pltq_es,

V,=V34+W,e and V_= Vo4 W_e5, where the elements with 0 indices cor-
respond to the undisturbed state of the medium. The convection current, and
the electric-density become on this assumption equal to

PV = p V. +p_V_ = (pV)y+0eS
where 6 =[p? Wo+q,VO+p®W_+q_V° and =g ,+q_.

Thus the components (6,, ,, 8,) of the vector 6 correspond to the amplitudes of
the fluctuating part of the convection current, and 6,, similarly to the fluctuating
part of the electric density due to the disturbance.

The process is a familiar one : When § is a linear function of z,y,z2,¢, with
a complex factor 2m, as is generally chosen for discussing monochromatic wave-
propagation, 27t S represents the phase of the disturbance and the surfaces for various
values of S, represent the totality of all wave fronts as function of (2, y,2, f). In
order to tackle the more general case of a damped wave-train we shall not at first put
any limitation on the form of S but shall assume it to be any function whatever, whose
differential co-efficients may also have complex values. Removing the contributions
on the both side of the equation by the various quantities corresponding to the un-
disturbed state, we get

190 ) 9 _Q ]
??—t(Ee )— cml (He )——LT e
19 8 S

—b‘—a—t(ﬂe )+ ourl (Ee )= 0

div (Eef) = 6,5, and div (He®) = 0.
We can also verify easily that
div [Eed] = [div E+(grad S.E))eS
curl [Ee’] = [curl E+grad S X EleS
0 dE 8
il B =g tB5 |
ete.

Under the usual conditions of propagation E, H, representing the amplitudes
of the electric and magnetic waves, are slowly varying quantities whose differential
co-efficients with regard to time and space co-ordinates can be neglected in compari-
son with the rapid variations of the function S which represents the phase of the dis-
turbance. We shall therefore put the differential co-efficients of £, H equal to zero,
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and thus get finally the equations reduced to the following form :—
1 a8

- 5 E—(grad Sx H) =—0/c
1 a8
- —ét—H—i—(gradSXE)—O

(grad S+ E) = 6,

These can be regarded as the characteristic set of the wave-equations of Lorentz,

and since there are eight equations, if ﬁ, G_S, 6{8”’ 98 are taken as unknown,
ox’ 0y’ Oz Ot

certain compatibility conditions have further to be satisfied which will give us the
conditions under which wave-propagation can take place. We proceed to calculate
these conditions by the usual method of vector-analysis. We have only to remember
that, as the components of vectors may have complex-values, the geometrical
interpretation of the various quantities may not be so immediate as in the usual cases :
also a relation 42 = 0, does not mean that the vector vanishes, as the components

of the vector A4,, 4,, 4;, need not be zero, when AZ4 A4 A% = 0.

We shall call such vectors as singular, and in the problem that we have got before
us, considerations of singular-vectors become important.

A few remarks regarding the geometrical interpretation of a singular veector
may not be out-of-place; vregarding the components of a singular vector 4, as de-
composable into 1eal and imaginary parts, we can always choose a real direction (A, g, v)
which is perpendicular to a complex vector, viz., (4,+A4; ¢, ...)

i.e., such that A, +pA,4vA, =0
AA,4-pA,+vA; =0
i.e., an imaginary vector A, may be regarded as defining a real plane.

If co-ordinates are chosen so as to represent this plane as the plane of (zy), a
singular vector 4, i.e., whose 42 = 0, can be represented as

(4,4, 0) where A, may be a complex quantity, i.e., A is of the form[iA 4y,
—u+A, 0. Any vector perpendicular to a singular vector, will have in this co-
ordinate system, the general form (P, (P, ¢) where P and ¢ may be complex quantities.
A non-singular vector, C perpendicular to 4, will have C? £ 0, i.e., Q 5= 0; a singular
vector perpendicular to A4, will also necessarily have @ = 0, i.e., if 4 and B are two
singular vectors, both conditions (4-B) = 0, and (4 X B) = 0, may be satisfied at the
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same time and all singular vectors perpendicular to one another may be regarded as
lying in one real plane.

If A and B are two perpendicular vectors of which one is singular while the other
is not, any vector which is perpendicular to both 4 and B, must necessarily be singular,
and will lie in the plane of A. This proposition follows immediately by writing out
the general form of 4 and B in the manner explained above, and trying to write down
the general form of C which satisfies the orthogonality condition. These preliminary
remarks will be useful in discussing the singular case of total reflection, as-we shall

see later on. The other two relations in vector analysis which we shall have to use
pretty frequently are

A.(BxC) = B(CxA) =—B. (4 xC) = ete. e (D
and AX(BxC) = B(AC)—C(4B). ... (II)

These have unrestricted validity even when the components of vectors have complex
values, as they are formal identities, involving only re-arrangement of terms.

We shall at first deduce certain general conclusions from our equations

1 a8

iy /S = .. (1
PRT E—(grad SxH) Olc (1)
1 a8
— N X E) = e (2
7 H4-(grad SxE) =0 (2)

(grad S-E) = 6, .. (3)
(grad S-H) = 0. e @)

Scalar multiplication with grad S of (1) gives, taking account of (3),

L [ptetograd s =0, e (4)

a relation which expresses the conservation of charge in the disturbed state of the
medium.
Vector multiplication by grad 8 of (2) gives

1 a8

Y (grad Sx H)-+grad Sx (grad Sx E) = 0;
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taking account of (1) we get

1/ 38 \? 0 (LS
[?< = ) —(grad S)2]E+ - 4+, grad § = 0. ... (B)
Scalar multiplication of (2) with E gives (EH) = 0 .. (O)
Scalar multiplication (1) with H gives (6H) = 0 ... (D)

Relations (C), (D) and (4) show that the vectors E, &, and grad S, are all in one

plane perpendicular to H ; also (1) shows that grad S is perpendicular to o8 E+6.

ot
This vector can be regarded as representing the rate of change of induction, or gi
of Maxwell’s equation; thus H and D can be regarded as lying in the plane 'perpendi-
cular to grad 8§ while E and 6 separately do not lie in it.

The arrangement of the various vectors thus agrees with our usual ideas about
electromagnetic waves.

ENERGY AND MOMENTUM RELATIONS IN THE WAVE FIELD

Scalar multiplication of (1) and (2) by E and H respectively give

L i _gti Ez—}—(—E?.' = E - (grad Sx H) =—grad 8. [EX H] . (B)
[ 88 7
c_-73t_}12._—gra,d8 [ExH]; e (F)

addition and subtraction of (E) and (F) give two further important relations

1 08 [E*+H?Y] +(E’0) _

e — grad 8. [Ex H) ()
1 o8
% o (B H) =—(E%- (H)

Also vector multiplication of (1), and (2) by H and E similarly gives

1
= ‘Z‘f (E x H)+H x (grad SxH)_—f’;H

or 195 (ExH) + Hrgrad § = — X2, . (K)
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also —(1;— o8 ~(E x H)-+E? grad S—E (grad S.E) = 0
or 198 (BxH)+E grad S = B,E.

Subtracting (L) from (K) we have

grad S (H2— E?) =—\L B,E + ”XCH )

Multiplying (K) and (L) by grad § we have the further relation

(0 x H)

(1: %S grad S.(E x H)+ grad 8. — = —H?(grad 8)?
1 a8 2
Ry grad S. (E x H) = 05— (grad S)2E?;
1

but grad S. (0% H) = — 6. (grad S><H)=———c~<¢92+j§— (E6) )
1 , 1 98 3

or — grad 8. (Ox H) =— [cﬁcz 5 (E6)].

These two relations thus become
2 u

%%tﬁ grad S. (Ex H) = gt ! 0'5 (E0)—(grad S)2H?
%——gf grad S. (Ex H) = —(grad S)2E*-+65.

From these we get
O — 8+ % - (BO)—(grad SyH—E) — o,

or remembering (H) we see that

~ A G2
[ (5 ) '~ Ggrad 8 | (a8 =503 - .

Also (grad S)2H? = (grad S.H)*-+(grad Sx H)?

(3 5 3 o]

199

(M)

(P)
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we get
1 48 1 48 a8
~ 5 ged 8. (ExH)=-— 5 [Ez 5~ TEO) |
= % —(grad S)2E2, NN (4))

which can be written in the form

(E6) as
c?

1 ;08 \2
[_ (T) — (grad S)’] Brp7) 00 L2 . e (Q)
This equation could have been immediately deduced from (B) by taking scalar
multiplication with E.

Equation (B) :

[i (%)2_@3@ sp B+ ‘93 95 ~- +erad S(grad S-E) = 0

c?

gives us generally the mutual disposition of £, # and grad § when wave-propagation
is possible, whereas the equation (Q) written in the form

[l( a8 )2—(grad S)z] 1 98 (E6) (gra.dS E) _

2\ ot c’ Bt "ET + . (Q)

may be regarded as the equation for the refractive index, determining the velocity
of propagation in any direction prescribed by grad S.

Tue NoTioN OF THE REFRACTIVE-INDEX

A surface S(z,y,z, t) = C may be regarded as moving perpendicular to itself
with a velocity given by

s
_ Tw
|grad S| ’
the refractive index can be defined as —;7 = p= Ig;‘adagl , agreeing with our usual
¢ ot

definition, which however can be complex in the general caso:

Introducing x, equation (Q) can be written in the form
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(Eﬁ) c*(grad S-E)?

a8 |2
(=rA+ G+ (G

ot

ON RELATION BETWEEN E AND 0

) =o.

201

Early in the paper we have expressed 6, in terms of motion of the positive and

negative charges, namely,

0 = [pfW§+atVi+pe W+q V5l

These involve in general both the original distribution of the charges, their
velocities as well as the amplitudes of velocities, and densities of positive and ncga-

tive electricity due to the disturbance in the medium.

From general considerations we can express the relation of 6, and ¥ in the follow-

ing way.

We have seen that during propagation of disturbance both 6 and E lie in the
plane perpendicular to H. Therefore, § can be decomposed into two components,
one along E and another perpendicular to E, in this plane, i.e., in the direction of

(E x H).

6 thus can be put as equal to aE+ 8 [Ele{]

(6E) = aE?, OXE =ﬂTIH

also from equations of wave--propagation

OX E = cH (grad S -E) or f*/c® = G}[E®.

Writing therefore
[ExH]
eB+p =g
we see that
(£6) , _ C6,
= T

8o that the refractive-index equation can be expressed in terms of « and g in

the form

a 5
A=t 5575 + Gmjene =
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Further.
h? = o2E2+ fH2,

As the vectors E and H are perpendicular to one another it follows that xand f are two

co-efficients which stand in very simple relation to the total polarisation current;

. . a8 .
o and S however are not constants but may involve gradS as well as o Lo

may be function of direction and frequency of the waves.

COXDITION FOR TOTAL REFLECTION

It is well-known that for electro-magnetic waves in vacuum we have E2—H2 = 0
as well as (F-H)=0. For waves in material media however E2—H? £ 0, but
(EH) = 0 remains still valid. The ratio of the electric and magnetic vectors depends
generally upon the properties of the medium as well as on the frequency of the wave
and we can, express this fact by the relations (H) and (M)

. 1 a8 E6
which are . .,at.(Ez__.Hz) —_ _(_c_)
grad S(H'—E*) =— F = _(an+ 0>;H )

The ratio of the amplitudes of the vectors, H?/E?, can therefore be expressed by the
following relations :

98 (ES) _ H' a8
ot B T OE® ot

2
grad S— o = o grad S,

Depending upon the property of the medium and the direction of disposition of the

vector E,(_gg_) will generally vary with %-f as well as with grad 8. If, however, %?

tends to such a value that %St' -+ %9 =0, it follows that H? = 0 (¥ #0), indepen-
dent of the amplitude of the wave traversing the medium; the disturbance in

such a case loses its wave-character, so that we can say the wave cannot penetrate
beyond that region and gets totally reflected. We shall therefore take this condition

H? . .
7= 0 or an equivalent condition as characterising the condition of total reflection
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and we can also correlate it with another physical idea.

We have also proved the following relation (F)

- Q(;-St- H2 = —grad S. [Ex H]
and also
1 08 [E? H? Eo .
= {,,2 5 t\_*_ 5= —grad S. (E < H).

grad S.(E x H) may thus be regarded as proportional to the flow of energy across the
surface S = constant, so that grad S.(F x H) = 0 may be interpreted to mean thatthe
flow of energy across the wave-front vanishes. This agrees with our usual idea of
total-reflection at a boundary of two media, where the energy flows along the boundary
interface in the limiting case.

We have also seen that

Liga%g{ = ;= the refractive indeXx of the medium.
c ot
3 1 aS 2 2 2 2 2 2
From (2) we have 2 (T) H? = (grad S X E)?2 = E*grad 8)*—(grad S.E)?
- } g—f grad S.[E x H),
we have .
H? _ (grad S)* (grad S.E)® _  grad S[ExH] __ H.grad SXE]
B2 1] a8\ ,1/aS8\* T 148, 108
el Ee- | Z% ST e 2
cz<6t> 02<(3t) catE catE

2

In case (grad SE) = 0, we see that the condition %: 0 is equivalent to the

condition 42 = 0, as has been assumed by Appleton to characterise the case of total
reflection. If we now examine the condition (B) which gives the relation hetween
the vectors E, 6 and grad S, the condition # = 0 will mean that the wave is
propagated under such conditions that the vector E is parallel to 6.

Multiplying (1) with E, we have
Ex0 = cEx(grad Sx H)
=— cH(grad S - E),
so that (grad S+ E) = 0 will mean E X6 = 0, i.e., E i3 paralled to 8.
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e thus see that if the wave is such that E is || to 8 the condition of total reflec-
tion / = 0, or grad 8.(E x H) = 0 is equivalent to the assumption x4 = 0; in the general
case of wave propagation when E is not parallel to 6 we would expect on the other
hand the condition H2 = 0 as giving a new result.

H? =0, or grad S(E X H) = 0, may be regarded as equivalent to the assump-
tion that the group-velocity vanishes. The condition of total-reflection postulated
above is obviously suitable for a train of damped waves, because our analysis is general
and the condition of non-penetrability has been deduced independent of all ideas
of frequency. :

We shall now apply the results of our analysis in the particular case of the
ionosphere.’

The contribution of the positive charges, as well as of the bound electrons in 0,
may be easily seen to be negligible in comparison with the contiibution of the free
electrons.

We can assume for the ionosphere
0 =[psW=+q7V]

where these quantitics refer only to the free-electrons present. If we average over
a volume containing a large number of electrons, but small compared with the wave-
length of the disturbance,

po = Ne, 6= NeW ;

the average value of the second term ¢V, may be regarded as zerc as the initial
velocities of the charges may be regarded as distributed chaotically in all directions.
Writing the equation of motion of a free electron after Lorentz as
miEt-gxr = e [E,+%—:—v‘hl] , ete,
where (h,, hy, h,) may be regarded as the components of a steady magnetic force,
we have, dividing by m and multiplying by p = Ne, and averaging, the following

equation
)+ 2 g =2 ch
0+Lo-=2 E’+(0><57;‘)
where (6, = Nev,, ete...).

98 s

Remembering that for an oscillatory disturbance 6 = 6 57 ¢

as before also that the
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other terms in the equation varies at ¢5, the equation can be written as

o " m

(Gi+e)o="E e ox2) . (@

cancelling out e*. :7_71 == v is usually called the coilision frequency of the electrons. \Ve
6

shall use this equation (Z) to calculate (£6) or o

E?

Case I: This can be regarded as decomposable into two subcases.

0xeh
om
(Z) shows that 0 is then parallel to E

(@) When = 0, t.e., @ is parallel to the external magnetic field, equation

E0 7 Nez ; 08
a,nd E?:,Ev:-/;);—(—(jt—_*_v)

The equation for determining the critical frequency for total reflection becomes

Tl )=

9 T m
e (e
or %’ =“%:[:¢A/Z—:r-n€2—"2/4

This determines the dependence of the critical frequency on the ionic density; the
train totally reflected is therefore of the form

—»[st it NNe2jm—p2[4
e €

or w? = Ne*/m—vi/4
and the damping co-efficient is v/2.

Case II: When ||E and 62 = 0

that is the vector @ is singular, 62 =0 but 6+£0

a vector (Bx%) will represent a vector parallel to 6, when A is non-singular and

perpendicular to 8 according to our former remarks about singular vectors, Choosing
the direction of %, as the direction of Z, we can write the relation
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08 Ne? eh
( +V) ) E+(9x rm )
in the form
a8 Ne2 eh
(7t ) 0= S Bt 0o
a8 Ne? eh
< ot Tv )0”: m E”_-Em 9.
or ( 98 )(01+L0y) N (E,+E,)
T becomes equal to _ajgmeh—’
[6t +Vi‘c7n]

according as 6 and E are of the form (4, F¢4, 0).

The condition of total 1eflection now becomes, from (B),

a8 ;a8 Ne?
T ( +:t——“>+—=0;
. 28 eh
calling e +v/2 4 oem
s, Ne e2h? ehv
we have Bk TV Gty =0

Solving the above equation, we find that the two reflected waves are circularly polarised
and the critical frequencies are

eth? h
CL—A/ —vi4+ 4czm2q:20m
N ch Ne2 e2h?
Tci— v/2 [l Zomo ]wherc o = — vi4 4 —— G

. h . h
So that when we have the critical frequency =%, i.e., w’=~22—m, one of the

circularly polarised wave will be suppressed, and the other will be reflected with un-

2
diminished intensity : as this will necessarily mea.ni:rnf— = v2/4 the reflection of plane-
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polarised wave, discussed above in case I, will not occur as the condition of total

2
reflection gives o, = 0, if N%_=_v2/4'

These two cases correspond to. the cases discussed by Appleton by putting x = 0

and the result agrees with the usual formula, when the collision-frequency is neglected.
Case III. When 60£E :

We shall now calculate the value of (Iz——-?in the general oase.

We have
(S5 +v)6= S B+ (6 2.

Scalar multiplication with E gives

( 98 +v) (B 6) = E:T’ E’—B[ Ex—eh—];

ot cm

also veotor multiplication with ¥ gives
s
(5

V) (Bx6) = 6. (Ec—"’; ) g% (E0).

Scalar multiplication by c%’% of the above relation gives

(%"*’V)—%(EXG):( eh .6 > (E ﬂ>_(__eh_>2(E0)

cm com

Again, scalar multiplication of the original equation with ——;nzigives

(3 +) (a0 ) = (B )

Combining (a), (b) and (¢) we can easily deduce
D[ ()] * (o) ] B () (B ) ]

s a8 2 -
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‘ 2 B2
(B6) _ Net [( %?‘J”) +~25’(E1'ce‘17) ]

T (Gl G ()

when E and ¢ are non-singular vectors.
Now if we consider the case of total reflection as defined by grad S:[E X H]

= 0, [Q) gives - = — (:%f’? as well as 63—(grad S)*E = 0.
Now also grad S “[E x H] can be written in the form H(grad S x E), we see that
grad S||E
2

and 7 (P )z=(gra.dl sy (B 550

2 h o \2 . .
L < El_e’i_> =(z—m> cos 2 if grad S is a vector whose compo-

nents have real ratios.

o8  (E6)

The relation 31 +—E'T == 0 becomes

ol ) +mle )]

08 i m cm —0
2 2
YOG (G ) ()T

If the disturbancc is plane-polarised and the collision frequency is small we
can put
_ 1 eh \2 . [ eh\?
=0 g (B gy ) = ot )

where a is the angle between the direction of propagation and the magnetic lines.

The formula becomes, putting %‘—3 =t oy

R ()

(.1)2 m cm
: =
2
o= (o)
om
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agreeing with the formula supposed to be derived by putting group-velocity = zero
by Bajpai and Mathur.!

We shall have to remember however that £ may be a complex-vector in the
general case, any complex vector £ = [E +(E,, etc.], may be regarded as perpendi-
cular to a real direction, and choosing this direction as the direction of Z, we oan choose
as components of the complex vector, (E,, ¢ E,, 0) where z, and y are certain special
directions and the external field is regarded as having components (k,, A, h,) in these
special directions.

( E, -:% ) then becomes equal to c—:{ (B, + Eh,)

E*=E:~E.+#0

i (El%)z= cf;g [ Eé’»;g;hi +2¢h h, Eg—’_E—i,zy]

The frequency equation for the elliptically polarised beams would be

o o5 e (50" o [ T+ i o)
- 252 ’
at m (%g +v>[<%‘t§+v>+:_g”;’]

when the collision frequency is neglected this similarly becomes

e? [ Eih:—Eih: ~’
Net (T ot | T EICE: E.E
2 _ Le u . . - ry , —
Wt = — s when iy hhy, =0
This shows that the two cases will be either A, = 0. or k, = 0
Ne? e*hiE} Ne? et KE:
— | wi— 2 (25 S
[ TE: — E..] m [0) +[c’m2 (E:—E%) ]
&z = s or ¥
2__ 62k2 w— e%h?
o2 i

We have therefore

Ner et E? 2
[sn it Ezcos .x]

e2h?

ctm?

or w2 =
0)2-—'
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when k is | to the major axis,

Ne*p ,  eh? EZ cos?a
- [O)

m [ c*m® EZ_E? ]

o= e2h?

2
cim?

when & is | to the minor axis.

THE PROPAGATION OF THE DISTURBANCE

We shall analyse now the relation (B), i.e.,

[2( %) —@maa 8]+ 2 25 g, grad 5~ 0

which may be regarded as prescribing the relation between the three vectors E, 6
and grad S, when propagation takes place.
For this purpose, we shall have to consider the relation (A) which expresses the
conservation of charge, i.e.,
| a8
|5 B 0emd 9] =

and the relation (Z), t.e.,
a8 Ne? eh
(—6t +v) 6= _m_E+( O%— )

We can utilise (4) and (Z) to eliminate E and 6, from (B) and thus get

a8
[ 349+[71s§< ) oEmas |[(5) ) 0= (0 )] _grad 8 (0. grad )
c? ot Ne? as
m at
or by re-arranging terms,

(o () - s |5 (574 )+ () Yo

_g_f[% (%S_) _(gradzs)](exei)~££ grad S (6. grad S). (R)

This vector equation is equivalent to three homogeneous linear equations in (4,, 6 s O:),
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whose co-efficients involve the differential co-efficients of S and the collision-frequency;
when the relation is satisfied for non-zero values of (0., 6,, 0,) the discriminant of the
simultaneous equation must vanish. This will give a relation between the differential
co-efficients of S alone, where the characteristic numbers of the ionospheric layer,
i.e., N, k and v, will also be involved, and may be regarded as giving the equation of
the characteristic surface, corresponding to the Ei-konal equation of Hamilton for
a material medium

or equation c% [( 378 )2—-— (grad 8)? ] =10 for vacuum.

It is better for perspicacity to introduce certain abbreviations at this stage; we
shall put

o) =1, (25 )"~ s

also (5 (2 ) —graans | 57 O )+ e (27 ) s

ca

i) Ne?
= o) 2 (3 )+ 22 [g(8)-+grace )= Lis)

P(G"S) < 98 )2_68 ( g_;9+v > grad? S

Ne?
= g(S) P(S)+~‘7ﬁ“ (grad S)? = 3 3

a8

2
where p(S):%?(a_t, v)_i_i\’e_'

The vector equation (R) is thus written

08 eh Ne?
L8) 6—g($) 5 ( 0 %o, >=-—T;rgrad 8(6 - grad 8).

Scalar multiplication with 6 gives
2
L(8)62 =%(0 - grad S)%,

so that (grad S «6) = 0, either when 62 = 0 or when L(S) = 0, so that the vector

equation becomes simplified, in both of these cases.
E\|6

Case I. When L(S) =0, 0% £0.
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The vector equation (R) is satisfied only when

= 0.

ch
(0x5n)=0, or g(8) =0, or

We reject glfq = 0, as we are considering wave propagation. We can easily see that

g(S) = 0 is a singular case, which is not relevant to the problem before us, as ¢(.S)
= 0 will lead to the vanishing of the vector 6.
0 is parallel to A, the external magnetic field.

The characteristic equation thus becomes

SIUTNE SR R
08198, ) 4 e
o (’%%)"L(’%S_)’J“(%g )2""«:1?(%?)’2"*008! () -
3l )
o i (32 )+ - 5

Net | 38 , 08
w=14+ S (G )

which agrees with the ordinary expression for the refractive index for plane polarised
ordinary ray. The singular solution of the equation (1) when p(S) and |grad 8| = 0
gives the case of total reflection.

Case II. When #2=0
(0 grad 8) = 0.
The vector equation (R) can be satisfied only when

usw—g(S)%‘?_(ox -g;—)=o_

i.e., when ( e

#x c{ﬂ) becomes parallel to 4.

This singular case, already discussed, means that 6 is perpendicular to %, and
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choosing a new set of perpendicular axis, with % in the direction of Z, we see L(S),
o(S), g(S) are invariants for orthogonal transformations. The vector equation can
be split up into two equations

08 h
LS, —gt8) 5 by o =0
a8 , eh
L(8)0y+9(8) —5; b= 0
So that remembering 62462 = 0
38 \2/ eh |2
we have Lz(S)+g’(S)<——0—I~—> ( (im—> =0

which breaks up into two equations

7/
609) p8)+ 3 (grad 8 1g(9) - = 0

Ne? (08)
08 dt
or —~ — grad?S+- =
c’( ot ) %f(aer +e )

which can again be put in the form

aSNe’/m ;
i (3 tvE )

total reflection is obtained as before by putting 4 = 0

If N =14+ 58

grad? S can also become infinite, if —— 6S = i—c‘%— —v

i.e., for a frequency equal to the gyromagnetic frequency.
Case III.
Neither I(8) nor 0*=0

i.e., when tgrad S6) # 0
and 6 is not parallel to E.
We have to proceed to further elimination to get the refractive index surface.

The elimination work becomes simplified if we choose a new set of axis, with Z
axis,'in the direction »f k.
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The vector equation is now equivalent to the three scalar equations

oS eh Ne? ‘ .
L(8)0.—9(8) 57— 0y— - = —— SA80.+8,0,+88,) v (1)
LS, +008) T 6o = 5 3,(8,6,+8,6,+88) e ()
Ne
I(8)8, = — 848,0,+8,8,+8.6,) eer (188)
a8 28 a8
where (Se=gp 8= 5 8% =5")

From (1) and (i) we easily get the relations

6. [ LX+98) (22 ) 0]

ctm?

=2 [ US)Su+ 808 5 T | (848,048,

eh? 4

6, [ ZX9)+9%S) ( —-~) ot |

=2 [ U8, 8.98) -] (S.6:+8,8,+86]
and . 16, =N 818,0,4+8,0,+50)
6. us)s.+809 0L i
= 12/
SEASP T, IX8)+9¥8) (2 ),,5:,':: "
68 _eh
. LS)5,~Sa8) B b o
PR iy (2 T
6, X,
8.5.+80,+88, "L(S) °’ v (4)

multiplying (iv), (v) and (v) by 8,, 8,, 8;, we have
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| — Ne2  L(S)(S;+8%) i LS
2
™ | Doyt (25T 40

or L(S)[L=(S)+92(S)(—a£)z(ﬂ“)z]

cm
= J21 sxsit syt +ss) () (2 ).
Now writing 8% = grad?S cos®*x

where a = the angle between the wavenormal and the magnetic field, we have

IXS) [ LS)— %zgradzs]_,_gz(s) L(S)<_%§_)2(_2:T)s

Ne2 | ¢h . a8 2 9
_-;n—-(~—c ) (S)( )gra,dScosa
. Ne?
Remembering L(S)——m—-grad'-’S = p(8)g(S)

and rejecting the factor g(S) the equation finally assumes the form
08 \2/ eh \2
AU +9(8) (5 ) (o) US

.._,_A’;i( 98 ) gl )( pom, )2grad38. cos®a = 0.

When this equation is regarded as a quadratic in (grad?S) i.e., when the value of gg

is supposed to be prescribed, the two roots of grad?S, become, let us say,f; (—%g—, a)

and f, { 98 , a} So that we get two rays corresponding to any prescribed .

Corresponding to the two refractive indices

M g AL
M= v a5 ond #
ST

= ! W,

When damping is neglected, —— 6 ;

We see from (iv), (v) and (vi), 6, : 6, : 6,
defines a complex-ratio. As I{S)will become real,and -g—és—pure imaginary, the two split
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rays will there be elliptically polarised, and the ratio of the axis, projected on a plane
perpendicular of the magnetic field, is easily seen to be

05— 1) 5 () o (o) s ] 5
L8) [p(S) grasz] —gtﬁ [71:—.‘, <—gtﬁ) —gra d28+'-—<*gt£> ]
eh

for large values of grad:*S this tends to — p

Mot
Writing out the equation in extenso and putting grad? S =y, we see the

equation
=2 2 (5 )= (G o Ha (5 ) SR )

v( 5 +) %? + % costa ]|

The co-efficient of y? —p(S) wrn ( ?3? +v)2+< ﬂ)‘a( —%f-tg- )2[ %t ( o8 i—v)

+ 2-\—;; coszoc}.
The absolute term on the other hand is equal to
P03 ) (3 o e (3 T 35U )

We get therefore

J s

88 / a8 1\;_3_2[( %}5 +“) +<c ) 6082“}
S (o )+ K N ( ¥

S

=0

as defining the critical frequencies for total reflection. This is in the general case
when collision frequency is not neglected an equation of the fourth degree having
two different conjugate complex roots corresponding to two elliptically polarised rays:
or when collisicn frequency is neglected,

a8

and ¥

the above relation reduces to
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—A%z {m2—~ ( 5—;’—' >2cos2a]

o= ()

o
o

e =

which agrees with the expression arrived at by Rai, Bajpai, and Mathur, and also
with the result arrived at by another method.

From energy consideration, we have seen that when E | 6 the condition of total
reflection grad S.[E x H) = 0, is satisfied (grad S)2 = 0 : Here the propagation stops
from penetrating further, as H vanishes, and the field beyond becomes electrostatic

in character. When (grad S E) # 0, which will happen when the direction of propa-
gation makes an angle with the magnetic field, the electric vector is not the wave
front, and the total-reflection condition resuits when electric vector coincides with the
wave normal. This happens as (grad 8)2*—»a . The Poynting vector then lies in the
wave front. The flow of energy across the surface stops, and the waves get totally
reflected.

CoNCLUSION

We have discussed the question of ionosphere at some length, but it will be easily
scen, that the method can be applied with the same ease for discussion of propagation
of light in a material medium. We have only to utilise the corresponding Lorentz-
equation for motion of bound-electrons, which can be made to yield a relation similar
to the equation (Z) deduced for the ionosphere. Readers interested in mathematical
analysis will easily recognise the method as an application of the method of charac-
teristics, used for discussions of wave-propagation by Hadamard, Debye, and others.
So far as the writer is aware the method has not been applied to the microscopic
equations of Lorentz, where however the extension does not seem to create any diffi-
culty when the waves are looked upon as possible modes of oscillation of the stationary
clectro-magnetic field, generated by positive and negative charges, present in the
medium.

PHYsICAL LABORATORY,
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StubIES IN LoRENTZ GROUP

By
S. N. Bose

I. The decomposition of any Lorentz transformation into two commutable
factors is a well-known result, and forms a convenient starting point for the theory
of spinors. Einstein arrived at the decomposition from consideration of the infinite-
simal elements of the Lorentz group. The result is here obtained from purely algeb-
raic consideration, which gives at the same time a slightly more general result inasmuch
as the factorisation can be shown to hold for elements of the general orthogonal group
C,, with det C; = +1. The Lorentz group L is really a sub-group of C, inasmuch
as the co-efficients are restricted by certain reality conditions, for every matrix C
in L has C,, real (r,s = 1, 2, 3), while C,,, C,,, r = 1, 2, 3 are pure imaginaries, and
Cy, real.

If C is a matrix, the transposed matrix will be denoted by C; a symmetric matrix

for which € = C will be denoted by S. If C-+C = 0, the matrix is anti-symmetric
and will be denoted by A.

A non-symmetric matrix ¢ = S+A4 while C = §—A4. We shall assume here
the elements of a matrix to be complex numbers.

2. Prop. I. An anti-symmetric matrix 4 having six non-zero elements can be
further decomposed into two component matrices P and @, which have only three
non-zero elements such that

Py = Py, Pyy = Py, Py, = Py, } "
” Qie=—Css Crun=—0Cu Csn=—0uy
4 =P+Q,
where Are=Prut
Pig = A3+ A4y), Py = HAn+4y4), Py = Hdg+4,) } @
Q12 = HA1e—43y), Qo = HAp—Ayy), Qa = HAy—4y)

If further we introduce certain basic matrices, defined by
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P={0 0 0—1|P=| 0 0 1 O0|P=|0—-1 0 0
0 0-—-1 0 0O 0 0 —1I P 0 0 o
0 1 0 0 -1 0 0 0 0 0 0 —1
1 0 0 04y, 0o 1 0 0], O o0 1 o],
and
Q=] 0 0 0 1[ Q=] 0 0 1 0| Q=|0—-1 0 0
0 0-—-1 0 6 0 0 1 1 0 0 0
0o 1 o0 O -1 0 o0 o0 0O 0 0 1
-1 0 0 0, 0—-1 0 of, 0 0—1 o],

in which the first set P have the properties of the above P matrices in (1), and the
second set @ those of the @ matrices. We note that
Pi=Pj=Pi=Qi=Qi =@} ——F
P, = P,Py =—PyP,, P, = PyP;, =—P,Py, Py = PPy, =—P,P,
Q, = Q05 =—0Q40,, Q: = @@, =— Qs Qs = @, =—@x01,

P, Q,=Q, P,. e (3)
Any P matrix can then be represented as
P = a,P)+a,Py+a3Ps, e (4)
and any @ matrix as
Q == b,Q,+0,0,-+b,0,. e (B)
Hence
A = a,P1+ayPy+a3Py 40,0, 45,0, 1 b0, e (6)

Carrying out the multiplication of all P/’s and @;’s (i = 1, 2, 3), we get in all six-
teen matrices which we can utilise as basic matrices for the representation of any
arbitrary matrix C thus (the indices of @ will be raised in what follows when @’s appear
with summations)

C = CYE4+204 P,+3C, @' +2C" P, @+ e (D)
F
spur of C = 4C}.

Any symmetric matrix

§ = S+ Z SIPQ. e (1)
Since P? = —E, we have generally

P2 =—(al+a3+af)B. e (8)
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Prop. II. If S is any orthogonal matrix, i.e., S? = K, det § 5 0, then, either
(¢) det S = —1, spur 8 # 0, or (it) det S = 41, spur § = 0.
We take a symmetric matrix
S=|a h g x
h b S y

g I c z

x Y z d

Since 82 = F, S = 81, and as det S 0, the inverse can be written down
by utilising the minors of the det S from which the following results follow easily.

If s = det 8, and 4, B, C, etc. are minors of the determinant

D:la h g
|

h b S

g f ¢
then slad—x?) = A  s(fd—yz) = F BC—F?=aD
s(bd—y?) = B  s(gd—zx) = G ete. ete.

s(cd—2z%) = C  s(hd—zy) =H ’ .-
We also remember the usual orthogonality relations of the type

ar+hy-+gzt+ad = 0, cte.
a?+h?4g*+a? =1, ete.

So we easily deduce

Ax+Hy-+Ge-t+sx = 0
Hx+By+Fzt+sy = 0
Ge+Fy+Crtsz = 0,

so that, if x, ¥, z be not all zero, we have by elimination
§34-s¥A+B+C)+sDa+-b4-c)+ D2 = 0,
or, as s2 £ 0, and D = sd
(s-+A+B-+C) = —d(a--b+4c4d).
Again A-+B+C = s[dla+b-+c)—a2—y2—2?]
= s[d(a+b+c+d)—1];
so that (A+B+C+-s) = sd(a-+b-+cH-d).
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Hence either s = —1, or a4-btctd =0, or d=0.
The special cases
d=0 and z=y=2=0
can be treated in the same way, and we will have in every case s = —1 or spur S8 = 0,

which proves our general result.

Prop. III. If 82 = E and spur § = 0 (so that s = 1), then § is always de-

composable into two commutative anti-symmetric factors.

As spur S = 0, we can write by (7)

S = I8, P,Q~.
Now putting

S;\‘P)\ == A#

where A, are certain matrices of the P class, we have

S = A0, + 2,05 +A3Q.

Again as

SP=F =2 A%+Q1(A2A3—A3A2)+Q2(A3A1_A1A3)+Q3(A1A2—A2A1)>

we must have

AAy = AN,
AA; = AA,
A, = AA,.

Hence the A matrices are commutable.
It follows easily, as the A's are all of the same P class,
Ay Ayt Ay =k ky i ky
where Ly, k,, k3 are certain numbers:

hence

ky =% k: = ([,P\+ 1Py 1 Py)

s0 that
S = ([P 1Py Pa) (1 @y - ko@a+ K3Q5)

(9)

(11)

(12)

(13)

which puts the symmetric orthogonal matrix with zero spur into two commutative

anti-symmetric factors.
Also

det S = | det (,Py+1,P,+13P5)| | det (kQy+kyQ,+K5U3) |
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= B+ BB+ RE+ D)

(14)

When the elements of S are given, we can determine the elements of the factor
matrices in the following way.

As
S =

we can put

Then

a

h

h g x
b f y
, and a4-b+c+d =0,
f c 2
Y z d

S = A1Q1 -+ A2Q2+ Ast-

80, = —A;+(8:30:—1,Q5)
8Q; = —A;+(8,Q3—85¢,), ete. }

(15)

Hence A;, A,, A; are obtained by separating the anti-symmetric parts of S@,
8@, and 8¢, These are expressible as follows :

a8

hence

Also

80

A = Ha+d)Py+(h—2)Py+(9-+y)Ps)
Ay = H(h+2)P1+(b4-d) Py (f—x)Ps]

Az = H(g—y)Py+(f+2)Py+(c+3)P5).

atd _htz _g—y _,
2k, = 2%, 2k,  *
h—z b+d _fi=x -1
ok, 2k, | 2k %

gty _f—= _c+d _,
2k, 2k, 2k, ¥

a+d = 2k, b+d = 2ky,, c+d= 2k,

a+btc+d =0,
d= k1l1+k2l2+ kesls
a = kil —kl,—kgl;, ete.
h = kyly+koy,
z = kol —Iyl,.

(18)
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Hence,

S = |k —kola—k5ls, Kyl +-Eoly, kyly+koly, kgl,—k,l,
— s kla—kyl =kl Kgls ol kyly—kil,
— — y kgls—kyli—kyly, kol —kl,

_ - - ki kol Kyl
= (kyPy+ ko Ptk Py} (1@, 4+ 1@ +1:Q5) 5

where also

BB+ = +1,

B+8+18=+1.

3. Decomposition of Non-symmetric Matrices
A general orthogonal matrix can be written as
C=8+4

CC=CC=E.
where
From this follows
SA—AS8S =0, S2—-A2=F.
Decomposing
A=P +Q:

where P and  are linear combinations of P and @ type matrices,

we have
S:—-P2—Q*—2PQ = E

i.e., 82 = (14-P24-Q2)E -+ 2PQ).
Now
spur C = spur 8 = u (say),
hence by (7),
S = pE+4APQ.
Again as
82 = 2+ A2P2Q2 - 20 APQ.
we have comparing (20) and (21), firstly
A=1.
H
Thus

PQ

223

(17)

(18)

(19)

(20)

(21)

(22)
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or nC = [u+Qlp+Pl. .. (23)

Henece if
1= kik,

#C = [kyky+QI[kykp+ P)

= klk,[kz-i-%] [k1+»£ ]

Identifying (20) with (21) we put
Q — 2 y;
]c%——---- = [, k2 - = 1

—Q =, ,u’—P’ = k2.

Hence
— Q") ur—P1) = p

QP’

which relation is equivalent to = 14+ P24Q3,

The numbers k; and k, are thus determined. Thus (23) which is the factorisation
aimed at is completely established.

The general form of C can also be calculated.

If
C=AB
where
e (24)
B = B0+B101+BIQ:_+3393
and
A+ A3+ A3+ AE =
+Bi+Bi+Bj = 1.
Explicitly,
A= 4, —A4, 4, —A,| B= B, —B, B, +B,
4; 4, —4, —4, B, By —B, +B,
(25)
—4, 4, A, —d, —B, B, B, 4B
4, 4, 4, Ay By —B, —Bj B,
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Multiplying we have
C = (AoBy+A,By) —(A43By+4,B;) +(A,8,+4,B,) —(A,B,—AyB,)
—(A:By+45B;)  +(4,Byt4,B))  H(ABy+ABy) (4,8, 4,By)
(ASBO+AOB3) (A0B0+A2B2) _(‘4082’%“41‘80) ~(A2BO—AUB2)
+(4,B,+4,B,)  —(43B3+4,By) +(43By+A3B,)  +(AyB—4,By)
—(A.By+A4,By) (A1 By+A4,By) (AyBy+A;3B;)  —(A3By—AyBy)
+(AIB3+A3BI) (A2B3'{_ABBZ) _(AIBI.}-A‘.'.B?.) +(A1B2—A‘.’.B1)
(AIBO—AoBl) +(AzBo"AoBz) (AaBo“AuBa) +(A131+A232)
‘HAzBa—‘AaBz) +(ASBI._A1‘BS) ‘*‘(Ale"Asz) 'I'(A3B3+A0B0)
b o2e)
Now
det C = (A3+ A3+ A5+ A} B+ Bi+ B3+ Bj)? = 1
and
spur C = 44,B,. (27)
Two special forms of C can be at once noticed :
If C is a matric of the proper Lorentz group, then
Cis Cyyy Cyyy Cyyy Cye, Cy3 are pure imaginaries,
so that

(43B3—A3B;)+(4,By— By 4,) =\
(AzBs—AsBz)—(AlBo"Br‘lo) =X,
from which follows
(AzBa_AsBz) as Well a8 (AIBO—‘BIAO)’
etc, are all pure imaginaries.
AyBy, A;B,, A;B,, A3B; are real quantities as well as (4,8;4A4,B,), etc. and
(A3By+ A,B;), eto. are real.

We have then
_ 4, _

l, _ Ay _ 4y
= 5

B = B* = k, real (28)

a8 Af+A}+ A%+ A% = Bi+B}-+Bi+ B = +1 (B,* representing the conjugate of
B,, etc.).
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We thus see that the sets (4, 4,, 4,, A;) and (B,, By, By, By) are conjugate to
each other.

There are now two cases possible.
Case I. When (4,, 4,, 4,, 4;) are real, then
Ay=By, A, =B, A4,=18B, 4,=2B8;
and from (26) further
Cia=Cy =Cgyy=Cy=Cpp="Cyg=0
Cy=1

This represents a three dimensional rotation.

The axis of rotation is easily seen to be

l m n
Al = A: = Aa ves (29)
The angle of rotation is given by
24,G

tan ¢ = where G2 = A}4+ A3+ AL

yrael
Case II. A,, 4,, A; are pure imaginaries, 4, real.

The resultant transformation is here seen to be an Einstein transformation,with
translation along the line

t_m _n
1 4 3
and velocity given by
v_2406
¢ Aj+6*

where
Ai—~G@2 =1, and G* = A3+ A%+ A3
4,
We shall now oonsider certain general matrices of the form

A = pE+aP,4-bP;4-cPy
and B = pE+0Q,+bQy+0Qs. }
We can easily see that
| det 4 | = [u2+a®+b24-c2]2
| det B | = [u*+a®+-b-c2]2.

So when a, b, ¢ are complex quantities and | det 4|and|det B| real and positive
we must have

(30)
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pR4-2 D24t = p¥gatyprey oxe
where p*, ete. are conjugates of x4, ete.
We now consider 4 and B to be factors of decomposition of C, and take the deter-
minant of each of the factors to be 11, so that
#2+a?4-b%+c? = 4 1.
The matrices of A and B types are orthogonal matrices; but since their elements
are generally complex, they do not belong to the Lorentz sub-group of Group C,.

We will now discuss certain general characteristics of the 4 and B matrices, which
will bring into light also the intimate relation that exists between the decompositions
as carried out here and the spinor theory.

Prop. All matrices of 4 and B types are reducible :

A= py —p3} P2 —p
S —Q
@ S

Ps Poi—D1 —D2 =

(31)

iy 2 P1i Do —P3

P P2i D3 Do

where § and Q are certain matrices of the second order. That such matrices are
reducible is a well-known result.

Let
Y = A¢

define a transformation of a four-component ¢ to a four component .

We have
1 = PoP1—PaPet+PaPs—P16s
Yo = P3P+ Poba—P1Ps—PaPs
Y3 = — PP+ D192+ PoPs—PaPa ... (32)
Yy = piP1tPePet PPt DoPa-

From this it can be easily deduced that

Y+, Potips Pr—ip1 ¢1+5¢2}
Ys—iy, —~Pr—iP1  Po—iPs “hy—idy !
and there is alsu the corresponding conjugate relation obtained by putting —¢ for
%, (33) can also be written as

I

(33)
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¥st+iY, _ Potips  Pa—ipy | $atidy 34
~Y1+isl | —pe—ipy Po—ipsl | i—0y
Combining (33) and (34) we obtain
Yativs  Vativ, _ Dotips  Pa—ipy | | Betidy  bitidy 35)
Wa—¥1 Vs, —Dy—iP1  Po—iPs g~ P—id,

which is a well-known spinor transformation.

Again, choosing two sets of variables as (z,, %, 5, z,) and (¥, ¥s, ¥3. ¥4) the corres-
ponding transformation formula for B matrices can be written as

Yst+iYs  —Yrtiye _ Jo—1q; — 93—y l xyt+iz, —x iz, (36)
Y1 t+1Ys Y3—1Y, 92—1q, Qo-+ig3 R
which can be also written in the form
Yst+1¥a 1ty T3+ixy T2, l Q—19s 92—
Y1+, Ya—iY, B —y T, Xy—iry —@—iqy  Gotigs |
. (37)

(35) can also be written in this notation with the transformation matrix to the left
on the right-hand side.

Thus 4 can be regarded as inducing a front transformation while B induces a
back transformation, or vice-versa, which shows the commutative nature of the trans-
formation at once.

The general reducibility of the 4 and B types of matrices shows that the Lorentz
Group can be studied advantageously in the two-dimensional representation of the
A and B class of transformation.

DEPARTMENT OF PHYSICS,
Dacca UNIVERSITY.

Reprinted from Bull Cal Math Soc 31, pp. 137-147, 1939 (Calcutta Mathematical Society).



THE COMPLETE SOLUTION OF THE EQUATION :

Vip— L g = —dmplayat)

By 8. N. Bosg, Dacca University, and S. C. Kag, Bangabasi College, Calcutta.
(Received November 17, 1940.)

1. Inwhat follows we desire to present what appears to us to be a complete
Kirchhoff-like solution of the equation above and indeed by two distinct
methods. The one is a method of complex integration and the other an
extension of a method adopted by.Love * for ordinary retarded potentials.
The equation itself is one which seems to have acquired some importance in
view of a recent work of J. H. Bhabha 1 on the mesotron, who has stated a
solution of the equation, in which the part involving a surface integral does
not appear. To the best of our knowledge and belief the solution at which
we arrive and which exhibits the surface integral is original. As the whole
work, however, was started by a successful derivation, by an adaptation of
the well-known method of Herglotz and Sommerfeld {, of the potentials of
& moving mesotron, such as Bhabha uses, we let this derivation precede the
main investigation, since this way of arriving at the potentials appears to us
to be also new and of sufficient interest.

2. To start with, we seek a solution of the equation

0%
c2 962

=0 Y 0 )
of the form: = (s),

where 82 = ¢2(0 —1)2 —2(£ ~2)2 = c2(f—t)2—1r2 . (2

and z, y, z, t are parameters. The transformation of eq. (1) to the single
variable s leads to the equation

T3 ey =0
or %(e.p).;.%d%(&p)+<k2-;§>(a¢)=o. b ®

Hence we infer: ¢ = ‘I}_(;".‘;) or L 1§k8)

, where J,(ks) and Y,(ks) are Bessel

functions of the first and second kinds respectively.

VOL. VII—No. 1. [Published April 5th, 1941.
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3. Retarded potentials of a moving mesotron.

ks
VVepuiix=,£Y;e(—2

_ kJy(ks) ko, 2metl Jo(ka)§
= 21 in(ke)— - ,,.Zo( D e R
o (4)
and choose for the four potentials (¢, 4;, 4, A3) of the mesotron solutions of
eq. (1), stated as an equation in z, y, z, ¢, with ¢, », {, 6 as parameters, in the
forms

8 0
6= f Canfuon, Ar= f G T
1 1

The equation of restraint on the four potentials becomes
a¢ 04, 3A2 044
=coat o Tyt

- —J d0[f4c—30+f1%+fz%+fs%] X

~ 2 d¢d dnad dLd
"‘BJ O sttt TaalX

0, d

= — X

= BJ doda.. .. .. .. .. .. (8
0,

if, after Herglotz and Sommerfeld, we treat £, », { as functions of § and put

(Fo f1, for f3) = B ( % :z :g)

where B is an absolute constant.

We assume now 6 to have been complex of the form p-4v and proceed
to perform the integrations in egs. (5) along a path on the complex plane
shown in the diagram below.

")

'8Y
Bamo0 T\
o §>-o0 - \t/, t” M
i
-

58



The Complete Solution of the Equation :

2

c2 o2

Vip— — k2 = ——4mp(zyz2t). 95
The following considerations govern the choice of this path. Since,

from eq. (2),
= c2(0—t')(0—1"), N

where t' = {— g and ¢" = t+£, the only singularities of x are those at § = ¢’

and 6 = t* and since we are seeking, for the moment, the retarded potentials
we let the path embrace just the one singularity at 6 = ¢'. Since, further,
Ins in y is multiple-valued we cannot satisfy the equation of constraint (6)
by just having a closed contour about ¢ but have to let the path run along
the real axis from — o0 on one Riemann surface round ¢’ to — o0 on a second,
as, with 6 > — o0, x = 0.

Retaining only such terms in x as involve a singularity we may write

eqs. (B) as
é =Bcj do["Jl(’“)z 1] ,
2
0,
_ kJy(ks) 177 dé¢
AI—BJ do[ lns—s—z a@,
0,
etc.,
and evaluate the integrals as follows:
l d§ 1df _ 2m do' _m
J T fdo- = = v,, eto.,

2 ’
82 do [d(sZ) dt cr(l—%')

)
Jyks)yd¢, 1 Jy(ks) d¢
L ‘8 IzTal”"‘EJ do 18 75 m0—t)
1

1

g

= J doJlﬁk") dé etc.

e’

-0

We identify now Bni with the charge e of the mesotron and obtain as its

potentials
bm e "J AL
r(l - 2’-‘)
¢ -®

e g Jalks dn d
ot a2 [ D% 0 %)
cr(l——é) Y o

which are the forms used by Bhabha.

(9)
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In concluding this section we remark that the advanced potentials of the
mesotron, also used by Bhabha, may be obtained in like manner by the choice
of a path of integration made to run along the real axis from +4co on one
Riemann surface round the other singularity at 6 =¢" back to 4-¢0 on a
second.

4. Solution of the proposed equation for retarded values of t : First method.

We write 2
Vi — T = —amenl) .. .. (0)
and Vix— %—kx=0

where y is given by (4). Hence we obtain firstly,

o( o 2% _
Z 52(" 2 ¢ af) cao( X o0 ¢cao) = —duxp(fnlf)
and then, upon integraticn with respect to 6,

1 a¢ dx 0y
J Y ae<" % ) X co8 ¢caa] = —“r“xp(fnw)

We agsume now 0 to have been complex of the form p+iv and proceed
to perform the integrations along the same path on the complex plane as
we have used in the previous section. Since, with 8 — -0, both y and

—+0, we have

Ox
26

'0.
r“Zaf(xaf )= —dn | 38 xp(enth).
o 01
This we may write again in the form
Og "al
> 8£J- (x 5% —* ) ald o,da xelénle), .. (1)

if we observe that we may treat the path of integration as independent of
£, , {, since the path about the singularity at ¢’ may always be slightly varied

to accommodate the shift of ¢’ involved in the operations, -a%, ete.
We set down now in brief the necéssary calculations.

Oy 83
® j a8 xplent®) = f do[-"-"—-‘,‘—"" tma— 3 | ténte

0

- ik J a0 288 i) 1T it



The Complete Solution of the Equation :

95._ ﬂ. —k2p = —4np(ay).

. (ks
(i) Jdox =j da[ Bk, 2158

PR o
= —‘ntkj 1.’ a€+cr(a£)

-0

pbg

Oy
o

v

ldx

nag

d [k (ks Jo(ks)
—(£—2) d0¢>%£[ 18( ) s 083 ]

“91

= —(t—2) +=a

s ks) . 2Jo(ks
do¢[k%(Jl(sks))lm 2kJ ) z& )

“01

b
Ji(ks)\Ins  k? $
=—(t—2)| k| db¢+ +—J dé 5
( ’ [ J.ol ( ’ ) y 2 al *
03
$
[

a1 1 2 . 1 ]
Replacing - by ﬂ(tﬁ_t')i[w—t')z T (O=t)8—t") T (61T
we have

%
j‘ d0¢%

2

’

¢
=—(f—z)[—m’kj a0y LD B (), +m,(¢),]

-0

g

14
. ar(d i . 91
= —mik J B3 ("“k’)) B ey a‘e(oge) +% “*"’a“f(F)'

233



234 S N Bose : The Man and His Work

Substituting these results in eq. (11) and dropping the factor %’ we get

)
—tn I:’i‘—’:“—’ —ckj w@mm]

,
- 9 1/0¢ 10r(o¢ _a_ l _ J1(k8)a_¢
-za‘e[;(ig)ﬁ; ()~ ez (}) °’°J UL,

-0

,
+cch d0¢%('—"—§kﬂ>—§—2(¢)y%]. . a2

~o

We integrate this equation now further through a closed volume about
the point P (z, y, z) but exclude the volume of a small sphere about that
point. We obtain thus

f I
—tr J Jd&d’qdc [‘if-'-;‘—‘-’—ck J do"%""’menco)]

-

- ([0, 2(20),~0-20)

ot ¢
J(ks) 3 2 (Julka)\ B .
i a‘ﬁ“"f d“a‘ﬁ( : )"?Wa—n]

8

- -0

[ o[22+ 28,020

pt’ ¢
J1(ks) ¢ 9 (Jy(ks)\ k2 ar
-ckd da_s___.g.ckJ- dog - ( )—§(¢)¢'a,n:|,

8

-0 -

where the second surface integral is over the surface of the small sphere about
P. Its limiting value, with r — 0, is seen to be

, (1
—b5, ”ds 3—1;(;) = —dndy,.



The Complete Solution of the Equation :

02
Vig— T2 kg = —dmplay)

We arrive henoce at the complete Kirchhoff-like solution for retarded values
of ¢ in the form

Hayat) = ”J df dn df ['1‘—‘—’}—“—’ —ckj LU co):]
1 1/0¢ 1 0r/f0dé 2/1
+G”"S [;(a?>,,+r on (c ae) “’t'a—n(;)

-ckj dﬂ{ . i ¢aan(J’§ >)}-’«;f<¢>t,g—;:l. .. (13)

-0

In closing this section we remark that a like procedure with the second
path of integration pointed out in the previous section yields the complete
Kirchhoff-like solution for advanced values of ¢ in the form

Haye) = J J J s [ﬁ..u = do%@,,@,,w)]
.

1 ¢ 1 3¢ d /1

+4,,”“[ (an),. m(m)t. “"fa—n(;)

'w Jy(ks) o¢ 9 [Jy(ks) ke, or
—cth’dG{T%—¢%< 18 )}—5(49),,67]. . (14)

5. Solution of the proposed equation for retarded values of t : Second method.

To begin with, we replace 8 by t—E (= t') ineq. (10). With the notation

o(6m & e=2) = 1ol

H(em b= =141

etc.,

(15)

equation (10) takes then the form

[veg]— [62 36 | —FH8] = —dnlp). e (18)
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Now

) a¢ 1or )
'a?[d’] ] rEE
d
54 = La"
i Kk
w = ] [ag s 5 - 4D
109r 09711 o2r
ey (g
g1 or
aeat[‘” [aeao [ c O
Hence we deduce firstly
29r » . 133 a4 _ (1 or\2[a%g
and then
V2[¢]+§ g;agzat [¢]+cr at["] —kgl = vil- [ 330‘] )
=—dnlp] .. .. .. (18)

in view of eq. (18). Dividing both sides of eq. (18) by r, we have,

. 1
sinoe V’— =0,

f21200) B, 0

We next proceed to combine eq. (10) with
o2
vie- 22 kg =,

Ja(ks)
8 2

and obtain firstly

Z 35( —¢ 35) caa(qcago ¢oagO) = —47Qp(éni)

and then, since both @ and aQ-»o with 8- — o,

Zr“:;( s -e-+2]- —uj 48 Qp(éntt)

-0 tw
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0
V-5 g;'z ke = —dmp(2yzt).

.
] 0
orzgf-J' de(Q£ "“a?) Z[ Qg 45 iZ; %[Qcaéﬁo 4

-

.
= —4wf d6 Qp(£nl0).

-0

Rearranging the terms in this equation we write

;
K 98 _ 99\ _[4] Qor _2Q QI <o o
Zagj ‘w(Qag ag) [zag % "can |t o [Zag % cag]

-®

= —4x 5 do Qp{énth) .. .. - .. (19

-[#]-[5]- %]

and observe that

[%]-

(@ =

and, in view of egs. (17),
o4 or
[25552—@] Zag Frld

2
=S a(5w)-im
Equation (19) now takes the form

Z%U (a‘* ¢6Q)+§Z—;[¢1}—’§@

:
= --47rJ’ d8 Qp(énh). .. .. o (B
Combining now equations (A) and (B) we get
v
1\ 210r2 ¢
> {, 2-ihg(3)+3: F A ckj (a3t 932

-0

.
4,,{” ckJ dﬁQP(énlﬁ)%

-0

k or
~5 % [‘“E
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or, in view of egs. (17),

o (1ras) 1or (_)_ Jd0< o _,0Q
Za—gi;[sz ol a1 (7)) (o - ~+%)
k or
sl

v
= —dn {[—’;] —ck'[ 6 Qp(fqﬁﬂ)%. R 11

-

This equation (20) is easily seen to be identical with eq. (12) and subsequent

integration through a closed volume, as in the last section, will now obviously
lead to the complete solution of the proposed equation in the form (13).

It is evident that we may in like manner obtain the complete solution

for advanced values of ¢ if we replace-8 in eq. (10) at the outset by t+£ (=1")

and later perform integrations with respect to 8 from t* to + co.

6. In closing this communication welike to make a few observations
on the methods here employed. Firstly, the method of complex integration is
obviously also available for the Kirchhoff solution of the equation

Vig— Th — amp(entt).
c2 002
We may have this solution, of course, immediately out of the solutions (13)
and (14) with k — 0; we may have it, too, by a like procedure repeated with a

solving function x(s) = 513. Secondly, both methods may be adapted without

difficulty for solution of the equation
2
Veg— T = —dmpltnl®)

and the only difference should be that real Bessel functions of imaginary
arguments would take the place of those we have used above. Lastly, under-
lying. the method of complex integration there is obviously the assumption
that p and ¢ are analytic functions of 6 over a region of the complex plane
wide enough to embrace the path of integration—an assumption from which
the second method is happily free.
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REACTION OF SULPHONAZIDES WITH
PYRIDINE : SALTS AND DERIVATIVES OF
PYRIDINE-IMINE

Curtius and Kraemers! heated p-toluene-
sulphonazide with pyridine and isolated a crystal-
line compound, M.P. 210°C. They supposed it to be
p-toluenesulphon—amido-pyridine. When, however,
the sulphonic acid residue was removed by hydroly-
sis, the new base yielded a picrate of M.P. I38-9°C.
which did not agree with M.P. of the picrate of any

of the known amino-pyridines. The structure of this- -

compound was thus not established by this work of
Curtius.

Reactions of p-acetyl-amino-benzene-
sulphonazide and p-toluene-sulphonazide with py-
ridine have been studied here for the last year and a
half. This has led to the discovery of a new deriva-
tive of pyridine, N-imino-pyridine, and the com-
pound of Curtius has now been shown to be a
sulphonic acid derivative of this N-amino-pyridine
or pyridine-imine.

CH, ¢ > SO,N : NX >

@

‘When p-acetyl-amino-benzene-sulphonazide is
boiled in dry pyridine in an inert atmosphere, nitro-
gen is slowly evolved and from among other prod-
ucts a crystalline compound insoluble in pyridine
can be isolated. After repeated crystallisation the
substance melts with decomposition at 283°-4°C.
The analysis shows that the substance has the same
empirical formula as p-acetyl-amino-benzene-
sulphonamido-pyridine but closer investigation re-
veals it to be also a derivative of pyridine-imine
having the formula

CH3.CO.NHC> SO,N : N¢ >

(In
The acetyl-group can be removed easily and this
process leads to an extremely hygroscopic hydro-
chloride of a base. The free base has M.P. 228-
229°C. Estimation of Pt. in the platini-chloride
compound, M.P. 224°C, indicats the formula
(C11H1102N3S)H2PtClg
showing that it has two basic groups.
When further hydrolysed with hydrochloric acid,
sulphanilic acid separates out and the solution of an

extremely hygroscopic hydrochloride of a base is
obtained.

The perchlorate of this base has M.P. 204°C., the
picrate, 149°C. and the platini-chloride, 237°C. and
the analyses completely agree with the expected
formulae.

Attempts to liberate the free-base with alkali
lead to polymerisation.

Alkaline-ferricyanide liberates nitrogen from
the salts of this base. Nitrous acid decomposes the
salts and from the solution pyridine can be isolated,
as perchlorate.

The same base is obtained from the hydrolysis of
paratoluene-sulphonazide-compound. This has been
confirmed by allowing p-acetyl-amino-benzene-
sulpho-chloride to react on the base from (I) which
leads to the compound (II).

A confirmation of the imino-structure has been
obtained by a synthesis of the compound (I), from
glutaconic-dialdehyde. Mono-benzoyl-derivative of
glutaconic-dialdehyde? is allowed toreact with para-
toluene sulpho-hydrazide leading to the compound
of the form

CeHsCOOCH=CH-CH=CH-CH =

N.NHSO2C7H7

With the action of alcoholic hydrochloric acid
the benzoyl group is eliminated, and there is a ring
closure leading to the formation of the pyridinering,
and the hydrochloride of compound (I). This syn-
thesis is similar to the synthesis of pyridine-oxide
by Baumgarten.3

Further investigations about this interesting class
of compound are in progress. Full details will be
published elsewhere.

In April number of Current Science, Ganapathi
and Miss Alamela4 reported about their attempts to
prepare sulphonamide derivatives of heterocyclic
compounds by Curtius process. They mentioned the
compound (II) and assumed this to be a 3-amino-
pyridine derivative without any justification. It is
expected that this note may be of some interest to
them.

S.N.Bose
ParitosH Kumar Dutta
Dacca University,
Dacca, 1-6-1943.
I Curtius and Kraemer, J. Prakt. Chem., 125, 323, 1930.
2Baumganen Ber., 57,1625, 1924,

66, 1808, 1933.
4 Ganapathi, Current Science, 12, 119, 1943.

Reprinted from Sei & Cult 9, pp. 48-49, 1943 (Indian Science News Association, Calcutta).



A NOTE ON DIRAC EQUATIONS AND THE ZEEMAN
EFFECT

By S. N. BOSE
AND
K. BASU
(Receieed for publication, Sept. 22, 1943)
ABSTRACT. A new treatement has been given for solving Dirac’s equations for hydro-
genic atoms, and the radial functions are expressed in terms of & combination of Sonine’s
polynomials T4 (p), T'{#! )1 (p) of only two consecutive degrees n, n—1; and the elementary properties

of such polynomials have enabled us to tackle the Zeeman effect problem in general (homogeneous field)
leading to the standard quadratic equation in energy for the effect.

1. With the help of the two-dimensional matrices s,, 8, 8,, of Pauli the wave-
equations of Dirac can be put in the well-known matrix form :

v Ze? L Ze?
—_ guhidl = l . = = 1.1
hc[E+Eo+ : ]X+Dy_o, e [E Eot = ]Y—{-DX 0 (1.1)
. 2 2 7}

where D is the opera:tor %z 5, +8”7y +3"6§,

If, similarly 8 = @s,+ys,+2s,, and s = é(zs,—{—ys,—kz&,), then

8.D.=r :i_lr+L’ where L = ¢ (M 8,+ M s,+ M z3,).

And the following commutation rules can be easily deduced :
8(L—1)4+(L—1I)8 = 0, D(L—1)+(L—1)D = 0;
also 2=1,

Hence multiplying the equations on the left by S we have

[E+Eo+ %‘3’ ]SX+ [rgﬁ-l] Y+(L—1)Y = 0; (1.2)

g~

g~

[2—Eot %?f ]sy+[rgr+1]x+(L_1)x — o0
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i ) D, V= sl g—(rL) ¥ where @,  are similar one-

r

AssumingX sl

Ug

Uy

column matrices and functions of (0, ¢), the equations can be rewritten as

' Ze? d
LB+ Bt 25 Jsot %‘T’). v @y o, (1.3)

The equations become easily separable if the matrices ® and ¥ are iso chosen that

at first (L—1)¥ = kY and s® = ¥'; and as s? = 1, it follows therefore from commu-
tation rules that

O = sV and (L—1)sY =—ks¥.
We observe at once that I(L—1) ¥ =—Va¥ = k(k+1)¥, where

92 [sin6 1 a2
V:= nd 30 (50 33) T i FrERl

1 4 < 0
and therefore k can be either a positive or a negative integer.
Secondly, if (¥, V') are the matrices for positive k, then (¥',®) are the matrices for

negative k. Also remembering that the operator

0 2y, 1 . .
- [ l,( z 3y ~Y 52 )—}— ) sz] commutes with the equation-system, the angular

matrices can be expressed in terms of spherical harmonics of order k¥ and k—1 in the
following form :

¢ = k.:l"w yu ’ Y= k—'m Y*
2k—1 "kt 2k+1 "k
(k, a positive integer) (1.4)
sy S ey S
E—T TéA i 2k+1 Ti

— [ 1 dk'+ll el'u'ﬁ’
where Y5 = o/ 241 e B g @D g o= c0s0)
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The functions are interchanged for negative values of k. Writing f(r) = «F(r)
0 as to remove the imaginary from the radial equations, we get

(20 k811 [B+B 2 P =,
[%1: —k—ff]-i—ﬁl [E Eo+—ze—’]G=0. (1.5)

2. To solve the equation we assume

F = fierFy(r), @ = goe"r*Gy(r), and N = aE/(Ei—E?) o (2.0)
where Ze?/hc = a.

Substituting in (1.5), F; and G, are easily seen to satisfy the following equations :

G k
T RDY SN £l R0 A R (2.2)
dF, k—p ., N G
AN~ Fi— 2 (Bt B) = 0
Ahe E,—E \} Ei—E2\i
where fufdy = —(Ey—E)fhed = p=t0 = —<E:+E) and A = =) ey

If F,+-@, = 2x*, Gi—F, = 2x-, elimination leads easily to the following equa-

tions :
r 2 et 1220 X Lox Nyt =0, (2.4)
P (N = (N % k) (2.5)
provided I3 —u? = NYE:—E%)/E? = o3,

Taking the first equation it can be easily seen that it admits of polynomial solu-
tions if N —u = » (an integer). Writing p for 2Ar, and writing a Sotine polynomial
in the form

2 —1 2 2
Tﬁ;“) (P) — Bgu)[ pn___ lb(_ﬁij'_r/‘_)pn—l n(n )(n+ 2/‘")("’"" “— ) pn..g___ ]

n

= BW. (—1)terp~2 % (- e~ rpnts ] (2.6)
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with constant B{*) so chosen that it is normalized according to

o

[ e~p* T (p)T{ (p)dp = 1

(1]
we got BY = 1/{n | Din-+2u+ 1)}

Hence it easily follows that x* and X~ will have solutions as given below :

xt =8 (NP —k)T) . 2.7)
ae
[ ¥= = Vi—e ’ 6=E_o]
X =8 (N30 1k )T, (o) (2.8)

where the normalising factor ¢ is to be determined presently.

Our radial functions of egs. (2.1) stand thus

F=—f*\j(t~£) ¢

o™

pr [ (35— )10 (o) — (N2 +1 )T (o) | 29)

_a\/( ) ¢ T pt [(NEF::’ )*T‘“’(p)+(N +lc)*T“"l(p)] (2.10)

Normalisation requires

;f(F’+G=)dr =1,

L A E
8= L2
which gives 5N I, .

We can write the two solutions (A) and (B), corresponding to positive and negative
values of k respectively.

\/H" EL THNE l;lc_-ll—‘l ARt
(A)
e N B 1y (R 40 e
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k— JAr) k+p g-r)
vy = 2_kilc—r——Y£ va—\/% — Yi
(B)
_JJEratl L) pan k—p—1 g_(r) w1
% \/2k+1 r YE \/ ok—1 Ty b

—

wherein it is understood that f_ and g_ are obtained by changing the sign of k, in the
expressions for F and @ in (1.5) above.

3. When the atom is in an electromagnetic field defined by the vector potential
(4,4,4,), the Dirac-equations become

hE[E+E°+ = ] X+DY+ - ,w AY =0 (3.1)
h_c.[ E—E,+ —] Y+DX+ & £AX =0 (3.2)
Where A = t[A,J,+A'8v+A‘8,]

In the case of a constant magnetio field H, in the direction of Z-axis

A=14Hr |0 e—wdsin 0 | = }Hra.

(8.3)

—ebdgind 0

We observe in passing that in the absence of A4, the wave function X is
generally small compared with Y—the radial component of F(r) has the factor

J 1_%‘:’ , while G(r) has J 1+ EE; ; 8o that the perturbation effect of h% AX is

small as compared with effect due to the term £ AY in eq. (3.1)

ke
Reniembering
e—ip Yu+l = — f b—p)k—p+1) yu (k+p)k+p+l) v,
Y+ sin 6 (2k+1)(2k+3) Yia+ (Ck+1)(2k—T) Yias
i$ YV gin 0 = , [ (k+p+1)k+p+2) (k—pfk—p—1) yui1 .
#F Fising (2k+1)(2k+3) Y- (k—1)(2k+1) Y

we seek an approximate solution of the equation by choosing one set of angular func-
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tion (Y%, Y{*'), and assuming the existence of both the sets (Y%, Yi#l) and

(Y4,,, Y&) in X. This can be done by suitably combining the (A) and (B) types,
thus

Take u; = Cfuf+Cgeny vy, (j=1,2,3,4), where (uf, uf, uf, u) corresponds
to k = 4-land (vr, vz, v5, v;) corresponds to k = —(I4+1). More explicitly, their
values are

l (r) - I—p+1 -(r
w=nf5EE By o JERE SO,
_ I—p—1 f(") - [l+p+2 JAr).
W= =gt T Y v = TS
+_ [ I—n 9.0 — [ e+l g(n) Y#;
U3 N/ 20F1 r i vs “/ 241 7

+_ flHptl 9 pun . o fl—p 9-()
u _J 2l+1 7' Yu+ i vg= \/2l+1 - YI‘+1

The constants A, N, x of the two types of solutions are different and are expressed
by the following relations

= (B—E)ifhe, P—o?=p2, N, = aE,[[E3—E2}, (3.9
and N, =n, +p,[for (A)—type with k = [].

= (B§—E2)ihe), (+1)*—a® =p2, N_=ak_[[E—Ef}, (3.5)
and N_ = n_+u_[for (B)—type with & =—(I+1)].

If E, and E_ differ slightly from one another, we have the following approximate
relations

A, =A, p_=p,+1, N, =N_,n_=n,—1, a.nd ~ 1, (3.8)

0

By following the usual method of perturbation we see easily that the characteris-
tic equation for determining the Eigen value E would be

t
E{E_E+] +pay, Pl =0
(3.7)

pagn '%[E_E'] +pags

where p == eH/2he, and
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a, = [[r;m Y, +Y,raX, 4V
ay, = j (X raY_+Y raX_1dV
a, = ][X;raY_+?:rax_]dV (3.8)

a, = [ [X'raY,+7 raX AV

and X etc. are transposed conjugates of X, (the & is given in (3.3))
Carrying out integrations over the angle-variable-space we get

_ 2dpt2) .
ay = — m! rf19.dr ;

2(4p+2)0+1) [ .
o= it | T

O3 = Gg; = t\/l(_é‘l)_ﬁ-l{—ﬂ-*—l) I r(fg,+f.g-)dr.

4. To evaluate the integral {I} or {II}, we substitute the values of the correspond-
ing f, g, and remembering r = p/2A, we obtain

=g B Bt {(n R ) [ oo [0
0

@®

_(N+ IEZ:_E— +k ) j eppPutl [ﬂu—)l (p) ]fip } .
0

The integrals are evaluated quickly by repeated partial integration; thus

[ ] 200 Tap = g [ore0 ) 5 i) dp
> —p +n d" . o
=1 5 Tk mn i (o)

=(n41)n+2u+1)—n(n+2u) = 2N 1.

Similarly
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f e p2“+‘[ T, (p)]fip =2N,—L

0

An easy substitution of the value of A, in the foregoing leads to the following
results :

-]

0[ rf g dr = — Z%o (1—21 % ); (4.1)
frf_g_dr - — Zhﬁ; (1+2(l+1) %‘: ) (4.2)

0

The evaluation of the third integral cannot, however, be exactly expressed in a
neat form ; for the simple reason that A,, N, E, as well as A_, N_, E_ are different
in the two-solutions, as also p, = 2A,r and p_ = 2A_r. If however, we introduce
approximations in the beginning, and take

A,=A_=|A|, B, =E_, p.=p 41, n_.=n,—1 p,=p_, (4.3)

we see the third integral

_ 2|A] |B| (Be— BN B0 N\ B ;
=-S5 m e (VE) (VE) X

[ espesmpimesn oo NEe41) (WBe—1o1 )

1]
x [ e-2pa 214 p) T3P (p)p}.
0

The two definite integrals can be easily evaluated in the same way as before.
We give the results below ;

@

g —pph-2u
ePp2u+2 TW) (p) TW+D (p)dp = er (4.4)
0-[ ! OI Va—1n ! F(n+2u+1) [(n+2u+2)

n

X ad—pa [p"“—(n—l)(n+2ﬂ+l)p”+... ] = 2/ (N—=D)(N+I1+1).

[ etpmsaTen o T do = o7/ N FIN=I=1) (4.5)
0
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Hence

(1 = — M, 7 [\/z\ I\/N%.‘-{-l-{—l VN=I \_/N+l+|]

- \/NEFP +1 \/N% —I—1 /N4l VN—I—1 ]

Observing Ey/E ~ 1, we see

1 h, h,
SIIN = — = — =£
= — op - g 2N I

Finally. putting p = cH/[2h,. and eh/2m. e = p, (Bohr-magneton) and substituting
the values of the three integrals (and making E,/E~1) we scc that the determinantal
equation (3.7) takes the form :

=0

2l
E—-FE, — EEw) muoH Lo 1 Vi{l—m-! W ne-+3)

Ty
! 2042 (4.6)
- ;lfl '\/(l—m-{—%)(l-{-m-{-*) E-E_— m mytH

wherein we have put y+$ = m (magnetic quantum number).

The result (4.6) agrees completely with that quoted by Bethe (1933), supposed
to have been worked out by him from Pauli‘s equations. Condon and Shortley (1935)
obtained similar determinant from principles of quantum mechanics by applying two-
fold perturbations (spin-orbit and magnetic) simultaneously. It may be noted that
Darwin (1928) has many similar features with our mode of attack, and we can claim
some elegance by our introduction of Sonines properties, which exhibit our solutions
in a good perspective.

DaccA UNIVERSITY

RAMNA, Dacca.

CALCUTTA UNIVERSITY,
92, UPPER CIRCULAR ROAD, CALCUTTA.
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Thirtyfirst Indian Science Congress
DELHI, 1944

PRESIDENTIAL ADDRESS

CoNGRESS PRESIDENT : PROFESSOR S. N. Bosr

THE CLASSICAL DETERMINISM AND THE QUANTUM THEORY
(Delivered on Jan. 3, 1944)

I wish to express sincere thanks for the great honour you have done
me. The Presidentship of the Science Congress is a great distinction, and
I confess, I have my own misgivings about the wisdom of your choice.
Your first decision had raised high hopes. Many of us expected that a
deliberate programme of the future scientific activitics of the country
would probably be a feature of the opening speech of this Congress.
Pandit Jawaharlal had studied the needs of the country. Many of our
front-rank scientists and industrialists had met under his leadership, not
long ago, and given to questions of future reconstruction much time and
anxious thought. The results of this deliberation would have been in-
valuable . at the present moment. My regret is keen that chance has
deprived us of the benefits of a sustained and careful study -of the problems
of the dav. I would have liked to present here the results, if they were
available. Unfortunately thev are not, as most of the reports are inacces-
sible to me.

One of vour former Presidents had remarked that ‘‘a scientist is apt
to become a man that knows more and more about less and less, so that
his opinion upon subjects outside his field of special study is not necessarily
of special value”. I realise the wisdom of this warning and hope to have
your indulgence, if I seem to be more at home with doubts and criticisms
than with useful knowledge.

I would like to present before you certain aspects of modern physics
and draw your attention to the profound changes in the principle of
scientific explanation of natural phenomena brought about by the quantum
theory. 'The last fifty years record remarkable discoveries. I need only
mention the clectron and the neutron, X-rays and Radio-activity to
remind you of the increase of our knowledge. Our equipment has gained
in power rangc and accuracy. Wae possess powerful telescopes to scan the
furthest corners of the universe, also precise and delicate instruments to
probe into the interior of the atoms and molecules. The alchemists’
dream of transmutation has Dbécome a reality. Atoms are now dis-
integrated and synthesised. X-ray reveals invisible worlds and wireless
links up the furthest ends of the earth with possibility of immediate inter-
communication. These discoveries have their repercussions in the realm
of ideas. Fifty vears ago the belief in causality and determination was
absolute. To-day physicists have gained knowledge but lost their faith.
T'o understand properly the significance of such a profound change it will
be necessarv to discuss brieflv how it all came about. Classical physics
had begun with the study of astronomy. With his laws of gravitation
and his dynamics Newton had explained planctary motion. Subsequent
study has shown astronomical prediction to be possible and sure.
Physicists had taken the equations of celestial mechanics as their model
of a universal law. The atomic theory had in the mean time gained
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uriversal acceptance ; since matter had resolved into a conglomeration of
particles, the ideal scheme was to explain all phenomena in terms of their
motions and interactions. It was only necessary to set up a proper set
of equations, and to take account of all possible mutual interactions, If
the mass, position, and velocity of all the particles were known at any
instant, these cquations would theoretically enable the physicist to predict
the position and motion of every particle at any other subsequent moment.

The phenomena of light did not at first fit into this simple scheme.
To regard it as a stream of particles was impossible due to the discovery
of interference. Accordingly the wave theory of light was originated by
Huyghens and perfected by Maxwell. With the discovery of the electron
as a universal constituent of matter, the electromagnetic theory of Maxwell
was converted into an electronic theory by I.orentz. To the dynamical
laws were added the electromagnetic equations and the two together
apparently gave an exact and ideal formulation of the laws of causality.
In the forces of interaction henceforth, were to be included not only the
gravitational forces but also those interactions which depended on the
charge and the motion of the particles. These interactions were brought
about by influences which spread out as waves with the velocity of light.
They superimposed, interfered and constituted the field of force in the
neighbourhood of the particles, modified their motion and were in turn
modified by them. ‘The motions of all particles throughout the universe
were thus interlocked. These out-going influences also constituted light,
invisible radiation, X-rays and wireless waves. Thus a set of universal
laws was supposed to have been discovered and we had only to apply
them suitably to find explanations of all conceivable natural phenomena.
In physical science we do not however always proceed in the above way
and turn to the ‘“microscopic’’ equations whenever we have to explain
events. We often study materials en masse, consisting of an enormous
number of corpuscles, and we use either the principle of the conservation
of energy or the laws of thermodynamics to explain their behaviour.
These laws were however regarded either as simple consequences of the
fundamental equations or as statistical laws derivable from them by a
suitable averaging. Though in the latter cases we talk about probabilities
and fluctuations, it was more or less a matter of faith to maintain that if
it were possible for us to obtain all the necessary data by delicate observa-
tions, universal laws would enable us to follow each individual molecule
in this intricate labyrinth and we should find in each case an exact fulfil-
ment of the laws and agreement with observation. The above in brief
forms an expression of faith of a classical physicist. We see that it
involves as necessary consequences, belief in continuity, in the possibility
of space-time description of all changes and in the existence of universal
laws independent of observers which inexorably determine the course of
future events and the fate of the material world for all times.

A few remarks about the general equations will perhaps enable us
to follow better the criticisms that have been levelled against the system.
The structure of the mechanical equations of particles is different from
the field-equations of Maxwell and Lorentz. The principles of conserva-
tion of energy and momentum were first discovered as consequences of the
mechanical equations. Mass and velocity of the corpuscle furnish means
to measure its momentum, and its energy, if we leave aside the potential
energy which resides in the field. To maintain the integrity of the
principle of conservation, the field must also be considered capable of
possessing energy and momentum, which however, being associated with
wave-motion, must spread out in all directions with the waves. The transfer
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of energy from the field to the particles must thus be a continuous process,
whereby, a finite change should come about only in a finite interval and
the process should theoretically be capable of an exact description in
space and time.

Physics being essentially concerned with relations Detween quantities,
these should all be capable of exact measurement. We measure always
intervals of time or inter-distance between points, hence the specification
of the reference frame is just as important as the units of measure. Newton
had not analysed closely the conception of mass and time. This vague-
ness persisted in the dynamical equations for the particles. The field-
equations which form the basis of the wave-theory of light have a different
origin. With the discovery of the principle of the least action, a common
derivation of both has been attempted. But a difference in the choice of
reference frame in the two apparently subsisted. The wave-equations
assumed a fixed ether whereas the material laws contemplated a Galilean
inertial-frame. An immediate deduction from this distinction was the pos-
sibility of measuring the relative velocity of the observer with reference to
ether. The experiment of Michelson and Morley showed it to be unrealis-
able in practice and formed the starting point of the celebrated Relativity
Theory. Einstein had subjected the conception of time-measurement to a
searching examination and showed the impossibility of couceiving a time
independent of an observer, or an absolute simultaneity of events happening
at two different places. The same space-time reference should be chosen
for the dynamical equations as well as the equations of the field, this being
supplied by the observer. In spite of this apparent limitation Einstein
demonstrated the possibility of formulation of natural laws independent
of all axes of reference and pointed out that the necessary auxiliaries
existed already in the invariant theory and the tensor Calculus of mathe-
maticians. In spite of its apparently revolutionary character, the theory
of relativity upheld the ideal of causality and determinism. FEinstein him-
self has continued to seek with great earnestness a unifying field theory
which will combine gravitation and electromagnetism and render un-
necessary a separate formulation of the dvnamical equations. No such
theory as yet exists,

II

The development of the quantum theory has raised fundamental
issues. Facts have been discovered which demonstrate the breakdown of
the fundamental equations which justified our belief in determinism. A
critical examination of the way in which physical measurements are made
has shown the impossibility of measuring accurately all the quantities
necessary for a space-time description of the motion of the corpuscles.

Experiments reveal either the corpuscular or the wave nature for the
photon or the electron according to the circumstances of the case, and
present us with an apparently impossible task of fusing two contradictory
characters into one sensible image. The only solution suggested has been
a renunciation of space-time representation of atomic phenomena and with
it our belief in causality and determinism.

Let me briefly recapitulate the facts. In 1900 Planck discovered the
quantum of action while studying the conditions of equilibrium between
matter and the radiation field. Apparently interchange of energy took
place in discrete units whose magnitude depended on ‘h’ and the fre-
quency of the radiation emitted or absorbed by matter. Photo-electric
emission had similar disquieting features. Einstein therefore suggested a
discrete structure of the radiation field in which energy existed in quanta

251



252

S N Bose : The Man and His Work

instead of being continuously distributed in space as required by the wave-
theory. This light-quantum however is not the old light-corpuscle of
Newton. The rich experimental materials supporting the wavestheory
preclude that possibility altogether. Moreover the fundamental relation,
E=hv, and p=hk, connecting energy and momentum of the photon
with the frequency v and the vector wave number k, makes a direct
reference to idealised plane wave so foreign to the old idea of a
corpuscle. Soon afterwards Bohr postulated the existence of radiationless
stationary states of atoms and showed how it led to a simple explanation
of the atomic spectra. The extreme simplicity of the proposed structure
and its striking success in correlating a multitude of experimental facts
at once revealed the inadequacy of the ordinary laws of mechanics and
electro-dynamics in explaining the remarkable stability of the atoms.

The new ideas found application in diffcrent branches of physics.
Discontinuous quantum processes furnished solutions to many puzzles.
Suitably inodified, the theory furnished a reasonable explanation of the
periodic classification of elements and thermal behaviour of substances at
low temperature. There was however one striking feature. It was appa-
rently impossible to characterise the details of the actual transition pro-
cesses from one stationary state to another, that is, to visualise it as a
continuous sequence of changes determmined by any law as yet undis-
covered. It became clear that the dynamical laws as well as the laws
of electromagnetism failed to account for atomic processes. New laws had
to be sought out compatible with the quantum theory capable at the same
time of explaining the rich experimental materials of classical physics.
Bohr and his pupils utilised for a time a correspondence principle, guessing
correct laws for atomic processes from analogy with the results of the
classical theory. In every case these appeared as statistical laws con-
cerned with the probabilities of transition between the various atomic
states. Einstein tackled the problem of the equilibrium of matter and radia-
tion on the basis of certain hypotheses regarding the probabilities of
transition between the various states by absorption and emission. A
derivation of the Planck Law was obtained by Bose by a suitable modi-
fication of the methods of classical statistics. Heisenberg finally arrived
at a satisfactory solution and discovered his matrix-mechanics and a
general method for all atomic problems. Dirac and Schrédinger also
published simultaneously their independent solutions. Though clothed
in apparently dissimilar mathematical symbols, the three theories gave
identical results and have now come to be looked upon as different for-
malisms expressing the same statistical laws.

I have mentioned that the photon gave a simple explanation of many
of the properties of radiation and thereby presented its corpuscular aspect
while the well-known properties of interference and superposibility brought
out its wave character. That the same dual nature may exist in all
material corpuscles was first imagined by De Broglie. His phase-waves
found quick experimental verification, and raised a similar problem of
the real nature of the corpuscle. The formulation of wave-mechanics by
Schrédinger, once raised a hope that by a radical modification of our
usual ideas about the corpuscle it might be possible to re-establish the law
of causality and classical determinism. Subsequent developments have
shown such hopes to be illusory. His waves are mathematical fictions
utilising the multidimensional representation of a phase-space and are
just as incapable of explaining the individuality of the electron, as the
photon is incapable of explaining the superposibility of the field. ‘The
true meaning of his equations appears in their statistical interpretation.
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III

I‘he adherents of the quantum theory interpret the equations in a
peculiar way. They maintain that these equations make statements about
the behaviour of a simple atom and nothing more than a calculation of
the probabilities of transition between its different states is ever possible.
There is nothing incomprehensible about such a statistical law even if it
relates to the behaviour of a single particle. But a follower of deter-
minism will interpret such statements as betraying imperfect knowledge,
either of the attendant circumstances or of the elementary laws. We
may record the throws when a certain die is cast a large number of times
and arrive at a statistical law which will tell us how many times out of
a thousand it will fall ou . certain side. But if we can take into account
the exact location of its centre of gravity, all the circumstances of the
throw, the initial velocity, the resistance of the table and the air and every
other peculiarity that may affect it, there can be no question of chance,
because cach time we can reckon wlerc the die will stop and know in
what position it will rest. It is the assertion of the impossibility of even
conceiving such elementary determining laws for the atomic system that
is disconcerting to the classical physicist.

Von Neumann has analysed the statistical interpretation of the
quantum mechanical laws and claims to have demonstrated that the results
of the quantum theory cannot be regarded as obtainable from exact causal
laws by a process of averaging. He asserts definitely that a causal explana-
tion of quantum mechanics is not possible without an essential modification
or sacrifice of some parts of the existing theory.

Bohr has recently analysed the situation and asserted that we cannot
hope any future development of the theory will ever allow a return to a
description of the atomic phenomena more conformable to the ideal of
causality. He points out the importance of the searching analysis of the
theory of observation made by Heisenberg, whereby he has arrived at his
famous principle of indeterminacy. According to it, it is never possible
for us to determine the simultaneous values of momentum, and positional
co-ordinates of any system with an accuracy greater than what is com-

. . . . - - h
patible with the {nequality Ap A ¢> i

This natural limitation does not affect the physics of bodies of finite
size but makes space-time descriptions of corpuscles and photons im-
possible. When we proceed to study the behaviour of the elementary
particles, our instruments of measurement have an essential influence
on the final results. We have also to concede that the contributions of
the instrument and the object, are not separately computable from the
results as they are interpreted in a classical way with the usual ideas
of co-ordinate and momentuin accepting thereby a lack of control of all
action and reaction of object and instrument due to quantum effects.

It is in this imperative necessity of describing all our knowledge with
the usual classical ideas, that Bohr seeks an explanation of the apparentiv
irreconcilable behaviour of corpuscles and radiation in different experi-
ments. For example, if we set our experiments in such a fashion as to
determine accurately the space-time co-ordinates, the same arrangement
cannot be simultaneously used to calculate the energy momentum rela-
tions accurately ; when our arrangements have pushed the accuracy of
determining the positional co-ordinates to its utmost limit, the results
evidently will be capable only of a corpuscular representation. If, on the
other hand, our aim is to determine momentum and energy with the
utmost accuracy, the necessary apparatus will not allow us any deter-
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mination of positional co-ordinates and the results we obtain can be under-
stood only in terms of the imagery of wave-motion. The apparently con-
tradictory nature of our conclusions is to be explained by the fact, that
every measurement has an individual character of its own. The quantum
theory does not allow us to separate rigorously the contribution of the
object and the instrument and as such the suin total of our knowledge
gained in individual cases cannot be synthesised to give a consistent
picture of the object of our study which enables us to predict with cer-
tainty its behaviour in any particular situation. We are thus doomed to
have only statistical laws for these elementary particles and any further
development is not likely to affect these general conclusions.

It is clear that a complete acceptance of all the above conclusions
would mean a complete break with the ancient accepted principles of
scientific explanation. Causality and the universal laws are to be thrown
simultaneously overboard. These assertions are so revolutionary that, no
wonder, they have forced physicists to opposing camps. There are some
who look upon causality as an indispensable postulate for all scientific
activities. The inability to apply it consistently because of the limitations
of the present state of human knowledge would not justify a total denial
of its existence. Granted that physics has outgrown the stage of a
mechanistic formulation of the principle, they assert that it is now the
task of the scientists to seek for a better formulation. Others of the oppos-
ing camp look upon old determinism as an inhuman conception, not only
because it sets up an impossible ideal, but also as it forces man to a
fatalistic attitude which regards humanity as inanimate automata in the
hands of an iron law of causation. For them the new theory has humanised
physics. The quantum statistical conception of determinism nestles closer
to reality and substitutes a graspable truth for an inaccessible ideal. The
theory has brought hope and inspired activity. It constitutes a tremendous
step towards the understanding of nature. The features of the present
theory may not all be familiar but use will remove the initial prejudice.
We are not to impose our reason and philosophy on nature. Our philo-
sophy and our logic evolve and adjust themselves more and more to
reality.

In spite of the striking successes of the new theory, its provisional
character is often frankly admitted. The field theory is as yet in an un-
satisfactory state. In spite of strong optimism, difficulties do not gradually
dissolve and disappear. They are relegated to a lumber room, whence
the menace of an ultimate divergence of all solutions neutralises much of
the convincing force of imposing mathematical symbols. Nor is the pro-
blem of matter and radiation solved by the theory of complementary
characters. Also we hear alreadv of the limitations of the new theory
encountered in its application to nuclear problems.

The quantum theory is frankly utilitarian in its outlook ; but is the
ideal of a universal theory completely overthrown by the penetrating
criticism of the nature of physical measurements?

Bohr has stressed the unique character of all physical measurements.
We try to synthesise their results and we get probabilities to reckon with

. .. . h 0
instead of certainties. But how does the formalism Tmp %=I1¢ emerge

as a certain law? 'The wider the generalisation, the less becomes the
content. A universal law would be totally devoid of it. It may neverthe-
less unfold unsuspected harmonies in the realm of concept. More than ever
now, physics does need such a generalisation to bring order in its domain
of ideas.

Reprinted from Proc Ind Sci Cong 31, pp.1-6, 1944 (Asiatic Society of Bengal).



ON AN INTEGRAL EQUATION ASSOCIATED WITH THE
EQUATION FOR HYDROGEN ATOM

By
S. N. Bose
(Recesved on May 15, 1945)
' 1
The Schrodinger functions ‘¢’ characterising the stationary states of hydrogen
atom are now very familiar things in analysis as also the differential equation which
they satisfy, namely,

8mim et
v+ —ga ( B+ )8=0. e (1)
The associated functions M, defined by the relation,
¢ = S M exp. 2n(le4+my-+nz)dl dm dn, . (1,2)

can be utilised for defining the probability in momentum spaoce if the momentum
variables are introduced by the relation p, = M, p, = km, p, = An.
When inversion is possible, (1,2) implies also

M, m,n) = [ ¢ exp. —2m(lx+my-+n2)dx dy dz .. (1,3)

and solutions of (1,1) can be utilised to caloulate M’s. Elsasser (1933) has followed
this method and arrived at fairly complicated formula. Another alternative would
be to set up an appropriate equation for them, and investigate its solutions. This
is an integral equation, whose complete solution is presented here. The analysis
presents several interesting features, and leads to expressions of M’s, which can be
immediately utilised to study their properties or to apply them to physical problems.

o

If we use the semi-convergent integral

1 ¢ didmdn -
1%=_17 f ?'——T-Tnﬂ’-'{—"ii' oxp. 2milz+my+nz), B =2d+y¥4+a,, ... (2,1)

then combination with (1,2) leads to the following sex-tuple integral for ¢/R, after a
change of variable and order of integration :

¢ 1 ¢ MA-I, u—m,v—n)
T [ Bimifnd

exp. 2my(Azx+-py-+vz)dl dm dn dA dp dv.
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M and

1 o M(A~I, pg—m,v—n)dl dm dn
w j 12+ m2+4n?

can thus be regarded as Fourier transforms of ¢ and ¢/R.

Using then in the Schrédinger equation (1,1) we deduce the following integral
equation

M(l—z, m—y,

x”—}—gﬁ—{—z’n_Z) dz dy dz, ... (&)

B+mrtni—k)M = A [

where
k2 = 2mE[R?. and A = 2med[mh2.
M is here assumed to be finite and single-valued throughout the domain of integra-
tion, as also
j | M|2dxdyde = 1.

(A) is the characteristic integral equation for M-functions of hydrogen; for k* < 0,
it leads to the discrete spectrum, while k2 > 0 : yields the continuous spectrum.

It is easy to transform (A) to the Fredholm type, when k2 < 0 =-—a2 We first
transform the origin, i.e., put I—x = 2, ete, in the right side. (A) becomes

AM(x'y'z Ydx' dy' d2’
i nt— kM — — ;
(34+-m24-n2—k2) U ( (= g F T (2,32)

when k% = —a?, we make a similarity transformation

l =1Ula, ¥ = ax”, etc.,
and put

M, m,n) =M{U,m, n)
whereby

dz’ dy' dz’ = a®dz" dy" dz”
and

(B+m2+n24-a?) = a?(I'24+m'24+n'241), ete.
The relation becomes

A M'(2'y'2")dx'dy'd2’
E+mitnt DM = — 7 | T =y Pt
If further
VA +BrmPnt) M = ¢,
then
¢(A) = K j. ¢(P)dvp ’
(=P -Fm— g2 WA+ B )y (L 22 g2 1 70)

(2,33)
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where
¢ 2m \#
= (—E’ ) ‘
(2,33) is thus seen of the standard form
HA) = —A [ HP)K(A, P)dv,,

where the kernel is symmetrical in 4 and P. Such a transformation will however
make the kernel imaginary within the domain, if k2 > 0; to have a uniform treatment
to cover both the cases, we will not utilise the transformation mentioned above.

III

We require the following simple result in our subsequent calculations. If r;

and r, are the distances of a point P(z, y, z) from two fixed points A(a, b, ¢) and F(f, g, &),
the integral

dx dy dz
1= =5
172
extended over the whole domain easily transforms to

o 1

dXdYy
I X:-Y?

2
c

[y —

-1
in bipolar co-ordinates with AF = 2c,
dz dy dz = c3(cosh?£—cos?y) sinh £ sin 9 dEdnde,
and

X =coshg and Y = cosy,
whelce, by easy integration,

s '’
1_—.-2—6: a7 .. (3,1)
Again, if
_ Ma—x, b—~y,c—z)dxdydz M(x'y'z' Ydx'dy'dz’
Afa, b, ¢) = A f 22 y?t2? =2 I (a—2' 2+ (b—y' )P+ (c—2')?
(3,2)
we have, by multiplying the equation with
da db de
(f—a)*+(g—b)*+(h—c)?
and integrating over the whole domain,
]’ A(a b c)da db dc — _2 j' !‘ M(x'y'?')dx' dy'dz’ da db dc
[(f—a)?*+-(g—b)*+(h—c)?] [a—a')2+... ][(f—a)*+...]
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Changing the order of integration and utilising (3,1) we have

] Mz'y'z x'dy'dz’ 1 I A(abe)da db de

(=2 PFg—y F+h—20F X ) [T=aP+g—0y+(h—c)]

_ L[ AU=a,. dadbde
T mA a3 b3 c’? ’

hence, operating with y,,, on both sides, as

M(xlylzlmldyldzl

V(gfah) I [(f——zl)’_{_.‘.]‘ ='°4”M(f: g h)

from potential theory, and
Vien {A(f—a, 9—b, h—c)} = (V*ANf—a, 9—b, h—o),

we have finally
1 (v*AXf—a, g—b, h—c)da dbdc
Mo ==z | P W
=1 f (v*A')e'dy'de’ . (33)
A ) [(f—2' R +g—y' P+ (R—2)) ’

a8 a solution of (8,2).
This important result furnishing a solution of integral equation (3,2) with obvious
restriotions about the nature of the function 4, enablees us to tackle our present problem.
v

Acoording to a well-known theorem due to Hobson, if an operator S ( d d d )

da’ dy’dz
is constructed by substituting de, ..., eto. for z, ¥,z in a solid harmonio 8, of degree
n (a positive integer),

(o e i) FOy = 28mwa ()P . @)
Let us assume, with regard to the integral equation (4), that
Mz, y,2) = 8.(z, y, 2)f(r)
or
Mz, y,2) = 8, ( ;%,, ‘—%, d—%) A(r?) v (4,2)

in view of (4,1) ; also (r*— k%) M(z, y, z) can be written as
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d d d 2
Su( 2 73 7 ) B0 o 43)
with the same operator, as the same surface-harmonic will occur in both. Also as
d d 4 om d \»,
S” ( a, d—y,&-;> A=2 Sn(x,y,z) ( '—d-’T) A—-—.M,
and
d d d _ d \"p a2 13
Su (g g 1) B= 8@ wa) () B = 0r—i,

we have

' d n _ d n _ d n—1 T

() "B =11 (5r )" = (ga) " (G —na),
implying

% - g; [A(P—k?)]—2nAr. o (4,4)
We have also from (4)
d
.2
8.2 | B=12 [Srlaa=sy ] 48w
"Lda 2ty
_ L3 Al(@a—=x)2+...)dzdydz
= A8, (da’ ) I a?4-y2422 ’

Henoce removing the operator S,

B =2 I Ala—z)2+...)dx dy dz,

and hence on account of (3.3)
_ 1 c(v*B)a—z, b—y, c—2)dxdydz
4= 4miA I x34y24-22 ' (4,52)

We now perform the integration ; assuming
(@—z)2+(b—y)2+(c—2)2 = f2 = 13- p®—2rp cos 0
according to the accompanying figure

o4 (Z,y,‘b’

T~

0 P Aq;b‘c
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we have, as fdf = rp sin 0,
o = (p+r)?

pB(p?) = 2mA jd% [ 1 A (f?) df?
0 fr=(p—r)
A [ 16 (ptx)—Gyo—a),

0

l
v
3

where

_.1_ _.dg_. = A(x2)
x dz

and G, an even function of x. Similar]y from (4,52)

1
pA=— [ (L{p-+a)—Lip—2)],
where
AL v2B(z?);
xdx

hence integrating and putting
2
dQ —L o 1 dQ viB

dz z dx®
we have
1 dx
Glp) = — 553 | 5 [@p+o)—QUo—2)],
where
1 d%Q ., 1 d
7 dar = VB =5 gr @B
or Q =xB,
and therefore an odd funection of z.
Putting finally zB(a?) 0
77 P P i

we have the following relations between G, and G, in the skew-reciprocal form :

Gz(P)="7];‘ f Gulp +x);G1(p =) 4, ... (4,53)
1]
——% [ Colp+2)— Gz(p ?) da. o (4,54)
0

If the functions G} and G, are introduced in (4,4) we have

w [P mmmle (5 ) R
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or 1 i
—_ 2 p2y Ul
G, = 972 1 [ (x2—k?) i 2n2@, ],
” G _ 1 4d [ ,f_G,l__]
(221 2miadx [ (x2—kH)"

The skew-reciprocal relations (4,53) and (4,54) then at once suggest that

(@E—k=T T T 2m?Adx

————acns

G, 1 d [ (xzf?gkz)n }

is true at the same time.

(4,55) and (4,56), lead at once, by integration, to

22N x—k
Gy = Ax2—kY)" cos( —;Lr log 1 %——k >,
2 —k
Gz - __A(x2__k2)" sin <?:)T'k% ]Og ;_—-{:70 >s
when k2 > 0 ; when A% = —a?, on the other hand,

o2
G, =B (2?+a?)" cos < H-%% tan-1 _Z__>,

2
G, = — B(z%+a?)" sin < 21{% tan—! —Z—>

The two equivalent forms of M are

Mz, y,2) = A S, ¥,2) ( L d >ﬂ+1 [(r2——k2)" Ccos ( 2—"ﬂlog

rodr 2k
or
8,(z, y, 1 d \» (P—k)™ . s 2mA . r—k
== ALEEY (g V[ e (5 v e

for the case: k2 > 0; while, if k% = —a?,

Mz, y,2) = BS,(, y, 2) (—iw %)nﬂ [ (r?4+a®)" cos ( A

or

= 27\ g Sz, y,2) ( % &% )ﬂ !: (fi;az—)n sin < %ﬂ:—/\ tan—1 {LH

7‘2 _+_a2

tan—!

Q=
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(4,55)

(4,56)

(4,58)

(4,591)

(4.592)
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\%

As M is to be single-valued, we see, in the case of k% (< 0) = —a?3, that a restric-
tion comes in regarding the choice of constants of the problem.
tan=)r/a) is a multiple-valued function of the form 64 Nw; if therefore
2 \ 2
cos ( 22 tan-1 L) and sin( 214 fan-t L) are single-valued, it follows that
a a a a

n*A/a must be an integer = N. This gives discrete energy-values :

B 2mE _ mA

3 e

2n%edm

o B =— gy

agreeing with the well-known result. Also as

2 tan~! — = cos—1 pr g
@—r) _fylr?)
-
008 <N cos P ) @ L)
we see that M — O unless N > n4-1.
Again starting from the series
1 _ v pn-y 8in NO 1—h cos 0
1—2h cos §--A% ?h ' gin @ ' 1—2%h cos +KF E k¥ cos N, (5,1)
and writing
ad—r3 . 2ar
cos = m andsm0 = Z‘_’TF;—’
we have
2a(a4-r%) s (@Y
=y (ays = 2M T s NG, - (52)
aX1—h)+rX1+h) Zh¥ cos N6. ... (56,3)

{T—RPad (1R —

Multiplying (5,2) with (a®+r2)*-1 and differentiating n times with regard to r, we have
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1
[(T=h)ya?+ (1T h)RpH

= iy 20 (L) [ EE i (Moo (525 )],

a7
(6,4)
from (5,3) we deduce similarly
1—h2
([(l—i'z)‘a2 (1+h)2r2]"+2)
(—1yr1 1 o/ d \mh Y
= geniigen+e’ (n+1)! Z pNn 1< ar ) [ (a®+-r)* cos <N cos?! P e )] (5,5)
Remembering the Gegenbauer expansion
1 1 (2h)~
(a®—2ak cos B-+h% ~ a¥ + . aBTE F (c0s 6)
we can eagily deduce, if v =n+1, a = 1 and
a—r2
Cco8 6 = az—'_*_rz ,
the following results :
1 _ 1 \ P n+1 at—r3
A = @ e R (GG e

1—h? 1 o (RE142) iy [ GE—T2
[@EA—RPFr¥(1Fh)EE ~  (aPr2yie [H’}f a1l (2R F xH(aﬂ rz)]' (5,7)

Comparing (5.4) and (5.5) with (5.6) and (5.7) we have

() (47 ] = (U gy (o)

(@479 (@7 @it r
and
d \ntl (—1)rH1g¥engntey . ) a?—r?
i 2| 2 "
( dr? > [.(a +7)" cos Nﬁ] (a®+4-r2ynt2 Fy 4 ( a2 )
Hence

1 d\»h 2_ p2
Mz, y,2) = BS, (2, y, 2) (7 a—;)n [ (r24a®" cos < N cos™? —Z r >1

or
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— —oNg BS®.%.2) ( 4 )" [(a’+r’)" «in ( N ooos-t B )]

at+7r? rdr r a?+tr?
= + ai—rt
= 08, 9,2) Fithr ( iz )
VI

When k% < 0, the problem- can be transformed to a homogeneous integral
equation of the Fredholm type, with a symmetrical kernel

HA) = A j $(P)K(A, P)dvp.

The results that we have obtained above enable us also to say that

¢ = CVIF+yi+2® 8, (z, v, 2) ( »}; dir )"H [ (1422 y342%)"cos <N cos-1 i;’: )]

S”(z’ ? z 1—'”
= D(l+xl+y83{+z)2)n+a/‘zp;:+l< T5r ) ... (6,1)

are eigen-functions corresponding to the eigen-value —(n--1+4A)/n? for the kernel

1

K4, p)= (@—2P+(y—y' P+—2' PV (a2 /(1 22y i+

Writing

Mz, 9.2) = SR B0 (520 ) = CYL6. 0l B2

as—rs
(a3 rine afrt ) !

at4-rt

also

| Mdoiyiz =1 = c* [ Yi0.9M0 [ otramm | B0 S) [

@ i
To determine the radial integral, we use (5,7) and write -
= (1 —h3)(1 —3)r?*+2dy
- I [¥(1—BP (1A a® 1 — 1P+ {1+ 1)

— (n+142)(n+1+40) . FrH el gnse
- %% (n-’l—'l)’ (2")’\ (2t) f I—e;’—_i—_‘r—,‘)mrdr,

which reduces to

I =

(=)™ (1—A3)(1—) { d }mf dr
(n+1)! " (1R H(1 44" L d(p+q) [+ +7%7"

where
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a¥(1—h)? a¥(1—1t)?

~ ot T TaEe
when, by easy calculation,
7 w (2n+1) ! (L+R)(1+-¢)

= 2RI pi(nt1)] (1—h)es e (6:2)

Equating coefficient of (ht)*

7'2"+2 Fn+1)2dr _ ﬂ(2n+l+A).' .
[ (a,2+/,-2)2n_+4 ( A T RS g S 14 DAHnTe
hence
2__,2
M li snsrtania/ NV V4 ' Al + Fl'\'ﬂ( Zz+:z )_}7 0

(6.3]
where Y (0, ¢) is taken to be a normalised spherical harmonie.

We can normalise the eigen-functions of the homogeneous integral equation, for
which similarly the value of

]. ran+e

e (P27 @

will be necessary; for it, we utilise again (5.7) and write

I f (1—h2]r2m+2dy
T ) [(I=RRHAFRRAP(A =t (1 )22+

0

(m+14R) ¢ Fitl Frilptni2 gy

= % I (2R (2t)

(n+1) (1223 )
after easy integration
_m (2n41)! 1
I= 200 U (n 1) | " (1—he)™+2 - (8.4)
Equating coefficient we have
I{F'{“%’ rtidy m (2n+14A)
(14-72)2"+3 —2‘""‘”"'"(7&!)’(7&-;—1-}-,\)’ pY] .

The normalised eigen-functions of the homogeneous equation is

_ 2] (g 14 2) Al t_Y (0,4 gy (11
V= RV '((2n+1+,1)!) (T332 Fi+ (732—)---- (6.5)
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The completeness of the eigen-functions series will mean the equality

K y) = 5 U@ VG

(n+1+42)
(multiple summations as there are repeated roots) leading to the relation

) 1
[E—2 P+ y—y P+ =PI+ PN T

”2 n-zN 2w+lﬂ+2

m
. +1 o+l

(1) N [ (N—n—1)! r'®

r" id
B ~ (N4t ](l+r")='/il C(T4 F

(n—m)!

x(—2’;jr'”[ % 2Pm(u)Pr ) i

008 mig—4')+Poli) Pa(i) |

and leading to an expansion of

: 5 o5 ampy,, (4200) Fyn
@E—2 P+ (y—y' P+ (z—2)? = N-n-1 ( 1472 ) Non-1

l—r'I " rm (N—n-—l') ,
(1 Sy [ ) o0 [ PAwP)
+2 §:+:3v PPy 008"°(¢—¢’)]; e (8.7)

by a change of akis making (' ¥’ 2’) on the z axis

1 n 1—r? n 1—p'2 ry'®
At p L 2T Fittos (1w ) F ¥on-1 (15 )(1+r=)"“(1+r”)"+1
N—n—1)!
xtyr [ L= @) Py (6.8)

from the well-known addition theorem of P,(u).
To verify the correctness of the result we note that
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2 2
o2 P29l , 1—r2 1,2 arr ;
AP+ =2l (e, z-|—1)[ 1— 1+;=' 1+Tr'2— (1+12)’(r1+r,2) cos¢]

hence writing

1—r2 , 1—9'2
cos O = T_m,.cosﬁ-—l—m,
we have

1 2
r4r'2—2rr u? = (T2 +r?)[1—cosf cos 0’ —sin 6 sin 8’ cos @]

4 ¥ sin Ny
T (1) (14+12) % sin x ’ (6-81)
if 7/2> x> 0 from (5.1), and cos y = cos 8 cos ' +4-sin U sin 0’ cos ¢; hence
sin Nx _ T' Luv-n s pe | @—n—-H!
sy o, 200 @1l [ (Ntn)! ]
X sin®@ sin¢’ FitL,_ | (cos 0)-FytL,_ (cos 0')-P,(cos @), (6.9)

a result which is a particular case of a general class of identity deduced by Gegenbauer
(Whittaker, 1927).

PHYSICAL LABORATORY,
Dacca UNIVERSITY.

REFERENCES

Elsasser, (1933), Zeit. fiir. Physik., 81, 332.
Whittaker, (1927), Modern Analysis, 335, Ex. 42,

Reprinted from Bull Cal Math Soc 37, pp. 51-61, 1945 (Calcutta Mathematical Society).



Letters to the Editor

GERMANIUM IN SPHALERITE
FROM NEPAL

IN VIEW OF THE RECENT USE OF GERMANIUM
crystal as a rectifier for ultra-short radio
waves, it is worth while to make a thorough
investigation of the possible sources of
germanium in India. Recently, one of us
made a search for germanium in coal ashes
from different coalfields in India and a fair
concentration of germanium was detected
in a few samples!'2.

Argyrodite, canfieldite and germanite are
the only ores rich in germanium known at
present. But none of them have been
reported to occur in India. Zinc blende
from different countries has been investigated
by different workers® and in majority of
samples germanium has been detected in
traces.

Specimens of sphalerite collected from
Nepal by one us have been spectroscopically
examined. Two of these samples have been
found to contain germanium { Figs. 1-4).
The following metals have also been detected
in the mineral : Sn, Pb, Mg, Al, Si, Ga, Cd,
Ge, Ag and Fe.

During our investigation, we found that
germanium occurs concentrated in the magne-
tic portion of the mineral which seems to be
almost pure iron oxide with traces of sulphur,

lead, zinc, gallium and germanium. The
non-magnetic portions were also examined
spectroscopically and found to contain
germanium only in traces.

Germanium was estimated colorimetrically
according to the method by Marcel Orliact
slightly modified by us.

The percentage of germanium in the
magnetic portion has been found to be
about 0-24 while it varies in the non-
magnetic portion from 0-0072 to 0-04. 300
mg. of pure GeO, has been extracted from 160
gm. of the magnetic portion of the mineral.

The most abundant source of germanium
at present in U.S.A. is the concentrate from
residues obtained during the melting of zinc
ores. Buchanan reports as much as 0-25
per cent of GeO, from these residues. As the
magnetic fraction from sphalerite contains
about 0-24 per cent of germanium, it can
be regarded as a good source of germanium.

It appears that germanium has not been
detected in any iron ore so far; thus this
new mineral needs further study. We have
spectroscopically examined a few haematite
and pyrites samples but none of them contains
germanium.

We take this opportunity to thank the
Nepal Government and the Director of the
Nepal Bureau of Mines for the samples of
sphalerite. Qur grateful thanks are due

The first reference on p. 271 makes a wrong ascription to Dutta and Sen instead of Dutta and Bose, in the

original publication itself.
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3 Fi.g.i

F1G. 1 — (a) FE, (b) spHALERITE. FIG. 2 — (a) FE, (b) MAGNETIC SAMPLE, (C) NON-MAGNETIC
saMpPLE. Fic. 3 — (a} FE, (b) GE wITH TRACE OoF FE. ¥1G. 4 — (a) FE, (b) GE wiTH TRACE oF FE.

to Prof. P. B. Sarkar for his keen interest REFERENCES
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Extraction of Germanium from Sphalerite
Collected from Nepal—Part I

R. K. DUTTA & S. N. BOSE
University College of Science, Calcutta

A method for the extraction of germanium
from the magnetic fraction of the mineral
sphalerite has been described. The fraction
which is shown to be magnetite contains 024
per cent germanium,

cribed a magnetic fraction of the mineral

sphalerite collected from Nepal. On

chemical analysis, this fraction was
found to be mainly ferric oxide with a
coating of ferrous sulphide. It contains
germanium to the extent of 0-24 per cent.
That the mineral is magnetite has also been
confirmed by X-ray analysis. Coal ash,
euxenite and some specimens of zinc blende
are known to contain germanium in small
quantities, but its association with magnetite
has not been reported.

IN a previous communication!, we des-

Experimental

Analysis of the Mineral — The spectro-
gram revealed the existence of iron, silicon,
lead (trace) and germanium.

Total Iron — A weighed amount of finely
powdered mineral was dissolved in 1:1
hydrochloric acid and the total iron
estimated by titration with potassium di-
chromate after reduction with stannous
chloride.

Silica was estimated by the usual method,
and the value verified by determining the

loss in weight by treatment with hydrofluoric
acid.

Sulphur — The mineral was decomposed
with sodium peroxide and the sulphur
estimated as barium sulphate.

Ferrous iron was estimated by decom-
posing the mineral with 5 c.c. of concentrated
hydrochloric acid and 10 c.c. of hydrofluoric
acid in an atmosphere of carbon dioxide,
and subsequent titration with potassium
dichromate using diphenylamine sulphonate
as indicator.

Germanium — Of the various methods
known for the estimation of germanium3-5,
Orliac’s colorimetric method® with slight
modification was found to be the most
convenient. A weighed amount of the
mineral was carefully roasted at 500°C. in
an electric furnace and transferred to an
ali-glass distillation apparatus. 40 c.c. of
1:1 hydrochloric acid were added and the
flask gently heated in a current of air. The
distillate was collected in a flask containing
dilute caustic soda solution and a drop of
phenolphthalein indicator solution. After
the distillation was complete, the solution
was acidified with dilute hydrochloric acid
and the volume made up to 100 c.c. To
10 c.c. of this solution, 1 c.c. ammonium
molybdate solution { 9 per cent) and 10 c.c.
of alkaline potassium stannite solution
containing 5 gm. of hydrated stannous
chloride and 300 gm. of potassium hydroxide
per litre were added and the total volume
made up to 40 c.c. A series of standard
solutions of germanium tetrachloride were
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F16. 1 — X-RAY POWDER DIAGRAM OF THE NON-MAGNETIC PORTION FROM THE MINERAL SPHALERITE,

prepared and the same volume of ammonium
molybdate and alkaline stannite were added
and the total volume in each case made up
to 40 c.c. After an interval of 5 min. the
transmittancies of the solutions were deter-
mined in a Lumetron photo-electric colori-
meter, using 440 my filter, and a standard
graph was constructed. From this graph
germanium in the mineral was found to be
0-24 per cent.

The results of the analysis are tabulated
below :

Total iron 69-5 Fe Oy 66-28
Ferrous iron 23-1 FeO 27-02
Sulphur 1-19  FeS 8-27
Silica 2:18  SiO, 2-16
Germanium 024 GeO, 0-34

99-07

The mineral is apparently magnetite with
a coating of ferrous sulphide. This has now
been confirmed by X-ray powder diagram
kindly supplied by Mons. Pierre Urbain,
Director, Hydrological Institute, Sorbonne,
Paris. The rontgenogram is reproduced in
Fig. 1.

Extraction of Germanium Dioxide — None
of the methods employed by Winkler
for the extraction of germanium from
Argyrodite was adopted, as the associated
elements in this mineral are quite different
from those in Argyrodite. After various
trials the final procedure adopted was based
upon the volatility of germanium tetra-
chloride and is an elaboration of the proce-
dure described by Buchanan?,

160 gm. of the finely powdered mineral
were roasted in an electric mufle at about
550°C. for 12 hr. when all the sulphide was
converted to sulphate and oxide. The
roast ore was transferred to an all-glass
Claisen flask. 400 c.c. of 1:1 hydrochloric
acid were added and germanium tetrachlo-
ride distilled off in a current of hydrochloric
acid gas till the volume is reduced to one-

fourth. This distillation was repeated with
further additions of hydrochloric acid. A
rapid stream of hydrogen sulphide gas was
then passed through the distillate for about
15 min. when a milky precipitate of
germanium disulphide was obtained (for
complete precipitation, the acid strength
was maintained at 4N to 6N by the addition
of concentrated hydrochloric acid). The
mixture was set aside in a stoppered bottle
for 48 hr., the sulphide separated by
filtration and washed with 6N sulphuric acid
saturated with hydrogen sulphide till it was
free from chloride. The precipitate on the
filter paper was treated with aqueousammonia
(about 8N ) and the filtrate collected. The
germanium disulphide was thus obtained
as the thio-salt. The filtrate was evaporated,
hydrogen peroxide added and again eva-
porated to dryness. The dried mass was
carefully heated to remove ammonium sul-
phate completely, transferred to a crucible
with water, evaporated and finally ignited
to germanium dioxide at 600°C. The yield
was 330 mg.

The spectrum of germanium dioxide thus
obtained reveals the existence of traces of
iron, lead, phosphorus (impurities from the
hydrogen peroxide used ).
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Extraction of Germanium from Sphalerite
Collected from Nepal—Part II

R. K. DUTTA & S. N. BOSE
University College of Science, Calcutia

A method for the extraction of germanium
from the non-magnetic fraction of the mineral
sphalerite has been described.

N the previous communication? we have
described the extraction of germanium
dioxide from the magnetic fraction
( mainly magnetite ) of sphalerite. The

non-magnetic portion left over was found
to contain traces (0-006-0-04 per cent) of
germanium.

The spectrogram of this portion revealed
the presence of the following elements: lead,
zinc, iron, silicon, germanium, tin, copper,
cadmium, silver and antimony, of which the
first two predominate. The ore was analysed
as before and the germanium estimated ac-
cording to the method already described.

The analytical results are as follows:

0,

(*]
Pb 14-2
Zn 48-4
S 27-3
Si0, 56
Fe 23
Ge 0-0021

From the analytical data, this fraction of
the mineral appears to be mainly a sulphate
of zinc and lead.

Extraction of Germanium

A procedure different from the one adopted
for magnetite had to be adopted for the
extraction of germanium from this fraction.
When the ore is treated with sulphuric acid
the insoluble lead sulphate formed retains
the major portion of the germanium but
if the sulphuric acid is completely fumed off,
most of the germanium goes into solution
and only traces remain over with the preci-
pitates of lead sulphate and sulphur,

The methods of Winkier, Buchanan?, etc.,
were found to be unsuitable for the extraction
of germanium. Tchakirian’s method® was
finally adopted. The insoluble residue was re-
fluxed with asaturated solution of ammonium

bioxalate and, curiously enough, not even a
trace of germanium was foundin thesolution.
A new method based on the fact that the
insoluble residue containing free sulphur is
totally converted to lead sulphide on treat-
ment with concentrated sodium hydroxide
solution was adopted. The dismutation of
free sulphur in strongly alkaline medium
takes place as follows:

45 + 60H = 2S5 4 S,0; + 3H,0
The lead sulphide so formed carried with it
the whole of germarium as disulphide and
the lead sulphide is separated by treatment
with 2N hydrochloric acid.

Experimental

400 gm. of the ore were decomposed by an
excess of 1:1 sulphuric acid, the resulting
mixture heated to dryness and the excess
acid fumed off. A large part of the free
sulphur was removed by this treatment. The
dried mass was extracted with hot water and
filtered. Sodium sulphide, just sufficient to
precipitate one-tenth of the total zinc, was
addeds, The filtrate was rejected as spec-
troscopic examination showed the absence of
germanium. The residue was treated with
4N sulphuric acid and digested on a water
bath for an hour and filtered. Germanium
disulphide was left in the residue and most
of the elements including zinc were thus
removed. The residue was treated with
sulphuric and nitric acids and dried. It
was then distilled with 50 cc. of 1:1
hydrochloric acid and the distillate treated
according to the procedure already described.
Germanium dioxide thus obtained was
found from spectroscopic evidence to contain
traces of antimony and tin.

When the residue was treated with con-
centrated sodium hydroxide solution, the
whole of germanium was precipitated along
with lead sulphide. This precipitate was
digested with 2N hydrochloric acid, filtered
and washed. Almost the whole of lead
goes into solution leaving behind germanium



Extraction of Germanium from Sphalerite — Part 11

disulphide, silicon dioxide, titanium, silver
and traces of lead. Silicon dioxide was the
principal constituent. All the vapours issu-
ing during the treatment were collected and
found to be spectroscopically free from
germanium showing that germanium disul-
phide is not decomposed by 2N hydrochloric
acid. The residue was then treated with
sulphuric and hydrofluoric acids and eva-
porated on a water bath, when all the silica
was removed. The mass was then distilled
with hydrochloric acid, as previously des-
cribed, and the germanium dioxide separated.
The resulting product contained traces of
phosphorus derived from hydrogen peroxide.

The yield was 240 mg. of germanium dioxide
from 4 kg. of the non-magnetic fraction.

QOur best thanks are due to Prof. P. B.
Sarkar for his keen interest in the investiga-
tion and to the Council of Scientific & Indus-
trial Research for financial help to one of
us (R. K. Dutta).
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PHYSIQUE THEORIQUE. — Les identités de divergence dans la nouvelle
théorie unitaire. Note de M. 8. N. Bosg, présentée par M. Louis de Broglie.

Einstein (*) a déduit les quatre identités de divergence desanouvelle théorie
des identités de Bianchi, en y levant 'ambiguité de la différenciation covariante.

La méthode de Hilbert (*) légérement modifiée fournit aussi immédiatement
le résultat; il est peut-&tre inléressant d’indiquer le mode de calcul.

La relation entre les coefficients de connexion affine I'}, et g* n’est pas
simple dans la nouvelle théorie. On ne peut donc appliquer directement ici la
méthode de Hilbert de variation d’une fonction invariante de gt et de ses
dérivées. Dans la nouvelle théorie, on ne suppose pasinitialement cette relation
entre T' et g et la variation donne les équalions ainsi que les équations de
connexion de I' et g. La nouvelle démonstration proposée tient compte de ceci.
On comprendra la méthode d’aprés les indications suivantes. .

Formons le tenseur R,,, contracté du tenseur de Riemann généralisé. Son
caraclére covariant est évident d’aprés la loi de transformation de I}, comme
dans la théorie symétrique. g#*R,, est donc un invariant dans les changements
de coordonnées, de méme que I'expression | g | dz, dx, do, dz,=| g [ dv,.

Si R,.= o l'inlégrale

(1) I= j R,, 80" +/gdv, =0

pour une variation quelconque des seuls g**; R, étant fonction des coefficients
de connexion affine n’est pas changé dans la variation.

Observons avec Hilbert (?) que

sg»
(2) P = &Z" @7 —gho Pr—go” gk

construit & partir d’'un vecteur contrevariant arbitraire @° peut é&tre pris

pour 3g* dans (1). D’ou

(3) 0= [ R, Vgl ( N =g g # ) dvg.

(*) Canad. J. Math., 2, 1950, p. 1320 et suiv,
(*) Math. Ann., 92, 1924, p. 1 et suiv,
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L’intégration est étendue a une multiplicité & quatre dimensions limitée par
une multiplicité & trois dimensions et 'on a partout R,, = o.
Nous observons que

3R,
@ gRug e Vigli= 2%

59 Vigle'+

i)
R/w axu \/Ig“’ +R,, g* [ \/g ax" “\/g ]

Si nous considérons ¢°= Az” comme une variation convenable pelite et arbi-
traire des coordonnées, variation qui s’annule a la frontiére, nous observons
que

gg dvy = Adv, et - \/g = Av/g.

(5)

)
[ Vg 8x° +-6%q ] dv, = A(V gdvy)

et par conséquent = o, puisque x/é;dvh est invariant.
En multipliant (4) par dv, et en intégrant sur la multiplicité a quatre
dimensions on a

R, ., . .
®)  fl 2 g v lgle+R,, 0 -V lale | dve = [;;——n- [Bu, g*" 974/ | 9] 10s,

= une intégrale de surface = o, d’aprés I'hypothése de la variation.
On tire donc immeédiatement de (3) et (6)

[ [Bu (@ erg 00+ o o7 ] ooy = 0

Une intégration partielle pour éliminer les dérivées de $° donne immeédiate-
ment les identités

d
g '\/g axo ~dz [¢9** R, +g** _'Rou ]\/g =0

identiques au résultat d’Einstein (). Toutefois, d’une certaine fagon, notre
résultat est légérement plus général. On peut dire que le raisonnement
d'Einstein est une méthode algébrique, ol les connexions entre les coefficients
affines et les g*' sont admises a prior:, ainsi que les conditions d'intégrabilité et
I'hypothése particuliére I';, — I';, =o.

Notre démonstration est indépendante de ces hypothéses restrictives. En
fait, en essayant de déduire les équations générales R, = o et les équations de

connexion du principe de variation BfgWRp Vgdv,= o, on est conduit a la

connexion d'Einstein sculement si I'}, — I'}, = o.

(*) Canad. ). Math., 2, 1950, p. 125, équation (176).
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D’autre part, en posant a priore la connexion d’Einstein, la compatibilité de
la variation avec I’hypothése initiale conduit a I'y =T, — I3, =o.

Puisque la démonstration donnéeicin’ulilise pas les equauons de connexion.
elle montre donc nettement que les identilés ci-dessus sont indépendantes des
équations de connexion. En fait, les R, sont fonctions des T seules, et la
démonstration des identités de divergence suppose seulement I'existence des
dérivées premiéres des g*. Elle subsistent méme quand par suite des singula-
rités du champ des g*’, il n’existe pas de dérivées secondes ou d’équation de
connexion intégrable.

Reprintdd from Comptes rendus de I’Academie des Sciences 236, pp. 1333-1335, 1953 (Gauthier — Villars
Publishers, Paris).



The Identities of Divergence in the New Unitary Theory

Note of Mr. S. N, Bose, presented by Mr. Louis de Broglie

Einstein(!) deduced the four identities of divergence from his new theory of Bianchi
identities, clearing the ambiguity of covariant differentiation.

The method of Hilbert(?), when slightly modified, also immediately gives the result.
Perhaps it is interesting to indicate the mode of calculation.

The relation between the coefficients of affine connection 'y, and g"" is not
simple in the new theory. Thus the method of Hilbert regarding the variation of

an invariant function of g"' and its derivatives cannot be directly applied here.
In the new theory, this relationship between I' and g is initially not assumed and
the variation gives rise to the equations as well as the equations of connection
of I' and g. The proposed new demonstration takes this into account. The method
will be understood according to the following indications.

Let us form the tensor R, ,, contracted from the generalized Riemann tensor. Its

covariant character is evident from the law of transformation of T' |}, as in the symmet-

ric theory. g"' R,, is thus an invariant under changes of the coordinates, as in the
expression lg| 2 dx; dx; dxsdx, = Ig! 2 dy,.
If R, , = 0 the integral

(1) 1= | R. g™ v/gdo =0

for any variation of g " alone ; R,, being a function of the coefficients of affine
connection is not changed in the variation. Let us observe with Hilbert (%) that

puu — 69“” ?o_guo ,Pv_gw ?u
(2) 8z° v v

obtained from an arbitrary contravariant vector ¢° can be taken for §g*¥ in (1).
Hence

- 0= [R, \/DT(%”} 97—gh 9 —g™ 9% ) dvy.

The integration is extended over a manifold of four dimensions limited by a manifold
of three dimensions and one has everywhere R, , = 0.
We observe that

) Canad. J. Math., 3, 1950, p. 120 et seq.
(®) Math. Ann. 93,1924, p. 1 et seq.
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Rng‘”v"\/'b = =g Vigle+
@ [ lg]]

0
R, % \/lgl?"+R,.yy‘“’[\/gaxa airy

If we consider ¢° = A x°as a suitable small and arbitrary variation of the coordinates
which vanishes on the boundary, we observe that

az" dv, = Adv, and - \/g 9 = Av/g.

(5) and
[ vy 890 +8\/g ] dv, = A(Vgdv,)

and consequently = 0, since ‘/Edm is invariant. By multiplying (4) with dv, and
integrating on the manifold with four dimensions we have

[ oR,,
L 0z°

(6) | 9 v/ 19197+ By 2L 3/ gl9" | doy = [ 52 (B g 94/ |1 1o,

= a surface integral = 0, as per the hypothesis of variation.
We immediately obtain from (3) and (6)

[ [Butg et P+ 7 e ] vedve =0

A partial integration for eliminating the derivatives of ¢° immediately gives the

identities IR d
0" V8 g~ g 9" Buc +9" B 19 = 0

identical to the result of Einstein (%). Nevertheless, in a certain way our result is
slightly more general. We can say that the reasoning of Einstein is an algebraic method
where the connections between the affine coefficients and the g*’ as well as the
conditions of integrability and a particular hypothesis '3, ~I'j, =0 are assumed a
priori.

Our demonstration is independent of these restrictive hypotheses. In fact, while
trying to deduce the general equations R,,=0 and the equations of connection from

the principle of variation Sf &’ Ry, Vg dv,=0, we are led to the connection of
Einstein only if I'y, -I'g,=0.

On the other hand, by assuminga priori the connection of Einstein, the compatibility
of the variation with the initial hypothesis leadsto I, =T, , - I';, = 0.

Since the demonstration given here does not use the equations of connection, it
() Canad. J. Math., 3,1950,p. 125, equation (176).
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clearly shows that the above identities are independent of the equations of connection.
In fact, the R,, are functions of I alone, and the demonstration of the identities of
divergence only assumes the existence of the first derivatives of g"". It survives even

when due to singularities of the field of g"", there are no second derivatives or
integrable equations of connection.

English translation of Comptes rendus de l'Academie des Sci 2386, pp. 1333-1335, 1963 (Gauthier —
Villars Publishers, Paris).



UNE THEORIE DU CHAMP UNITAIRE AVEC I, o

Par S. N. BOSE,
Université de Calcutta.

Sommaire. — On établit des équations du champ unitaire en faisant varier une intégrale qui
satisfait au postulat d’hermiticité. On obtient I’équivalence formelle avec les théories anciennes, soit
avec T, = o, soit avec ||y || = o quand &, = o; on peut interpréter ¢, comme la force de Lorentz
si on prend les a,, comme les composantes du champ électromagnétique.

Les équations approchées avec composantes antisymétriques premnent la forme maxwellienne
pour une certaine valeur des constantes. Toutefois, pour une autre valeur, il est possible d'avoir le
champ- sans aucune singularité.

1. INTRODUCTION

On peut classer en trois groupes les équations caractéristiques de la théorie du
champ d‘Einstein :

I. Les équations dué champ qui intéressent uniquement les coefficients de
connexion I';, et leurs derivees.

II. Les équations de connexion qui relient le tenseur g aux coefficients de con-
nexion affine.

III. Les quatre relations de caractére restriotif :
r,—n, =2r, =0.
Notons que les relations (III) sont semblables aux 24 équations

n-mn =0
qui, dans la théorie relativiste de la gravitation sont les conséquences du postulat de
la symmétrie de la connexion affine.

Dans la théorie du champ unitaire aussi bien que dans la théorie de la gravita-
tion, les équations due champ (I) et les équations de connexion (II) peuvent se déduire
simultanément d’un principe de variation ou 'on égale & zéro la variation arbitraire
d’une intégrale, la variation étant cepedant assujettie aux restrictions du type
(111).

Néanmoins les conditions arbitraries sont bien moins nombreuses dans la théorie
unitaire que dans la théorie de la gravitation.

Dans cet article, on essaye d’éliminer toutes les conditions restrictives et d’établir
un systéme d’équations fondamentales en s’appuyant uniquement sur le principe de
variation.

On a toutefois utilisé le postulat d’hermiticité récemment énoncé par Einstein
pour construire Vintégrale dont la variation conduit & cette nouvelle généralisation.
On verra dans les résultats précisés ci-dessous - que des termes additionnels con-

tenant I, interviennent aussi bien dansles equations du champ que dans les equations
de connexion.
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Les équations de connexion qui concernent le tenseur g donnent lieu & quelques
remarques. Elles preneent ici la forme
A+ To+g™ Th = 3 @,
tandis que dans les deux théories précédentes le premier membre. de cette égalité eat
nul.

P, est defini ici par les équations suivantes :

Qp k8 1
\ = {‘/"-—g——i, avecap =5 (gas —9m)

et
K = 3 6lg® )T,

SiT, = 0, k® = 0 et par conséquent on a aussi ® = 0 et I'équation reprend la
forme ancienne.

Néanmoins il existe une autre possibilité : que a,g soit la partie antisymétrique
du tenseur covariant considérée comme liée au vecteur & six composantes (E, H) de
la théorie électromagnétique.

Si le déterminant
e ll = (an“mf"aalau’*‘azsau)’ =0,
on peut avoir ®, = 0 méme si k* et I, ne sont pas nuls.

Remarquons que puisqu’on suppose toujours

I B +g8 || # 0,
k* et T, sont nuls simultanemént.

La conditionf| @ 5 || = 0 combinée avec la régle habituelle de corrélation citée
ci-dessus conduit immédiatement & (EH) == 0, propriété classique du champ électro-
magnétique.

On est anisi tenté de poser une corrélation d’une part entre k* et le vecteur a
quatre dimensions courant-charge (car kj = 0 découle immédiatment des equations

générales) et, d’autre part, entre @, et la force pondéromotrice de Lorentz, en raison
de lidentification classique

— -
(agstty; a15)—> H, (@41 B4z Ggy)— IE.

On peut interpréter ®, = 0 comme déterminant une distribution stationnaire ou
la force de Lorentz est nulle, ce qui raméne 'equation de connexion & la forme qu’elle
avait dans les théories précédentes.

Dans les équations de champ, 'édlement symétrique P, et 1'élément antis-
ymétrique G,. ont des roles essentiellement différents.

Au moyen d’hypothéses sur les ordres de grandeurs relatifs des différents ter-
mes, nous avons pu ramener les' equations fondamentales & une forme simple.

Physiquement, ces hypothéses impliquent qu’il est possible de négliger la
gravitation dans I’étude des relations entre grandeurs électromagnétiques.
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Tes équations ainsi transformées ont une forme intéressante et 'on peut les inter-
préter comme de simples conséquences de la théorie de Maxwell si I'on attribue cer-
taines valeurs particuliéres aux constantes arbitraries. Mais il est possible aussi
d’obtenir un champ sans singularités pour d’autres valeurs particuliéres. Le champ
n'est alors évidemment pas maxwellien.

Ces aspects encourageants du nouveau systéme d’équations m’ont amené & penser
qu’il convenait de publier les premiers résultats pour provoquer les critiques et les
observations.

s
2. LEs NovveLLEs EQUATIONS.

Suivant Einstein, toutes les relations de la théoire unitaire doivent satisfaire
au.postulat d’hermiticité, ¢c’est-a-dire rester invariantes quand ¢**,¢,,, I'},, sontc hangés
ala fois en ¢, g,,. T), par permutation des indices y# et v.

On voit facilement que dans cette transformation le tenseur d’Einstein E de
ocomposantes

E, =1}, =0 --T% T} —Tf, T},

e

devient le tenseur I de eomposantes

— 3 ¢ A . \

H"I‘ - F:'u,x—r)u.x'+rl'/t Fkr—' .(u rEe
Au lieu de 'expression

I =g Euv\/lg= =g Eut'
qui intervient dans l'intégrale soumise & variation pour obtenir les équations fonda-
mentales, nous adoptons une forme plus générale

1
I’ = T-)"(g,m‘ Eul"’l\‘g""‘ Hm)'%"’?’“" FMF:' '}‘bA‘“' (F“',,.“‘Py,u)

ol
Y= .—1,(9’“"+9"'“) = lex/l—g_l- (9“"+g*)
Avr = .!_,(!I"‘"—!I""‘) = f, VIl (g —g),
et
l9] = lgl.

puispue ja permutation de ;7 et v ne modifie pas le déterminant. Les termes addi-
tionnels vérifient aussi la condition d’hermiticité puisque T', A#* changent de signe
et que y*" conserve le sien avec Ia permutation.

Séparons dans les coefficients de connexion aftine. I, la partie symétrique
P2, et la partie antisymétrique V% et posons encote

r l 1
Vie = G5 A0 458 L,
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aveo
L, =TV,
on &
@, = 0.
En effectuant les substitutions dans I’, tous les termes qui sont produits d’un
facteur symétrique par un facteur antisymétrique disparaissent dans la sommation
et nous avons finalement

I’ = Y“' (E“TG‘A“ G;y+xl‘ll Pl‘ )+A‘“’ [G,’:y:x"."y([‘n.v'“r‘v,n)]

oii 2,y sont des constantes arbitraires,

1
Eu" = P:r,x—”2"(Pﬁx,--+P¢x,u)+wa Pﬁx“an P’:.

est la composante symétrisée du tenseur d’Einstein avec connexion affine aymé-
trique et

Ghn = G5 — GLP;, — G, P, + G, P

est la dérivée covariante classique calculée aussi avec connexion symétrique.
Au cours de la variation arbitraire de

L= [ I'dv,, dv, = dz’a*dz?dx*r.
y**, A¥" conservent automatiguement lewmr caractére symétrique. Les variations
de y** et 4** peuvent donc etre considérées comme arbitraires, ce qui donne iamé-
diatement les équations du champ
or
3');75
a_aAlﬁP = sz;)\ - y(Pu,r - I‘l',l‘)‘

= Eﬂv- - G;AG:/ + xI‘MPr = 01

Pour obtenir les équations de connexion nous égalons d’abord I' & une divergence

4 quatve dimensions (H) et considérons H seulement puisque la divergence se trans-

forme en une intégrale étendue & un domaine & trois dimensions oit tous les coefficients
des variations arbitraires s’annulent.

Rappelons-nous cependant que dans la variation des éléments Ty, P,,, G}, les

quatre relations G}, = 0 restent toujours valables; les 24 composants de @), ne
sont pas arbitraires. Nous devons donc appliquer la méthode habituelle, employer
des multiplicateurs indéterminés k* et varier la fonection

H-2k*@), = H'.
Ces coefficients k* seront détermines en dernier lieu & partir de I’équation finale.
Nous obtenons ainsi par un calcul facile le systéme d’équations
YA+ VP Y Pl — i Pl = —[A*G, + AV GL,
AR + AP + AV PY — AVPY — B k8= — [y K. + 76al,
yAY + 2y*T, = 0,

283
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et par conséquent

A% = 3k,
Vit + PP + A9 Gy =0,
D’od on tire immédiatement
=0
et z
k* = 6y*T,, avec 0 == — —

Nous pouvons maintenant donner aux équations de connexion la forme oon
venable : par addition et regroupement on a

0+ 0 L, + gL — gL, = B E—RY,
ou

L;a = G:¢+P e
en multipliant par les coefficients ¢',, définis par

950 =&, g\ = 8.
nous avons d’abord

. 1 ¢ A '
La=3 =5 +ob,

c=|g|
et 1
@'\g = 5 @8—9'm)

puis en remplacant L§, par sa valeur et en divisant par 4/¢, nous obtenons aprés une
transformation facile

o k8 -—k’&"
gnr +y“‘L’,+y"L" 9“4\3 s
* Ve Ve

En observant que

9"‘9}1(” = k" 9” glﬁk‘ = k’
ot en regroupant et additionnant certains termes, nous avons finalement

i 90 T + g o= 39~ “*:f = 30, ;
ol

P';..':.L;.—Q’G\/_ a\+gx‘k8

" kP N k?
M, =L} —Ia Ve 0% 4 gus Ve s

Les nouveaux coefficients affines sont

=@, + 0,

Q. =P,+008 + 008
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et
U, =@),—VY,08 + V.8 ;

8,k

v ke
A A

En introduisant ces nouveaux coefficients affines dans I’équation fondamentale,
nous pouvons éorire

- 3 B
E, + —2'[6)“;, + ®,.] + 30,0, + g{ buab,g kf‘f‘_Gﬁz G{v =0,

Yy . .
(@),),~ 36,0, — 7= [(blak®),, — (Bck*).0),
avec
% (9" +9*) = 6.
3. CaAS PARTICULAR

Quand ¥, = 0, mais I',, k* # 0, on a
Gys®3y -+ Gaglyy+ TgBey = 0.
Effectuons la transformation et observons que
I, =36r,;
P}, et G}, ne changent pas et nous obtenous
E—;r +tP;IP;-G:¢ Gir = 0;
(G}u):l + t(Fu.v“rv.u) =0,
la seule modification est une réduction du nombre des consbantes arbitraires.
L’équation de connexion est (puisque ¥, = 0)
g + gy, + ¢ T =0.
mais avec I',, # 0.
On montre alors facilement que
(A»+/B), = § (g** + g**)T.

4. APPROXIMATION:

Pour trouver une approximation, nous mettons I'équation de connexion sous
la forme

YR+ Y*P + v P —y Py = —[A¥Cl, -+ A% (3],
Ay = A%P, + AVPL— A PL—8 + B8 = [0, + YO
Nous supposons que les coefficients antisymétriques 4+* ét G, sont petits, voisins
de zero.
Alors les P}, peuvent aussi étre négligés .
=8y,

la dérivation covesiante est remplacée par la derivation ordinaire, et nous avons
finalement en pr miére approximation

285
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AR — L0y - ke = —[0, + 0%,
Are = 3k,

»

d’ol 'on déduit facilement

(@B,) = A% —kv8) + W3~ [A% + 4% + AD),

2 1 , y H
(G,)Z,)x =5 Af‘x"x-“g[A.'i' +- A'}}+Af‘:‘]_\
et enfin comme

r, =

’

| ¥

nous avons le systéme suivant :
A:,“’ = Jk* ;

1 3
Ay — LAY + 4+ A = 5k, — )

En éliminant £* nous obtenons
" 1/1 9 , .
ag(1-L)—5(3-%) @y + 42 + £ =0,

Bil= % nous pouvens poser

AP 4 AP 4 A =0

et l'équation devient identique aux équations du champ électromagnétique de
Maxwell.

Mais si %—%—= 0, les équations deviennent

(45%) = p*,
(A +..h =—(p"—P)
avce Aﬂ =9,

systéme different évidemment de celui de Maxwell, mais qui peut avoir une solntion
sans singularitiés en auceun point.

IT est peut étre intéressant de remarquer que certaines recherches sur la quanti-
fication du champ électromagnétique ont amené de leur c6té & poser A4f = 0, oe qui
entrainait implicitement une modification des équations due champ.

Si || @ | = 0 on obtient une approximation présentant les mémes caraotérea.

Reprinted from Le Jour de Phys et le Radium (Paris) 14, pp. 641-644, 1953.



A Unitary Field Theory withT'y = 0

By S. N. BOSE,
University of Calcutta

Summary — The equations of the unitary field are established by varying an integral
which satisfies the postulate of hermiticity. One obtains an absolute equivalence with
the old theories either with I',= 0 or with |2 3, || =0 when @, =0 ; one can interpret @,
as the Lorentz force if a) , are taken as the components of the electromagnetic field.

The approximate equations with antisymmetric components take the Maxwellian
form for a certain value of the constants. Nevertheless, for another value, it is possible
to have a field without any singularity.

1. Introduction
The characteristic equations of Einstein’s field theory can be classified into three

groups :
L. The field equations which involve only the connection coefficients I‘,’;v and their
derivatives.
II. The connection equations which link the tensor g to the affine connection coeffi-
cients. :

ITI. The four relations of restrictive character
m,—I, =2I, =o.
Note that the relations in (III) resemble the 24 equations,
r,-r, =0
which, in the relativistic theory of gravitation, are consequences of the postulate of
symmetry of the affine connections.

In unitary field theory as well as in the theory of gravitation the equations of the
field (I) and the equations of connection (II) can be simultaneously deduced from the
principle of variation where the arbitrary variation of an integral is equal to zero, the
variation being subjected to restrictions of type (III).

Nevertheless, the arbitrary conditions are much less numerous in the unitary theory
than in the theory of gravitation.

In this article we are trying to eliminate all the restrictive conditions and establish
a system of fundamental equations by relying only on the principle of variation.

We have used the postulate of hermiticity recently enunciated by Einstein to
construct the integral, the variation of which leads to this new generalization.

The specific results given below will show that the additional terms containing I,
occur as well in the field equations as in the equations of connection.

The equations of connection which concern the tensor g give rise to certain remarks.
Here they take the form
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g+t Iy, g Th = 392 @,

whereas in the two proceeding theories the first member of this equality is zero.
Here @, is defined by the following equation

ap kB 1
O, = 2 withgs = (gag —
Y Vgl he =3 (92 —980)

and
¥ = 3 6(g" +gP)T, .

If T, =0, k=0 and consequently if we also have @ = 0, the equation again takes the

old form.
Howgver, there exits another possibility : that a, s being the antisymmetric part of
the covariant tensor, is considered as linked to a vector with the six components (E, H)

of the electromagnetic theory.
If the determinant

| arg Il = (@1a850+Cyy0gy+-G2y8,,)* = O,

we can have @, = 0 even if 2" and I', are not zero.
Note that since we always suppose

Il g#* 49 || # 0,
k* and T, are simultaneously zero.

The condition || a, g Il = 0 combined with the usual rule of correlation just mentioned
immediately leads.to (E H) = 0, a classical property of the electromagnetic field.

One is also tempted to put a correlation on the one hand between %&* and the four
dimensional charge current vector (because k,}; = 0 comes immediately from the general
equations) and on the other hand, between ®, and the ponderomotive force of Lorentz,
due to the classical identifications

— -
(Ggsy; a55)— H, (@4 @4g G3)—> S E.

We can interpret @, = 0 as determining a stationary distribution, where the Lorentz
force is zero. This brings back the equation of connection to the form which was found
in previous theories.

In the field equations the symmetric element P}, and the antisymmetric element

G, have totally different roles.

By means of hypotheses on the orders of relative magnitude of the various terms we
could bring back the fundamental equations to a simple form.

Physically, these hypotheses imply that it is possible to neglect gravitation in a study
of relations between electromagnetic quantities.

The equations thus transformed have an interesting form and we can interpret them
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as simple consequences of the Maxwell theory if we attribute particular values to the
arbitrary constants.

But it is also possible to obtain a field without any singularities for other particular
values. The field is then not Maxwellian.

These encouraging aspects from the new system of equations have made me think
that it would be appropriate to publish the first findings in order to provoke criticisms
and observations.
2. The new equations
Following Einstein, all the relations of unitary field theory must satisfy the postulate
of hermiticity, i.e. remain unchanged when g"%, g, ,, I‘ﬁ v are changed to g"%, g, . , r "
all together through permutations of the indices p and v.

We can easily see that in this transformation, the Einstein tensor E of components

Eu:' =TI, — F;);)«,r' -+ Ffw F?\ - Piu le'

#r,\
become the tensor H of components

le = Pﬁu,)\“r‘;u,r"*'l-‘x"n Fir— ;n P:E'
Instead of the expression
I=g"E,Vg| =g¢*E,,
which occurs in the integral which is subjected to variation in order to obtain the
fundamental equations, we adopt a form which is more general

l ? 2 1 . 2
I = —2—(g w B,.+g"™* H,)+-ay* T T, +b4* (T, T, ,)

1
where Y- = %(g’“"+g"“‘) = s VIgl (@ +g*)

1 ’ Iy 1 il " »
Arr = sgr—gm) = 3V 9] g —g™),

and _
lg] = lgl,

since a permutation of y and v does not modify the determinant. The additional terms
also satisfy the cgndition of hermicity since I', A" changes sign and ¥ ” retains its sign
with permutation. Let us separate the symmetric part P}, and the antisymmetric part
Vi, in the affine connection coefficients Iy, and let us also put

i 1
I,/un = '_"3— 321‘; %‘? 6> F/u

ne

with

r, =7

ns
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one has
G‘);)\ = 0.

Through substitution in I’, all the terms that are products of the symmetric factor
and the antisymmetric factor disappear in the summation, and we finally have

I =y (B,7@), G, +al, T, )+ A [ @0 — YT — T, )]

where x, y are arbitrary constants,
E = Pi\u A ( u)‘r v)\ u)+P;.w Pt)‘——P"‘)\ P?v

is the symmetrized component of the Emstem tensor with symmetric affine connection
and
G\ N = Gm Y GI\IEP;\I - GZ\,P;)‘ + waPi‘)\

is the classical covariant derivative, also calculated with symmetric connection.
During the course of arbitrary variation of

L'= | I'dv,, dv, = doldatdeddz®.

¥V, A*Y automatically retain their symmetry character. The variations of ¥*" and

A"’ can thus be considered as arbitrary, which immediately gives rise to the field
equations o1

or
371-‘“: = le ) y(Fn,v had Fx',u)-

=E, — G,\@ + 2I,T, = 0,

In order to obtain the equations of connection, let us first make I’ equal to a
divergence in four dimensions (H) and let us consider only H since the divergence
transforms itself to an integral over a three dimensional domain where all the coeffi-
cients of arbitrary variations cancel each other.

Let us recall the fact that in the variation of the elements I', Pf; v ﬁv the four
relations G,l » =0 always remain valid ; the 24 component of Guv are not arbitrary. We

can thus apply the usual method of employing undermined multipliers £* and varying
the function

H—2k*GY\ = H".
These coefficients " will be determined in the end from the final equation.
Thus through easy calculation we obtain a system of equations
Y+ YRy PL — v Pl = —[4"GR, + AV G,

AR+ ARP 4 AW Pl — AWPS, — B84 k"8 = — [yh Gy + v G,
yAr + zy»T, = 0,
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and consequently
AL = 3k,
7ie + y*8 Py + 4G, = 0,
From where we immediately obtain .
ke =0

and

x
k* =6y»T,, avec 0 = —3y

We can now give a suitable form to the equations of connection : through addition
and regrouping we have

O+ gL, + gLy — gL, = R,
where
L;a = G;a+P;¢:

by multiplying with the coefficient g°, , defined by

g =&, g*g\ =&,

we first obtain

and
’ 1 7 ’
a\p = 3 (28— 80)
then, by replacing L} , by its value and dividing it by Vc, we get an easy transformation

v g groLr 4 gops _ 9U0eH _ SR8
@+ greLy, + goly — e T KE-VA
A A A vc vc_

By observing that
9 °Gpakf = k*, ¢* gap kf = K

and by regrouping and adding certain terms, we finally obtain

P ¢ T+ 0 D= 3 22— 50,

where
4 v k » Ny
r e = L xe — 98a Tg‘ 8) + guk‘d‘a,
y kP kB
s, = L, —9dsx Ve 04 4 Gag ;/7- ok,

The new affine coefficients are

=@, + U,
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where
Q:, = P,’:, + 0“6:‘ + d’,&},
and Ul = @ —Y,8) + V.8 ;

C,ﬂks

kB
= BT

By introducing these new affine coefficients in the fundamental equation, we can
write

=, 3
B+ 210 + 0,0 + 30,0, + 2 bubs "2 a1, 6, =0,
y . .
(@), ~365,9,— 7= {Guak),, (ko) ]
with

1 bulg*" +g*) = 8.
3. Particular case
When @, =0 but T, £* # 0 we have
14034+ Gg30y 4+ 318y = 0.
Let us make the transformation and observe that

P; = 36T, ;
P}, and G}, do not change and we obtain
E,, 4I,I,—-G), G;, =0;
(G:-);X + t(I‘,,,-I‘,,) =0,
the only modification is a reduction of the number of arbitrary constants.
The equation of connection is (since @, = 0)

g 4 grely 4+ g T, =0.

but with I, #0.
Thus it is easily shown that

(4*+/A), = § (g** + ¢**)T..
4, Approximation

In order to find an approximation we put the equation of connection in the form
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YR + 4P + v Ph—yt P, = —[A%G, + A% G4,
A% = APy, - A%PY — AW Pl — k8 + k'8t = —[yhGL, + y 6L ).
Let us suppose that the antisymmetric coefficients A* ' and G} ,are small, close to

zero.
Thus P}, can also be neglected :

=3,

the covariant derivative is replaced by an ordinary derivative, and we finally obtain in
the first approximation

A% —lr8; + 8t =[G, + G4,
Ak = 3k,
from which we can easily deduce
(@) = AW —ke8y + kst —F[A% + A% + 4,

2 14 l v »
and finally with (@) =5 AN —gldl + A0+43,
r,=%,
we obtain the following system

A = 3+

1
A — Ay + 42 + A% = F [k — B

By eliminating &" we obtain

(1)~ 34 F e + 42 =0

If1 =§L6 we can put

AP 4+ AP 4+ A =0

and the equation becomes identical to Maxwell’s equations of electromagnetic fields.
But if % - % = 0, the equations become
(A:;“’) = p*,
with A+ h =—(ph~p%)
A{; =0,
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the system being evidently different from that of Maxwell, but which can have a

solution without singularities at any point.
It is perhaps interesting to note that certain researches on the quantization of the

electromagnetic field have put the subsidiary condition A} = 0, which would imply a

modification of field equations.
Ifllay, |l = 0, we obtain an approximation presenting the same characteristics.

Manuscript received 18 July 1953.

English translation of Le Jour de Phys et le Radium (Paris) 14, pp. 641-644, 1953.



CERTAINES CONSEQUENCES DE L'EXISTENCE DU TENSEUR g
DANS LE CHAMP' AFFINE RELATIVISTE

Par S. N. BOSE,
Université de Calcutta.

Sommairs. — On établit des relations o entrent seulement I‘l‘" et leurs dérivées & partir des condl-

tions d’intégrabilité des équations auxquelles satisfait lo tenseur g des théories relativistes.
Le nombre de relations indépendantes entre éléments du champ est bien plus grand en théorie
unitaire qu’en théorie de la gravitation.

1. INTRODUCTION
Le formalisme abstrait de la’ théorie de la relativité a actuellement abouti & la
conception d’un champ de coefficients de connexion affine d’une variété 4-dimension-
nelle.
Soient dz* les composantes d’un déplacement parallele et infiniment petit auquel
un vecteur A de la variété considérée est assujetti: les variations des composantes
4* qui en résultent sont données par la régle

8A4» = — A2T%, 528 o (L)

Dans la théorie de la gravitation les termes I';z sont symétriques, ou I'sg = T, ;
done, la loi de transport y est unique.

Au contraire, comme les coefficients sont dissymétriques dans la théorie unitaire,
on peut y avoir aussi une deuxiéme loi de transport, savoir :

8A* =—8ux= TE3A45. oo (L2)

En s’appuyant sur la rele (1.1), on peut calculer facilement le tenseur de courbure
R dont les composantes

R:I:‘ = P;Il.l' - Pﬁv.n + F:MP:‘v - Fprzu .\

x i (1.3)

( ou Fau,u = =5 Pau [ >
sont antisymétriques en indices x et v : et ensuite, par voie de contraction, on a facile-
ment le tenseur d’Einstein E, avec les composantes

E,=T),—D ,+ [, — T (1.4)

Mais la théorie unitaire adment aussi (1.2) comme loi du transport; donc, ie meme
raisonnement que ci-dessus nous donnera, & partire de (1.2) un autre transport S
(substituté & R) avec des composantes

Sﬁa = 1ya,. — I‘Ea,n Jf“ P;arts - Pf,aP:, (1-5)

v
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et finalement aussi le tenseur H (substitute & E Einstein) avee des composantes
Hua = Pha,h - F:u,p. q: me ;‘e - Ficr:u- (1'6)
Les équations E,, = 0 sont celles du champ dans la théori de la gravitation.

L’ambiguité de la loi du transport dans la théorie unitaire opposeapparement
des difficulties au choix de E,, = 0 comme équations fonndamentales.

Mais celles-ci ont été tournées par Einstein de la maniére suivante : il impose
au champ affine quatre conditions restrictives savoir

Iy, — =2l = 0. (L.7)
Bein qu’arbitraire, cette hypothése donne facilement
E=H;
les deux régles conduisent ainsi au meme tenseur; donc les equations du champ peuvent
rester les memes dans lés deux théories.
A coté du systeme
E,=0 (A)
qui dépend seulement des coefficients I'}, et de leurs dérivées premieres, il y a aussi

un second systéme dans lequel entrent également les composantes du potentiel g**
et leurs dérivées : ce sont en effet les équations

g% + gTh + g¥Tl = 0. (B)
On a démontré que (A) et (B) se laissent déduire d’un principe variationnel.
On forme P'integrale invariante
I=[+vg|9E,.dV,

avec des composantes du potentiel et du tenseur d’Einstein (supposé unique & cause
de I', = 0) et 'on pose

8l =0
pour toutes variations arbitraries de g*" et I ; on obtient immediatement les équa-
tions cherchées.

IT est évient que l'existence du tenseur de potentiel dans le champ affine donne-
rait & celui-ci un caractere tout & fait particulier.

En effet (B), regardée comme un systéme d’équations différentielles, permettra
de déterminer g#* seulement quand les conditions d’intégrabilité seront satisfaites.

Ainsi, les relations qui suivent comme conséquences de. cette hypothéses d’inté-
grabilité entre les coefficients I'), et leurs dévivées exprimerontcelles des propriétés
caractéristiques du champ, qui sont postulées implicitement par la théorie de la
relativité comme par la théorie actuelle du champ unitaire.
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Les obtenir sous une forme explicite est précisément le but de ce travail.

2. Cas I. Quand les coefficients I',, sont symétriques, les conditions d’intégrailité
des équations (B) savoir :

g,:u + guXP;;A + g)VI‘;\‘k =0

sont plus facilement exprimables par I'intermédiaire du tenseur de courbure R.
Si les composantes Ry, sont exprimées par les multiples g** et des parenthéses
n

& quatre indices comme
R}, = g** (klmn), e (2.1)
L]
les conditions d’intégrabilité seront bien exprimées par les propriétés suivantes et bien
connues de ces parenthéses, savoir :
(klmn) = —(lkmn) = (mnkl) = —(nmkl). .. (2.2)

A partir de celles-ci, on peut &éliminer simultanément g** et les parenthéses et
obtenir des relations entre les composantes de R seulement.

(i) Comme
R}, = g** (klmn),

on pose A = [ et I'on contracte. On observe que les parenthdses sont antisymétriques
en indices (k et ) & coté de g'* qui sont symétriques.
On a alors automatiquement :

R, =0 e (23)

(ii) De meme, comme
Ry Ry = g (kimm) g (k'U'm'R),
” A
et
RE Ry = g™ (nmik) ¢ (A mUE),
P K

nous avons

R;”er,:r = R:;‘ R:'u coe (2.4)

k!

A cause des relations (2.2) (en ce qui concerie les parentheses).

(iii) On peut ecrire les 96 composantes du tenseur R}, explicitement en fonction
”n

de T, et de leurs dérivées, a savoir (1.3), d’ol1 découlent aisément les relations

Rin + By + Ry=0. o (2.5)
" m
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(2.3), (2.4), (2.5) sont des propriétés caractéristiques du champ symétrique, ex-
primées par les composantes du tenseur de courbure R.

3. Cas II. Quand le champ est dissymétrique, les conditions d’intégrabilité des
équations (B) peuvent aussi se déduire avec facilité.

Avec (B) on considére aussi le systéme de leurs dérivées premiéres (B,); entre
(B) et (B,) on élimine toutes les dérivées premiéres de g** et en ajoutant les conditions

g,f',i - g!:,'; =0,
on arrive immédiatement aux conditions d’intégrabilité suivantes :
0 = g Re, + g™8,, o (31)
n L]

d’ou l'on peut déduire immédiatement celles-ci :

(i) En multipliant (3.1) par g,, et en sommant ensuite (comme g*g,, = df,
g*%,, = 0f et &’ sont les symboles de Kronecker), on a

Ry + Siy =0
4 (re, 4+ Te)= S (e, +Te) (3.2)
dxm ne ""—dx" mg am/* .

(ii) Comme m et u sont des indices antisymétriaues, (3.1) peut aussi s’écrire
comme ci-dessous
9P B = ¢85,
n »

en posant A = m et 4 = n, et aprés les contractions indiquées, on obtient la relation

g (Bry — Hy) = 0. ... (3.3)

Pour obtenir des relations plus générales, nous commencons par un changement
de notations pour les tomposantes des tenseurs R et S.

Comme il y a seulement six paires de (m, n), ¢’est-a-dire d’indices antisymmetriques,
nous remplacons chaque (™) dans les composantes par un des nombres r = (r = 1,
..., 8) qui est transféré sous le symbole alphabétique R ou S du tenseur.

Ainsi (3.1) prennent la forme suivante —
¢ RE4g48, = 0. (3.4)
r 14

Suivent le nombre r les 96 équations s’ arrangement maintenant en six groups
comportant chacun 16 relations.

Mais les ¢ =¢%, R¥, 8}, ete., se laissent interpréter comme les éléments de certaines
matrices carrées @, R et S (les indices indiquant maintenant les lignes et les colonnes
suivant des conventionsg bien connues), et par coséquent les relations (3.4) peuvant
gtre représentées commue une seule équation de matrices :

RG+GS8 =0 (3.5)
r r
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ot S représente la matrice transposée de § avec
S-?; = 8%.
En prenant les formes transposeée, on a aussi

8G+GR = 0. (3.8)
4 r

Les épuations (3.5) et (3.6) jouissent de propriétés d’hermiticité, ainsi qu’il a
été postulé par Einstein pour toutes les relations de la théoire unitaire.

En effet, on passe de (3.5) a (3.6) en transposant G et en changeant le tenseur
R en 8 et vice versa, ce qui implique que les dites relations restent inaltérées comme

un tout par les changements simultanés des g“* en g'* et des I'¢, en I'%, : exactement
comme l'exige le principe d’hermiticité. :

Multipliant finalement les six équations (3.6) par des nombres arbitraries A,, et
faisant la somme, on «, aprés une transformation facile :

G-'RG = —8 (ot R = A,R,...). (3.7)

Les matrices R et S sont dono liées par une transformation qui laisse intacts leurs
invariants, d’ou

I(R)—(—1),(8) =0 (r=1,2,3,4). (3.8)

Comune les A, sont tout & fait arbitraries, on peut admettre que chaque coefficient

de polynome en A, dans (3.8) pris séparément est égal & zéro. o

Dans toutes les relations qui s’énsuivent entrent seulement I', et leurs dérivées,
chacune d’elles exprimant les propriétés caractéristiques du champ unitaire condition-
neés par I’hypothése de I’existence du tenseur de potentiel.

Si I’on adopte pour les produits de la chaine des R ou des S les notations suivantes :
r r

R.R} = R(r,8); Su808¢ = Strst), ... ;

R} == R(»), 8 = 8(r), (3.9)

les relations obtenues ci-dessus pourront s’éerire aussi comme suit

R(r) =——S(f), 1
R(r, 8) = S(?‘s) = S(gr)’
R(rst) = — S(atr) = — 8(rts) = —S(srt), (3.10)

R(rstu) = S(utsr) = S(ruts) = ...

4. «. Comme conséauences de I'hypothése de I’existence du tenseur de potentiel,
dans le champ des connexions symmétriques, on a les relations suivantes :

16 relations :
@) R:%+R,’»,;+R}a = 0;
" ”m
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6 relations :
(ii) Blo = 0;

45 relations :

(i) RyRL, = RLE;,.
] A » Y

Compte tenu des 10 équations du champ, on a en tout 77 relations homogines
entre les composantes I'}, et leurs dériveés premidres.

b. Dans le champ unitaire, on a :

6 relations :
R(r) =— 8(r);
21 relations :
R(rs) = S(sr) ;
56 relations :
R(rst) =—S(tsr);
126 relations :

Rirstu) = S(wisr).
Couplées aveo les équations du champ, le total peut aller jusqu'a 225 relations
entre les mémes éléments du champ.

Ainsi les conditions qui sont imposées aux éléments -affines, dans la théoire uni-
taire, sont b®n plus restrictives que celles qui sont impusées aux éléments du champ
de la gravitation.

Reprinted from Le Jour de Phys et le Radium (Paris) 14, pp. 645-647, 1953.



Certain Consequences of the Existence of the Tensor g in
the Affine Relativistic Field

By S. N. BOSE,
University of Calcutta.

Summary — Relations are established where only I’ ’;, and their derivatives enter from

conditions of integrability of the equations which the tensor g of the relativistic theory
satisfies.

Thenumber of independent relations between the elements of the field is much larger
in the unitary theory than in the theory of gravitation.

1. Introduction
The abstract formalism of the theory of relativity developed from the concept of the
field of coefficients of affine connection of a four dimensional variety.

If 5x* are the components of a parallel and infinitely small displacement to which a

vector A of the chosen variety is subjected, the variations of the components A* which
result are obtained by the rule

34 = — AT, &F (1.1)
In the theory of gravitation the terms I'} s are symmetric, or I'; p = I}, ; thus the rule

of transport there is unigque. On the contrary, as the coefficients are not symmetric in
the unitary theory, one has here a second rule of transport :

3A* = —8a= TSy A", (1.2)
Based on relation (1.1) we can easily calculate the tensor of curvature R, the
components of which R, =T,,—I,+ T, — Ty,
’ 1.3)
(ou[‘}m',= d‘:’ I‘Xu,...)

are antisymmetric in the indices p and v ; and then by contraction we obtain the
Einstein tensor E with the components

E,=T), , —T4,+ I, — I, (1.4)

But the unitary theory also admits (1.2) as a rule of transport. Thus the same

reasoning mentioned above will give us from (1.2) another transport S (replacing R)
with its components
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S)\ta = F)\la,v - F:a,n + F;,P,\,E - F:.P),,, (15)

and finally also the tensor H (replacing E of Einstein) with the components
Hﬂﬂ = md.k - P}m.n ¥ P;.F:‘, - icp:ﬂv (16)

The equations E, . are those of the field in the theory of gravitation.

The ambiguity of the law of transport in the unitary theory seems to make it difficult
to choose E,, =0 as fundamental equations. But the difficulty has been solved by
Einstein in the following manner : it imposes four restrictive conditions on the affine

field, namely

F}l.k_ F§#=2P“ =0. (1.7)

Though arbitrary, this hypothesis easily gives

E=H;

the two laws thus lead to the same tensor. Therefore the field equations can remain
the same in both the theories.
Besides the system

B =0 A)

which depends anly on the coefficients I"',w and their first derivatives, there is also a

second system where the components of the potential g* ¥ and their derivatives are also
included ; these are indeed the equations

7% + gPTh + ¢'Ts = 0. (B)

We have demonstrated that (A) and (B) are obtained from one variatienal principle.
We form the invariant integral

I=[Vi|g|g¥E,.dV,

with some components of the potential and the Einstein tensor (supposed to be unique
due to I', = 0) and we hold
éI =0

for all arbitrary variations of g*¥ and Ik, ; we immediately obtain the required
equations.

It is evident that the existence of a potential tensor in the affine field would give it
a very special character.

Indeed (B), regarded as a system of differential equations, can determine g* " only
when the conditions of integratibility are satisfied.

Hence the relations, which follow as consequences of this hypothesis of integrability
between the coefficients I';, and their derivatives will express those relations of the
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characteristic properties of the field which are implicitly postulated by the theory of
relativity as well as the theory of the unitary field itself.
To obtain them in an explicit form is precisely the aim of this work.

2. Case I. — When the coefficients I‘l’;\, are symmetric, the conditions of integrability
of the equations (B), namely :

g8 + 9T + ¢ T =0

can more easily be expressed in terms of the curvature tensor R.

If the components R },, are expressed by the multiples g* ¥ and brackets with four
n

indices as

R = g™ (klmn), (2.1)

the conditions of integrability will be well expressed by the following properties of those
brackets which are well known :

(klmn) = —(lkmn) = (mnkl) = —(nmkl). (2.2)

From these we simultaneously eliminate g" ' and the brackets and obtain relations
between the components of R only.

(i) As R}, = gt (klmn),

we hold A =/ and contract. We now observe that the brackets are antisymmetrical in
the indices (k and {) while g ** are symmetrical.
We then automatically have :

R;m =0 (23)
(i1) Similarly, since "

( RYuRlr = g* (klmn) g™ (KU'm’A),
and n \

REIRE,, = g*™ (nmik) g (A m'l'K’),
we have Eoox
(2.4)

\ .
RyBiw: = Biy Ry
n A k k’

due to the relations (2.2) (with regard to the brackets).
(iii) We can write the 96 components of the tensor R}, explicitly as functions of
m

I %, and their derivatives, that is to say (1.3), which easily gives the relations
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R?.,:‘ + Rp + R: = 0. (2.5)

(2.3), (2.4), (2.5) are characteristic properties of the symmetrric field, expressed by
the components of the curvature tensor R.

3. Case II. — When the field is non-symmetric, the conditions of integrability of the
equations (B) can also be easily deduced.
With (B) we also consider the system of their first derivatives (B;). We eliminate all

the first derivatives of g" ¥ between (B) and (B;) and using the conditions
Gtk — k1 =0,
we immediately come to the following conditions of integrability :
0= !I“Rﬁn:‘ + 9"“'5'5:.:’ 3.1

from which we can immediately deduce these :
(i) By multiplying (3.1) with g, , and then summing (since a* gur=98; 8" a &= &
and &’s are the symbols of Kronecker) we get

Rim + 8pg =0
n n

or p ‘ d (3.2)
wro (Tay + T30 = Fr (P + Tom)-

(ii) As m and p are the antisymmetric indices, (3.1) cah also be written as
0 Rl = 948},
n m

by putting A = m and p = n, and then after the contraction indicated, we obtain the
relation
g)‘”’ (E)\“ - H)\“) = 0. (3'3)
In order to obtain more general relations, we begin with a change of notations for
the components of the tensors R and S.

n
component is replaced by one of the numbers r (r=1, ..., 6) which replaces the symbol
R or S of the tensor.

Thus (3.1) take the following form =

g ?g+g#d,'s'§ = 0. (3.4)

As there are only six pairs of (m, n), i.e. antisymmetric indices, each (r‘n in the

Following the numbers r, the 96 equations arrange themselves into six groups each
having 16 relations.
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But g°* = g, R", S, etc can be interpretated as the elements of certain square
matrices G, R and S (the indices now indicate the rows and columns as per the well
known conventions), and consequently the relations (3.4) can be represented as a single
equation of the matrices :

RG+GS =0
r ' (3.5)
where S represents the transposed matrix of S with
8 = 88.
By considering the transposed forms, we also have
SG+GR = 0. (3.6)

The equations (3.5) and (3.6) have the properties of hermiticity as it was postulated
by Einstein for all the relations of the unitary theory.

In fact, we pass from (3.5) to (3.6) by transposing G and changing the tensor R and
S and vice versa, which implies that the said relations remain unaltered as a whole by

the simultaneous changes of g* “into g"* and of Iy , into I'y ,, exactly as per the principle
of hermiticity.

Finally, by multiplying the six equations (3.6) by arbitrary numbers A , and summing
up, we get after an easy transformation :

G'RG=-8 (whereR = A+R, - - - ). 3.7)

The matrices R and S are therefore linked by a transformation which leaves their
invariants intact, from which

TR —(—1YL(S) = 0 (r=1,2,3,4). (3.8)

As the A, are completely arbitrary, it can be said that each coefficient of the
polynomial in A , in (3.8), taken separately, is equal to zero.
In all the relations that arise only F,’;v and their derivatives enter, each of them

expressing the characteristic properties of the unitary field conditioned by the hy-
pothesis of the existence of the potential tensor.

If the products of the chain of the R or the S are given the following notations -

I

MM=MMV§yg=ww,m- (3.9)

R = R().  S) = S,

the relations obtained above can also be written as
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R(r) =—8(r),

R(r,8) = S(rs) = S(sr),

-R(rst) = — 8S(str) = — S(rts) = — S(srt),
R(rstu) = S(utsr) = S(ruts) = ...

(3.10)

L_Y___J

4.a. As consequences of the hypothesis of the existence of the potential tensor in the
field of symmetric connections, the following relations are obtained :

16 relations :

(i) Rl}c\n'}'R:‘nrlz"%'R;\d = U
" m

6 relations :

(ii) R, = 0;
n

45 relations :
R)\,R:., = R}, R:,..
(iii) e UARLES

Taking into account the 10 field equations, we have a total of 77 homogenous
relations between the components F,’;v and their first derivatives.
b. In the unitary field, we have :

6 relations :

R(r) =— 8(r);
21 relations :

R(rs) = S(sr) ;

56 relations : Rirst) = — S(tsr);

126 relations : R(rstu) = S(utsr).

Coupled with the field equations the total can go upto 225 relations between the same
elements of the field.
Thus the conditions which are imposed on the affine elements in the unitary theory

are more restrictive than those that are imposed on the elements of the gravitational
field.

Manuscript received 18 July 1953.

English translation of Le Jour de Phys et le Radium (Paris) 14, pp. 645-647, 1953.



THE AFFINE CONNECTION IN EINSTEIN’S NEW
UNITARY FIELD THEORY

By S. N. Bose
(Received September 29, 1952)

The non-symmetric I'l,’s are defined by the 64 equations

G
(1‘) i“ = (Jux F?v + ()Y I‘za

in the new theory. A method of obtaining explicit expressions of I'’s in terms of
gu and its derivatives is sketched in this note. Following the usual convention of
the relativity theory, the summation symbols are suppressed throughout, it
being understood that summation is always implied whenever dummy indices
occeur.

I. The generalized Christoffel bracket (;") is defined by the equation

@) @) = 3 (2 4 20 203,

az, 0z, 0%,

(the subscripts are written in a cyclic order (Schrédinger)). Also,
(3) (:V) = sv)‘rzv + ap)\rta + a)\vrs;a

where s, a, denote symmetric and anti-symmetric components of g. If I}, is
similarly decomposed into

Zw = (T + T0)
(4) and
Vir

3T — TO,
and the bracket (§*) into
] = 3E) + )]
) = 31¢) - )

the following relations follow immediately

(5) and
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A A A
sv)‘zyv + akaw + aAeru = [:’]

@) s
lsa)\V::v + apkztc + abzc);p = {: }-
Again if
(6) sd}::r = Pauv, or E;);y = SM‘P“,,

A A Ak
SV = Ty ,or Vi = 8 Thp

we can express = and ¥ in terms of P and T with the help of s, the contravari-
ant component of s,, obtained in the usual manner; also taking

Cy = "o

as the components of the matrix product of s and a, we can rewrite the equations
in the form

[:r"] = Pﬂu - Cszn + C‘:Tku
{‘v"} = Taln - C::Pkw + Cl:Pkcm .

P’s can now be easily eliminated, and a tensor equation, involving only 7’s is
obtained in the form

(¥} + i1 — O
= Tow + Co(TasCh + TxuCs) — CoCi(Trie + Tion).

This tensor equation may be regarded as characterizing the continuum of the
Unitary Theory.

When (B) is solved, yielding T in terms of known functions of g and its deriva-
tives, and also Cﬁ’s, the substitution in (A) of T immediately gives the P’s and
hence also the I'’s.

To solve this central equation we first observe that a cyclic addition easily
yields

(A7)

(B)

Towr + Tuse + Toou = Tlwvo) = {o'} + {i°} + {3} = {owv}
(7)
four} = % (aa,., + 00, + aa.,)

ax' a.’t“ axc

which is easily recognized as a tensor.
Also if Christoffel co-efficients ¥4, = s*'[{’] (the usual symmetric v’s) are used,
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the left-hand side of (B) is changed to

{I-“’a' } + Gui
where

da A Y
(8) Quye = 2 - ArYer — Ay Yuo

309

is the familiar covariant derivative with symmetric v3’s as in Riemann-Geom-

etry; also observing that

9) Trie + Tion = T(oNk) — Tou = {oNk} — Ton
the equation (B) can be transformed into the form

[{our}) + (oM CUCL + o = Uow

C) \ ! .
( LUtmv = Tauv + Tak)\Cl;;C:‘ + CE[TXI\‘VC:; + T)\ukC):]

where the anti-symmetric suffixes are put in the end on both sides in the
tensors with three-index symbols.

I1. To solve the equation (C) we remark that the co-efficients C | that
occur in the equation are the components of the matrix

C=sa=(CillorCyj =sa,.

The general equation for the eigen vector M of the matrix C can be
written in the form

(10) |C pE|M=0o0r CtM:t=pM}

in the vector M = M ; the superscript ¢ indicates the component, and the
subscript p the associated eigen-value.
The characteristic eigen values are the roots of the quartic

(11) x4+12x2 +I4 = 0
as the first and third invariants vanish (the matrix being the product of a

symmetric matrix).
A few well-known properties of matrix equations are here re- capitu-
lated for ready reference.
1.A matrix C, and its transposition C have the same eigen values,
but different eigen vectors ; and the eigen vectors, written with

two suffixes, (representing the component and the eigen value)
satisfy the following relations :

MSMS =8k, MiM$ =02,
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1 (a). The theorem is true even in the case of repeated roots of the
characteristic equation of C, if the eigen vectors are suitably
constructed..

2.Taking the elements of the matrix C, as C &, where & denotes the

rows and p the columns of the matrix, a new compound matrix
C x C, can be constructed in the following manner :

(12) (CxC)(pm)=CrCy-CECy

obtained by the usual cross-multiplication rule. The elements can
be arranged in a six x six matrix in any proper order ; e.g.,

(23)>1,(31) > 2,(12) > 3,(14) > 4, (24) > 5,(34) —» 6.

3.The eigen vectors of the matrixes C x C (arranged in any as-
sumed manner) may be obtained by taking the vector product of
the eigen vectors M ; of C. M, x M, is thus the eigen six-vector of
the six matrix, C x C corresponding to the eigen value p,p,.

4.The eigen vector of C x C is similarly obtained as M, x M, corre-
sponding to the same eigen value p.p, .

5.The eigen vectors of the compound matrices have corresponding
orthogonal properties. '

The components of the eigen vectors can be written by the notation used before
as Mg ) and M(53).

The orthogonality relation is written as
{Mc:z')M(:;’ = 5%}
MEHME) = 68% .

ITI. Keeping the above well-known properties of matrices in mind we can
tackle the problem of solving the general equation. We multiply the equation

(C") by M M,M; formed from the eigen vectors of C, corresponding to three
eigen values a, b, and ¢, where b  c¢; then remembering the equations

CiM% = poMY, CiM: = p M, ete., (b, ¢ pot summed)

(13)

we get easily, by suitably changing the dummies

(MIAMU,,, = (R MEIMEMYL + pipe) + acnMEMEME;
(14) also

MMM Uy = TraMeMiM (1 + paps + PoPe + Pepa)-
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Or remembering the anti-symmetric nature of the suffixes k, ! we write the
same equation with %, [ in the reversed order and add, using the symbol

M) = MoM; — MM,
easily getting the result in the form
(1 4 pepp + ope + Pepa) (1 + op) (REL MM (o) + apaMad (52)]
= TwiMaM ().

Remembering the orthogonal properties of the eigen vectors, namely equations
(12) and (13), and multiplying by M M (5.) on both sides followed by summation
on a, b, ¢, we have

Tauv = (1 + papb + YUy + pcpa>_l[(1 + pbpc){hkl}MzM(gZ)lwzﬂl(gé
+ wn MM () MM (3]

(15)

(16)

An explicit form of T\, is thus obtained in terms of the eigen vectors of C' and C
and the covariant derivatives of a;; calculated with the symmetric Christoffel
co-efficients, v’s obtained from the symmetric parts of g, , namely s, . The
discriminant-determinant of the equation (C) is obviously

(17) Dau= 1T (0 + papr + pope + pepa) (product with roots of (11) with b = ¢).

The value of the determinant can be easily calculated in terms of the invariants
of C; in fact,

(18) Dy = (14 I+ L)QA + 51, — I,)* — 41,2 — L)Y~

The determinant D always vanish when 1 4+ I; 4+ I, = 0; but this happens when
the determinant of ¢ = || g.. || = 0.

This is proved as follows:

Any transformation s( )s~', where s™' = §, preserves the symmetric or/and
the anti-symmetric nature of a matrix; s,, part of g,, may be diagonalized, and
at the same time the anti-symmetric tensor a,, preserves its anti-symmetric
character. Hence g can be reduced to the form

Suy - *
and a,, + a,, = 0

a41 e e . s“
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by such a transformation.
The values of all invariants remain obviously unaltered. In this special co-

ordinates
(19) A= | g || = susnsusu + Zsusnas + (away + ---).
The invariants of the matrix C can.be easily calculated which gives
Iy = (Su8m8:8u) " Zsus2ai

I, = (3u$n818u) " (Gross + + )"
hence
(20) A = §1888(1 + I, + I,).
Henceif 1 + I, + I,) =0
Il 9w || = 0 also.

That when T is determined I'’s are also determined follow simply as a conse-
quence of equation (A).
IV. In later developments of his theory Einstein has introduced the additional

condition
A A
Ii'=I'n—-Tu= 0;
however, from the contravariant form of equation (1), viz.:

ag”’

== = = g“'Ti + ¢'T%,

(21) -

the following relation
(22) Hol'@” — ¢ =3 1g1'G™ + ¢")(T% — Th)
follows easily. The condition
Thn—Th=0
meauns four relations involving the differential co-efficients of a,, and g,, . In the

equation (C) for the determination of 7, all first order differential co-efficients
occur in the left side of the in-homogeneous equation, whereas the homogeneous
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part involves only C} , composed of s* and a,, and no differential co-efficients
occur here. Hence the additional conditions do not affect the general nature of
the solution.

UNIVERSITY OF CALCUTTA

Reprinted from Ann Math USA 89, pp. 171-176, 1954 (Princeton University, NJ).



XVIII. A REPORT ON THE STUDY OF THERMOLUMINESCENCE

By PROFESSOR S. N. Bosg, J. SHARMA and B. C. DUTTA, Khaira Laboratory,
University College of Science, Calcutta

(Received for publication on February 9, 1935)

When some solids are irradiated with jonizing radiations like X-ray or cathode rays,
they often exhibit fluorescence followed by a long period phosphorescent afterglow. Again,
if the irradiated sample is heated, the stored energy is released in the form of radiation,
emitted at various temperatures characteristic of the sample. This thermo-stimulated
release of energy is commonly known as thermoluminescence. The capacity of substances
to store energy is large at low temperatures, so thermoluminescence is pronounced if the
irradiation is carried out at low temperature (e.g., at —184°C). We may plot in a
thermoluminescence curve the total intensity obtained from the sample at various
temperatures during heating. From the curve, the trap depths of light-storing states
below the conduction band, can be evaluatedl. Shallow traps yield glow peaks at
comparatively low temperatures, while deeper traps are released at higher temperatures.
Quartz, alkali halides, calcite, glasses and many other substances show this kind of thermo-
luminescence. Of late, thermoluminescence has been a useful tool in many problems of
research. Dosimetry of radiations, study of heterogeneous catalysts, ionic nature of
elements in glasses, and identification of clay minerals are- some of the uses to which
thermoluminescence has been put.

Study of thermoluminescence of alkali halides was initiated in this laboratory in 1950,
as a part of a larger programme of investigating solid state and of co-ordinating fluorescence
study with the results of soft X-ray spectroscopy. The fluorescence spectra of alkali
halides both at room and low temperatures had already been studied® 34, Measure-
ments of the afterglow 5 decay rates had also been done, so thermoluminescence study of
alkali halides and also of some organic substance was undertaken, with a view to clarify
the processes involved during energy storage in these phosphors.

In this laboratory, thermoluminescence has been studied by exciting the sample at
liquid oxygen temperature, in a demountable cathode-ray tube fitted with a window of
quartz. The sample is mounted as a fine coating on a hollow bulb made of thin silver.
The bulb can be filled with liquid oxygen to keep the sample at low temperature and it
may be rapidly heated with an electric heater immersed in the bath. A thermocouple on
the surface of the bulb, connected to a Moll galvanometer, gives temperature of the sample.
Another galvanometer connected to the photomultplier tube, placed facing the specimen,
gives luminescence intensity. The movements of the two galvanometers during thermo-
luminescence are recorded on a slow rotating photographic drum. A typical example of
thermoluminescence curve is shown in Fig. 1.

For recording thermoluminescence, different photomultiplier tubes (931A, 1P28,
1P22) have been employed to suit the emissions of the different samples. Fluorescence
spectra of the substance being known from a previous study, there was no difficulty in
selecting the photomultipliers. Although low rate of heating (0-25°C/sec.) is usually
preferred, yet it has been observed that, in the case of many phosphors, the weaker peaks
get flattened out unless the rate of heating is high (6-10°C/sec.). A high rate of heating
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Fic. 1. Thermoluminescence of KI.

was often maintained and a fine film of powdered sample was found more suitable than
a single crystal. For recording the spectral nature of the different glow peaks, two
photomultipliers, sensitive in different regions, were made to record thermoluminescence
simultaneously during the same run of the experiment, and optical filters were used to
separate out the emissions.

Quite a number of alkali halides, both pure and activated, has been studied and some
of the results have been published®?. These halides yield a number of thermolumi-
nescence peaks between 90°K and 600°K. It has been possible to explain some of the
results of afterglow decay rates in the light of information obtained from thermolumi-
nescence study. The effects of thallium activation of samples on thermoluminescence
have been investigated and it has been found that in some samples thallium produces a
new peak of its own, without affecting the peaks of the parent lattice. But in some samples,
like KC1 and KI, it completely changes the thermoliminescence curve. From the com-
parative method of study with optical filters, it has been found that the different peaks
emitted by a specimen are not spectrally identical. In general the peaks emitted at high
temperatures are rich in emissions of ultra-violet and blue regions. But thorough study
of any peak with an ordinary spectrograph is not possible, because the individual peaks
disappear within a few seconds. To study the spectral nature of individual peaks, con-
struction of a rapid spectrophotometer was deemed necessary and has been recently
completed. With the help of this spectrophotometer some interesting results have been
recently obtained (see Figs. 2, 3, 4 and 5).

The automatic rapid scanning spectrophotometer employs two concave mirrors of
25 cm. focal length and large focal ratios of f/4-2 constructed from stainless steel and a

315
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large prism of quartz. Light from the first slit is collimated by the first concave’ mirror,
and, after dispersion by the prism, the beam is focussed by means of the other concave

mirror. But before falling on the exit slit, the spectrum is reflected by another plane
mirror. The latter is mounted on~a turntable, which can be made to oscillate to"and
fro with the help of an induction motor and a cam. The entire spectrum (ultra-violet
and visible) sweeps before the slit in about 0-95 second and flies back instantaneously to
the original position by a cam arrangement. Just behind the exit slit is placed the photo-
multiplier tube which receives the light. The output of the photomultiplier tube passing
through a pre-amplifier is amplified and displayed on a Dumont 304H cathode-ray tube
with long time. A micro-switch attached to the cam triggers 'the sweep circuit every time
the ultra-violet end of the spectrum just comes near the slit so that the same part of the
spectrum is given at the same position. During each sweep, a specially adopted syn-
chronous 35 mm. camera arrangement photographs the intensity distribution curve dis-
played on the cathode-ray screen. With the help of this spectrophotometer, the spectral
intensity distribution of the emission can be photographed in less than one second and the
apparatus is capable of giving all the necessary information during the entire thermo-
luminescence experiment. Not only the spectral composition and the intensity of the
different peaks can be obtained, but also the changes in emissions in subsequent periods
of a single thermoluminescence can be easily and accurately studied. Commercial types
of photomultipliers were found to be not sensitive enough for this work, so a special
photomultiplier with 19 dynodes was procured from France.

It is well-known that most of the solids (like alkali halides, quartz, calcite), on irra-
diation with ionizing radiations, develop colour centres. From simultaneous changes in
colour centres and by recording diffuse reflectivity during thermoluminescence, it has been
shown that some of the luminescence peaks correspond with thermally actuated trans-
formation in colour centres. It has been found that thermoluminescence-behaviour of
alklali halides is very susceptible to previous history of heat treatment of the sample.
Other properties have also been studied in this laboratory.

Thermoluminescence of some aromatic hydrocarbons both solids and liquids between
90°K and 250°K has also been investigated. This work gives information regarding the
metastable states of the molecules excited by cathode-rays at low temperatures. The
depth of the metastable states below the upper excited states, as measured from the thermo-
luminescence, agrees fairly with that obtained from the study of fluorescence and phos-
phorescence spectra. Thermoluminescence opens a new method of investigation of the
metastable states of the molecules.

This article would not be complete unless another interesting application of
thermoluminescence is mentioned. We know that many naturally occurring minerals
exhibit thermoluminescence. Recently a number of samples of sands procured from
various parts of this country was studied. All sands show feeble thermoluminescence,
but those from Bargarh and Mangalhat showed pronounced one. Measurement of
y-ray counts in the case of the latter showed slightly extra counts over the background.
This leads to the possibility that thermoluminescence might be developed as a preliminary
method of detecting radioactive minerals. Many minerals (like bentonite) are often found
to yield thermoluminescent radiation. The ultimate reason for the occurrence of thermo-
luminescence in natural minerals has not yet been found. Radioactivity may play some
part in this occurrence, but it is yet too early to make any definite statement on this matter.
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Fig. 2. Shows the fluorescent spectra of anthracene.

FiG. 4. Fis. 3.
FiGs. 3, 4 and 5 give the radiation as observed from a sample of irradiated NaCl during heating,

(Note change of character with time.) Figs. 3, 4 and 5 are photographs taken at 3, 7 and 17
secs. respectively after the commencement of heating.

Reprinted from Trans Bose Res Inst 20, pp. 177-180, 1955 (Bose Institute, Calcutta).



SOLUTION D'UNE EQUATION TENSORIELLE
INTERVENANT DANS LA THEORIE DU CHAMP UNITAIRE;

Par S. N. Boss,

Université de Calcutta.

Résumé.-—On exprime explicitement en fonction des C et de leurs invariants la solution de 1'équation

tensorielle d’oti dépend la determination des I‘::v.
On remarque gque Pitération fournit une selution rigoureuse quand
det C = o

1. Dans un précédent article ¥, on a montré qu'il est possible de ramener le
calcul des coefficients affines T, en fonction des g,, et de leurs dérivées a la solution
de I’équation tensorielle

(1.1) Usir = Tapo+Tar Ok Ci4Co(Tu, O +T0u C)).-

Les tenseurs U et T' sont antisymétriques par rapport aux indices x et v, Cf sont
les éléments d’une matrice C formée & partir des parties symmétriques et antisymé-
triques du tenseur ¢ :

1 1
(1'2) r O = Saa (L,“, = 'é‘(g;w—guu)’ S = é (gik+gkl)’
48y = 6

Les valeurs propers z de 1 matrice C vérifient I’équation
(1.3) -+ 1,231, = 0,

T, et I, sont les invariants d’ordre pair de C; de ’équation (1.2) il résulte immédiate-
ment que les invariants impairs sont nuls.

Le vecteur propre M* de C correspondant & la valeur propre a vérifie I’équation
(1.4) CLME = aM*.

La matrice transposée O—(C—‘;;‘ = C*) a les mémes valeurs propres que C mais ses

vecteurs propres M¥ sont différents.

Si I’équation caractéristique a toutes ses racines distinctes, il existe une série

compléte de vecteurs propres M et M de C et (' et I’on peut exprimer les éléments de
C en fonction des vecteurs propres : Savoir

(1.5) CF = X AMeME.

On calcule facilement la solution de (1.1) :
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T, = aZbc(1+ab+bc+ca)—1H-gM:ﬂ('Zg>M(?£)Um (b # o),

auy
(1.6)

M(¥)= mypr—nmong; ;
et la sommation porte sur les 24 combinaisons possibles des (abc).

On peut écrire la solution (1.8) sous la forme d’une équation tensorielle
T = BU,

le tenseur B ayant pour composantes :

M () MaM(30)
15 bcteatab

1.7 3
(1-7) Bifi = %

(1.7) est identique & (1.5).

Je me propose de faire la sommation dans-(1.7) et d’obtenir les composantes de B
en fonction des éléments de C.

2. Au moyen de C et de la matrice unitaire E nous pouvons former une algébre
{C,} avec addition et multiplication matricielle.

La formule générale d’une matrice 4 dans {C,} est

A = Ag+1,Cy+ 0o+ 15Cs;
c,=0, C,=00, C,=000.

Toutes les matrices 4 commutent et ont donc les, mémes vecteurs propres M
que C.

(2.1)

Les matrices A de I'algdbre transposée ont aussi les mémes vecteurs propres M
que C.
Si a,a, b,-l; sont les racines de 'équation caractéristique (1.3), on voit facilement
que les matrices de base se développent ainsi :
2.2) { E = f(@)-+f@-+f(®)+f(b): 0, = a[f(@)+f(@)+b4f(B)+f(b)):
Oy = alf(a)—f@+bfO)+fB); €y = a¥[(fa)—f(@)]+b3f(B)—f(b)];

ou f(a) = M,M,. ... en ajoutant les indices inférieurs et supérieurs aux formules
ci-dessus, onobtient

LN 7 PRSI VL3 7 B MM _ W A
Ch = (M(,Ma ME M2 ) a+b ( My M, — M M >
Déduisons maintenant une nouvelle algébre {V,} : oit Pon forme ainsi les matrices

V A partir de deux éléments quelconques 4, B, de {C,} :
V = (4B),
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avec

2.3) per = L an B4 Bi—A* Bi— AL B*) (£ v et r # ).
L4 » L L) r 8

w

La régle de composition (2.3) montre que toutes les matrices V de {V,} commutent
entre elles.

Toutes les matrices ¥ ont les mames vecteurs propres & six composantes que
(CO); on voit facilement que les six valeurs propres de (CC) s’obtiennent en multi-
pliant deux & deux les valeurs propres de C. Ce sont

(2.4) ad, bb, ab, @b, ab, ab;

et les vecteurs propres a six composantes se déduisent des Vecteurs propres de C par
une regle analogue & (2.3) par exemple :

2.5 w .
(2.5) Mry = M My—MeM:,
sont des composantes de M (ab) le vecteur qui correspond & la valeur propre ab de (CC).

Tes matrices V de I'algébre transposée {V¢} ont aussi les mémes vecteurs propres
a six composantes que (CC): on voit facilement que les vecteurs M(ab) se déduisent des
vecteurs. propres de C par la régle savoir.

M“l‘g == M‘(‘t Mg—ﬂf’,j M,

Comme bases de l'algébre {V¢}, nous pouvons prendre six matrices quelconques

de Vg linéairement indépendantes.

Nous choisissons les six matrices suivantes dont nous donnons le développement
en fonction des vecteurs propres :

.

(EE) = V(ad-+V(bb)-+ V(ab)+ V(a@b)+ V(ab)+ V(ab),

(CC) = —a2V(a@)—b2V(bb)-+ab[V(ab) -+ V(db)|—ab[ V(abh)+ V(ib)]
(Co0,) = adV(ad)-+bVV(bb)-+a2b? V(ab) - V(ab)|-+a2b? V(ab)+ V(ab)),
(2.6) 3 2(EC,) — —2a2V(ad@)— 2b2 V(bb)+(a2-1b2)| V(ab -+ V(ab) -+ V(ab)-- V(ab)),
2(EC)= —(a+b)[V(ab)— V(ab)]+(a—b)[ V(ab)— V(ab)],

2(CC,) = abla+b)[V(ab)— V(ab)]—ab(a—b)[ V(ab)— V(ab)].

L V(ab) = M(ab) M(ab),

Let formules (2.6) sont obtenues d’une maniére tout a fait analogue & la maniére
dont on a obtenu les formules (2.2).

Les quatre autres combinaisons qui peuvent ctre formées a partir des éléments
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de base de {C,} dépendent des six ci-dessus en vertu des quatre identités ci-dessous :

(BEC,)+(C C,)+14EC) _o,
(2.7) 2(00,)+(CoCy)+ICC)—I(EE) =0,
. (CyC3)—1,(EC) —o,

(C3C3)—I4(C,0,)— [[(CC)--2(EC,)] = 0.

On montre aussi facilement gu’en multipliant ¥, et V, dans [V} avec
(2.8) Vi=(AB), V,=(CD),
on a

V,V, = H(AC - BD)+(AD-BO)].

Avec (2.8), les identités (2.7) et Pidentité générale de Cayley-Hamilton :
(2.9) C,+-1,Co+1,E =0
nous pouvons réduire toute matrice de forme (C,C,) &4 une fonction linéaire des six
éléments de la base adoptée en (2.6).

On peut choisir des bases et démontrer des identitiés analogues pour toute algébre
V nin-1) composée & partir de {C,} [par la maniére analogue & (2.3)].

.Avec les mineurs m, d’une matrice C, quelconque, nous pouvons former la matrice
conjuguée D.
Dans le cas particulier de C ici étudié, ot C = Sa est le produit de composantes
symétriques S par les antisymétriques a, on voit facilement que D est donné par
D= A%,
oh 4’ et &’ sont formés de méme & partir des mineurs m, de a et S.
Admetton que toujours
1 S)t=A e 8 #0.
On peut cependant avoir
1CI=0 s Jaj=o.
Le cas | a || = 0 est intéressant pour la théorie du champ unitaire. Nous dis-

cuterons donc les propriétés particulieresde V¢ quand || C || = Oparsuite de |ja | = 0.

a est une matrice antisymétrique d’ordere 4. Donc A déterminant de a est un
carré parfait et 4/A est un facteur de tous les mineurs m, de a,.

Sijla] = 0, A et D mineurs conjugués de C, sont identiquement nuls.

Pour la matrice conjuguée, nous avons une identité analogue & (2.9) ;
(2.10) Cy+1,0,+D =0 (Cy = CCO).

Quand
(2.11) lal=0, I,=0 et D=0,



Solution d’une Equation Tensorielle 323

nous avons
03+I 201 = 0
et des identités (2.7) nous tirons immédiatement
(2.12) (CCy) = 0, (CoCy) = 12(0101)5 (C3C5) = 1,(C,0,).
Nous allons utiliser ces relations pour déduire la solution de (1.1) dans le cas
particulier I, = 0.
3. Nous effectuons maintenant la sommation indiquée en (1.6) et (1.7).
Notons quelques propriétés simples du denominatéur D (abe) :
D(adc) = D(cag) = 1 —az,
D(abc) = D(abs),
D(a“b) = A+—'b2, /\+ = l+(a+b)2,
L Dlaad) = A_—b, A = l+(@a—b)},

(3.1)

A aide de ces relations simples, nous pouvons regrouper facilement les termes
& sommer :

On utilise les notations ci-aprés pour écrire le résultat final :

( V(ab)+V(@h) =X, V(ad)+V@h)=7Y;

(3.2) V(ab)—V(ab) = U, V(ab)—V(ab) =7V ;
MM, = fla), Mbe)M(be), = V(be), ......

La sommation (1.7) est notée

V(be
(3.3) B=xt (gialfc)) .

Aprés regroupement, il vient

14
(a::z) +

f(@)+f(@) f(b)+f_(§)__]

1
+§—(X+Y) [ 1—ar T 1-p

B =3 f0) [ V(bb) ]

+ 2X[ f@)+f@) +f )+f(b) ]+ . Y[ f(a)+f(a) + fb)+1(b) ]

p YR Iy X_—a

11 f@)—f@) | f)—f(b) fl@)—f@ _ fb)—f(®)
(3.4) '?U["“l—cﬁ T 1R ]_2 [ T1=af 1—02 ]
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@) —f( ®)—f®) 1, 1,1 fl@)—=f@) f(b)~f(b)
2 [fa a) , fO=f ]+'2‘V[“‘,\‘_‘:7;='

A b2 A —a? A —at J

Servons-nous de (2.2) et (2.6) pour exprimer X, Y, U, V et f(a) £ f(d), --;
X, Y, U, V en fonction de matrices de {Vg} et {C;}, et nous obtenons aprés un calcul
simple le résultat sous sa forme définitive

(3.5) B = E[dy(EE)+d\(CC)+dy(CyCs)+21(EC,)]
+ Colgo( EE)+g:,(0C) 4 g5(CoCr)+29(EC)]
+Cy[2f(EC)+2hy(CC,)]+Cs[2f( EC) 4-2hg(CCy)],

o les coefficients d, g, u, v, f, b sont fonctions des seuls invariants de C. Si

to=1+I+1, t, =22+LA,+1, t_-=2A2+T,A_+1,;

—1_ t,—t.
+2 ~ =z = 145I,—1,, +4ab

et
tit = (1—I,+51,)2—4I(2—1,)*

sont fonctions des invariants.

Les coefficients de (3.5) sont

’

d = 1+1, Ly I x—2y)
o t tyt_ bt b
4. = 2—yy—1) y—z
1T 4y = 1 t T bt
. 1,(x—2y) Y z—2 2[2x+y(21,—1 )]
3.6) < = -4 R = — Y —_ Y 0
( Jo tofat. /] i’ g tdet. 2fs tob ot
4(z+yl,) I x 2x—2y1,) 2Ax—21,y)
Qhy =—"T772) g, L _ YL4 el L
Wt t T T Wt T T
2f, = 2_[.-&1_2‘*‘414?/—‘”(1'}‘14)] et 2h, = _ﬂ!z’fajﬁ_‘;yﬂﬂc)_]_‘
L tot sl tol it

4. Nous avons exprimé le résultat final (3.6) en fonction de matrices déduites
de C suivant des lois déterminées, avecdes coefficients qui sont fonctions des invariants
de 0. Ce résultat est valuable dans tous les cas, méme quand pour des matrices parti-
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culieres, il n’existe pas un systdme complet de vecteurs propres et l’on ne peut plus
développer suivant (3.3) ls matrice résolvante B mais le résultat général (3.5) reste

toujours vrai. L’expression (3.6) donne donc la solution générale du probléme posé
en (1.1).

Néanmoins, il est intéressant d’observer que, dans les cas particuliers I, = 0
ou I; =0, I, =0, on peut facilement mettre la solution sous forme d’une sormrme
d’un petit nombre de termes, grace & une méthode d’itération.

Discutons briévement le cas I, = 0.

On a déja déduit les propriétés spéciales de la matrice C en (2.11) et (2.12) : & savoir

03+1201 = 0, 04+I’02 == 0-
Nous écrivons (1.1) dans la forme

U = AT = [E{(EE) + (CO)}+2C(EC)IT

ou
(4.1). U = T+[E(CC)+20(EC)] T = T+4T;
et cherchons une solution en posant

T=U+0,.
L’équation ayant la forme

U=T+4dT.
On déduit facilement pour @, ’equation

—8U = ©,+480;.
En répétant I’opération, nous obtenons successivement
(4.2) 08U = 0y+0®;, —060U = Oy+8D,.
En raison des propriétés spéciales de I'opérateur [(2.11)—(2.12) ] nous déduisons

facilment .
(4.3) 888 = I30.

En posant § = A—E, ou E est I'opérateur-unité, I'équation (4.2) s’écrit

AD; = —IA—E)U
ou
(4.4) A(®,+13U) = I3U.
L’équation originale est
AT =T.
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Comme dét A # 0, la solution est unique et I'on voit facilement que la solution de
(4.4) est
O, + 13U = 3T

Oy = T—U+8U—88U = IYT—U),

En éorivant

nous avons facilement

8U 88U
i

(4.5) T=U+
En développant, nous avons le résultat snivant :

Ta/u = Uauu —(l +Iﬂ)—l Uaklaﬁ Cll/ +(I%— 1 )—1[03(035 Ulkv + Olf Uml )]

—(I3—1)"1C% , (U, 0%, .+ UG ) —215— 1)_105,90505 Upa .

La solution générale nous donne le méme résultat en posant I, = 0 et en utilisant
les relations particulidres (2.11) et (2.12).

On peut aussi traiter de méme les autres cas I,=0,1,=0.

Post-SoripTUM.

Si les coefficients A de
N = Ag+A,0,+4 21403+ A;C; (nombre quelconque dans [C],)

sont choisis dans 1’algdbre [¥],, ces nombres forment une nouvele algdbre [cV]y,.

Résoudre
U = [¢(EE)+e(cc)+2c(Be)) T = BT

est done équivalent & trouber I'inverse de B en tant que nombre algébrique. L’in-
verse est aussi un nomber dans [c V] et on peut le trouver facilement de la facon suivante.

Nous vérifions d’abord les résultats suivants & partir de la régle de multiplication
et des identités pour Ialgébre [V],.

Si
L = (C,C,)—1(EE), M = 2(EC,)+1,(CC),
R =2L+I,M, X = 4EC)? = 2(CC)+2(EC),
et D = I}—4I,, le discriminant des équations
-+ Izx+1, =0,
on a alors

L(EC) = M(EC) = 0; d’odLX = MX = RX =0
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RL=DL, RM =DM, RR=DR, M*=R
et

XX4+21,X4+D = R.
Dans ce qui suit, nous employons les abréviations suivantes: s= 241,
ty=1+I,+1,, € = 14+51,—1,, et y = 2—1,.
Comme B = (EE)+(CC)+2C(EC), en le multipliant par son conjugé
B* = (EE)+(CC)—2C(EQ),
nous avons ’
BB* = (EE+CC)*—4C,(EC)?
ou

BB* = <1+ B{_SM

0

) (t+X—CoX)
apres factorisation;

Comme ( 1_;___.:"!‘_1) ( H_@-{—sM > 1

0

) [H i | ot X+ 1)+CX)
BB* ~ [+ X— 02X][to+X(1+lg)+02X]

aprés Paddition du méme facteur dansle numérateur et le dénominateur de I’expression
de droite.
En faisant la multiplication, on obtient pour le dénominateur

tole+y(X+1,)+B].

Nous observons que
[z+y(X +1,)+Rlz—y(X+1,)—vE]
= Q =t = a?—4ly
x—2y

si v =
to

On peut donc exprimer facilement I'inverse par '’équation suivante :

[1+R+8M] [t X(14+1,)+C, X][z—y(X-{—Iz)—VR]

fol ot
En supprimant les crochets, on obtient un résultat équivalent & celui de 'article
principal.

Bl =

Reprinted from Bull Soc Math France 88, pp. 81-88, 1955 (Gauthier — Villars Publishers, Paris).



Solution of a Tensor Equation Occurring in the Unitary
Field Theory

By S. N. Bose,
University of Calcutta.

Summary — The solution to the tensor equation on which the determination of I},

depends, is explicitly expressed in terms of the C and their invariants.
Note that the iteration gives a rigorous solution when

det C=0.

1. In a preceding article () it has been shown that it is possible to reduce the
calculation of the affine coefficients I}, in terms of g** and their derivatives to the
solution of the tensor equation

(1.1) Uaur = ¢uv+Takl 05 03+0:(lev0£+Tml 0‘1‘)

The tensors U and T are antisymimetric with regard to the indices p and v, C ﬁ are

the elements of a matrix C formed from the symmetric and antisymmetric parts of the
tensor g :

1 1
r C= Sa" Ay, = E(g/n_gvu); Sx = é(glk'*'gkt);
(1.2) 1 S“!S‘k = 8#.

The eigenvalues x of the matrix C satisfy the equation
(1.8) x4+I2z2+I4 = 0,

I, and 14 are even invariants of C ; from the equation (1.2) it immediately follows that
the odd invariants are zero.

The eigenvector M X of C corresponding to the eigenvalue a satisfies the equation
(1.4) Ci:M% = aMx.

The transposed matrixC (C% = C ﬁ ) has the same eigenvalues as C but its eigen-
vectors M # are different.

If the characteristic equation has all its roots distinct, then there exists a complete
series of eigenvectors M and M of C and C and we can express the elements of C in
terms of the eigenvectors : that is
(1.5) _

CF =S aMeM:.
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The solution is easily calculated from (1.1) :

w6 T, = Ec(l+ab+w+m)-lﬂgMz}?</Zg)M(gz)Um (b # o),

(¥ )= Mymz—pronts

and the summation is over the 24 possible combinations of (abc).
The solution (1.6) can be written in the form of a tensor equation

the components of the tensor B being

e i g
1Fbetcatab

(.7 P

(1.7) is identical to (1.5).
Iintend to carry out the summation in (1.7) and obtain the components of B in terms
of the elements of C.

2. By means of C and of the unitary matrix E we can form an algebra (C, with
addition and matrix multiplication.
The general formula of a matrix Ain (Cj} is

(2.1) A = g+ p,Cy+p2Co+-p3Cy;
c,=0, C,=00, C,=CCC.

All the matrices A commute and therefore have the same eigenvector M as C.

The matrices A of the transposed algebra also have the same eigenvector M as C.

Ifa, a, b, b are the roots of the characteristic equation (1.3), one can easily see
that the basic matrices develop in the following way :

2.9 [ E=T@+f@+f©)+/®): Oy = a¥f(@)+f@1+HTf®)+fB)]:
O = alf@)—f@+BIfO+HfB): Oy = a(fa)—f@]+f(B) —f(B)):

where f (a) = M, M,,. . and by adding the lower and upper indices to the above
formulae, one gets
Oy = (MM, — M5 ML) ati | My My — MM )

Let us now deduce a new algebra {Vg}, where the matrix V is formed from any two
elements A, B of {C4} :

V = (AB).
with
2.3)
1
Vi = — (A B, +~A" By—Ar Bi—A; B*) (it £ v et r # 8).
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The rule of composition (2.3) shows that all the matrices V of {Vg} commute among
themselves.

All the matrices V have the same eigenvectors with six components as (CC) ; it is
easily seen that the six eigenvalues of (CC) are obtained by multiplying the eigenvalues
of C two by two. These are

(2.4) ad, bb, ab, ab, ab, ab;

and the eigenvectors with six components are deduced from the eigenvectors of C
through a similar rule to (2.3) ; for example :

(2.5) My = M» My— MM,

are the components of Mab, the vector which corresponds to the eigenvalue ab of (CC).

The matrices V of the transposed algebra {Vg], also have the same eigenvectors with
six components as ( C C ) ; it is easily noticed that the vectors M (ab) are deduced from
the eigenvectors of C by the following rule :

Mey = e My— My M,

As the bases of the algebra {Vg}, we can take any six linearly independent matrices
of Vg.

We choose the following six matrices whose expansion we give in terms of the
eigenvectors :

( (EE) = V{ad-- V(bb)-+ V(ab)-+ V(ab)+ V(ab)+ V(ab),

(0C) = —a2V(ad)— bV (bb)+ab| V(ab) -+ V(ib)] —ab{ V(ah)+ V(ab)]
(C;C;) = a'V(a@)+b*V(bb)-+ab?[ V(ab)-i- V(@b)|-+a2b? V(ab) + V(ab)],
(2.6) AEC,) =—2a2V(ad)— 262V (bb) + (a2 +b2)[ V(ab+ V(ab)+ V(ab)-- V(@h)],
AEC)=—(a+b)[V(ab)— V(@b)]+(a—b)[ V(ab)— V(ab)],
2(C0,) = ab(a+b)[V(ab)— V(ab)]—abla—b)[ V(ab)— V(ab)].

L V(ab) = M(ab) M(ab),

The formulae (2.6) are obtained in a manner completely similar to the manner used
to obtain the formulas (2.2).

The four other combinations which can be formed from the basic elements of {C,}
depend on the six above mentioned equations by virtue of the four identities mentioned
below :

(ECy)+(C Cy)+I,(EC) —o,
ACC)-+(CoCy)+ I(CO)—I (BE) =0,
(2.7) (C,03)—I(EC) —o,

(0303)—1.2(0202)—‘ [1[(00) -I- 2(1’]02” = (L

It is also easily shown that by multiplying V, and V, in {Vg} with
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we have Vl = (AB), V2 — (C’D),

(2.8) V,V, = }(AC - BD)-+-(4D-BC)].

With (2.8), the identities in (2.7) and the general identity of Cayley - Hamilton :
12.9) Cy+1,0+ 1B =0

each matrix of the form (C, C,) can be reduced to a linear function of the six elements
of the basis adopted in (2.6).

We can choose the bases and demonstrate the analogous identities for all algebras
Va(n-1) composed from {C,} [by a process similar to (2.3)].
2

With the minors mj of any matrix C,, a conjugate matrix D can be formed.
In the case of C studied here, where C = Sa is the product of the symmetric
component S by the antisymmetric a, it is easily seen that D is given by

D= As,
where A’ and s’ are formed similarly from the minors m3; of a and S.
We take for granted that always
| Sll=A et 8%0.
One can nevertheless have

HCiIl=0 si flaj=0.

‘The case|| a || =0 is interesting for the unitary field theory. Therefore we will discuss
the particular properties of Vgwhen || C || = 0 as a consequence of |ja || = 0.

a is an antisymmetric matrix of order 4. Therefore A which is the determinant of a
is a perfect sequare and VA is a factor of all the minors m; of a.

Ifflall =0, Aand D, conjugate minors of C, are identically zero. For the conjugate
matrix, we have an identity analogous to (2.9) ;

(2.10) 03+1201+D == 0 (03 = CCC)‘
When
fal=0, I,=0 et D=0,
we have
(2.11) Cy+1,6, = 0

and from the identities (2.7) we immediately obtain

(2.12)
(002) =0, (0202) = 13(0101), (030'3) = 12(0202)-
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We will use these relations to deduce the solution of (1.1) in the particular case
I4 = O.

3. Now we carry out the summation indicated in (1.6) and (1.7). Let us note some
simple properties of the denominator D (abc) :
D(ade) = D(cad) = 1 —a?,
D(abc) = D(abé),
D(aab) = A, —b*, Ay = l+(a+b)},
D(aad) = A.--b2, A- = l4-(a—b)3

(3.1)

With the help of these simple relations, we can easily regroup the terms to be
summed up :
We use the following notations to write the final results :

V(ab)+V(ab) = X, V(ab)+ V(@)=Y
3.2) { V(ab)—V(@b) = U, V(ab)—V(ah)=7V;

MM, = f@), Mbc)M(be), = V(bo), ......
The summation (1.7) is written as

(3.3) f(a)V(be)
B=zlp s -

After regrouping we get

@4 B=2fo| D T Lxyy) [ LOHED | JOHE) ]

41 [f(a)+f(a) f®)+1®) y[Latr@) | fO)1+B)
2 A b2 A,—a? ] A_—bt A_—at ]

[f(a)—f(a) FO—f®) 1_ [f(a)—f(a)v FO)—f(®)
2 1—q? 1—b3 ] 2 1—a? 1—b3 ]

1 fl@)—f@ , f (b)—f (b) (a)—f (@) (R AD)]
v[ St A—a J+5 V[f';_—b-a fa -—fa’ Ik

Let us make use of (2.2) and (2.6) to express X, Y, U,Vand f(@)tf(a),...; X, Y,
U,V are functions of matrices of {(V6} and {Cg, and we obtainn after an easy calculation
the result in its final form



Solution of a Tensor Equation 333

B = B[d(EE)+dy(0C)+do(CsCy)+ 2 ECy)]
-+ Cz[go(EE )4+91(CC)+g5(03C,) 12w ECy)]
(3.5) +C2f,(BC)+2hy(CCy))+ Col 2 EC)+ 2hi(CCy),

where the coefficient d, g, |, v, f, h are functions only of the invariants of C. If

to=1+I,+1, ¢, = A‘;’_+12A++I4, t_ = BHIA_+1,;

b —t_ —i_
+2 == l+5I4——-Ig, 4ab =y=2-I,

and

are functions of the invariants
The coefficients of (3.5) are

~

dy = 1—}t-I2 _ tI,,:/ _ I4t(:—t2y),
0 +h— -
tho= S e G G

— —y(1+41
o= Wt lel L] gy, MltE 0L,

4. We have expressed the final result (3.6) in terms of the matrices deduced from
C following fixed rules, with coefficients which are functions of the invariants of C.
This result is valid in all the cases, even when for particular matrices there is no
complete system of eigenvectors and we can no longer develop the resolvent matrix B
as per (3.3) but the general result (3.5) always remains true. The expression (3.6) thus
gives the general sclution of the problem posed in (1.1).

Nevertheless it is interesting to observe that in the particular cases I, =0 or I, = 0,
I, = 0, we can easily put the solution in the form of a total sum of a small number of
terms, thanks to a method of iteration.

Let us briefly discuss the case I, = 0.

We have already deduced the special properties of the matrix C in (2.11) and
(2.12) : to wit
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(CC,y) = 0, (Cy0) = Iy(Cy0y), (C3Cy) = Is(Caoa)r
Cy+1,0, = 0, Cy+1,0; = 0.
We write (1. - the form

o U = AT = [B{(EE) + (C0)}+2C EC)IT

4.1) U = T+[E(CO)+-2C(EC)) T == ¢ - oT;

and look for a s:lution by putting
T = U+®,

The equation having the form
U = T+4T.

we easily deduce for ® the equation
—8U = &, 460,

By repeating the operation, we successively obtain

(4.2) 88U = 0, +00,, —388U = Dy+30,.

Beacause of special properties of the operator [(2.11) - (2.12)] we easily deduce

858 = I3%.
(4.3)

By putting 8 = A - E, where E is the unit operator, the equation (4.2) is written as

or A®, = —I}A—E)U

(4.4)

The original equation is

AD,+13U) = IEU.

AT =U.

With det A # 0, the solution is unique and one easily sees that the solution of (4.4) is
By writing @+ 13U = BT

O, = T—U48U—388U = IYT—U),.
we easily have

dU—-488U
(4.5) T=U+ -U—Ig"_‘_T
2

By developing this, we have the following result :
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Tonv - Uouv—(l +Iz)—1 Uuklo,.lf C£+(I%_ 1 )—l[og(cﬁvth'{'cﬁ Utp.l )]

(4.6) —(I3—1)71C% o (U e, C% ,+ U,uCh ) —215— 1)-1C4 ,CEC Uy, -

The general solution gives us the same result by putting I, = 0, and using the
particular relations (2.11) and (2.12).
We can similarly treat the other cases I; =0, 1, =0.

Post-script

If the coefficients A of
N = 2;+A,0,+2,C,4-1,C;  (any number in [Cl4)

are chosen in the algebra [V]g, these numbers form a new algebra [¢V]y,.
To solve
U = [e(BE)+e(cc)+2¢(Be)] T = BT

is thus equivalent to finding the inverse of B as an algebraic number. The inverse is
also a number in [¢V] and we can easily find it in the following way. ‘

First, we verify the following results as per the rule of multiplication and the
identities for the algebra [Vls.

If

L = (C,C,)—1(EE), M = 2(EC,)+I,(C0C),
R =2L+I,M, X = 4EC)? = 2(CC)+2EC,),

and D = IZ - 41, is the discriminant of the equations
224 Ix+1, =0,
then we have
LEC) = M(EC) =0; douLX =MX=RX=0
RL=DL, RM =DM, RR—= DR, M*=R
and
XX+21,X+D = R.

In what follows we use the the following abbreviations : s =2 + I3, ¢, =1+ 15+ 1,
x=1+5l,-1,,andy=2-1,.
With B = (EE) + (CC) + 2C(EC), by multiplying it with its conjugate

B* = (EE)+(CC)—2C(EC),
we have
BB* = (EE+CC)?—4C,(EC)?
or
R—sM

BB* = (14 =

) (to+-X—CoX)
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after factorization ; with (1 _R -t SMJ(l + R+ SM) = t,

0 L

BR+tsM
) [1+“"2“a)—‘][to+X(1+Iz)+OzX]

BB* ~ [to+ X— O XIltg+ X(1+ 1)+ 0 X]

after adding the same factor in the numerator and denominator of the right side of the

equation.
By multiplying we obtain for the denominator

i tolo+y(X4-1,)+R].
We notice that
[e+y(X+1,)+ Rllz—y(X+1,)—vR]
= Q =ttt = x?—4l,y>

if v = x—t2y .
0
We can thus easily express the inverse by the following equation :
R+-sM
oo B 5| Ut X0+L)+ O X e~y X +L)—vE]

ot it

By eliminating the brackets, we obtain a result equivalent to the one in the main
paper.

Enghsh translation of Bull Soc Math France 83, pp. 81-88, 1955 {Gauthier - Villars Publishers, Paris).
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