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Foreword 

The Satyendra Nath Bose National Centre for Basic Sciences was established by the 
Department of Science and Technology, Government of India, in 1986 as a memorial to 
the Indian scientist Satyendranath Bose. On the occasion of his birth centenary in 
1994, the Centre has prepared the present volume incorporating his scientific papers, 
some selected miscellaneous pieces and addresses, and a biography. Bose wrote and 
published in four languages : Bengali, English, German and French. Though we have 
included the original German and French articles, we have provided their English 
translations also. His writings in Bengali have been collected and brought out by 
Bangiya Vijnan Parishad, an institution he helped to establish. We have included 
translations of some of these articles which may be of interest to a general reader. 

Several biographical accounts of S N Bose were available. We found that  the list of 
scientific papers was incomplete in all of them, and that not enough attention had been 
given to his work in Dhaka after his return from Europe. Two published papers -one 
in German (1927) and another in English (1929) from this period - are included in our 
collection. Enakshi Chatterjee and Santimay Chatterjee have given a fuller account of 
his activities in Dhaka - establishing physics laboratories, and helping develop 
modern research in physics and chemistry. 

In some respects S N Bose's career is the story of the triumph and tragedy of Indian 
science iii the first half of the twentieth century. His brief encounter with Europe in 
the twenties assured his place among the rea t  scientists. He tried t o  strengthen the 
scientific base in India but he found little financial and spiritual sustenance. He 
himself described these two aspects very well, when he said that he was like a comet 
which came once but never returned, and he seemed to be living on the Moon. 

Some comments by later Indian workers about the scientific papers are also in- 
cluded; these hopefully will help an inquisitive young research worker in placing the 
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scientific papers in the right perspective. 
A long list of acknowledgements preceding this foreword covers most of the indi- 

viduals and organizations who have helped us in several ways. Special thanks are due 
t o  the Department of Science and Technology, Government of India, for financial 
support to the S N Bose National Centre for Basic Sciences for activities in the 
Centenary year, of which the present publication is one. 

The volume is divided into two parts - the first part aimed a t  a more specialist 
readership, containing his scientific papers, with introductory commentaries by later 
workers in the specific .fields; and the second part designed for a more general 
readership, with the exhaustive biography, his public lectures and addresses, and 
miscellaneous pieces (several of them translated from Bengali for the first time). 

C K MAJUMDAR 
Director 

S N Bose Natioaal Centre for Basic Sciences 
Calcutta 



The Equation of State of a Real Gas 

1 On the Influence of the Finite Volume of Molecules on the Equation of State (1918) 
2 On the Equation of State (1920) 

In a doctoral dissertation to the University of Leiden in 1873, 3 D van der Wads 
proposed a modified equation of state of a real gas. He included two effects : the 
excluded volume effect due to strong range repulsion and an intrinsic pressure due to 
weak long range attraction. The work was praised by J C Maxwell who proposed the 
well-known Maxwell construction to remove the unstable part of the isotherms. The 
van der Waals equation was enormously successful in explaining critical phenomena, 
critical indices and the liquefaction of gases. By 1910 experimentalists, however, began 
to find deviations from the predictions; two constants were not enough, and people 
started looking for improvements. In 1901 K Onnes introduced the virial coefficients 
to represent the isotherms. But the simplicity of the approach of an equation of state 
with a few parameters was too attractive : more than fifty equations of state have been 
proposed. M N Saha and S N Bose used thermodynamics, especially the Boltzmann 
formula for entropy, in their characteristic way to arrive a t  their equation of state. The 
Boltzmann formula would appear again in Bose's other works. The modern theory of a 
gas a t  high density starts from the cluster development of H D Ursell and J E Mayer 
(J E Mayer and M G Mayer, Statistical Mechanics, J Wiley and Sons, New York 1977, 
Second edition, pp.229 ff.). 

C K MAJUMDAR 
S N Bose National Centre for Basic Sciences, Calcutta. 



Classical Mechanics 

1 The Stress-Eqwtions of Equilibrium (1919) 
2 OntAcHerpolhodc(1919) 

The equilibrium of isotropic elastic solid bodies is discussed in the well-known book by 
AE H Love,A Deatise On the Mathematical Theory ofElasticity, Fourth Edition, Dover, 
New York 1927, ch V Here in pp. 134-5, J H Michell's equations are given. V Cerutti's 
method is described in ch X, pp. 237-40. The problem of the spherea is discussed in ch 
XI. After the publication of the paper in 1919 Bose lost interest in the problems of 
elasticity and never returned to them in published work. 

The force-free motion of a body about a fixed point is discussed in books of classical 
dynamics (eg E T Whittaker, A Deatise on the Dynamics of Particles and Rigid Bodies, 
Fourth edition, Cambridge University Press, Cambridge 1961) in terms of elliptic 
functions. Poinsot's construction gives a simple geometrical description of the motion. 
Bose proved a geometrical property without using elliptic functions. The same method 
was also found by W van der Woude. 

C K MAJUMDAR 
S N Bose National Centre for Basic.Sciences, Calcutta. 



Quantum Theory 

1 On the Deduction of Rydberg's Law from the Quantum Theory of Spectral 
Emission (1920) 

2 Plancks Gesetz und Lichtquantenhypothese (1924) 
3 WLirmegleichgewicht im Strahlungsfeld bei Anwesenheit von Materie (1924) 
4 A Note on Dirac Equations and the Zeeman Effect (1943) 

Bose's contribution to Quantum Theory consists of four papers, two of which are on 
atomic physics and two are about quantum statistical mechanics. This covers the period 
1920-1943. Of these, the best known is the paper on Bose statistics for the photon gas 
(2 f Physik 26, 178 (1924)). A brief critical appreciation of these papers follows: 

In the f ~ s t  paper On the Deduction of Rydberg's Law from the Quantum Theory of 
Spectral Emission, the Bohr-Sommerfeld method of quantization of action 

is used to generate Balmer terms 

for any series for any atom. Bose starts with a monopole plus a dipole as  the best 
approximation of the potential seen by a valence electron : 
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e2 e L cos 0 
V ( r )  = --+ 

r r2 

The calculations involve abelian integrals which have to be suitably%pproximated. 
Bose also has an effective expression for the Rydberg constant in terms of the funda- 
mental constants, but is either unaware of (or disinclined to cite) A Haas who first 
obtained the relation ( A Haas, quoted in Introduction to Theoretical Physics, vol 11, 
Constable, London 1948). 

In the paper A Note on Dirac Equations and the Zeeman Effect (Indian J Phys. 17, 
301 (1943)), written together with K Basu, the problem of the energy levels of a 
hydrogenic atom in an inhomogeneous magnetic field is solved using Sonine polyno- 
mials. The calculations are elegant and straightforward and lead to the quadratic 
dependence of the perturbed energy levels on the magnetic field. 

The celebrated paper Plancks Gesetz und Lichtquantenhypothese ( Z f Physik 26,168 
(1924)) of S N Bose introduces the new photon statistics and deduces the Planck 
distribution as  the equilibrium distribution for photons. Bose considered complexions 
of photons as the primary characterization of the state rather than which photon had 
which energy. Photons were treated as strictly indistinguishable. 

With the modification that Bose introduced into the calculation we obtain the correct 
thermodynamics of the photon gas. That one step was the basis of the new synthesis 
between the wave and the particle properties of photons, and with it, the foundations 
of quantum field theory. After Bose's paper came an avalanche of developments: the 
extension of Bose's theory to particles of arbitrary mass and non-zero chemical poten. 
tial by Einstein, the Fermi-Dirac statistics for electrons, the quantization of the 
electromagnetic field by Heisenberg and Pauli, and quantum electrodynamics by Dirac. 

To put Bose's synthesis in its proper setting it is good to recall that in the nineteen- 
twenties there were two items of unfinished business, one regarding photons as 
particles and the other concerning statistical mechanics of identical-particles. In both 
cases uneasy makeshift solutions were.generally accepted instead of definitive solu- 
tions. In the old dichotomy between particles and waves for describing light there were 
highly persuasive arguments on both sides, but i t  was thought that a crucial experi- 
ment was the determination of the relative speed of light in two media with different 
refractive indices. I t  appeared that if light consisted of particles, the speed in the 
optically denser medium should be greater; if i t  consisted of waves,this speed should 
be lesser. Fizeau's experiment on the speed of light in water thus seemed to find 
evidence definitively for the wave theory! Yet, what of the postulated photons? How do 
we reconcile the notion of a photon with its discrete momentum hnd energy to its lesser 
speed in water than in air? We must conclude that photons may be particles, but they 
do not behave as particles are naively expected to behave. A revision of the concept of 
a particle ought to be made. We now know that extended particles also bend towards 
the normal in a medium in which i t  moves slower; so Fizeau's experiment could not 
really distinguish between extended particles and waves. 
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The other item of unfinished business is even older. I t  concerns itself with the 
statistical mechanics of identical particles. In calculating the partition function and 
the entropy, one finds that the entropy is not a strictly additive qua&ity: when we mix 
two volumes of an ideal gas a t  the same temperature and pressure the resultant 
entropy is larger than the sum of the two entropies.This Gibbs' paradox shows that 
such a collection of identical particles is not a satisfactory model for an ideal gas. 
Instead of heeding this warning signal people 'fixed' the trouble by an ad hoc procedure 
in dividing the partition function by the factorial of the number of particles, thus 
condoning the Maxwell--Boltzmann statistics. The genuine need for a reexamination 
of the implications of the strict identity of the particles was not appreciated until Bose, 
three decades yet to be born. 

Elementary particles were originally introduced as  the stuff from which the world 
was made. They were to be immutable entities. But the photon was clearly an entity 
which could be created or destroyed. Where does a photon come from and where does 
it go? And how can we really understand creation and destruction? What is the 
implication of strict identity of photons? In what sense and to what extent can we think 
of light as  a collection of photons? All these questions were answered a t  one stroke by 
Bose, who asked us to consider the many-photon states to be counted as states with 
equal probability. Photons were thus particles all right, but particles for which strict 
identity was to be recognized by considering as distinct only those cases in which the 
distribution of photons over phase cells were distinct. 

Photons thus became nothing but levels of an underlying field. Creation or destruc- 
tion of photons is merely a 'movement' of the field. Photons are then manifestations of 
the potentialities of the radiation field: the dichotomy between the field and the particle 
thus ceases. Two have become one. 

Automatically the embarrassment of the Gibbs paradox is resolved: the paradox was 
just telling us that the strict identity of particles must be taken into account. But if 
photons are but the differences between the levels of the radiation field, they are all 
identical! And the process of creation and destruction is thought of as a change in the 
state of the field, the 'motion' of the field. If we have equations of motion of the field, 
we have the means of describing the creation and destruction of photons. I t  took two 
more years for Heisenberg and Pauli to write down the equations of motion for the 
radiation field and another year for Dirac to  construct a theory of the emission and 
absorption of photons. In Dirac's work the oscillators of Planck were at last identified. 
The formulation of the equations of motion of the electromagnetic field had still 
unsatisfactory features. Many others contributed to the resolution of this problem, 
among them Dirac, Heisenberg and Pauli, Fermi and Gupta. 

In the course of his work on the quantum theory of radiation Dirac introduced the 
now familiar notion of creation and destruction operators which increase or decrease 
the number of quanta in a state. These creation and destruction operators, introduced 
as the operator coefficients of the quantized field operator, do not commute with each 
other but instead satisfy a commutation relation which transcribes the commutation 
relations between field quantities as  formulated by Heisenberg and Pauli. Dirac had 
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already discovered that the commutator bracket in quantum mechanics was the 
natural analogue to the Poisson bracket in classical mechanics. I t  reaffirms the Bose 
hypothesis that photons obey the Bose statistics. 

When Bose advanced his hypothesis the only species of elementary particles that 
were identified were the electron, the proton, the neutron and the photon. Of these only 
the photon obeys Bose statistics. The photon number is not covered and i t  is a zero 
mass particle. Both of these impart special characteristics to the statistics of photons. 
Among the Bose systems available then was Helium. In this case the particle number 
is conserved; and the particles are nonrelativistic. So we need to extend Bose's ansatz. 
This was done by Einstein in the same year. To conserve the particle number we have 
to introduce a non-zero chemical potential. For photons the chemical potential is zero. 
In the case of an ideal Bose gas with non-zero chemical potential there is a critical 
temperature below which a finite fraction of the gas condenses into a single quantum 
state. This condensed phase, discovered by London, should exhibit superfluid proper- 
ties; and London suggested that superfluid helium should be related to this Bose-Ein- 
stein condensation phenomenon. 

Einstein arranged for the translation and publication of Bose's paper on the statis- 
tics of photons and added a remark endorsing it as 'substantial progress.' Both in his 
original letter to Einstein and in his subsequent correspondence Bose addressed the 
great man as 'teacher' and accords him great respect; and that is as  i t  ought to be. I t  
is in the definition of the teacher, as understood in the classical Indian tradition, that 
he remove all the doubts of the student and weld his understanding into a harmonious 
unity: such a teacher is the one worthy of adoration. 

To that Teacher who removes all my doubts, welds my vision into a unity 
and thus enables me to gaze on secret knowledge; to that One my homage. 

Einstein does not seem to have told Bose how his theory could be extended to a theory 
of ideal Bose gases by introducing a chemical potential and making use of a general 
energy-momentum relation. Einstein formulated this extension in one of his papers. 

Bose followed up this paper by another more detailed and more ambitious paper. In 
his first paper, Bose had used a 'static derivation' of an equilibrium configuration as 
the most probable configuration. In the second paper, he used a 'dynamic derivation' 
in which the equilibrium configuration is the one in which transitions into and out of 
each state balance each other. For the special model of a two-level Bohr atom and 
monochromatic radiation, Einstein had shown (Phys Z 18, 12 (1917)) how one can 
understand the Planck distribution when one takes into account both the stimulated 
and the spontaneous emission on the one hand and stimulated absorption on the other. 

Bose generalized this to arbitrary atoms with arbitrary numbers of discrete energy 
levels and radiation of all possible frequencies: the essential elements in the derivation 
are the conservation of energy in collisions and the ratio of the rates of emissions and 
absorption. These were correctly computed by Bose. (Unfortunately, for some strange 
reason, Bose seems to have different values for the absolute transition rates which 
prompted Einstein to append a critical comment to the paper.) 
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In these two papers done before the birth of quantum mechanics as we know today, 
Bose laid the foundations of a quantum theory of the electromagnetic field. 

E C G SUDARSHAN 
University of Austin at Texas 



Chemistry 

1 Messungen der Zersetzungsspannung in nichtwiisserigen Ltisungsmitteln (1927) 
2 Reaction of Sulphonazides with Pyridine (1943) 

To an outsider it might seem odd that a theoretical physicist of Bose's stature, who was 
intensely trying to understand the basic laws of physics, would now and then take time 
off and spend days in a dingy chemical laboratory. One might reasonably expect a 
theoretical physicist like him to get interested in the nature of the chemical bond or in 
the properties of electrolytic solutions -a problem fruitfully tackled by his friend and 
classmate J C Ghosh; but strangely, he showed no interest in any of these theoretical 
challenges. Rather, he liked to synthesize and analyze chemicals useful to contempo- 
rary society. He was obviously guided by a nationalistic feeling. A part of his interest 
in down-to-earth chemistry might have been inherited from his father who founded a 
small chemical industry. His close association in his formative days with Acharya P C 
Ray, who championed the cause of Indian chemical industries, might also have played 
a role. 

In Dhaka University he set up a working organic chemistry laboratory and encour- 
aged his students to synthesize a number of important drugs like emetine, sulpha 
drugs, etc.Most of these works are either not published a t  all or published without his 
name. Only occasionally did his name appear, such as in Science and Culture with P K 
Dutta, where the reaction between sulphonazides and pyridine was studied. His 
interest in organic chemistry continued after his return to Calcutta University. In an 
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article in Science and Culture 10,1974, p. 295, AChatterjee has recalled some of Bose's 
forays in organic chemistry, particularly alkaloid chemistry. 

At Dhaka, Biswas and Bose developed a simple instrument to measure the polari- 
zation voltage and decomposition voltage of some electrolytes in non-aqueous solvents, 
where a simple manual commutator was used to alternate the direction of current and 
thus reduce polarization errors a t  the electrodes. At Calcutta University he set up an 
X-ray laboratory and helped chemists with structural problems. Professor J N Muk- 
herjee, the noted colloid chemist and classmate of Bose, prepared a map of clays of 
different parts of India. The structural aspects of these clays were studied in Bose's 
laboratory. He encouraged the organic chemists to determine molecular structures 
through X-ray analysis. 

Although Bose's works in chemistry do not carry the mark of a genius, these show 
the versatility of the man and his eagerness to solve the problems of the country as 
well as his colleagues and students. 

MIHIR CHOUDHURY 
Indian Association for the Cultivation of Science,Calcutta 

3 Germanium in Sphalerite from Nepal (1950) 
4 Extraction of Germanium from Sphalerite Collected from Nepal-Part I (1950) 
5 Extraction of Germanium from Sphalerite Collected from Nepal--Part I1 (1950) 

The invention of the transistor brought to reality the inventor's dream of realizing an 
electron device by controlling the motion of electrons available in ample quantity inside 
a solid. Power was no longer required to be wasted in obtaining controllable electrons 
in vacuum. The active device for electronics could now be made much smaller and the 
life expectancy of electronic equipment made much larger. 

The first transistor was made with polycrystals of germanium (element number 32 
in the Periodic Table) discovered by the German chemist Winkler in 1886 and named 
aRer his country. As germanium transistors were expected to replace vacuum tubes in 
all electronic circuits, S K Mitra concluded in his Presidential Address a t  the Forty- 
second Indian Science Congress held in 1955 a t  Baroda that 'the future stage, if one 
may venture to make a prophecy, will be the era of the uses and applications of the 
element germanium.' But germanium was mostly recovered from chimney dust col- 
lected from refineries of lead, titanium and zinc in the USA and in the UK from 
chimneys of all kinds of industries using coal which in Britain had a large germanium 
content. There were not many other sources of germanium and so scientists were 
exploring all possible sources. I t  is no wonder that Bose, being aware of all current 
developments, endowed with a very sharp foresight, and committed to the national 
interests, encouraged his student R K Datta to look for sources of germanium in 
minerals. This work resulted in three letters, in which is described tAe procedure used 
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for extracting germanium from sphalsrite collected from Nepal and the suitability of 
the ores as a source of germanium. The three letters should be considered as important 
original contributions to the technology of germanium and establishing sphalerite as 
a good source of germanium. The only pity is that the work was not apparently followed 
up, and no semiconductor industry grew in India, although Bose did identify the 
problem within a year of the invention of the transistor. 

B R NAG 
Institute of Radiophysics and Electronics 

University of Calcutta 



Spectroscopy 

Beryllium Spectrum in the Region h 3367-1964 (1929) 

The spectrum of the beryllium atom is similar t o  that of the helium atom and should 
have been easier to analyze. I t  is well-known that He I shows singlets and triplets and 
He I1 (with one electron detached) shows doublets. But early observations did not 
resolve the triplets clearly. One sees the same kind of controversy in Be I and Be I1 in 
this paper. 

The way the spectra were clarified by earlier workers seems almost miraculous 
today. We also note that after returning fi-om Europe in 1926, Bose organized a 
spectroscopic laboratory a t  Dhaka. (Another paper published in 1927 deals with 
experimental work in-electrochemistry.) 

C K MAJUMDAR 
S N Bose National Centre for Basic Sciences, Calcutta 



Statistics 

1 On the Complete Moment-coefficients of the @-statistic (1936) 
2 On the Moment-coefficients of the @-statistic and Certain Integral and Differ- 

ential Equations Connected with the Multivariate Normal Population (1937) 

Though Statistics -as a scientific method -was known in India even a t  the beginning 
of the present century, significant statistical studies and researches were initiated 
during the twenties by the late Professor P C Mahalanobis. While working as a 
Professor of Physics a t  Presidency College, Calcutta, Mahalanobis took up several 
data-analytic studies on a wide variety of real-life problems and followed them up to 
develop several theoretical models and inferential tools. He could inspire quite a few 
brilliant young men in physics and mathematics to  work on theoretical as well as 
applicational aspects of Statistics. Some of those drawn to Statistics - directly or 
indirectly by Professor Mahalanobis - later changed their initial academic pursuits 
to concentrate on Statistics. Others, like Professor Satyendranath Bose, continued with 
their original vistas but made remarkable contributions t o  statistical theory and 
absorbed statistical concepts and tools in their subsequent works. 

While working on some anthropometric data on statures of Anglo-Indians, Professor 
Mahalanobis (1936) came up with an idea of generalized distance between two popu- 
lations -more or less on the lines of Karl Pearson's coefficient of racial likeness (1921). 
He defined the famous D~-statistic for this purpose in terms of the mean vectors (of the 
characteristics measured in the two groups) and the covariance matrix. I t  was intended 
t o  be a quantity determined entirely in terms of the sample values of the variates. And 
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for judging the significance or otherwise of such a sample value of the statistic its 
sampling distribution had to be worked out. R C Bose (1936) derived an exact distri- 
bution of a modified form of the D~-statistic in which population variances and 
covariances were substituted for the corresponding sample estimates. He used the 
expression of the density function (in terms of Bessel functions) to obtain the moment 
coefficient, which turned out to be the same as those calculated earlier by Professor 
Mahalanobis (1936), using approximate methods. 

Fascinated by the new idea of generalized distance and the nuances of the mathe- 
matics used by R C Bose, S N Bose (then working in the University of Dacca) looked a t  
the problem (1936) and came up with a recurrence formula for moments of the modified 
D2-statistic to obtain the exact moments without using the density expression and 
investigated some properties of the moment coefficients. He could also offer a different 
equation which can yield moments of even fractional orders (expressible not by a 
polynomial but by an infinite series) -entities that have found many important uses 
later. 

Professor Bose continued his interest in the mathematics of this problem. In his 
1937 SankhyE aper he started with some algebraic identities among the moments of l' the modified D -statistic deduced fkom their differential forms and derived an integral 
equation connected with these moments. He investigated the fundamental differential 
equation satisfied by the multivariate normal distribution in its various forms - 
spherical, parabolic and product. He also offered a series solution of the differential 
equation. 

The contents of the two papers in Sankhyii (1936 and 1937) speak of the depth of S 
D o s e ' s  vision about a new problem and its mathematical fallouts. I t  may be pointed 
out, however, that the results derived by S N Bose have not created a big impact on 
statistical aspects of multivariate analysis, since the basic shortcoming of the modified 
D2-statistic considered by him renders the results somewhat less useful. The differen- 
tial equation satisfied by the multivariate normal distribution has not found its way 
into later investigations on characterizations. In fine, the papers by S N Bose on 
D'-statistic have been rarely cited or used. 

S P MUKHERJEE 
Centenary Professor of Statistics 

Calcutta University 
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The Ionosphere 

1 Anomalous Dielectric Constant ofArtificia1 Ionosphere (1937) 
2 On the Tbtal Reflection of Electromagnetic Waves in the Ionosphere (1938) 

Various theories of the propagation of radio waves through the ionosphere were 
developed during 1930-1938 based on either the ray treatment or the wave treatment. 
The refractive index comes out in general t o  be a complex quantity which is a function 
of the electron number density and collision frequency which are functions of height. 
Consequently, the solution of Maxwell's equations becomes highly complex. Appleton 
deduced certain conditions of reflection by assuming that the refractive index must 
vanish. 

However, since the refractive index is complex, other criteria were formulated by 
various workers (D R Hartree, Proc Camb Phil Soc 25,47,1929: ibid. 27 143,1931; Proc 
RoySocA131,428,1931; Fosterling and Lassen,Annd Physik 18,26,1933; H G Booker, 
Proc Roy Soc A 165,235,1936; M N Saha and R N Rai, Proc Nut Inst Sci Ind 3,359, 
1937; M N Saha, R N Rai and K B Mathur, Proc Nut Inst Sci Ind 4,53,1938). 
R N Rai (Proc Nut Inst Sci Ind 3, 307, 1937) suggested that a better criterion of 

reflection would be that the group velocity of the wave vanishes. This gave him a new 
condition in addition t o  those of Appleton, a condition that was experimentally confir- 
med by Pant and Bajpai (Science and Culture 2, 409, 1937), L Harang (Zkrr Mag 40, 
29,1937) and R Jonaust, Abadie and Joigny ( L'onde electrique 16, 185, 1937). 

Experiments also indicated that apart from totally reflecting electromagnetic waves 
the ionosphere also partially reflected and partially transmitted these waves. More- 
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over, for very long waves, the complex refractive index can change within one wave- 
length and reflection can occur even though the refractive index is not zero. These 
features could not be explained by any of the theories. 

Both Appleton's and Rai's conditions of reflection were obtained by neglecting the 
effect of damping, a n  essential feature of the physical process. The questions that  arose 
were: (1) do both these conditions follow as consequences of the Maxwell-Lorentz theory 
and (2) what are the conditions of reflection when collisional damping cannot be 
neglected? These are the problems that  Bose set about to tackle in the 1938 paper. 

Instead of Maxwell's equations with a complex refractive index, Bose used the 
microscopic equations of the Maxwell-Lorentz theory and the method of characteristics 
used by Hadamard, Debye and others. The method is general and can also be used for 
the propagation of light in a material medium. However, Bose's results were expressed 
in symbols unfamiliar to workers in ionospheric physics. I t  was M N Saha and K B 
Mathur ( Ind Jour  Phys 13,251,1939) who gave a critical assessment of Bose's results 
in a form easily comprehensible to them. They showed that  Bose's treatment gives the 
same results a s  those of previous workers for the case of vertical propagatipn. However, 
in the presence of collisions the nature of the complex refractive index and polarization 
became complicated, and Bose's conditions do not give accurate results. 

In 1960 H K Sen and AA Wyller ( J  Geophys Rev 65,3931,1960) used the Chapman- 
Enskog method and the Baltzmann equation to obtain the effect of the velocity 
dependence of the collision frequency in a closed analytic form. 

Earlier in 1937 Bose and S R Khastgir had investigated the conditions under which 
the value of the dielectric constant of an ionized medium exceeds unity (anomalous 
behaviour) and carried out simple experiments with ionized air in a discharge tube 
(artificial ionosphere) to show that  the dispersion formula alone cannot explain the 
observed anomalies. 

EDITORS 



Mathematical Physics 

1 Studies in Lorentz Group.(1939) 
2 The Complete Solution ofthe Equation: 

3 On an  Integral Equation Associated with the Equation for Hydrogen Atom (1945) 

The three papers are on various problems in mathematical physics: the first deals with the 
properties of the matrix group 0 (4,C) in its defining representation, with consequences for 
the physical Lorentz group SO' (3,l); the second develops a particular technique, involving 
integration in the complex plane ii la Sommerfeld, for solving the inhomogeneous Klein- 
Gordan equation; and the third is concerned with the Schrijdinger equation for the Coulomb 
problem, analyzed as an integral equation in momentum space. These papers were written 
in 1939, 1941 and 1945 respectively A few introductory comments regarding each are 
presented. 

It is most easily seen from the infinitesimal approach, provided that one works with 
complex linear combinations ofthe basis elements, that the ~ i e  algebra of SO(3,l) formally 
splits into two commuting SU(2) or angular momentum like algebras, This helps in the 
construction of all the finite dimensional irreducible matrix representations of SO(3,l), and 
the connection of SL(2,C) also becomes clear. One sees on the way the possibility of formally 
expressing a finite element as a product of two commuting factors, in the complex sense. 
To realize all this without using inhitesimal techniques, however, requires considerable 
ingenuitx This is what is attempted in the 1939 paper of Bose. He in fact examines the 
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much larger group of all complex orthogonal transformations in four dimensions, namely 
the group O(4,C). The key idea is to deal with symmetric elements of 0 (4,C) and find ways 
of characterizing and factoring them; and for antisymmetric matrices, exploiting the 
properties of self-dual and antiself-dual sets of matrices. It is the latter that actually lead 
to the commuting structure referred to above. From the discussion of O(4,C), Bose descends 
to the case of SO(3,l) by imposing the requisite reality conditions, and thus connects up 
the  spinor approach based on SL(2,C), as  typified in the  familiar s tatement 
(112,112) = (1/2,0) x (0,112) : the four-vector representation of the Lorentz group is the 
product of the two basic spinor representations. 

Turning to the second paper, it is basically an exercise using relativistically invariant 
solutions of the Klein-Gordan equation to solve a problem for which H J Bhabha in an  
earlier paper had presented a solution in a particular form. At the time the paper was 
written, namely 1941, the technology associated with the wave equation using Stiickelberg- 
Feynman functions, invariant Green's hnctions, retarded and advanced ones, etc., were 
presumably not yet widely known and used. The interest in Bose's paper lies in its use of 
complex contour integration methods, a favourite of Sommerfeld, to get solutions of the 
inhomogeneous Klein-Gordan equation in Kirchhoff-like form. 

The third (1945) paper is devoted to a discussion of the quantum mechanical Coulomb 
problem in momentum space. It has been known for a very long time, through the work of 
V Fock and V Bargmann, that if the Schrodinger equation for energy eigenfunctions is 
expressed in momentum space, it has the form of an integral equation, and moreover i t  
makes the higher symmetry in the problem manifest. Thus the SO(4) symmetry for bound 
states, and S0(3,1) for scattering states, can be explicitly exhibited by suitable energy- 
dependent choices of variables. (It is curious, however, that Bose does not refer to Fock's 
and Bargmann's papers a t  all). Bose however proceeds somewhat differently realizing that 
the energy-dependent choice ofvariables would discriminate between bound and scattering 
states. He exploits methods of Hobson involving solid harmonics and operator calculus to 
explicitly solve the integral equation, after reducing it essentially to a radial problem (in 
momentum space). An interesting feature of his expressions is that the quantization of the 
bound state energies, and also the fact that the angular momentum quantum number is 
bounded above essentially by the principal quantum number, both arise from the require- 
ment that the momentum space eigenfunction be single-valued, rather than that i t  be 
normalizable. I t  is the latter condition that is normally used in a configuration space 
solution to the problem. His method of course leads to both bound and scattering state wave 
functions. At the end of the paper, a completeness statement involving the former alone is 
developed. One presumes therefore that this is distinct from the usual physical notion of 
completeness of eigenfunctions of the Hamiltonian operator, since that would have brought 
in the scattering states also. 

All three papers show a taste and knack for clever algebraic and analytic manipulations, 
even though the problems addressed are circumscribed in scope. 

N MUKUNDA 
Indian Institute of Science, Bangalore. 



Unified Field Theory 

Les identitds de divergence duns la nouvelle thdorie unitaire (1953) [30.3.531 
Une thdorie du champ unitaire auec T,, # 0 (1953) [18.7.531 
Certaines consequences l'existence du tenseur g duns le champ affine relativiste 
(1953) [18.7.531 
The affine connection in Einstein's new unitary field theory (1954) [ 29.9.52 I 
Solution d%ne dquation tensorielle intervenant duns la thdorie du champ uni- 
taire (1955) [Receipt date not mentioned] 

The papers are listed in chronological order. The journal receipt date is 
given within brackets. 

The general theory of relativity established itself as a satisfactory description of 
gravitation. The only other interaction that was then known was the electromagnetic, 
and a natural sentiment was to bring the electromagnetic and gravitational interac- 
tions under one umbrella -to be more precise, to geometrize the electromagnetic field 
as well. 

Einstein, however, demanded much more from a unified field theory. He was 
committed to the field idea and was never reconciled to quantum mechanics with its 
basic indeterminacy. He expected that matter itself would ultimately resolve into a 
field and, as singularities mean a breakdown of the field concept, there should be no 
singularities in a truly unified field theory. Again, when Kaluza's five-dimensional 
geometry appeared, the idea was that our observations were limited to four dimensions 
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and thus were essentially of an incomplete nature. One might wonder whether this 
incompleteness could account for quantum indeterminacy. 

What, by the way, is a unified theory ? We may quote Einstein's definition : 
Neither the field equation nor the Hamiltonian can be expressed as a sum 
of several invariant parts but are formally unified entities. 

There were a host of unified field theories - one may compare the ever-changing 
theories with the changing models of cars. But they all had one similarity. The 
4-dimensional Riemannian geometry has ten independent variables (the metric tensor 
components gih ), just sufficient for the gravitational field whose source, the energy-. 
momentum-stress tensor, has also ten components. So, to incorporate the electromag- 
netic field, one must have some additional geometric variables. These additional 
variables were introduced in a number of ways, e.g. 

(a) In the Weyl theory, i t  was postulated that the norm of a vector changes in a 
parallel displacement according t o  the law. 

and the vector Qi was identified with the electromagnetic potential vector. 
(b) In Kaluza's five-dimensional formalism the metric tensor has 15 components. 
(c) The fundamental tensor gik was assumed to be complex, so that there were 20 

variables. 
(dl The fundamental tensor was assumed to be non-symmetric and the affinities 

T which define parallel displacement were also taken to be non-symmetric. There 
were thus altogether 80 variables. 

Over a number of years different forms of the non-symmetric theory were developed 
by Schriidinger and Einstein. One particular form gained wide publicity as i t  was 
announced by Einstein first in the popular press in December 1949 and then presented 
in the 1950 edition of his book Meaning ofRelativity as an Appendix. In his papers Bose 
used the adjective 'new'before unified field theory without indicating specifically which 
particular theory he had in mind. It seems clear that he referred to this theory. 

We give a table to pinpoint the salient points of this theory as  compared to the 
general theory of relativity : 

G T R  U F T  
1. Symmetric metric tensor g,,, and symmetric Non-symmetric g,,, and T; ,. [ What is the 

affinities r ,. metric tensor ? No specific statement is made 
in the book but it became common to identify 
the symmetric part of g,,, with the metric 
tensor and the antisymmetric part was related 
to the electromagnetic field, as  we shall 
presently see. ] 



Unified Field Theory 

(i.e. gpv,a-gpv Ga-gpp  I P v  = 00). 
[ The.solution of these 64 equations, i.e. 
expressing r ' s  in terms of g,,, and their 
derivatives, was a n  extremely difficult 
problem and was given independently by Bose, 
Einstein and Kaufman, Hlavaty and Tonnelat. 
Later there were also other workers in the 
field including R S Mishra.] 

3. Field equations obtained from the variational Field equations obtained from the variational 
principle principle 

where R,, , (the Ricci teneor) is f l  's & r 'S varied independently. The tensor 

R ~ ~ = ~ ~ ~ - ~ ~ & + ~ ~ , - ~ ~ , ~ = R ~ .  uikis 
1 The variation can be performed in two ways : 

uik = R~~ - [ri, - rkSi) + ri r,] 
(1) g% are to be varied and the relation 

between Ps and g,,,'s assumed. Ti = I'b and 

(2) p P s  are independently varied-the heik = r if r :k + + r is, i] - r ; r - r $, - - relations between P s  and g,,,'s appear as 
one set of field equations. 

where underlining indicates the symmetric 
part and the hook the antisymmetric part. The 
tensor uik is selected by some ad hoc conditions 
introduced by Einstein which may be 
summarize$ in the form 
Uki = Uik (r) 
uik = Rik ( A ) 
where 

A$ = 0. The conditions were not justified by 

any theoretical consideration. Bose therefore 
sought to work with a different variational 
principle. However, this led to a much more 
complicated set of equations which involved 
two arbitrary constants. 
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Field equations 
R w =  0 .  

Field equations 
R i k =  0,  (a) 

The equations satisfy four differential g i k ,  1 = 0 ,  
t 

(b) 
identities. ri = 0 .  (c) 

The equation Ti = 0 was introduced ad-hoc on 
the ground that this does not cause an over- 
determination. The equations (b) and (c) 
together give ( G g v  ) , k = 0.  This led 

Einstein to identify g@ with the dual of the 
electromagnetic field tensor-there is no free 
magnetic pole. 

If fields other than gravitational were present, The electromagnetic field is already taken care 
additional terms were introduced in the of. No mention is  made of other fields. 
Lagrangian and the field equations then Unification is thus not complete. 
became 

Physical conclusions drawn all agree with No physical conclusions could be drawn. 
observations. Indeed, Pauli remarked (1958), Whether the 

field equation. . . can actually be connected 
with physics a t  all is rather doubtful.' 

Before going over to the subject matter of these papers, i t  is somewhat interesting 
to note that  a t  least four of these papers were produced within the span of less than a 
year. That was something unusual in Bose's career. Never before had he written so 
many papers in a year and never before had he contributed as many as five papers in 
a single field. One may wonder whether these works kindled Bose's enthusiasm to a 
degree he had never experienced in his whole life. And mark, five papers in four 
different journals -was it all fun with Bose ! 

The first paper concerned the divergence identities in the unified field theory we 
have just outlined. Long before, Hilbert (1924) had proved that the set of equations 
obtained from a variation principle would not be independent but there would be four 
divergence identities satisfied by them. For non-symmetric theories Einstein obtained 
the identities by a method which was rather complicated. Bose showed that they could 
be obtained in a somewhat more general manner by following Hilbert's procedure. 

In the second paper Bose used a much more complicated Lagrangian. Einstein's 
Lagrangian was obtained on the basis of somewhat arbitrary arguments and then the 
equation Ti = 0 appended, justifying this by the rather curious reason that i t  would 
not make the equation set overdetermined. Bose's equations were naturally more 
complicated and were not supplemented by the ad hoc condition Ti = 0. However, the 
equation system involved two arbitrary constants and hence they were not quite 
appealing. Neither Bose nor any of his students investigated these equations. 
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THE INSTLTUTE FOR ADVANCED S T U D Y  
PRIXCCTON, NEW J C R S I T  

Profes9or S.N.Eose 
Univsrsi  ty  P&lless g f  Science 
92, Upper Circular  Road 
Calcutta,9,  India.  

Dear Professor Bose: 

Thank you f o r  your l e t t e r  ol S ptember 20th. 
I am  led to sea t h a t  you a r e  interested i n  t h i s  tKeorI and 
t h a t  you have dovoted so nluch.work and penetration to  the  
s o l u t i o n  o f  the equation 

p + c  =r 
t - 

I bel ieve ,  to be sure,  t h a t  the ~ o l u t l p n  o f  
those equations i s  not  o f  g r e a t  help  toward the answer o f  the 
question:  Uo the s l n p l e r j  ty - f ree  so lu t lons  o f  the equat ion 
aystem have physical  meaning? Are them a t  a l l  s ingu ln r l ty - f ree  
so lu t ions  whi dh correspond to the  a,torr.ls t i c  chnt*ric t o r  o f  ' matter  
end radiation? I t  snems to w t h a t  the rnathematicnl methods 
ava i l ab le  a t  present  a r e  not powerful enouch to an?lwer t h i s  question. 

!rowever, I am now flrrnly convinced t h n t  the 
equ? tion-sys tern 

j t q ; 4  = 4 

fl* =o 
represen t s  the only  
r e l a t i v i s t i c  law o f  

r=o- 
&A,< v + &,, + Rt:,a = O  

formally & t u r a l  ~ e n s r a l i z a t i o n  o f  the  
e r a v l  t a t i o n .  

With k i n ?  regards,  

s incere17 yours,  

4 ~~~~. 
Alber t  E ins te in .  

Einstein's letter of 4 October 1952 to Bose 



S N Bose : The Man and His Work 



Unified FieM Theory 

* %&r- $4 .,r-$24 3~ 
G r L L ; - " L  yYW A.2. 

Einstein's k t e r  to Bone in Paris from Princeton, dated 22 October 1953, commenting 
On Base's paper 'A U ~ t a r y  Field Theory. . ' for  Le Journal de Physique; by cour+esy of 
The Jewish National and University Library, Jerusalem. 
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The remaining three papers are all on the equation 

In the third paper Bose considered the above equation as first order partial differ- 
ential equations for g,. Then the condition of integrability is g,,, ,p = g,,, s,. This 
condition reduced to equations involving r's and g,, but free of the derivatives of g,,. 
They were explicitly worked out by Bose. This was a more or less routine investigation 
and did not lead to any very impressive result. 

In the last two papers in the list Bose was interested in solving the above equations, 
regarding them as coupled algebraic equations for T's, taking the g,,'s as  known. The 
problem is to find the solution not for particular coordinates but in a form which will 
hold in all coordinate systems. This was then a challenging problem especially in view 
of a remark by Schrodinger (1947) : 

In the general case i t  is next to impossible to give a tensorial solution of 
these equations. 

The adjective 'tensorial' in Schrodinger's remark is not quite correct for T's are 
themselves not tensors ; what he meant was that the solution must hold in all 
coordinate systems. However, Schrodinger was soon proved to be unduly pessimistic. 
Mme Tonnelat, Hlavaty in 1953, Bose, Einstein and Kaufman in 1954 and later on 
many workers including Mishra gave solutions. Although Bose's paper was published 
somewhat later than the first papers of Tonnelat and Hlavaty, Bose's first paper was 
communicated in September 1952, earlier than the publications of Tonnelat and 
Hlavaty. Indeed, all three were ignorant of the works of others and their methods were 
also different. Again, while Einstein had received a pre-publication manuscript from 
Bose and was aware of the work of Hlavaty, he and Kaufman proceeded without 
splitting g,, and Pkl into their symmetric and anti-symmetric parts, unlike the proce- 
dure adopted by Bose and others. Strangely, some later workers like Mavrides, Kichens- 
samy and even Mishra (1976) comment on the works of Tonnelat and Hlavaty, but they 
seem to ignore the works of Bose and also of Einstein and Kaufman. 

IMPORTANCE OR MOTIVATION OF THESE WORKS 

One may wonder what one can gain by these solutions. The first answer is that a pure 
mathematician's motivation arises simply from the mental desire to solve a problem 
just as the mountaineer climbs the Everest simply because 'it is there'. 

Perhaps some of the eminent mathematicians had the idea that once the T's are 
found in terms of g,,, these values of T would be plugged into the expression for R,, 
and one could attempt a general solution of the equation R,, = 0. However, even in the 
much simpler case of general relativity, such a general solution of R,, = 0 cannot 
be obtained and in reality has not even been attempted. What, therefore, one has to do 
is either to assume some symmetry and in that case the calculation of T's becomes not 
that difficult (and has been done by Bonnor, Papapetrou and others), or to deduce 
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some general theorems. Thus to Einstein the crucial problem was: 'Do the singularity- 
free solutions of the equation system have physical meaning ? Are there a t  all singu- 
larity-free solutions which correspond to the atomistic character of matter and 
radiation ? From this viewpoint the solution of those equations is not of great help. 
[ Here those equations refer to the equations whose solution Bose presented in a letter 
to Einstein and we have just now considered. I 

But, if the solution of the T's was not important from the point of view of the theory, 
one may ask: why did then Einstein and Kaufman give a solution ? The fact is, i t  came 
as a by-product of their investigation of the following problem. The universe we observe 
has three space-like and one time-like dimension. So, in order to be physically accept- 
able, the signature must be 2 or, in other words, the metric tensor determinant must 
be negative. Einstein and Kaufman considered provi~ional lyg~ to be the metric tensor 
and then investigated if this has the correct signature - do the field equations ensure 
that this signature will be maintained everywhere ? Their answer was in the affirm- 
ative, and in course of the proof they found the solution of the equations gik 1 = 0. 

As we come to the close of our discussion of Bose's works in-unified field theories, 
some disturbing questions come to mind. Did Bose share Einstein's attitude towards 
quantum mechanics ? Did Bose believe that a viable unified field theory based on 
geometry can really come about while most physicists thought these attempts were 
futile ? Bose has left nothing in writing which can throw any light on these matters. 
In fact, his papers were purely mathematical exercises without any reference whatso- 
ever to physics. 

A K RAYCHAUDHURI 
Former Professor, 

Presidency College, Calcutta 



Thermoluminescence 

A Report on the Study of Thermoluminescence (1955) 

Thermoluminescence means the phenomenon of emission of light (infrared or ultravio- 
let radiation included) other than pure thermal radiation, by a system under thermal 
stimulation. I t  is evidently related to energy states of the physical system, the relative 
transition probabilities and related electronic processes. When a system is excited by 
any method and a part of the excitation energy is stored in it, the system-is termed 
thermoluminescent if it releases, on heating, a part or whole of the stored energy in 
the radiant form. The phenomenon of thermoluminescence exhibits a very large variety 
of behaviours, corresponding to different substances with variations in impurity 
contents or other imperfections. Thus, it is not surprising that  thermoluminescence in 
all i ts details is a comparatively poorly understood phenomenon even in the case of 
simple materials. 

Thermoluminescence appears to have been first observed by Boyle about three 
hundred years ago. Since the publication of Randall and Wilkins' work in 1945 there 
has been a steady accumulation of data in this field a s  well as  attempts a t  theoretical 
interpretation of the experimental results in the light of the modern theory of solids, 
which already met with striking success in allied fields. The applicational p~ssibilities 
of thermoluminescence in geological and archaeological work, dosimetry, or as  a 
research tool in science and industry, have been already demonstrated by the tremen- 
dous growth in the number and variety of work in this field in the last fifty years. 
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Although extensive work has been carried out with thermoluminescence as a 
research tool, most of such work consists of the determination of trap depths and their 
changes under varying experimental conditions, but the results are far from satisfac- 
tory for a clear understanding of the electronic processes occurring inside the solid. 
The identification of the trapping and emitting centres, responsible for the different 
glow peaks, remains as yet a challenging problem in most of the phosphors. It was felt 
by Bose ( and other pioneers in the field) that the physical interpretation of the results 
of investigations on thermoluminescence would be facilitated if the spectral composi- 
tions of the thermoluminescence and afterglow emission could be compared with the 
luminescence of the phosphor under study The research workers in this field had been 
trying t o  find out the spectral compositions of thermoluminescence and afterglow 
emission with the help of filters; naturally, the results were indicative of the fact that  
the spectral composition of the emission undergoes changes during the process of 
therrnoluminescence or afterglow decay in many cases but the data were not of 
convincing precision. 

The duration of thermoluminescence is generally of the order of a minute and 
afterglow emission, comparatively poor in intensity, may also change in spectral 
composition as the intensity changes with time. The difficulties of interpretative work 
were thus essentially due t o  the lack of a suitable measuring device and experimental 
techniques. Bose saw the crux of the problem, and designed a rapid scanning spectro- 
photometer of comparatively high sensitivity to meet the requirements of the experi- 
mental  workers in  th i s  field. The design and fabrication of the  scanning 
spectrophotometer was reported by Bose a t  the International Conference on Crystal- 
lography held in Paris in 1954. 

The spectrophotometer is capable of scanning the entire spectral range of visible 
and near-ultraviolet radiation in 0.9 seconds, and the spectral distribution of emission 
either in afterglow decay or therrnoluminescence can be displayed on the screen of a 
cathoderay oscilloscope. It was thus possible t o  observe the changes in the spectral 
composition of emission during any time-varying process like thermoluminescence. The 
instrument performs the dual role of a spectrograph and a microphotometer, and can 
very conveniently be adapted t o  carry on studies of (i) fluorescence and phosphores- 
cence, (ii) thermoluminescence spectra, (iii) the temperature dependence of lumines- 
cence (both fluorescence and phosphorescence), (iv) the correlation of colour centres 
and other known trapping centres with luminescence, (v) the development of emission 
centres in the phosphor during X-ray and cathoderay irradiation, and (iv) near-infrared 
absorption and emission spectra etc. The possibilities of the scanning spectrophotome- 
ter have however not been fully exploited till date. 

The special features of the work initiated by Bose a t  the Khaira Laboratory in 
Physics in Calcutta were ihe luminescent and related properties of solids and frozen 
liquids under excitation by low energy electron beams as well as X-rays. The excitation 
is limited to a thin surface layer in the case of irradiation by low energy electrons, while 
for X-rays or other high energy excitations the entire volume of the crystals is affected. 
The two methods of excitation should thus bring out the distinctive differences in the 
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effects of impurities , self-absorption and energy transfer processes, on the luminescent 
and allied properties of solids. Some work was also attempted on the luminescence of 
solids under soft X-ray excitation; and attempts were made to correlate the data on 
valence band spectra with those on colour centres and luminescence of simple solids. 

Adapted from H N Bose, On the Pioneering Works of 
Professor S N Bose in the Field of Thermoluminescence, 
in the Proceedings of the Seminar on The Scientific 
Contributions of Professor S N Bose, Cal Math Soc 
1943, pp. 111-121. 



Bose Statistics : a historical perspective 

a. Planck's derivation of his law of black-body radiation 
In order to appreciate the novelty and importance of Bose's work in its historical 
perspective, it is necessary first to give a brief account of Planck's original derivation 
[Planck, 14 December 19001 of the law of black-body radiation, 

which he had discovered empirically a few weeks earlier (7 October 1900). I t  consisted 
of three steps. 

First, he established the relation 

between the energy density pv of incident radiation a t  temperature T, whose frequency 
lies between v and v +dv, and the average energy Uv of a resonator of the same 
frequency v a t  temperature T, on the basis of classical electromagnetic theory Com- 
paring (1) and (2), he found Uv : 
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In the second step he determined the entropy of these oscillators by integrating 
TdS=dU where T is taken from (3) as  a function of U (for fixed v). He obtained 

The third step was the revolutionary one. He introduced two ideas a t  this stage that  
he himself considered a s  'acts of desperation'. He assumed that  the total energy 
UN = N U, of N oscillators (resonators) was made up of finite energy elements E such 
that  UN = PE with P a large number. Then he searched in Boltzmann's work for a 
permutation measure WN (the total number of complexions or distributions)'of P 
discrete equal energy values E among N oscillators that  would correspond to the right 
hand side of (4) when used in SN = k In WN. He found 

Using P / N  = U, /E , SN = N S and applying Stirling's formula, he obtained 

Since S is a function of (U,  /v) only, i t  follows from (4) and (6) that 

This is how quantum theory was born. Planck had no more justification for using 
the formula (5) than that  it gave him the result that  he was after : '. . . a theoretical 
interpretation had to be found a t  any price, however high i t  might be,' he wrote to 
Robert William Wood in October 1931. [Mehra and Rechenberg, 1982,1,1,501. Actually, 
Planck's combinatorial approach differed from Boltzmann's probabilistic method in 
tha t  Planck associated WN with SN, the equilibrium entropy, without maximizing it. 
For Boltzmann WN was the number of possible complexions corresponding to the 
macrostate which can be realized by the largest number of complexions. As pointed out 
by Ehrenfest, a strict adherence to the accepted principles of statistical mechanics 
would have led Planck to the classical law of Rayleigh and Jeans! [Ehrenfest, 19051 

b. Einstein's light-quantum hypothesis 
In 1905 Einstein argued on the basis of his analysis of energy fluctuations of radiation 
obeying Wien's law that  such radiation had statistical properties similar to material 
particles and so must consist of discrete light-quanta of magnitude ( R / N , )  pv = hv. 
[Einstein, 19051 This light-quantum hypothesis was immediately applied by him to 
give a reasonable explanation of several radiation phenomena, specially the photo-elec- 
tric effect. Since these conclusions contradicted the classical electromagnetic theory 
on which Planck attempted to base his theory of heat radiation, Einstein considered 
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Planck's theory 'in some way a counterpart'to his own theory. He subjected Planck's 
derivation to a critical analysis and came to the following conclusion : 

We must therefore regard the following law as the basis of Planck's quantum 
theory of radiation : the energy of an elementary resonator can only assume 
values which are integral multiples of (R /No)  pv ; the energy of a resonator 
changes in jumps by absorption or emission in integral multiples of (R  /No)  
pv. . . . If the energy of a resonator can alter only in jumps, then for the 
evaluation of the average energy of a resonator in a radiation cavity, the 
usual [electromagnetic] theory cannot be used, for the latter does not admit 
any distinctive energy values for a resonator. [Einstein, 19061 

Two years later Lorentz also came t o  the same conclusion [Lorentz to Wien, 6 June 
1908; Mehra and Rechenberg, 1982, 1, 1, 981. Planck attempted to modify his theory 
to take into account the quantum of action without violating any aspect of classical 
electrodynamics, but i t  gradually became clear from his studies and those of others that  
it was impossible to establish the theory of black-body radiation entirely on the 
foundation of Maxwell's classical electrodynamics and the statistical mechanics of 
Maxwell and Boltzmann. 

c. Debye's derivation of Planck's law 
In 1910 Debye gave a new derivation of Planck's radiation law in which he sought to 
avoid the inconsistencies (as viewed from Maxwell's theory) of Planck's earlier deriva- 
tions as pointed out by Einstein [Debye, 19101. Instead of using the relation (2) between 
the radiation density p, and the average energy of the oscillator Uv, Debye calculated 
'the probability for a given state of radiation and therefore as is well known, the 
entropy, using the properties of the state alone without employing resonators.' In 
agreement with Rayleigh and Jeans, he calculated the number N, dv of elementary 
states or vibrational modes (Hohlraum oscillators) contained in a volume V and 
obtained 

Assuming that an amount of energy hv gets distributed over each of these vibrations 
according to an arbitrary distribution function fv , he obtained 

Now, 'analogously t o  Planck', Debye assumed that the probability of distributing 
N, f, dv quanta of energy hv among Nv dv vibrations was given by 

(N, dv +Nv f, dv) ! 
O v  = 

(N, dv) ! (N, fv dv) ! 

He then calculated the distribution function f, in the following way. He calculated the 
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maximum of w, with the constraint that the energy remained constant. From this he 
calculated the equilibrium entropy S ,  to be k In (o 7" ). Finally, using the definition 

of entropy to be (dSv/dpv) = T ', he obtained 

Together with (9), this yielded Planck's radiation formula (1). 
'hvo important features of Debye's derivation need to be emphasized as bwkground 

to Bose's derivation that came fourteen years later. First, i t  became clear from his 
derivation that  Planck's law follows simply from the assumption that  the energy 
transfer from matter to the heat radiation and vice versa is quantized in units of hv 
and that no knowledge of theproperties of material resonators is needed. In other words, 
the quantum hypothesis only determined the transfer of energy from one mode of the 
radiation to another. This was in keeping with Planck's ideas but not Einstein's. 
Second, he used Planck's definition of the probabilities a,, without analyzing its 
significance. 

d. Indistinguishability of Planck's quanta 
In 1911 Ladislas Natanson [I9111 subjected the Planck-Debye combinatorial procedure 
to a critical analysis and showed that it was equivalent to distributing P indistinguish- 
able energy elements E among N 'receptacles of energy' distinguished only by the 
numbers j of quanta in them so that Nj receptacles contain j quanta each, subject to. 
the constraints Z Nj = N and Z jNj  = P. He found 

j j 

(Nv dv) ! 
W v  = 

P 

Contrary to popular belief, therefore, the indistinguishability of the quanta had already 
been tacitly assumed by Planck and Debye and this was first noticed by Natanson 
already in 1911. 

Ehrenfest and Kamerlingh Onnes [I9141 also came to a similar conclusion in 1914. 
They however claimed that Planck's procedure was equivalent to distributing P indis- 
tinguishable energy elements E among N distinguishable resonators and arrived a t  the 
expression 

(N- l + P ) !  
W v  = 

P ! ( N - I ) !  

which is equivalent to the expressions (10) and (12) when N>>l. They then proceeded 
to clarify the distinction between Planck's energy quanta which were statistically not 
independent (they called them 'non-disjointed quanta') and Einstein's hypothetical 
light-quanta which were believed to be statistically independent of one another ('dis- 
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jointed quanta'). The concluded : 'Planck3 formal device (distribution of P energy-ele- 
ments E among N resonators) cannot be interpreted in the sense of Einstein's light- 
quanta. ' 

e. The introduction of phase space cells by Planck 
Planck himself had come to the view on his own that classical statistical mechanics 
had to be modified in order to yield his radiation formula (1) rather than that of 
Rayleigh and Jeans. He reported his important conclusion a t  the Solvay Congress held 
in Brussels in 1911. According to Gibbs, the probability of finding a single particle in 
the element dS  p d3 q of the six-dimensional phase space is given by 

where E= E(p,q) is the energy of the system. For a classical one-dimensional oscillator, 
E = p2/2m + P q 2 / 2  and so the average energy of such an oscillator is kT. However, if 
E can take only the discrete values En = n E = n h v with n=0,1,2 . . ., then 

in agreement with (3). I t  was this straightforward derivation that led Planck for the 
first time to make the explicit statement that the energy of an oscillator (and not only 
its average energy) was an integral multiple of hv. It  also led him t o  interpret the 
constant h as a finite extension of the elementary area in phase space. The motions of 
one-dimensional classical oscillators can be described by a family of concentric ellipses 

'h '/z 
of semi-axes (2E43) and ( 2  m E )  . Since these oscillators can have any energy E, the 
ellipses form a continuum. However, if it is assumed that these ellipses are separated 
from each other so that the nth ellipse encloses an area 

then the energies of the oscillators must be integral multiples of hv. Planck therefore 
drew the revolutionary conclusion that energy quanta were a consequence of the 
fundamental condition 

This implied a revision of the basic tenets of classical mechanics. He declared : 'The 
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framework of classical mechanics, even if combined with the Lorentz-Einstein principle 
of relatjvity, is obviously too narrow to account for all those physical phenomena which 
are not directly accessible to our coarse senses . . . One should therefore confine oneself 
to the principle that the elementary region of probability h has an ascertainable finite 
value and avoid all further speculation about the physical significance of this remark- 
able constant.' In other words, all attempts a t  finding a classical mechanical explana- 
tion of h must be abandoned. As we shall see later, to Bose these considerations (with 
which he was familiar) brought home extremely important lessons that  would influence 
his own seminal contribution to the subject. First, he took serious note of the conclusion 
that classical eledjrodynamics was essentially incompatible with Planck's radiation 
formula. Second, since the quantum states of a particle were not continuously distrib- 
uted throughout phase space (as in classical dynamics), he concluded that  their number 
could be counted by simply dividing the total volume of phase space by h3, the volume 
of an elementary cell. Finally, he took seriously Planck's claim that classical statistical 
mechanics had ta  be modified in a special way in order to  conform to the requirements 
of quantum theory. 

f. Spontaneous and induced transitions 
The next important step was taken by Einstein in 1916. In 1913 Niels Bohr had 
proposed his model of the atom with stationary states with discrete energy values 
[Bohr,1913, b,cl. The transitions between any pair of these states were assumed to be 
caused by the exchange of energy quanta hv between the atom and the radiation field 
described by classical electrodynamics. Einstein gave an elegant derivation of Planck's 
radiation formula by considering Bohr atoms in thermal equilibrium with radiation in 
a cavity but without making any use of classical electrodynamics [Einstein, 1916al. He 
used Boltzmann's principle to write the probability Wn for an atom to be in a stationary 
stat9 with quantum-number n in the form 

gn being the statistical weight of the state. He then assumed that a stationary state n 
may pass to a stationary state m of higher energy (E, > E, ) by absorbing a light- 
quantum of frequency v, , , the rate of transition being B r  ATn p, (Nn being the number 
of atoms in the stationary state n and Br a proportionality constant characterizing the 
absorption of radiation of frequency vn ,in the presence of external radiation of density 
p,). Transitions from a stationary state m of higher energy to a stationary state n of 
lower energy by the emission of a light-quantum of frequency v,, = v,, could, 
however, take place in two ways. Atoms can emit this radiation independent of the 
external field, their number being A: N, (A: being the constant of proportionality). 
About this Einstein said : 'One can hardly think of i t  in any other way except as a 
radioactive reaction.' I t  came to be known later as 'spontaneous emission.' Atoms can 
also be induced to emit radiation by the external field, the rate being B: N,,, p,. Einstein 
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called th i s  'negative radiation'. In  thermal  equilibrium one mus t  have 
(A: Nm + Bk N, pv) = B: Nn pv . Using (18) to calculate N,,lN,,,, one gets 

At this stage Einstein had to take his guidance from classical theory by essentially 
applying the 'correspondence principle' according to which classical theory should be a 
limiting case of quantum theory. In the classical limit p, goes to infinity as  the 
temperature T goes to infinity for fixed v (RayleighJeans law, p, aT). This gave 
BL g, = BF gn. With this condition ( 19) could be written as. 

A; / Bk 
Pv = - exp [ ( e m - E , )  / k T ] - 1  : 

Then Einstein used Wien's displacement law to infer that Ak/Bk must be proportional 
to 3, and the Rayleigh-Jeans law in the limit of low frequencies to determine the 
constant of proportionality t o  be 8 x h/c3 .  Thus he obtained the relation 

and 

which is Bohr's frequency condition. These two relations when substituted into (20) 
gave Planck's law. This is a remarkable derivation that uses an admixture of the 
light-quantum hypothesis and Bohr's atomic theory which Bohr regarded as being 
imcompatible, Wien's radiation law and therefore implicitly the Maxwell-Boltzman 
distribution for the light-quanta, and the correspondence principle which was a heu- 
ristic principle without any fundamental basis. Einstein concluded by saying : 'I admit 
freely, of course, that the three hypotheses concerning outgoing and incoming radiation, 
do not a t  all become substantiated results by the mere fact that they lead to Planck's 
radiation formula. But the simplicitly of the hypotheses, the generality with which the 
consideration can be carried through easily, as well as the natural connection of the 
consideration employed with the limiting case of Planck's linear oscillator (in the sense 
of classical electrodynamics and mechanics), persuaded rrie to regard i t  as very probable 
that all this constitutes the fundamental outline of the future theoretical derivation.' 
Although the hypotheses concerning the outgoing and incoming radiation turned out 
to be correct to a large extent (though not entirely so, as we shall see later), the future 
derivation (given by Bose) did not inake use of them a t  all. In fact, they became the 
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major bone of contention between him and Bose. 
By 1916 the light-quantum hypothesis had received a measure of empirical support 

from Millikan's verification of Einstein's photo-electric equation. Millikan's paper 
[1916b] appeared in the March 1916 issue of the Physical Review. Einstein quickly 
realized from his new derivation of Planck's law that atoms seemed to interact with 
radiation as if single atoms collided with light-quanta of energy hv and directed 
momentum hv lc .  He wrote to his friend, Michael Besso : 

The fundamental thing is that the statistical consideration, which leads to 
Planck's formula, has become unified and thereby as general as one can 
imagine, since one has not assumed anything about the nature of the 
mediating molecules other than the most general quantum idea. From it  
follows the result (which was not contained in the paper I sent you) that in 
each energy transfer from radiation to matter the momentum hvlc  is also 
transferred to the molecule. Hence we conclude that every such elementary 
process is a completely directed event. With that the light-quanta must be 
considered as  being substantiated. [Einstein to Besso, 6 September 1916; 
Mehra and Rechenberg, 1982,1,2,515] 

However, Einstein was not really satisfied. In a subsequent paper he remarked : 
The weakness of the theory lies, on one hand, in the fact that it does not 
bring us closer to a connection with the undulatory theory, and, on the other 
hand, in the fact that i t  leaves the instant and direction of the elementary 
processes to chance. [Einstein, 1916b, 19 171 

g. Reactions to the light-quantum hypothesis: discovery of the Compton 
effect 

The majority of physicists, in fact, did not take the light-quantum hypothesis seriously, 
even after Millikan's work. Millikan himself remarked in his 1916 paper on the 
photo-electric effect : 'Yet the semi-corpuscular theory by which Einstein arrived a t  this 
equation seems a t  present to be wholly untenable.' The main difficulty lay, as Einstein 
himself realized, in accounting reasonably for the interference and diffraction phenom- 
ena observed with all kinds of radiation in terms of light-quanta. Evidence in favour 
of the wave theory was overwhelming and mounting. In 1912 Max von Laue, Walter 
Friedrich and Paul Knipping had settled the issue in favour of X-rays being electro- 
magnetic waves of extremely short wavelengths through the phenomenon of interfer- 
ence of X-rays in crystals [von Laue, Friedrich and Knipping, 19121. In 1913 Planck, 
Nernst, Rubens and Warburg who wished t o  bring Einstein t o  Berlin, wrote to the 
Prussian Ministry of Education: 

That he may sometimes have missed the target in his speculations, as, for 
example, in his theory of light-quanta, cannot really be held against him. 
For in the most exact of natural sciences every innovation entails risk. 
[Clark, 1972, 2151 

Bohr had his own reasons for not favouring the light-quantum hypothesis though 
he realized from the beginning that the laws of electrodynamics had to be abandoned 
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for a proper description of quantum phenomena. The hypothesis ran counter to his 
plans to build atomic theory on the basis of the correspondence principle, 

The general acceptance of the light-quantum hypothesis eventually came in 1923 
through the work of Debye [I9231 and Compton f19233. Compton realized that  the shift 
in the wavelength of X-rays scattered by atoms that  he observed could not be under- 
stood in terms of the classical wave theory of scattering but only in terms of elementary 
processes of scattering of light-quanta by the electrons in atoms, in which both energy 
and momentum were conserved. Debye also arrived a t  the same conclusion inde- 
pendently. .Arnold Sommerfeld who was then visiting the University of Wisconsin as  
Carl Schurz Professor of Physics came t o  know about Compton's results. On 21 January 
1923 he wrote to Bohr : 'The most interesting scientific news I have learned in America 
is a work of Arthur Compton in St. Louis. According t o  i t  the wave theory of X-rays 
would finally have.to be given up.' [Mehra and Rechenberg, 1, 2, 5291 Wherever he 
went, Sommerfeld referred t o  Compton's work and its importance for the quantum 
theory. On his return t o  Germany he continued to advocate Compton's work. Several 
months later he wrote to Compton : 'Your discovery of the change in wavelength of 
X-rays also occupies the scientific community in Germany most deeply. I met Einstein 
and Kossel in August, and we mainly discussed your effect;' [Sommerfeld t o  Compton, 
October 1923; Mehra and Rechenberg, 1982,1,2,5301 

h. Pauli's derivation of Planck's law 
Wolfgang Pauli came to know of Compton's discovery in the summer of 1923 when he 
came to Hamburg on several weeks'leave of absence from Copenhagen. He immediately 
got interested in the problem of thermal equilibrium between radiation and free 
electrons. Lorentz had reported in the first Solvay Conference that  he could not 
establish the condition of thermal equilibrium for electrons having a Maxwellian 
velocity distribution [Lorentz's report in Langevin and de Broglie, 19121. Pauli wished 
to re-examine the problem by considering reversible collisions between electrons and 
directed light-quanta, obeying the laws of conservation of energy and momentum. Pauli 
[I9231 was able t o  show that  thermal equilibrium characterized by Planck's law was 
possible for electrons having a Maxwellian distribution provided the probability of 
collisions per unit time was given by 

where A and B are the coefficients of Einstein's radiation theory [Einstein, 19171 and 
p, and p,, the densities of radiation before and after the collision respectively. Pauli 
showed that  the first term was dominant for radiation satisfying Wien's law while the 
second term was more important for radiation of longer wavelengths satisfying the 
Rayleigh-Jeans law. Pauli interpreted this as the effect of interference fluctuations of 
classical waves. Einstein and Ehrenfest welcomed Pauli's work and clarified and 
generalized i t  t o  cases in which the elementary processes involved more than two light- 
quanta [Einstein and Ehrenfest, 19231. In particular, they discussed the 'paradoxical' 
second term in (23) 'which implies that the number of the elementary processes of 
scattering occurring per unit time a t  an electron (which is a t  quasi rest) increases faster 
than being proportional t o  the radiation density p' of frequencies v', which the 
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radiation quantum possesses after being modified by the elementary process.' They 
concluded that  this term followed from a detailed considertion of all interaction 
processes between radiation and electrons, including the induced emission of light 
(Einstein's 'negative radiation'). 

i. Bose's derivation 
While the leading European and American physicists were skeptical, even hostile to 
Einstein's Iight-quantum hypothesis, two unknown young physicists in India, M N 
Saha and S N Bose grasped its importance and started using i t  with great success. 
Within two years of Einstein's 1917 paper from which he drew the revolutionary 
conclusion that  a light-quantum carried directed momentum hv/c, M N Saha, a close 
friend of Bose, applied i t  to explain the existence of radiation pressure on objects of 
molecular size [Saha, 19191. On the basis of the classical theory Nicholson [I9141 and 
Klotz [I9181 had shown that radiation pressure on particles of molecular size should 
become totally 'evanescent'. Saha applied 'quantum theory in the place of the old 
continuous theory of light. Instead of assuming that "lightn is spread continuously over 
all points of space,' he supposed that 'they are localized in pulses of energy hv . . . Let 
this pulse encounter a molecule m and be absorbed by it. Then in doing so the molecule 
will be thrust forward with an impulsive momentum of hv/c, (c=velocity of light); for 
we may suppose the pulse to have the mass hv/c2 and the momentum hvlc; the 
absorption of the pulse by the molecule may be taken as a case of inelastic impact, the 
whole momentum being communicated t o  the molecule. The velocity with which the 
molecule will move forward = hvlmc.' Saha concluded that 'radiation-pressure may 
exert an effect on the atoms and molecules which are out of all proportion to their actual 
sizes.' This must have been the first application of Einstein's hypothesis that light- 
quanta carried a directed momentum hvl-c. 

In March 1924 Saha visited Dhaka and stayed with Bose. While teaching postgradu- 
ate students Bose had keenly felt the need for a derivation of Planck's law free of 
logical difficulties. Saha drew Bose's attention t o  the papers of Pauli [I9231 and their 
connection to Einstein and Ehrenfest [I9231 and their connection t o  Einstein's paper 
of 1917. In an interview with J Mehra [Mehra and Rechenberg, 1,2,5651 Bose recalled : 
What seemed to be happening in Pauli's work was that in order t o  apply the quantum 
conditions you had t o  know exactly what was going to happen afterwards.' Stimulated 
by his discussions with Saha, Bose began to study carefully the worh  of Planck 
[1900,19101, Peter Debye [1910,19231, Einstein [19171, Arthur Compton [19231, Pauli 
El9231 and Einstein and Ehrenfest [19231. This resulted in two papers that he wrote 
in June 1924 [Bose, 1924a, 1924bl and sent to Einstein for his views and for publication 
in Zeitschrift fiir Physik. Einstein translated both of them into German and had them 
published inzeitschrift fiir Physik in 1924. To both of them he added his own comments. 

It is clear from these two papers of Bose which he always regarded as integral parts 
of each other that he clearly recognized the following points : 

(1) The fundamental assumptions of the quantum theory are incompatible with 
the laws of classical electrodynamics [Bose, 1924al. 

(2) All previous derivations had made use of relation (2) 'between the density of 
radiation and the average energy of an oscillator, and they make assumptions 
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about the number of degrees of freedom of ether, which enters tfie above 
equation (the first factor on the right hand side). This factor could however be 
derived only from the classical theory. This is an unsatisfactory feature in all 
derivations and i t  is not surprising that efforts are made again and again to 
give a derivation free from this logical flaw.' [Bose, 1924al 
Even Einstein's 191611917 derivation, although 'remarkably elegant', makes 
use of Wien's displaqement law and Bohr's correspondence principle. Wi&~'s  
law is based on classical theory and the correspondence principle assumes that 
the quantum theory agrees with the classical theory in certain limiting cases.' 
[Bose, 1924a1. 
'In all cases it appears to me,' wrote Bose 11924al 'that the derivations are not 
sufficiently justified from a logical point of view. On the other hand, the 
light-quantum hypothesis combined with statistical mechanics (as adapted by 
Planck to conform to the requirements of quantum theory) appears sufficient 
for the deduction of the law independent of classical theory' (our italics). In 
other words, the incompatibility between Einstein's light-quanta ('disjointed 
quanta') and Planck's law (implying 'undisjointed quanta') can be removed by 
adapting the statistical mechanics of light-quanta to conform to the require- 
ments of quantum theory, as proposed by Planck. 
'The problem of thermodynamic equilibrium of radiation in the presence of 
material particles can however be studied using the methods of statistical 
mechanics, independently of any special assumption about the mechanism of 
the elementary processes on which the energy exchange depends.' [Bose, J924bl 

Bose therefore proceeded in four steps. 

First step: He took Einstein's light-quantum hypothesis seriously and treated black- 
body radiation as a collectiop of light-quanta enclosed in a volume V. If there are N, 

lightquanta of energy hv, ( s = 0 s = 0 1, the total energy E is 

p, can be determinedofrom this simple relation if N, is known. So, the problem is to 
determine N,. 'If we can give the probability for each distribution characterized by 
arbitrary values of N,, then the solution is determined by the condition that  this 
probability is a maximum subject to the subsidiary condition' (24) [Bose,1924al. Bose 
then proceeded to find this probability. 

Second step: Before he could do that, he needed to compute the number of states of 
a light-quantum whose frequency lies between v, and v, + dv,. In order to be able to do 
this, he extended Planck's idea of dividing up the phase space of a material oscillator 
into elementary cells of volume h3 to the phase space of light-quanta. In other words, 
he extended Planck's 'first quantization' of material oscillators to the radiation field 
itself. This was the most novel and crucial input. Emboldened by Compton's discovery, 
he assumed the momentum of a light-quantum of frequency v to be hvlc in the direction 
of its motion. He must have also been aware of Saha's success in explaining radiation 
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pressure on molecular-size objects with the help of this hypothesis [Saha,19191. The 
instantaneous state of such a light-quantum, he stated, is characterized by a point in 
six-dimensional phase space which is constrained to lie on the surface of a cylinder 
defined by 

Then the phase space belonging to the frequency interval dv, is 

h dv, h3 V: 
dr  dy dz dp, dpy clp, = 4 n V - = 4n - Vdv, . 

C c3 

Dividing this by h3, the 'ultimate elementary region' [Bose to Einstein, 4 June 19241, 
Bose obtained 4xV$ dv,/c3. Then the following statement occurs : 'In order to take into 
account the fact of polarization, i t  seems however appropriate to multiply this number 
once again by 2' (our italics) to obtain 8nVv: dv,/c3 as the number of cells belonging t o  
dv,. No explanation is offered as to how this 'fact of polarization', an essentially 
classical concept, can be understood in terms of the light-quantum hypothesis, al- 
though Bose claimed to deduce this factor independent of the classical electrodynamics 
[Bose to Einstein, 4 June 19241. Bose had always maintained privately that he did offer 
a quantum theoretic explanation but Einstein removed it from his translation and 
substituted it by the statement about the polarization factor. In his letter t o  Bose, 
Einstein simply wrote : 'You are the first person t o  derive the factor quantum theoreti- 
cally, even though because of the polarization factor 2, not wholly rigorously' [Einstein 
t o  Bose, 2 July 19241. What was the explanation that Bose claimed t o  have offered? It  
was that light-quanta carried an intrinsic spin that could take only the values k h/2n. 
There is only one recorded evidence of this because Bose's original manuscript in 
English is missing from the Einstein archives. I t  appears in a paper by C V Raman 
and S Bhagavantam [19311. The paper is entitled 'Experimental Proof of the Photon 
Spin'. They write : 

In his well-known derivation of the Planck radiation formula from quantum 
statistics, Prof. S.N. Bose obtained an expression for the number of cells in 
phase space occupied by the radiation, and found himself obliged t o  multiply 
it by a numerical factor 2 in order to derive from it  the correct number of 
possible arrangements of the quantum in unit volume. The paper as pub- 
lished did not contain a detailed discussion of the necessity for the intro- 
duction of this factor, but we understand from a personal communication 
by Prof. Bose that he envisaged the possibility of the quantum possessing 
besides energy hv and momentum hv/c also an intrinsic spin angular 
momentum Ht/2n round an axis parallel to the direction of its motion. The 
weight factor 2 thus arises from the possibility of the spin of the quantum 
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Bose's letter of 4 June 1924 to Einstein 
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Einstein's postcard of 2 July 1924 to Bose 
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being right-handed or left-handed, corresponding to the two alternative 
signs of the angular momentum. There is a fundamental difference between 
this idea, and the well-known result of classical electrodynamics to which 
attention was drawn by Poynting and more fully developed by Abraham that 
a beam of light may in certain circumstances possess angular momentum 
. . . Thus, according to the classical field theory, the angular momentum 
associated with a quantum of energy is not uniquely defined, while accord- 
ing to the view we are concerned with in the present paper, the photon has 
always an angular momentum having a definite numerical value of a Bohr 
unit with one or other of the two possible alternative signs. 

Why did Einstein remove Bose's explanation? Probably he felt it was too radical and 
unnecessary a t  that stage. However, instead of removing it altogether, he could have 
added a suitable comment to the one he did make a t  the end of the paper. In fact, he 
did not hesitate to add a dissenting note to Bose's second paper [I924131 as  we shall see 
later. 

Be that as i t  may, let us proceed with Bose's derivation. Having divided the phase 
space volume belonging to the frequency range v, and v, + dv, by h8, he' wrote : 'the 
total number of cells must be regarded as the number of possible arrangements of a 
quantum in a given volume'(our italics). Classically there are infinitely many ways of 
arranging or distributing a particle within a phase space cell of finite extent corre- 
sponding to the infinitely many points contained within it. However, according to 
Planck, as  we have seen, quantum states are not continuously distributed in phase 
space but are separated from one another by finite ainounts determined by h. Thus, an  
elementary cell of volume h3 can contain a t  most one quantum state, and the problem 
of counting the number of quantum states reduces to the counting of these elementary 
cells. This is a totally new interpretation of the factor A, = 8x v: vdv,/cS. (In classical 
wave theory i t  is the number of transverse standing modes in the interval dv, in a 
volume V.) In his covering letter to Einstein Bose wrote : 

Respected Sit, 

I have ventured to send you the accompanying article for your perusal and opinion. I a m  
anxious to know what you think. You will see that I have tried to deduce the coefficient in 
Planck's law independent of the classical electrodynamics, only assuming that the 
ultimate elementary regions in Phase-space have the content h3. 

[Bose to Einstein, 4 June 19241. 

On 12 July 1924 Einstein wrote to Ehrenfest : 'The Indian Bose has given a beautiful 
derivation of Planck's law, including the constant 1i.e. 8m2/cS I.' 

Third Step: Having demonstrated that the factor 8xv2/cS in Planck's law corresponds 
to the total number of quantum states of radiation, Bose then proceeded 'to calculate 
the thermodynamic probability (macroscopically defined) of a state' in the sense of 
Planck (our italics). This is equal to the number of different microscopically defined 
states by means of which the macroscopic state can be realized. If all the cells (states) 
were considered to be distinct from one another, the answer would be A,! However, this 
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is not the case. Since each cell is to be counted as a single quantum state, if follows that 
the permutations of the light-quanta within a cell do not produce new states. Conse- 
quently, the cells can be partitioned into distinct classes characterized solely by their 
occupation numbers. Let there be a particular distribution ofN, quanta amongA, states 
such that  there are p states that are empty, p states with one quantum, p 82 states 
with two quanta, and so on. Then, following Boltzmann and the usual procedure of 
statistical mechanics for these states (not the quanta), one can immediately write down 
the possible number of such distributions as  

which is precisely the expression (12) given by Natanson. The 'thermodynamic prob- 
ability' of 'the state defined by all p", is then clearly W = 7 W, which is equivalent to 

the Debye-Planck expression (10). 
Fourth step : Bose then followed the standard procedure, already followed by Debye 

[19101, of maximizing In W subject t o  the constraints E = % N, hv, and N, = C rp>o 

obtain Planck's law. Notice that the total number of photons N = C N, and there is no 
constraint on N. It  turns out that the constraint on N, is not necessary, but Bose did 
not notice this. 

Notice that  the only departure of the expression (27) from the usual Boltzmann 
expression lies not in the product of factorials in the denominator but in putting the 
multiplicative factor (giY corresponding t o  the possible arrangements of r quanta 
within each cell i havinggi levels equal to unity, as demanded by the division of phase 
space into elementary cells of volume h3. (In his second paper [1924bl written more or 
less a t  the same time as the paper under discussion and received by Einstein only five 
days later, Bose used these factors, as we shall see later, for material particles obeying 
Maxwell-Boltzmann statistics.) This is precisely the adaptation of statistical mechan- 
ics by Planck 'to conform to the requirements ofthe quantum theory' that Bose referred 
to in the third paragraph of his paper. 

Was Bose aware of the analysis of the Planck-Debye definition of the probability by 
Natanson and by Ehrenfest and Kamerlingh Onnes? One cannot tell. He certainly did 
not refer to their papers. I t  is reasonable, however, to assume that he was not aware 
of the latter work because if he had been, he would have explained how their conclusion, 
namely that  'Planck's formal device (distribution of P energy elements E among N 
resonators) cannot be interpreted in the sense of Einstein's light-quanta' [Ehrenfest and 
Kamerlingh Onnes, 1914, p.8731, could be reconciled with his own starting point, 
namely the combination ofthe light-quantum hypothesis with Planck's counting device. 
The explanation, of course, lies in the fact that Planck's law reduces to Wien's law in 
the limit hv/kT > > 1, and that i t  is only in this limit that the light-quanta have 
Maxwell-Boltzmann behaviour as inferred by Einstein. I t  is one of those quirks of 
history that Einstein should have been able to infer the quantum nature of radiation 
from its approximate classical statistical behaviour in a certain domain and thus 
missed the true nature of its statistics. It was left to Bose to discover it, possibly 



Bose Statistics : a historical perspective 51 

uninhibited by the analysis of Ehrenfest and Kamerlingh Onnes and their conclusion. 
Hence Einstein's enthusiastic welcome of Bose's work as an important and new support 
to his favourite light-quantum hypothesis, making it compatible with Planck's law. 

j. The birth of a new statistics: Einstein applies Bose's method to ideal gases 
Bose's counting of states, of course, implied a new statistics for the light-quanta. 
Neither he nor Einstein seemed to have quite grasped the importance of this initially. 
In his letter of 2 July 1924 to Bose, Einstein compliments him for being the first to 
derive the factor A, quantum theoretically but does not write a word about the new 
statistics. 'In my opinion,'wrote Einstein in a footnote to Bose's paper, 'Bose's deriva- 
tion signifies an important advance. The method used here gives the quantum theory 
of an ideal gas as I will work out elsewhere.' He extended Bose's method to material 
particles in three communications to the Prussian Academy in Berlin on 10 July 1924, 
8 January 1925 and 29 January 1925 [Einstein, 1924,1925a, 1925131 without informing 
Bose or asking for his collaboration. Bose came to know of the comment in the footnote 
shortly before he left for Europe and of the first of the communications to the Prussian 
Academy on his arrival in Europe in October 1924. In the first paper this is how 
Einstein described Bose's method : 

[First] : The phase space of an elementary object (here of a monatomic 
molecule and in Bose's case of a light-quantum), associated with a given 
(three-dimensional) volume, is divided into "cells" of extension ha. [Second] : 
If many elementary objects are present then their (microscopic) distribu- 
tion, which plays a role in thermodynamics, is determined by the particular 
manner how the elementary objects are distributed among the cells. 
[Third] : The "probability" of a macroscopically defined state (in the sense 
of Planck) is equal to the number of different microscopic states by means 
of which the macroscopic state can be thought to be realized. [Fourth] : The 
entropy of the macroscopic state and, therefore, the statistical and thermo- 
dynamic behaviour of the system is determined by Boltzmann's theorem 
relating entropy and probability.' [Einstein, 1924, p.2611 

Again, there is no mention of the new statistics! In applying Bose's method to 
ordinary material atoms, Einstein had to introduce an additional parameter (the 
chemical potential which vanishes for light-quanta) to take into account the conserva- 
tion of their number. He drew a very important conclusion from this: 

According to the theory presented here, Nernst's theorem is satisfied in the 
case of ideal gases. To be sure, our formulae cannot immediately be applied 
to extremely low temperatures, for we have assumed in their derivation 
that the pS, change only relatively infinitely little if s is altered by 1. Still 
one recognizes a t  once that the entropy must vanish a t  the absolute zero of 
temperature. The reason is that then all molecules are in the first cell; and 
for this state there exists only one distribution of molecules according to our 
counting method. Hence our assertion is immediately proved to be correct. 
[Einstein, 1924, p.2651 (our italics) 
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This is a conclusion of far-reaching consequence, yet there is no mention of any new 
statistics for the molecules; the emphasis is on Bose's counting method for states (one 
quantum state per cell). I t  was only six months later on 8 January 1925 that Einstein 
discussed the difference between the counting methods of Boltzmann and Bose and 
recognized the fact, already pointed out by Ehrenfest [19241, that the new statistics for 
molecules was inconsistent with their statistical independence. However, while Planck 
[I9251 considered the analogy with radiation a weak point in Einstein's gas theory, the 
statistics of radiation and that of material particles being completely different in his 
opinion, Einstein regarded this result differently. He concluded : 'This result repre- 
sents in itself a support of the view concerning the deep natural relation between 
radiation and gas, since the same statistical treatment which leads to Planck's formula 
establishes - when applied to ideal gases - the agreement with Nernst's theorem.' 
[Einstein, 1925a, p.71 (our italics) He was of the opinion that an understanding of the 
'mysterious influence' among the molecules would come in the future. 

k. The birth of wave mechanics 
Based on the new counting method, he showed in his second paper communicated on 
8 January 1925 that the mean square energy fluctuation of the gas molecules is given 
by an expression which is the sum of two terms, one corresponding to the Maxwell- 
Boltzmann statistics of non-interacting molecules and the other to interference fluc- 
tuations associated with wave phenomena. (There exists in the Einstein Archives in 
the Jewish National and University Library, Jerusalem, a two page calculation done 
by Bose entitled 'Fluctuation in density' which ends with this fundamental .result. The 
document is undated and exists in the Scientific Correspondence File Folder 'B-Misc.- 
11'. Bose was in Paris from 18 October 1924 until the first part of October 1925.) From 
this he immediately drew attention to the importance of Louis de Broglie's Doctoral 
thesis (which he had heard of from Paul Langevin and asked for a copy which he 
received and read in December 1924 [Jammer, 1966, 2491) in which de Broglie had 
attached wave properties to ponderable matter in analogy with the wave-particle 
duality of radiation. Einstein wrote : 'I shall discuss this interpretation in greater detail 
because I believe that it involves more than a mere analogy.' He then went on to explore 
various consequences of de Broglie's hypothesis. 

When Erwin Schrodinger whose principal research during his early years in Zurich 
(1921-27) was on the statistical thermodynamics of ideal gases, read Einstein's first 
paper [1924al on the quantum theory of an ideal gas, he also did not understand that 
the molecules were being treated as being indistinguishable. On 5 February 1925 he 
wrote to Einstein suggesting a possible error in his probability formula. Einstein 
replied explaining that the 'quanta or molecules are not treated as independent of one 
another' and even gave a little diagram to explain the difference between Bose's 
counting method and that of Boltzmann. He concluded his letter with the emphatic 
statement: 'There is certainly no error in my calculation.' [Walter Moore, 1989,1831 It  
was Einstein's remark in his second paper that de Broglie's idea 'involves more than a 
mere analogy' that really induced Schrodinger to study the 'de Broglie-Einstein undu- 
latory theory' as he called i t  a t  that time, and eventually led to his discovery of wave 
mechanics in 1926 [Schrodinger, 1926a, 1926b and 1926~1. Schrodinger later said that 



Bose Statistics : a historical perspective 

Calculation of 'Fluctuation in density' in Bose's hand (Scientific Correspondence File 
Folder 'B-Misc.-11'); by courtesy of The Jewish National and University Library, Jeru- 
salem. 
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'wave mechanics was born in statistics.'(our italics) [Walter Moore, 1989, 1881 He also 
wrote to Einstein on 23 April 1926 : 'By the way, the whole thing would not have started 
a t  present or a t  any other time (I mean, as far as I am concerned) had not your second 
paper on the degenerate gas directed my attention to the importance of de Broglie's 
ideas.' [Jammer,1966,2571 

1. Further developments 
Meanwhile in July 1925 Werner Heisenberg had sent a paper to Zeitschrift fiir Physik 
in which he gave a preliminary account of matrix mechanics [W Heisenberg'l9251. 
Schrodinger proved the complete equivalence of his wave mechanics and the Heisen- 
berg-Borndordan matrix mechanics [Schrodinger, 1926dl. A whole train of rapid 
developments occurred. Pauli discovered his Exclusion Principle within six months of 
Bose's paper [Pauli, 19251; Fermi published his paper on the statistics of particles 
obeying Pauli's principle in early 1926 [Fermi, 19261; Dirac linked the Bose and Fermi 
statistics of particles t o  the symmetry properties of their wave functions and named 
them 'bosons' and 'fermions' [Dirac, 19261; in 1927 Dirac invented 'second quantization' 
of the electromagnetic field [Dirac, 19271 which was soon followed by a similar method 
for Fermi fields developed by Jordan and Wigner [19281; later Pauli [I9401 proved the 
spin-statistics theorem in relativistic quantum field theory; Pauli El9271 also applied 
Fermi-Dirac statistics to the paramagnetism of an electron gas and Sommerfeld 
[1927,19281 applied i t  to the electrons in a metal; and Fritz London [I9381 suggested 
that the superfluidity of liquid helium ( * ~ e )  was related to Einstein-Bose condensation. 
Thus the developments of Schrodinger's wave mechanics and that of quantum statis- 
tical mechanics were directly triggered off by Bose's first paper followed by Einstein's 
far-sighted extension of his method to ideal gases of material particles and his 
championing of de Broglie's ideas which soon received experimental confirmation in 
the hands of Davisson and Germer [I9271 and G P Thomson C19271. 

Years later this is how Schrodinger summed up the position : 
The two equivalent ways of looking a t  (7.19) either as counting the number 
of quantum states of a particle, or as  counting the number of wave-mechani- 
cal proper vibrations ofthe enclosure, interest us for this reason. The second 
attitude makes us think of the 'ns particles present in state as' as of a proper 
vibration (or a 'hohlraum' oscillator to use a customary phrase) in its n,th 
quantum level. (This attitude really corresponds to so;called second quan- 
tization or field quantization.) ns becomes a quantum number and the 
stipulation that the system of quantum numbers 

determines only one state of the gas, not a class of 

states, ceases to be a strange new adoption, and comes into line with the 
ordinary view about quantum states and their statistical weight (viz. equal 
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for any two of them). 

It is the first, the particle attitude, that has suggested the term 'new 
statistics' which is frequently used. And that is why this idea of new 
statistics did not, originally, arise in comexion with heat radiation, because 
here the wave point of view was the historical one, the classical one-nobody 
thought of any other at the outset. The wave picture was considered to be 
(and historically was) the classical description. The quantizatian of the 
waves therefore .duly appeared t o  be a 'first' quantization and nobody 
thought of anything like 'second quantization'. 

Not until the idea of photons had gained considerable ground did Bose 
(about 1924) point out that we could, alternatively to the 'hohlraum' oscil- 
lator statistics, speak of photon statistics, but then we had t o  make it 'Bose 
statistics'; Very soon after, Einstein applied the same to the particles of an 
ideal gas. And thereupon I pointed out that we could also in this case speak 
of ordinary statistics, applied t o  the wave mechanical proper vibrations 
which correspond t o  the motion of the particles of the gas [Schrodinger, 
1952, 49-501. 

We wish only to point out, as explained above, that Bose did not actually 'speak of 
photon statistics' -it was implied by his counting of quantized photon states, and this 
only became gradually clear with Einstein's application of Bose's counting method t o  
ideal gases, although Ehrenfest and Natanson had already pointed this out in 1911 and 
1914 respectively in relation to Planck's counting method of December 1900 which Bose 
showed was applicable to light-quanta. 

m. Did Bose make a 'shot in the dark'? 
Some recent widely read scientific biographies have given rise t o  the impression that 
Bose made 'a shot in the dark' with three assumptions all of which turned out t o  be 
correct but none of which he tried to justify 'by arguments of any kind; they seemed to 
appear intuitively to his mind, perhaps because his thoughts were uncluttered by the 
ongoing controversies of the European physicists.' [W. Moore, 1989,181; A. Pais, 1982, 
4281 The assumptions were that photons were (a) massless particles capable of existing 
in two states of polarization, (b) indistinguishable and (c) their number was not 
necessarily conserved. The record must be put right. That photons are massless 
particles with energy hv and directed momentum hvlc was proposed by Einstein and 
only used by Bose. That they exist in two possible 'polarization states'was inferred by 
Bose from phase space considerations which yield for the number of quantum states 
between v, and v, + dv, the factor 4xv4 dv,/c3 rather than 8xvv: dv, /c3, the factor 
that occurs in Planck's formula. Actually, as we have already discussed, in order t o  
account for this factor of 2, Bose had proposed that photons carried one unit of intrinsic 
spin which could only take the values *I. Whoever had heard of particles with 
polarization? Moreover, 'polarization' was a wave concept which Bose wanted to avoid. 
However, Einstein quietly dropped it and the statement regarding the polarization 
factor was most probably inserted by him. Since Bose's original manuscript in English 
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is missing from the Einstein archives and Bose did not keep a copy, there is no way to 
verify this. 

How about 'indistinguishability? Again, as we have seen, although Bose did not 
explicitly use the word 'indistinguishable' which is by itself rather va ue, he did use F Planck's division of phase space into elementary cells of volume h to justify his 
counting method for states (which implied indistinguishability of the quanta), namely 
that there cannot be more than one quantum state in an elementary cell. 'In any case,' 
he wrote, 'the total number of cells must be regarded as the number of possible 
arrangements of a quantum in the given volume.' What is not usually appreciated in 
usual expositions of Bose statistics is that Bose did not count the number of ways of 
distributing individual photons over a set of states. Instead, he calculated the thermo- 
dynamic probability of a macroscopic state by counting the number of ways in which 
the macroscopic state can be thought t g  be realized through given distributions of the 
number of photons over the micro-states (phase space cells). 

Finally, what about non-conservation of photons? This is a non-issue. Since, like 
Debye [19101, Bose considered the statistical thermodynamics of an open system of 
radiation in thermal equilibrium and did not include the molecules of matter with 
which this radiation constantly exchanged energy (which he did in his second paper 
which we shall turn to presently), there was no question of conservation of energy 
quanta even if treated as massless particles. In his 1917 derivation of Planck's law 
Einstein did not impose the conservation of light-quanta which he certainly regarded 
as massless particles interacting with molecules. Since Bose was not doing anything 
new or different in this respect, there was no original or deep comment he could have 
made on this issue. Nevertheless, i t  is true that Bose, like most others who have made 
revolutionary contributions, did not, and could not be expected to, understand the full 
implications of their discoveries. 

n. Bose's second paper (1924) 
We now turn to his second paper [I9241 on 'Thermal Equilibrium in Radiation Field 
in the Presence of Matter ', also translated into German probably by Einstein himself. 
This paper, completed on 14 June 1924, i.e. more or less a t  the same time as the first 
paper, consists of two parts. In the first part Bose derived general conditions for 
statistical equilibrium of a system consisting of matter and radiation, independent of 
any special assumptions about the mechanism of the elementary radiative processes. In 
the second part he proposed a new expression for the probability of these elementary 
radiative processes which differed from that of Einstein. Einstein considered this 
hypothesis not to be 'applicable'to elementary radiative processes and gave two reasons 
for i t  in a footnote to the paper. As a consequence, the paper has been largely ignored. 
However, Bose remained firmly of the opinion for the rest of his life that Einstein had 
not done him justice. 

Bose started off by giving a quick critical review of the most important derivations 
of Planck's law until then given by Debye [19101, Einstein [19171, Pauli [19231, and 
Einstein and Ehrenfest [I9231 on the scattering of radiation by electrons. Bose consid- 
ered Debye's 1910 derivation not to be 'completely independent of classical electrody- 
namics' since he derived the factor 8xv: Vdv,/cS from the normal modes of the ether. 
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He considered the derivations of Einstein [19171, Pauli [I9231 and Einstein and 
Ehrenfest [I9231 to be dependent on ad hoc special assumptions about the probability 
of elementary radiative processes. 'The problem of thermodynamic equilibrium of 
radiation in the presence of material particles,' he wrote, 'can however be studied using 
the methods of statistical mechanics, independently of any special assumption about 
the mechanism of the elementary processes on which the energy exchange depends. 
In this way we obtain a general relation which is valid for all special assumptions about 
the elementary processes and their probabilities.' This is in keeping with Kirchhoff's 
law. He then went on to say: 'If i t  is possible to write down the thermodynamic 
probability for any particular distribution of quanta of radiation and the probability 
for any arbitrary energy distribution among the particles, then the thermodynamic 
probability for the bigger system consisting of matter and radiation is simply the 
product of the two probabilities. The condition of equilibrium is simply that the 
resulting probability must be a maximum.' For the thermodynamic probability for 
radiation, Bose used the expression 

(A, + N, dv) ! w = n  
, A, ! N, dv ! 

where A, = 8nvv2 dv/c3 which, he stated, had been derived earlier. As references he 
quoted his own paper and that of Debye [Debye 19101. (It is curious that  the reference 
to his previous paper is given as 'The author, to appear in Phil Mag'. This is because 
Bose had submitted his paper first to the Philosophical Magazine. Not hearing from 
them for a while, he sent a copy to Einstein. While translating Bose's second paper, the 
translator obviously forgot to change the reference of the earlier paper to Zeitschrifl 
far Physik 26, 178-181, 1924). Although expression (28) is indeed the Ansatz used by 
Debye, it does not appear in Bose's first paper! Instead, the corresponding expression 
that appears in his first paper is (271, the form given by Natanson. As we have seen 
earlier, the two are mathematically equivalent, but Bose did not care to explain this, 
probably because this result must have been fairly well known in the literature in those 
days. 

For the thermodynamic probability for material particles. Bose writes: 

This can be found easily. We want to generalize our assumptions a little so 
that the case of the Bohr atom with discrete energy levels as well as the 
case of translational energy of particles can be included. Let the phase space 
be divided into cells. For every cell there is a probability g that a particle 
occupies it. The g's are in general equal except for the case of Bohr's atoms. 
The thermodynamic probability for any arbitrary distribution nl,  nz etc 
among the different cells is, 
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(our italics). Unlike in the case of radiation (expression (271, Bose now uses the factor 
ll g:i for material particles and obtains the classical Maxwell-Boltzmann distribution. 
i 

In other words, he treats material particles as in classical (distinguishable) statistical 
mechanics but light-quanta according to quantum (indistinguishable) statistical me- 
chanics. 

Finally, he writes down the thermodynamic probability for the total system as the 
product of (28) and (29) : 

with 

and 

XNT = N.  

He then considers an elementary process in which a particle passes from the rth cell 
to the sth cell while a light-quantum of frequency v changes into a light-quantum of 
frequency v.' The stationarity of W subject to the conditions (31) and (32) gives 

where 

x ~ V ' - Z ~ V + E , - E ,  = 0 .  

Bose then demonstrated that (33) indeed generalized the results of Pauli [I9231 and 
Einstein and Ehrenfest [I9231 without the need for any ad hoc assumptions regarding 
the elementary radiative processes designed to give Planck's formula. In particular, in 
the case of Bohr's atoms considered by Einstein in 1917, equation (33)  reduces to 

which is Einstein's condition derived on the assumption that atoms in higher energy 
levels make transitions to lower energy levels in two ways: 

1. Aspontaneous transition as in radioactivity independent of the state of the external 
radiation field. 

2. An induced transition whose probability depends on the state of the external 
radiation field. 
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Transitions from lower to higher energy levels always take place by induced absorption 
whose probability depends on the state of the external radiation field. Further, Einstein 
had to postulate certain relations (namely, the opposite limiting Wien and Rayleigh- 
Jeans laws) among these transition probabilities to obtain Planck's law. Bose's deriva- 
tion is independent of all these assumptions. I t  is for thisreason that  Einstein took 
the trouble to have the paper translated into German and communicated i t  to Zeit- 
schrift fiir Physik. However, his disagreement with Bose started from the next part of 
the paper in which Bose proposed a new expression for the probability of an interaction 
between a particle and a quantum of radiation. 

Bose's starting point was the following obse=vation which he considered to be 
fundamental : 

. . . even in a collision no interaction is as probable as the occurrence of any 
special interaction. . . From the classical theory. . . one would expect that 
there is some interaction whenever a quantum and a material particle come 
together. Therefore here it is a question of a departure from classical theory. 

The assumption made above, that even in a collision no interaction need 
occur, is quite analogous to the assumption of the stability of stationary 
states which is so fundamental to Bohr's theory of line emission and can 
be traced back to the same' origin-the probability of existence of the 
stationary states of the particles. I t  is interesting to remark in this connec: 
tion that  in the analogous case of a collision of an electron with an atom, 
experiments show that the electron goes through the atom without chang- 
ing either the interatomic or its own motion. (our italics) 

Bose was obviously referring to the Rarnsauer-Townsend effect. He saw a simple 
way of realizing the non-classical possibility in Planck's cellularization of phase space. 
Let p, be the number of cells with r quanta. 'In order that the radiation and particle 
may interact, it must be in a cell occupied by a quantum. The particular cell which the 
molecule under consideration occupies will pass through all possible states if we 
observe it long enough, that is, sometimees i t  is empty, sometimes occupied by 1 
quantum, sometimes by 2 quanta etc. The duration of these events will be finally 
proportional to the equilibrium values of p,, pl etc.When r quanta and a particle are 
together, then either an exchange of energy takes place or nothing happens.' (our italics) 
Therefore r + 1 different events are possible, namely the exchange of 1 quantum of 
energy, 2 quanta etc or no exchange a t  all. Therefore the total number of possible events 
is 

The number of cases in which interaction or energy exchange occurs is 
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Consequently the probability of an interaction is 

This is Bose's second fundamental result. 
Having derived this result, Bose then considered Einstein's 1917 problem, namely 

Bohr atoms exchanging energy with the radiation field. In order to be consistent with 
the fundamental equilibrium condition (351, he found i t  was sufficient to consider (a) 
transitions from lower to higher states through absorption of quanta of characteristic 
frequency v and (b) transitions from higher to lower states to be spontaneous, i.e. 
independent of the external radiation field. The additional assumption of induced 
emission (negative radiation) processes was not necessary. Let the strength of induced 
absorption be p. Then the probabillity of induced absorption is 

Let the coefficient of spontaneous emission be a. Then for equilibrium one gets 

which agrees with (35) provided g, P = g, or. A substitution of the value of nJn,  then 
gives Planck's law. Bose then treated the cases considered by Pauli [I9231 and Einstein 
and Ehrenfest [I9231 and showed that the fundamental equilibrium condition (33) 
followed from the probability law (38) without requiring any further assumptions. 

In a note added to the paper Einstein gave two reasons why he thought Bose's 
hypothesis about the probability of elementary radiative processes was not 'applicable'. 
In his letter of 3 November 1924 Einstein summarized the two reasons. Your principle 
is not compatible with the following two conditions: 
1) The absorption coefficient is independent of the radiation density. 
2) The behaviour of a resonator in a radiation field should follow from the statistical 

laws as a limiting case.' [Einstein to Bose, 3 November 19241 
Let us see to what extent these criticisms were fair. As far as the first point is 

concerned Einstein was referring to Beer's law. Bose's probability law, however, pre- 
dicted a dependence of the absorption coefficient on the radiation density, decreasing 
with it. 'If the behaviour had been such,' wrote Einstein in the note, 'then i t  would 
certainly have already been discovered in the case of infra-red radiation from hot light 
sources.' This is hard to believe. The departure from classical behaviour predicted by 
Bose's principle should occur only when Nv / A  cc 1, i.e. for very low intensity 
radiation. I t  is now well known that the departures from classical behaviour predicted 
by quantum optics are not seen even when the intensity of light is extremely low, 
unless the source happens to be of a special kind (like a single-photon source). The 
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reason is that  light from all classical sources is in a coherent state in which the number 
fluctuation is extremely large (Poissonian or higher). Therefore only light from 'single- 
photon states' (Fock states) and 'squeezed states' and other such 'sub-Poissonian 
situations' show departures from classical behaviour. [Aspect, 1987; Loudon, 19831 
Such light sources were certainly unknown in 1924. 

The second point concerns the 'correspondence principle' (not necessarily Bohr's) 
which in this case implies that a radiation field can transfer positive as well as negative 
energy to a resonator, depending on the phase. 'The probabilities of both these transi- 
tions must depend on the density of radiation, that is, on N,, as opposed to Bose's 
hypothesis,'wrote Einstein. The discovery of masers and lasers after the Second World 
War eventually vindicated Einstein's contention. I t  was nevertheless eventually an 
empirical rather than a sound theoretical refutation. Although the 'correspondence 
principle' was used as  a heuristic tool with great success by Einstein, Planck and later 
the Copenhagen school prior to the discovery of quantum mechanics around 192511926, 
it is no longer regarded as a fundamental principle. In fact, quantum mechanics itself 
is known not to satisfy this principle. [Liboff, 1980; Cabrera and Kiwi, 1987; Bohm and 
Hiley, 19851 For example, the nodes of the eigen-solutions inside a box do not disappear 
for arbitrarily high quantum numbers so that a classical particle cannot pass through 
such points. Also the cross-section for hard sphere scattering has no classical limit. 
Einstein was aware of this and used i t  against quantum mechanics as well. 

o. Bose's third (unpublished) paper (1925) 
Although Bose was unhappy, particularly with the first point ragarding Beer's law, he 
accepted the second point, modified his stance and wrote a third paper which he sent 
to Einstein from Paris on 27 January 1925. He sent him a letter under separate cover 
in which he wrote : 

It seems that the hypothesis of negative Einstrahlungstands, which, as you have yourself 
expressed, reflects the classical behaviour of a resonator in a fluctuating field. But the 
additional hypothesis of a spontaneous change, independent of the state of the field, seems 
to me not necessary. . . 
I am rather anxious to know your opinion about i t .  I have shown it to Professor Langevin 
here and he seems to think it interesting and worth publishing. 

It  was never published. Neither did Bose keep a copy of the paper, nor is there one 
in the Einstein Archives as far as one can ascertain. So, the precise contents and details 
will remain unknown. Bose arrived in Berlin in October 1925 and discussed his new 
ideas with Einstein. Einstein was so convinced of the necessity and reality of the two 
independent processes of emission of light from atoms (spontaneous and induced) that 
he could not agree with Bose that one of them, the former, was unnecessary to assume 
in deriving Planck's law. To Bose, the process of emission of light appeared as a single 
physical process and the division into two independent processes appeared artificial. 
The assumption of one, he claimed, would automatically imply the other in thermal 
equilibrium, given the special statistical property of the radiation field. Initially Bose 
started with spontaneous emission as input but later changed his position. It was clear 
to Bose that Planck's law was a consequence of the special statistical property of the 
radiation field itself and was independent of the mechanisms of energy transfer with 
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Bose's letter of 27 January 1925 to Einstein 
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atoms and molecules. This was indeed his capital contribution to physics and forms 
the substance of his first paper and the first part of his second paper. To Einstein, on 
the other hand, it appeared that Planck's law was a consequence of special mechanisms 
of energy transfer between the radiation field and molecules and that thermal equilib- 
rium was impossible without both induced and spontaneous emission. This was indeed 
the lesson he derived from his 191611917 papers which he considered to contain 'the 
fundamental outline of the future theoretical derivation.' Einstein was compelled to 
regard spontaneous emission as being independent of the state of the radiation field 
and an inherent property of atoms and molecules because in 1917 he was unaware of 
the special quantum statistical property of the radiation field. I t  is strange that  even 
aRer championing Bose's method he failed to see Bose's point about spontaneous 
emission. To Bose i t  was clear that it depended on the 'environment'in which the atom 
or molecule was placed. He wrote in his second paper 119241 : 

From classical theory one would expect that no stationary states are 
possible and that  an interaction or coupling (Bohr) between ether and the 
excited atom and the radiation connected with i t  is always present. On the 
other hand, in order to explain spectral emission we must assume i t  to be 
possible that  no interaction (emission) occurs. Because of the existence of 
stationary states we are therefore led to assign to every stationary state a 
probability coefficient or a mean life-time. 

- Recall the expression (38) for the fundamental probability Z? I t  can be written as 
n / ( Z + 1 ) where E = N, / A, is the average number of quanta per cell. For E > > 1, 
P tends to unity, the classical limit in which stationary states are not possible. I t  follows 
from this that  the average life-time of a stationary state (and therefore the probability 
of spontaneous emission) depends on the average radiation density E. Bose used to 
recount to his students Einstein's objection to this. 'Suppose there were only one 
hydrogen atom in the universe in an excited state,' Einstein once remarked to Bose, 
'don't you think it would radiate spontaneously and come down to its ground state? 
Bose did not disagree, but nevertheless, felt that such a gedanken situation did not 
capture the situation in a Hohlraum or cavity. I t  was Bose's intuition that eventually 
turned out to be right in the end, not Einstein's. Firstly, in Dirac's method of 'second 
quantization' (Dirac, 1927) which is widely used in quantum field theory today, one 
starts with a classical electromagnetic field in which the equality of the probabilities 
of induced emission and absorption (determined by the Fburier coefficients in the 
plane wave expansion) is built in, and obtains the spontaneous emission term as a 
consequence of the fundamental commutation rules. Although this is not exactly what 
Bose had proposed, i t  fits in with his basic contention that  spontaneous emission is a 
consequence of the quanta1 property of the radiation field itself and need not be 
introduced as  an independent hypothesis concerning the radiating atoms. Einstein's 
initial reaction to Dirac's contribution was also decidedly negative. [Pais, 1982,4411 

Secondly, in quantum electrodynamics spontaneous emission is not a property of an 
isolated atom but of an atom-vacuum system and can be significantly inhibited or 
enhanced by placing the atoms in a suitable environment. In quantum electrodynamics 
the vacuum is not empty and devoid of everything-it is full of virtual particles 
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appearing and disappearing, interacting with one another; i t  provides a non-trivial 
physical 'environment' to an atom. A whole new branch of quantum optics called 'cavity 
quantum electrodynamics' has developed since about 1987 utilizing dramatic changes 
in spontaneous emission rates to construct new kinds of microscopic masers that 
operate with a single atom and a few photons or with photons emitted in pairs in 
a two-photon transition. This is what two of the pioneers in the field have to say : 

Ever since Einstein demonstrated that spontaneous emission must occur if 
matter and radiation are to achieve thermal equilibrium, physicists have 
generally believed that excited atoms inevitably radiate. Spontaneous emis- 
sion is so fundamental that it is usually regarded as an inherent property 
of matter. This view, however, overlooks the fact that spontaneous emission 
is not a property of an isolated atom but of an atom-va.cuum system. The 
most distinctive feature of such emission, irreversibility, comes about be- 
cause an infinity of vacuum states is available to the radiated photon. If 
these states are modified - for instance, by placing the excited atom 
between mirrors or in a cavity- spontaneous emission can be greatly 
inhibited or enhanced. 

Recently developed atomic and optical techniques have made i t  possible to 
control and manipulate spontaneous emission. [Haroche and Kleppner, 
19891 

In his third unpublished paper Bose had gone further. He wrote in his letter of 27 
January 1925 to Einstein : 

I have tried to bok  at the radiation field from a new standpoint and have sought to 
separate the propagation of Quantum of energy from the propagation of electro-magnetic 
influence. I seem to feel vaguely that some such separation is necessary if Quantum theory 
is to be brought in line with Generalized Relativity theory. 

The views about the radiation field, which I have ventured to put forward, seem to be 
very much like what Bohr has recently expressed in May Phil Mag 1924. But it is only a 
guess, as Icannot say honestly to have exactly understood all he means to say about virtual 
fields and virtual oscillators. 

This letter shows that Bose was one of the first persons to have formulated the idea 
of an 'empty wave'(an electromagnetic wave propagating in space and time but carrying 
no energy-momentum). He was certainly the first person to have intuitively seen its 
relationship with the principle of General Relativity, although the connection is not 
clear. Einstein already had the idea of an empty wave in his light-quantum hypothesis 
according to which 'a ray of light expands starting from a point, the energy does not 
distribute on ever increasing volumes, but remains constituted of a finite number of 
energy quanta localized in space and moving without subdividjng, and unable to be 
absorbed or emitted partially.' [Einstein, 19051 

If the localized quanta carry all the energy and momentum, what happens to the 
electromagnetic waves which can produce interference? There was no clear-cut answer. 
The problem was so acute that Einstein referred to these waves as Gespensterfelder 
(ghost waves) guiding the photons. [Bohr, 1945,2061 Louis de Broglie also had a similar 
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idea in his concept of phase or pilot waves 'guiding the propagation of the energy' and 
enabling a 'synthesis of the waves and the quanta.' [de Broglie, 1923, 5491 Slater also 
arrived a t  a similar notion. As he recalled : 'A number of scientists - W [illiam] F 
[rancisl G [ray] Swann, among others -had suggested that the purpose of the electric 
field was not to carry a continuously distributed density of energy, but to guide the 
photons in some manner. This was the point of view which appealed to me, and during 
my visit a t  the Cavendish Laboratory in the fall of 1923, I elaborated on it. [Slater, 
1975,91 Slater who believed in the existence of light-quanta as well as electromagnetic 
waves found the following way out of the difficulty : 'I decided you could only have a 
statistical connection between them because you couldn't set up a vector to represent 
the photon in electromagnetic theory : that you would have the intensity of the wave 
governing the probability of finding the photon there. And I wanted to have the wave 
emitted d&ing the stationary state so as to get i t  emitted over a long enough period so 
that i t  would have a suitable spectral distribution.' [Slater, loc.cit., 301 

When Slater arrived in Copenhagen on 21 December 1923 to collaborate with 
Hendrik Kramers and Niels Bohr, he was prevailed upon by them to relinquish 
Einstein's light-quantum hypothesis but to retain his idea of electromagnetic waves 
emitted by oscillators during their stationary states and carrying no energy. They 
coined the name virtual oscillators for them. The collaboration resulted in the famous 
Bohr-KramersSlater proposal [Bohr, Kramers, Slater, 19241 which Bose referred to 
in his letter to Einstein. In the BKS proposal the conservation of energy (and momen- 
tum) was abandoned for individual transition processes in atoms but was retained as 
a statistical concept. Most interestingly, they wrote : 'the transitions which in [the 
Einstein theory of 19171 are designated as spontaneous are, in our view, induced by 
the virtual field.' Bose must have noted this with satisfaction and this must have been 
one reason why he regarded the BKS proposal to be 'very much like'his own. The theory 
was however quickly falsified by experiments carried out by Bothe and Geiger [Bothe 
and Geiger, 19251 and Compton and Simon [Compton and Simon, 1925a, bl which 
established the conservation of energy and momentum in individual processes. Never- 
theless, their ideas were reformulated and generalized by Born [I9261 in his well known 
statistical interpretation of the wave function in quantum mechanics, an idea now 
universally accepted. This is what Heisenberg wrote about its historical antecedent : 

'The probability wave of Bohr, Kramers and Slater. . . was a quantitative version of 
the old concept "potentian in Aristotelian philosophy. I t  introduced something standing 
in the middle between the idea of an event and the actual event, a strange kind of 
physical reality just in the middle between possibility and reality 

Later, when the mathematical framework of quantum theory was fixed, Born took 
up this idea of the probability wave and gave a clear definition of the mathematical 
quantity in the formalism.' [Heisenberg, 1958, 291 

On 16 July 1946 , twenty-one years after he received Bose's letter of 27 January 
1925 from Paris, Einstein wrote to Schrijdinger about the latest status of the unified 
field theory (of electromagnetism and gravitation based on the General Principle of 
Relativity): 

'It is indeed correct that the energetics occurs quite differently here compared to 
Maxwell-Poynting. I consider, however, that in this respect the Maxwell theory is really 
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false on account of quantum actualities. In light the energy exists in something like 
quasi-singularities. The wave field as such should therefore not be the site of energy. 
One must simply require this and be happy that in the new theory the transverse wave 
field is indeed present but as such transports no energy.'(Our italics) [Moore, 1989,4271 

There is no mention of Bose, his letter or his third paper which Einstein must have 
rejected outright, although the facsimile of Bose's letter supplied by The Jewish 
National and University Library, Jerusalem, shows that he had marked the phrase 
'h.ave sought to separate the propagation of Quantum of energy from the propagation 
of electro-magnetic influence' within parentheses. 

Louis de Broglie's original interpretation .of Schrodinger's equation [de Broglie, 
19271 was given a firmer basis by Bohm 119523. In the de Broglie-Bohm 'casual 
interpretation' particles are thought t o  exist independent of observation, embedded in 
a wave field y which satisfies the Schrodinger equation, with a density (over the 

2 
statistical ensemble) of value I yI . One can show that this approach can explain the 
interference pattern observed in double-slit experiments without abandoning the 
notion of well-defined particle trajectories. [Philippidis, Dewdney and Hiley, 19791 
Experiments for testing certain consequences- of 'empty waves' have been proposed 
.[Selleri, 1990, ch. 41 and some have already been carried out [Zou, Grayson, Wang and 
Mandel, 19921. However, such experiments have not yet ruled out all versions of'empty 
wave' theories [Vigier and Holland, 19911. 

Bose remained ever grateful to Einstein (whom he always addressed as 'Sir' or 
'Master') for his encouragement and the interest he had taken in his first paper. 
Nevertheless, deep within himself, he felt a resentment that rankled all through his 
life. Three of his most perceptive and original ideas were scotched by Einstein : 

1. The idea of the photon spin which is now established beyond doubt. (That Bose 
proposed the idea in his first paper in 1924 cannot as yet be established beyond 
every shred of doubt, although circumstantial evidences are str'ong.) 

2. The idea that spontaneous emission is not an inherent property of an isolated 
atom, totally independent of the radiation field, also confirmed by experiments 
since 1987. 

3. The idea of the propagation of electromagnetic influence carrying no quanta of 
energy, an area of current theoretical and experimental activity. 

Bose could not publish a single paper during his two years in Europe a t  a time when 
physics was going through a turmoil and one of its most exciting periods. He returned 
to Dhaka a disheartened man and did not publish anything in theoretical physics for 
the next twelve years ! 

The author is grateful to N Mukunda, V Singh and J C Pati for a critical reading 
of the manuscript and suggesting improvements. 

PARTHA GHOSE 
S N Bose National Centre for Basic Sciences, Calcutta 
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On the Influence ofthe Finite k lume  of Molecules on the Equation of ~ t a t r f ~ y  
MEGH NAD SAHA, M. SC., and SATYENDRA NATH BASU, M. SC., Lecturers on 
Mathematical Physics, Calcutta University. 

I t i s  wellknown that t i e  departure of the actual behaviour of gases from the ideal 
NK6 state defined by the equati0n.p = - isdue to two causes : (1) the finiteness of the 

v 
volume of the molecules, (2) the influence of the forces of cohesion, i.e. the attractive 
forces amongst the molecules. van dei Waals was the first to deduce an equation of 
state in which all these factors are taken into account; according to van der Waale, 
we have 

where b = 4x volume of the molecules, a defines the forces of cohesion. 

In all subsequent'modifications of this equation (Clausius, Dieterici, or D. Berthelot) 
the changes which have been proposed all relate to the influence of the cohesive forces; 
the part of the irgument dealing with the finiteness of molecular volumes is generally 
left untouched. 

But it has been found that the results of experiments do not agree with the predic- 
tions of theory if we, regard a and b as absolute constants. Accordingly it has been 
proposed to regard both a and b as functions of volume and temperature.* 

But before proceeding to these considerations, it is necessary fo scrutinize whether 
the influence of finite molecular volumes is properly represented by the term b. From 
theoretioal considerations, the conclusion has been reached that this is not the case. 
The wgument is as follows : 

According to Boltzmann's theory, 

the entropy S = K log W+C,  

where K = Boltzmrtnn's gas-constant, W = probability of the state. Let us now 
calculate the probability that a number N of molecules originally confined within the 
volume Vo and possessing finite volumes, shall be contained in a volume. V. Neglecting 

V the influence of internal forces, the probability for the first molecule is - ,for thesecond 
vo 

v-P rriolecule the probability is - , where /? = 8 x volume of a single molecule, for when 
vo-B 

t Communicated by the Authors. 
*Compare van der Waals, Proc. Amat. 1916 ; Van Lear, Proc. Amet. Vol. xvi, p. 44. 
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the first molecule is in position, the space enclosed by a ooncentrio sphere of double 
the radius of the molecule will not be available for the seoond moleoule. The avail- 

able space is therefore V-/?,  whence the probability is - '-' Introduoing similar 
70-B ' 

mnsiderations for the rest of the molecules, we have 

We are, of course, neglecting those cases in which partial overlapping of the 
regions occupied by two or more molecules occurs; for the number of such cases a n  
at best be a small fraction of the total number. Even cases of aotual association 
do not include these, for in that case, two discrete molecules become merged into one, 
without their outer surfaces being actually in contaot. 

From the relations S = K log W+C 

we can easily verify that 

RB = -- V-26 
26 log 7 ( R  = N K )  ... (3) 

NK8 Ae a first approximation, when 6 is small compared to v, we obtain p = - v 
,(Boyle-Charles-Avogab h w ) ,  and as a, second approximation we obtain 

NKO p =- (van der Waale oorrection). 
V-6 

We also note that 
x pV = NKB.- where x = & 1-eJ: KO . .. (4) 

To account for the infiuence of internal forces, we multiply, following the lead of 
a 

Dieterici, the above expression (3) by e-~- having the same signifioance as. before. 
From this equation of state, we can ea& verify the following resulta for the 

critical point : 

2c Critical volume, V, = - b = 3.1686, 
e- 1 

NKB K =  - = 3.613. 
7, 
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The corresponding values of V ,  from the van der Waals and the Dieterici equations 
8 e2 

are (3b, 2b) respectively, and of K are (x = 2.66, - 2 3.696 ) respectively. 

As a matter of fact, for the simpler gases, the value of 'K '  obtaiued in this paper 
e2 

agrees better with the experimental results that the Dieterici value we have for 

oxygen* K = 3.346, for nitrogen? K = 3.53, for argon3 K = 3.424, for xenon** 
8 .  

K= 3.605. We need not consider the van-der-Waals value -, for it fails entirely. 3 

The most serious drawback to Dieterioi's equation is, according to Prof. Lewis 
(vide Lewis's Physical Chemistry, vol. ii. p. 117) that it makes b or the limiting volume 

5 3 bhile the limiting volun~e, obtained by the extrapolation of Cailletet-Mathias 

mean density line to the temperature 0 = O°K is about - The value of b obtained 
4 ' 

v c  in this paper, viz., - therefore agrees better with this value. 
3 16 

It is yet premature to predict what influence this investigation will have on the 
speculations concerning the variability of the volume of nlolecules with temperature. 
A more detailed investigation dwelling upon this point, and the application of the 
fornlula (4) to Amagat's (pv, p) curves, will be communicated shortly. Meanwhile 

a -- 
we point out that the factor e NKev has been introduced into the expression for 

'p' only as a ,provisional measure, though it is considered that this step, thoughnot quite 
exact, is one in the right direction. In  the next paper an &tempt will be made to 
introduce energy into probability calculations. 
Sir T. N. Palit Laboratory of Science, 

Calcutta. 
Note added in proof-On consulting the literature on the subject, we noticed that in 
several papers in the Amsterdam Proceedings (vids vol xv, p. 240et seq.), Dr. Keesom 
of Leyddn had also made attempts to deduce the equation of state from Boltzmann's 
entropy principle. But, in the expression (2) for W ,  he introduces, before differentia- 

b tion, an approximation in which terms up to second order in -are retained only. 
v 

In this way, he arrives at the van der Waals' form v-b for the influence of finite mole- 
cular volumes. In  obtaining our present equation of state (4), no such approximation 
has been made. (M. N. SAHA and S. N. BASU.) 

*Mathias and I(. O n n e s ,  Proo. Amst. Feb. 1911. 
TBerthelot, Bull. de b Soo. France cle Phye. 167 (1901) 
$Methim, O n n e s ,  and Crommelin, Proo. Amst. 1913, p. 960, Vol. xv. 
**Paterson, CdRRS.  Whvthw-Cfrav. Proa. Bov. Soc. Lond. A. kuxvi. D. 579 (1912). 
Reprinted from Phil Mag Ser 6,36, pp. 199-203,1918 (Taylor and Frands, London). 



The S tress-Equations of Equilibrium 

(Read April 6th, 1919) 

It was shown by Mitchell that the six stress-coefficients in an isotropic medium 
satisfy six equations of the type : 

Them equations however h v e  not been used for solving the general problems of 
Elasticity. It is shown here, that the equations can be successfully integrated in 
the case of a semi-infinite body bounded by a plane. In the case of the sphere the equ- 
tions can be conveniently transformed, in a different form, which then admit of inte- 
gration in an infinite series of spherical harmonics. 

(1) The semi-injnite solid bounded by z = 0 

The surface tractions X, Y, Zz, are supposed to haw given values over the 
plane z = 0 

Consider the equations 

Since 0 is a harmonic function the' general solution can be wt.itfen as 
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where X,,., Y,,, Z,,, are harmonic funotions vyhich have given values X,Y,Z,, over 
the plane z = 0. 

The functions me therefore uniquely determined; they are in fact: 

1 a X, I a Xzo = - - J J - dxdy, Yz0 = -- 
2n dz r 2n az J J- > dxdy. 

1 d 2, Z - - J J - dxdy, 
'O - 2n dz  r 

also since 

ax, a ~ ,  az, -+ -+--- = 0 ax ay az  

we have from (1) 

where 

Thus X,, Y,, Z,, 0 are d l  determined. 

The solution may be afterwards completed, and U, V, W found out as in Cerrutti's 
method. 

( 2 )  The problem of the wphere. 
Consider the three equations 
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Multiplying by x, y, z, andadding we have 

Now since 

we have 

8 0  where r -- - 0 is also a harmonic function. 
dr 

The form of the equations is exactly similar to the preceding equations. 

(3) The sphere of radiw a, has given tractions X,, Y, ,  Z,, over the surfuce. 

Assuming 

where Q, is a solid homogenoous harmonic of the nth degree, 

a 0  r-- 0 = Z(x-1 )0 ,  
ar 

also remembering that 

v8(ra-a2)Pn = 2(2n+3)PS, where P, is a solid homogeneous h o -  
nic of the nth degree, we clee the solutions of the equation (2) can be expreeeed in the 
form 
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1 n- 1 r z ,  = - - a o n  C - (r2-a2)-+a&, 2 ( l+a )  2n+l  dz 

where X,, Y,,, Z,,, are harmonic functions which have given values over the aurfaoe 
of the sphere T = a and hence are completely determined. If 

X, = Z.Xn7 Y, = Z Y,, I;,, = I: 2,; 

we have 

Again 

ax, ax, ax, ar, a ~ ,  a ~ ,  = ~ [ ~ + F + ~ l + ~ I ~ + ~ - + ~ l  
az, az, +z [=+ ay +$ ] +x,+ y,+zz = 0, 

it follows that 
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so that 

S N Boae : The Man and His Work 

where 

So that 

Thus X,, Y,, Z,, 0 are all determined in terms of the known value of X,, Y,, 
Zt, on the surface. 

Reprinted from Bull Cal Math Soc 10, pp. 117-121, 1919 (Calcutta Mathematical Society). 



On the Herpolhode 

(Read August 31st, 1919) 

X .  de Sparre has shown that the horpolhode of Poinsot contains no point of in- 
flexion; his proof was based upon the properties of elliptic functions. Various other 
proofs of the theorem have since been given by Mannheim, Saint-Germaina, Routh3, 
Le- Cornu* and others. 

The following simple proof of the theorem is based solely on the dynamical consi- 
derations of the Poinsot motion; hence it might appear interesting and instructive. 

Let A ,  B, C be the three principal moments of inertia of a body fixed at a point 
0; let 01 and 01' be the two hstantaneous axes, at  time t and t+dt, I, I t ,  etc., an the 
invariable plane trace out the horpolhode, length of 01, 01', etc. being proportional 
to the resulting angular velocity at  all times. 

At a point of inflexion of the horpolhode, there will be a stationary tangent, i.e., 
the total change of the vector II' will be then along its own length. 

Remarking that 11' has components proportional to w1 dt, w, dt, w, dt, along the 
three moving principal axes, the condition reduces to 

w1 wa 
We have from Euler's equation8 

1An exactly similar proof of the theorem discuesed in this paper h*s been given by Prof. W. Van 
der Woude in a paper eptitled de Herpoloide Van Poinsot", publish4 in Nieuw Archief voor Wis- 
kunde, Tweede Reeks, Dee1 XII, Eerste Stuk, pp. 94, 95 (1919). It appears however from an enquiry 
that this journal was not received in the library of the Society before the beginning of November, 1919 
-8. K. B. 

2 Compte Rendu-1885 
SAdvanced Dynamics. 
'Bulletin de 800. Math. de France-1906. 
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from which 
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. . 
Awl = ( B - C ) ( ~ ~ ~ + & W , )  

6 .  

Bw, = ( c - A ) ( ~ & u , + ~ , w ~ )  

CW, = (A-B)(wl wt+WawI) 
Substituting in (1) we have 

and two similar equations. 

So that 

But remembering that 

Aw, wl+ B W , ~ , + C W ~ W ,  = 0 

we have 

hence substituting, we get as a necessary condition for the point of infiexion 

which is obviously impossible because B+C- A, C+ A- B, A+ B-C, are all positive, 
so that the left-hand side is an essentially positive quantity. 

Reprinted fromBt~ll Ca1 Math Soc 11. pp. 21-22, 1919 (Calcutta Mathematical Society). 



ON THE EQUATION OF STATE. 

To the Editors of the Philosophical Magazine. 
Sirs, - 

In a paper published in the 'Philosophical Magazine' for August 1918 it has been 
shown that from Boltzmann's theory of entropy we can m i v e  at an equation of state 

Amongst other applications of this theorem it was shown that the value of the criti- 

ROC 2e 8 cal constant K = - would be ---- =3.53, instead of van der Waals' -and Dieterici's 
PC Ve e-1 3 

A table was given showing that in the case of the most of the elementary gases 
S 

the value 3.53 corresponded better with experimental results than either-- or 3.69. 3 

The list comprised He, N,, O,, Xe, but not Hydrogen, about which the experi- 
mental data were not satisfactory. 

Recently the critical data for Hydrogen have been re-determined in the Laboratory 
of Prof. K. Onn& (vide Proc. K. Akad. Wetenschappen. Amsterdam, Vol. xx. 191 7). 

I t  has been found that 

8, = 33".18K, d, = .0310, p, = 12.8 atmospheres; 

from these data, K = 3.35. 

It is superfluous to add that this value of K is in much better agreement with the 
8 ea 

value 3.53 than with either the value- = 2.66 or - = 3.69, thus corroborating the 3 2 
belief expressed in the aforesaid paper that the equation (I), though not final, marks 
a step in the right direction. 

University College of Science, 
Calcutta, India. 

Reprinted from Phil Mag Ser 6,39, p. 456,1920 (Taylor and Francis, London). 



On the Deduction of Rydberg's Law from the Quantum Theory of Spectral 
Emission." By SATYENDRA NATH BASU, M. SC., University Lecturer in Physics, 
University College of Science, Calcutta. 

It is well known that Rutherford's model of the atom has been fruitful in explain- 
ing many facts connected with atomic radiation. In  the simplest case of hydrogen, 
with a nucleus consisting of a single positive charge, and an electron, Dr. Bohr has 
successfully applied the quantum theory to explain the Balmer series of hydrogen 
spectra. The mathematical problem of finding the spectral series for any atomic system 
has since been clearly formulated by Sommerfeld, and the quanta condition has 
been generalized in a form suitable for system with any number of degrees of freedom. 
If q,, q,, q,, ... q, are co-ordinates to fix the position of the electron responsible for 
emission, and pl, pp, p3, . . . , p n  are the corresponding generalized momenta, any 
statical path, according to Sommerfeld, is characterized by the conditions 

where n's are whole numbers and h is Planck's constant, the integral being extended 
generally over the complete orbit. The radiation is supposed to take place when 
the electron jumps from one statical path to another. The difference in energy, a t  
the same time, flows away in the. form of a homogeneous radiation of frequency v, 

which can be calculated from the Bohr equation hv = W1- W,. Sommerfeld hw 
successfully applied this conception in explaining the fine structure of hydrogen lines. 
It is clear, however, that the problem of theoretically calculating the spectrum of any 
atom other than hydrogen is beset with difficulties of a formidable nature. It is exactly 
analogous to the dynamicd problem of "n" bodies, where only in favourable cases 
we are able to find solutions. Nevertheless, from a purely experimental standpoint, 
we know that the visible radiation from any element can be classified in definite series. 
The frequency of any line in the series c m  be expressed as a difference of two terms, 
each of which has the form 

where m is a whole number and a and /3 are two constants depending upon the element 
and the nature of the series. So that if we are to explain the formation of the series 

- - 

* Communicated by the Author. 
+Bohr, Phil. Meg. July 1913. 
**Sommerfeld, Ann. der Physik, li (1916). 
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from theoretical considerations following Bohr and Sommerfeld we must look upon 
each member multiplied by "h" as giving the energy of the atomic system when the 
radiating electron woves in a definite statical path. The complexity. of the inner 
atomic field under which the radiating electron moves .is to be lookedupon as bringing 
in the terms involving a and b. So A seems interesting to see what will be the corr- 
responding expression for energy in a system by which the oomplex nature of the 
internal field may be approxi&tely represented. In the case of any atom we have, 
in general, a condensed nuclear charge of +ne (where n'is the atomic number) surrounded 
by rings of electron at different distances. The number of eleotrons in total must be 
also equal to n in order to secure that the atom is electrically neutral in the ordinary 
state. 

In X-ray emission the electron displaced comes from the inner rings; in the case 
of visible radiation, however, we have reasons to think that the displaced eleotron 
responsible for radiation comes from the outermost ring-the valenoy electrons, as 
they have been designated by Sommerfeld. When excited for radiation, we can sup- 
pose that the electron in the outermost ring is removed to a greater distance from the 
centre than the others, so that the force acting upon it may be regarded as the 
resultant of the various forces exerted by the central charge and the remaining 
electrons. The potential at any point can be regarded as given by 

where r is the distance from the centre and r, is the distance from the s-th electron. 
If we neglect the influence of the moving electron upon the arrangement of the others 
surrounding the nucleus, it is clear that the potential can be approximately represented 

ea as --+ L*. The resultant field might be looked upon as due to a single positive r r2 
charge together with a doublet of strength L in a certain fixed direction which we 
take as our Z-axis. If we neglect the disturbing effect of the outer electron, L may 
be taken to be approximately fixed in direction and in magnitude in the small interval 
of time during which the active emission takes place. 

We may, therefore, take as our model a system consisting of a positive oharge 
and a doublet of strength L. We proceed to calculate the energy in a statical path on 
the above simplified hypothesis. 

The kinetic energy of the moving electron is obviously 

the potential energy 
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ea eL cos 6 v = --+ 
r ra ' 

Two integrals can be at  once written down : 

mra sin' 86 = c,, 

2ea 2 h  cos 8 
m[&++&+ra mn a @] - - + r4 

= -W. 
r 

To get another integral, we write 

d eLsin6 - (mr48)-mra sin 6 cos 8& = dt ra ' 

Integrated, it gives 

The expressions for three impulses mr, mr4  and mra sinWq5 osn now be written 
down : in terms of the oomtants of integration we have 

mra sin Wq5 = c1 

The quanta conditions can be written down. a,s 

o r 2  sina i$ dg5 = nlh, 

m r 3  d6 = nzh, 

I m&r = n,h, 

- W being twice the total energy of the system. The integrals are to be extended 
over the whole range within which the expression within the square root remains posi- 
tive. 
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The integration. 

From (1) we have obviously 

of the two remaining expressions, (3) can be integrated most easily : in fact, 

gives after integration 

The second integral can be written as 

by putting cos 0 = x.  

The right-hand side is to be integrated throughout the region, when the cubio 
remains positive. It cannot be integrated in finite terms; an approximation suitable 
for our purpose can, however, be made, assuming 2meL to be small compared with 
(c2-cf) = A. To see what this means we are to remember that c2-c; is of the dimen- 
sion of h2; so that 2 m L  must be small compared with ha, or L must be small compared 

ha 
with -. Now, if a ,  -P,.and y are taken as the three roots of the cubic, the cubic 

me 

where y is the greatest of the positive roots and D = 2meL. The limits of the integral 
are obviously a and -p, 

Hence 

l i  - xdx 
m = f  -8 ~ D + z ) ( u - x ) ( x + ~ ) ] ~ ~  
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Supposing 
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a - x  = (a+p) oosa 8, 

p+x = sipa 8, 

we get 

where 1 and K are the usual elliptio integrals, defined by 

a12 

On the sssumption that D is small, we have 

So that, expanding E end K and making necleasery approximations, we have finally 

Also 
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So that we have 

Now, collecting all the quanta conditions, we have 

So that we have 

and 

Assuming 

we have 

or 

Calling 

we have 

where 

we have approximately 
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So that 

So that the energy in the statical path 

if we suppose ,that the spectrum is due to ionized a t o m  in which the field can be 
approximately represented as a central charge of E = pe and a doublet of different 
strength L'. 

We have, by a similh reasoning, energy in a statical path 

where N = Rydberg number. 

As a result of numerous investigations on the nature of the spectral series, i t  has 
been shown that for many elements the different series can be grouped according 
to the following schemes : 
P-Series : 

v = (1.5, 4-(m, p1) 1 m = 2, 3, 4... 
-(m, P') 

11. Subordinate Series : 
v = (2, p1)-(m+'5,8) 

nz = 2, 3, 4... 
V = (2, p 2 ) - ( ~ + ' s ,  S) . 

1st Subordinake Series : 
v = (2, pl)-(m, d). 

Companion : 
v = (2, p1)--(m, d') 
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N 
Symbol (m, f )  stands for according to Rydberg, and 

N 
(m+f )" ( m + f + - q 2  

m2 

according to Ritz. 

The frequency of the lines emitted thus appears as the difference of two terms, 
each of which is to be regarded as corresponding to the energy in a definite statical 
path, on the Quantum theory. Sommerfeld* has recently given reasons for assuming 
that in any series of statical orbits corresponding to the different kinds of s, p, and d 
terms the azimuthal quqnta generally preserve a certain definite value, whereas the 
radial quanta can have all values from 0 to co; he thus shows that in s, p and d terms 
the azimuthal quanta generally have values 1, 2, and 3 respectively. 

Making the above assumptions in our formula, we see that the expression of the 

energy comes out as - Nh 
in the same form as required by the Ryd- 

(n,+n,+n,+A)2 
berg formula. The constants A, however, depends only upon n, and n,; it dimini- 
shes for increasing values of the azimuthal quanta; so that they decrease progres- 
sively in the s, p, arid d terms. Moreover, our form shows that A depends upon 
n, m d  n, separately, so that for the same value of nl+n2 we may have different 
value8 of the constant. Thus, if we suppose n,+n2 = 1 we have two values 
corresponding to the vaues 1, 0 and 0, 1; for n,+n2 = 2 we have three values; and 
so on. Thus we see, even on Somnierfeld's assumption, for the constancy of the 
azimuthal quanta we shall hive two different s, three different p, four different d 
terms. At least two different values of p and three different values of d seem to 
be required by the series formula, which is essential for the explanation of doublets 
and triplets of constant frequency difference**. We thus see that our model serves a t  
least as a qualitative explanation of the following facts : 

(1) The progressive decrease of the characteristic numbers in the 8 ,  p, and d 
terms, 

(2) The existence of different sets of s, p,  and d t e r m  for the same element. 
It is clear, however, that our simplified assumption will not fit in any actual case 

exactly. The complex nature of the internal field can in no case be properly repre- 

sented by a simple term, --- Oos ', in the Potential. Moreover, we have reason to believe 
r2 

that the internal arrangement of the electrons itself will be influenced, in a large measure, 
by the motion of the outer electron, which we have neglected in our formula. In 
fact, Land6-f has tried in a recent paper to take account of this disturbance in the 

* Sommerfeld, Verh. d. Phys. Ges. May 1919. 
** If we exclude the case n2 = 0-Le.,  if we assume that the motion in s plane containing the 

axk of the doublet is excluded-we get the proper number of 8,  p ,  d terms as observed in the case of the 
alkali metals and the doublet system of alkaline earths. 

Land& Phys. Zeit. 1909. 
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comparative simple case of the helium series. But at  the same time, it is hoped that 
the calculation, in this comparativgly simple case, will serve to illustrate a t  least 
some general principles a t  which we have arrived by an experimental study of the 
spectral series. 

In this paper an attempt has been made to deduce the laws of regularity in the 
spectral series of elements on the basis of Bohr's qukntum theory of spectral emission. 
Starting from Sommerfeld's assumption that the ordinary line-spectra of elements are 
due to the vibration of one outer electron (the valency electron), i t  has been shown 
that the field of the nucleus and the remaining (n-1) electrons may be represented 

eZ eL cos 6 .  by the Potential V =- - + - -- i.e., the field due to a single charge plus a r r 2 

doublet of strength L. The axis of the doublet is variable, but the emission is supposed 
to take place so quickly that in that short time the axis does not appreciably change. 

The qumta conditions have been applied according to Sommerfeld's rule, 

nh = I fi da ,  and the energy of the system has been reduced to the quanta numbers. 
The energy comes out in the form 

in the paper, where n, is the radial quantum, n is the azimuthal quantum, and z is 
given by an equation of the sixth degree, involving only the azimuthal quantum, 
and is a function of n only. 

It has been next shown that if, in accordance with Sommerfeld's prinoiple, we 
assume n = 1 for the 8-orbits, n = 2 for the p-orbits, n = 3 for the d-orbits, n = 4 
for the b-orbits, then, with a very simple assumption, we obtain a single value for the 
energy of the s orbits, a double value for the energy in the p-orbit, a treble value for 
the d-orbit. Then, applying Bob's law hv = W,- W,,, we arrive at  Rydberg's laws 
of the regularity in spectral series, in the case of the alkali metals. 

Exact calculations are not tried on account of the uncertainty of the value of L ; 
but it has been pointed out that the values of 8 ,  (p,, p,), (dl, d,, d,) progressively de- 
crease, as is actually the owe. 

If the value of L be supposed to vary with n, the radial quantum, then probably 
the above calculations would lead to Ritz's law. 

Reprinted from Phil Mag 40, pp. 619-627, 1920 (Taylor and Francis, London). 



Planc k s Gesetz und Lichtquantenhypothese. 
Von Base (Dacca-University, Indien). 

(Eingegangen am 2. Juli 1924.) 

Der Phasenraum eines Lichtquants in bezug a d  ein gegebenes Volumen wird in 
.Zellenu von der GroDe h3 aufgeteilt. Die Zahl der moglichen Verteilungen der 
Lichtquanten einer makroskopisch definierten Strahlong nnter diese Zellen liefert 
die Entropie nnd damit alle thermodynamischen Eigenschaften der Strahlung. 

P l a n c  k s  Formel fiir die Verteilung der Energie in der Strahlung 
des schwarzen Korpers bildet den Susgangspunlit fur die Quantentheorie, 
welche in den letzten 20 Jahren entwickelt worden ist und in d e n  
Gebieten der Physilr reiche Friichte getragen hat. Seit der PubUation 
im Jahre 1901 sind viele Arten der Ableitung dieses Gesetzes vor- 
geschlagen worden. Es ist anerkannt, d d  die fundamentalen T70raus- 
setzungen der Quantentheorie unvereinbar sind mit den Gesetzen der 
klassischen Elektrodynamilr. U e  bisherigen Ableitungen machen Ge- 
brauch von der Relation 

d. h. von der Relation zwischen der Strahlungsdichte und der rnittleren 
Energie eines Oszillators, und sie machen ,Amahmen iiber die Zahl der 
Freiheitsgrade des &hers, wie sie in obige Gleichung eingeht (erster 
Faktor der rechten Seite). Dieser Faktor konnte jedoch nur aus der 
klassischen Theorie hergeleitet werden. Dies ist der unbefriedigende 
Punkt in d e n  Ableitungen, und es kann nicht wundernehmen, d d  immer 
wieder Anstren,o;ungen gemacht werden, eine Ableitung zu geben, die 
von diesem logischen Fehler frei ist. 

Eine bemerkenswert elegante Ableitung ist von E ins t e in  angegeben 
worden. Dieser hat den logischen Mangel d e r  bisherigen Ableitungen 
erkannt und versucht, die Formel unabhiingig von der klassischen Theorie 
zu deduzieren. \Ton sehr einfachen h a h m e n  uber den Energieaustausch 
zwischen Molekiilen und Strahlungsfeld ausgehend, findet er die Relation 
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Indessen m d  er, urn diese Formel mit der Planckschen in merein- 
stimmung zu bringen, von W i ens Verschie-bungsgesetz nnd B o h r s Korre- 
spondenzprinzip Gebrauch machen. W i  en s Gesetz ist auf die klassische 

Theorie gegriindet, und das Korrespondenzprinzip nimmt an, dad die 
Quantentheorie snit der klassischen Theorie in gewissen GrenzfUen 
iibereinstimme. 

In d e n  F U e n  scheinen mir die Ableihgen nicht geniigend logisch 
gerechtfertigt. Dagegen scheint mir die Lichtquantenhypothese in Ver- 
bindung mit der statistischen Mechanik (wie sie durch P lanck  den 
Bediirfnissen der Quantentheorie angepdt worden ist) fiir die Ableitang 
des Gesetzes unabhirsgig von der klassischen Theorie hinreiehend zu sein. 
Im folgenden will ich die Methode kurz skizzieren.' 

Die Strahlung sei in das Volumen T eingeschlossen nnd ihre Ge- 
samtenergie E sei gegeben. Es seien verschiedene Sorten von Quasten 
von der jeweiligen h a h l  N, und Energie hv, vorhanden (s = 0 bis 
s = oc). Die Toklenergie E ist dann 

E = ~ i V , h v ,  = ~ / ~ ~ d v .  
a 

(1) 

Die Lasnng des Problems verlangt dann die Bestiinmung der N,, welche 
g, bestimmen. Wenn wir die Wahrscheinlichkeit fiir jede dnrch be- 
liebige N, chasakterisierte Verteilung w e b e n  kdnnen, dann wird die 
Lasmg durch die Bedingung bestimmt, daS diese Wahrscheinlichkeit bei 
wahrung der Febenbedingung (1) ein Sdaximnm sein soll. Diese Wahr- 
scheinlichkeit wollen wir nun adsuchen. 

h v ,  Das Quantum hat ein Xoment vom Betrage - in der Richtung 
C 

seiner Fortbewegang. Der Yomentanzustand des Quantums wird cha- 
rakterisiert durch seine Koordinaten 1;, y, ; and die zugeharigen Yomente 
p, p, p, ; diese sechs GroDen kannen d s  Pnnktkoordinaten in einem sechs- 
dimensionalen Raum anfgefdt werden, wobei wir die Beziehung haben 

vermoge welcher der genannte Punkt auf einer durch die Frequenz des 
Quants bestimmten Zylinderfiiiche zu bleiben gezmungen ist. Z w  
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Frequenzbereich dv ,  gehijrt in diesem Sinne der Phasenraum 

Wenn wir das gesamte Phasenvolumen in Zellen von der GroDe h3 ein- 
v2 

teilen, gehoren zum. Frequenzbereich d v also 4 n P - d v Zellen. In 
c3 

bezug auf die Art dieser Einteilung kann nichts Bestimmtes gesagt werden. 

Indessen muD 'die Gesamtzahl der Zellen als die Zahl der moglichen An- 
ordnungen eines Quants in dem gegebenen- Volumen angesehen werden. 
Um der Tatsache der Polarisation Rechnung zn tragen, erscheint es da- 
gegen geboten, diese Zahl noch mit 2 zu multiplizieren, so daO wir fiir 

v2 dv 
die Zahl der zn dv gehijrigen Zellen 8 z V - erhalten. 

c3 
h'nn ist es einfach, die thermodynamische Wahrscheinlichkeit eines 

(makroskopisch definierten) Zustandes zu berechnen. Es sei iIT8 die Zahl 
der zum Frequenzbereich d fl gehorigen Quanten. Auf wie riele Arten 
konnen diese a d  die zu d fl gehorigen Zellen verteilt werden ? Sei yp, 
die Zahl der vakanten Zellen, p; die Zahl derer, die ein Quant enthalten, 
pi die Zahl der Zellen, die zwei Quanten enthalten usf. Die Zahl der 
moglichen Verteilungen ist d a m  

A 8  1 8 nu2 , wobei A 8  = - 
p t !  p;! . . . c3 d +, 

nnd wobei 
N8 = 0 .p; + 1 .p8, + 2 p ; .  . . 

die Zahl der zu dv8 gehorigen Quanten ist. 
Die Wahrscheinlichkeit des durch ssmtliche p: definierten Zustandes 

ist offenbar 

8 

a t  Riicksicht darauf, daO wir die ps+ als groOe Zahlen betrachten konnen, 
haben wir 
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wobei 

Dieser Ausdruck soll ein Maximum sein unter der h'ebenbedin,oung 

E = x ~ 8 h v ' ;  N8 = x r P : .  
8 f 

Die Durchfiihrung der Variation liefert die Bedingungen 

Hieraus f olgt 
* 

Daraus folgt zun&hsC 
rhvd -- 

g = B a e  P .  
Da aber 

rhvd -- 
d 8 = x ~ * e  P = l ? * ( 1 - e  9 

r 
so ist 

( -7). B8 = A8 1 - e  
Ferner hat man 

rh vb 
N 8 =  x r p :  = x r A 8 ( l - - e  

r 8 r 

Nit Rucksicht a d  den oben gefnndenen Wert von A* ist also 
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Xit Benutzung der bisherigen Resultate findet man ferner 

d s  1 
woraus mit Riicksicht 'darauf, dad - = - folgt, daD = kT. Setzt 

dE T' 
man dies in obige Gleichung fiir E ein, so erhalt man 

welche Gleichung P 1 an c k s Formel iiquivalent ist. 
(fiersetzt von A. E ins te in . )  

h n m e r k u n g  des Ubersetzers .  Boses Ableitung der Planck-  
schen Formel bedeutet nach meiner Meinung einen wichtigen Fortschritt. 
Die hier benutzte Methode liefert auch die. Quantentheorie des idealen 
Gases, wie ich an anderer Stelle ausfiihren will. 

Reprinted from Z Physik 26, pp. 168-171, 1924 (Springer - Verlag, Heidelberg). 



Planck's Law and the Light-Quantum Hypothesis 

Bose (Dacca-University, India) 
(Received 2 July, 1924) 

The phase space of a light-quantum in a given volume is divided up in 'cells' of size h3. 
The number of possible distributions of the light-quanta of a macroscopically defined 
radiation among the cells gives the entropy and with that all the thermodynamic 
properties of the radiation. 

Planck's formula for the distribution of energy in the radiation of a blackbody forms 
the starting point for the quantum theory which has been developed in the last 20 years 
and has been very fruitful in all parts of physics. Since its publication in 1901 many 
methods for the derivation of this law has been proposed. I t  is recognized that the 
fundamental assumptions of the quantum theory are incompatible with the laws of 
classical electrodynamics All derivations till now use the relation 

that is, the relation between the density of radiation and the average energy of an 
oscillator, and they make assumptions about the number of degrees of freedom of the 
ether, which enters the above equation (the first factor on the right hand side). This 
factor could, however, be derived,only from the classical theory. This is an unsatisfac- 
tory feature in all derivations, and it is not surprising that efforts are made again and 
again to give a derivation free from this logical flaw. 

Einstein has given a remarkably elegant derivation. He has recognized the logical 
flaw in all previous derivations and has tried t o  deduce the formula independently of 
classical' theory. Starting from very simple assumptions about the energy exchange 
between molecules and the radiation field, he finds the relation 

In order to make this formula agree with that of Planck he has to use Wien's displace- 
ment law and Bohr's correspondence principle. Wien's law is- based on classical theory 
and the correspondence principle assumes that the quantum theory agrees with the 
classical theory in certain limiting cases. 

In all cases i t  appears t o  me that the derivations are not sufficiently justified from 
a logical point of view. On the other hand, the light-quantum hypothesis combined with 
statistical mechanics (as adapted by Planck t o  cornform to the requirements of quan- 
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tum theory) appears sufficient for the deduction of the law independent of classical 
theory. In the following I shall sketch the method briefly. 

Let the radiation be enclosed in a volume V and its total energy be E. Suppose there 
are different types of quanta each having number N, and energy hv, (s = o to s = w 1. 
The total energy is then 

r 

The.solution of the problem then requires the determination of of Ns which in turn 
determine p, . If we can give the probability for each distribution characterized by 
arbitrary values of N,, then the solution is determined by the condition that this 
probability is a maximum subject t o  the subsidiary condition (1). We now want to find 
this probability. 

hvs The quantum has a momentum of magnitude - in the direction of its motion. The 
C 

instantaneous state of the quantum is characterised by its coordinates x, y, z and the 
corresponding momenta p,  p, p,. These six quantities can be considered to be the 
coordinates of a point in a six dimensional space, where we have the relation 

by virtue of which the point is forced to lie on the surface of a cylinder determined by 
the frequency of the quantum. The phase space belonging to the frequency interval 
dvb is. 

v2 If we divide the total phase space volume in cells of size h3, then 4 R V y dv cells will 
C 

belong to the frequency interval dv. Nothing definite can be said about the method of 
this division. In any case, the total number of cells must be regarded as the number of 
possible arrangements of a quantum in the given volume. I t  seems, however, appropriate 
to multiply this number once again by 2 in order to take into account the fact of 

v2 dv 
polarization, so that we obtain 8 R V - as the number of cells belonging to dv. 

c3 
Now i t  is easy to calculate the thermodynamic probability (macroscopically defined) 

of a state. Let N" be the number of quanta belonging to the frequency range dvS . In 
how many ways can these be distributed among the cells belonging to dvS ? Let pi  be 
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the number of empty cells,p",hose which contain one quantum, pS, those which contain 
two quanta and so on. The number of possible distributions is then, 

A 8  ! 8 z v a  , where A8 = - 
pe,! p?! . .  . c9 

d f l ,  

and 
NU = 0 .pb, + 1 . p ;  + 2 p ; .  . . 

is the number of quanta belong to the range dvS . 
The probability of the state defined by allps is clearly 

Taking into account that  we can considerp; to be large numbers, we have 

~ g  w = ~ 8 1 ~  ~8 - xp;~gp; ,  
where 8 

8 r 

This expression must be a maximum with the constraints 

8 r 

Carrying out the variation, we obtain the conditions 

From this it follows that  

Next i t  follows from this tha t  
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But since -- rh*r 
A # = X B ~ ~  P = * ( I - a ? ) - ' ,  

r 

therefore 

We further have 

Taking into account the value of A' found above, we get 

Using the results found so far, one further finds 

as 1 Whence, using the relation - = - if follows that P = k T . Substituting this in the 
a E  T' 

equation for E, we get 

which is the same as Planck's formula. 

(Translated by A. Einstein) 

Translator's remarks : 
In my opinion Bose's derivation signifies an important advance. The method used 

here gives the quantum theory of an ideal gas as I will work out elsewhere. 

English translation of Z Phyeik 86, pp. 168-171,1924 (Springer - Verlag, Heidelberg). 



Wiirmegleichgewicht 
im Strahlungsfeld bei Anwesenheit von Materie. 

Von S. N. Bose in Ramna (Indien). 

Die Wahrscheinlichkeit eines beliebigen Zustendes eines aus Strahlung und Molekeln bestehenden 
Systems wird berechnet, und es werden hiereus die Bedingungen fur des statistische Gleichgawicht abge- 
leitet. Im Anschlup hieran werden neue Auadrucke fiir die statistische Wahrscheinlichkeit der Ebmen- 
tarvorghge vorgeschlagen, welche der Wechselwirkung zwischen Strahlung and Materie entsprechen. 

Debyel) hat gezeigt, dab das Plandksohe Gesetz mit W e  der statistischen 
Mechanik abgeleitet werden kann. Seine Ableitung ist jedoch ineofern nicht vijllig 
unbhangig von der klassischen Elektrodynamik, als er Gebrauoh macht von dem 

Begriff der Eigensohwingungen des ~ t h e r s  und annimmt, da/3 hinsichtlioh der Energie 

8.AV8 V dv Reso- das Spektralgebiet zwischen v und v+dv ersetzt werden kann durch - 
cs 

natoren, deren Energie nur Vielfache von hv betragen kann. Man kann aber zeigen, 
dab die Ableitung so abgelndert werden karin, dap man iiberhaupt keine Anleihen 

8nvZ 
bei der klassischen Theorie zu machen braucht. - 

c3 
V dv k m  gedeutet werden 

als die Anzahl Elementargebiete des schesdimensionalen Phasenraumes fiir die Quanten. 
Die weitere Rechnung bleibt im wesentlishen dieselbe. 

Einstein hat sich einer anderen Methode bedient. Er. betrachtet die Wechsel- 
wirkung zwischen den materiellen Teliohen und dem Strahlungsfeld. Kennt man die 
Energieverteilung untr den materiellen Teilchen, so kann man das Gesetz der aohwarzen 
Strahlung ermitteln aus der Bedingung der Stationaritiit dieser Verteilung beim 
Aust.ausch von Energie zwisohen Materie und Strahlung. Dieser Austausch sit 
weiterhin eine Folge gewisser Elementqrozesse. Eine gwignete Formulierung 
der Eigenschaften und Wahrscheinlichkeit des Elementar prozesses ermoglicht es, 
daa Plancksche Gesetz abzuleiten, wenn man die Energieverteilung unter den Teilchen 
als gegeben ansieht. In seiner ersten Arbeit8 sind dib materiellen Gebilde Bohrsche 
Atome, die nur einer diskreten Reihe stationrirer Zustiinde fahig sind. Energieaus- 
tausch findet statt infolge von Emissionsund Absroptionsprozessen und gleichzeitigsn 

uberg&ngen der Atome von einem Zustand zu einem anderen. Er hat dargetan, 
dab das Plmoksohe Gesetz sich ergibt, wenn den Emissions- und Absorptionsprozessen 
gewisse Wahrscheinlichkeiten zugeschrieben werden. Neuerdings hat aber das I'roblem 

(1) Debye, Ann. d. Phys. 33, 1427, 1910. 
(2) Einstein, Phya. ZS. 18, 121. 1917. 
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des thermischen Gleichgewichts zwischen dem Strahlungsfeld und freien Elektronen 
Wichtigkeit erlamgst durch die Arbeiten von Debye3) Compton4) und anderen, die 
sich mit der Zerstreuung der Strahlung durch Elektronen befassen, Pauli5) hat dieses 
Problem in einer interessanten Arbeit diskutiert. Als Elementarprozep betraohtet 
er die Streunng, durch die ein Quant, das in einer bestimmten Richtung fliegt und 
innerhalb eines bestimmten Spektralintervalls,liegt, sich in ein anderes eines 
mderen Spektralinter~~lls und von verschiedener R.ichtung verwandelt. Gleichzeitig 
nndert ein Elektron, das sich mit einer gewissen Geschwindigkeit in einer bestimnlten 
Richtung bewegt Grope und Richtung seiner Geschwindigkeit. Fur alle diese Pro- 
zesse gilt das Erhdtiingsgesetz von Impuls u d  Energie. Pauli hat gezeigt, dab, 
wenn die RTnhrscheinlichkeit dieses Elementarprozesses (Ap+Bppl)dt ist, wo p und 
p' die Strahlungsdichten der Frequenzen v und v', A und B unabhangig von q and q' 
aber abhanging von der Art des betrachteten Stopes sind, dieses Wahrscheilichkeits- 
gesetz zum Planckschen Gesetz fiihrt, falls fur das Elektronengas das Maxwellsche 
Verteilungsgesetz giiltig ist. Einstein unde Ehrenfest haben das Paulische Ergebnis 
noch verallge~~leinert(~). Sie betrachten einen Prozep, bei dem ein Molekul order ein 
Elektron Qumten hv,, hv2 usw. absorbiert und gleichzeitig hv;,  hvk . . .emittiert. 
Es wird angenommen, dab die emittierten und absorbierten Quanten bestimmte 
R'ichtungcn Ilaben. Zugleich andert sich auch Grope und Richtung der Geschwin- 
digkeit des betreffenden Molekiils. Energie und Impuls bleiben aber erhaken. Das 
Wahrscheinlichkeitsgesetz von Pauli wird folgenderma /? on verallgemeinert : 

fur den direkten und inverson Prozep. 

Er zeigt, dap Gleichgewicht vorhanden ist, wenn gewisse Beziehungen zwischen 
den Koeffizienten bestehen. Dies ist sowohl eine Verallgemeinerung seines fruheren 
Gesetzes fur Bohrsohe Atom wide des Gesetzes von Pauli 

Das Problem des Warmegleichgewichts in einem Strahlungsfeld in Anwesenheit 
von materiellen Gebilden kann aber nach den Methoden der statistischen Mechanik 
behandelt werden, unrtbhiingig von jeder besonderen Hypothese iiber den Mecha- 
nismus der Elementqrozesse, auf denen der Energieaustausch beruht. Wir gelangen 
so zu einer allgemeinen Beziehung, die giietig ist fur alle speziellen Hypothesen uber 
die Elementarprozesse und ihre Wahrscheinlichkeiten. Wenn es moglich ist, die 
thermodynamische Wtlhres~heinlichkeit fur irgend eine spezielle Verteilung der 

(3) Debye, Phya. Z S .  24, 161, 1923. 
(4) Compton, Phya. Rev. 21, 483, 1923. 
(5) Pauli, Z S .  f. Phys. 18, 272, 1923. 

(6) Einstein und Ehrenfest, ZS.  f. Phya. 19, 301, 1923. 
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Quanten im Strahlungsfeld und die Wahrscheinlichkeit fiir irgend eine willkurliche 
Verteilung der Enerige unter den materiellen Teilchen niederzuschreiben, dann- ist 
die thermodynamische Wahrscheinlichkeit des groperen Systems, das Materie unc 
Strahlung urnfapt, einfach das Produkt der bieden Wahrscheinlichketien. Die Glei- 
chgewichtsbedingung lautet einfach, dab die resultierende Wahrscheinlichkeit ein 
Maximum aein mu@. Das Gleichgewichts-problem kann eomit in einer ganza ganz 
anderen Weise betrachtet werden. Statt geeignete Hypothesen uber Elementarpro- 
zesse, die das Plancksche Gesetz ergeben, aufzustellen, vermchen wir, die Relation 
abzuleiten, zu der alle Hypothesen fuhren mussen, wenn das Plancksche Gesetz fur 
das Strahlungsfeld und das Maxwellache Gesetz fur die materiellen Teilchen gelten 

sollen. Die Beziehung, die wir suchen, ist offenbar aquivalent mit der der zuvor 
aus der Bedingung, dab die thermodynamischche Wahrscheinlichkeit fur das gro/3 
ere System ein Maximum ist, aabgeleiteten. Um das Problem in der angedeuteten 
Weise zu lusen, mussen wir den Ausdruck fur die thermodynamische Wahrachein- 
lichkeit fur die Strahlung und fur die materiellen' Teilchen haben. 

Therrnodynamische Wahrscheiqlichkeit fur das Strahlungsfeld. Sie wurde in 
einer fruherent Arbeit7) abgeleitet. Wenn die Zahl der Quanten im Spektralbereich 
v und v+dv gleich N d v  ist, so ist sie : 

87rva 
WO A y =  -T V d v  bedeutet. Es ist leicht zu sehen, dap dieses Wahrscheinlich- 

keitsgesetz zum Planckschen Gesetz fuhrt, wenn wir die Bedingung aufstellen, da@ 
W bei gegebener Energie ein Mximum sein mu& 

Thermodynamische Wahrscheinlichkeit fur materielle Teilchen. Man knnn sic 
unschwer finden. Wir wollen unsere Voraussetzungen ein wenig verallgemeinern, 
um sowohl den Fall Bohrsoher Atome mit diskreten Energienitreaus als auch den Fall 
der Verteilung der Translationsenergie bei materiellen Teilohens ) zu umfassen. Wir 
nehmen an, der Phssenraum sie in Elementargebiete geteilt. Zu jeder Elementarzelle 
gehort eine bestimmte Zahl g, die die Wahrscheinlichkeit angibt, du/3 irgend ein 
Teilohen sich darin befindet. Die g sind im algemeinen einander gleich, ausgenommen 
den Fall Bohrscher Atome. Die thermodynamische Wahrscheinlichkeit itgend einer 
willkurlichen Verteillung n,, nz use uber die versohiedenen Zellen ist : 

(7) Der Verfaamr, emheint im Phil. Meg. Siche auch Debye, Ann. d. Phya. 83, 1427, 1910. 

(8) Bohr, 28. j. Phg8. 18, 117, 1923. 
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Die Bedingung des Wahrscheinlichkeitsmaxirnums bei gegebener Gesamtenergie 
uncl Zahl cler Teilchen ist : 

E -- 
n, = Cg, e K T '  

Jetzt sind wir in der Lage, die thermodynamische Wahrscheinlichkeit fiir das 
gesamte System zu berechnen. Sie ist offenbar : 

und 
EnT = N .  

Beim Gleichgewicht ist W ein Maximum, wobei die Gesamtenergie und die Zahl 
der Teilchen als gegeben anzusehen ist. 

Wir betrachten den ElementarprozeP : 

n, verwandelt sich in n,- 1 und n, in n,+ 1 ; NV, ,  Nvp . . . vermhdert sich urn 1 

wid NV1,, Nv2, ... wachst um 1. 

Die Bedingung der Statjonaritat von W verlangt, dap W sich dabei nicht lindert. 

Der betrachtete Elementarprom kann aufgefapt werden als der ubergang eines 
Teilchens vom r-ten zum 8-ten Zustand. Die Veranderung, die da$ Strahlungsfeld 
dabei erleidet, kann angesehen werden als das Ergebnis einer Zerstreuung nach einem 
Zussmmensto/3. 

Die gesuchte Bedingung lantet : 

wo Xhv' -Chv+E,-E, = 0. 

Diese Gleichung ist offenbar aquivalent mit 

wo 

Dies kann auch geschrieben werden : 

n,nblpv,n(a; +b; e', ) = n , m  p',,(a,+b,p, 1, 

... (I) 
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wenn 
Sr = Sr 9 

Das ist die verallegemeinerte Gleichung, die fur Elementqrozesse von der Art, 
wie sie Einstein und Ehrenfest9) betrachetet haben, gilt. Nach der hier gegebenen 
Ableitung ergibt sic& die Beziehung als eine Folgerung aus der Bedingung, dap beim 
Gleichgewicht die Wahrscheinlichkeit ein Maximum sein mu/?. Wenn aber der Mecha- 
nisms des Elementarprozesses uns gestattet, die Gleichung direkt niederzuchreiben 

fuhrt die Substitution des Wertes fur dm Verhllltnis 3 zum Planckschen Gesetz. 
n8 

Es is jedoch klar, daa Gleichung (I) fundamentaler ist als die transformierte 
Form von Einstein. Die nachfolgende Betrachtung wird zeigen, dap eine einfache 
Uberlegung den Wert des Wahrscheinlichkeitskoeffizienten in der gewiinschten 
E'orm liefert. 

Der Fall des Bohrschen Atoms. 

Das ist der Elementqroze/?, den Einstein'lo) in seiner fruheren Arbeit betrachtet 
hat. 

Die fundamentale Gleichung (I) reduziert sich hier auf 

Einsteins urspriingliche Gleichung lautet : 

Nimmt innn ferlicr an, da/l 

so folgt das Plancksche Gesetz. 

Um seine Gleichung (I) abzuleiten, nimmt er an, dap Atome von htikeren Ener- 
gieniveaus zu Zustanden niederer Energie auf zwei Wegen iibergehen konllen : 

1. Eine Art von spontanem Ubergang, wie bein einem radioactiven Prozep, 
dessen Wahrsoheinlickkeit uniibhangig vom Zustand des Strahlungsfeldes ist. 

(9) Einstein und Ehrenfest, a. a. 0. 
(10) Einstein, Phye. 28. 18. 121, 1917. 
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2. Ein durch ,die charakteristische Strahlung induzierter ubergang, dessen 
Wahrscheinlichkeit vom Zustand des Feldes abhlngt . 

Der U'bergang von einsm niederen zu einem hiiheren Energieniveau erfolgt durch 
Absorption, deren Wahrscheinlichkeit vom Felde abhiingt. 

Weiterhin werden gewisse Benziehungen zwischen den Koeffizienten postuliert, 
damit das Plancksche Gesetz herauskommt. Diese Beziehungen konnen nicht auf 
einfache Weise begriindet werden. 

Das gleiche Problem k a m  auf die folgende Weise behandelt werden, bei der viele 
von den vorkommenden willkurlichen Annahmen beseitigt werden. 

Wir setzen auch voraus, dap der dbergang von niederen zu hoheren Niveaus 
stets durch Absroption von Quanten einer charakteristischen Frequenz erfolgt. 

A. Der ubergang von hijheren zu niederen Niveaus ist eine Art von spontarier h;nderung, 
dessen Wahrscheinlichkeit unabhangig vom Strahlungsfeld ist. Die zweite Hypo- 
these von Einstein (negative Einstrahlung) ist nicht erforderlich. B. Wir wollen 

versuchen, den Wahrscheinlichkeitskoeffizienten fur ubergang A zu berechnen. 

Die Zahl der Elementargebiete, die den in Betracht kommenden Quanten ents- 
prechen, ist A,. Die Gesamtzahl der vorhandenen Quanten ist N d v .  Diese sind aber 
nicht gleichfijrmhg uber den Phasenraum verteilt. Sei p, die Zahl der leeren ZeUen,p, 
die rnit 1 Quant, p1 die mit 2 Quanten usw. besetzten. Damit die Strahlung und daa 
materielle Teilohen in Wechselwirkung treten konnen, mup is dem Ellementargebiet 
sein, das von einem Qumt besetzt ist. Das besondere Elemeqtargebiet, in dem sich 
das betrachtete Molekul behdet ,  wird, wenn wir es lange genug beobaclhten, alle mog- 
lichen Zustiinde durchlaufen : d.h. manchmal ist es leer, manchmal wird 1 Quant 
vorhanden sein, manchmal 2 usw. Die Dauer dieser Ereignisse wird Schlei~lich 
proportional zu den Gleichgewichtswerten von p,, p,. . . Wenn r Quanten und ein 
Teilchen zugleich vorhanden sind, dann gibt es entweder einen Energieaustausch 
oder gar nichts. Somit sind r f l  verschiedene Ereignisse mogboh, niimlich 
Energieaustausch von 1 Quant, 2 Quanten usw. oder kein Austausch 

Daher ist die Zahl der moglichen Fiille : 

Die Zahl der Falle, in denen Wechselwirkung eintritt, ist : 

p1+2p,+ ... = N,dv, = Xrp,. 

Somit ist die Wahrscheinlichkeit einer Wechselwirkung 



110 S N Bose : The Man and His Work 

Nun mussen wir die sgezielle Art der Wechselwirkung in Rucksicht ziehen, d.h. 
die Absorption, die zu unterscheiden ist von Zerstreuung. Die Wahrscheinlichkeit 
hierfiir sie 8. 

Die Wahrscheinlichkeit der Absorption ist : 

Der Wahrscheinlichkeitskoeffizient fur einen Ubergang vom Typus B ist offenbar 

irgend eine Konstante, die den ubergang von dem speziellen hijheren Zustand zu 
dem speziellen niederen Zustand bestimmt. Dime Konstznte sei a. 

Die Gleichgewichtsbedingung kann dann geschrieben werden : 

was mit der fundamentalen Gleichung (I) ubereinstimmt, wenn wir annehmen, dap 

srP = s,a. 

Es ist klar, dab die Substitution von 3 zum Planckschen Gesetz fiihrt. 
n, 

Der Fall von Pauli. 

Er ist einfach zu behandeln. Die Wahrscheinliohkeit einer Wechselwirkung ist 

wire vorhin . p;, sei der .Wahrscheinlichkeitsko8ffizient fur Zerstreuung m+ 1)pr 
van V, in v,. fads cine Wmhselwirkung statthat. Fur die inverse Traneformation 

seien die entspreohenden Koeffizienfen r p  und &. w + UP; 
Beim Gleichgewicht ist also : 

Nehmen wir ferner an, dab Pi, = fi' so erhalten wir die fundamentale Glei- 
chung (I). 

Der Fall von Einstein urid Ehrenfest. 

Die Wahrscheinlichkeit einer gleichzeitigen Wechselwirkung ist di~s Produkt 
der Einzelwahrscheinlichkeiten, also gleich : 
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Sl S2 " '  
Analog sei P , t  ,I die Wnhrscheinlichkeit fiir den speziellen Akt der Zerstreuung, 

1 9 . . .  

und cin ihlichcr Ausdruck gelte fiir die inverse Streuung, woraus sich das ubrige 
lcicht ergibt. 

Bemerkungen. Aus unserer Rechung gelit hervor, da /3 die Wahrscheinlichkeit 
einer Wechselwirkung eines Teilchens nlit einem Quantum in einem Strahlungsfeld 

2\r, dv 
A.+N,,dv 

nicht einfach proportional zur Zahl der vorhandenen Quanten ist, wie 

man auf den ersten Blick vermuten kiinnte. Es ist leicht zu sehen, dap diese Annahme 
zum Wienschen Gesetz frihren wiircle, wie Pauli erkannt hat1". Pauli sah sich deshalb 
genotigt, eine andere Form fiir den Wahrscheinlichkeitskoeffizienten nzuunehmen. 
Die von Pauli angenommene und von Einstein und Ehrenfest verallgemeinerte Form 
erscheint aber als ganz willkurliche Hypothese, da man sich kein einfaches Bild von 
dem Zustandekommen eines solchen Ausdrucks machen kann. Die andere hier 
vorgeschlagene Form ist siemlich einfach und kann auf Grund elementarer ~ b e r l e -  
gungen gerechtfertigt werden. Es wird auch die Notwendigkeit vermieden, Fela- 
tionen zwischen den Koeffizienten selbst annehman zu miissen. Bei der Ableitung 
des Wahrscheinlichkeitskoeffizienten fur die Wechselwirkung (oder Kopplung, wie 
Bohr sagt) wurde angenommen, dap selbst bei einem Zuss.mmenstop der Fall, dap 
keine Wechselwirkung eintritt, gerade so wahrscheinlich ist, wie der Fa1 irgend einer 
spezielen Kopplung Diese Annahme ist ein fundamentaler Punkt in der hier gege- 
benen Ableitung. Nach der klassischen Theorie wiirde man erwarten, da/3 irgend 
eine Wechselwirkung eintritt, wenn ein Quant mit einem materiellen Teilchen zusam- 
mentrifft. Eshandelt sich also um eine principielle Abweichung von der klassischen 
Theoire. Diese Hypothese ist aber (wie mir scheint) ganz Lhnlich wie die Hypothese, 
die man gewohnlich iiber die Stabilitat der stationaien Zustande macht. Die klassische 
Theorie lie pe uns erwarten, dap keine stationaren Zustande moglich sind, und dab 
stets Wechselwirkung oder Kipplung (Bohr) zwischen ~ t h e r  und erregtem Atom 
und damit verbundene Strahlung vorhanden ist. Auf der anderen Seite mussen wir, 
um die spektrale Emission zu erklaren, den Fall als moglich annehmen, dap keine 

Wechselwirkung (Emission) eintritt. So kommen wir dauz, wegen der Persistenz 
der stationaren Zustande jedem beliebigen stationaren Zustand einen Wahrsohein- 
lickkeitskoeffizienten oder eine mittlere Lebensdaur zususchreiben. 

Die oben benutzte Hypothese, dap aich bei einem Zuszmnlensto/3 keine Wech- 
selwirkung eintreten kann, ist ganz analog der Annahme der Stabilitat der stationtiren 
Zustande, die so grundlegend fur die Bohrsche Theorie der Linienemission ist, und 
kann auf die gleiche Ursache zuriickgefuhrt werden : Die den materiellen Teilchen 
innewohnende Wahrscheinlichkeit der Persistenz ihrer stationaren Zustande. In 
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diesem Zusammenhang ist es interessant, zu bemerken, dap wir beim analogen Fall 
des Zusammensto/3es eines Elektrons und eines Atoms experimentell Fiille nachweisen 
konnen, wo bei Zusammenstopen das Elektron durch das Atom hindurchgeht, ohm 
die intraatomaro Bewegung oder seine eigene zu verandern. 

Die Beziehung g,p = g,a . 
Die Koeffizienten, oder wie Bohrla) sie nemt, Gwichte g werden eingefuhrt, wenn 

Valenzelektron im Atom eine entartet bedingt periodische Bewegung ausfuhrt. Diese 
numerischen Koeffizienten geben nach Bohr einfach an, auf wieviel verschiedene 
Weisen man von einer benachbarten nichhntarteten Bewegung zu der speziellen 
entarteten Bewegung als Grenzfall gelangen kann. Nehmen wir diese Koeffizienten 
einfach als proportional zur Zahl der ubergangsmijglichkeiten von einem bestimmten 
zu dem betrachteten Zustand an, so ist die obige Beziehung fast selbstverstlindlich. 
Es gibt g, Wege, auf denen ein ubergang von irgend einem r-ten zu dern betrachteten 
a-ten Zustand durch Absorption mijglich ist. 'Analog gibt es g, ubergange zu 
niederen Zustanden infolge von Emission. Der Wahrscheinlichkeitskmffizient hat 
dmn den Faktor g, der Wahrscheinlichkeitskmffizient der Emission din Faktor g,. 
W e n  wir ferner mnehmen, da/3 die Wahrschelichkeit einer Transformation durch 
Strahlung auf einem bestimmten Wege die gleiche ist wie der Wahrscheinlichke- 
itskoeffizient der Emission, wenn das Atom in bestimmter Weise zu niederen 
Zustiinden ubergeht, so ergibt sich sofort die fragliche &latior~13). 

Ioh halte Boses Hypothese uber die Wahrscheinlichkeit der Strahlungselementar- 
vorgmge aus folgenden Grunden fur nioht zutreffend. 

Fiir drts statistische Gleichgewicht zwischen einem Bohrschen Zustmde zu einem 
anderen gilt, wie Bose dazgelegthat, die Beziehung 

Daraus folgt, dq? die Wahrscheinlichkeiten fur die Ubergange r-8 und 8+? 

der linken bzw. rechten Seite dieser Gleichung proportianal sein miissen. Die &r- 

gangswahrscheinlicbkeiten fiir. ein Molekiil miissen sich also (wenn wir der Einfaohheit 
A halber die statistichen Gewichfe beider ZustiLnde gleich 1 setzen) wie ---I-: 1 

4 + N "  
verhalten. Mehr kann aus der Kenntnis des thermodynamiohen Gleiohgewichta 

(12) Bohr, 2.8 f. Phyu., a.a.0. 
(13)  Vgl. in dieaem Z&enhang P. Hertz, Repert. d .  Phyu., etetietieche M w h d ,  1 .  Bd., 

Tell 2, 8. 649. 
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nicht entonommen werden. Nach der von mir auftestellten Hypothese sollen diese 
Wahrscheinlichkeiten N ,  (d.h. der Strahlungsdichte) bzw. A,+N,  proportional sein, 

N" nach der Hypothese Boses A,,+N, brw' I' 

Nach der letzteren Hypothese kann die aiij3ere Strahlung wohl einen ubergang 
von Zustande Z, kleinerer Energie nach dem Zustande Z, grijperer Energie bewirken, 

nicht aber umgekhrt einen ubergang von Z, nach Z,. Dies widrespricht aber dem 
mit Recht allgemein anerkannten Grundsatz, daj3 die klassische Theorie einen Grenzfall 
der Quantentheorie darstellen miisse. Nach letzterer kann narnlich ein Strahlungs- 
feld auf einen Resqnator sowohl positive als auch negative Energie iibertragen (je 
nach der Phase), und zwar beides gleich wahrscheinlich. Die Wahrscheinlichkeiten 

beider ubergange miissen also von der Strahlungsdichte, d.h. von N ,  abhlingen, 
im Gegensatz zu Boses Hypothese. Inwiefern die Qunatentheorie die klassische 
zum Grenzfall hat, hat Planck in der letzten Auflage seines Buches iiber Strahlungs- 
theorie ausfiihrlich erotert. 

Zweitens mu te nach Boses Hypothese ein kalter Korper ein von der Strahlunge- 
dichte abhangiges (mit ihr abnehmendes) Absorptionsvermogen besitzen. Die Korper 
sollten in Kaltem Zustande "nicht-Wiensche" Stra'hlung schwgcher absorbieren ah 
weniger intensive aus dem Giiltigkeitsbereich der Wienschen Strahlungsformel. Dies 
ware bei ultraroter Strahlung heiper Lichtquellen ge* schon entdeckt worden, wenn 
es sich so verhielte. 

Reprinted from Z Phpik 27, pp. 384-393, 1924 (Springer - Verlag, Heidelberg). 



Thermal Equilibrium in the Radiation Field in the 
Presence of Matter 

S. N. Bose in Ramna (India) 
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The probability of an arbitrary state of a system consisting of radiation and molecules 
is calculated and from i t  the conditions for statistical equilibrium are derived. Further, 
new expressions for the statistical probability of elementary processes, appropriate for 
the interaction between radiation and matter, are proposed. 

Debye1 has shown that  Planck's law can be derived using statistical mechanics. His 
derivation is, however, not completely independent of classical electrodynamics, be- 
cause he uses the concept of normal modes of the ether and assumes that for calculating 

8 7c v2 
the energy the spectral range between v and v + dv can be replaced by - Vd v 

c3 
resonators whose energy can be only multiples of hv. One can however show that the 
derivation can be so modified that one does not have t o  borrow anything from the 

8 x: v2 
classical theory. - Vdv can be interpreted as the number of elementary cells in 

c3 
the six dimensional phase space of the quanta. The further calculations remain 
essentially unchanged. 

Einstein has used another method. He considers the interaction between material 
particles and the radiation field. If one knows the energy distribution among the 
particles, then one can derive the law of black-body radiation from the condition of 
stationarity of this distribution when there is an exchange of energy between matter 
and radiation. This exchange is moreover a result of certain elementary processes. With 
a suitable formulation of properties and the probability of these elementary processes 
one can derive Planck's law, if the energy distribution among the particles is assumed 
to be known. In his first paper2 the material particles are Bohr atoms which can have 
only a series of discrete stationary states.   he energy exchange occurs because of 
emission and absorption processes and the simultaneous transitions of atoms from one 
state to another. He has shown that Planck's law is obtained when the emission and 
absorption processes have certain probabilities. Recently the problem of thermal 
equilibrium between radiation and and free electrons has acquired added importance 
through the studies of Debye3, Compton4 and others, which deal with the scattering of 
radiation off electrons. pauli5 has discussed this problem in an interesting paper. As 
an elementary process he considers the scattering of an electron by a quantum which 
moves in a definite direction and has a frequency in a given spectral range and is 
converted into another quantum with a different frequency and moving in a different 
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direction. Simultaneciusly an electron which moves with a certain velocity in a given 
direction changes the magnitude and the direction of its velocity. The laws of conser- 
vation of energy and momentum hold for all these processes. Pauli has shown that  if 
the probability of this elementary process is (Ap + Bpp') dv where p and p' are radiation 
densities for frequencies v and v', A and B are independent of p and p' but depend on 
the nature of collision, this probability law leads t o  Planck's law, provided Maxwell's 
distribution is valid for the electron gas. Einstein and ~ h r e n f e s t ~  have further gener- 
alized Pauli's result. They consider a process in which a molecule or an electron absorbs 
quanta hv, , hv2 , etc. and simultaneously emits hv; , hv; ... It is assumed that  the 
emitted and absorbed quanta have definite directions. The magnitude and the direction 
ofthe velocity of the molecule under consideration also change a t  the same time. Energy 
and momentum are however conserved. The probability law of Pauli is generalized as 
follows, 

d Wl = L ! b , g ,  n ( a ;  + b ; ~ ; ) d t ,  
d 'CV2 = - ( a l  + b ,  Q 1 )  n(b; 8 ; )  d t ,  

for the direct and the inverse processes. They show that equilibrium is obtained if 
certain relations between the coefficients exist. This is a generalization of Einstein's 
earlier result for Bohr atoms and also of Pauli's result. 

The problem of thermodynamic equilibrium of radiation in the presence of material 
particles can, however, be studied using the methods of statistical mechanics, inde- 
pendently of any special assumption about the mechanism of the elementary processes 
on which the energy exchange depends. In this way we obtain a general relation which 
is valid for all special assumptions about the elementary processes and their prob- 
abilities. If it is possible t o  write down the thermodynamic probability for any special 
distribution of quanta of radiation and the probability for any arbitrary energy 
distribution among the particles, then the thermodynamic probability for the bigger 
system containing matter and radiation is simply the product of the two probabilities. 
The condition of equilibrium is simply that  the resulting probability must be a 
maximum. The problem of equilibrium can thus be looked a t  in a completely different 
way. We try'to derive the relation t o  which all assumptions must lead when Planck's 
law for radiation and Maxwell's law for particles hold instead of making assumptions 
about elementary processes adopted t o  give Planck's law. The relation which we are 
looking'for is clearly equivalent t o  the previous one which is derived from the condition 
that  the thermodynamic probability for the bigger system is a maximum. In order t o  
solve the problem in the way indicated, we must have the expressions for the thermo- 
dynamic probability for radiation and the material particles. 

Thermodynamic probability for radiation : 

This has been derived earlier7. If N ,  dv is the number of quanta in the frequency range 

v and v + dv, then the probability is, 
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8x:v2 
where A , = - Vdv. It is easily seen that this probability law leads to Planck's law 

c3 
if we impose the condition that for a given energy W should be a maximum. 

Thermodynamic probability for particles : 

This can be easily found. We want t o  generalize our assumptions a little so that the 
case of the Bohr atom with discrete energy levels as well as the case of the distribution 
of translational energy of particles can be included. Let the phase space be divided in 
to cells. For every cell there is a probability g that a particle occupies it. The g's are in 
general equal except for the case of Bohr's atoms. The thermodynamic probability for 
any arbitrary distribution n, , n, etc. among the different cell is, 

N !  yy1g;z.. . 
n , !  n,! 

The condition that the probability be maximum for a given total energy and number 
of particles is, 

E -- 
n,. = k T C g 4  . 

Now we are in a position to calculate the thermodynamic probability for the total 
system. I t  is clearly 

where 

VV = 17 A 8 + N , !  17- s ; ~ N !  
.g A,! .Nb! nT! ' 

Z N s h v ,  + ~ ~ T E T  = E 

and x n T  = N. 

At equilibrium W is a maximum, the total energy and number of particles being 
given. 

We consider the following elementary process : n, changes t o  n, - 1 and n, t o  
n, + 1 ; Nvl , N,;, ... reduce by 1 and NvJl , Nvr2 increase by 1. 

The condition of stationarity of W requires that W does not change on account of this 
process. 

The elementary process under consideration can be considered as the transition of 
a particle from the rth t o  the sth state. The change which the radiation field undergoes 
can be looked upon as the result of a scattering after a collision. The required condition 
reads 



where 
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The equation (I) is evidently equivalent t o  

g, = g,. 
This is the generalized equation which holds for elementary processes of the type 
considered by Einstein and ~ h r e n f e s t ~ .  According to the derivation given here the 
relation follows from the condition that for equilibrium the probability must be a 
maximum. However, if the mechanism of the elementary process allows us to write 

down the equation directly, the substitution of the value for the ratio 2 gives Planck's 
n s 

law. 
I t  is however clear that the equation (I) is more fundamental than the original one 

of Einstein. The following discussion will show that simple considerations give the 
value of the probability constants in their desired form. 

The case of Bohr's atoms : 
This is the elementary process which Einstein had considered in his earlier paper2. The 
fundamental equation (I) here reduces to 

Einstein's original equation states 

n,. b, ~ , , d t  = n, (a; + b; gv)cZ.t 
or 

If we assume further that 
a; h 713 

9,. b, = g, b; and -;- = 8 n - 
bl cs ' 
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then Planck's law follows : 
To derive his equation (I), Einstein assumes that atoms in higher energy levels make 

transitions to lower energy levels in two ways : 
1. A type of spontaneous transition as in a radioactive process, whose prob- 

ability is independent of the state of the radiation field. 
2. A transition induced by the characteristic radiation, whose probability de- 

pends on the state of the radiation field. 
The transition from a lower t o  a higher energy level is the result of an absorption 

whose probability depends on the radiation field. Further, certain relations between 
the coefficients are postulated so that Planck's law follows. These relations cannot be 
justified in a simple way. 

The same problem can be treated in the following way removing many of the 
arbitrary assumptions. 

We also presume that the transition from a lower t o  a higher state takes place 
through an absorption of a quantum of characteristic frequency. 

A. The transition from higher t o  lower levels is a spontaneous change, whose 
probability is independent of the field of radiation. The second assumption 
of Einstein (negative radiation) is not necessary. 

B. We shall try t o  calculate the probability coefficients for the transition A. 
The number of cells corresponding to the quanta under consideration is A,. The total 

number of quanta present is N ,  dv. They are however not distributed evenly in phase 
space. Let p,  be the number of empty calls, p ,  with 1 quantum, p ,  with two quanta etc. 
In order that the radiation and a particle may interact, it must be in a cell occupied 
by a quantum. The particular cell which the molecule under consideration occupies will 
pass through all possible states if we observe it long enough, that is, sometimes it is 
empty, sometimes occupied by 1 quantum sometimes by-2 quanta etc. The length of 
these events will be finally proportional to the equilibrium values of p,  , p , .  When r 
quanta and a particle are together, then either an exchange of energy takes place or 
nothing happens. Therefore r + 1 different events are possible, namely energy exchange 
of 1 quantum, 2 quanta etc. or no exchange. Therefore the number of possible cases is 

The number of cases in which interactions occur is, 

Consequently the probability of an interaction is, 

Now we must take into consideration the special nature of the interaction, that is, 
absorption which is to be distinguished from scattering. Let the probability for this be 
p. The probability for absorption is 
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P z W  - - N, d l 1  
I@ + 1 G  A, + ~ , d v .  

The probability coefficient for a transition of type B is evidently any constant which 
determines the transition from the particular higher state to a particular lower state. 
Let this constant be a. 

The equilibrium condition can then be written as  

N,, d v = an,, 
*"A,+ Nvdv 

which agrees with the fundamental equation (I) if we assume that  

n r 
I t  is clear that  substituting the value of - ,>one gets Planck's law. 

n s 

Pauli's case. 
This can be easily discussed. The probability of a n  interaction is a s  before ' r p r  . Let P :. be the probability coefficient for scattering from vs t o  v,, if there 
C ( r + l ) p r  
is a n  interaction. Let the  corresponding coefficients for the  inverse process ' r P  r1 

and p . Then a t  equilibrium 
C  ( r + l ) p , ,  

Let us assume further that  P z .  = P z'; then we obtain the fundamental equation (I). 

Einstein and Ehrenfest's case. 
The probability of a simultaneous interaction is the product of individual prob- 

abilities and therefore equal to 

Analogously let P :;, S,'2;.;,, be the probability for scattering and let a similar expres- 

sion hold for the inverse scattering. The rest then easily follows. 
Remarks. 

N ,  dv 
Our calculations show that  the probability of an  interaction between a 

A, + N ,  dv 

particle and a quantum in a radiation field is not simply proportional to the number 
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of the quanta present as one would presume at  first sight. I t  is easy t o  see that  this 
assumption leads t o  Wien's law, as realized by pauli5. He found i t  necessary t o  assume 
another form for the probability coefficients. However the form assumed by Pauli and 
generalized by Einstein and Ehrenfest appears to be completely arbitrary because one 
cannot easily see how such an expression can be derived. The form suggested here is 
quite simple and can be justified on the basis of elementary considerations. The 
necessity of assuming relations between the coefficients themselves is also avoided. I t  
was assumed in deriving the probability coefficients for the interaction (or coupling, 
as Bohr says).that even in a collision no interaction is as probable as  the occurence of 
any special interaction. This assumption is a fundamental point in the derivation given 
here. From the classical theory one would expect that there is some interaction 
whenever a quantum and a material particle come tqgether. Therefore here i t  is a 
question of a departure from classical theory. This hypothesis is (as i t  appears t o  me), 
however, very similar to the assumption one usually makes about the stability of 
stationary states. From classical theory one would expect that no stationary states are 
possible and that an interaction or coupling (Bohr) between ether and the excited atom 
and the radiation connected with i t  is always present. On the other hand, in order to 
explain spectral emission we must assume it  t o  be possible that no interaction (emis- 
sion) occurs. Because of the persistence of stationary states we are therefore led to 
assign to every stationary state a probability coefficient or a mean lifetime. 

The assumption made above, that even in a collision no interaction need occur, is 
quite analogous to the assumption of the stability of stationary states which is so 
fundamental to Bohr's theory of line emission and can be traced back to the same 
origin-the probability of existence of the stationary states of the particles. I t  is 
interesting to remark in this connection that in the analogous case of a collision of an 
electron with an atom, experiments show that the electron goes through the atom 
without changing either the interatomic or its own motiod. 

The relation g, P = g, a . 
The coefficients or as Bohr calls them, the weights g, are introduced when the 

valence electron in the atom executes a finite degenerate periodic motion. These 
numerical coefficients give, according to Bohr, in how many ways from a neighbouring 
non-degenerate orbit one can arrive a t  the special degenerate orbit as the limiting case. 
Let us assume that  these coefficients are simply proportional to the number of 
possibilities of transition from a definite state t o  the state under consideration ; then 
the above relation is almost obvious. There are g, possible ways for a transition from 
an rth state to the given sth stqte through absorption. Similarly therekre g, transitions 
to the lower states as a result of emission. The probability coefficient P has then the 
factor g,, the probability coefficient for emission the factor g,. If we further assume that 
the probability of a transformation through radiation in a definite way is the same as 
the probability coefficient for emission when the atom makes transitions to lower states 
in a definite way, then the relation in question follows immediatelyg. 

Manindra Physical Laboratory, Dacca University, June 14, 1924. 
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I consider Bose's hypothesis about the probability of elementarj radiation precesses as 
not appropriate for the following reasons. 

For the statistical equilibrium between two states of a Bohr atom the following 
relation holds, as given by Bose : 

I t  follows that  the probabilities.for the transitions r+ s and s+ r respectively on the 
left-and the right hand side of the equation must be proportional to each other. The 
transition probabilities for a molecule must therefore (if for simplicity we put the 

statistical weights of both the states equal t o  1) behave as 
Nv 

: 1. Nothing more 
A, + Nv 

can be learnt from the knowledge of the thermodynamic equilibrium. According to my 
assumptions these probabilities should be proportional t o  N, (i.e. the radiation den- 

sity) and A, + N, respectively, whereas according t o  Bose's assumption, 
N" 

and 1 
A" + Nv 

respectively. 
According t o  the latter assumption the external radiatian can indeed cause a 

transition from a state Z, of lower energy to a state 2, of higher energy, but not the 
reverse transition from Z, to 2, . This, however, contradicts the generally and rightly 
accepted fundamental principle that the classical theory should be a limiting case of 
the quantum theory. According t o  the latter a radiation field can transfer to a resonator 
positive as well as negative energy (depending on the phase) and indeed with equal 
probability. The probabilities of both the transitions must depend on the density of 
radiation, that is, on N, as oppsed t o  Bose's hypothesis. Planck h b  discussed in detail 
in the latest edition of his book on the theory of radiation t o  what extent the classical 
theory is the limiting case of the quantum theory. 

Secondly, according t o  Bose's hypethesis a cold body should have an absorbing 
capacity dependent on the density of radiation (decreasing with it). Bodies in cold state 
should absorb "non- Wien" radiation t o  a weaker extent than less intense radiation as 
defined by the range of validity of Wien's radiation formula. If the behaviour had been 
such, then i t  would certainly have already been discovered in infra-red radiation from 
hot light sources. 

A. Einstein 
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Messungen der Zersetzungsspannung in nicht- 
wasserigen Losungsmitteln, 

von 

Susil Chandra Biswas und Sn. Bose, 

Aus dem Englischen i ibcr t ragc~ 

(Mit 6 Figuren im Text.) 

(Eingegangen am 18. 11. 26.) 

~ b e r  die Zersetzungsspannungen von Saizen in nichtwasserigen 
Losungsmitteln liegen nur sehr wenige Untersuchungen vor. P a t  t e;l 
und Mott 1) haben die Kurven der Zersetzungsspannung von Lithium- 
chlorid in Alkoholen, Aceton und Pyridin unter Beriicksichtigung der 
Vorgange an Anode und Kathode aufgenommen. Kiirzlich haben 
Nii l ler  und Duschekz), ferner Muller3). Hijlzl und andere die Zer- 
setzungsspannung bei Losungen von Silbernitrat in Pyridin untersucht 
und die Zersetzungsspannung des Lithiurns in Losungen von Lithium- 
chlorid und Lithiurnnitrat in Pyridin. Diese Untersuchungen ergaben 
ffir Pyridin betrachtlich hohere Werta der Zersetzungsspannung als fiir 
wasserige Losungen. Doch waren sie ohne rotierenden Kommutator 
im Stromkreis angestellt und die elektromotorische Gegenkraft erscheint 
daher durch das dem grossen obergangsw4derstand der an der Elek- 
trodenoberflache haftenden Schicht entsprechende Potential vergrossert. 
Ganz kiirzlich hat N e w b u r y  in einer Veroffentlichung iiber ,,Uber- 
spunnung und ~ b e r ~ a n ~ s w i d e r s t a n d e ' ~ ~ )  festgestellt, dass ,,die gesamte, 
dern Durchgang des Stromes von Elektrode zu Elektrolyt sich entgegen- 
stellende Hemmung aus zwei verschiedcnen Teilen besteht, wovon der 
eine reversibel ist (reine ~be r spannung j  und der andere irreversibel 
(Ubergangswiderstande). Die ohne Verwendung eines Kommutators an- 
gestellten Messungen der Uberspannung pflegen rnit einem Fehler von 
0.5 bis etwa 2 Volt behafiei zu seinu. P e a r c e  und F rances ) ,  sowie 
1) Journ. Phys. Chcm. 8, 153 (1904); 12. 49 (1908). 
2) 3fonatsh. f. Chemie 43, 76 (1922). 4) I'roc. Hoy. Soc. 443.4,-486 ('1925). 
3) hlonatsh. f. Chenue 43, 429 (1923). 5) Journ. Phys. Chem. 18. 729 (1914). 
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Mort  i m e r  urld P e a r  c e  1) habtn bei Silbernitrat Eiuzelpotentiale und 
Cesamtspannung in reinen und gemischten Losungsmitteln untersucht, 
und m a r  in Methylalkohol, ~ t h ~ l a l k o h o l ,  Pyridin und Wasser, sowie 
in. binaren Gemischen dieser Stoffe. Dabei fanden sie, dass die Eigen- 
schaften der birlaren Gemische von Alkoholen mit Pyridin der Mischungs- 

Fig. 1. 

regel folgen, wahrend binare Gemische vom NTasser mit Methylalkohol, 
iithylalkohol und Pyridin meist ein ausgesprochenes Maximum oder 
Minimum der hier in Betracht kominenden Eigenschaften aufweisea. 
Dies deutet auf eine gegenseitige Beeinflussung der beiden Losungs- 
mittel hin. 

1,) .Tourn. Phys. Chcm. 21: 275 (1917). 



Messungen der Zersetzungsspannung . . 125 

Im folgenden sollen die Ergetmisse dargelegt werden, die bei der 
Untersuchung der Entladurqssparinung von Chlorwasserstoff und einigen 
Alkalihalogeniden in r,einern Methy lalkohol sow oh1 als auch in lllischungen 

' 0,4 0.6 I 

olt 

Fig. 2. 

Fig. 3. 
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von Methylalkohol und Wasser erhalten wurden. Der Methylalkohol 
war von Merck acetonfrei bezogen, wurde etwa 12 Stunden iiber Kalk 

Fig. 4. 

steh.en gelassen und d a m  noch- 
mals destilliert. 

Die verwendete Versuchs- 
anordnung erhellt aus Fig. 1. 
Die Elektroden waren aus dik- 
kem Platinblech und mit Platin- 
schwarz uberzogen. Durch den 
rotierenden Kommutator C 
konnte der Strom fast 3300mal 
in der Minute gewendet werden, 
so dass die Polarisationsspan- 
nung der Zelle gemessen wer- 
den konnte, nachdem der elek- 
trolysierende Strom bei jeder 
Wendung nur wahrend 0.009 
Sekunden die Zelle durchflossen 
hatte. Die Starke des durch 
die Zelle gesandten Stroms 
wurde durch ein sorgfiiltig ge- 
eichtes Galvanometer mit Nebenschluss gemessen, fiir die haheren 
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Stromsttirken wurde ein Prazisions-Mil1iamperemete.r verwendet, 
Die Ergebnisse sind aus den Fig. 2, 3, 4 und 5 ersichtlich, worin 

sie als Stromspannungskurven niedergelegt sind. Die Kurven fiir die 
~erselzun~ss~annungen in wiisseriger Losung (bei entsprechender Kon- 
zentration) sind ebenhlls eigeuen Messungen entnom men und stehen 
in guter ~bereinstimmun~ mit friiheren Arbeiten anderer Autoren 1). 

Tabelle 1. XJ.  
. - - -  

1 norm. K J  in CH3.  OH ( 1 norm. KJ  in H20 

0,132 norm. KBr in CH3. OH 

Entlatlungsspan- Slron~sldrko 
nung in Volt 1 in 10-5 A ~ n p .  

Tabelle 2. KBr. 

I I 

Enllndungss~)an- 
nung in Volt 

Entladungs- 
spannung 

in Volt 

SLrotnsliirke 
in 10-5 Amp. 

Slro~nsl iirko 
in 10-5 Amp 

Entladungs- 
spannunp 

in Volt 

3.066 norm. K&. in CH3. 0 E  

Slro~l~sli irkc 
in 10-5 Amp. 

- 
Ihtladungs- 

spunnung 
in Voll 

1) Park in, ,,Practical methods cif E~ac t1~ochen :~ i s t r~~~ .  
zug5uglich i s l ,  kiinn ich die Scitcnzahl nieht angcbcn.) 

Stron~stli~ltc 
in l(rJ Amp 

(Da mir dies Bnch nicht mehr 

I 
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Tabelle 3. LiCZ. 

1 norm. LiCl in CH8. OH (0.1 norm. G O 1  'in OH3. 08 
Entlndungs- 

spannung 
in Volt 

Stromslarke 
n 10-5 Amp. 

Enlladungs- 
spannung 

in Voll 

SLromsttirke 
in 10-5 Amp. 

1 norm. LiCl in Hp0 - 
Entladungs- 

spannung 
in Volt 

Stromstlrke 
in 10-5 Amp. 

Tabelle 4. HCI. 
Z e r s e t z u n g s s p a n n u n g  d e r  S a l z s i i u r e  i n  0.5 n o r m .  L i i s u n g e n .  

V = Entladungsspannung in Volt, CL = Stromstarke in 10-5 Amp. 



Messungen der Zersetzungsspannung . . 

Tabelle 4 (Fortsetzung). 

Die -\'ei*suchsergebnisse. 
Kaliumjodid (vgl.' Tabelle 1 und Fig. 2). 

Kaliumjodid wurde . in  ungefahr normaler methyialkoholischer 
Losung verwendet. Die gef'undelie Zersetzungsspannung liegt bei nur  
0.32 Volt. Die Anodenfliissigkeit wurde durch die hef'tige Jodabschei- 
dung schnell angekrbt. In wasseriger Losung wurde die Zersetzungs- 
spannung von normalem Kaliumjodid bei 1.12 Volt gefunden ( P a r k  in  
fand 1.14 Volt). 

Hsliumbro.mid (vgl. Tabelle 2 und Fig. 3). 
Etwa 0.1 und 0.05 uorm. Lijsungen von Kaliumbromid in reinem 

Methylalkohol ergaben eine Zersetzurlgsspannung von 0.68 bzw. 0.71 Volt. 
~ l~ens i ch t i i ch  steigt hier die Zersetzungsspannung mit der Verdunnuug. 
i n  wasseriger Losung liegt der Wert fiir 0.1 norm. I(a1iumbromid bei 
1.254 VoIt (nach P a r k i n  in noranuler Lijsung bei 1.61 Voltj. 

I Lithiumchlorid (Vgl. Titbelle 3 und Fig. 4). 
Bei 0.1 norm. Lithiumchlorid zeigt die Kurve nur einen scharf'eu. 

Knickpunkt und zwar bei etwa 1.2 Volt; bei einfach norm. Losung, 
ebenfalls in reinem Methylalkohol, tritt bei etwa 1-90 ein zweiter Knick 
auf. Nun ergibt eine einfach normale Losung von Lithiumchlorid in1 
Wasser bei 1-95 Volt einen Knickpuukt. So kiinnte man vielleicht an- 
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nehmen, dass in der einfach norrnalen Lithiumchloridlosung in reinem 
Methylalkohol Spuren ron Wasser enthalten sind, die durch das stark 
hygroskopische ~ a l z  selbst hinein gebracht wurden. 

Chlorwasserstoff (vgl. Tabelle 4 und Fig. 5). 
Chlorwasserstoff wurde in etwa 0.6 norm. Li5sung untersucht und 

zwar sowohl in reinem Methylalkohol und reinem Wasser, als auch 
in Mischungen der beiden von verschiedenem Prozentgehalt (10, 30: 
50, 70 und 900/,, Wasser). In reinem Methylalkohol wurde die Zer- 
setzungsspannung bei 0.41 Volt ermittelt. Bei reinem und. igem 
Methylalkohol zeigte sich nach Erreichung der Zersetzungsspannung 
bei 0-4 bzw. 1-0 Volt deutlich die Wirkung des Chlors auf die Anode. 
Aus Fig. 5 ist die ~ n d e r u n g  der Kurvenform bei den Gemischen deut- 
lich zu ersehen. 

Erijrterung des Einflusses von Gemischen. 
Beim Chlorwasserstoff hat der Zusatz von Wasser zu b1ethylalkohol 

einen sehr deutlichen Einfluss auf die Zersetzungsspannung dieser Saure. 
Nun werden durch den Zusati' eines zweiten Losungsmittels die Eigen- 
schaften der Ionen des Elektrolyten immer dann sehr verandert, wenn 
zwischen ihnen und dem ersten Lijsungsmittel eine engere Bindung 
moglich war. Dies hat Krausl)  an der Leitfahigkeit von Saurelosungen 
in Alkohol festgestellt, und zwar bei Zusatz von Wasser sowohl als 
von Salzen, die zur Komplexbildung neigen. Steigt der Prozentgehalt 
des Wassers in den methylalkoholischen Losungen der Sake  bis zu 
300/, und mehr, so tritt nach dem Knickpunkt bei etwa 1.0 Volt noch 
ein zweiter zwischen 1.3 und 1.33 Volt auf, der der Zersetzungsspau- 
nung der Salzsaure in reinem Wasser entspricht. Flir l0O,l0 igen 
Wassergehalt liegt die Zersetzungsspadnung bei 1.0 Volt und fiir reinen 
hIethylalkoho1 bei 0.41 Volt, wobei die Salzsaure in allen Fallen 

1) ,Eigenschaften von Sjstcmen mit elel:trischer Leitf&Iiigkeit." S. 176 bis 184: 
Leitfahigkeit von Elektrolyten in Losun,nsn~ittelge1nisc1)~1i. Zeitaohr. f .  physik. Chcmic. C,LX\-. 
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0.5 normal war. Demnach anclert sich die Zersetzungsspannung der 
Salzsaure nicht fortschreitend rnit steigendem Wassergehalt, sondern 
die Mehrzahl der Kurven zeigt zwei ausgepriigte Knickpunkte bei 1.0 
und 1.33 Volt. Da in reinem &Iethylalkohol der h i c k  bei etwa 0.41 Volt 
liegt, muss man den bei 1.0 Volt wohl der Bildung eines Komplexes 
in d e ~ n  Losungsmittelgernisch zi~schreiben~ 

Der Einfluss des Wasserzusatzes auf Lithiumchlorid in Pyridin ist 
von P a t  t e n und M o t t 1) untersucht worden. Ihre Resultate sind _nicht 
massgebend, da bei ihren Versuchen die Elektroden sich nlit einer isolie- 
renden Scllicht iiberzogen hatten. Die von ihnen erhaltenen Kurven 
entsprechen in ihrer Gestalt den hier wiedergegebenen. M iill e r , H o 1 z 12) 
und andere untersuchten die Entladung des Lithiums inlosungen von 
Lithium in Pyridin mit 5 und Wasser. ' Die erhaltenen Kurven 
waren vielfach geknickt und unregelmassig., Sie schreiben dies der 
Abscheidung von Lithiumhydroxyd zu. Lithiumchlorid geht mit Wasser 
iiberdies bekannterrnassen Molekularverbindungen ein, demnach not- 
wendigerweise auch mit einer Lijsung von Methylalkohol und Wasser3). 

Der Einfluss des Wasserzusatzes auf methylaikoholische Losungen 
von Kaliumjodid und Kaliumbromid kann die Gestalt der Kurven nicht 
sehr andern, da -die Ionen dieser einfach gebauten Salze schwerlich 
mit dem stark assoziierten Methylalkohol zur Komplexbildung neigen 
werden. Die Leitfahigkeit wurde jedenfalls durch Wasserzusatz nicht 
stark veriindert. 

Erorterung der Stroru~pannnngskurven. 
Die Stromspannungskurven in alkpholischer Losung zeigen samt- 

lich einen einzigen charakteristischen Knickpunkt, der ziemlich scharf 
ausgepragt ist. In wasserigen Losungen wurden zwei deutlich verschie- 
dene Knickyunkte festgestellt, wovon der eine, und zwar der bei der 
kleineren Spannung, nicht mit sichtbarer Zersetzung parallel geht, was 
bei dem zweiten aber untriiglich der Fall ist. 
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Die We, te der Entladungsspannung wurden in Xlkohol sehr viel 
niedriger gefunden als in Wasser. Andere Untersuchungen an  Pyridin- 
lijsungen ergaben viel hohere Werte als in wasseriger Losung. AI iill e r 
gibt fur 1 norm. Lithiumchlorid in Pyridin 3.8 bis 4.0 Volt als Zer- 
setzungsspannung an  und fur 0.1 norm. Losung 4.5 Volt, P a t t  e n und 
No t t  fanden 4.0 und 4.15 Volt als gesamte Polarisationsspannung der 
Zelle in Pyridin- bzw. Acetonlosung, wahrend der von uns in Methyl- 
alkohol gefundene Wert fur 0.1 norm. Lithiumchlorid nur' 1.2 Volt 
betragt. 

Fiir die hier untersuchtec Substanzen zeigt sich in methvlalkoho- 
lischer Losung die gleiche Reihenfolge der Zersetzungsspannung wie 
in wasseriger, sie nehmen in der Reihe LiCl, KBr, RCI, KJstandig  ab. 

Znsrtmmenfassnng. 
1. Fur Kaliumjodid, KaliumBromid, Lithiumchlorid und Chlorwasse~~ 

stoff wurden in reinem llethylalkohol Stromspannungskurven aufge- 
nommen, die Zersetzungsspannungen bestimmt und die Kurven mit 
denen in wasseriger Losung verglichen 

2. Bei Lithiumchlorid wurde festgstellt, dass schou die Gegenwari 
von Spuren Wassers die Gestalt der Zersetzungskurw gndert. 

3. Es zeigte sich, dass die Werte fiir die Zersetzungsspannung von 
Losungen in reinem Methylalkohol tiefer li'egcn als in wasserigen 
Losungen, aber dieselbe Reihenfolge zeigen, namlich absteigend von 
Lithiumchlorid iiber Kaliumbromid zu Chlorwasserstoff und Kaliumjodid. 

Reprinted from Z Phys Chem 126, pp. 442-451, 1927 (Johnson Reprint Corporation, NY). 



Measurements of the Decomposition Voltage in 
Non-aqueous Solvents 

Susil Chandra Biswas and S. N. Bose 
(The text contains 5 diagrams) 

(Received on 18.11.26) 

Very few findings are available on the decomposition voltage of salts in non-aqueous 
solvents. Patten and ~ o t t '  have recorded curves for the decomposition voltage of 
lithium chloride in various alcohols, acetone and pyridine, taking due consideration of 
the process taking place a t  the anode and the cathode. In the recent past Mueller and 
~ u s c h e k ~  and then ~ u l l e r ~  and Hoelzl and others examined the decomposition voltage 
in the solutions of silver nitrate in pyridine as well as the decomposition voltage of 
lithium in solutions of lithium chloride and lithium nitrate in pyridine. These results 
for pyridine showed considerably higher values for the decomposition voltage than 
those for the aqueous solutions; They were, however, taken without the installation of 
a rotating commutator in the circuit ; i t  seems therefore that the opposing electromotive 
force was increased by the potential corresponding to the large contact resistance of 
the layer sticking t o  the surface of the electrode. Very recently Newbury in a publication 
about the Overvoltage and the Contact ~esistances* has established that 'the total 
barrier opposing the flow of current from the electrode to the electrolyte consists of two 
different parts : out of these one (the pure overvoltage) is reversible and the other (the 
contact resistance) is irreversible. The readings of overvoltage without using a com- 
mutator are usually afflicted with an error of 0.5 t o  2 volts.' Pearce and I?rance5 as well 
as Mortimer and pearce6 investigated the individual potentials and the overall voltage 
for silver nitrate in pure and mixed solvents. These examinations were carried out in 
methyl alcohol, ethyl alcohol, pyridine and in water as well as in binary mixtures of 
these substances. These investigations revealed that whereas the binary mixtures of 
alcohols with pyridine followed the rules for the mixtures, the mixtures of water with 

Fig. 1 : (see the German original) 

Ruhrer = stirring rod Rollen = pulleys 

Motor = motor Kathode = cathode 

Anode = anode Gefallsdraht = step-down coil 

Kommutator Schlussel 
= 

commutator switch 

Kompensations anordnung 
- - 

compensator arrangement 
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Galvanometer mit Nebenschulss shunted galvanometer milliammeter for 
bzw. Milliamperemeter zur Messung des = measuring the electrolysing 
elektrolysierenden Stromes current 

methyl alcohol, ethyl alcohol and pyridine mostly showed a pronounced maximum or 
a minimum in the properties considered here. This fact suggests mutual influence of 
the two solvents. The results as obtained from the examination of the discharge voltage 
of hydrogen chloride and a few alkali halides in pure methyl alcohol as -well as in 
mixtures of methyl alcohol and water are presented below. 

Fig. 2 and Fig. 3 : (see the German original) 
(Stromstkirke in = Current intensity in Amp 

Fig. 4 and Fig. 5 : (see the German original) 

(Strmstkirke in = Current intensity in)1w5 Amp 

11. Nl2 HC1 in 90% methyl alcohol, etc. 
-- 

Acetone-free methyl alcohol was obtained from Merck. It was allowed to stand for about 
12 hours over lime and was then distilled once more. 

The experimental set-up used is clear from Fig. 1. The electrodes were made of thick 
platinum plate and were coated with platinum black. The current could be reversed 
almost 3300 times per minute with the help of the rotating commutator C. This enabled 
the measurement of the polarization voltage of the cell when the electrolysing current 
after every reversal had passed through the cell only for a period of 0.009 seconds. The 
strength of the current sent through the cell was measured by a carefully calibrated 
shunted galvanometer. A precision milliammeter was used for measuring stronger 
currents. 

The results are clear from the Figs. 2,3,4 and 5, where they are set down as 
current-voltage curves. The curves for the decomposition voltages in aqueous solutions 
(with respective concentrations) were similarly obtained from appropriate measure- 
ments and they tally well with earlier works of other authors.'. 

Table 1. KI 

(For numerical values, see the German original.) 

Discharge potential 
in volts 

Current strength in 
lo-' Amp 

Discharge potential 
in volts 

Current strength in 
Amp 
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Table 2. KBr 
I I 

Discharge 

in volts in Amp in 10'~ Amp in 10" Amp 

0.132 N KBr in CH3.0H 

(For numerical values, see the German original.) 

Table 3. LiCl 
I I 

I I 1 I I 

0.066 NKBr in CH3.0H 0.132 N KBr in H 2 0  

1 N LiCl in CH3 .OH 

(For numerical values, see the German original.) 

Discharge 
potential 
in volts 

Table 4. HCl 

1 I I I I 
0.1 N LiCl in CH3 .OH 1 N LiCl in H 2 0  

Current 
strength 
in Amp 

(For numerical values, see the German original.) 

The decomposition voltage of the hydrochloric acid in 0.5 N solutions 
5 V = discharge potential in Volts, a = current strength in 10- Amp. 

The Results of the Experiments 

Discharge 
potential 
in volts 

Potassium iodide (Cf. Table 1 and Fig. 2) 
A nearly 1N solution of potassium iodide in methyl alcohol was used. The reading for 
the decomposition voltage lies in the vicinity of only 0.32 Volt. The anode liquid became 
quickly tinged by the heavy iodine deposition. The decomposition voltage of 1N potas- 
sium iodide in an aqueous solution was found to be 1.12 Volt (Parkin found i t  to be 1.14 
Volt). 

50% CH3 .OH 100% CH3 .OH 

Potassium bromide (Cf. Table 2 and Fig. 3) 
Approximately 0.1 and 0.5 N solutions of potassium bromide in pure methyl alcohol 
yielded decomp'osition voltages of 0.68 and 0.71 Volt respectively. Apparently the 

Current 
strength 
in lV5 Amp 

90% CH3 .OH 

Discharge 
potential 
in volts 

70% CH3 .OH 

Current 
strength 
in Amp 
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decomposition voltage increases here with dilution. In the aqueous solution i t  was in 
the vicinity of 1.54 Volt for 0.1N potassium bromide (according t o  Parkin i t  is 1.61 Volt 
for a 1N solution). 

Lithium chloride (Cf. Table 3 and Fig. 4) 
In the case of a 0.1N lithium chloride solution the curve shows a sharp bend in the 
neighbourhood of about 1.2 Volt. In the case of a 1N solution in pure methyl alcohol, a 
second bend similarly appears in the neighbourhood of 1.90 Volt. A 1N solution of 
lithium chloride in water shows a bend in the vicinity of 1.95 Volt. One could therefore 
assume that there are traces of water present (coming from the strongly hygroscopic 
salt) in a 1N lithium chloride solution in pure methyl alcohol. On the contrary, the 
majority of the curves show two marked bends in the vicinity of 1.0 Volt and 1.33 Volt. 
Since in the case of methyl alcohol the bend lies in the neighbourhood of 0.41 Volt, one 
must attribute the bend in the vicinity of 1.0 Volt t o  the formation of a complex in the 
mixture of solvents. 

The influence of adding water to lithium chloride.in pyridine was examined by 
Patten and ~ o t t ~ .  Their results are not decisive as the electrodes became coated in 
their experiments with an insulating layer. The shapes of the graphs produced by them 
correspond with the ones reproduced here. Mueller, ~ o e l z l ~ O  and others examined the 
discharge of lithium in solutions of lithium in pyridine with 5 and 10% water content. 
The graphs thus produced contained several bends and were irregular. They attribute 
this fact to the deposition of lithium hydroxide. Moreover, i t  is well known that lithium 
chloride enters to form a molecular compound with water and therefore necessarily 
also with a solution of methyl alcohol aad water". 

The addition of water to the solution of potassium iodide and potassium bromide in 
methyl alcohol cannot influence the curve in such a way as to'change its shape very 
much, because the ions of these simply built salts will be scarcely inclined to form 
complexes with the strongly associated methyl alcohol. In any case the conductivity 
was not much changed because of the addition of water. 

Discussion of the Current Voltage Curves 
The current voltage curves in alcoholic solutions show a single sharply pronounced 
characteristic bend. In aqueous solutions two distinctly different bends were estab- 
lished of which the one with the lower voltage does not go along with a visible 
decomposition which is unmistakably the case with the other one. 

The values for the discharge potential were found to be very much lower in alcohol 
than those in water. Other studies on pyridine solutions have yielded much higher 
values than the ones for an aqueous solution. ' ~ u e l l e r  states 3.8 t o  4.0 Volt to be the 
decomposition voltage for a 1 N lithium chloride solution in pyridine. For a 0.1 N 
solution he states i t  to be 4.5 Volt. Patten and Mott found 4.0 Volt and 4.15 Volt to be 
the total polarization potential of the cell in pyridine and acetone solutions respec- 
tively. In contrast, the value for 0.1 N lithium chloride in methyl alcohol was found by 
us to be only 1.2 Volt. 

The decomposition voltage for subsfances studied here show the same sequence in 
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a methyl alcohol solution as in an aqueous solution. They decrease steadily in the 
sequence of LiC1, KBr, HC1, KI. 

Summary 
1. Current voltage curves were obtained for potassium iodide, potassium bromide, 
lithium chloride and hydrogen chloride in pure methyl alcohol. The decomposition 
voltage was determined ; the curves were compared with those for aqueous so1utio.n~. 
2. I t  was established for lithium chloride that even the presence of traces of water 
changes the shape of the decomposition voltage curve. 
3. It  was seen that the values for the decomposition voltage in solutions of pure methyl 
alcohol are lower than those in aqueous solutions but show the same sequence, namely 
descending from lithium chloride to potassium bromide, hydrogen chloride and potas- 
sium iodide. 
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Beryllium Spectrum in the Region h 3367-1964. By S.N. BOSE, Professor of Physics, Dacca 
University, and S . K .  MUKHERJEE, Assistant Lecturer in Physics, Dacca University*. 

[Plates 11. & 111.1 

T HE beryllium spectrum is remarkable owing to the small number of lines that have been observed in 
the visible and the ultra-violet. The earlier measurements are somewhat conflicting. Exner and Haschek 

could not find some of the lines observed by Rowland and Tatnall t. Glaser $ investigated the spectrum by 
sparking between the metal tips, but he.also could not corroborate the earlier observations. 

Recently Millikan and Bowen 5 subjected the spectrum to a thorough analysis by their method of hot 
spark, and extended it up to 1943 A.u. They classified some of the important lines, and gave the term values 
both of Be I1 and Be I. 

It was with a view to study the spectrum thoroughly, under different conditions of excitation, that the 
present work was undertaken. 

The instrument that we have used almost exclusively for the work is Hilger's Quartz Spectrograph, type 
E 1. Ln the near ultra-violet between the regions 2400-1850 it is almost an ideal instrument for spectrum 
analysis, combining a high dispersion with a high light-value. We have extended our observations to the 
visible region; but here, because of the low dispersion, the measurements were not more accurate than by 
'1 A.u., though we could very easily identify the lines and thus verify the observations of the previous 
workers. 

Most of the observations were made on the arc spectrum, and obtained by feeding the nitrate or the metal 
in a carbon arc. We have used both ordinary and Hilger's extra pure carbon rods, and the presence of traces 
of iron has been an advantage in furnishing suitable standard lines in the different regions. In the extreme 
ultra-violet we have used copper arc and spark as comparison spectra, and in some cases the silicon lines 
almost always present in. carbon spectra were helpful in making accurate measurements. 

The plates used were IIford Empress and Ordinary up to 2175. In the extreme ultra-violet we tried 
sensitization with machine oil, but the lines were a little broad. As our aim was to resolve very narrow 
doublets, we could only get the best results by using Schumann plates as supplied by Hilger. 

The materials used were, at first, certain old samples of beryllium nitrate and metal from Merck's, which 
were found to contain lead, aluminium, and silver as impurities. Later, owing to the kindness of Professor 
Mark, of Badische Anilin Fabrik, we were enabled to get a different sample of the metal. But this was found 
to contain traces of rare earths, notably scandium and yttrium. By a comparison of the different samples the 
lines due to contamination were eliminated, and we give our results tabulated below (vide Table I.). 

As may be seen, we could go almost to the same limit as Millikan and Bowen by their hot-spark method, 
and, incidentally, we have discovered that the following lines, 2351, 2175,2126, 2056, and 2033, given as 
singlets by Millikan and Bowen, are clearly doublets of approximate wave-number difference 2.6. Most 
probably these are triplets due to the triplet P-terms, and our spectrograph could only separate PI  from P2 
+ P3. The wave-number difference thus measured is the distance of PI from the centre of gravity of P2- and 
P3- lines, and as such has a slightly higher value.The lines 1998 and 1964 just appearedps doublets, but owing 
to their hazy character the measurements of the doublet separation were not possib16: We could verify the 
earlier measurements of Rowland and Tatnall as well as the line of Glaser, viz. h 4672'9. Incidentally, we 
have discovered a few new lines whose wave-lengths are given in Table I. The line 3019 appeared as a 
doublet, the line 2986 as a triplet, and the lines 31 10 and 2738 as singlets. 

* Communicated by the Authors. 
t Kayser, Handbuch d .  Spectro. vol. v. 
$ Glaser, Ann. d .  Phys. (4)  Ixvii. pp. 73-88 (1922). 3 Millikan and Bowen, Phys. Rev., Aug. 1926. 
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We have made some observations by feeding a fair amount of metal or the salt in the arc, and we could 
observe that the lines 332 1,265 1,2494, and 2 175 with their components were reversed in some cases, thus 
showing that thep-level is probably the common origin of the lines as classified by Millikan and Bowen. In 
rare occasions, howe-ver, the line 3 13 1, usually attributed to Be 11, could be reversed. The line 2,348 (1 S-2P) 
is always reversed in the arc. 

We have tried the spark spectra in air, where, owing to rapid oxidation, we could make very little progress. 
We have also tried sparking between the tips of the metal, enclosed in apartially evacuated vessel with quartz 
window; and even then we could not go beyond 2175. In this way,however, we have got an interesting band 
spectrum, which we believe to be due to beryllium and which consists of bands degraded to the red. The fine 
structures of the band have not yet been measured, and we give in Table 11. the measurements of the edges. 

There does not seem to,be any line of Be between 4700 up to the extreme red. We are now continuing 
the work in the infra-red, and hope to be able to corroborate the solitary work of Theo Volk * in the region. 

The following table gives the wave-lengths (in I.a, vac.) of the lines between h3367-1964, with the 
frequency difference between the components, and also the lines (in 1.a) of Rowland and Tatnalll, together 
with the few lines marked * observed by us as new :- 

TABLE I. 

Bose & Rowland & Bowen & 
Mukherjee Tatnall Millikan 6v 

I. a. I. a, vac. 
3367.55 3367.579 - - 

*3110.91 - 
*3019.54 - 
*3019.33 - - 

2986.63 - - I - 
2986.44 2986.426 - 
2986.08 2986.057 - 
2898.26 2898.24Q 

*2738.08 - - 

The lines marked (a) appear in plates, but their measurements are unsatisfactory owing to the absence of standards in this region. 

*Dissert. Tiibingen, 1924 (Dresden bei Teubner). 17 pp. 
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Bom & MUKHEEJEE. Phil. Mag. Ser. 7, VoL 7, Pl. II. 

A. Carbon arc fed with Be Salt. 
B. Iron arc. 
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BOBS & MUXHEWEE. Phil. Mag. Ser. 7, Vol. 7. P1. 111. 
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In the accompanying plates (Pls.11. and 111.) I. and 111. are contact-prints from Schumann plates; 11. and IV. 
(a) are microphotographic enlargements for showing the fine structure; rv . ,  contact-print from ordinary plate; 
V.  and VI. are slightly enlarged prints to show the new lines. 

The following table gives the wave-lengths (in La) of the edges of the band; those marked (a) are fully 
developed with their fine structures:- 

TABLE 11. 

1 .......... 2474.2 
2(a) ...... 2446.0 
3 (a) ..... 2419.2 
4 (a) ...... 2325.1 
5(a) ..... 2299.4 

Reprinted from Phil Mag Ser 7 ,7 ,  pp. 197-200,1929 (Taylor and Francis, London). 
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TENDENCIES I N  THE MODERN THEORETICAL PHYSICS. 

The ultimate aim of Scientific inquiry is to arrive a t  a 
minimum number of hypotheses which will explain the maxi- 
mum number of facts. The hypotheses should obviously not 
contradict one another. At the present moment, however, we 
see two contradictory theories, in the domain of Physics. On 
the one hand we have the classical theory based on the dyna- 
mica1 laws of Newton. On the other hand we have the Quan- 
tum theory first introduced by Planck, which has been differently 
formulated by different Scientists ; while the Classical Theory 
explain satisfactorily all problems relating to  motion and inter- 
action of big masses as well as the problem of propagation of 
radiation, the Quantum Theory has succeeded with the help of 
a few principles in co-ordincbting a large amount of esperimental 
material aocumulated in the various domains of spectroscopy, 
X-rays, etc. It has succeeded best in a11 problems dealing with 
the ultimate constitution of matter, or in problems dealing with 
the interaction of matter with radiant energy. As a result of 
work of the last twenty-five years, we seem to be much nearer 
to understanding the prohlem of matter. The periodic classificcb- 
tion of Mendeljeff does not now appear. as an unexplained 
riddle and the huge amount of spectroscopic material can now 
be classified and explained with the help of a few fairly simple 
principles. The task that faces the Physicists to-day is how best 
to harmonise the seeming discord of the two theories, which are 
a t  the present moment utilised to explain the physical pheno- 
mena. I t  is a difficult task, and the first step towards fulfilment 
will be to place in a clear light the differences that characterise 
them: for this purpose i t  is necessary t,o trace the history of 
the development of our physical ideas indicating the various 
points where fresh hypotheses had to be introduced before the 
next move towards progress could be made. 

Theoretical Physics may be said to have begun its 
career as a Science with the formulation of the famous laws of 
motion by Newton. The mathematical formulation of this 
principle leads to a series of differential equations in which we 
equate certain quantities which depend upon the state and 
nature of the body under investigation with certain other 
quantities which we interpret as forces arising out of the 
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interaction of other bodies. The solution of these differential 
equations introduces a certain number of arbitrary constants 
which depend upon the initial state of the system investigated. 
These constants once known determine completely the subse- 
quent hist,ory of the system under observation. Newton's 
original equations involved the use of the cartesian co-ordinate 
system, but very soon these equations were transformed into a 
form in which the arbitrary character of the co-ordinates was 
removed, and finally Hamilton and Jacobi introduced the 
characteristic function, which reduced the problem of solving the 
equations of dynamics to the solutioa of a single partial 
differential equation. Simultaneously, with the help of the 
concept of the Variational Calculu~, we arrived a t  the celebrated 
Hamilton's Principle, by which the whole problem of dynamics 
was reduced to the problem of making a certain .integra.l an 
extretnum, within certain suitable limits. 

The writing down of the set of differential equations, or 
of the single.partia1 differential equation of Jacobi requires how- 
ever the knowledge of the laws of interaction of various bodies 
on one another. The exact formulation of these laws seem 
therefore to be the immediate aim of the earlier classioal 
Physicists. These laws once known allow us to  apply to any 
problem the general dynamical methods, whereby the problems 
of Physics are reduced to problems of pure mathematics. In  the 
laws of gravitation: in the law of Coloiimb and of Ampere, we 
have some classical examples ; in every case it is endeavoured 
to express the force in terms of the relative co-ordinates, and 
the velocities of the interacting masses. 

The laws of dynamics were originally formulated to ex- 
plain the motion of observable bodies. When with the progress 
of knowledge the discrete nature of the constitution of matter 
was evident, the natural endeavour has then been to extend to 
those ultimate particles (the atoms, protons, electrons), the same 
dynamical laws which have been so successfully applied to the 
study of big masses. As the aim of Physics is to explain the 
observed physical phenomena, in terms of the motion of the 
ultimate particles, a convietent appli~at~ion of the dynamical 
methods has been responsible for the whole structure of classi- 
cal Physics. 

Before the methods of classical dynamics could be applied 
important developments in two directions had to he made. The 
problem of specifying the law of interaction of the different 
particles, when we have to take account of the immense number 
of the constituent  particle^ raised difficulties which were re- 
solved and the problems made more amenable to analysis by 
the introduction of the conception of the Field. It was dis- 
covered that instead of basing the description of interaction on 
the various laws, (tormulated on the action-at-a-distance basis), 
a much simpler and a better treatment could be obtained by the 
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illtroduction of certain auxiliary magnitudes-The scalar or 
the vector potential, or The Electric or Magnetic intensities. 
These quantities vary with the position in space, as well with 
time. The characteristic functions determining the field were 
found ili the ca.se of electro-magnetism to satisfy a certain 
linear set of partial differential equations, whereas the re1 a t ' ion 
between the magnitudes introduced, and the reacting masses 
may be expressed by a certain type of equation of the second 
order. These auxiliary magnitudes thus came to be looked upon 
as having their seat in a hypothetical medium which was 
postulated to pervade all space, and the partial differential 
equations which connect then1 came to be looked upon as related 
in some way to the physical properties of the hypothetical 
medium, the Ether. By the inkoduction of the concept of 
energy and momentum density, the abstract conception of ether 
seemed to gain in substantial reality. This was further 
strengthened when i t  was shown tha,t i t  was possible to bring the 
partial differential equations in line with the usual dynamical 
equations, in as much as they appeared to be deducible from 
the Hamilton's principle if certain quantities were identified with 
the potential and the kinetic energies of the medium. Thus we 
come to the classical conception of Ether, and the electro- 
magnetic equations of Maxwell which served as the starting 
point of the modern Electron-Physics. Gravitation, however, did 
not immediately fall in line with the other field theory, until 
the formulation of the generalised Relativity-Principle by 
Einstein. Of this we shall have occasion to speak, later on. 

There was however another difficulty which stood in the 
way of immediate application of the classical methods to the 
problems of Phpics. The dynamical laws seem a t  first ap- 
plicable to the motion of the ultimate particles, which them- 
selves however always escape direct. observation. What we 
observe is to be looked upon as the resultant of a large number 
of elementary events; and the measurable microscopically 
sensible magnitudes cannot also be regarded as determining 
uniquely the component microscopic elements. Thus, from the 
classical standpoint, the necessary magnitudes for uniquely cha- 
racterising the state of the system remain largely undetermined, 
and the Physical laws connecting observable things cannot be 
regarded as immediately deducible from the dynamical la,ws, at 
any rate without the introduction of further hypotheses. The 
method of statistical mechanics was developed to tackle this 
fundamental difficulty. The earlier method consisted in re- 
garding the ultimate particles as practically independent systems. 
Each system is characterised by cert,ain values of co-ordinates and 
momenta. Under their mutual interaction, Space and momenta 
mrdinates of the individual systems are supposed to vary within 
certain limits. The actual observable magnitudes 
are determined by the distribution of the systems among the 
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different physically possible states. Mathematically this dis- 
tribution is visualised by the distribution of the represent.ative 
points of the individual systems in a phase space, which is sup- 
posed to be decomposed into a certain number of elementary 
phase-cells. The actual position of any particular represen- 
tative point inside the phase-cell, is supposed to have no effect 
on the value of the phenomenologically obsel-vable magnitudes. 
The equilibrium-state of a physical system can thus be related 
to a particular distribution of the representative points in the 
phase cells which occurs most frequently, or remaiu longest 
during the period of observation. By this way the important 
physical idea of entropy can be connected wtih the probability 
of distribution in the Phase-Space, and important Thermodyna- 
mical laws can be looked upon es certain stat;istical laws which 
are necessary consequence8 of the very large number of individual 
components. When the resultu of classical dynamics are 
combined with this concept of statistics, we get certain very 
general laws, regarding the partition of energy. Though at  
first, these results seemed to a.greo with the facfs observed, 
subeequent and more exact experiments have shown them to be 
erroneous. 

I have already referred to the equations of classical mecha- 
nics which determine the motion of a materid particle, as well 
as the field equations, which connect the vector magnitudes 
serving to describe the electro-dynamical field. Though it was 
attempted to bring these equations in line with the dynamical 
laws by showing that they also can be deduced from Hamilton's 
Principle, a fundamental difference between the two sets of 
equations was clearly brought out during the early part of this 
century.. The dynamical equations of Newton poaeess an in- 
variant group of transformation, the Galilean Group, which 
expresses the equivalence of all inertial systems as frames of 
reference for the desqription of motion. The field equations 
of Maxwell however, have a different invariant group, the 
Lorentzian group. The space and time co-ordinates enter 
symmetrically into these equations, or rather the space-time 
symmetry can be brought out by introducing after Minkow~ki 
an imaginary time ict., as the fourth co-ordinate. The Lorent- 
zian group of transformation can be represented by a rotation 
of axes in a four dimensional orthogonal space, which leaves 
the invariant distance unaltered. By extending the con- 
ception of vector quantities of the usual three dimensional space 
to four dimensions, the field equations can be giren an invariant 
form. The recognition of this formal equivalence of the time 
and space co-ordinates u~hers in the ideas of relativity. This 
equivalence now-a-days is regarded as axiomatic, and furnishes 
a test which all physical laws have to satisfy in order to be 
exact. By generalising this conception further, and by giving 
up the condition of orthogonality Einstein was able to present 
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a field theory of gravitation. The two different field theories 
have however remained essentially distinct though attempts 
have repea,tedly been made to fuse them into one single 
unitary theory. 

I have now indicated to you the principal steps by which 
the classical theory arrived from its first elementary stage to the 
present developed state. I shall now tell you of the difficulties 
t,hat arose successively and which led to the formulation of the 
quantum theory. The conceptions of energy and momentum 
have been early deduced from the dynamical laws and have 
played very important roles in the subsequent development of 
the Science. For example the Hamilton-Jacobi differential 
equation requires for the mathematical expression the writing 
down of total energy of the system in terms of t,he momenta, 
whereas the integrand in the Hamilton's Principle is the 
difference between the potential and the kinetic energy of the 
system. The introduction of the concepts of energy seems 
necessary for the applicability of the general dynamical laws, 
and we have seen how the field equations can be made compatible 
with the dynarnical laws by interpreting a certain magnitude as 
the energy-density of Ether. As a necessary coro1lar.v to the 
equations however i t  follows .that 'there will be a continuous 
interchange of energy between the ultimate particles composing 
matter and the surrounding radiation field. The principle of 
equipartition of energy which follows as a necessary consequence 
of the. idea, leads us however to entirely wrong results when 
applied to the problem of equilibrium of radiation-field with 
matter. In order to explain the distribution of energy-in the 
black-body radiation spectrum, as well as to explain the problem 
of generation of radiation we have been compelled to make 
certain assumptions regarding the constitution of the radiation- 
field, and about the equilibrium states of material particles. 
which directly contradict our classical ideas. This has led to 
the introduction of the Quantum theorv in Physics. T'he 
energy in the monochromatic radiation field, has to be assumed 
to exist in definite quanta. The study of the constitution of 
matter has led us to the conception of the atom as a compara- 
tively stable structure built out, of the nucleus and electrons. 
These electrons according to the earlier formulation of the 
quantain theory are to be supposed as rotating in certain 
characteristic orbits ; whereas such a constitution on t,he claseical 
theory will necessarily continually radiate and lose energy, we 
have to assume here that such a structure keeps generally intact 
its energy-content and also that there are a series of discrete 
radiation-free states characterised by a discrete series of values 
of the energy content. An interchange of energy can only t,akc 
place, when the atomic system passes from one dlst.inct state to 
another resulting in an emission or an absorption of radiation. 
The passage of t,he atom from a higher energy state t,o a lower is 
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associated with an emission of a monochromatic radiation whose 
frequency is given by the relation 

where W, and W' are the characteristic energies of the two 
states. 

Modern development of spectroscopy seems to indicate 
that the state of a system may be defined by the introduction of 
certain sets of quanta members, each set being associated with 
a definite constituent electron of the atomic system. No two 
electrons of the atomic system may have the same group of the 
quanta-numbers, and the successive building up of the different 
atoms may be looked upon rts a gradual increase in the number 
of electrons in the outer orbit, each electron coming to occupy 
a place characterised by n different group of quanta num- 
bers. 

These few principles which are so contradictory to the 
ideas of classical dynamics have proved to.be invaluable in the 
development of modern Physics. To them we owe the scientific 
claesification of the spectroscopic terms, explanation of the 
Periodic classification, etc., etc. The direct and simple way in 
which the different problems, which have long baffled the attempt 
of classical physics, find their explanations in the new theory 
shows that it contains a Large element of truth, and the most im- 
portant problem of the present time is to find a way of re- 
conciling the two theories. It has became evident also that no 
one theory will he able to entirely replace the other. For 
example the conception of the field, which has been developed 
originally from the classical standpoint, seems to contain also 
a great element of truth. The large mass of experimental 
material connected with the problem of propagation of radiation, 
seems to find in the field theory a very simple and direct expla- 
nation, which appear so difficult to explain from the Quantum- 
theoretical standpoint. 

The solution of the dilemma seems to lie in suitably 
uniting the field and the quanta-theories, which will ultimately 
form a more general theory of which the two theories may 
then be regarded as limiting cases. We have in recent years 
already some indications of tentative attempts in the same 
direction. One may attempt to visualise the radiation-field as 
simply determining the interaction of the different part4icles and 
give up the classical concept of energy and momentum-density 
in Ether. Consistent with our ideas of the quantum theory, we 
may regard that the energy in the field is only discretely 
distributed througbout the space, (somewhat after the ideas of 
J. J. Thomson). The motion of these quantas of energy may 
be supposed to be guided as i t  were by the field, and it may be 
supposed to take place along the direction of the Poynting 
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Vector. The same field which guides the motion of the quanta 
may be also supposed to  control the motion of the electrons in 
the different orbits. The nature of the field itself should be 
determined by some equations depending upon the distribution 
of the charges. Such a field theory will have as its task the 
explanation not only of the fundamental relation E=hv ,  but 
also of the occurrence of the discrete quanta-states and the 
different quanta-members. 

That the idea of discrete energy-states is not inconsistent 
with a continuous field-theory seems t,o follow from the recent 
developments of the wave-mechanics (Schrodinger, Dirac). 
I n  the classical theory the impossibility of the existence of 
stationary electron-orbits follows from the result that an 
accelerated electron gives rise according to it to an electro- 
magnetic field such tha t  the surface integral of the Poynting 
Vector a t  a great distance does not vanish. The result is 
interpreted as indicating a continuous loss of energy from the 
moving electron which makes stat,ionary orbits impossible. One 
can think however, tha t  if there are other electrons present the 
resultant field may be such that  the electron may in the average 
gain as much energy from the surrounding field as i t  loses by 
radiation, or in other words the resultant electro-magnetic field 
due to all the moving electrons may be such that, the integral 
of the Poynting-Vector vanishes. Such a hypothetical solution 
of the field-equations which make the field vanish a t  infinity 
may be thus likened to a stationary vibration rather than to a 
divergent wave-train. I t  is clear, however, that the distrit~utiou 
of the charges will have to be suitably made and their motio~is 
definitely related in phase with one another in order that  such 
a thing may be possible. The electro-magnetic field may then 
be supposed t,o be in resonance after de Broglie. What 
Schrodinger succeeds in establishing may be likened to finding 
exactly such a law of distribution of charges. The quanta 
conditions then may be fittingly compared with the resonance 
conditions. Dirac seems to have succeeded in deducing a set 
of four linear partial differential equations which correspond t'o 
facts more closely. The four functions or rather eight of t,hem 
give us the distribution of the hypothetical charges and currents 
in the electro-magnetic field necessary to est,abliuh resonance- 
c~nditions.  The field itself in these two theories determines also 
the distribution or rather the statistically equivalent distribu- 
tion (in space as well as in velocity) of the charges in the 
field. 

One may hope that the final solution of problem may be- 
found and the proper set of  equations which will determine the 
radiation-less field may be determined with the help of the  
ideas of the generalised relativity theory. If an unitary field 
theory which could explain gravitation and electro-magnetism 
could be found, one would hope to obtain $hereby not only 
the  solution of the quanta-problem, but perhaps also of a more 
fundamental problem, the  relation of charge with gravitational 
mass, and explanation of the difference in mass of the proton 
and the electron. 

Reprinted from Proc Ind Sci Cong 16, pp. 55-62, 1929 (Asiatic Society of Bengal). 



ON THE COMPLETE MOMENT-COEFFICIENTS OF THE 
D~-STATISTIC. 

BY SATYENDRA NATH BOSE 
PROFESSOR OF PHYSICS, UNIVERSITY OF DACCA. 

The D2-statistic ww defined by Mahalanobisl to measure the divergence between 
two statistical populations, and the moment-coefficients were also calculated by him 
by approximative methods. Rajchandra Bose2 has found the exact distribution of 
the D2-statistie* which can be expressed in terms of Bessel functions. He has used 
the actual distribution function to obtain the moment-coefficients, and has shown that 
the results previously obtained by Mahdanobis are exact. In the present no& a 
recurrence-formula for the D2-statistic has been obtained directly without assuming 
the distribution, and certain properties of these moment-coefficients have been 
investigated. 

2. Let (a,, a,, .... a,) and (a;, ad, .... a;) be the observed mean values in two 
samples Z, and Z, of size n, and nz reepectively drawn from two normal p;yariate 
correlated populations with mean values (a,, a,, . . . a,) and (a;, a:, . . . 4;) res$ctively. 
The distribution of the differences in observed mean values (a,-a;, a,-a;, . . . a,-a;) 
can be written in the form :- 

where /I and /Iif (i, j = 1, 2, . . . p )  are certain functions of the population variances 
and co-variances whose values have been given by Rajchandra Bose3 and 

Then the D2-statistic is defined by 

* In  this paper p and n have been used in the place of P and la in the earlier papers of P. C. Maha- 
lanobia and Raj Chandra Bose. The DT-statistic was intended to be and was defined as a quantity deter- 
mined entirely by the sample values of the variates. Raj Chandra Bose hes investigated the exect 
distribution and 5. N. Bose the moment-coefficients of a modified form of the Dz-statistic in which the 
population values of the variances and co-variances have been substituted for the corresponding sample 
estimates.-Edilot, Sankhyii. 
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The population value of D2 is A2 which isdefined by 

3. If we put 

(a,-a!)  = zi,  and (ai-a:) = ti a 1 

we can write 

If we now use a linear transformation which changes the quadratic form 

then the same transformation will change 

where ( q l ,  qZ, . .. 77p) are connected with ( E l ,  k, . . . C p )  by the same linear transformation 
which connects (y , ,  y2, ... y,) and (x,, x2, ... xp)  

i . j=p 
Also + S (&zitj) will be transformed to ( ylql+ y2712+. . . yprp)  ... (3.5) 

i j=1 

We can then write 
2 4p.D:: = y;+y;+ .. .Y, 

Equation (2.1) can then be written in the form :- 

-? [ D ; + A Z - Z D ~ .  A COSOI 

Const. x e xdV 

where dV = dy,,  dy2 ... d y ,  
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4. Let be the k-th raw moment of @, and let 

where the eingle sign of integration etanb for the pfold integration. 

Then = 0 4  ... (4.2) 

we sleo write np/4  = t . . . (4.3) 

Q - ~ ( ~ + A ~ - ~ D * . A  coa 8) 

and Mk = 1 9 . e  .d V ... (4.11) 
0 

Then 
- ( t ~ f  + A ~ - Z D ~ A  COB 0.1 '3 = - 2t j ~ k ( ~ - o l ~ ~  e)a 

aA 
d V  ... (4.4) 

-~(D~+A'-~DIA coe 0) 
= -2t.A.Mk+2t j' *COB 8 . e d V  ... (4.41) 

Therefore 

A axk ax, 
Mk+l = AS.  Aft+-. - -- t aA at 

... (4.6) 

6. Now mtnally 
Q 

Therefore 
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Ale0 &(Df) = c M, = 1 and therefore 

We can use the above initial values to calculate MI, M2, ... Mk etc., and hence 
with the help of equation (4.2) obtain the raw moments (about any arbitrary origin) 
of Ds which can be written in the form :- 

6. It will be convenient to use new variables 

... ... u = A2, and s =. l/t (6.1) 

Equation (4.6) can now be written as 

Ramembering that No = fn s ) ~ / ~ ,  we note from the form of equation (6.2) that Mk 
is a homogeneous function of order (k+ip) in u and s. 

Therefore 

= u Mk+2u 8 azk + 2 ~ ( k + + ~ )  Mk, by E u b ' ~  theorem ... (6.3) 
au 

Thus 

Writing briefly pi for ,ui(Df), we have 

Equation (6.4) may now be written in the form :- 

This is the fundamental recurrence formula. We notice that ,& is a, homogeneous 
function of the k-th degree in 8 and u. 
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The general expression for pi can be easily obtained. 

From this equation we can immediately write down the coefficients occurring in 
pi :- 

pi.. ...... . I  

pi.. ...... . I ,  p 

ph ....... ..I, 2 ( ~ + 2 ) ,  p@+2), 

pi.. ..... ..I, 3@+4), 3(p+2)@+4), p(p+2)@+4) etc. 

The general coefficients can be easily proved by induction to be of the form :- 

Remembering that u = A2, and s = 1/2t = 2/(np) we finally obtain the general formula 
for the k-th raw moment-coefficient :- 

= Lt. A*. F -k; -k-ip+l; a; - 
a -+ a, i npAa 

The two formulae (7.5) and (7.6) are in agreement with the results obtained by 
Rajchandra Bose a in equations (8.9) and (8.91) on p. 152 of Sankhyii, Vol. 2, Part 2. 

8. It is clear from the preceding considerations that pi(D2)'s, whose recurrence 
formulae have been calculated, belong to a Gaussian distribution in p-variables; 
it may be therefore interesting to deduce certain mathematical properties of these 
functions. 
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We start from the recurrence formula 

Putting pi = ( 2 ~ ) ~ .  $ k k ( ~ / 2 s )  and using X = u / 2 s  as the new variables, we have 

$k+l(x) = [(k+ ! I P ) + x ] $ ~ ( ~ ) + x $ ; ( x )  . . . (8 .1 )  

Multiplying by ez. 2 + + p - l ,  we have 

d eZ. xk+t.-l$ (%) = - [ex k+l dx  &+ ' p $ k ( x ) ] ,  

By regular descent, since $,,(x) = 1, it follows easily that 

d k 
6 ~ + + P + ~ ( X )  = ( x 2  z) [ex XY 

which may be regarded as a solution of the recurrence formula. 

If we put t  = 11% = 2s/u, we get, 

pi = ( 2 ~ ) ~ .  k k ( x )  = ( 2 ~ 1 ) ~ .  e-'1' . t ip  (---$J '[ell' - t-"1 ... (8 .4 )  

which is identical with (8 .6 )  in Rajchandra Bose's paper.3 

Starting from the equation ( 8 . 3 )  and denoting by y, the expression exxtp, and 
d by D , .  the operator x2 -, we easily find that y satisfies the differential equation 

dx 

Operating on both sides of this equation by DL+' and remembering that Dky 
-- Pk(x)  one easily finds that $k(x) satisfies the differential equation 

If $ k ( - - ~ )  = ( - I l k  . f k  ( x ) ,  

fk ( x )  satisfies the differential equation 
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The solutions are easily seen to be polynomials of order k, when k is an integer, 
and these in carse of (8.6) have been studied by Sonine, Gegenbauer, and others. The 
differential equations ha.ve also been studied by Whittaker and others, and give rise 
to solutions of the confluent hypergeometric types. 

9. There is an alternative method of arriving a t  the differential equation for p', 
which is here appended as the method is capable of wide generalisation. 

The Gaussian distribution function 

1 p - - Z @ r .  . Y T ) ~ I ~ ~  
(2nt)iP 

e , where r = 1, 2, 3, ...p 

can be easily seen to satisfy the differential equation 

where instead of (x,, x,, ... x,), we may also take (y,, y, ... y,) as vsriables. 

1 
The expression - (2nt)i~ . -Zr(zr-yr)z121 denoted by F also &atisfies the differential 

equation 

Now, since thi8 differential efiation is linear which-means that if @,, @a, . . . etc. 
are each a solution of the differential equation then etc. is a solution of 
the same equation, and since an integral is nothing but a sum, therefore, 

1 which consists of a sum of terms like - e -C ( x T - - Y ~ ) ' / ~ ~  satisfying the dif- (2nt)ip 

ferential equation and eaoh multiplied by a term like &x,, x, . . . x9) . d$ ax, . . . dxp not 
depending upon the independent variables the y's, is easily seen to satisfy the 
equation (9.11). 

Therefore 

also satisfies the same differential equation. 
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An orthogonal t~ansformation of (x'~) and (y'$) will not change the integrand; 
also making a transformation 

multiplies the integral by AskE. Hence 

or & is a homogeneous function of (R2, t) of the kth degree. Therefore Cl; is a homo- 
geneous solution of the kth degree of (Ra, t) alone of the equation (9.1). Making a 
ohange of variables to R and angle-coordinates in a p-dimensional space, pi is seen to 
eatiafy the differential equation 

This transformation is seen easily as m i  . F = Div. grad F ,  and when F is a function 
of R done, the expression follows as the hyper-spherical element perpendicular to 
R ie proportional to Rp-l. Thus 

the differential equation of +;, (s) is easily seen to  be 

whioh is identical with the equation (8.5) 

10. The method sketched above enables one to crrlculate the moment functions 
even when k is not an integer; actually however, unless k's are integers, pi's will not 
be expressed by a polynomial but by an infinite series. The differential equation 
itself determines all the constants except one, which can be determined from simple 
oonsiderations. 
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I will conclude my remarks by deducing certain properties of the general differ- 
ential equation, which will be useful for determining the form of the general distribution 
function about which I wish to make some remarks in future. 

Consider the equation 

azP d2F 0;. P = - 
a2F +-+ ... - aF 

i - 2 =  
ax: ax; ., ax; 

Suppose $ is a solution of the differential equation, we then seek a solution of the 
equation of the form F = $ . X. 
Then 

Now if 
1 - - ~ z 3 2 t  

@ = @ q W e  , then - 8% =-- xr t '  @ ... (10.4) 

Therefore x satisfies the differential equation 

Suppose F(x,, x2, . .. x,,, t )  is tt solution of the equation 

Then @(xi, 5 1 ,  ... x ~ ,  t )  = F(xl / t ,  %,It, ... xJt ,  - l / t )  ... (10.7) 

will satisfy the differential equation (10.6), for putting xi = x,/t; and t' = - l / t ,  it 
follows that 

a+ d F  - = - t ' -  
3% ax; * 
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11. This theorem enables us to construct solutions of the fundamental differential 
equation of the form 

where H(x,, x,, . . . xp,t) is a solution of the same differential equation (9 .1 ) .  

We have seen that &Re, t )  the moment functions, are solutions of the differential 
equation (9.1) 

where $kk(y) satisfies the differential equation (8.4).  Therefore, 

XI x, x 1 2' xf+G+ . . .x8. T, ... T9 -7 ) = (- I)'. 9-. h [ ------- 2ta(- l / t )  I 
= (- (2 / t )k .  $k(-y) ... (11.3) 

where (- $,(- y )  = f ( y )  which satisfies the equation (8 .6) .  

If y = C</2t, and (-1)). $k ( - y )  are the polynomials of Sonine-Gegenbauer, 
i t  follows that 

1 
(2nt)tP ' e v . ( -  1)k.(2/t)k. $ k k  are solutions of (9. I) .  

12. A distribution function which satisfies the fundamental equation, and is of 
a certain type can be written in the form 

Certain orthogonal properties of the Sonine polynomials will be useful to  recall here. 
The functions St(x) = (- 1)'. Ct.  'k(-x)  satisfies, we have seen the differential 
equation 
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which can be written in the self-adjoint form, 

from which the orthogonal properties follow a t  once. 

Taking two polynomials of orders k and kt, we. have 
m 

(k-k') I rz. St. St/ dz = 0 ... (12.3) 

Hence if k # k', e4. &-I. &. gk,. & = 0 ... (12.31) 
0 

since the arbitrary constant in the definition of the polynomial may be so adjusted as 
to make A = 1, which we may oall the normalised polynomials. 

Suppose the distribution funotions to be Hz1, x2 . . . xp, t )  then the distribution 
function in Ra is obviously 

R+dR 

&xl, x2 ... q, t ) b 1  b,, ... dxp ... (12.4) 
R 

taken between the hyper-spheres of radii R and ( R + d R ) .  
It will take the form 

A . $(Ra, t )  Rp-I d R  = f ( D ,  t )  . dD when D = RB. ... (12.41) 

We shall call p ( D ,  t) the distribution function, when the number of variables 
is p. 

Then 1 y ( D ,  t )  D*-l dD = 1 ... (12.6) 
0 

It is also clear that if y = D/2t, then substituting the expansion of S, (y) which can be 
easily obtained from the differential equation or from the expression for pi found before, 
we get 
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This expression is thus calculable in terms of the moments of the different orders 
up to k. 

Assuming now 

and remembering that the above series is so chosen that each term, and therefore the 
whole series, if convergent, satisfies the differential equation OF = 2aF/at, we have: 

From (12.6) since y = D/2t, we get finally 

which determines the constants Ak in the distribution formula in terms of the moments. 
Hence the distribution function can be calculated in terms of the moments. Raj- 
chandra Bose's distribution function obviously can be put in the form indicated above, 
the actual calculation would give interesting integral relations involving the Bessel 
functions. 
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ALGEBRAIC IDENTITIES DEDUCED FROM THE POLYNOMIAL FORM OF THE 

MOMENT-COEFFICIENTS OF THE D2-STATISTIC. 

1. I start with the identities that exist between the moment-functions of the 
different orders of the D2-statistic, which can be regarded as the square ~nodulus 
statistic for a Gaussian distribution in p-variates. 

It has been already proved2 that 

where x:+$+ ... x; = l2 - 
and y;+yg+...y; = A2 ( m u )  

and pk is a homogeneous function of (A2, dt) of the k-th degree of the form3 : 

~ ~ ( 1 2 )  = P k +  k(k+p/2- 1) . Pk-l(2t)+. . . 

It should be noted here that in (1.2) and in subsequent equations we are writing 
pk for p; and p for A2 for convenience of printing. 

It is easily seen by direct algebraical methods that 

So that the various identical relations between p's involving p and t, which will be called 
the identities of the first type, can be written in the form (Bk)k' = (Bk,)k, or symboli- 
.tally, (k k') = 0. These identities can be written down by taking any two expressions 
Bk and Bk, and their existence is self-evident from their form. 

Also since Bk's are polynomials in p or in (2t), by taking any three expressions 
pa = B,, pb = Bb, and /P = B,, we can eliminate (p, p) or (p, t) and thus arrive at  
identities involving alternatively either p's and t's or p's and p's. These identities 
can be written as 

[abc], = 0, [abc], = 0 etc. ... (1.4) 

where the suffix denotes the variable which has been eliminated in the process. 

2 Sankhyd, 2(4), 1936, p. 392, equation (9). 
Sankhyd, 2(4), 1936, p. 389, equation (7.5). 
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Finally by taking any four of the expressions we can eliminate P, p and t, arrive 
at  relations between y's alone, which can be written as 

These idential relations arc interesting, and may be regarded as characteristic 
of the modulus distribution of the Gaussian type. 

Direct algebrsical conlputation will easily verify the following typical relations :- 

2pt2-4tp1+(pz-& = 0 ... (1.51) 

[1231, = @It+ ~ ~ ( ~ ~ - - , Q + ( P ~ - ~ P ~ P Z +  2~:) ... (i.62) 

The expression (1234) = 0 is more complicated; by taking B,, B,, B3, B,, and 
putting 

A2 = ~ f - ~ z ,  A3 = ~ 3 - 3 ~ 1 ~ 2 + 2 ~ !  

I ... (1.61) 
and A4 = ~ , - 4 ~ # , - 3 ~ ; + 1 2 ~ ? ~ 2 - 6 ~ :  

the existence of the following two quadratic equations can be proved, 

8ylt2+ 8A2t + A3 = O 

I ... (1.62) 
and A2t2+A,t-A,/12 = 0 

from which the bracket (1234) = 0 follows as the t-eliminant of the equations. 

2. It is satisfactory to note here that the identities of the above type, which can 
be arrived a t  by laborious algebraical methods, can be deduced much more simply 
by the following analytical procedure, which furnishes the raison d'dtre of identities 
of the above types, and especially of the existence of the quadratic equations. This 
method also allows us to investigate the inverse problem, namely, the nature of the 
distribution function for the modulus when the identities of the above kind are postu- 
lated for the moment-functions. 

We start from the differential form of the moment-coefficisnt deduced before4 
for the D2-statistic :- 

4 Sankhyd, 2(4), 1936, p. 390, equation (8.4). 
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where t = 2 8 1 ~  according to the present notation. 

Then it follows from the fact that pk is a homogeneous function of (28, u) of the 
k-th degree, that 

So that @(t)  is a polynomial of - k-th degree in t alone. Also the differential form of 
$(t)  can be transformed into an integral form. Assuming that 

where &x) is a function whose properties we shall investigate later, i t  follows that 

which can be written in the form :- 

From this it follows that 

Hence by differentiation with regard to t, we have 

Remembering the general form of y?k in (2.31) it follom that 
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This is fundamental relation which allows us to calculate the various differential 
uoc~fficiwts of $'s in terms of 9 's  of different orders. Thus 

Since ( $ , t Z )  is a linear function of t it follows that the following differential rela- 
tions are true. 

dL-l$, 
and generally 1'. '3 + 2kt. --- 

a k - ~ ~ l  
att-1 + W - l ) .  F a - = O  ... (2.62) 

If we now remember that the differential coefficients of 99,'s are expressible in 
p ' s  of different orders, and that $'s we only p's divided by powers of t, the existence 
of the quadratic equations of the type found by algebraic4 method is evident. This 
at  the same time allows us to writadown the equations with much less labour. 

Using equations (2 .51)  and equation (2 .2) ,  we have 

Now substituting the values of 9's in terms of p's the above two equations reduce 
respectively to (2 .65)  and (2.66) given below 
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which can be mitten, by substituting 2s/u for t, in the form 

These are the quadratic equations arrived a t  by direct elimination and referred to in 
(1.62) 

The fundamental { ) expression alluded to before in (1.5) can also be written 
in a form involving the differential co-efficients of 's of different orders. 

Thus Writing H z -&$-- dk 11.1 ... (2.7) 

we have also two relations like 

which can be written in the form 

Hence the following relation which is equivalent to (1.5) can be arrived a t  ss the 
t-eliminant of the above two quadratio equations :- 

There ia however one fundamental relation. The other relations dleduoed should 
therefore reduoe to the fundamental one doulated above, where the different relations 
between p's of different orders are taken into account. 

THE INTEGRAL EQUATION C O N N ~ T E D  WITH THE MOMENT-COR~CIENTS 
AND m SOLUTIONS. 

3. I shall now take up the integral form of $k(L) 
m 

1 a+ e4 . #(z) dk 
0 4 (t) = , 
I ed )(x) dx 
0 

The form show th& $&)'8 8re moment-funations of a certain x-distribution and 
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a knowledge of Q(x) will determine the distribution function to which ~ ( t ) ' s  can be 
related. In other words Q ( x )  will determine the 11,'s with which t,hk(t)'s are simply 
connected. The existence of the nlgehritic iclcntitics between t hc fiLc's follows from two 
separate hypotheses-(1) the existence of the nbovc. integral rel,tti~)n. and (2) the linear 

form of $,(t) . (t)*, We can therefore see what form of @(z) (which for the present dis- 
cussion can be regarded as arbitruy a t  first) is determined by the hypothesis that 
$,(t) t2 is a linear function of t. 

Since 

That is, 

The assumption of the linear form of @Jt) . t2 implies that 

The above relation can be, transformed by integration by parts. Thus 

... (3.21) 
Similarly 

The relation (3.13) implies 
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Thus 

This shows that #(x)  is a regular solution existing up to infinity of the following 
differential equation : 

if (2) is finite and either A = 1, or &x) = 0, when x = 0. 

The differential equation 

can be tramformed by the substitution 

x=R' /p  ... (3.26) 

so that 

Hence the equation becomes 

The different cases for different positive and negative values of A and B can be 
easily seen to be solvable in terms of the functions of the type J A ( r )  or J x  (ir). 

When A = p/2, B = 1, the case reduces to that of the Da-statistic. The differ- 
ential equation then becomes 

The solution can be easily seen to be of the form A . R(9-4)/'. I t cp-a)(R) 

#x)  = A . ( 2 1 / x ) ( ~ - 8 ) / 2  I t (p -ad2dx)  ... (3 .32)  

Therefore if A is so chosen that 
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then 

Pk Remembering that $k(t) = ---i ... (3.36) 
( 2 4  

We have = A . 1 ( 2 ~ t x ) ~  e(-lItirlt) . tP12(2dx)(p-2)la . I+1p-1) (24x)  dx . . . (3.37) 

Assuming (2stx) = r2 as a new variable, then 

Q 

r= 
we have pk = A . . e-(A2 + r 2 ) P  . 2(~-1)12 . r A 

0 

Now putting s = Iln, we have 

Thus the p's can be regarded as the moment functions for the distribution 

-4 n (A2 + 72) 

dF = const. n - A(P-21s) rpI2 . I h ( p - 2 ) ( n ~ A )  dr  ... (3.44) 

which agrees with R. C .  Bose's formula.5 

5R. C .  Boso :"On tho Exact Distribution and Moment co-efficients of the Dz-Statistic". Sankhy& 
( 2 ) ,  1936, p. 149, equntion (6.4). 
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4. I shall now discuss the differential equation 

which may be regarded izs the fundamental equation for the distribution function of 
the multivariate normal population in p-variates. 

If F is a function of (R, t )  where 

then F satisfies the differential equation 

THE DIFFERENTIAL EQUATION IN P~BABOLI~ FORM. 
5. When F is a function of the form 

F ( $ + 4 + . . . + 4 ,  apl+. . .+agP,  t )  

by suitably choosing one axis my y,, perpendicular to the hyperplane 

a,x,+a#,+ ... a g P  = 0 

and similar orthogonal axis-system as before, F takes the form 

F(R, Y l ,  t )  or F(y1, $+. . . +Y& t )  

The equation (4.1) can be tramformed to the form 

where = &+Y:+.-+& ... (6.2) 

Further decomposition can be amied on in the same way. 

If F is of the form F(xl, xa, R, t ) ;  the differential equation can be writfen in the form 

where wa = 4+6+ ...+ xi, and so on. ... (5.5) 



Equations Connected with Multivariate Normal Populations 

THE DIFFERENTIAL EQUATION IN THE PRODUCT FROM. 

6. If F(z , ,  z,, ... x,, t )  can be written as the product of two functions 

)1(21i 5 2 ,  . . . XI, 2)  $2 (xri-1, x ~ + ~ ,  . . . xP, t )  . . . (6 .1)  

then the fundamental differential equation (4.1) breaks up a t  once to the form 

so that the functions ), and 4, satisfy respectively equations of the form 

and o ; + ~ . . . ~  42 - 2. -- - - ~ ( t ,  a)$, at 

Now these equations are transformable to the forms 

J 

Therefore if L1 and L, are solutions of the equations (6 .4 ) ,  their product L1 . L2 
is a solution of the original equation (4.1). It is easily seen that 

satisfies the differential equation 

Hence 

t P / 2  - 

is a solution of the equation in p-variables i.e. of the equation 
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FURTHER REDUCTION OF THE PARABOLIC FORM TO POLAR FORM 

7 .  The equation (5.2) can be written in the form 

Since 

we can introduce in place of r and s,, variables R and 8 define 

r = R sin 8 and z, = R COY 8 

Then 

... (7.11) 

d by the equations 

... (7.2) 

and 

dF -- dF cos 8 dF - sin 8. -+ -. - 
ar d~ R do 

The transformed equation in R, 0 becomes 

Since xf f xg + o2 = R2 

the equation 

call Be transfornled by the substitutions 

o = R cos 8, x, = R sin t9 cos 4, s2 = R sin O sin $ 

I a a~ to --(R'-- 1 - a   sin^. I d2F 
R2dR dR + R2 sin 0 88  sin^^ a p  . - 
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Equittion (5.2) could be invest,igeted by assuming a solnt,ion of tho form 

so that the equation breaks up in the form 

azf (P-1) if hf d2P dP -+T JK-li i  = 2:: and --I-(*-?) cot 0 .  - 
do2 do  

+AP= O ... (5 .62)  
3R2 

The cquat8iou (5.4) could be similarly investigated by i~ssunling a solution of the form 

so that the equation (5.42) breaks u p  into thc thrcc equations 

SOLUTIONS OF THE DIFFERENTIAL EQUATICN IN DJFFERENT CASES. 

8. We shall first consider the equation of the type (4.1). The existence of a simple 
solution of the type 

is verified by direct substitution. 

We shall have occasion to make use of the theorem of Appell and Brill, which has 
been proved in the case of p-variables earliere, that if H(xl, x,, ... x , t )  is a solution 
of the differentid equation (4.1)' then 

-5 , (xy2t )  
e x x L%-- ' ) ... (8.12) Ht(xl, z,. ... . ... rr,, t )  = -- - . H [--L 2 

(2n)P/2 , t ' t ' " '  t '  t  

is $so a solution. 

Therefore in the case of a spherically symmetric solution of the type 

H(R2, t) = H(x,, x,, ... xp, 1)  ... (8.13) 

6 ScmkhyB, 2(4), 1936, p. 393, equation (11.1). 
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is also a solution. 

We therefore t,ransform the equation 

by the substitution Rf = y, and the equation becomes 

Further putting 2t = T, it beoomes 

First consider the equation (4 .3) .  If we assume 

$(R) satisfies the differential equation 

whose solution oan be written in either of the forms 

Therefore, from (8 .13)  and (8.14) we get two further types of solutions. Carryitlg 
out the transformation suggested i t  is seen that 

and 

are also solutions of the equation (4 .3) .  
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Hence writing h = <2/2, we have as solutions 

We shall now seek polynomial types of solution. Stating from the formula. 
(4 .3 )  and putting 

y  = R2,  T = 2t 

we get 

Let us put F = Tk . $ ( y l T )  . (8 .33)  

Since 

... (8 .34)  

the equation (8.32) becomes 

y  . T k - 2 f + ( p / 2 )  . T k - 1  . #' = kTk-1 . #-y  . T k - 2 ' .  4' ... (8 .36)  
> 

or dividing by Tk-1 and putting y / T  = s ... (8 .36)  

This equation has been already discussed in a previous paper.' 

It is easily seen that with integer values of k, i t  gives polynomial solutions. These 
solutions are denoted by ,uk(y, T) here. They are identical with the moment-func- 
tions discussed at some length in the earlier paper.8 The solutions can be written in 
the form 

The application now of (8 .12) ,  allows us to deduce solutions of the type 

e-R?/2t 1 . - .  
(t)*/2 Tk  S ( s ) ,  where s  = y / T  = R2,12t ... (8.42) 

7 Sankhyii, 2(4), 1936, p. 390, equation (8.6). 
s Sankhya, 2(4), 1936 pp. 387-390. 
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and 

We therefore see that 

is also a solution where S,(y, T )  is a homogeneous polynomial in ( y ,  T ) .  

We shall now seek relations between solutions of type (4.3) and (5.3) with type 
(8.44).  We note that since (8.44) is s solution of the fundamental equation (4.3),  
writing 

R2 = y, 2t = T ... (8.45) 

we see that 

e-vIT 
L = p,4+* Sk(y /T)  satisfies the equation (8.32) . . . (8.46) 

that is, 

This lesult will be useful later on. 

Consider the fundamental equation (8.32) in,y T). 

If we write 

we can see that 

The form of the equation shows that 

Ij/. = em F(hy )  

is a solution of (8.5%) where F(y) satisfies the equation 

Appell's theorem npplied to this form gives us a solution of the form 
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Remembering that T = 2t, and putting h = A8 .. . (8.57) 

the solution reduces to 

t-PI2 . e-(R"A?)/2t . J' . (A2R2/4t) ... (8.54) 

Remembering again that T = 2t, we see that the solution of (8.54) is of the form 
t-PI2 . e - R 2 / 2 t  . ,-A?/Zt . $(AR/t) ... (8.61) 

Now a solution of the a.bove type gives rise to a distribution 

where H is a solution of the equation. Therefore 

dF = A e - ( R z + A ? ) / 2 t  . t-PI2 . $(AR/t) . R(P-2)/2 ... (8.63) 

If we compare the result with that in the earlier paper, it is easily seen that the function 

$(AR/t) = A . (nhl)-(p-2)/2 . I +(P-2) . (nlh) ... (8.64) 

using the notation of R. C. Bose's paper9. 

If we remember that n = llt, 1 = R, h = A the identity of the solution can 
also be easily seen. 

By transforming the equation 

by the substitulion Z = x2/4, we have 

Since IJx satisfies the equation 

the solution of the a.bove is easily seen to be 

9. I have assumed in an earlier paper the possibility of expansion of solutions 
or the equation (4.1) as series of the typelo 

9 Raj Chandra Bose : "On the Exact Distribution and Moment-coefficients of the Dz-strrtistic" 
SankhyB, 2(2J,  1936, p. 148, equation (6 .4 ) .  10 SankhyB, 2 (4 ) ,  1936, p. 396, equation (12.7) .  



S N Bose : The Man and His Work 

where S, denotes A suinn~atioi~ over id1 V L L I U ~ S  of k fro111 1 t&m, and Sk denotes a 
Sonine polynomial of the'k-th order 

The justification for the statement will be given here, and I shall, by actually 
developing the distribution function, arrive a t  the same result as before. A distribu- 
tion function of the type 

t-Pl2 . e-(fZ+R2)/2t  . F ( p R 2 / 4 T 2 )  

where R2 = xf + xg + . . . + xz, necessarily implies that 

Assume now that R2/2t = 2, and E2/2t = a ... (9 .13)  

The integral then takes the form 

Therefore so long as a remains finite 

Therefore a constant c can be found such that 

so that if we consider the function F(az)-c  r Fl(z )  ... (9.18) 

we have 

Now the Sonine polynomials S&) satisfy the differential equation 
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or written in the self-adjoint form 

We see that e-Z . z(p-2)12 is the dcnsity function for the orthogonal set of polyno- 
mials. Hcnce follows the possibility of expansion of a function F,(z) which satisfies 
the equation 

Assuming therefore that F(az )  = Xk Ak . Sk(z )  . .. (9.24) 

the co-efficients A, will be (because of the orthogonality of the polynomial functions 
S, mentioned earlier) found to be given by 

Let us suppose that the functions are normalized such that 

Then 

To calculate A, we at first write az = x ;  then ... (9.28) 

As noted in Sankhyfi, 2(4),  1836, pp. 394, L = a-(p+a)/2 . e-X/a . S k ( x / a )  . .. (9.32) 
satisfies the differential equation 
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Now by successive integration by parts, because the quantities outside the sign fo 
integration vanish a t  both limits, it easily follows that 

(C 

(3 A d2 i )  ( )  [ ( x F ) - - ( x F )  2 dx d . . .  (9.44) 
0 

I 

we have now 

... (9.51) 
Writing x = az as before, we have 

Therefore we have 

To detrmine the constant C in the expressicn for A, we observe that 

Butwhenaisverysmall C .ak . ea=C.ak . ( l+a+a2 /2+  ...) = C * a k  ... (9.64) 

Q 

Therefore c . = I B, . 8 . e-.Z. z ( ~ - 9 ) / 2 .  8 L (1) . dz .. . (9.65) 
0 
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where Bk is the coefficient of zk in the expansion of F(z) as a power series, as terms of 
lower order in F(a z) below zk, will contribute zero values because of the orthogonal 
properties of s~(z)'s 

where yk is t,he coefficient of the highest term in the series of normalised Sonnine 
polynomials, we have 

To calculate therefore the coefficients of Bk and yk we consider the differential 
equation which F(z )  satisfies, that is, 

Assuming a series solution F = ZBke  zk ... (9.82) 

is easily seen that k .  (k-1). Bk + a p e  k .  Bk = Bk-, . .. (9.83) 

or k - (k++p-1) - Bk = Bk-, ... (9.84) 

Therefore from (9.24), (9.62), (9.66) and (9.85) we have 
- 

P(az) = B, X U P / ~ )  
w+ 1) w+ +PI ak ea . 8; ( z )  ... (9.86) 

where = S k ( z ) / ~ k  

Putting now a = E2/2t, and z = R2/2t 

we see that 
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Therefore the type of solution is of the form 

which agrees with the previous resultl1, if we remember the expression 

Ak = Ea = & - k(k f i p  - 1) ' ~ ~ - ~ ( 2 t )  . . . (9.93) 

It follows from the above analysis that the general form of the distribution function 
in (R, t )  can be assumed to be of the form 

where S,, S2, . . . Sk are what can be called Sonine polynomials. The coefficients 
A,, A,, A, . . . etc. can be calculated in any particular case, when the moments of the 
modulus distributions are known. The distribution-function in Sankhya12 may thus 
be seen to fall in the ieneral class, as I have shown by a direct expansion of the expres- 
sion, and also by identification of the two results. 

It is interesting to stydy the general types of solutions of the equation 
aJ' 

0; 6 = 2 ; i ~  for different types of complexity; certain results already arrived a t  will 

he published in due course. 

11 Sankhy6, 2(4), pp. 395-396. 

12 Sankhyir, 2(4), 1936, pp. 395.396, 

Reprinted from SankhyZ - Znd J Stat 3, pp. 105-124, 1937 (Statistical Publishing Society, Calcutta). 



Recent Progress in Nuclear Physics 
S.N. Bose 
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PHYSICAL science is at present passing through 
a remarkable phase of radical and revolutionary 
changes. Time-honoured concepts are crumbling 
down under the shock of remarkable discoveries. 
The familiar ideas of force, mass, and energy have 
undergone remarkable transformations and the dy- 
namical laws which seemed at one time to provide 
the ultimate basis for the mechanical explanation of 
the material universe have now been replaced to a 
large extent by quantum-mechanical rules and prob- 
ability-calculations. Controversy now rages round 
the validity of the very principle of causality with- 
out which science would have seemed impossible a 
few years ago. It is therefore not surprising that the 
old concept of the atom as the ultimate indivisible 
unit of a chemically simple stuff has been replaced 
by the modern idea of a complicated structure con- 
sisting of a positively charged material core, the 
nucleus, which itself in ultimate analysis appears to 
be heterogeneous, enveloped in a cloud of negative 
electrons, which possess moreor lessdefinite amounts 
of energy and momentum, determined by quantum- 
mechanical rules. 

The Electron and the Periodic Table 

I shall endeavour in this brief discourse to present 
before you a brief history of the various experi- 
ments which have compelled the modern scientists 
to adopt this structure for the chemical atom in place 
of the familiar and simple concepts of Lucretius or 
of Dalton. The beginnings of the change in our point 
of view may be said to have been initiated about 40 
years ago by the discovery of the electron in 1895. 
The experiments which led to its discovery estab- 
lished at the same time its presence as a universal 
constituent in all kinds of atoms. The intimate 

connexion between electricity and matter being 
thus established once for all, the subsequent 
endeavours of the physicists and the chemists have 
been directed towards explaining the divergent prop- 
erties of the chemical substances in terms of elec- 
tricity and electrical forces. 

It will be obviously impossible in this brief 
compass to give an adequate account of all the 
results so far achieved in this regionwhere physi- 
cists and chemists have worked side by side, and I 
shall therefore confine myself to a bare mention of 
the principle facts which have led the way to the 
modern conceptions about the atom. The ancient 
atomic theory was formulated mainly on the basis of 
chemical evidence. The analysis of innumerable 
substances, which either occur as such in nature or 
are artificially produced in the laboratory, has es- 
tablished the existence of about 92 simple sub- 
stances, the so-called elements, whose atoms by 
combining and re-combining among themselves in 
various proportions have given rise to all the vari- 
ous substances we see around us. Without losing 
their individual distinctive features, many of these 
elements show among themselves remarkable simi- 
larities in their chemical properties. These have 
been intensively studied by the chemists, and the 
main results can be conveniently represented by 
arranging all the elements in a series of horizontal 
and vertical rows, in the so-called periodic table of 
Mendeljieff. 

The remarkable feature of this arrangement is 
that whereas the atomic weights of elements in- 
crease steadily as we go down the series, marked 
similarities in the chemical propkties recur at more 
or less regular intervals, i.e., as soon as we come to 
elements which lie in the same vertical column of 
the rectangular array. The atomic number in the 
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scheme plays as important or rather a more impor- 
tant role than the atomic weight of elements. No 
explanation of this regularity can obviously be found 
in  the simple Daltonian theory. Nor was there any 
prospect from the chemical side alone of arriving at 
the explanation of the mysterious regularity in the 
chemical behaviour of elements. 

The discovery of the electron however inaugu- 
rated novel methods of attack for the solution of the 
puzzle. The presence of electrons carrying negative 
charges, as constituent of all atoms, as well as the 
electrical neutrality of the atom as a whole, had 
brought the interesting question of the electrical 
structure of the atom to the fore-front. After the 
discovery of the electron the atom for the physicist 
could no longer continue to be a simple substance. 
The problem of its composition, i. e., the distribu- 
tion of mass and charge inside it, demanded an 
urgent solution, and speculations were at work 
regarding its structure even before adequate data 
were obtained for drawing probable conclusions. 

Closely following on the discovery of the elec- 
trons, came the discovery of radium and the radio- 
active elements. Along with the familiar and stable 
elements which seem to persist unchanged through 
geological periods of time, the discovery of the 
phenomenon of radioactivity established the exist- 
ence of the so-called unstable elements. Though 
these behave as ordinary elements in all chemical 
reactions, they are found to disintegrate spontane- 
ously and give birth to new elements of smaller 
atomic wcights, which in turn explode, regenerate 
fresh elements, and the series of elements of de- 
creasing atomic weights is continued till  the whole 
process comes to a stop with an element of ordinary 
stability at the end. During this process of succes- 
sive disintegration the radioactive elements emit 
swiftly moving charged particles (the so-called a- 
or P-radiation). They also emit in  general penetrat- 
ing y-radiations of the type of X-rays. The a-par- 
ticles were early recognized as the nuclei of helium 
atoms which carry two units of positive charge 
whereas the P-rays were found to be swift electrons 
which move with velocities approaching the veloc- 
ity of light. Though it was found impossible to 
control the phenomena of spontaneous disintegra- 
tion of the elements, their very existence revealcd 

the composite nature ofat least the heavy atoms, and 
made the hypothesis of a structure for all atoms out 
of comparatively simpler substances a very prob- 
able one. 

The swiftly moving positively charged ct-par- 
ticles, emitted during the process of radioactive 
decay, furnished the physicists with a very conve- 
nient weapon for attacking the problem of the con- 
stitution of atoms. Lord Rutherford conceived the 
brilliant idea of sending these swiftly moving 
charged particles as probing agents inside the at- 
oms, where their mass and enormous kinetic energy 
would enable them to penetrate far into the myste- 
rious interior, before they would be deviated out of 
their straight course by the intense Coulombian 
field of force. 

The determination .of the distribution of the 
scattered particles in various azimuths would, he 
hoped, enable the physicists to obtain a fairly cor- 
rect picture of the distribution of mass and charge 
inside the atom. The first experiments in this direc- 
tion were carried out in Rutherford's Laboratory at 
Manchester by Geiger and Marsden, and they at 
once afforded valuable information regarding the 
probable constitution of the atoms. 

The physicists had already arrived at an estimate 
of the atomic size from various considerations. 
The kinetic theory indicated the radius to be about 
10-8cm. The ex~eriments of Geiger and Marsden 
now revealed that the mass of the atom must be 
regarded as concentrated within a sphere of a much 
smaller radius, say (lo-'* to 10-'3cm.). This central 
core was also found to be positively charged, and its 
magnitude was approximately estimated at half the 
atomic weight of the element. This experiment of 
Geiger and Marsden enabled the physicists to form 
a fairly correct idea about atomic exterior. The 
planetary atomic model suggested by Rutherford, 
where a positively charged nucleus controls elec- 
trons revolving in orbits controltedby Coulombian 
forces, gained thus a universal acceptance among 
the scientists and proved a valuable and fruitful 
hypothesis. Detailed discussion of the subsequent 
developments will lead us too far away from our 
main theme. I shall therefore mention in  the briefest 
of terms the principle achievements which we owe 
to this model. In 19 13 Bohr showed that the optical 
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spectra of elements could be explained on the basis 
of the above model if the electronic constituents of 
the atoms were supposed to move in definite or- 
bitsdetermined mainly by electrostatic forces and 
by subsidiary quantum-laws. The study of the X-ray 
spectra of elements enabled Moseley at about the 
same time to settle with certainty the magnitude of 
the charge of the nucleus and also the number of 
electrons in  outside orbits. The fundamental nature 
of the atomic number in the Mendeljieffs table 
received thereby a rational interpretation, and no 
interpolation, or change of arrangement in the se- 
ries, could be conceived of at any subsequent pe- 
riod, as the sequence of atoms in the table followed 
the integral sequences of increase of atomic charges. 
The idea of the spinning electron gave a rational 
explanation of the periodicities in the Mendeljieff s 
table. The electrons were revealed to be grouped in 
different closed shells round the central core and the 
chemical properties of the elements could be defi- 
nitely correlated to the number of the electrons in 
the outermost incomplete shells. The elements of 
the same vertical column were found thus to have 
more or less identical external structure, which 
explained the similarities observed in  their chemi- 
cal properties. 

Structure of the Nucleus 

In 1925 came important theoretical develop- 
ments. The modern wave-mechanics was formu- 
lated which enabled the physicists to replace the 
former tentative calculations by exact mathematical 
analysis and the different empirical procedures were 
unified into a single consistent analytical discipline. 
Though all the questions which have been raised by 
the study of the physical and chemical behaviour of 
elements may thus be said to have obtained more or 
less satisfactory.solutions, the problem of the struc- 
ture of nucleus had however been scarcely touched 
till the beginning of the present decade. 

It is not difficult to find reason for this delay in 
the development of nuclear physics. The nuclei of 
elements lie hidden behind a protective cloud of 
electrons. The intensity of the Coulombian field 
also increases very rapidly by about 101° times as 
we approach from the outside to the neighbourhood 

of the nucleus. The bombardment of atoms by 
swiftly moving electrons had not produced any 
fruitful results so far, and in order that positively 
charged particles could overcome the enormous 
repulsive force and approach the nucleus within a 
reasonable distance sufficient to produce signifi- 
cant perturbations in the nuclear regions and pro- 
duce sensible results, swift particles with tremen- 
dous velocities appeared at fisrt sight necessary, 
which were only available in small amounts from 
radioactive processes that continue yet to be beyond 
our control. The smallness of the nuclear size makes 
also the chances of close collision very very remote 
so that the percentage yield of any definite result by 
the bombardment of a-particles is very small in- 
deed. Nevertheless since only the chemical proper- 
ties of elements appeared to be governed by the 
nuclear charge, an artificial transmutation of ele- 
ments could be hoped for, if one were able either to 
push a charged particle in the interior of the nucleus 
or to bring a charged particle in its immediate 
proximity, so that the disturbance thus set up might 
possibly induce spontaneous transmutation of the 
atom. 

In order to ensure stability against the disruptive 
influences of the Coulombian forces, the presence 
inside the atom of attractive forces of unknown 
origin appeared also necessary. These attractive 
forces are most probably sensible at distances com- 
parable with the linear dimensions of the nucleus, so 
that only a careful study of the large deflections of 
a-particles from single and close encounters with 
light atoms might be, expected to give some infor- 
mation about the nature of these attractive forces. A 
successful carrying out of the above programme 
required the development of a special technique for 
the study of such atomic encounters. The early 
method of directly counting the scintillations to 
estimate the large angle scattering of a-particles as 
followed by Geiger and Marsden was further im- 
proved upon by Chadwick and Bieler in the labora- 
tory of Rutherford at Cambridge. A direct measure- 
ment of the nuclear charge and an estimate of the 
nature of the electric forces acting on a-particles in 
the immediate neighbourhood of light nuclei were 
rendered possible by the study of scintillations 
produced by the scattered particle. 
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The expansion apparatus of Wilson supplied 
another valuable method of attack. Under suitable 
circumstances, the tracks of the colliding particles, 
the nucleus and the a-projectiles, before and after 
collision, could be directly photographed, and the 
interchange of momentum and energy between the 
colliding particles could be directly estimated from 
the measurement of stereoscopic pictures of such 
encounters. In case such collisions brought about 
artificial disintegration, the record of the explosion 
i n  the chamber photograph enabled us in many 
cases to follow the details of the process unequivo- 
cally. 

The method of directly counting the scattered 
particles by the scintillations produced on screens 
has been replaced in recent times by simple, reli- 
able, and automatic methods of counting the swift 
particles like a-particles or protons with the help of 
the Geiger Counter and proportionate amplifiers. 
The rapidity of advance during*the last few years 
has been in large part due to the great improvements 
in the technical methods of attack. 

Nuclear Disintegration; the Neutron 

Already however in 1919 Rutherford had ob- 
tained by the simple scintillation method the first 
evidencesof artificial disintegration. Nitrogen nucleus 
bombarded by swiftly moving a-particles appeared 
to give rise to streams of swiftly moving protons or 
nuclei of hydrogen, and subsequent work along the 
same direction had revealed the occurrence of this 
phenomena of artifical disintegrations during the 
bombardment of about twelve of the lightest ele- 
ments. 

By studying the phenomena of disintegration of 
nitrogen in a Wilson Chamber, Blackett was able in 
1925 to give a satisfactory account of the details of 
the process. This nuclear reaction seems to arise out 
of a capture of the a-particle by the nucleus of 
nitrogen, whereby an H-particle escapes out of the 
nucleus and a new atom, an isotope of oxygen, is 
produced, according to the scheme 

Two capital discoveries in recent years have 

revolutionized the subject and accelerated thc 
progress of nuclear physics. Bothe in 1930 observcd 
that beryllium when bombarded by a-rays from 
polonium gave rise to a markedly penetrating radia- 
tion which appeared to be of the y-ray type. In a 
subsequent examination of this effect by M and 
Mme Curie Joliot in Paris and Chadwick in Cam- 
bridge .in 1932, an important part of this radiation 
was found to consist of a stream of swift, uncharged 
particles, called neutrons, which have about the 
same mass as the proton. As it is uncharged the 
neutron does not directly i0niz.e the gas in its path, 
but only reveals its presence indirectly by the recoil 
of the nucleus with which it collides. And since the 
transfer of momentum is largest when the mass of 
the colliding nucleus is about the same as the mass 
of the neutron, the secondary ionization by recoil, as 
produced in hydrogen or in paraffin-lined ioniza- 
tion-chambers, is much larger than in an ionization- 
chamber filled with a heavier gas. This peculiarity 
of behaviour has served to differentiate the neutron 
radiation from wave radiations of the y-ray type, 
which also usually accompany the phenomena of 
neutron emission. Most of the nuclei of the light 
atoms alsoemit neutrons when bombarded by swiftly 
moving a-particles. This strange type of particles is 
in itself an important agent for effecting artificial 
transformation of other nuclei, mainly because it 
is unchargedand as such is not handicapped by the 
presence of the 'intense Coulombjan forces. It can 
thus approach and penetrate into the nuclei of even 
the heavy atoms, and thereby bring out interesting 
transformations in novel ways about which I shall 
speak later on. 

potential Barrier 

The perfection of wave-mechanical methods 
has induced various theoreti.ca1 workers to apply 
the new ideas in problems:.of nuclear physics, 
especially in investigating the collision of charged 
particles with the atomic nuclei. The simultaneous 
presence of a Coulombian field of repulsion and an 
attractive force of unknown origin at short dis- 
tances inside the nucleus gives rise to what is tech- 
nically called the potential barrier. The intcnse 
attractive forces inside the barrier scrve to keep the 
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charged particles inside the nucleus. Beyond the 
distance where the height of the barrier rises to a 
maxinium, the attractive forces cease to be sensible, 
and the field may be ragarded as repelling charged 
particles according to the law of inverse squares. 
Any charged particle wanting topenetrate inside the 
nucleus will have to surmount the barrier, and 
according to the classical theory, it will have to have 
a kinetic energy sufficient to come over the top of 
the barrier. 

Based on arguments similar to the above, one 
estimated (before the advent of the wave-mechan- 
ics) that a minimum acceleration-potential of a few 
million volts would be necessary to produce suffi- 
cient acceleration in particles, before they are able 
to cross the barrier. The estimate however proved 
erroneous and excessive. 

A noteworthy contribution of the theoretical 
physicists (recent wave-mechanics) in this subject 
has been to predict a small but appreciable probabil- 
ity for penetration of protons across the barrier of 
light elements, even when they have energies of the 
order of a few hundred thousand e.volts. The predic- 
tion seemed to bring artificial transmutation on a 
large scale within the range of possibilities, and this 
theoretical conclusion was tested experimentally by 
Cockroft and Walton in 1932 who had been able to 
generate a proton stream of about 100,000 volts, in 
a vacuum tube, by step-wise acceleration. Their 
experiments at once met with complete success and 
the evidence of disintegration of the lithium nucleus 
subsequent to the capture of a proton was obtained 
by bright scintillations produced on the screen by 
the a-particles that were generated by disintegra- 
tion. This initial success of the Cambridge physi- 
cists has been followed up by other workers in 
Germany, France, and America, and it has become 
clear that considerable progress in artificial disinte- 
gration can be achieved by bombarding elements 
with swiftly moving protons and other nuclei accel- 
erated suitably by application of high voltages. 
Investigators of nuclear physics have concentrated 
their energies on the production of suitable high 
voltages, and notable success in this direction has 
been achieved in recent years. Three different meth- 
ods have been mainly followed in producing.the 
necessary high voltage : firstly, the original method 

of Cockroft and Walton, which consists in  acceler- 
ating the particles in  the vacuum tubes in  stages with 
suitably insulated transformers; secondly, the method 
of Lawrence, who has developed a peculiar method 
of multiple acceleration of ions in a synchronized 
magnetic and electric alternating field; and thirdly, 
the electrostatic method of Van de Graff. Consider- 
able progress has been achieved by the application 
of all the three methods and a lot of interesting 
results have ben obtained by the bombardment of 
atomic nuclei, by suitably accelerated projectiles. I 
have already mentioned before the production of 
neutrons from the light elements by the bombard- 
ment of a-particles. Results of great significance 
were obtained as soon as these particles were used 
by workers in nuclear physics. In curious contrast 
with the swiftly moving a-particles and the artifi- 
cially accelerated proton streams, and other corpus- 
cular rays, the capacity of the neutron to produce 
artifical transformations increases, in most cases, 
with the diminution of its velocity. Doubtless this is 
connected with the fact that its small velocity en- 
ables the particle to stay longer in the immediate 
neighbourhood of the nucleus and thus to bring 
about more far-reaching changes. 

Induced Radioactivity 

It has been established by the work of Fermi and 
other members of the Italian school that a few 
collisions of neutrons with hydrogen nuclei (present 
in either a free or a combined state) are sufficient to 
establish a sort of thermal equilibrium, so that the 
neutrons on the average attain, after a few colli- 
sions, the averave velocity of hydrogen particles at 
room-temperature. Whereas the transmutation of 
elements to stable varieties of other elements had 
been previously noticed or conjectured, during the 
bombardment by a-particles, or protons, Curie and 
Joliot discovered in 1933, that unstable and hitherto 
unknown isotopes of light elements are produced by 
the bombardment of light nuclei with a-particles. 
These unstable nuclei subsequently break up in the 
same way as ordinary radioactive elements, and 
phenomena of induced radioactivity are found to 
obey the same laws, and decay in the same charac- 
teristic way as the natural activities of the well- 
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known radio-elements. The identity of these artifi- 
cial bodies can also be often established by purely 
chemical methods. In their pioneer work Curie and 
Joliot discovered that unstable isotopes of nitrogen, 
silicon, and phosphorus are formed by the bombard- 
ment of Be, Al, and Mg: these however emit, curi- 
ously enough, positive electrons though the phe- 
nomena of disintegration proceeds like the familiar 
p- ray disintegration of radioactive elements. The 
discovery that new radioactive elements can be 
produced by artificial transmutation has given a 
tremendous impetus to the study of the nuclear 
reactions. The taskof following such nuclear changes 
is a very much easier one, as sensitive physical 
apparatus like the Geiger Counter can be utilized to 
detect and measure such changes. This pioneer 
work of Curie and Joliot has been greatly extended 
by Fermi and other workers in Italy. They have 
observed that slow-moving neutrons are in most 
cases quite effective in producing similar changes 
and of generating radioactive isotopes. Extensive 
work in this line has been done and a large number 
of new radioactive atoms have been discovered. 
These however almost always emit P -particles, i.e., 
ordinary negative electrons instead of positrons. 

Deuteron-the Isotope of Hydrogen 

With the discovery of deuterons, the isotope of 
hydrogen, a new kind of corpuscle has been utilized 
for bombardment of atomic nuclei. Acclerated deu- 
teron streams have been utilized both in England 
and America and they have proved very much more 
effective as agents for transmutation than the origi- 
nal proton rays of Cockcroft and Walton. Bombard- 
ment by deuterons also produces radioactive bodies 
and this method has been increasingly used in recent 
times to study the phenomena of induced radioac- 
tivity. The earlier methods of production of new 
radioactive bodies had to utilize a natural radioac- 
tive source for the supply of the suitable bombard- 
ing agents; this had necessarily limited the amount 
of the yield even when the process of canalization 
was utilized for diminishing the velocity of the 
neutrons and thereby to bring about an enormous 
increase of output. The yield of radioactive stuff by 
the bombardment of deuterons has been naturally 

very much greater. For example, in a day's exposure 
a yield of radioactive isotope of sodium has been 
reported to have been obtained by Livingstone whose 
activity equals that of 1 gramme of radium. Deu- 
teron bombardmeni has therefore a great future both 
in the therapeutical application of radioactivity to 
medical research as well as in the investigation of 
nuclear.problems. 

Whereas bombardment of corpuscles has been 
almost always utlized forproducing nuclearchanges, 
results similar to photo-ionization have been ob- 
tained by Chadwick and Goldhaber. By utilizing 
hard-y-radiation from ThC these investigators have 
been'able to decompose the hydrogen isotope into 
neutron and proton. The liberated neutron can be 
detected by its ability to produce induced radioac- 
tivity in  suitable elements, or by a properly con- 
ducted ionization measurement. By hard X-rays 
emitted in tubes run at more that 1.5 million-volts 
pressures, the workers in Berlin have been able to 
eject neutron streams from beryllium, whose pres- 
ence has been similarly demonstrated by the gen- 
eration of radio-iodine in ethyl iodide. These pre- 
liminary results have great theoretical significance; 
Chadwick has been able from a tentative determina- 
tion of the thresh-hold value of the frequency of the 
y-rays necessary to decompose deuterons, deter- 
mine the mass of the neutron as well as the strength 
of the binding of the two fundamental particles. 

Conclusion 

In this lecture I have attempted to give a rapid 
review of the principle results obtained in the field 
of nuclear physics in recent times. I shall conclude 
my remarks by mentioning two remarkable results 
that have been obtained by the bombardment of 
thorium and uranium, the two heaviest of the ele- 
ments with neutrons. I have already observed that 
the production of new radioactive bodies could, in 
many cases, be .proved by chemical methods; this 
serves at the same time to determine'the chemical 
properties of the new substance, and its position in 
the periodic table. By the bombardment of uranium, 
Fermi originally reported the production of new P- 
ray emitting elements whose chemical behaviour 
seems to point to their positions beyond uranium 



Recent Progress in Nuclear Physics 191 

itself in the Mendeljieffs table. This has been cor- 
roborated by Meitner. According to these workers 
the table of elements is artificially extended by this 
process beyond uranium itself-according to the 
scheme 

P 
uE8+ nb* u;i9- Eka Rhenium E R ; ~  

Eka ~ s ~ ~ ~ - - - - + ~ k a  ~r~~~ 
94 95 

a truly remarkable result. 

By a study of the product of the disintegration of 
thorium by neutron bombardment Curie has estab- 
lished the existence of a new series of radioactive 
elements whose mass numbers are in the form 4n + 
I .  This analogous series of radioactive bodies is not 
known in nature, and its discovery can be regarded 
as completing our ideas of radioactive disintegra- 
tion of heavy elements. 

It will be evident from what I have reported 
above that enormous experimental materials have 
accumulated in the field of nuclear physics within 
recent years. Sufficient materials are now available 
for the theoretical physicists to speculate about the 
process of atom-building from elementary particles, 

and the preliminary work in this direction has al- 
ready begun. The neutron and the proton seem to be 
the two exclusive constituents of all atomic nuclei. 
The a-particles can themselves be looked upan us 
composite bodies, built up again from neutrons and 
protons. 

Though the idea of the elementary atom has 
undergone revolutionary changes in recent years, in 
a certain way the progress achieved has been satis- 
factory, as i t  has simplified the number of ultimate 
and fundamental particles to only two, instead+f the 
92 elements of the older atomic theory. This idea of 
the evolution of the material world from compara- 
tively few primordial stuffs is not however new. 
Here, as in other fields of physics, old ideas have 
returned, renovated in a new garb and clothed with 
more significance. The quantum theory of photons 
has to a certain extent resuscitated the ancient cor- 
puscular theory of Newton. The recent develop- 
ments of the nuclear physics have brought back the 
old Proutian hypothesis, of the evolution of all 
elements from one or rather two primordial stuffs- 
the proton and the neutron.* 

*Delivered as the Adharchandra Memorial Lecture at 
the Calcutta University Science College on the 21st 
December 1936. 

Reprinted from Sci & Cult 2, pp. 473-479,1937 (The Indian Press Ltd, Calcutta). 



Anomalous Dielectric Constant of Artificial Ionosphere 

In a rqcent communication in Nature, Mitra and 
Roy 1 have pointed out an interesting feature in the 
ionospheric dispersion formula. They have shown 
that the formula can yield values of the dielectric 
constant of an ionized medium greater, equal to, or 
less than unity depending on the degree of ioniza- 
tion, collisional frequency and the exciting wave 
frequency. They therefore hold that the value of 
dielectric constant of an ionized gas greater than 
unity which has been recorded by many investiga- 
tors for comparatively large ionizations is only an 
outcome of the complete dispersiori formula. The 
object of this note is twofold. Taking the iono- 
spheric dispersion formula we shallfirst deduce the 
conditions under which the dielectric constant may 
assume values greater or less than unity and sec- 
ondly we shall show that in the experiments where 
anomalous values of the dielectric constant of an 
ionized gas have hitherto been obtained, the experi- 
mental conditions are such that the dispersion for- 
mula alone cannot explain the anomaly. 

The dispersion formula is given by 

mpL mP" 
where a = -- and p=- 

4 n ~ e '  4 x ~ e '  

Separating the real and imaginary parts, we have 

2ck B and - p = ..... 
P d+g2 

e 2 k 2  la1 
Thus - - p = - - 1 so that 

P d + p 2  

> C2k2 ' la1 - p2 = 1 according as 7 - 
< P < d+P2 

which is equivalent to the condition : 

p2c2kZ - 2 
but as from (2) 

p2 4 ( d + p 2 )  

the condition reduces to - 

Now the left-hand side is always a proper fraction; 

therefare, if 4 la1 > 1, i.a la1 > .25 we have 

then always 

If however la1 < -25. p2 > 1 will require the 
further condition 

Calling & = 2 or 
rn Po 
7 

2 

we have 4 la1 = and we can ray that if 

p,' 
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p > po = 2'8 x 10' f i ,  pis  always less than unity, 

whereas if p < 2.8 x 10' @, or la( <'25,  

for p2 > 1, we must have 

i..e., the collisional frequency must exceed the value 

Thus the equations.show that even when p < 2'8 x 

104 n, there exists acritical collisional frequency 
which has to be executed if p is to be greater than 
unity. 

air in a discharge tube has been found to be less than 
unity when the tube current is small. As the ioniza- 
tion is increased by increasing the tube current, the 
dielectric constant at first decreases and then in- 
creases gradually and even becomes greater than 
unity. The maximum electron density N in our 
discharge tube has been within 107. Taking N=lO7, 

p=5 x 108, we get la1 = 7'8. This is much greater 

than '25 so that the dielectric constant must be less 

than unity. Even when N=108, la1 ='78 and the 

dielectric constant should be theoretically less than 
unity. 

In Fig. I are plotted the calculated values of the 
dielectric constants against h2 for some definite 
values of N and v . Curve (2) which corresponds to 
Mitra and Banerjee's3 experimental conditions shows 
a turning point at hof theordergm (h2is of the order 
8x105 sq.cm.) which is very different from the 
experimental value h of the order 6m (h* is of the 
order 3'6x105 sq.cm.). In the experiments of Ali 
Imam and one4 of us, which have been recently 
repeated by a different method, the turning point 
appears unmistakably at h of the order 4m (h2 is of 
the order 1 '6x105 sq.cm.). Curve (1) which approxi- 
mately corresponds to our experimental conditions 
shows however the turning point at h of the order 
12m (A* is of the order 14x105 sq.cm.). It appears 
extremely doubtful if the disposition of the experi- 
mental apparatus can account for such wide dis- 
crepancy. It is likely that there must be some other 
explanation of these experimental results. 

Physics Department, 
Dacca University. S.N. Bose,. 
13.1 1.37 S.R. Khastgir. 

SQUARE OF WAVELENGTH (SQ. CM.) 1. Mitra & Roy, Nature, 140, 586, 1937. 

Fig. I 2. Appleton & Childs, Phil, Mag. 10, Dec. 1930. 
In the experiments recently performed in this 3. Mitra & Banerjee, Nature, 136, 5 12, 1935. 

laboratory, we have obtained results similar to those 
of Appleton and Childs2. Using a wavelength of 4. Imam & Khastgir, Phil. Mag. May 1937 and 

about 3'8 metres the dielectric constant of ionized Ind. Jour. of Physics. 10, Part I ,  Feb. 1937. 

Reprinted from Sci & Cult 3, pp. 336-337,1937 (The Indian Press Ltd, Calcutta). 
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The conditions under which the ele~tromagnetic waves get totally reflected 
in the upper atmosphere appear still worth a closer investigation. The nsual proce- 
dure has been to attribute to the medium a refractive index which is calculated 
according to the classical method of Lorentz from the mechanical equations of motion 
of electrons. .In an absorbing medium, this refractive index is a complex quantity, 
and depends not only on the properties of the medium but also on the frequency of 

the waves : progressive waves through the ionosphere are damped, the co-efficie~lt 
of damping will also enter into the expression of the refractive index. The usud 
Appleton-Hartree condition for total reflexion has been deduced by neglecting the 
damping, as a &st approximation, and by putting the refractive index equal to zero. 
Discussion of the conditions when the damping is not negligible, gets very complicated 
indeed. Certain workers in Allahabad have suggested the further condition that 
the group-velocity of the wave-train is zero when total reflection takes place. This 
is a reasonable hypothesis, but the method by which the group-velocity is calcul~ted 
neglects damping, an essential factor in the physical process. It appears also that the 
calculation of the goup-velocity of waves in an absorbing medium is not atnen'~bk 
to the ordinary methods unless the damping is negligible, an approximation which, 
as has been already pointed out, does not seem to agree closely with experience. I t  
seems therefore necessary to change the method of analysis and to take, instead of 
the equations of Maxwell with a complex refractive-index, the microscopic equ a t '  lonlj 
of Lorentz as basis for oalculation. The method sketched here is a general one 
suitable for problems of refractive-index of material media as well as for discussion 
of propagation of waves in the ionosphere. It seems further amenable to modifications 
to suit the requirements of modern wave mechanics. 

We take the familiar equations of Lorentz 

div E = p ,  and div H = 0. 

The density and the convection current, p and pV, can be regarded as decom- 
posable into two parts p,, and p- and (pV)+ and (pV)-, respectively, which thus takes 
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account of the corpuscular distribution of positive and negative charges. A wave 
disturbanoe in the medium can be considered by putting 

V+ = V,O+ W+eS and V- = V!+ W,eS, where the elements with 0 indices cor- 
respond to the undisturbed state of the medium. The convection current, and 
the electric-density become on this assumption equal to 

pV = p+v++p-v- = (pV),+8eS 

where fi = [p+~ w++~+v,o+~!w-+q-~!) and 00= q++q-. 

Thus the components to,, O,, 0,) of the vector 8 correspond to the amplitudes of 
the fluctuating part of the convection current, and 0,, similarly to the fluctuating 
part of the electric density due to the disturbance. 

The process is a familiar one : When S is a linear function of x, y, z, t, with 
a complex factor '2n1, as is generally chosen for disoussing monochromatic wave- 
propagation, 2n1 S represents the phase of the disturbance and the surfaces for various 
values of S, represent the totality of all wave fronts as function of (x, y, z, t). In 
order to tackle the more general case of a damped wave-train we shall not a t  first put 
any limitation on the form of 8 but shall assume it to be any function whatever, whose 
differential co-efficienta may also have complex values. Removing the contributions 
on the both side of the equation by the various quantities corresponding to the un- 
disturbed state, we get 

div (EeS) = B0eff, and div (Hes) = 0. 
We can also verify easily that 

div [Beff] = [div E +(grad B.E)]eff 

curl [EeS] = [curl E +grad 8 x mes 

eta. 

Under the usual condition8 of propagation 1, 8, representing the amplitudes 
of the electric and magnetio waves, are slowly varying quantities whose differential 
co-efficients with regard to time and space co-ordinates can be neglected in compari- 
son with the rapid variations of the function S which represents the ,phase of the dis- 
turbance. We shall therefore put the differential co-efficients of E, H equal to zero, 
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and thus get finally the equations reduced to the following form :- 

(grad S E) = 8, 
(pad 8 - H )  = 0 

These can be regarded as the characteristic set of the wave-equations of Lorentz, 

as as as 'as are taken as unknown, and since there are eight equations, if - - ax 9 ay a~ at 
certain compatibility conditions have further to be satisfied which will give us the 
conditions under which wave-propagation can take place. We proceed to calculate 
these conditions by the usual method of vector-analysis. We have only to remember 
that, as the components of vectors may have complex-values, the geometrical 
interpretation of the various quantities may not be so immediate as in the usual cases : 
also a relation A2 = 0, does not mean that the vector vanishes, as the components 
of the vector A,, A,, A,, need not be zero, when A:+Ai+Aq = 0. 

We shall call such vectors as singular, and in the problem that we have got before 
us, considerations of singular-vectors become important. 

A few remarks regarding the geometrical interpretation of a singular vector 
may not be out-of-place; regarding the components of a singular vector A, as de- 
composable into 1ea1 and imaginary parts, we can alway%i ahoose a real direction ( A ,  p, V )  

which is perpendicular to a complex vector, viz., (A,+AZ L, ...) 

z.e., such that AAzf~AV+;vAz = 0 

i.e., an imaginary vector A,  may be regarded as defining a real plane. 

If cohordinates are chosen so as to represent this plane as the plane of (my), a 
singular vector A, i.e., whose A2 = 0, can be represented as 

(A, LA, 0) where A, may be a complex quantity, i.e., A is of the form[iA+i,u, 

-p+ih, 01. Any vector perpendicular to a singular vector, will have in this co- 
ordinate system, the general form (P, LP, Q) where P and Q may be complex quantities. 
A non-singular vector, C perpendicular to A, will have C2 + 0, i.e., Q # 0; a singular 
veotor perpendicular to A, will also necessarily have Q = 0, Le., if A and B are two 
singular vectors! both conditions (A-B) = 0, and ( A  x B) = 0, may be satisfied at the 
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same time and all singular vectors perpendicular to one another may be regarded as 
lying in one real plane. 

If A and B are two perpendicular vectors of which one is singular while the other 
is not, any vector which is perpeinr!diculay to  both A and B, must necessarily be singular, 
and will lie in the plane of A. This proposition follows immediately by d t i n g  out 
the general form of A and B in the manner explained above, and trying to write down 
the general form of C which satisfies the orthogonality condition. These 
remarks will be useful in discussing the singular case of total reflection, as- we shall 
see later on. The other two relations in'vector analysis which we shall have to use 
pretty frequently are 

A. ( B  x C )  = B.(C x A )  = -B. ( A  x C )  = etc. . .. ( I )  

and A x ( B  x C )  = B(AC) - C(AB). . . . (11) 

These have unrestricted validity even when the components of vectors have complex 
values, as they are formtd identities, involving only re-arrangement of terms. 

We shall at  first deduce certain general conclusions from our equations 

(grad 8 .E)  = 8, ... (3) 

(grad 8 . H )  = 0. . . . (4) 

Scalar multiplication with grad S of (1) gives, taking account of (3), 

. .. (A) 

a relation which expresses the conservation of charge in the disturbed state of the 
medium. 

Vector multiplication by grad S of ( 2 )  gives 
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taking account of (1) we get 

1 dS 2 19 
+8,, grad S = 0. [ a ( x  )  grad^)^]^+^^ . . . 

Scalar multiplication of (2) with E gives (EH) = 0 . . . ( C )  

Scalar multiplication (1) with H  gives ( 8 H )  = 0 . .. (D) 

Relations (C), (D) and (4) show that the vectors E, 0, and grad 8, are all in one 
as 

plane perpendicular to H ; also (1) shows that grad S is perpendicular to - E+8. at 
dD 

This vector can be regarded as representing the rate of change of induction, or 
at 

of Maxwell's equation; thus H  and D can be regarded as lying in the plane .perpendi- 
cular to grad S while E and 8 separately do not lie in it. 

The arrangement of the various vectors thus agrees with our usual ideas about 
electromagnetic waves. 

ENERGY AND MOMENTUM RELATIONS IN THE WAVE FIELD 

Scalar multiplication of (1) and (2) by E and H  respectively give 

1 as h T ~~+(* '=E . (g radSxH)=- -g radS . [ExH]  C J  ... (E) 

[ as 
--Hz = - grad S. [B x-HI ; c dt ... ( F )  

addition and subtraction of (E) and (F) give two further important relations 

1 a s  [ E ~ + H ~ J  (Ee) 
6 3z- 2 - - grad 8. [EX HI +2c- 

1 as -- (Ea-Ha) =-- (Be) . 
at C 

Also vector multiplication of (1), and (2) by H and E similarly gives 

. .. ( G )  

. .. (K) 
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also E ( E  x ~ ) + ~ l ~ r a d  S-& (grad S.E) = 0 c at 

or - - as ( E x l l ) + E Z g r a d S =  6.E. 
c at- 

Subtracting (L) from (I<) we have 

grad S (B2- E2) = - I BoE 4- --c 
L 

Multiplying (K) and (L) by grad S we have the further relation 

but 
I a S 

grsd S. ( O X  H )  = - 6. (grad SX H)=- - (on+ -- (EB) ) C at / 

1 - O2 1 a s  
-grad c S.  (Ox H)  =--I-+- c c2 3t ( ~ o ) ]  

These two relations thus become 

From these we get 

02 - - - 4 + 1 (E0)-(grad S)2(Hz- E2) = 0, c2 c2 dt 

or remembering (H) we see that  

1 / d S  2 8 2  

[> :. ar 1 - (grad S)z (Hz--E2) = S 0: -$. 

Also (grad S)2H2 = (grad S.H)2+(grad S x 

. . . (T,) 

. . . (RI) 

. . . (P) 
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we get 

1 a s  -- 1 a s  a s  
c at 

grad S . ( B  x H)= -- -- [ EZal +(I&?) ] c2 at 

which can be written in the form 

This equation could have been immediately deduced from (B) by taking scalar 

multiplication with E. 

Equation (B) : 

gives us generally the mutual disposition of E, 8 and grad S when wave-propaption 
is possible, whereas the equation (Q) written in the form 

may be regarded as the eeuation for the refractive index, determining the velocity 
of propagation in any direction prescribed by g a d  S. 

A surface S(x, y, z, t) = C may be regarded as moving perpendicular to itself 
with a velocity given by 

C the refractive index can be defined as - = p= 
W 

I grad I , agreeing wit11 our usual 
1 a s  - -  
c at 

definition, which however can be complex in the general c a w  

Introducing p, equation (Q) can be written in the form 
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Early in the paper we have expressed 0, in terms of motion of tlic positive and 
negative charges, namely, 

These involve in general both the original distribution of thc: charges, tlioir 
velocities as well as the amplitudes of velocities, and densities of positive and ncgn- 
tive electricity clue to the disturbance in the medium. 

From general considerations we can express the relation of 0, and E in tho follow- 
ing way. 

We have seen that during propagation of disturbanoe both O and E lie in the 
plane perpendicular to H. Therefore, 8 can be decomposed into two components, 
one along E and another perpendicular to E,  in this plane, i.e., in the direction of 
( E x  H). 

8 thus can be put as equal to a E + p  

also from equations of wave-propagation 

I )  x E = cH (grad S E) or p / c a  = 0g/E8. 

Writing therefore 

we see that 

so that the refractive-index equation can be expressed in terms of a and B in 
the form 
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As t1.e vectors I? nnd li are perpendicular to one motlier it follows that rand  are two 

oo-efficients which stand ill very ainlple mlution to the total po1,zris:rtion current; 

a nncl /I however are not constnnts hut may involw grntlS its well as 
dB . 
&, 2.e., 

111a-y lw fi~notiol~ of tlircbctio~i mtl frequency of the waveq. 

COSDTTTON FOR TOTAL REFLECTION 

I t  is well-known that for electro-magnetic waves in vacuum we hare E2-H2 = 0 

as well as (E . 11) = 0. For waves in inaterial media however E2-H2 # 0, but 
(Eli) = 0 remains still valid. The rntio of the electric and magnetic vectors depends 
generally upon the properties of the medium as well as on the frequency of the wave 
and we can. express this fact by the relations (H) and (M) 

which are 

The ratio of the amplitudes of the vectors, Ha/EB, can therefore be expressed by the 
following relations : 

Depending upon the property of the medium and the direction of disposition of the 
d S  d S vector E , F )  will generdly vary with - as well as with grad 8. If, however, - 

~4 at at 

(3s tends to such a value that - 4- 7. =0, it follows that Ha = 0 (1 #'O), indepen- 
d t  

dent of the amplitude of the wave traversing the medium; the dieturbance in 

such a case loses its wave-character,,so that we can say the wave cannot penetrate 
beyond that region and gets totally reflected. We shall therefore take this condition 
Ha -- 
Be - 0 or an equivalent condition as characterising the condition of total reflection 
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and we can also correlate it with another physical idea. 

We have also proved the following relation (F) 

and also 

EO 
-grad S .  ( E X  H ) .  

C 

grad S.(E x H )  may thus be regarded as proportional to the flow of energy ~ L C ~ O S S  t l ~  
surface S = constant, so that grad #.(EX H )  = 0 may be interprctecl to mcm th~rttlio 
flow of energy across the wave-front vanishes. This ngrecs with our usunl itlw of 
total-reflection a t  a boundary of two media, where the energy flows along the boundnry 
interface in the limiting case. 

We have also seen that 

1 grad SI 
= , ~ r  = the refractive indes of the mccli~uin. 

1 as 

as 'HZ = (grad S x E)2 = E2(grad S)2-(grad S.E)? From (2) .we have - 
c2 (3d 

we have 

Hz - (grad S)2 (grad S.E)2 - grad S.[E x HI - - H.(grad S x E l  
EZ 1 a s  2- 1 as 2 = -  1 as 

-. ---E2 1 as 
- a i r )  E & )  c at - c at --B2 

Ha 
I n  case (grad SUE) = 0, we see that  the condition -= 0 is equivalent to the E 2  

conditionp2 = 0, as has been assumed by Appleton to characterise the case of total 
refleotion. If we now examine the condition (B) which gives the relation between 
the vectors E ,  8 and grad S,  the condition 8 = 0 will mean that the wave is 
propagated under such conditions that  the vector E is paxallel to 8. 

Multiplying (1) with E ,  we havo 

E x 8  = cEx(grad S x H )  

= - cH(grad S - E), 

so that (grad S E )  = 0 will mean E X  8 = 0, i.e., E is paralled t o  8. 
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\Vc thus see that if the wave is such that E is 11 to 19 the condition of total reflec- 
tion JI = 0, or grad S.(E x H) = O is equivalent to theassumption ,u = 0; in the general 
case of wave propagation when E is not parallel to 0 we would expect on the other 
lmd thc condit,ion H2 = 0 as giving a new result. 

H" 0, or grad S.(E x H) = 0, may be regarded as equivalent to the assump- 
tion tllibt tlic group-velocity vanishes. The condition of total-reflection postulated 
abow is obviously suitable for a train of damped waves, because om analysis is general 
and the conditiou of non-penetrability has been deduced independent of all ideas 
of frequency. 

W7e shall now apply t,hc results of our analysis in the particular case of the 
ionosphere.' 

The contribution of the positive charges, as well as of the bound electrons in 0, 
may be easily seen to be negligible in comparison with the cont~ibntion of the free 
electrons. 

We can assume for the ionosphere 

where these quantities refer only to the free-electrons present. If we average over 
s volume containing a large number of electrons, but small colnpsred with the wave- 
length of the disturhmce, 

- 
p; = Ne, O = N e w ;  

the average value of the second term rgv,, may be regarded as zero as the initial 
velocities of the charges may be regarded as distributed chaotically in dill directions. 

Writing the equation of motion of a free electron after Eorentz as 

mg+gz = c [E ,+~~-V%Y~ , , etc. 
C 

where (h,, h,, h,) may be regarded as the components of s steady magnetic force, 
we have, dividing by m and multiplying by p = Ne, and averaging, the following 
equation 

- 
where (0, = Nev,, etc ...). 

e B  Remembering that for an oscillatory disturbance 8 = 8 -- as before idso that the 
at 
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other terms in the equation varies a t  eS, the equation can be written as 

cancelling out es. = -8 is usually called the collisioil frequency of the electrons. \Ye 
rn 

(E'4 @ shall use this equation (Z) to calculate -- ~2  or^' 

Cme I : This can be regarded as decoinposable into two subcases. 

(a) When '2 = 0, ix., R is parallel to the external mynet,ic field, equation 
C1/1, 

(Z) shows that 0 is then parallel to E 

Tho equation for determining the critical frequency for total reflection becomes 

This determines the dependence of the critical frequency on the ionic density; the 
train totally reflected is therefore of the form 

or u:; = Ne2/m- v2/4 

and the damping co-efficient is v/2. 

Case I1 : When 8 (1 E and 8% = 0 

that is the vector 8 is singular, d2 = 0 but 8 # 0 

a vector (8  x$) will represent s vector parallel to 8, when 6 is non-singular and 

perpendicular to 8 according to our former remarks about singrilar vectors. Choosing 
the dire~t~ion of h, as the direct,ion of 8, we can write the relation 
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in the form 

6' Ne2/m 
- becomes equal to E 

cm 

according as 0 and E are of the form (A, FLA,  0). 

The condition of total lcfiection now becomtts, from (B), 

calling 

we have 

Solving the above equation, we find that the two reflected waves are circularly polarised 
and the critical frequencies are 

eh eh 
So that when we have the critical frequency =- i.e., w r  =--., one of tho 

CNZ ' 2cm 
circularly polarised wave will be suppressed, and the other will be reflected with un- 

Ne2 
diminished intensity : as this will necessarily mean-- = $14 the reflection of planc- 

m 
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polarised wave, discussed above in case I, will not occur as the condition of total 
Ne2 - .v2/4. reflection gives a, = 0, if -- 
m 

These two cases correspond to. the cases discussed by Appleton by putting p = 0 
and the result agrees with the usual formula, when the collision-frequency is neglected. 
Case 111. When8#E: 

We shall now caluulate the value of ( E ' i n  the general owe. 
E2 

w e  have 

Scalar multiplication with E gives 

also vector multiplication with E gives 

eh 
Scalar multiplication by - of the above relation gives cm 

Again, scalar multiplication of the original equation with *gives cm 

Combining (a), (b) and (c) we can easily deduce 
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when E and O are uon-singular vectors. 

Now if we consider the oase of total reflection as defined by grad S . [E x H ]  

Now a h  grad S [Ex HI can be written in the form H(grad S x E), we see that 

grad SIP 

and 

1 eh 
%%- (& )*cot3 C if grad S is s v e e h  whose compo- 

nents have real ratios. 

as ( ~ e )  The relation- +- == 0 becomes 
dl E% 

If the disturbance is plane-polarised and the collision frequency is ernall we 
can put 

where a is the angle between the direction of propagation and the magnetic lines. 
as The formula b e m e s ,  putting - = i a, 
at 
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agreeing with the formula supposed to be derived by putting group-velocity = zero 
by Rajpai and Mathur.' 

We shall have to remember however that E may be a complex-vector in the 
generd case, any complex vector E = [E,+iE,, eto.], may be regarded as perpendi- 
cular to a real direction, and choosing this direotion as the direction of 2, we oan choose 
as components of the complex veotor, (E,, L E,, 0) where z, and y are certain special 
directions and the external field is regarded as having components (h,, h,, hz) in these 
special direotions. 

(E' ) then beoomes equal to -2- (E>,+r E&,) 
cm 

" 

The frequency equation for the elliptically polariaed beams would be 

when the collision frequency is neglected this similarly becomes 

This shows that the two cases will be either h, = 0. or h ,  = 0 

We have tiherefore 
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when h is 1_ to the major axis, 

when h is 1_ to  the minor axis. 

THE PROPAGATION OF THE DISTURBANCE 

We shall analyse now the relation (B), i.e., 

which may be regarded as prescribing the relation between the three vectors E, 6 
and grad 8, when propagation takes place. 

For this purpose, we shall have to consider the relation (A) which expresses the 
conservation of charge, it?., 

1 - as -- 
c j at 

@+(6 grad S )  ] = 0, 

and the relation (Z), i.e., 

We can utilise (A) and (Z) to eliminate E and 6,'from (B) and thus get 

or by re-erranging terms, 

as n as 2 eh - N"' grad S (8. grad 8). ( R) -r[&-) - ( @ ' s ) ] ( s x ~ ) -  

This vector equation is equivalent to three homogeneous linear equations in (O,, 6,, 8,), 
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whose co-efficients involve the differential co-efficients of S and the collision-frequency; 
when the relation is satisfied for non-zero values of (O,, B,, 0,) the discriminant of the 
simultaneous equation must vanish. This will give a relation between the differential 
co-efficients of 8 alone, where the characteristic numbers of the ionospheric layer, 
i.e., N, h and v, will also be involved, and may be regarded as giving the equation of 
the characteristic sur'face, corresponding to the Ei-konal equation of Hamilton for 
a material medium 

or equation for vacuum. 

It is better for perspicacity to introduce certain abbreviations a t  this stage; we 
shall put 

where 

1 a s  2 as as Ne2 
[a ( ai- ) -@ad's ] ( s + v )  +;;;;, ( %: )'is put 

The vector equation (R) is thus written 

Scalar multiplication with 0  gives 

Nea 
L(8)82 =-(8. grad S)2, 

m 

so that (grad S 0 )  = 0,  either when f)2 = 0 or when L(S) = 0, so that the vector 

equation becomes simplified, in both of these cases. 

E I 1  0  

Case I. When L(S) = 0, 8% # 0. 
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The vector equation (R) is satisfied only when 

eh as ( exE; , )  = o ,  or s(s)=o, or- = o .  at 

3s 
We reject = 0, as we are considering wave propag8tion. We can easily see that 

t 
g(S) = 0 is a singular case, which is not relevant to the problem before us, il.5 y(S) 
= 0 will lead to  the vanishing of the vector 8. 

0 is parallel to h, the external magnetio field. 

The characteristic equation thua becornea 

or putting 

which agrees with the ordinary expression for the refraotive index for plane polarised 
ordinary ray. The singular solution of the equation (1) when p(S) and Igrd S I = O 
givea the case of total reflwtion. 

Case 11. When 8% = 0 

The v e o b  equation (R) ean be wtisfied only when 

t .e . ,  when ( 8 x -.g- ) becomes parallel to 8. 
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choosing a, new set of perpendiculitr axis, with 11, ill the direction of I;, we see L(S), 
p(S), y(S) are invitriantx for orthogone1 tmnsformations. Thr vector eqilntion can 
be split up  into two equation8 

So that remembering 82,+6,; = 0 

we have 

which breaks up into two equations 

which can again be put in the form 

total reflection is obtained as before by putting p = 0 

as 
grd4  S can also become infinite, if 7 = 

le?b 
f c m - V  

i.e., for a frequenoy equal to the gyromagnetic frequency. 

case 111. 

Neither 4s )  nor 0°= 0 

i.e., when \grad 86) f 0 
and 8 ie not parallel to E. 

We have to proceed to further elimination to get the refraotive index surfam. 

The elimination work becomes simplified if we &oow a new a& of axis, with Z 
axis,'in the k t i o n  a ~ f  h. 
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The veator equation is now equivalent to the t h  scalar equations 

dS eh Ne* 
W V , - B ( S )  = - rn &(sA + sueu + SA) . . . ( i )  

dS eh Ne* 
~ ~ ) ~ , + q ( s , ~  ozo = - m S~(R,O.+S, ,~ , ,+S~~)  ... ( i i )  

Nea 
L(S)& = -;;; SASz~.+S&+SA) . . . (iii) 

where ( 
a8 ds 8. ==, sv = -- 

a~ 

From ( i )  and ( i i )  we easily get the relations 

... (iu) 

... (v )  

.. . (vi) 

multiplying (io), (u) and (Vi) by S#, Sv, Sz, we have 
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Remembering 
Ne2 

L(S)  - -grad2S m = p(S)g(S) 

and rejecting the factor g(S) the equation finally msumnes the form 

dS 
When this equation is regarded as a quadratic in (grad2$) i.e., when the value of dt - 

a s  
is supposed to be prescribed, the two roots of gradZS, become, let us say, f, (F ,  a )  

a s  
and f2 {x, a 1. So that we get two rays corresponding to any prescribed a. 

Corresponding to the two refraotive indices 

a s  When damping is neglected, - = L a. 
at 

We see from (iv), (v) and (oi), 8, : 8, : 8, 
a s  

defines a complex-ratio. As YS) will become real, and -pure imaginary, the two split 
at 
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rays will there be elliptically polarised, and t,he ratio of the axis, projected 011 a plane 
perpendicular of the magnetic field, is easily seen to be 

eh 
for large values of p;rad2S this tends to - . cm y,1 

Writing out the equation in extenso and putting grad2 S = y, we see the 

equation 

as as The co-efficient of y 2  = p(S) - as as as 
a, ( , + v ) ' + (  t ) "  (, i [z ( -2r -4 

The absolute term on the other hand is equal to 

We get therefore 

as defining the critical frequencies for total reflection. This is in t.he general wse 
when collision frequericy is not neglected an equation of the fourth degree having 
two different. conjugate complex roots corresponding to two elliptically polsrised rays: 
or when collision frequency 'is neglected, 

the above relation redurns to 



Reflection o f  Electromagnetic Waves 

which agrees with the expression arrived a t  by Rai, Bajpai, and Mathur, and also 
with the result arrived a t  by another method. 

From energy consideration, we have seen that  when E 11 0 the condition of total 
reflection grad S. [E x H) = 0, is satisfied (grad ~5')~ = 0 : Here the propagation stops 
from penetrating further, as H vanishes, and the field beyond becomes electrostatic 

in character. When ( g a d  S E) .f 0, which will happen when the direction of propa- 
gation makes an angle \vith the imgnetic field, the electric vector is not the wave 
front, and the total-reflection condition results when electric vector coincides with the 
wave normal. This happens as (grad S)2-m . The Poynting vector t,hen lies in the 
wave front. The flow of energy across the surface stops, and the waves get totally 
reflected. 

CONCLUSIOS 

We Iiave discussed the question of ionosphere a t  some length, but i t  will be easily 
hcen, that the n~ethod can be applied with the same ease for discussion of propagation 
of light in a material medium. We ha\-e only to utilise the corresponding Lorentz- 
equation for motion of bound-electrons, which can be made to yield a relation similar 
to the equation (Z)  deduced for the ionosphere. Readers interested in mathematical 
analysis will easily recognise the method as an application of the method of charac- 
teristics, used for discussions of wave-propagation by Hadamard, Debye, and others. 
So far as the writer is aware the method has not been applied to the microscopic 
equations of Lorentz, where however the extension does not seem to  create any diffi- 
culty when the waves are looked up011 as possible modes of oscillation of the stationary 
electro-magnetic field, generated by positive and negative charges, present in the 
medium. 
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I. The decomposition of any Lorentz transformation iuto two comlnutable 
factors is a well-known result, and forms a convenient starting point for the thcory 
of spinors. Einstein arrived a t  the decomposition from consideration of the. infinite- 
simal elements of the Lorentz group. The result is here obtained from purely algeb- 
raic consideration, which gives a t  the same time a slightly more general result inasmuch 
as the factorisation can be shown to hold for elements of the general ort,hogonal group 
C4, with det C, = +l. The Lorentz group L is really a sub-group of C, inasmuch 
as the co-efficients are restricted by certain reality conditions, for every matrix C 
in L has C,, real (r, 8 = 1, 2, 3), while C4,, Cr4, r = 1, 2, 3 are pure imaginaries, and 
C, real. 

If C is a matrix, the transposed matrix will be denoted by 8 ; a symmetric matrix 

for which C = C will be denoted by 8. If C+C = 0, the matrix is anti-symmetric 
and will be denoted by A. 

A non-symmetric matrix C = S + A  while 8 = 8-A .  We shall assume here 
the elements of a matrix to be complex numbers. 

2. Prop. I. An anti-symmetric matrix A having six non-zero elements can be 
further decomposed into two component matrices P and Q, which have only three 
non-zero elements such that 

If further we introduce certain basic matrices, defined by 
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in which the first set P  have the properties of the above P  matrices in ( I ) ,  and the 
second set Q  those of the Q  matrices. We note that 

P ; = P ~ - ~ ~ - Q ~ - Q ; = Q ; = - E  2 -  3 -  I -  

P l = P 2 P 3 = - P a p 2 ,  P 2 = P 3 P l = - P I P 3 ,  P 3 = P l P 2 = - P 2 P l  

Q1 = &2&3 = -Q3Q2, Q2 = &3&1 =-Q1Q3,  Q3 = Q1Q2 =-Q2Q1,  

pr Qs = QsPr. . .. ( 3 )  

Any P matrix can t,hen be represented as 

P  = a,P,+a2Pz+a3P,, . . . ( 4 )  
and any Q  matrix RR 

Q =-; hlQ, + b2Q2 +b3Q3. . . . (5) 
Hence 

A = alp,  +a,P2+a3P~+biQi+b2Qz+b,Q, ... (6) 

Carrying out the multiplication of a11 Pi's and Qi's (i = 1 ,  3, 3), we get in all six- 
teen matrices which we can utilise as basic matrices for the representation of any 
arbitrary matrix C thus (the indices of Q  will be raised in what follows when Q's appear 
with summations) 

Any symmetric matrix 

Since Pf = - E, we have generally 
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Prop. 11. If S is any orthogonal matrix, i.e., S2  = E,  det S # 0, then, either 

( i)  det S = -1, spur S # 0, or (ii) det S = +I ,  spur S = 0. 

We take a symmetric matrix 

S = l  a h g 1: 

I& b f Y  

s f c  Z 

2 Y z d 

Since S2 = E, S = 8-1, and as det S # 0, the inverse can be written down 
by utilising the minors of the det S from which the following results follow easily. 

If s = det S ,  and A ,  B ,  C ,  etc. are minors of the determinant 

D = l  a h g 

b f I :  f c 

then s(ad-x2) = A s( fd-yz) = F 

~ ( b d  -y2) = B s(gd -zx) = G 

s(cd-22) = C s(hd-xy) = H 

BC-F2 = an 
etc. etc. 

9 ,  1. 

We also remember the usual orthogonality relations of the type 

ax+hy+gz+xd = 0, ctc. 

n2+h2+g2+x2 = 1 ,  C ~ C .  

So we easily deduce 
Az+Hy+Gz+sx = 0 

FZx+By+Fz+sy = 0 

Gx+Fy+Cz+sz = 0, 

so that, if x, y, z be not all zero, we have by elimination 

s3+s2(A+B+C)+sD(a+b+c)+D2 = 0,  

or, ns s2 f 0, and D = sd 
(s+A+B+C) = -d(a+b+c+d). 

Again A - t B +  C = s[d(a+b + c)-z2-?j2-z2] 

= s[d(a+b+c+d)-11; 

so that (A+B+C+s) = sd(a+b+c f d ) .  
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Hence either s = -1, or cc+b+c+d = 0 ,  or d = 0. 

The special cases 
d = O  and x = y = ' z = O  

can be treated in the same way, and we will have in every case s = - 1 or spur S = 0, 
which proves our general result. 

Prop. 111. If S2 = E and spur S = 0 (so that s = + I ) ,  then S is always de- 
composable into two commutative anti-symmetric factors. 

As spur S = 0, we can write by (7 )  

s = C s ; P h Q ~  
Now putting 

d w r e  A,, are certain matrices of the P class, we have 

we must have 
h2A3 = A3A2 

A3Al = AlA3 

A,A, = A,Al. 

Hence the A matrices are comm~~table .  

I t  follows easily, as the A's ate all of the same P claw, 

A, : A, : A, - k ,  : k, : k ,  

where k,, k,, k ,  are certain number%: 

hence 

which puts the symiiletric orthogonnl matrix with zero spur into two commutative 
miti-symmetric fiictors. 

Also 

det = I det (11P,+12P2+13P3) I I deb (klQl+k2Q2+k3Q3) I 
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whence 
1 = ( l ~ + l ~ + ~ ~ ) ~ ( ( k +  k:+kE)2. ... ( 1 4 )  

we oan put 

Then 

When the elements of S are given, we can determine the elements of the factor 
matrices in the following way. 

As 

hence 

Also 

so 

, and n+b+c+d = 0 ,  

S =  

= klll + k212 + k3z3 

n = kill- k21,- k31,, etc. 

h = kll,+k24, 
z = k2El-kl12. 

a h, g x 

h h f Y 

9 . f C Z 

2 Y Z d 
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Hence, 

whera also 

3. Decomposition of Non-symmetric Matricm 

A general orthogonal matrix can be written as 

C = S+A 

C G = C C = E .  
where 

From this follows 
SA-AS = 0, 8'-A'= E. 

where P and Q are linear combinations of P and Q type matrices, 

we have 
s ~ - P ~ - Q ~ - ~ P Q  = 8 

L.c . ,  S" (1 +P2+Q2)E+2P&. 
Now 

spur C = spur S = p (say), 
hence by (7), 

S = pE+APQ. 
Again as 

S2 = p2 + haP2Q2+ 2 / .dPQ.  

we haw comparing ('20) atid ( Z l ) ,  firstly 

Thus 
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Identifying (20) with ( 2 1 )  we put 

which relation is equivalent to , u ~ + ~ ~  = I + P ~ + Q ~ .  
16' 

The numbers kl and k, are thus determined. Thus (23) which is the factorisation 
aimed at is completely established. 

The general form of C cuLn also be calculated. 

where 

and 

Explicitly, 

A =  A. -Aa A2 -Al 

A3 A. -A1 --A2 

-A2 Al A" -A3 

A1 A2 4 A" 
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and 
spur C = 4AoBo. . . . (27) 

Two special forms of C can be at once noticed : 

If C is a metric of the proper Lorentz group, the11 

C14, C,,, C,,, Cdl, C,,, C,, are pure imaginaries, 
so that 

(A2B3 - A3B2) + (A1Bo - BIAo) = %I. 

(A2B3-A,B,)-(AIBo-BIAo) = ih', 

from which fo11ows 

(A2B3- A3B2) as well as (AIBo- BIAo), 

etc, are all pure imaginaries. 

AoBo, A;Bl, A,B,, A,B3 are real quantities as well as (A,B3+A,B2), etc. and 
(A3Bo+AoB3), etc. are real. 

We have then 

A0 = A'_ - - - - A' = 2% = k, red ... B ~ *  B,* B *  B3* 

.s A!+Af+Ag+A; = B,2+Bf+B$+Bg = $1 (Bo* representing the conjugate of 
B,, etc.). 
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We thus see that the sets (A,, A,, A,, A,) and (B,, B,, B,, B,) are conjugate to 
each other. 

There are now two cases possible. 

Case I. When (A,, A,, A,, A,) are real, then 
A. = Bo, Al = Bl, Aa = Bp, As = B3 

and from (26) further 
C14 =L CM = cac = C4, = C4* = Ca = 0 

c4, = 1. 

This represents a three dimensional rotation. 

The axis of rotation is easily seen to be 

The angle of rotation is given by 

Case 11. A,, A,, A, are pure imaginaries., A, real. 

The resultant transformation is here seen to be an Einstein transformation,with 
translation along the line 

and velocity given by 

where 
A;--Ge = 1, and @ = Aq+A;+Ag. 

4. 
We shell now consider certain general matrices of the form 

and 

We can easily see that 

I det A I = @s+d+bs+c7s 

I det B I = w+as+bs+cs]a. 

So when a, b, c are oomplex quantities and I det A 1 and I det B I real and positive 
we must have 
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,u2+a2+b2+c2 = p*2+a*2+b*2+c*2 

where p*, etc. are conjugates of p, etc. 

We now consider A and B to be factors of decomposition of C, and take the deter- 
minant of each of the factors to  be + l ,  so that 

,u2+a2+b2+c2 = &l .  

The matrices of A and B types are orthogonal matrices; but since their elements 
are generally complex, they do not belong to the Lorentz sub-group of Group C,. 

We will now discuss certain general characteristics of the A and B matrices, which 
will bring into light also the intimate relation that exists between the decompositions 
as carried out here and the spinor theory. 

Prop. All matrices of A and B types are reducible : 

where 8 and Q are certain matrices of the second order. That such matrices are 
reducible is a well-known result. 

define a transformation of a four-component + to a four component $. 

We have 

$1 = PO+l - ~ 3 $ 2  +p2+3-pi44 

$2 = P3+1 +p0$2- ~ 1 + 3 - ~ 2 + 4  

+3 = - ~ 2 + 1 + ~ 1 + 2 + ~ 0 ~ 3 - ~ 3 + 4  

$4 = + ~ 2 6 z  f pa#$  PO+^- 

From this it can be easily deduced that 

and there is alsu the corresponding conjugate relation obtained by putting -i for 
i ,  (33) can also be written as 
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Combining (33) and (34) we obtain 

$3fi$4 $ l + V 2  P O + ~ P ~  ~ 2 - j ~ l  

;+a- +I +3-i$4 l = l  - P ~ - ~ P I  PO- 
which is a well-known spinor transformation. 

Again, choosing two sets of variables as (x,, x,, x,, x,) and (yl, y2, y3. y4) the corres- 
ponding transformation 

y,+i?l, --?/l+i?l, 

~1+i?/ ,  ?/3-i~4 

formula for B matrices can be written as 

which can be also written in the form 

(35) can also be written in this notation with the transformat,ion matrix to  the left 
on the right-hand side. 

Thus A can be regarded as inducing a front transformation while B induces a 
back transformation, or vice-versa, which shows the commutative nature of the trans- 
formation a t  once. 

The general reducibility of the A and B types of matrices shows that  the Lorentz 
Group can be studied advantageously in the two-dimensional representation of the 
A and B class of transformation. 

Reprinted from Bull Cal Math Soc 31, pp. 137-147, 1939 (Calcutta Mathematical Society). 



THE COMPLETE SOLUTION OF THE EQUATION: 

By S. N. Boss, Lkma University, and S. C. KAR, Bangabmi College, Calcutta. 

(Received November 17, 1940.) 

1. In  what follows we desire to present what appears to us to be a complete 
Kirchhoff-like solution of the equation above and indeed by two distinct 
methods. The one is a method of complex integration and the other an 
extension of a method adopted by. Love * for ordinary retarded potentials. 
The equation itself is one which seems t,o have acquired some importance in 
view of a recent work of J. H. Bhabha t on the nlesotron, who has stated a 
solution of the equation, in which the part involving a s u r f  ce integral does 
not appear. To the best of our knowledge and belief the solution at  which 
we arrive and which exhibits the surface integral is original. As the whole 
work, however, was started by a successful derivation, by an adaptation of 
the well-known method of Herglotz and Sommerfeld $, of the potentials of 
a moving mesotron, such as Bhabha uses, we let this derivation precede the 
main investigation, since this way of arriving at  the potentials appears to us 
to be also new and of sufEcient interest. 

2. To st& with, we seek a solution of the equrttion 

of the form: # = #(a), 

where 82 = ~2(e-t)2-11([-~)2 = cq8-t)2-re . . . . (2) 

and x, y, z, t are parameters. The transformation of eq. (1) to the single 
vsriable a leads to the equation 

Henoe we infer: $ = J1(kr) - or - ''(w, where ~ ~ ( b )  and Y~(# are ~eaae l  
8 8 

funotiom of the first end second kinds respectively. 

VOL. VII-NO. 1. 

5 
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3. Retar& potentials of a moving mtsotron. 

and c h o ~ e  for the four potentials (4, Al, A,, AS) of the meeotron solutions of 
eq. (l),  steted as an equation in x, y, z, t, with I ,  9, f ,  8 as parameters, in the 
forms 

The equation of restraint on the four potentials becoxnee 

if, after Herglotz and Sommerfeld, we treat I, 9, f as functions of 8 and put 

. .  V4,fi,fe,fs)=B a,a , . . (7) 
where B ie an absolute constant. 

We assume now 8 to have been complex of the form p+iv and proceed 
to perform the integrations in eqs. (6) along a path on the complex plane 
shown in the diagram below. 

i Y 



The Complete Solution of the Equation : 

The following considerations govern the choice of 
from eq. (2), 

82 = Cz(o-t1)(6-t'), . . 
r r 

where t' = t- - and t' - - t+; , the only singularities of x 
C 

and 8 = tm and since we are seeking, for the moment, tho 

95 

this path. Since, 

. . . .  (8) 

are tho~e  at 8 = t' 

retarded potentials - 
we let the path embrllce just the one singularity at  8 = t'. Since, further, 
Ins in x is multiple-valued we cannot satisfy the equation of constraint (6) 
by just having a closed contour about t' but have to let the path run along 
the real axis from -a, on one Riemann surface round t' to -a on a second, 
as, with 8-t -a, x -+ 0. 

Retaining only such terms in x as involve a singularity we may write 
eqs. (5) aa 

etc., 
and evaluate the integrals as follows: 

1 df !hi d ~ '  ni v,, eto., 

-00 

We identify now Bni with the charge e of the mesotron and obtain as its 
potentials 

whioh are the forme ueed by Bhabha. 



S N Bose : The Man and His Work 

In concluding this section we remark that the advanced potentials of the 
mesot,ron, also used by Bhabha, may be o b t h e d  in like manner by the choice 
of a path of' integration made to run along the real axis from +a on one 
Riemam surfwe round the other singularity at 8 = t' back to +a on a 
second. 

4 .  Solutimt of the proposd equation for rehrded mlwa of t : First method. 
We write 

9 4  v29 - -k24 = -4np(hV)  . . .. (10) 

iind Vex - &ij@ px -kS( =O, 

where x is given by (4). Hence we obtain firstly, 

and then, upon in tqpt icn with reapect to 8, 

We assume now 0 to have been complex of the form p+iv and proceed 
to perform the integrations along the same path on the complex plane es 
we have used in the previous section. Since, with 8-+ -a, both x and 

% -r 0, we have ae 

This we may write again in the form 

if we observe that we may treat the path of integration es independent of 
f ,q ,  1, since the path about the eingularity at t' may alwaya be slightly varied 

a 
to acaommodate the shift of t' involved in the operatione, - etc. 

We eet down now in brief the neoeseery cslculations. 
ats 



The Complete Solution of the Equation : 

I:: (iii) d o + % = - ( I - % )  
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m' 
Substituting these results in eq. (11) and dropping the factor - we get 

C 

We integrate this equation now further through a closed volume about 
the point P (2, y, z) but exclude the volume of a small sphere about that 
point. We obtain thus 

where the seoond surface integral is over the surface of the amdl spherci about 
P. I ts  limiting value, with r -t 0,  is seen to be 



The Complete Solution of the Equation : 

We arrive henoe a t  the oomplete Kirchhd-like solution for retarded values 
of t in the form 

I n  closing this section we remark that a like procedure with the second 
path of integration pointed out in the previous section yields the complete 
Kirchhoff-like solution for advanced values o f t  in the form 

5. 8ohtion of the propo8ed equation for retard& vah?.s o f t  : 8econd method. 
r 

To begin with, we replace 8 by t- -- (= t') in eq. (10). With the notation 
C 

etc., 

equation (10) take0 then the form 
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Now 

Hence we deduce firstly 

and then 

= -4+] . . . . . . (18) 

in view of eq. ,(16). Dividing both sidee of eq. (18) by r, we have, 
1 

sin06 VS- =0, r 

a l a  a I 2 1 a r a  kY+I bl - -&r-. . . ( A )  c%{; q[+~-[+~&) + ;  ?- c 

We nexfi proceed to oombine eq. (10) with 

w h  Q=- Jl(k-9) 
8 ' 

and obtain firstly 

and then, .inw both Q and 3+0 with e+ -my ae 



The Complete SolutMn of the Equation : 

Rearranging the terms in this equat'ion we write 

J 
-m 

and observe that 

k 
[Ql = ij , 

and, in view of eqs. (17), 

Equation (19) now takes the form 

Combining now equations (A) and (33) we get 
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or, in view of eqs. (IT), 
1' 

a 1 a+ 1 ar a+ 2,[;[s~+;~[;.]-[41;(a-d/ - ID ae(~p-+g) 

This equation (20) is easily seen to be identical with eq. (12) and snbsequent 
integration through a closed volume, as in t,he last section, will now obviously 
lead to the complete solution of the proposed equat,ion in the form (13). 

I t  is evident that we niily in like manner obt,ain the complete solution 
T 

for advanced values of t if we replace4 in eq. (10) fib, the outset by t +- ( = t " )  
C 

and later perform integrat.ions with respect to B from t" to + m. 
6. In closing this communication we'like t'o make a fern observations 

on the methods here employed. Firstly, the method of complex integration is 
obviously also available for the Kirchhoff solution of the equation 

We may have this solution, of course, immediately out of the solutions (13) 
and (14) with k -t 0; we may have it, t,oo, by a like procedure repeated with a 

1 
solving function ~ ( s )  = - Secondly, both methods may be adapted without 

82 ' 

difficulty for solution of the equation 

and the only difference should be that real Bessel functions of imaginary 
arguments would take the place of those we have used above. Lastly, under- 
lying. the method of complex integration there is obviously the assumption 
that p and 4 are analytic functions of B over a region of the complex plane 
wide enough to embrace the path of integration-an assumption from which 
the second method is happily free. 

* Love: Mathematical Theory of Elasticity, 4th Ed. (1927). pp. 302-3 or Lond. Mnlk. 
Soc. Proc., Ser 2, Vol. 1, (1W4). 

J. H. Bhabha: Proc. Roy. Soc., Vol. 172, p. 384, (1939). 
Herglotz and Sommerfeld: Frenkel'a Lehrbuch tler Elebtrod~/nnn~ik, Bd. 1 ,  p. 177, 

(1920). 
5 Forsyth: A Treatise on Diffewntial Equatioila, 2nd Ed., p. 167. 

Reprinted from Proc Nut lnst Sc India 7, pp. 93-102, 1941 (Indian National Science Academy). 



REACTION OF SULPHONAZIDES WITH 
PYRIDINE : SALTS AND DERIVATIVES OF 
PY RIDINE-IMINE 

Curtius and Kraemersr heated p-toluene- 
sulphonazide with pyridine and isolated a crystal- 
line compound, M.P. 2 10°C. They supposed it to be 
p-toluenesulphon-amido-pyridine. When, however, 
the sulphonic acid residue was removed by hydroly- 
sis, the new base yielded a picrate of M.P. 138-9°C. 
which did not agree with M.P. of the picrate of any 
of the known amino-pyridines. The structure of this, 
compound was thus not established by this work of 
Curtius. 

Reactions of p-acetyl-amino-benzene- 
sulphonazide and p-toluene-sulphonazide with py- 
ridine have been studied here for the last year and a 
half. This has led to the discovery of a new deriva- 
tive of pyridine, N-imino-pyridine, and the com- 
pound of Curtius has now been shown to be a 
sulphonic acid derivative of this N-amino-pyridine 
or pyridine-imine. 

(1) 
When p-acetyl-amino-benzene-sulphonazide is 

boiled in dry pyridine in an inert atmosphere, nitro- 
gen is slowly evolved and from among other prod- 
ucts a crystalline compound insoluble in pyridine 
can be isolated. After repeated crystallisation the 
substance melts with decomposition at 283"-4'C. 
The analysis shows that the substance has the same 
empirical formula as p-acetyl-amino-benzene- 
sulphonamido-pyridine but closer investigation re- 
veals it to be also a derivative of pyridine-imine 
having the formula 

(11) 
The acetyl-group can be removed easily and this 

process leads to an extremely hygroscopic hydro- 
chloride of a base. The free base has M.P. 228- 
229°C. Estimation of Pt. in the platini-chloride 
compound, M.P. 224'C, indicats the formula 

(CI lHl102N3S)H2PtC16 
showing that it has two basic groups. 

When further hydrolysed with hydrochloric acid, 
sulphanilic acid separates out and the solution of an 

extremely hygroscopic hydrochloride of a base is 
obtained. 

The perchlorate of this base has M.P. 204'C., the 
picrate, 149°C. and the platini-chloride, 237°C. and 
the analyses completely agree with the expected 
formulae. 

Attempts to liberate the free-base with alkali 
lead to polymerisation. 
' Alkaline-ferricyanide liberates nitrogen from 
the salts of this base. Nitrous acid decomposes the 
salts and from the solution pyridine can be isolated, 
as perchlorate. 

The same base is obtained from the hydrolysis of 
paratoluene-sulphonazide-compound. This has been 
confirmed by allowing p-acetyl-arnino-benzene- 
sulpho-chloride to react on the base from (I) which 
leads to the compound (11). 

A confirmation of the imino-structure has been 
obtained by a synthesis of the compound (I), from 
glutaconic-dialdehyde. Mono-benzoyl-derivative of 
glutaconic-dialdehyde2 is allowed to react with para- 
toluene sulpho-hydrazide leading to the compound 
of the form 

CgHgC00 CH = CH - CH = CH - CH = 
N.NHS02C7H7 

With the action of alcoholic hydrochloric acid 
the benzoyl group is eliminated, and there is a ring 
closure leading to the formation of the pyridine ring, 
and the hydrochloride of compound (I). This syn- 
thesis is similar to the synthesis of pyridine-oxide 
by Baumgarten.3 

Further investigations about this interesting class 
of compound are in progress. Full details will be 
published elsewhere. 

In April number of Current Science, Ganapathi 
and Miss Alamelas reported about their attempts to 
prepare sulphonamide derivatives of heterocyclic 
compounds by Curtius process. They mentioned the 
com und (11) and assumed this to be a 3-amino- 
pyri S" ine derivative without any justification. It is 
expected that this note may be of some interest to 
them. 

S.N.BOSE 
PARITOSH KUMAR DVTTA 

Dacca University, 
Dacca, 1-6- 1943. 

1 Curtius and Kraemer, 3. Prakf. Chem., 125, 323, 1930. 
2 Baumgarten, Ber., 57, 1625, 1924. 
3 66, 1808, 1933. 
4 Ganapathi, Current Science, 12. 119, 1943. 

Reprinted from Sci & Cult 9, pp. 48-49, 1943 (Indian Science News Association, Calcutta). 



A NOTE ON DIRAC EQUATIONS AND THE ZEEMAN 
EFFECT 

BY S. N. BOSE 
AND 

K .  BASU 
(Receieed for pzdblication, Sept. 22, 1943) 

ABSTRACT. A new treatemat has been given for solving Dirac's equations for hydro- 
genic atoms, and the radial functions are expressed in terms of a combination of SOPlbe's 

polynomials T':) (p), TA!; (p )  of only two ~onsecutive degrees n, n i l  ; and the elementary properties 

of such polynomials have enabled us to tackle the Zeeman effect problem in general (homogeneous field) 
leading to the standard quadratic equation in energy for the effect. 

1. With the help of the two-dimensional n~atrices s,, s,, B,,  of Pauli the wave- 
equations of Dirac can be put in the well-known matrix form : 

where D is the operator a a a 
8 ,  - +8 - f St-  

\ ax * ay a%, 

I If, similarly S = m,+ys,+zs,, and s  = -(zs ,+ys,+q,) ,  then 
T 

d 8.D. = r zr+L, where L = 1 (Mg,+M$,+Mb,) .  

also 

And the following commutation rules can be easily deduced : 

8(L- l )+ (L- -1 ) s  = 0,  D ( L - l ) + ( L - l ) D  = 0 ;  

a2 = 1. 

Hence multiplying the equations on the left by 8 we have 
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O; Y = 121 = Y where O, are similar ons- 
r 

column matrices and functions of (8, #), the equations can be rewritten as 

The equations become easily separable if the matrices @ and Y are ;so chosen that 
at  first (L-l)Y = kY and SO = Y; and as s2 5 1, it follows therefore from commu- 
tation rules that 

@ = sY and (L-1)sY ---ksY. 

We observe a t  once that L(L- 1) Y = - 2 Y  = k(k+ l)Y, where 

1 a a 1 82 o - - - ( sin 0 a) + ----L . 
=  in 8 do ~in2 8 a@. ' 

and therefore k can be either a positive or a negative integer. 

Secondly, if (@, Y) are the matrices for positive k, then (Y,O) are the matrices for 
negative k. 'Also remembering that the operator 

a 8 1 
- [ L ( z - - - ) - ] comnutes with the equation-system, the angular 

dy dx 

matrices can be expressed in terms of spherical harmonics of order k and k- 1 in the 
following form : 

k-m ,/- Y$ 
2k+ 1 

(k, a positive integer) (1.4) 
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The functions are interchanged for negative values of k. \Vriting f ( r )  = iF(r) 

so as to remove the imaginary from the radial equations, we get 

2. To solve the equation we assume 

F = foe-"rPFl(r), G = goe-ArrWl(r), and N = aE/(Eg-E2)i . .. (2.1) 
where Ze2/hc = a. 

Substituting in (1.5), F, and G, are easily seen to satisfy the following equations : 

Ahc where fo/go = -(Eo-E)/hcA = ---- = E E t  Ea-E2 4 

EoSE - (  E E a n d = ( - )  (1.3) 

If Fl+Bl = 2X+, (2,-F, = 2 ~ - ,  elimination leach easily to the following equa- 
tiona : 

provided kS-pa = Na(q-E2)/Ea = a2. 

Taking the first equation it oan be easily seen that it admits of polynomial solu- 
tiom if N-,u = n (an integer). Writing p for Shr, and writing a S o h e  polynomial 
in the form 
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with constant Bc:) so chosen that it is normalized according to 

we get B,") = 1 /{lt ! I'(n+2p+ 1 ))) 

Hence it easily follows that ,y+ and X- will have solutions as given below : 

where the normalising hctor 6 is to be determined presently. 

Our d i a l  f~uwtions of eqs. (2.1) stand thus 

Normalisation requires 

which gives 

We can write tho two solutions (A) and (B), corresponding to positive and negative 
values of k respectively. 
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wherein it is understood that f- and g- are obtained by changing the sign of k, in the 
expressions for F and in (1.5) above. 

3. When the atom is in an electromagnetic field defined by the vector potential 
( A A f i , ) ,  the Dirac-equatiom become 

In the case of a constant magnetio field H, in the direction of .Z-axis 

We observe in passing that in the absence of A, the wave function X is 
generally small compared with Y-the radial component of F(r)  has the factor 

E e J l--' , while G(r) has ,,/ I + - ; so that the perturbation effect of - AX is 
Eo Eo hc 

smell as compared with effect duo to the term -% AY in eq. (3.1) 
h.c 

we seek an approximate solution of the equation by choosing one set of angular func- 



Note on Dirac Equations and Zeeman Effect 245 

tion (Y;, Y;+l), and assuming the existence of both the sets (YL, , Y;!,') and 
(Yk, , YgJ) in X. This can be done by suitably combining the (A) axid (B) types, 
thus 

Take uj = Cf213++C=(1+~) v;, (j = 1, 2, 3, 4), where (u;, u;, u:, uf) corresponds 
to k = +I and (v?, v;, v;, v;) %orrespends to k = -(1+ 1). More explicitly, their 
values are 

The constants A, N, p of the two types of solutions are different and are expressed 
by the following relations 

2 A+ = (Et-P+)+/hc, la-ua = p,, N+ = aE+/[El-E?]+, (3.4) 

and N+ =n++p+[for (A)-type with k = 11. 

and N-  = n-+p-[for (B)-type with k = -(1+1)]. 

If E+ and E- differ slightly from one another, we have the following approximate 
relations 

By following the usual method of perturbation we see easily that the characteris- 
tic equation for determining the Eigen value E would be 

where p = eH/2hc, and 
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a,, = [ H t r a  Y++ Y ; m X + ] d  V 

a,, = [ H l r a Y - + Y l r a X - I d  V 

and X; etc. are transposed conjugates of X+ (the a is given in (3.3)) 

Carrying out integrations over the angle-variable-space we get 

(ID 

a, = 2 ~ ( 4 ~ + 2 ) ( J +  1 )  I r f - ~ - d r  ; 
(%l+ 1 )W+ 3) 

4. To evaluate the integral CI) or (II), we substitute the valuea of the c ~ m ' ~ o n d -  
ing f ,  g, and remembering r  = p/2h, we obtain 

(ID 

A+ E+ (%-@+I+ {I)=-- 3 -E ) 1 e - p e + l [  f i# ) (p )  ]hp 2N+ 4ha { (  E+ 
0 

The integrals are evaluated quickly by repeated partial integration; thus 

=(n+l)(n+2p+l)--n(n+2p) = 2N++ 1. 

Similarly 
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(ID 

[ 
1 2  J e-pp%+l T$ll (p )  dp - 2N+- 1. 

0 
I - 

An easy substitution of tho value of A+ in the foregoing loads to the following 
results : 

The evaluation of the third integral cannot, however, be exactly expressed in a 
neat form ; for the simple reason that A+, N+, E+ as weH as A_, N-, E- are different 
in the twosolutions, as also p+ = 2A+r and p- = 2A-r. If however, we introduce 
approximations in the beginning, and take 

{I111 = - 2 1 A l  l E l  ( E ~ - I E 1 2 ) t  N%-l E0 i + l  )'x 
2 N  4111' ( B ) ' ( N z +  

(ID 

t 
e - p p 2 * + z ~ p ( p ) ~ k +  (p)ap-- ( N ~ + z )  ( 4 - i - l  )' 

0 

The two definite integrals can be easily evaluated in the same way as before. 
give the results below ; 

Q (ID 

e-~pn+2fi 

J e-ppw2 T?) (p )  TWI)  (p)dp = I (4.4) 
o o d n - l ! n  ! F(n+2p+1) l?(n+2,u+2) 
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.--A 
1 h, 

{III) = - - --- [ 4sS - r  J.X%+Z+I \/~x/ , , / ~ + l + , ]  SN Is',, /.: E 

Observing E,/E - 1, we scc 

Finally. putting 1) = cH!?lr,. and ek/2mnc = pn (Rohr-magneton) nntl subst,ituting 
the values of the three inliypds (and making E,,/E-I) we scc that tlre drterminantal 
cyantion (3.7) takes the form : 

wllcrein we have put / t+d = m (magnetio quantum number). 

The result (4.6) agrees completely with that quoted by Bethe (1033), supposed 
to have bccn worked out by llim from Pauli's equations. Condon and Shortley (!93;3) 
obtnined siniilar determinant from principles of quanturii mechanics by applying two- 
fold pcrturbations (spin-orbit and magnetic) simultaneously. It may bc noted that 
Darwin (1928) has many similar features with our mode of attack, and wc cnn claim 
Rome elegance by our introduction of Sonines properties, which exhibit our solutions 
in good perspective. 

R a r ~ a l c a c r e e  
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THE CLASSICAL DEX"I'RM1RTISM AKU'D THE QUANTUM THEORY 
(Delivered or8 Jan.  3, 1944) 

I wish to express sincere thanks for the great honour you have done 
me. The Presidentship of tlie Science Congress is a great distinction, and 
I confess, I have my own misgivings about the wisdom of your choice. 
Your first decision had raised high hopes. Many of us expected that a 
deliberate p r o g r a n ~ n ~  of the future scientific activities of the country 
would probably be a feature of the opening speech of this Congress. 
Pandit Jawaharlal liad studied tlie needs of the country. Many of our 
front-rank scientists and industrialists liad met under his leadership, not 
long ago, and given to questions of future reconstruction much time and 
anxious thought. The results of this deliberation would have been in- 
valuable at the present moment. My regret is keen that chance has 
deprived us of the benefits of a sustained and careful study -of the problems 
of the day. I would have liked to present here the results, if they were 
available. Unfortunately they are not, as most of the reports are inacces- 
sible to me. 

One of your foriner Presicleiits had reinarked that "a scientist is apt 
to become a nian that kno\\-s more and more about less and less, so that 
his opinion up011 subjects outside his field of special study is not necessarily 
of special value". I realise the wisdom of this warning and hope to have 
your indulgence, if I seem to he more at home with doubts and criticisms 
than with useful knowledge. 

I would likc to present before you certain aspects of modern physics 
and draw your attention to the profound changes in the principle of 
scientific explanation of natural phenomena brought about by the quantum 
theory. The last fifty years record reinarkable discoveries. I need only 
mention the electron and the neutron, X-rays and Radio-activity to 
remind you of the increase of our knowledge. Our equipment has gained 
in power rangc and accuracy. We possess powerful telescopes to scan the 
furthest corners of the universe, also precise and delicate instruments to 
probe into the interior of the atoms and molecules. The alchemists' 
dream of transmutation has become a reality. Aton~s are now dis- 
integrated and synthesisecl. X-ray reveals invisible worlds and wireless 
links up the furthest ends of the earth with possibility of immediate inter- 
communication. These discoveries have their repercussions in the realm 
of ideas. Fifty pears ago the belief in causality and determination was 
absolute. To-day physicists have gained knowledge but lost their faith. 
T o  understancl properly the significance of such a profound change it will 
be necessary to discuss brieflv how it all came about. Classical physics 
had begun with the stndy of astronoii~y. \frith his laws of gravitation 
and his dynaniics Ke\\:ton had explained planetary motion. Subsequent 
study has slio~\-n astronomical prediction to be possible and sure. 
Physicists had taken the equations of celestial mechanics as their model 
of a universal Ian-. The atomic theory had in the mean time gained 
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u~liversal acceptance ; since matter had resolved into a conglomeration of 
particlcs, the ideal scheme was to explain all phenomena in terms of their 
motions and interactions. I t  was only necessary to set up a proper set 
of equations, and to take account of all possible mutual interactions. If 
the mass, position, and velocity of all. the particles were known at any 
instant, these equations would theoretically enable the physicist to predict 
the position and motion of every particle at any other subsequent moment. 

The phenomena of light did not at first fit into this simple scheme. 
To regard it as a stream of particles was impossible due to the discovery 
of interference. Accordingly the wave theory of light was originated by 
Huyghens and perfected by Naxwell. With the discovery of the electron 
as a universal constituent of matter,'the electronlagnetic theory of Maxwell 
was converted into an electronic theory by 1,orentz. To the dynamical 
laws were added the electromagnetic equations and the two together 
apparently gave an exact and ideal formulation of the laws of causality. 
In  the forces of interaction henceforth, were to be included not only the 
gravitatiollal forces but also those interactions which depended on thc 
charge and the nlction of the particles. These interactions were brought 
about by influences which spread out as waves with the velocity of light. 
They superilnposcd, interfered and constituted thc field of force in thc 
neighbourl~ood of the l)articles, niodified their motion and were in turn 
modified by them. Thc motions of all particles throughout the universe 
were thus interlocked. These out-going influenccs also constituted light, 
invisible radiation, X-rays and wireless ~vaves. Thus a set of universal 
laws was supl)oscd to have been discovered and we had only to apply 
them suitably to find explanations of all conceivable natural phenomena. 
In  physical scictice wc do not however always proceed in the above way 
and turn to the 'rmicroscopic" equations whenever we have to explain 
events. We often study materials en mnsse, consisting of an enormous 
tlumber of corpusclcs, and we use either the principle of the conservation 
of energy or the l a w  of thernlodynanlics to explain their behaviour. 
These laws \Yere however regarded either as simple consequences of the 
fundamental equations or as statistical laws derivable from them by a 
suitable averaging. Though in the latter cases we talk about probabilities 
and fluctuations, it was more or less a matter of faith to maintain that if 
it were possible for us to obtain all the necessary data by delicate observa- 
tions, universal laws wourd enable us to follow each individual molecule 
in this intricate labyrinth and we should find in each case an exact fulfil- 
ment of the laws and agreement with observation. The above in brief 
forms an expression of faith of a classical physicist. We see that it 
involves as  necessary consequences, belief in continuity, in the possibility 
of space-time description of all changes and in the existence of universal 
laws independent of observers which inexorably determine the course of 
future events and the fate of the material world for all times. 

A few remarks about the general equations will perhaps enahle us 
to follow better the criticisms that have been levelled against the system. 
The structure of the mechanical equations of particles is different from 
the field-equations of Maxwell and Lorentz. The principles of conserva- 
tion of energy and momentum were first discovered as consequences of the 
mechanical equations. Mass and velocity of the corpuscle furnish means 
to measure its momentum, and its energy, if we leave aside the potential 
energy which resides in the field. To maintain the integrity of the 
principle of conservation, the field must also b e  considered capable of 
possessing energy and momentum, which however, being associated with 
wave-motion, must spread out in all directions with the waves. The transfer 
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of energy from the field to the particles must thus be a contiuuous'process, 
whereby, a finite change should come about only in a finite interval and 
the process should theoretically be capable of an exact description in 
space and time. 

Physics being essentially concerned with relations between quantities, 
these should all be capable of exact measurement. We measure al~~rays 
intervals of time or inter-distance between points, hence the specification 
of the reference frame is just as important as the units of measure. Newton 
had not analysed closely the conception of mass and time. This vague- 
ness persisted in the dynamical equations for the particles. The field- 
equations which form the basis of the wave-theory of light have a different- 
origin. With the discovery of the principle of the least action, a con~mon 
derivation of both has been attempted. But a difference in the choice of 
reference frame in the two apparently subsisted. The wave-equations 
assumed a fixed ether whereas the material 1au.s conteliq)laiecl a Galilean 
inertial-frame. An immediate deduction from this distinction \\.as the pos- 
sibility of measuring the relative velocity of the observer with rcfcrence to 
ether. The experiment of Michelson and Morley showed it to be unrealis- 
able in practice and formed the starting point. of the celebrated Relativity 
Theory. Einstein had subjected the conception of time-measurement to a 
searching examination and showed the impossibility of conceiving a timc 
independent of an observer, or an absolute simultaneity of events happening 
at two different places. The same space-time reference should be chosen 
for the dynamical equations as well as the equations of the field, this being 
supplied by the observer. In spite of this apparent limitation Einstein 
demonstrated the possibility of formulation of natural laws independent 
of all axes of reference and pointed out that the necessary auxiliaries 
existed already in the invariant theory and the tensor Calculus of mathe- 
maticians. In  spite of its apparently revolutionary character, the theory 
of relativity upheld the ideal of causality and determinism. Einstein liinl- 
self has continued to seek with great earnestness a unifying field theory 
which will combine gravitation and electromagnetism and render un- 
necessary a separate formulation of the dynamical equations. No such 
theory as yet exists. 

The developnient of the quantum theory has raised fundanmltal 
issues. Facts have been discovered which demonstrate the brealtclown of 
the fundamental equations which justified our belief in determinism. A 
critical examination of the way in which physical measurements are made 
has shown the impossibility of measuring accurately all the quantities 
necessary for a space-time description of the motion of the corpuscles. 

Experiments reveal either the corpuscular or the wave nature for the 
photon or the electron according to the circumstances of the case, and 
present us with an apparently impossible task of fusing two contradictory 
characters into one sensible image. The only solution suggested has been 
a renunciation of space-time representation of atomic phenomena and with 
it our belief in causality and determinism. 

Let me briefly recapitulate the facts. In rgoo Planck discovered the 
quantum of action while studying the conditions of equilibrium between 
matter and the radiation i3eld. Apparently interchange of energy took 
place in discrete units whose magnitude depended on 'h' and the fre- 
quency of the radiation emitted or absorbed by matter. Photo-electric 
emission had similar disquieting features. Einstein therefore suggested a 
discrete structure of the radiation field in which energy existed in quanta 
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illstead of beit~g continuously distributed in space as required by the wave- 
theory. This light-quantum however is not the old light-corpuscle of 
Newton. The rich experimental materials supporting the waveatheory 
preclude that possibility altogether. Moreover the fundamental relation, 
E=hv,  and + = I & ,  connecting energy and momentum of the photon 
with the frequency v and the vector wave number k ,  makes a direct 
reference to idealised pla~ie wave so foreign to the old idea of a 
corpusclc. Soon afterwards Boiir postulated the existence of radiationless 
stationary states of atoms and showed how i t  led to a sin~ple explanation 
of the aton~ic spectra. The extrenle simplicity of the 1)roposed structure 
and its striking success in correlating a multitude of experimental facts 
at once revealed the inadequacy of the ordinary laws of mechanics and 
electro-dynamics in explaining the remarkable stability of the atoms. 

Thc new ideas found application in diffcrent branches of physics. 
Discontinuous quantum processes furnished solutions to many puzzles. 
Suitably modified, the theory furnished a reasonable explanation of the 
periodic classification of elements and thermal behaviour of substances at  
low temperature. Therc was however one striking feature. I t  was appa- 
rently impossible to characterise the details of the actual transition pro- 
cesses from one stationary state to another, that is, to visualise it as a 
continuous sequence of changes determined by any law as yet undis- 
covered. I t  became clear that the dyliamical laws as well as the laws 
of electroi~~agnetis~m failed to accouut for atomic processes. New laws had 
to be sought out compatible with the quantum theory capable at  the same 
time of explaining the rich experimental materials of classical physics. 
Eohr and his pupils utilised for a time a correspondence principle, guessing 
correct laws for atomic processes from analogy with the results of the 
classical theory. In  every case these appeared as statistical laws con- 
cerned n-it11 the probabilities of transition between the various atomic 
states. Einstein tackled the problem of the equilibrium of matter and radia- 
tion on the basis of certain hypothcses regarding the probabilities of 
transition between the various states by absorption and emission. A 
derivation of the Planck Law was obtained by Bose by a suitable modi- 
fication of the methods of classical statistics. Heisenberg finally arrived 
at a satisfactory solution and discovered his ~natris-mechanics and a 
general method for all atomic problems. Dirac and Schrodinger also 
published sinlultaneously their independent solutions. Though clotlied 
in apparently dissimi1:r mathematical symbols, the three theories gave 
identical results and have now come to be looked upon as different for- 
malisms expressing the same statistical laws. 

I have mentioned that the photon gave a simple esplanation of,,many 
of the properties of radiation and thereby presented its corpuscular Aspect 
wliile the well-known properties of interference and superposibility brought 
out its wave character. That the same dual nature may exist in all 
material corpuscles was first imagined by De Broglie. His phase-waves 
found quick experimental verification, and raised a similar problem of 
the real nature of the corpuscle. The formulation of wave-mechanics by 
Schrodinger, once raised a hope that by a radical modification of our 
usual ideas about the corpuscle it might be possible to re-establish the law 
of causality and classical determinism. Subsequent developments have 
shown such hopes to be illusory. His waves are mathematical fictions 
utilising the multidimensional. representation of a phase-space and are 
just as incapable of explaining the individuality of the electron, as the 
photon is incapable of explaining the superposibility of the field. The 
true meaning of his equations appears in their statistical interpretation. 
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The adherents of the quantum theory interpret the equations in a 

peculiar way. They maintain that these equations make statements about 
the behaviour of a simple atom and nothing more than a calculatior~ of 
the probabilities of transition between its different states is ever possible. 
There is nothing incomprehensible about such a statistical law even if it 
relates to the behaviour of a single particle. But a follower of deter- 
ininism will interpret sucli statements as hetraying imperfect knowledge, 
either of the attendant circumstances or of the elementary laws. We 
may record the th row when a certain die is cast a large number of times 
and arrive at a statistical law which will tell us how many times out of 
a thousand it will fall 01; .L certain side. But if we can take into account 
the exact location of its centre of gravit!., all the circuinstances of the 
throw, the initial velocity, the resistan1.e of the table and the air and every 
other peculiarity that may affect it, therc can be no question of chance, 
because each time we can reckon wherc tlie die will stop and know iin 
what position it will rest. I t  is the assertion of the impossibility of even 
conceiving such elementary determining laws for the atomic system that 
is disconcerting to the classical physicist. 

Von Neumann has analysed the statistical interpretation of the 
quantutn mechani~al laws and claims to have demonstrated that the results 
of the quantum theory cannot be regarded as obtainable from exact causal 
laws by a process of averaging. He asserts definitely that a causal esplana- 
tion of quantum mechanics is not possible without an essential modification 
or sacrifice of some parts of the existing theory. 

Bohr has recently analysed the situation and asserted that we c:ii~not 
hope any future development of the theory will ever allow a return to a 
description of tlie atomic phenomena more conformable to the ideal of 
causality. He points out the importance of the searching analysis of the 
theory of observation made by Heisenberg, whereby he has arrived at his 
famous principle of indeterminacy. -4ccording to it, it is never possible 
for us to determine the siinultaneous values of momentum, and positional 
co-ordinates of any system with an accuracy greater than  hat is com- 

h 
patible with the glequality A> nq> G.  

This natural limitation does not affect the physics of bodies of finite 
size but makes space-time descriptions of corpuscles and pl~otons im- 
possible. When we proceed to study the behaviour of the elementary 
particles, our instruments of measurement have an essential influence 
on the final results. We have also to concede that the contributions of 
the instrument and the object, are not separately computable from the 
results as they are interpreted in a classical way with the usual ideas 
of co-ordinate and momentuln accepting thereby a lack of control of all 
action and reaction of object and instrument due to quantum effects. 

I t  is in this imperative necessity of describing. all our knowledge with 
the usual classical ideas, that Bohr seeks an explanation of the apparently 
irreconcilable behaviour of corpuscles and radiation in different experj- 
ments. For example, if we set our experiments in sucli a fashion as to 
determine accurately the space-time co-ordinates, the same arrangement 
cannot be simultaneously used to calculate the energy momentum rela- 
tions accurately ; when our arrangements have pushed the accuracy of 
determining the positional co-ordinates to its utmost limit, the results 
evidently will be capable only of a corpuscular representation. If, on the 
other hand, our aim is to determine momentum and energy with the 
utmost accuracy, the necessary apparatus will not allow us any deter- 
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niination of positional co-ordinates and the results we obtain can be under- 
stood only in terms of the imagery of wave-motion. The apparently con- 
tradictory nature of our conclusions is to be explained by the fact, that 
every measurement, has an individual character of its own. The quantum 
theory does not allow us to separate rigorously the contribution of the 
object and the instrmnent and as such the sum total of our knowledge 
gained in individual cases cannot be synthesised to give a consistent 
picture of the object of our study which enables us to predict with cer- 
tainty its behaviour in any particular situation. We are thus doomed to 
have only statistical laws for these elementary particles and any further 
development is not likely to affect these general conclusions. 

I t  is clear that a complete acceptance of all the above conclusions 
would mean a complete break with the ancient accepted principles of 
scientific explanation. Causality and the universal laws are to be thrown 
simultaneously overboard. These assertions are so revolutionary that, no 
wonder, they have forced physicists to opposing camps. There are some 
who look'upon causality as an indispensable postulate for all scientific 
activities. The inability to apply it consistently because of the limitations 
of the present state of human knowledge would not justify a total denial 
of its existence. Granted that physics has outgrown the stage of a 
mechanistic formulation of the principle, they assert that it is now the 
task of the scientists to seek for a better formulation. Others of the oppos- 
ing camp look upon old determinism as an inhuman conception, not only 
because it sets up an impossible ideal, but also as it forces man to a 
fatalistic attitude which regards humanity as inanimate automata in the 
hands of an iron law of causation. For them the new theory has humanised 
physics. The quantum statistical conception of determinism nestles closer 
to reality and substitutes a graspable truth for an inaccessible ideal. The 
theory has brought hope and inspired activity. I t  constitutes a tremendous 
step towards the understanding of nature. The features of the present 
theory may not all be familiar but use will remove the initial prejudice. 
We are not to impose our reason and philosophy on nature. Our philo- 
sophy and our logic evolve and adjust themselves more and more to 
reality. 

In spite of the striking successes of the new theory, its provisional 
character is often frankly admitted. The field theory is as yet in an un- 
satisfactory state. In  spite of strong optimism, difficulties do not gradually 
dissolve and disappear. They are relegated to a lumber room, whencc 
the menace of an ultimate divergence of all solutions neutralises much of 
the convincing force of imposing mathematical symbols. Nor is the pro- 
blem of matter and radiation solved by the theory of complementary 
characters. Also we hear already of the limitations of the new theory 
encountered in its application to nuclear problems. 

The quantum theory is frankly utilitarian in its outlook ; but is the 
ideal of a universal theory completely overthrown by the penetrating 
criticism of the nature of physical measurements? 

Bohr has stressed the unique character of all physical n~easurenients. 
We try to synthesise their results and we get probabilities to reckon with 

h a+ instead of certainties. Bnt how does the formalism - -=h$ emerge 
27ri at 

as a certain law? The wider the generalisation, the less becomes the 
content. A universal law would be totally devoid of it. I t  may neverthe- 
less unfold unsuspected harmonies in the realm of concept. More than ever 
now, physics does need such a generalisation to bring order in its donlain 
of ideas. 

Reprinted from lJruc lrrd Sci (hng 31, pp.1-6, 1944 (Asiatic Society of Ijcngal) 



ON AN INTEGRAL EQUATION ASSOCIATED WITH THE 
EQUATION FOR HYDROGEN ATOM 

BY 
S. N. BOSE 

(Received on May 16, 1946) 
I 

The SohrXnger funotione '#' oharaoterie'i the stationary atatea of hydrogen 
atom are now very familiar things in analysis aa aleo the differential equation whioh 
they aatisfy, namely,, 

The aseooiated funotions M, defined by the relation, 

oan be utilised for defining the probability in momentum spaoe if the momentum 
variables are introduoed by the relation p, = My p,, = hm, pz = hn. 

When invemion ie poaeible, (1,2) implies also 

and solutions of (1,l) can be utilised to oaloulate M's. Eleaeeer (1933) has followed 
thie method and arrived at fairly oomplioated formula. Ahother alternative would 
be to set up an appropriate equation for them, and invegtigate ite solutions. This 
ie an integral equation, whose oomplete mlution ie presented here. Tbs analpis 
presente several i n t ee ing  features, and leads to expressions of M's, whioh o m  be 
immediately utiliaed to study their properties or to apply them to physioal problem. 

If we use the semisonvergent in- 

then oornbination with (1,2) leads to the following sex-tuple integral for +/R, after a 
ohange of variable and order of integration : 

M(A-1, p-m, v-n) exp. 2ni(Ax+py+ vz)dl dm dn dh dp dv. 
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can thus be regarded as Fourier transform of q5 and #/R. 

Using then in the Schrijdinger equation ( 1 , l )  we deduce the following integral 
equation 

M(1-x, m-y,  n-z) 
(la+ma+n2-k2)M = A dx dy dz, . . . (A) 

where 
k2 = 2mE/h2. and A = 2rnealnha. 

M is here assumed to be finite and single-valued throughout the domain of integra- 
tion, aa also 

(A) is the characteristic integral equation for M-functions of hydrogen; for k3 < 0,  
it leads to the discrete spectrum, while k2 > 0 : yields the continuous spectrum. 

It is easy to transform (A) to the Fredholm type, when k2 < 0 = -a2. We first 
transform the origin, i.e., put 1-2 = x', etc, in the right side. (A)  becomes 

(Za+m2+na-k2)M = - hM(x'ylz')dx' dy' dz' . ... (2,32) I [ ( l -~ ' )~+(rn-  y1)a+(n-z1)aJ 

when ks = -aa, we make a similarity transformation 

1 = l'a, x' = ax", etc., 
and put 

N(1, m ,  n) = M1(1', m', n') 
wliereby 

dx' dy' dz' = a3dx" dy" dz" 
and 

(la+m2+n2+a2) = a2(l'a+m'2+n'2+ l ) ,  etc. 

The relation becomes 

A (la+ma+na+l)M = -- 1 M'(x'ylz')dx'd y 'dz' 
a (Z -~ ' )~+ ( rn -y ' )~+ (n -z ' )a .  

If further 

then 
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where 

(2,33) is thus seen of the standard form 

where the kernel is symmetrical in A and P. Such a transformation will however 
make the kernel imaginary within the domain, if k2 > 0;  to have a uniform treatment 
to cover both the cases, we wil l  not utilise the transformation mentidned above. 

We require the following simple result in our subsequent calcula~tions. If r ,  
m d  r ,  arc the distances of a point P(x,  g, z) from two fixed points A(n, b ,  c) and P(f ,  g, h) ,  
the integral 

extended over the whole domain easily transfornls to 

in bipolar co-ordinates with A F  = k, 

and 
dx dy dz = c3(cosh2[-cos2q) sinh [ sin 7 dCdydq5, 

X = cosh 5 and Y = cos 7, 

whence, by easy integration, 

Again, if 

M(u-X, b-y, C-z)dz dy dz M(x'y 'z')dxfdy'dd 
A(a, b, C) = A 1 x2+ y2+z2 = I (a-~')2+(b-y')2+(c-z')~ 

. .. (3,2) 
we have, by multiplying the equation with 

and integrating over the whole domain, 

A(a b c)da db dc A 1 I '  M(x' y'$)dz' dy'dz' da db dc I [(f-~)Zi-(g-b)~+(A-c)7 [(U-X')~+.  ..][(,f-u)~+...]' 
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Changing the order of integration and utilising (3,l) we have 

henoe, operating with v&,,, on both sides, as 

from potential theory, and 

v h ,  (A(f-a, g-b, h-c)} = (vaAW-a, g-b, h-c), 

we have finally 

M(f, g, h) =- -- ' I  (vaA)(,f-a, g-b, h-o) & db do 
4+A a a + ~ + c a  

ar, a eolution of (3,2). 

This important result furnishing a solution of integral equation (3,2) with obvious 
restriotione about the nature of the funotion A, enables ua to tmokle our present problem. 

IV 

Aooording to a rell-known theorem due to Hobeon, if an oparator 8 (-& -$ , g) 
d ia oonstruoted by eubstihuting - .. ., eta  for x, y, z in a eolid harmonio 8, of degree 

. dx' 
n (a positive in*), 

Let us aseume, with rqeard to the integral eqnetdon (A), that 

in view of (4,l) ; aleo (i-P)M(z, y, z) a n  be written ee 
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d d d  
Sn ( a, 6, E) ~ ( r s )  

with the same operitor, as the same surface-harmonic will occur in both. Also as 

and 

we have 

implsins 

We have also from ( A )  

Henae removing the operator Sn 

A[a-x)?+ .  . . ]dx d y  dz, B = h  1 
xs+ ya+z2 9 

and hence on account of (3.3) 

A = - - -  I ( v 2 B ) ( a - x ,  b - y ,  c - z )  dx  d y  dz  
4 n4A , x2+ y2+z2 

We now perform the integration ; assuming 

( a - ~ ) 2 + ( 6 - ~ ) 2 + ( c - z ) 2  = f a  = rs+p2-2rp ws O 

according to the accompanying figure 
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we have, as fiif = r p  sin 8, 
m .f-: ;= (p+r )2  

d r  
pB(p2)  = inh 1 7 1 3 A ( . f2 )  d f 2  

0 f" ( p - r ) '  

m 
dx 

= 2 n ~  1 - - [ ~ , ( p + ~ ) - ~ , ( p - ~ ) 1 ,  
5 

0 

where 

and G I ,  an even function of x .  Similarly from ( 4 , 5 2 )  

where d L 
.- = v2B(x2 )  ; 
xdx  

hence integrating and putting 

we have 

where 

or Q = x B ,  
and therefore an odd function of x .  

Putting finally xB(x2)  
- Q = G_ -- - 

2n2A - 2n2A ' 

we have the following relations between G ,  and G2 in the skew-reciprocal form : 

0 

If the functions G, and G2 are introduced in ( 4 , 4 )  we have 
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The skew-reciprocal relations (4,53) and (4,541 then a t  once suggest that 

is true a t  the same time. 

(4,55) and (4,5G), lead at once, by integration, to 

when E2 > 0 ; when k2 = -a2, on the other hand, 

0, = - ~ ( x ~  +az)" sin ... (4,58) 
a 

The two equivalent forms of M are 

n 
- - - 27r2A Asn("' --- - - Y, -~ ' )  (-,: ) n [  (r2-k2) 

r2 - k2 r sin j A log 1:; it 1 )I . (4,591) 

for the case : k2 > 0; while, if k2 = -a2, 
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v 
As M is to be single-valued, we see, in the owe of kZ (< 0) = -aa, that a restric- 

tion comes in regarding the choice of constants of the problem. 

tar l(r /a)  is 

cos ( 2zh tan-' a 
n%/a must be an 

a multiple-valued function of the form 8+Nn; if therefore 
r -) and sin ( - 
a 

2nZA tan-' E) are single-valued, i t  follows that 
a a 

integer = N. This gives discrete energy-values : 

agreeing with the well-known result. 

r ? tan-' - = 
a 

Also as 

as- r4 fN(rP) 
00s ( N  00s-' -- ) = (as+rP)" 

aP+ra 

we see that M = 0 unless N ) n+l.  

Again starting from the series 

1 sin N8 = x hN-1 - 1-h cos 8 
1-2hcosO+h4 = x hN COS N8, sin 8 ' 1 -2h cos 8+hO ,, 

and writing 

as-rP 
COB e = - 2ar 

ag+rs and sin 8 = --- 
aP+r4 

we have 

ayl-h)+fll+h) - X h N  No. 
{(l-49aa+(l +h)W - ... (6,3) 

Multiplying (6,2) with ( ~ ~ + r ' ) ~ - l  and differentiating n times with regard to r, we have 
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... (5'4) 
from (5,3) we deduce similarly 

1-ha 
([(1 -h)sa'+(l+ h)zrZln+2 ) 

Remembering the Gegenbauer expansion 

1 
.- - 1 

lr 
(2h)' FV (cos 0) - - $ (a2-2ah cos B+ha)" a2" 

we can easily deduce, if v = n+ 1 ,  a = 1 and 

the following results : 

Comparing (5.4) and (5.5) with (5.6) and (5.7) we have 

and 

Hence 
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VI 

When ka < 0, the problem. can be transformed to a homogeneous integral 
equation of the Fredholm type, with a symmetrical kernel 

The results that we have obtained above enable us also to say that 

are eigen-functions corresponding to the eigen-value -(n + 1 + h)/na for the kernel 

Writing 

To determine the radial integral, we use (5,7) and write . 

which reduces to 

where 
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when, by easy calculation, 

Equating coefficient of (ht)x 

hence 

where Fn(8, q5) is taken to be a normalised spherical harmonio. 

We can normalise the eigen-functions of the homogeneous integral equation, for 
which similarly the value of 

will be necessary; for it, we utilise agah  (5.7) and write 

after easy integration 

n (2n+l)! I =  -- 1 
pn+4 ' -- n! (n+ l )  ! (1-ht)m+a ' 

Equating coefficient we have 

The normalised eigen-functions of the homogeneous equation is 
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The completeness of the eigen-functions series will mean the equality 

(multiple summations as there are repeated roots) leading to the relation 

and leading to an expansion of 

by a change of axis making (sf y' z') on the z axis 

from the well-known addition theorem of Pn(p). 

To verify the correotness of the result we note that 
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hence writing 

we have 

1 - 2 
r+rf2- 2rr',ug - ( 1  + r2)(1 +r12)[1 --cosI) cos I)'-sin 0 sin 8' cos $1 

4 -V sin NX = T7 
( l + ) ( l + r ' )   sin^ ' 

if n/d > x > O from (5.1), and cos ,y = oos 8 cos Of+Yi~l 0 sin 0' cos 6; henoe 

a result which is a particular case of a general class of identity deduced by Gegenbauer 
(Whittaker, 1927). 
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Let ters  to the  Edi tor  

GERMANIUM IN SPHALERITE 
FROM NEPAL 

I N  VIEW OF THE RECENT USE OF GERMANIUM 
crystal as a rectifier for ultra-short radio 
waves, it is worth while to make a thorough 
investigation of the possible sources of 
germanium in India. Recently, one of us 
made a search for germanium in coal ashes 
from different coalfields in India and a fair 
concentration of germanium was detected 
in a few sampleslS2. 

Argyrodite, canfieldite and germanite are 
the only ores rich in germanium known a t  
present. But none of them have been 
reported to occur in India. Zinc blende 
from different countries has been investigated 
by different workers3 and in majority of 
samples germanium has been detected in 
traces. ' 

Specimens of sphalerite collected from 
Nepal by one us have been spectroscopically 
examined. Two of these samples have been 
found to contain germanium ( FIGS. 1-4 ). 
The following metals have also been detected 
in the mineral : Sn, Pb, Mg, Al, Si, Ga, Cd, 
Ge, Ag and Fe. 

During our investigation, we found that 
germanium occurs concentrated in the magne- 
tic portion of the mineral which seems to be 
almost pure iron oxide with traces of sulphur, 

lead, zinc, gallium and germanium. The 
non-magnetic portions were also examined 
spectroscopically and found to contain 
germanium only in traces. 

Germanium was estimated calorimetrically 
according to the method by Marcel 0rliac4 
slightly modified by us. 

The percentage of germanium in the 
magnetic portion has been found to be 
about 0.24 while it varies in the non- 
magnetic portion from 0.0072 to 0.04. 300 
mg. of pure GeO, has been extracted from 160 
gm. of the magnetic portion of the mineral. 

The most abundant source of germanium 
at  present in U.S.A. is the concentrate from 
residues obtained during the melting of zinc 
ores. Buchanan reports as much as 0.25 
per cent of GeO, from these residues. As the 
magnetic fraction from sphalerite .contains 
about 0.24 per cent of germanium, it can 
be regarded as a good source of germanium. 

I t  appears that germanium has not been 
detected in any iron ore so far ;  thus this 
new mineral needs further study. We have 
spectroscopically examined a few haematite 
and pyrites samples but none of them contains 
germanium. 

We take this opportunity to thank the 
Nepal Government and the Director of the 
Nepal Bureau of Mines for the samples of 
sphalerite. Our grateful thanks are due 

The first reference on p. 271 makes a wrong ascription to Dutta and Sen instead of Dutta and Bose, in the 
original publication itself. 
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F i g .  

Fig. 4 
FIG. 1 - (a) F E ,  (b) SPHALERITE. FIG.  2 - (a) F E ,  (b) MAGNETIC SAMPLE, (c) NON-MAGNETIC 

SAbQLE. FIG. 3 - (a) FE, (b) GE WITH TRACE OF F E .  FIG. 4 - (a) F E ,  (b )  GE WITH TRACE OF FE. 
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Extraction of Germanium from Sphalerite 
C o l l e c t e d  f r o m  N e p a l - P a r t  I 

R. K. DUTTA & S. N. BOSE 
University College of Science, Calcutta 

A method for the extraction of germanium 
from the magnetic fraction of the mineral 
sphalerite has been described. The fraction 
which is shown to be magnetite contains 0.24 
per cent germanium. 

I N a previous communication1, we des- 
cribed a magnetic fraction of the mineral 
sphalerite collected from Nepal. On 
chemical analysis, this fraction was 

found to be mainly ferric oxide with a 
coating of ferrous sulphide. I t  contains 
germanium to the extent of 0.24 per cent. 
That the mineral is magnetite has also been 
confirmed by X-ray analysis. Coal ash, 
euxenite and some specimens of zinc blende 
are known to contain germanium in small 
quantities, but its association with magnetite 
has not been reported. 

E x p e r i m e n t a l  

Analysis of the Mineral - The spectro- 
gram revealed the existence of iron, silicon, 
lead ( trace ) and germanium. 

Total Iron - A weighed amount of finely 
powdered mineral was dissolved in 1 : 1 
hydrochloric acid and the total iron 
estimated by titration with potassium di- 
chromate after reduction with stannous 
chloride. 

Silica was estimated by the usual method, 
and the value verified by determining the 
loss in weight by treatment with hydrofluoric 
acid. 

Sulphur - The mineral was decomposed 
with sodium peroxide and the sulphur 
estimated as barium sulphate. 

Ferrous iron was estimated by decom- 
posing the mineral with 5 C.C. of concentrated 
hydrochloric acid and 10 C.C. of hydrofluoric 
acid in an atmosphere of carbon dioxide, 
and subsequent titration with potassium 
dichromate using diphenylamine sulphonate 
as indicator. 

Germanium - Of the various methods 
known for the estimation of germaniums-5, 
Orliac's colorimetric method5 with slight 
modification was found to be the most 
convenient. A weighed amount of the 
mineral was carefully roasted a t  500°C. in 
an electric furnace and transferred to an 
all-glass distillation apparatus. 40 C.C. of 
1 : 1 hydrochloric acid were added and the 
flask gently heated in a current of air. The 
distillate was collected in a flask containing 
dilute caustic soda solution and a drop of 
phenolphthalein indicator solution. After 
the distillation was complete, the solution 
was acidified with dilute hydrochloric acid 
and the volume made up to 100 C.C. To 
10 C.C. of this solution, 1 C.C. ammonium 
molybdate solution ( 9 per cent ) and 10 C.C. 
of alkaline potassium stannite solution 
containing 5 gm. of hydrated stannous 
chloride and 300 gm. of potassium hydroxide 
per litre were added and the total volume 
'made up to 40 C.C. A series of standard 
solutions of germanium tetrachloride were 
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FIG. 1 -X-RAY POWDER DIAGRAM OF THE NON-MAGNETIC PORTION FROM THE MINERAL SPHALERITE. 

prepared and the same volume of ammonium 
molybdate and alkaline stannite were added 
and the total volume in each case made up 
to 40 C.C. After an interval of 5 min. the 
transmittancies of the solutions were deter- 
mined in a Lumetron photo-electric colori- 
meter, using 440 mp filter, and a standard 
graph was comtructed. From this graph 
germanium in the mineral was found to be 
0.24 per cent. 

The results of the analysis are tabulated 
below : 

Total iron 69.5 F'200, 86.28 
Ferrous iron 23.1 27.02 -. 
Sulphur 1.19 FeS 3.25 
Silica 2.16 SiO, 2.16 
Germanium 0.24 GeO. 0.34 

The mineral is apparently magnetite with 
a coating of ferrous sulphide. This has now 
been confirmed by X-ray powder diagram 
kindly supplied by Mons. Pierre Urbain, 
Director, Hydrological Institute, Sorbonne, 
Paris. The rontgenogram is reproduced in 
Fig. 1. 

Extraction of Germanium Dioxide - None 
of the methods employed by Winkler 
for the extraction of germanium from 
Argyrodite was adopted, as the associated 
elements in this mineral are quite different 
from those in Argyrodite. After various 
trials the final procedure adopted was based 
upon the volatility of germanium tetra- 
chloride and is an elaboration of the proce- 
dure described by Buchanan2. 

160 grn. of the finely powdered mineral 
were roasted in an electric mu.%e a t  about 
550°C. for 12 hr. when all the sulphide was 
converted to sulphate and oxide. The 
roast ore was transferred to an all-glass 
Claisen flask. 400 C.C. of 1 : 1 hydrochloric 
acid were added and germanium tetrachlo- 
ride distilled off in a current of hydrochloric 
acid gas till the volume is reduced to one- 

fourth. This distillation was repeated with 
further additions of hydrochloric acid. A 
rapid stream of hydrogen sulphide gas was 
then passed through the distillate for about 
15 min. when a milky precipitate of 
germanium disulphide was obtained ( for 
complete precipitation, the acid strength 
was maintained a t  4N to 6N by the addition 
of concentrated hydrochloric acid ). The 
mixture was set aside in a stoppered bottle 
for 48 hr., the sulphide separated by 
filtration and washed with 6N sulphuric acid 
saturated with hydrogen sulphide till it was 
free from chloride. The precipitate on the 
filter paper was treated with aqueousammonia 
( about 8N ) and the filtrate collected. The 
germanium disulphide was thus obtained 
as the thio-salt. The filtrate was evaporated, 
hydrogen peroxide added and again eva- 
porated to dryness. The dried mass was 
carefully heated to remove ammonium sul- 
phate completely, transferred to a crucible 
with water, evaporated and finally ignited 
to germanium dioxide a t  600°C. The yield 
was 330 mg. 

The spectrum of germanium dioxide thus 
obtained reveals the existence of traces of 
iron, lead, phosphorus ( impurities from the 
hydrogen peroxide used ). 

A c k n o w l e d g e m e n t  

Our grateful thanks are due to Prof. 
P. B. Sarkar for his keen interest in this 
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Extraction of Germanium from Sphalerite 
C o l l e c t e d  f r o m  N e p a l - P a r t  I 1  

R. K. DUTTA & S. N. BOSE 
University College of Science, Calcutta 

A method for the extraction of germanium 
from the non-magnetic fraction of the mineral 
sphalerite has been described. 

I N the previous communication1 we have 
described the extraction of germanium 
dioxide from the magnetic fraction 
( mainly magnetite ) of sphalerite. The 

non-magnetic portion left over was found 
to contain traces (0.006-0.04 per cent) of 
germanium. 

The spectrogram of this portion revealed 
the presence of the following elements : lead, 
zinc, iron, silicon, germanium, tin, copper, 
cadmium, silver and antimony, of which the 
first two predominate. The ore was analysed 
as before and the germanium estimated ac- 
cording to the method already described. 

The analytical results are as follows : 

Pb 
% 

14.2 
Zn 48.4 
S 27.3 
SiO, 5.6 
Fe 2-3 
Ge 0.0021 

From the analytical data, this fraction of 
the mineral appears to be mainly a sulphate 
of zinc and lead. 

Extraction of Germanium 

A procedure different from the one adopted 
for magnetite had to be adopted for the 
extraction of germanium from this fraction. 
When the ore is treated with sulphuric acid 
the insoluble lead sulphate formed retains 
the major portion of the germanium but 
if the sulphuric acid is completely fumed off, 
most of the germanium goes into solution 
and only traces remain over with the preci- 
pitates of Iead sulphate and sulphur. 

The methods of Winkler, Buchanana, etc., 
werc found to be unsuitable for the extraction 
of germanium. Tchakirian's methods was 
finally adopted. The insoluble residue was re- 
fluxed with a saturated solution of ammonium 

bioxalate and, curiously enough, not even a 
trace of germanium was found in the solution. 
A new method based on the fact that the 
insoluble residue containing free sulphur is 
totally converted to lead sulphide on treat- 
ment with concentrated sodium hydroxide 
solution was adopted. The dismutation of 
free sulphur in strongly alkaline medium 
takes place as follows : 

4s + 60H = 2 5 -  + Sa08 + 3H,O 
The lead sulphide so formed carried with it 
the whole of germatium as disulphide and 
the lead sulphide is separated by treatment 
with 2N hydrochloric acid. 

E x p e r i m e n t a l  

400 gm. of the ore were decomposed by an 
excess of 1 : I sulphuric acid, the resulting 
mixture heated to dryness and the excess 
acid fumed off. A large part of the free 
sulphur was removed by this treatment. The 
dried mass was extracted with hot water and 
filtered. Sodium sulphide, just sufficient to 
precipitate one-tenth of the total zinc, was 
added4. The filtrate was rejected as spec- 
troscopic examination showed the absence of 
germanium. The residue was treated with 
4N sulphuric acid and digested on a water 
bath for an hour and filtered. Germanium 
disulphide was left in the residue and most 
of the elements including zinc were thus 
removed. The residue was treated with 
sulphuric and nitric acids and dried. I t  
was then distilled with 50 C.C. of 1 : 1 
hydrochloric acid and the distillate treated 
according to the procedure already described. 
Germanium dioxide thus obtained was 
found from spectroscopic evidence to contain 
traces of antimony and tin. 

When the residue was treated with con- 
centrated sodium hydroxide solution, the 
whole of germanium was precipitated along 
with lead sulphide. This precipitate was 
digested with 2N hydrochloric acid, filtered 
and washed. Almost the whole of lead 
goes into solution leaving behind germanium 
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disulphide, silicon dioxide, titanium, silver 
and traces of lead. Silicon dioxide was the 
principal constituent. All the vapours issu- 
ing during the treatment were collected and 
found to be spectroscopically free from 
germanium showing that germanium disul- 
phide is not decomposed by 2N hydrochloric 
acid. The residue was then treated with 
sulphuric and hydrofluoric acids and eva- 
porated on a water bath, when all the silica 
was removed. The mass was then distilled 
with hydrochloric acid, as previously des- 
cribed, and the germanium dioxide separated. 
The resulting product contained traces of 
phosphorus derived from hydrogen peroxide. 

The yield was 240 rng. of germanium dioxide 
from 4 kg. of the non-magnetic fraction. 

Our best thanks are due to Prof. P. B. 
Sarkar for his keen interest in the investiga- 
tion and to the Council of ScientiEc 6 Indus- 
trial Research for financial help to one of 
us (R.  K. Dutta). 
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PHY sr QUE T I ~ E O R I Q U E .  - Ides identitds de divergence dans la nouvelle 

theorie unitaire. Note de M. S .  N. BOSE, presentde par M. Louis de Broglie. 

Einstein (') a deduit les quatre iden tites: de divergence de sa nouvelle theorie 
des identiles de Bianclji, en y levant l'ambigu'i~e de la differenciation covariante. 

La mdthode de Hilberl ( 2 )  leghrement modifihc fournit nussi immddiatement 
le resultat; il est peut-&re interessant d'indiquer le mode de calcul. 

La relation entre les coefficients de connexion affine r", et gpv n'est pas 
simple dans la nouvelle thdorie. On ne peut donc appliquer direclement ici la 
melhode de Hilbert de variation d'une fonction invariante de pV et de ses 
dCriv6es. Dans la nouvelle theorie, on ne suppose pas inilialement cette relation 
e n t r e r  et g et la variation donne les equations ainsi que les equations de 
connexion de I' et g. La nouvelle d6monstration proposde tient compte de ceci. 
On comprendra la methode d'apres les indications suivantes. 

Forrnons le tenseur I&,,,, contractti du te6seur de Riemann gdnkralisd. Son 
caractere covariant est evident d'apr8s la loi de transformalion de r:,, comme 
dans laihdorie symdtrique. Y R ,  est donc un invariant dans les changemen~s 
de coordonnees, de meme que l'expression I gItndx, dx, dx, dx, = I g ('"dv,. 

Si R,, = o l'in legrale 

pour une variation quelconque des seuls p; H,, etant fonction des coel'ficients 
de connexion affine n'est pas change dans la variation. 

Observons avec Hilbert ( ¶ )  que 

construit h partir d'un vecteur contrevariant arbitraire rfo p u t  Ctre p r i ~  
pour 8gpv dans (I). D'OU 

( I . )  Canad. J .  Alath., 2, 1950, p. 120 et suiv. 
(') Math. .4nn., 92, 1924, p. I et suiv. 
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L'integration est etendue a une mul~iplicite a qualre dimensions limitee par 
une mul~iplicitd a trois dimensions et l'on a partout R,,= n. 

Nous observons que 

Si nous considCrons pa= A x n  comme une variation convenable pe t i~e  et arbi- 
traire des coordonndes, variation qui s'anqule h la frontibre, nous obse~.vons 

-- 
et par consCquent = o, puisque \/g-dv, ert invariant. 

En mul~ipliant ( 4 )  par dv, et .  en integrant sur la multiplicilC a quatre 
dimensions on a 

= une integrale de surface = o ,  d'aprks l'hypolhbse de la variation. 
On tire donc immddiatement de (3) el  (6)  

identiques au resuhat d'Einstein (=). Toutefois, d'une certaine facon, notre 
resultat est 1CgCrement plus general. On peut -dire que le raisonnement 
d'Einstein est une me~hode  algebrique, ou les connexions enire les coefficients 
affines et les p sont admises apriori, ainsi que les condi~ions d'in~egrabilite et 
l ' l ~~po thkse  particulibre I'&- I';, = o. 

Notre dkrnonstra~ion esl independante de ccs hypolhbses restrictives. En 
fait, en essayant de ddduire les equalions generales R,,= o et les dquations de 

connexion du principe de varia~ion 2 [@"R~,  ~ g d v , =  o, on cst conduit a la - 
connexion d ' h s t e i n  sculetnent si I':, - 1':,= o. 
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D'autre part, en posant aph'ori la connexion dlEinstein, la compatibilite dc 
la variation avec l'hypothkse initiale conduit a r, = r:, - Tg', = O .  

Puisque la demonstration donnee ici n'u~ilise pas les dcpatlons de co'nnexion. 
elle montre donc nettement que les identiles ci-dessus sont independantes des 
equations de connexion. En fait, les k,, sont fonctions des r seules, et la 
ddmonstra\ion des idenkites de divergence suppose seulement I'existence des 
derivees premieres des g". Elle subsistent mCme quand par suite des singula- 
rites du champ des @", il n'existe pas de derivees secontles 011 d'equa~ion de 
connexion integrable. 

Reprint4d from Comptur rendus de I'Acadernie den Science8 41)6, pp. 1333-1336, 1963 (Gauthier - Villars 
Pubiishers, Paris). 



The Identities of Divergence in the New Unitary Theory 

Note of Mr. S. N. Bose, presented by Mr. Louis de Broglie 

  in stein(') deduced the four identities of divergence from his new theory of Bianchi 
identities, clearing the ambiguity of covariant differentiation. 

The method of ~ i l b e r t ( ~ ) ,  when slightly modified, also immediately gives the result. 
Perhaps it is interesting to indicate the mode of calculation. 

The relation between the coefficients of affine connection r F, and g" is not 
simple in the new theory. Thus the method of Hilbert regarding the variation of 
ap invariant function of g" and its derivatives cannot be directly applied here. 
In the new theory, this relationship between r andg  is initially not assumed and 
the variation gives rise to the equations as well as the equations of connection 
of r and g. The proposed new demonstration takes this into account. The method 
will be understood according to the following indications. 

Let us form the tensor R,,, contracted from the generalized Riemann tensor. Its 

covariant character is evident from the law of transformation of r ;, as in the syrnmet- 

ric theory. gp R,. is' thus an invariant under changes of the coordinates, as in the 
expression Ig 1 ' I 2  dxl dx2 dx3 dx4 = Ig 1 lJ2 dud. 

If R, , = 0 the integral 

for any variation of gp ' alone ; R,, being a function of the coefficients of affine 
connection is not changed in the variation. Let us observe with Hilbert ( 2 )  that 

obtained from an arbitrary contravariant vector cpa can be taken for 6gwv in (1). 
Hence 

The integration is extended over a manifold of four dimensions limited by a manifold 
of three dimensions and one has everywhere R, ,, = 0. 
We observe that 

- -- 

(I) Canad. J. Math., a, 1950, p. 120 et seq. 
('1 Moth. Ann. B2,  1924, p. 1 et seq. 
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If we consider cp" = A xaas a suitable small and arbitrary variation of the coordinates 
which vanishes on the boundary, we observe that 

ad9 !@ az. dv4 = MU, and - -  dx" y a  = Adg. 1 
and 1 

and consequently = 0, since G d u 4  is invariant. By multiplying (4) with du4 and 
integrating on the manifold with four dimensions we have 

= a surface integral = 0, as  per the hypothesis of variation. 
We immediately obtain from (3) and (6) 

A partial integration for eliminating the derivatives of Q" immediately gives the 
identities 

gm dg --- 
axe dzy W' Bpi +gyp Rap 11/6 = 0 

identical to the result of Einstein (3). Nevertheless, in a certain way our result is 
slightly more general. We can say that the reasoning of Einstein is an algebraic method 
where the connections between the affine coefficients and the gV as well as the 
conditions of integrability and a particular hypothesis r :, - r ;a = 0 are assumed a 

priori. 
Our demonstration is independent of these restrictive hypotheses. In fact, while 

trying to  deduce the general equations R,, , = 0 and the equations of connection from 

the principle of variation 6 J g" R,, , du4.= 0, we are led to the connection of 

Einstein only if ca - a = 0. 
On the other hand, by assumingapriori the connection of Einstein, the compatibility 

of the variation with the initial hypothesis leads to  r, = a - T: , = 0. 
Since the demonstration given here does not use the equations of connection, i t  

(') C d .  J. Mdh., 2, 195O.p. 126, equation (176). 
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clearly shows that the above identities are independent of the equations of connection. 
In fact, the R,, are functions of r alone, and the demonstration of the identities of 
divergence only assumes the existence of the fvst derivatives of gp ". I t  survives even 
when due to singularities of the field of g"", there are no second derivatives or 
integrable equations of connection. 

Ewlish translation of Compteo rend- de 1'Accrdcrnie dc. Scienca W, pp. 1333-1336,1963 (Gauthier - 
V i h m  Publishers, Paris). 



UNE THBORIE DU CHAMP URITAIRE AVEC I+, j o 

Par S. N. BOSE. 
Univanitd da Calcutta 

SO&. - On Ctabllt dea CQuPtlona du champ uuitaim en hisant varier une intCgrale qai 
sotidpit au postulat d'hmnitidk On obtknt 1 ' ~ ~ e s  form& avcc lea thbries andamem, wit 
~ V C C  r; - 0, soit avec 11 a+ 11 - o quu~d 0, - 0 ;  on pent Intm'prCter (4 comme la fonr Q Lorentr 
ri on p m d  lea a+ comme le~ composma du champ Llaetrom(~Ltiqu8. 

Les Lquatiour approebbs avec compoaantea oaUsymLbiq~c. prsnnent la formc maxasllienne 
pour une certaine vrlaur dw e o ~ t e s ,  Toutefoir, pour me autm valeur, il cst posaibls d'avoir -k 
ehPmp.ronr aucaw aingukita. 

On p u t  classer en trois g r o u p  lee Bquations caracthristiques de la thhrie du 
champ d6Einstein : 

I. Lea Bquations du6 ohamp qui inthreasent uniquement les coefficients de 
connexion I-':, et  leura derivw. 

11. Iss Bquationa de connexion qui wlient le tenaeur g aux coefficients de oon- 
nexion a tbe .  

111. Lea quatre relations de 0 ~ f 8 ~ t B r e  mtrictif : 

Notons que lea relations (111) eont semblablea aux 24 Bquations 

r;#-r;,, = 0. 

qui, dans la thhrie wlativiete de la gravitation sont les condquenm du postulat de 
la symm6trie de la connexion affine. 

Dens la thbrie du champ unitaite aussi bien que dans la thhrie  de la gravits- 
tion, les Bquations due champ (I) et les 6quations de connexion (11) peuvent se deduire 
simulC(u16ment d'un principe de variation oh l'on dgale B zero la variation arbitraire 
d'une int&ale, la variation Btsnt cepedant mujettie aux restrictions du type 
(111). 

N6anmoins les conditions arbitraries sont bien moins nombreuses dans la thhrie  
unitaire que dam la thbrie  de la gravitation. 

Dans cet article, on essayed'6liminer toutes les oonditions restrictivee et d'Bteblir 
un systkme d'equations fondamentales en s'appuyant uniquement sur 10 prinoipe de 
variation. 

On a toutefois utilW le postulat d'hermiticiu rtkemment dnoncd par Einstein 
pour oonstruire I'int4grale dont la variation conduit B cette nouvelle gBndralieet~on. 

On v e m  dam lea rh~ l t a t e  pr6cia8s ci-dessous - que des terrnea additionnels con- 
tenant r,, interviement aussi bien dens les equations du champ que dans leqequations 
de comexion. 
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Lea Bquations de connexion qui concernent le tenaeur g donnent lieu B quelquee 
remarques. Ellee preneent iai la forme 

&"+Pa ria+9.r = 3 8 f i V @ h ,  

tan& que dens les deux theories pdddentes le premier membre de cette 6galiM eat 
nul. 

4, eat defini iai par lea Bquatione suivantes : 

1 *, - '' avw aAe = 5 (gAL -LA ) 
' - Ql-ifl' 

Si I?, = 0, k8 = 0 et  par consequent on a aurtsi @ = 0 et  1'6quation reprend la 
forme ancienne. 

Ndanmoins il existe une autre possibilite : que ass soit la partie antisym6trique 
du tenseur covariant consider& comme l i b  au vecteur & six composantes (E, H) de 
lrt theorie BlectromagnCtique. 

Si le determinant 

I I  a ~ n  Il = (a12a34+a31a24+a23a14)' = 0, 

on peut avoir 0, = 0 m&me si k g  et r, ne sont pas nuls. 

Remarquons que pnisqu'on suppose toujours 

I I  sBu+si" I 1  # 0, 

kfi et  r, sont nuls simultanem6nt. 

La condition/[ a ,, I( = 0 combinb avec la rbgle hrtbituelle de corr6lation citee 
ci-deasus conduit immediatement & (EH) = 0, propriete clbsique du champ Blectro- 
magnbtique. 

On est anisi tent6 de poser une correlation d'une part entre kC et le veoteur 
quatre dimensions courant-charge (car k: = 0 dbcoule immediatment des equations 
g6n6rales) et, d'autre part, entre @, et  la force ponderornotrice de Lorentz, en raison 
de l'identification classique 

On peut interpr6ter @, = 0 comme d6terminant une distribution stationnaire ou 
la force de Lorentz est nulle, ce qui r a m h e  l'equation de connexion & la forme qu'elle 
evait dans les theories pdc6dentes. 

l h n s  les Bqustions tle champ, 1'6lement symBtrique Pi,, e t  llB1bment antis- 

yln6rtrique Q,;, ont cles roles essentiellement diffbrents. 

Au moyen d'hypothbms sur les ordres de  grandeurs relatifs des diffbrents t e r  
mes, nous avons pu ramener les'equations fondamentales & une forme simple. 

Physiquement, ces hypothbses impliquent qu'il est possible de  nBgliger la 
gravitation dans 1'Ctude des relations entre grandeurs Bleotromagnbtiques. 
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TAB Bquations sinsi transform& ont une forme interessante e t  l'on peut lea inter- 
pdter comme de simples condquences de la thbr ie  de Maxwell si l'on attribue oer- 
taines valeurs partiaulihres aux constantas a ~ b i t F w k .  Ma$ il est possible aussi 
d'obtenir un champ sans singularit6s pour d'autres veleurs partiouli6reg. Le ohamp 
n'est alors Bvidemment pas msxwellien. 

Ces aspects encourageants du nouveeu systltme d16quations m'ont amen6 8. penser 
qu'il conveneit de publier les premiers r6sultats provoquer les oritiques e t  lea 
obwrvations. 

Suivant Einstein, tolltea les relations de la thBoire unitaire doivent satisfaire 
nu po~tdfbt  d'kmibicit6, c'eat-k-dire rester invaricmtes q u a d  gbr',g,,,, r:,,, sontc hang& 

I In fois rn # I 1 ,  g,,, , r,', par permutation dcs indices / r  e t  % J .  

On vo-it facilement qrlc clans cettc transformation le tenseur d ' E i n s t 6  E de 
oompsan t es 

El,,  = l';l,,h - qh , 1- q,  qA - rf4 r;, 
derient le tenwwr 11 de composantes 

HI,, = r;,,A-r;,,r+r;,,, rir-r:; T ; ~ .  
Au lien d~ l'exprewion 

I = 81". E , , d  1 g 7 g'C1' E,,,. 
qui intrrrient dans 1'intbgra.le sol~misr ii ~nriation poiir ohtenir les Bqitatioru fonda- 
mentales, now doptcms mr forme plns g6n6rale 

pnispiie la permutation de 11 et v ne modifie pas lc d6terminant. Les termes addi- 
tionnels vCrifient aussi la condition tl'hermiticitt! pnisqw r,Aflr' ahangent de signe 
et que yfl" conserve 1e sien arcc la ~>ermut,at,ion. 

S6parons dms les coefficients de conncsion ~ffine. la partie sym6trique 
Pi,, r t  la part,ie mtisymktxique I/:,, rt posons encotc 
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8 V e 0  

r, = v:,, 
on e 

@*= 0. 

En effectuent les substitutionx clans Z', tous lee termes qui mnt produita d'un 
facteur sym6trique par un fncteur sntisym6trique dispmaissent dam la sommation 
et nous aVom findement 

oti x, y sont des constante arbitraires, 

est la comp0ssnt.e sym4triA (111 tenseur #Einstein ayec connexion affine aym6- 
trique et 

= % - G,PL - eve, + a;$% 
est la d&iv& covariante claaeiciue cdcul4e auwi avec connexion sym6trique. 

Au cows de la variation arbitraire de 

L = $ Ifdv4, dv, = dz%IxW&. 
yNu, A'"' conservent automatiquement leu1 caractere sydtrique. Lea variations 
de yFY et AFu puvent donc etre considdmh comme arbitraires, ae qui donne iaam6- 
diatement lea Bquations du champ 

arf - 
= E,,. - a;,@,, .+ x r r r ,  = 0, ayr' 

a l f  A 
a j , ~  = Q F u ; h  - ~ ( r r , r  - r v , p ) .  

Pour obtenir lea 6quations de coneexion noue Bgalons d'abord I' B une divergeno8 
B quatre dimensions (H) et considerons H seulement puiaque la divergence se trans- 
forme en une integrale Btendue & un domcline B trois dimencriom oh tous lea coeffioients 
des variations arbitraires s'annulent. 

Rappelom-nous cependant que dans la v,ariation des 616ments F,, Pi,., Gb,, les 
qua* relations @LA = 0 rmtent toujours valables; lea 24 oomposanta de ne 
eont pas arbitrah.  Nous devona donc ~ppliquer la mithode habituelle, employer 
dm multiplicateurs indi:terminb kfi et varier la fonction 

H-2kfiOtA = H'. 

&a coefficienb k# seront d6termines en demier lieu B partir de 1'6quation finale. 
NOUS obtenons Ainei par un calcul facile le syst6me d'6quations 

f< + yY8P;, + f " P L  - y"'Pf, = - [ A W L  + AavC7&'J, 
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D'oh on tire imddbfenmnt 

b : - 0  

Now ponvons maintenant donner AUX &pations Cle, oonnexion la forme oon 
venrble : par Rddition et mgmupament on a 

q;Lr + g'mq, + gfULf, - g'rrL;, = k*U:-Wf,  

oil 
4. = Q:'+P:, , 

en mnltipliant par 1- coefficients g',, d6Anie par 

pub en remplmnb L:, par sa vdeur et en divisant par %/c. nous obtenons apr& uw, 
tmmformation f~oile 

En obtwrvant que 

Lei nouveeur am6ffioienta atiinea aont 
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En introduisant oes nouveaux coefficientv affines dans 1'6quation fondamentale, 
nous pouvons dcrire 

t b,a(g'"+g"") = 8:. 

3. CAS PARTICULAR 

Quand Ox = 0, mais r,, k@ f 0, on a 

a,fi,+~~+(c31a2, = 0. 

Effectuons la transformation et observons que 
r; = Mr, ; 

Pt ,  et Gi, ne ohangent pas et nous obtenous 

&, +tr;r;-qC G:, = 0; 

(Q:,);A + t(ry,r-ru.rr) = 0, 
la eeule modifioation est une Muction du nombre des consbantea arbitrairea. 

LYBquation de connexion est (puisque @A = 0) 

gfA + par; ,  + g' rtx = 0. 
mais evec r, # 0. 

On montre dors failenlent que 

(Ar'db)Y = f (#'a + gW.. 

Nous supposons que lea coefficients antivy~nBtricluex A"" st Q;, wnt ptita, voiains 
de m o .  

Alors les Pi, peuvent auasi Btre n@lig&, 

yNV = 8; , 

la &'vation oovariante est remplwtBe par la derivation ordineiw, et now avom 
findement en pr : m i h  approximation 
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e t  enlin cornme 

En 6liminant k' nous obtenons 

Si 1 = 2 nous pouvens poser 28 

A:' + AzA + A? = 0 

et 1'8quation devient identique aux dquatione du ohemp BleotwmagnBtique ds 
Maxwell. 

1 * --.!!.- 
2 8 -  0, lea dquatioas deviennent 

uptttme different Bvidemment de ~ l u i  de Wwell ,  msie qui p u t  avoir une solution 
sans singulariti8s en auceun point. 

11 eat peut Ftre intkressant de remerquer que certe,ine6 mher0hee la q w t i -  
fication du champ dleotromagnetique ont emend de leur dt.4 B p- A?,' 0, 00 qui 
entrainsit implioitement une modifioation des 6quatione due ohamp. 

Si I1 a,, 11 = 0 on ohtient une approximetion p rhn tan t  lee m6mee o ~ ~ ~ *  

Reprinted &om L. Jour de Phy8 et k M u m  (Paris) 14, pp. 641-644 1963. 



A Unitary Field Theory with I?, # 0 

By S .  N .  BOSE, 
University of Calcutta 

Summary - The equations of the unitary field are established by varying an integral 
which satisfies the postulate of hermiticity. One obtains an absolute equivalence with 
the old theories either with T,, = 0 or with 11 a 11 = 0 when c4, = 0 ; one can interpret 
as the Lorentz force if ak, are taken as the components of the electromagnetic field. 

The approximate equations with antisymmetric components take the Maxwellian 
form for a certain value of the constants. Nevertheless, for another value, it is possible 
to have a field without any singularity. 

1. Introduction 
The characteristic equations of Einsteiri's field theory can be classified into three 
groups : 

1. The field equations which involve only the connection coefficients l$, and their 
derivatives. 

11. The connection equations which link the tensor g to the affine connection coeffi- 
cients. 

111. The four relations of restrictive character 

qA-qp = 2r,' = 0. 

Note that the relations in (111) resemble the 24 equations, 

r;,-r;, = o. 
which, in the relativistic theory of gravitation, are consequences of the postulate of 
symmetry of the affine connections. 

In unitary field theory as well as in the theory of gravitation the equations of the 
field (I) and the equations of connection (11) can be simultaneously deduced from the 
principle of variation where the arbitrary variation of an integral is equal to zera, the 
variation being subjected t o  restrictions of type (111). 

Nevertheless, the arbitrary conditions are much less numerous in the unitary theory 
than in the theory of gravitation. 

In this article we are trying t o  eliminate all the restrictive conditions and establish 
a system of fundamental equations by relying only on the principle of variation. 

We have used the postulate of hermiticity recently enunciated by Einstein to 
construct the integral, the variation of which leads t o  this new generalization. 

The specific results given below will show that the additional terms containing T, 
occur as well in the field equations as  in the equations of connection. 

The equations of connection which concern the tensorg give rise to certain remarks. 
Here they take the form 
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whereas in the two proceeding theories the first member of this equality is zero. 
Here QL is defined by the following equation 

and 

If r,, = 0, kB = 0 and consequently if we also have 0 = 0, the equation again takes the 
old form. 

However, there exits another possibility : that a, B being the antisymmetric part of 
the covariant tensor, is considered as linked to a vector with the six components (E, H) 
of the electromagnetic theory. 

If the determinant 
11 ah# 11 = (a,fis+as1%+a&l4)' = 0, 

we can have QI, = 0 even if kP and rP are not zero. 
Note that since we always suppose 

II sBv+s* I l  f 0, 
k' and r, are simultaneously zero. 

The condition ]I aI, 11 = 0 combined with the usual rule of correlation just mentioned 
immediately 1eads.b (E H) = 0, a classical property of the electromagnetic field. 

One is also tempted to put a correlation on the one hand between k' and the four 
dimensional charge current vector (because k$ = 0 comes immediately from the general 
equations) and on the other hand, between al, and the ponderomotive force of Lorentz, 
due to the classical identilkations 

We can interpret a1 = 0 as determining a stationary distribution, where the Lorentz 
force is zero. This brings back the equation of connection to the form which was found 
in previous theories. 

In the field equations the symmetric element eV and the antisymmetric element 

G 3 have totally different roles. 
By means of hypotheses on the orders of relative magnitude of the various terms we 

could bring back the fundamental equations to a simple form. 
Physically, these hypotheses imply that i t  is possible to neglect gravitation in a study 

of relations between electromagnetic quantities. 
The equations thus transformed have an interesting form and we can interpret them 
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as simple consequences of the Maxwell theory if we attribute particular values to the 
arbitrary constants. 

But i t  is also possible to obtain a field without any singularities for other particular 
values. The field is then not Maxwellian. 

These encouraging aspects from the new system of equations have made me think 
that i t  would be appropriate to publish the first findings in order to provoke criticisms 
and observations. 

2. The new equations 
Following Einstein, all the relations of unitary field theory must satisfy the postulate 
of hermiticity, i.e. remain unchanged when gp, g, ., are changed to gV ", gv ,, , e, 
all together through permutations of the indices p and v. 

We can easily see that in this transformation, the Einstein tensor E of components 

which occurs in the integral which is subjected to variation in order to obtain the 
fundamental equations, we adopt a form which is more general 

1 1 where ,,w = -(p+p) = g ,/ m- (p+q? 
2 

since a permutation of p and v does not modify the determinant. The additional terms 
also satisfy the cqndition of hermicity since T, A' ' changes sign and ' retains its sign 
with permutation. Let us separate the symmetric part eV and the antisymmetric part 
e, in the *ne connection coefficients $ and let us also put 

with 
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one has 
0. 

Through substitution in 1', all the terms that are products of the symmetric factor 
and the antisymmetric factor disappear in the summation, and we finally have 

where x, y are arbitrary constants. 
1 

E,,. = P:l,,,-T(P:A,r,+P;h,r)+P:v P $ h - I ) : h  P:" 
is the symmetrized component of the Einstein tensor with symmetric affine connection 
and 

G;l,;A = G;l,,A - GicPi , ,  - G$l,PiA + Gi,,P:A 

is the classical covariant derivative, also calculated with symmetric connection. 
During the course of arbitrary variation of 

L'= $ I'dv,, dv ,  = dx1dz2dx=d.d. 

f ' , A'" automatically retain their symmetry character. The variations of $' ' and 
Ap' can thus be considered as arbitrary, which immediately gives rise to the field 
equations 

-- 'I' - E,,,, - ~; ,a: ,  + ~ r , r , ,  = o, 
dyfir' 

In order to obtain the equations of connection, let us first make I' equal to a 
divergence in four dimensions (HI and let us consider 6nly H since the divergence 
transforms itself to an integral over a three dimensional domain where all the coeffl- 
cients of arbitrary variations cancel each other. 

Let us recall the fact that in the variation of the elements T, , piv , G; the four 
relations G; = 0 always remain valid ; the 24 component of G;. are not arbitrary. We 
can thus apply the usual method of employing undermined multipliers kW and varying 
the function 

These coefficients kp will be determined in the end from the final equa6ion. 
Thus through easy calculation we obtain a system of equations 
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and consequently 
A fZ' = 3kfi, 

From where we immediately obtain 

k; = 0 

and 
5 

kfi = .6yfiY I"", aveo 6 = - - . 
3~ 

We can now give a suitable form to the equations of connection : through addition 
and regrouping we have 

where 

by multiplying with the coefficient g',, ,, defined by 

we first obtain 
L*: = a ' - C7 A + a t A B k ~ ,  

C 

and 

then, by replacing Lz a by its value and dividing i t  by 6, we get An easy transformation 

and by regrouping and adding certain terms, we finally obtain 

The new affine coefficients are 



292 S N Base : The Mcuc and His Work 

and 

By introducing these new affine coefficients in the fundamental equation, we can 
write 

3. Particular case 

When @I = 0 but r,, , k # 0 we have 

Let us make the transformation and observe that 

e; and G; ,, do not chnge and we obtain 

the only modification is a reduction of the number of arbitrary constante. 
The equation of connection is (since = 0) 

but wi,th r, it 0. 
Thus it is easily shown that 

(A"4&), = * (BC. + QOCV'.* 
4. Approximation 

In order to  find an approximation we put the equation of connection in the form 
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Let us suppose that the antisymmetric coefficients A' ' and G; ,are small, close to 
zero. 

Thus PI,, can also be neglected : 

yrr =a;, 
the covariant derivative is replaced by an ordinary derivative, and we finally obtain in 
the first approximation 

A? - k"8: + b 8 f  = -[q, f G$], 

A:' = 3b, 
from which we can easily deduce 

(a:,) = A?-- k"8l + kY8tf -) [Ay + AAf: + A:'], 

and finally with 

kr r' = 8, 
we obtain the following system 

1  3Y 
A:: - -[A:' + A:' + A?''], = [k: - k'&]. 4 

By eliminating kw we obtain 

1 1  
A:;( I - $ ) - ~  ( -$) (A:. + AiA + Ayh = 0. 

1f 1 = L  we can put 
2 8 

and the equation becomes identical to Maxwell's equations of electromagnetic fields. 
1 But if z - = 0, the equations become 

9 

with 
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the system being evidently different from that of Maxwell, but which can have a 
solution without singularities a t  any point. 

I t  is perhaps interesting to note that certain researches on the quantization of the 
electromagnetic field have put the subsidiary condition Af: = 0, which would imply a 
modification of field equations. 

If 11 a k, 11 = 0, we obtain an approximation presenting the same characteristics. 

Manuscript received 18 July 1953. 

English translation of Le Jour de Phys et le Radium (Paris) 14, pp. 641-644, 1953. 



CERTAINES CONS@UENCES DE L'EXISTEHCE DO TENSEUR g 
DANS LE CHAMP' AFFINE RELATIVISTE 

Par S. N. BOSE, 
Univenitl de Calcutta. 

Somnulrr. - On Ctnbllt dm relations oh antrent rulement I$., et bun dCrlvCes P pPrtlr des condl- 
tions d'tntlgmbUtC des &pations anxquelles utirfdt Is t4nrear g dm thCories mlativlates. 

Le nombm de relations indlpandantes entn ClCments du champ est bien plua grand an thlorb 
nnitaire qu'en thCorie de la gravitation. 

1. INTRODUCTION 

Le formalisme abstrait de la' th6orie de la relativitk a actuellement abouti t i  la 
conception d'un champ de coefficients do connexion affine d'une vari6t6 4-dimension- 
nelle. 

Soient, 8x' les composantes d'un dkplacement parallele e t  infiniment petit auquel 
un vecteur A de la vari6M consid6r6e est assujetti: les variations des composantes 
A" qui en r6sultent sont donn6es par la rhgle 

SA" = - An PiB SX* ... ( 1 . 1 )  

Dans la thborie de la gravitation les termes I'Z8 sont sym6triques, ou I'$ = rl;, ; 
donc, la loi de transport y est unique. 

Au contraire, comme les coefficients sont dissym6triques d a n ~  la tl~korie unitaire, 
on p u t  y avoir aussi une deuxibme loi de transport, savoir : 

En s'appuyant sur la rele (1.1), on peut calculer facilement le tenseur dc courbure 
R dont les composantes 

efi = r&.v - riw.fi + 'LrR- rLr2fi I 
I 

sont antisym6triques en indices p et u : et ensuite, par voie de contraction, on a facile- 
ment le tenseur d'Einstein E, avec les composantes 

E.W = q,',* - I' ik, , '  + q K I ' ; &  - I'$'$' (1.4) 

Mais la th6orie unitaire adment aussi (1.2) comine loi du transport; donc. ie meme 
raisonnement que ci-dessus nous donnera, A partire de (1.2) un autre transport S 
(substitut6 b R) avec des composantes 

Sin ca, - Ca, fl + I'iaCC - I';raT'tt (1.5) 
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e t  findement aussi le tensem H (substitute & E Einstein) nvec des composantes 

H,', = rim,* - rL,, F r';,G - riac. (1.6) 

Les Bquations E,, = 0 sont celles du champ dans la thBori de la grevitation. 

L'ambiguitk de la loi du trtmsport dans la thBorie unitaire opposeapparement 
des difficulties au choix de E,, = 0 comme Bquations fonndamentales. 

Mais celles-ci ont Bt.4 tournbs par Einstein de la maslibre suivante : il impose 
au champ affine quatre conditions restrictives snvoir 

rbA - r:, = zr, = 0. (1.7) 

Bein qu'arbitraire, mtte h y p o t h h  donne facilement 

E = H ;  

lea deux rbgles conduisent ainsi au &me tenseur; donc lea equations du champ peuvent 

rester lea &mes dam Ids deux thtbries. 

A &tk du systeme 

E,,. = 0 

qui depend seulement des coefficients Pi, et de leurs dBriv&s premieres, il y a aussi 
un second systhme dans lequel entrent Bgalement les composantes du potentiel g@" 
et leurs dBrivQs : ce sont en effet les Bquations 

gy + gpAriA + gAYr& = 0. (B) 

On a dBmontrB que (A) et (B) se laissent dBduire d'un principe variationnel. 

On forme I'integrale invariante 

avec des composantes du potentiel e t  du tenseur d'Einstein (suppos6 unique B cause 
de r, = 0) e t  l'on pose 

81 = 0 

pour toutes variations arbitraries de g/41, e t  I?:,, ; on obtient immediatement les Bqua- 
tions cherchbes. 

I1 est Bvient que l'existence du tenseur de potentiel dans le champ affine donne- 
rait & celui-ci un caractere tout & fait pnrticulier. 

En effet (B), regardhe comme un s y s t h e  d'6qnations diffkrentielles, permettra 
de dBterminer grr' seulenlent quand les conditions d'int6grabilitB seront satisfaites. 

Ainsi, les relations qui suivent colnme cons6quenccs tle cette hypothBses d'intB- 
grabilite mtre  les coefficients r;, et Ieur, cli.ri\-8c~ e\prinwrontcelles des propriBtBs 
carect6ristiq11es du champ, qui sont postulCes implic~te~nent par 1" thBorie de la 
relatirite coinme par la thCorie actuellc tln chn~np unitaire. 
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Les obtenir sous une forme explicite est prkcishment le but de ce travail. 

2. CAE I. Quand les coefficients I'i, sont symktriques, les conditions d'inGgrailit8 
des Bquations (B) savoir : 

g,gY + g u x r i A  + gAvr:k = o 

8ont plus facilement exprimables par l'intermhdiaire du te~lseur de courbure R. 

Si les composa~ltes RI, soht cxprini6es par les multiples gfiu et des parenthhses 
n 

ir quatre indices comme 

Ri',,, = gAo (klmn), 
I 

les conditions d'intkgrabilith seront bien exprimhs par les propri6Gs suivantes et bien 
wnnues de ces patenthhes, savoir : 

(klmn) = - (lkmn) = (mnkl) = - (nmkl). ... (2.2) 

A partir de celles-ci, on p u t  %miner simultanBment gPw et les parenthhs et 
obtenir des relations entre leu composantea de R seulement. 

(i) Comme 

on pose h = 2 et l'on contracte. On observe que les p a r e n t h h  sont antisym6triques 

en indim (k et 2) B st6 de dk qui sont symBtriques. 

On e alora automatiquement : 

(ii) De mGme, oomme 

RkR$,,,t = gXk (klmn) (k'l'm'h), 
I h 

I cause des relations (2.2) (en ce qui conceme les parentheses). 

(iii) On peut ecrire les 96 composantea du tenseur $, explicitenlent en fondion 
m 

de FA, et de leu- dBriv&s, ~avoir (1.3), d'oh dhoulent d m e n t  les relations 
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(2.3), (2.4), (2.5) sont des propriet6s caract6ristiques du champ sym6trique, ex- 
prim6es par les composantes du tenseur de courbure R. 

3. CAS 11. Quand le champ est diseym6trique, les conditions d'integrabilitR, dm 
equations (B) peuvent aussi se dBduire avec fiuxilite. 

Avec (B) on considh aussi le systeme de leura d e r i v h  premieres (B,); entre 
(B) et (B,) on BLirnine toutes les dBriv&s premieres de gfip et en ajoutant les conditions 

on arrive immediatement aux conditions d'intdgrabilite suivantea : 

d'ou l'on peut deduire immediatement celles-ci : 

(i) En multipliant (3.1). par g,, et en' sommant ensuite (comme $'g,h = 4, 
grdg,, = $ et 8' sont les symboles de Kronecker), on a 

Pm+S? ,=O I) 

(ii) Comme m et p eont dea indices antisymBtriaues, (3.1) p u t  ausai s'6orire 
comme ci-deasoue 

en posant h = m et p = n, et apl* les contractions indiquks, on obtient la relation 

Pour obtenir dw relations plus gBn&aJes, now oommenmns par un changement 
de notations pour Ies bomposentes des tensem R et 5. 

Comme il y a seulement six paires de (m, n), c'est-&-dire d'indices antiaymmetriques, 
noue remplacons chaque (r) dans les composantes par un des nombres r = (r = 1, 
..., 6) qui eat transfBr6 sous le symbole alphabetique R ou S du temur .  

Suivent le nombre r les 96 Bquations s' arrangement maintenant en six groups 
oomportant chacun 16 relations. 

Mais lee fA  =fl, Rz, Sx,, etc., ae laissent interpreter comme les 8Bments de certaines 
matrices carrbs B, R et 8 (les indices indiquant maintenant lea lignes et les colonnes 
suivant des conventions bien connues), et par cosBquent les relations (3.4) peuvant 
itre repr&ntees commue une seule Bquation de matrices : 

RB +.as' = 0 (3.5) 
r r 
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En prenant les fornlee t r a n s p o d ,  on a aussi 

h s  6puations (3.5)  et (3.6) jouiasent de propri6& d'hermitioitd, ainsi qu'il a 
Bte postul6 par Einstein pour toutes les relations de la th6oire unitaire. 

En effet, on passe de (3.5)  a (3 .6 )  en transposant G et en changeant le tenseur 
R en S et vice versa, ce qui implique que,les dites relations restent inalt6rbs cornme 
un tout par len changenients simultan6s des yP'' en gl'fi et des r;,, en I'$ : exactement 
conlme l'exige le principe d'hermiticitb. 

Multipliant finalenlent les six Bquations (3 .6 )  par des nonlbrw arbitraries A,, et 
faisant la somme, on ++, apr6s une transformation facile : 

G-'RG := -& (oh R = h,RI ...). (3.7) 

Les nlatrices R et ~ s o n t  donu liQs par une transformation qui laisse intaots leurs 
invariants, d'ou 

l , ( R ) - ( - -  1)'lr(S) = 0 ( r  = 1, 2, 3, 4). (3.8) 

(hulne  les A, sont tout a fait arbitraries, on p u t  dmet t re  que chaque ctoeffioient 
de yolynome en A, dens (3.8) pris e6par6ment eat Bgal it z6ro. 

Dans toutea les relations qui s'8nsuivent entrent seulen~ent ri, et leurs dBrivks, 
chaoune d'elleb exprimant les propri6tCts caractdristiques du champ unitaue condition- 
ne6s par l'hypothhse de l'existence du tenseur de potentiel. 

Si l'on adopb pour leu produits de la chahe des R ou des S les notations suivantes : 
r I 

lea relations obtenuev ci-dessus purront  s'6crire aussi cornme suit 

R(r)  = - #(r) ,  

R(r, a) = B(rs) = S(sr) ,  
7 

R(rat) = - s ( s t r )  = - S(rts) = -S(s1.1), i (3.10) 

X(ratu) = S(r&r) = S(rub) = . . . J 

4. (1. Cvmnle cons6auencea de I'hypothCne de I'existence du tenseur de potentiel, 
dans le champ des connexions aymm6triques, on a Ies relations su ivanh : 

16 rsl&tions : 



Compte h u  dse 10 Bquthne du ohamp, on a en tout 77 reUiollcl hom@m 
entae lea cornpaeantea pm et leuns d&iv& pre~mih .  

.W lea condit.iom qui mnt ~~ m s  d;l6tuenk -aliinw, b t k k e  uni- 
taire, mlt bhn plus mtrictivw que celles ( p i  w m t  irnpwk aux 6lhenta du o h p  
de I* gmvitatiot~. 

Reprinted ftom Lr Jow & Php et Je Radium (Paris) 14, pp. 646817,1@58. 



Certain Consequences of the Existence of the Tensor g in 
the Affine Relativistic Field 

By S. N. BOSE, 
University of Calcutta. 

Smmmary - Relatiom are eetabliahed where only r k, and their derivativee enter from 
conditions of integrability of the equatione which the tenmr gof the relativietic theory 
eatiefiee. 

Thenumber of independent relatione between the elements of the field ie much larger 
in the unitary theory than in the theory of gravitation. 

1. Introduction 
The abstract formalism of the theory of relativity devdoped from the concept of the 
field of coefficients of affine co~ec t ion  of a four dimensional variety 

If W are the components of a parallel and infinitely small displacement to which a 
vector A of the chosen variety is subjected, the variations of the components A" which 
result are obtained by the rule 

8A. = - AaQ W (1.1) 
In the theory of gravitation the terms B are symmetric, or IY, B = Q, ; thus the rule 

of transport there is unique. On the contrary, as the coefficients are not symmetric in 
the unitary theory, one has here a second rule of transport : 

Based on relation (1.1) we can easily calculate the tensor of curvature R, the 
components of which a = rL,. - r;,@ + TLC, - GC. I (1.3) 

are antisymmetric in the indices p and v ; and then by contraction we obtain the 
Einstein teneor E with the components 

But the unitary theory also admits (1.2) as a rule of transport. Thus the same 
reasoning mentioned above will give us from (1.2) hother  transport S (replacing R) 
with its components 
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and finally also the tensor H (replacing E of Einstein) with the components 

The equations E, ,, , ,, are those of the field in the theory of gravitation. 
The ambiguity of the law of transport in the unitary theory seems to make it difficult 

to choose E,, = 0 as fundamental equations. But the difficulty has been solved by 
Einstein in the following manner : it imposes four restrictive conditions on the affine 
field, namely 

- r;p = 2r,, = 0. 
(1.7) 

Though arbitrary, this hypothesis easily gives 

the two laws thus lead to the same tensor. Therefore the field equations can remain 
the same in both the theories. 

Besides the system 

which depends only on the coefficients cv and their first derivatives, there is also a 
second system where the components of the potentialgp " and their derivatives are also 
included ; these are indeed the equations 

We have demonstrated that (A) and (B) are obtained from one variational principle. 
We form the invariant integral 

with some components of the potential and the Einstein bnsor (supposed ta be unique 
due to  rp = 0) and we hold 

61 = 0 

for all arbitrary variations of g'" and cv ; we immediately obtain the required 
equations. 

It is evident that the existence of a potential tensor in the affane field would give it 
a very special character. 

Indeed (B), regarded as a system of differential eequations, can determine gpv only 
when the conditions of integratibility are satisfied. 

Hence the relations, which follow as consequences of this hypothesis of integrability 
between the coefficients I$, and their derivatives will express those relations of the 
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characteristic properties of the field which are implicitly postulated by the theory of 
relativity as well as the theory of the unitary field itself. 

To obtain them in an explicit form is precisely the aim of this work. 

2. Case I. -When the coefficients riV are symmetric, the conditions of integrability 
of the equations (B), namely : 

can more easily be expressed in terms of the curvature tensor R. 
If the components R :, are expressed by the multiples gpv and brackets with four 

n 

indices as 
EII, = g" ( k h n ) ,  

n (2.1) 

the conditions of integrability will be well expressed by the following properties ofthose 
brackets which are well known : 

(klmn) = -(lkmn) = (mnkl) = -(nmkl). (2.2) 

From these we simultaneously eliminate gpv and the brackets and obtain relations 
between the components of R only. 

R h  = g" (klmn), 
n 

we hold h = I and contract. We now observe that the brackets are antisymmetrical in 
the indices (k and I )  while g Ik are symmetrical. 

We then automatically have : 

Rim = 0 

(ii) Similarly, since 
n 

R&,R;4,, = g X k  (klmn) gnk' (k'llm'A), 
n X 

R s  Riqt = $C'" (nmlk) gdX ( A  m'l'k'), 
we have k E' 

due to the relations (2.2) (with regard t o  the brackets). 
(iii) We can write the 96 components of the tensor R explicitly as functions of 

m 

r \,, and their derivatives, that is t o  say (1.3), which easily gives the relations 
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(2.3), (2.41, (2.5) are characteristic properties of the symmetrric field, expressed by 
the components of the curvature tensor R. 

3. Case 11. - m e n  the field is non-symmetric, the conditions of integrability of the 
equations (B) can also be easily deduced. 

With (B) we also consider the system of their first derivatives (B1). We eliminate all 
the first derivatives of gv between (B) and (B1) and using the conditions 

we immediately come to the following conditions of integrability : 

from which we can immediately deduce these : 
(i) By multiplying (3.1) with g, , and then summing (since , = 6;, g p  g ,  , = $ 

and 6 ' s  are the symbols of Kronecker) we get 

(ii) As m and p are the antisymmetric indices, (3.1) can also be written as  

by putting A = m and p = n, and then after the contraction indicated, we obtain the 
relation 

In order to obtain more general relations, we begin with a change of notations for 
the components of the tensors R and S. 

As there are only six pairs of (m, n), i.e. antisymmetric indices, each 

R or S of the tensor. 
component is replaced by one of the numbers r ( r=l ,  ... , 6) which replaces 

Thus (3.1) take the following form = 

Following the numbers r, the 96 equations arrange themselves into six groups each 
having 16 relations. 
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But ga ' = g: , R: , s;, etc can be interpretated as the elements of certain square 
matrices G, R and S (the indices now indicate the rows and columns as per the well 
known conventions), and consequently the relations (3.4) can be represented as a single 
equation of the matrices : 

-- 

where S represents the transposed matrix of S with 
- s; = Sf. 

By considering the transposed forms, we also have 

The equations (3.5) and (3.6) have the properties of hermiticity as i t  was postulated 
by Einstein for all the relations of the unitary theory. 

In fact, we pass from (3.5) t o  (3.6) by transposing G and changing the tensor R and 
S and vice versa, which implies that the said relations remain unaltered as a whole by 
the simultaneous changes ofg" into gV ' and of T", into Tt ,, exactly as  per the principle 
of hermiticity. 

Finally, by multiplying the six equations (3.6) by arbitrary numbers h  . and summing 
up, we get after an easy transformation : 

The matrices R and are therefore linked by a transformation which leaves their 
invariants intact, from which 

As the h ,  are completely arbitrary, i t  can be said that each coefficient of the 
polynomial in h  , in (3.8), taken separately, is equal to zero. 

In all the relations that arise only Tiv and their derivatives enter, each of them 
expressing the characteristic properties of the unitary field conditioned by the hy- 
pothesis of the existence of the potential tensor. 

If the products of the chain of the R or the S are given the following notations r 
r r 

the relations obtained above can also be written as 
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4.a. As consequences of the hypothesis of the existence of the potential tensor in the 
field of symmetric connections, the following relations are obtained : 

16 relations : 

6 relations : 

(ii) 

45 relations : 

Taking into account the 10 field equations, we have a total of 77 homogenous 
relations between the components ri, and their first derivatives. 

b. In the unitary field, we have : 

6 relations : 

21 relations : 
R(rs) = S(sr) ; 

56 relations : R(rst) = - S(tsr); 

126 relations : R(1Ju)  = S(utsr). 

Coupled with the field equations the total can go upto 225 relations between the same 
elements of the field. 

Thus the conditions which are imposed on the affine elements in the unitary theory 
are more restrictive than those that are imposed on the elements of the gravitational 
field. 

Manuscript received 18 July 1953. 

English translation of Le Jour de Phys et le Radium (Paris) 14, pp. 645-647, 1953. 



THE AFFINE CONNECTION IN EINSTEIN'S NEW 
UNITARY FIELD THEORY 

(Received September 29, 1952) 

The non-symmetric I'4,'s are defined by the 64 equations 

in the new theory. A method of obtaining explicit expressions of I"s in terms of 
g,, and its derivatives is sketched in this note. Following the usual convention of 
the relativity theory, the summation symbols are suppressed throughout, i t  
being understood that summation is always implied whenever dummy indices 
occur. 

I. The generalized Christoffel bracket (:') is defined by the equation 

(the subscripts are written in a cyclic order (Schrddinger)). Also, 

where s, a, denote symmetric and anti-symmetric components of g. If r", is 
similarly decomposed into 

and the bracket (Z") into 

G'l = +[@') + (:")I 
(5) and 

{ Z V }  = + [(ZV) - (:,)I 
the following relations follow immediately 
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Again if 

we can espress S and T' in t.erms of P and T with the help of s", the contravari- 
ant component, of s,, obtained in the usual manner; also taking 

as the components of the matrix product of s and a, we can rewrite the equations 
in the form 

P's can now be easily eliminated, and a tensor equation, involving only T's is 
obtained in the form 

This tensor equation may be regarded as characterizing the ~sntinuum of the 
Unitary Theory. 

When (B) is solved, yielding T in terms of known functions of g and its deriva- 
tives, and also &s, t,he substitution in (A) of T immediately gives the P's and 
hence also the r*s. 

To solve this central equation we first observe that a cyclic addition easily 
yields 

which is easily recognized as a tensor. 
at pv Also if Christoffel co-efficients r:, = s [ r  ] (the usual symmetric 7's) are used, 
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the lefbhand side of (B) is changed to 

where 

is the familiar covariant derivative with symmetric y",'s as in Riemann-Geom- 
etry ; also observing that 

the equation (B) can be transformed into the form 

where the anti-symmetric suffixes are put in the end on both sides in the 
tensors with three-index symbols. 

11. To solve the equation (C) we remark that the co-efficients C that 
occur in the equation are the components of the matrix 

C  = sa = 11 C i  (1 o r C i  = s k t a t p .  

The general equation for the eigen vector M of the matrix C can be 
written in the form 

(10) ( C  - p E  1 M  = 0 or C ~ , M ;  = p ~ i ;  

in the vector M  = M  ," the superscript a indicates the component, and the 
subscript p the associated eigen-value. 

The characteristic eigen values are the roots of the quartic 

as the first and third invariants vanish (the matrix being the product of a 
symmetric matrix). 

A few well-known properties of matrix equations are here re- capitu- 
lated for ready reference. 

l.A matrix C, and its transposition C have the same eigen values, 
but different eigen vectors ; and the eigen vectors, written with 
two suffixes, (representing the component and the eigen value) 
satisfy the following relations : 
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1 (a). The theorem is true even in the case of repeated roots of the 
characteristic equation of C, if the eigen vectors are suitably 
constructed. 

2.Taking the elements of the matrix C, as C k,, where k denotes the 
rows and p the columns of the matrix, a new compound matrix 
C x C , can be constructed in the following manner : 

obtained by the usual cross-multiplication rule. The elements can 
be arranged in a six x six matrix in any proper order ; e.g., 

3.The eigen vectors of the matrixes C x C (arranged in any as- 
sumed manner) may be obtained by taking the vector product of 
the eigen vectors M i  of C. Ma x Mb is thus the eigen six-vector of 
the six matrix, C x C corresponding to the eigen value papb.  

4.The eigen vector of C x C is similarly obtained as Ba x Hb corre- 
sponding to the same eigen value p g b  . 

5.The eigen vectors of the compound matrices have corresponding 
orthogonal properties. 

The components of the eigen vectors can be written by the notation used before 
as f i f  ($ ) and a ( $ ) .  

The orthogonality relation is written as 

111. Keeping the above well-known properties of matrices in mind me can 
tackle the problem of solving the general equation. We multiply the equation 
(C') by M:MfJfE formed from the eigen vectors of C, corresponding to three 
eigen values a, b, and c, where b # c; then remembering the equations 

c$W~ = pbhl: , Ctitl: = p,.ll: , etc., (b, c pot summed) 

we get easily, by suitably changing the dummies 

1 b T  = f h k l ]  ~ ~ n f ~ H ~ ( 1  + pbpc) + a d & X . M : ;  

(14) I also 
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Or remembering the anti-symmetric nature of the suffixes li, 1 we write the 
same equation with I;, 1 in the reversed order and add, using the symbol 

easily getting the result in the form 

Remembering the orthogonal properties of the eigen vectors, namely equations 
(12) and (13), and multiplying by @%(Z;) on both sides followed by summation 
on a, b, c, we have 

An explicit form of Tap, is thus obtained in terms of the eigen vectors of C and 6 
and the covariant derivatives of a k l  calculated with the symmetric Christoffel 
co-efficients, 7's obtained from the symmetric parts of g,, , namely s,, . The 
discriminant-determinant of the equation (C) is obviously 

(17) D24 = n (1 + papb + papc + p,p.)(product with roots of (11) with b # e). 

The value of the determinant can be easily calculated in terms of the invariants 
of C; in fact, 

The  determinant D always vanish when 1 + Iz  + 14 = 0; but this happens when 
the determinant of g = 11 g,, 11 = 0. 

This is proved as follows: 
Any transformation s( )$-I, where s-I = S, preserves the symmetric or/and 

the anti-symmetric nature of a matrix; s,, part of g,, may be diagonalized, and 
at the same time the anti-symmetric tensor a,, preserves its anti-symmetric 
character. Hence g can be reduced to the form 

sl1 a12 . . 
and a,, + a,,, = 0 



312 S N Bose : The Man and His Work 

by such a transformation. 
The values of all invariants remain obviously unaltered. In this special co- 

ordinates 

(19) A = I/ g,. 11 = ~ 1 1 ~ 2 2 5 3 ~ 4 4  + 2511s22& + (alza~ + .I.* 
The invariants of the matrix C can.be easily calculated which gives 

That when T is determined I"s are also determined follow simply as a conse- 
quence of equation (A). 
IV. In later developments of his theory Einstein has introduced the additional 

condition 

however, from the contravariant form of equation (I), viz. : 

the following relation 

meam four relations involving the differential co-efficients of a,, and g,, . In the 
equation ( C )  for the determination of T, all first order differential co-efficients 
occur in the left side of the in-homogeneous equation, whereas the homogeneous 
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part involves only C; , composed of s" and a,. and no differential co-efficients 
occur here. Hence the additional conditions do not affect the general nature of 
the solution. 

Reprinted from Ann Math USA 69, pp. 171-176, 1964 (Princeton University, NJ). 



XVIII. A REPORT ON THE STUDY OF THERMOLUMINESCENCE 

By PROFESSOR S. N. BOSE, J. SHARMA and B. C. DUTTA, Khaira Laboratory, 
University College of Science, Calcutta 

(Received for publication on February 9, 1955) 

When some solids are irradiated with ionizing radiations like X-ray or cathode rays, 
they often exhibit fluorescence followed by a long period phosphorescent afterglow. Again, 
if the irradiated sample is heated, the stored energy is released in the form of radiation, 
emitted at various temperatures characteristic of the sample. This thermo-stimulated 
release of energy is commonly known as therrnoluminescence. The capacity of substances 
to store energy is large at low temperatures, so thermoluminescence is pronounced if the 
irradiation is carried out at low temperature (e.g., at -184OC). We may plot in a 
thermoluminescence curve the total intensity obtained from the sample at various 
temperatures during heating. From the curve, the trap depths of light-storing states 
below the conduction band, can be evaluated 1. Shallow traps yield glow peaks at 
comparatively low temperatures, while deeper traps are released at higher temperatures. 
Quartz, alkali halides, calcite, glasses and many other substances show this kind of thermo- 
luminescence. Of late, thermoluminescence has been a useful tool in many problems of 
research. Dosimetry of radiations, study of heterogeneous catalysts, ionic nature of 
elements in glasses, and identification of clay minerals are. some of the uses to which 
therrnoluminescence has been put. 

Study of therrnoluminescence of alkali halides was initiated in this laboratory in 1950, 
as a part of a larger programme of investigating solid state and of co-ordinating fluorescence 
study with the results of soft X-ray spectroscopy. The fluorescence spectra of alkali 
halides both at room and low temperatures had already been studied 2*a 4. Measure- 
ments of the afterglow 5 decay rates had also been done, so therrnoluminescence study of 
alkali halides and also of some organic substance was undertaken, with a view to clarify 
the processes involved during energy storage in these phosphors. 

In this laboratory, therrnoluminescence has been studied by exciting the sample at 
liquid oxygen temperature, in a demountable cathode-ray tube fitted with a window of 
quartz. The sample is mounted as a fine coating on a hollow bulb made of thin silver. 
The bulb can be filled with liquid oxygen to keep the sample at low temperature and it 
may be rapidly heated with an electric heater immersed in the bath. A thermocouple on 
the surface of the bulb, connected to a Moll galvanometer, gives temperature of the sample. 
Another galvanometer connected to the photomultplier tube, placed facing the specimen, 
gives luminescence intensity. The movements of the two galvanometers during thermo- 
luminescence are recorded on a slow rotating photographic drum. A typical example of 
thermoluminescence curve is shown in Fig. 1. 

For recording therrnoluminescence, different photomultiplier tubes (931A, 1P28; 
1P22) have been employed to suit the emissions of the different samples. Fluorescence 
spectra of the substance being known from a previous study, there was no difficulty in 
selecting the photomultipliers. Although low rate of heating (0.25"C/sec.) is usually 
preferred, yet it has been observed that, in the case of many phosphors, the weaker peaks 
get flattened out unless the rate of heating is high (6-10°C/sec.). A high rate of heating 

I2 
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FIG. 1. Thermoluminescence of KI. 

was often maintained and a fine film of powdered sample was found more suitable than 
a single crystal. For recording the spectral nature of the different glow peaks, two 
photomultipliers, sensitive in different regions, were made to record thermoluminescence 
simultaneously during the same run of the experiment, and optical filters were used to 
separate out the emissions. 

Quite a number of alkali halides, both pure and activated, has been studied and some 
of the results have been publishedo> 7. These halides yield a number of thermolumi- 
nescence peaks between 90°K and 600°K. It has been possible to explain some of the 
results of afterglow decay rates in the light of information obtained from thermolumi- 
nescence study. The effects of thallium activation of samples on thermoluminescence 
have been investigated and it has been found that in some samples thallium produces a 
new peak of its own, without affecting the peaks of the parent lattice. But in some samples, 
like KC1 and KI, it completely changes the thermoluminescence curve. From the com- 
parative method of study with optical filters, it has been found that the different peaks 
emitted by a specimen are not spectrally identical. In general the peaks emitted at high 
temperatures are rich in emissions of ultra-violet and blue regions. But thorough study 
of any peak with an ordinary spectrograph is not possible, because the individual peaks 
disappear within a few seconds. To study the spectral nature of individual peaks, con- 
struction of a rapid spectrophotometer was deemed necessary and has been recently 
completed. With the help of this spectrophotometer some interesting results have been 
recently ~btained (see Figs. 2, 3, 4 and 5). 

The automatic rapid scanning spectrophotometer employs two concave mirrors of 
25 cm. focal length and large focal ratios offl4.2 constructed from stainless steel and a 
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large prism of quartz. Light from the first slit is collimated by the fist concave' mirror, 
and, after dispersion by the prism, the beam is focussed by means of the other concave 

minor. But before falling on the exit slit, the spectrum is reflected by another plane 
minor. The latter is mounted on.-* turnteble, which can be made to oscillate to'and 
fro with the help of an induction motor and a cam. The entire spectrum (ultra-violet 
and visible) sweeps before the slit in about 0.95 second and flies back instantaneously to 
the original position by a cam arrangement. Just behind the exit slit is placed the photo- 
multiplier tube which receives the light. The output of the photomultiplier tube passing 
through a pre-amplifier is amplified and displayed on a Dumont 304H cathode-ray tube 
with long time. A micro-switch attached to the cam triggers 'the sweep circuit every time 
the ultra-violet end of the spectrum just comes near the slit so that the same part of the 
spectrum is given at the same position. During each sweep, a specially adopted syn- 
chronous 35 mm. camera arrangement photographs the intensity distribution curve dis- 
played on the cathode-ray screen. With the help of this spectrophotometer, the spectral 
intensity distribution of the emission can be photographed in less than one second and the 
apparatus is capable of giving all the necessary information during the entire thermo- 
luminescence experiment. Not only the spectral composition and the intensity of the 
different peaks can be obtained, but also the changes in emissions in subsequent periods 
of a single thermoluminescence can be easily and accurately studied. Commercial types 
of photomultipliers were found to 6e not sensitive enough for this work, so a special 
photomultiplier with 19 dynodes was procured from France. 

It is well-known that most of the solids (like alkali halides, quartz, calcite), on irra- 
diation with ionizing radiations, develop colour centres. From simultaneous changes in 
colour centres and by recording diffuse reflectivity during thermoluminescence, it has been 
shown that some of the luminescence peaks correspond with.thermally actuated trans- 
formation in colour centres. It has been found that thermoluminescence-behaviour of 
alklali halides is very susceptible to previous history of heat treatment of the sample. 
Other properties have also been studied in this laboratory. 

Thermoluminescence of some aromatic hydrocarbons both solids and liquids between 
90°K and 250°K has also been investigated. This work gives information regarding the 
metastable states of the molecules excited by cathode-rays at low temperatures. The 
depth of the metastable states below the upper excited states, as measured from the thermo- 
luminescence, agrees fairly with that obtained from the study of fluorescence and phos- 
phorescence spectra. Thermoluminescence opens a new method of investigation of the 
metastable states of the molecules. 

This article would not be complete unless another interesting application of 
thermoluminescence is mentioned. We know that many naturally occurring minerals 
exhibit thermoluminescence. Recently a number of samples of sands procured from 
various parts of this country was studied. All sands show feeble thermoluminescence, 
but those from Bargarh and Mangalhat showed pronounced one. Measurement of 
Y-ray counts in the case of the latter showed slightly extra counts oyer the background. 
This leads to the possibility that thermoluminescence might be developed as a preliminary 
method of detecting radioactive minerals. Many minerals (like bentonite) are often found 
to yield thermoluminescent radiation. The ultimate reason for the occurrence of thermo- 
luminescence in natural minerals has not yet been found. Radioactivity may play some 
part in this occurrence, but it is yet too early to make any definite statement on this matter. 
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FIG. 2. Shows the fluorescent spectra ol'anthracene. 

PIC;. 4. FIG. 5. 
FIGS. 3, 4 and 5 give the radiation as observed from a sample of irradiated NaCl during heating. 

(Note change of character with time.) Figs. 3, 4 and 5 are photographs taken at 3, 7 and 17 
secs. respectively after the commencement of heating. 

Reprinted from ! h n o  Bose Ru Znst 10, pp. 177-180, 1955 (Bose Institute, Calcutta). 



SOLUTION D'UNE EQUATION TENSORIELLE 
INTERVENANT DANS LA THEORIE DU CHAMP UNITAIRE; 

PAR S. N. BOSE, 

Universite de Calcutta. 

I<Bsume.--On exprime explicitemeut en fonction dcn C et de Ileum invariants la solution de 1'6quetion 

Lensoridle d'oh depcnd la det,erminat,ion des P X 
Y "' 

On remarque que l'itkr~tiotl fournit une solution rigo~~reuse quend 
det C = o 

1. Dans un precedent article "), on a montr6 qu'il est possible de ramener le 
calcul des coefficients rtffines pk, en fonction des g,,, et  de leurs derides & la solution 
de 1'6quation tensorielle 

Les tenseurs U et T sont antisymetriques par rapport aux indices /L et v, Cf sont 
10s Blements d'une matrice C form& & partir des parties symm6triques e t  antisym6- 
triques du tenseur q : 

Les v~ leurs  propers z de 1 matrice C vkrifient 1'6quation 

(1.3) x4+I ,xa+I ,  = 0> 

1, et I 4  sont les invariants d'ordre pair de C; de 1'6qustion (1.2) il r6sulte imm6diate- 
ment que les invariants impairs sont nuls. 

Le vecteur propre M t  de C correspondant Q la valeur propre a vdrifie 1'6quation 

(1.4) C$M; = aM;. 

La matrice transposk C(G = Ci) a lea m h e s  valeurs propres que C mais ses 

vecteurs propres 2: sont differents. 

Si l'kquation caracteristique a toutes ses racines distinctes, il existe une s6rie 

complbte de vecteurs propres M et M de C et 6 et  l'on peut exprimer lesBl6ments de 
C en fonction des vecteurs propres : Savoir 

On calcule facilement la solution de (1.1) : 
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= Z ( l + a b + b + w ) - l ~ : ~ ; ~ ( ~ ) k i ( ~ ) ~ ,  (b  # c), T". & 

(1.6) 

et  la sommation porte sur lea 24 oombinaisona possibles des (abc). 

On p u t  Ccrire \a solution (1.6) sous la forme d'une Bquation tensoriellr! 
T = BU, 

le tenseur B nyant pour composantes : 

(1.7) est identique a (1,5). 

J e  me propose de faire la son~mation dans.(l.'i') e t  d'obtenir les composantes de B 
en fonction des Bl6ments de C. 

2. Au moyen de C et  de la matrice unitaire E nous pouvons former une algkbre 
{C,) avec addition e t  multiplication matricielle. 

La formule g6n6rnle d'une mntrice A dans {C+) est 

i A = ~ o + l ~ l C , + ~ 2 C 2 + ~ 3 ~ 3 ;  
C, = C, C2 = CC, C, = CCC. 

Toutes -1es matrices A commutent et ont donc les, m6mes vecteurs propres M 
que C. 

- 
Les matrices 2 de IYalg6bre trnnsposBe ont a u ~ s i  les meme8 vecteurs propres M 

que C. 

Si a,  ;, b, b sont les racines de 176qtmtion c;n.actCristique (1.3), on voit f~cilement 
qne les matrices de base se tlBveloppnt ninsi : 

oh f (a) = Z,M,. . . . en njoutant lea indices infhrieurs . et sn$rieurs AUX formules 
ci-dessus. onobtient 

D6dui~ons inahtenant line nouvelle nlghbre {V,) : oh l'on fortne a i n ~ i  les matrices 
V B prtrtir de deux 616ments quelconques A,  B, de [C,) : 

V = (AB) ,  
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avec 

La rhgle de composition (2.3) montre que toutes les matrices V de (V,) con~mutent 
entre elles. 

Toutes les matrices V ont les mGnies vecteurs propres h. six composantes que 
(CC);  on voit facilement que les six valeurs propres de (CC) s'obtiennent en multi- 
pliant deux h deux les valeurs propres de C. Ce sont 

(2.4) a6, bb, ab, ti&, a&, tib; 

e t  les vecteurs propres it six composantes se deduisent des vecteurs propres de C par 
une rbgle analogue. Q (2.3) par exemple : 

(2.5) M,"; = M i  IZIX-IM~M;, 

sont cles coinp~sicntes de iM (ub) le vecteur qui correspond a lu valeur propre ub de (CC). 

Ties n~i~trices v de I'ltlghbre transposee {v,) ont icussi les mihnles vec te i~~s  propres 

A six co1npos;~ntes yue @): on voit fwileinrnt yue les vecteurc; ~ ( a b )  se tl6duisent dea 

vecteurs.propres de C par la rhgle xavoir. 
- .- - - 
M i ;  == M ;  M;j-M$ M;, . . .  

Comnle bases de l'alghbre {V,',, nous pouvons prendre six matrices quelconques 
de T7, linkairement indhpendantes. 

Nous choisissons les six matrices suivantes dont nous donnons le &I-eloppement 
en fonction des vecteurs propres : 

Let formules (2.6) sont obtenues d'une manihre t,out Q fait analogue a la niitnihe 
dont on a obtenu les formules (2.2). 

Les quatre autres combinaisons yui peuvent ixtrt: formBes A pi~rtir des elements 

(2.6) 4 

( E E )  = V(aC + ~ ( b b )  t V(ab)+ ~ ( d b )  + Ir(a6) + V ( E b ) ,  

(CC) = -a2 ~ ( u 6 ) -  b2 v(bb)+ab[v(ub) -I- V(db)l -ub[V(ah)-+ T7(Eh)]  

(G2C2) = U ~ T ~ ( U G )  -+- b4v(b6) +u%'I V(ah) -r i7(CD) ] -t (~'6" L'(ab) V(Gb)J, 

2(EC2) = - i !a2~(nG) -2b2v (bb )+ (a2+h2) [  V(uh+ v (dh )+  17(ah)+ V(Ab)], 

2(EC)= -(a+b)[V(ab)- v ( ~ b ) ] + ( a -  b)[ V(ab)- V(Gb)], 

2(CC,) = ab(a+b)[V(ab) - V(Eb)]-ab(a-b)[v(ab) -- V(Eb)]. 

. V(ab) = %(ab) M(ab), ... 
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de base de (Cg) dependent des six ci-rlessus ell vcrtu des quatre identit& ci-dessous : 

I (EC,)+(C C,)+I,(EC) = 0 ,  
!2(CC,) +(C,C,) + I,(CC) - I ,(E:#) = 0, 

(2.7) 
(C2C3) --I,(EC) = 0, 
(C3C3)-Iz(C2G2) - 14[(CC) -1- 2(EC2)J = 0. 

On ~no~itre  aussi facilement qn'en ~nultipliirnt Vl et V ,  dnns [ V,,) w e c  

(2.8): V1 = ( A B ) ,  V2 = (CD),  
on a 

VIV, = #:(AC . BL))+(ADBC)J.  

Avec (2.8), leu identites (2.7) et I'identit6 generale de Cnyley-Hamilton : 

(2.9) C,+I,C,+I,E = 0 

nous pouvons r6duire toute matrice de forme (C,C,) B une fonction lin6aire des six 
616ments de I s  base t~dopt6e en (2.6). 

On p u t  choisir des bases et dBmontrer des identities analogues pour toute lzlgbbrr 
V,,,-l, - composQ B yartir de {C,) [par la manibre analogue & (2.3)].  

2 

.Arec les mineurs m3 d'une matrice C,  quelaonque, nous pouvons former la matrice 
conjugu& D. 

Dens le cas particulier de C ici Btudih, oh C =5 Sa est le produit de composantes 
eym6triques S par les antisym6triques a, on voit facilement que D est donne par 

D = A'd, 

oh A' et 8' sont form& de meme B p&ir des mineurs m8 de a et  5. 

Admetton que toujours 

On p u t  cependant avoir 

Le oas I( a ( 1  = 0 est inthressant pour la thbrie du champ unitaire. Nous dis- 
outerons donc lea propri6t6s particulikresde V6 quand 1 1  C 11 = 0 par suite de (1 a 1 1  = 0 .  

a eat une matrice antisymhtr'ique d'ordere 4. Donc A d6terminant de a ast un 
oarr6 parfait et 2/~-est un fa~teur dr? tous les mineurs rn, de a,. 

W 1 )  a 1 1  = 0, A et D mineurs conjugu6s de C ,  sont identiquement nuls. 

Your la matrice oonjugu&, nous avons une identit6 analogue B (2.9) ; 
( a .  l o )  C,+I,C,+ D = 0 (C, = CCC). 

Quad 

(2 .11 )  (1 a ( 1  = 0 ,  I ,  = 0 et D = 0, 
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et des identittis (2.7) nous tirons imm6diatement 

(2 .12)  (CC,)  = 0, (C,C,) - W ' l C , ) ,  (C,C,) = 1,(C2C2). 

Nous allons utiliser ces relations pour dkduire la solution de ( 1 . 1 )  dam le oas 
particuIier I, = 0. 

3. Nous effectuons mitintenant la sommation indiquQ en (1 .6)  e t  (1.7). 
Notons quelques propriktk simples du denominattiur D ( a h )  : 

A l'aide de ceg relations simples, now pouvons regrouper faoilement les termes 
8. eommer : 

On utilise les notations ci-aprks pour Qcrire le resultat final : 

( V(ab)+ V(&) = X ,  v(u&)+ V(6b) = Y ; 

(3 .2 )  V(ab)-  V(d6) = U ,  ~ ( a & ) -  V(&) = V ; 
B , M ,  = f(a) ,  @ ( b c ) ~ ( b c ) ,  = V(bc), ..... 

La sommation (1 .7 )  est notde 

Aprhs regroupement, il vient 
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Servons-nous de ( 2 . 2 )  et ( 2 . 6 )  pour exprimer X ,  Y, U, V et f ( a )  f f ( 6 ) ,  ... ; 
X ,  Y, U, V en fonction de matrices de ( V J  et {C$, et nous obtenons ap rb  un calcul 
simple le r6sultat sous sa forme definitive 

oh les coefficients d, g, p, v, f, h sont fonctions des seuls invariants de C. Si 

sont fonctions des invariants. 

Les coefficients de (3 .5)  sont 

4. Nous avons exprim6 le r6sultat find (3.6) en fonction de matrices d6duiks 
de C mivant des lois deterrninhs, avecdes coefficients qui sont fonctions des invariants 
de C. Ce resultat est valuable dans tous les cas, mbme quand pour des matrices parti- 



Solution d'une gquation Tensorielle 325 

culieres, il n'existe pas un systame complet de vecteurs propres et  l'on ne p u t  plus 
developper suivant (3.3) la; matrice rBsolvante B mais le resultat gBndral (3.5) reste 
toujours vrai. L'expression (3.6) donne donc la solution gBnBra1e du problame pose 
en (1.1). 

NBanmoins, il est interessant d'observer que, dans les ow particdiere I4 = 0 
ou I ,  = 0, I ,  = 0, on peut fachnent  mettre la solution sous forme d'une somme 
d'un petit nombre de termes, p i c e  B, une method6 d'iteration. 

Discutons brihvement le cas I ,  = 0. 

On a d6j d6duit les propriBMs specides de la matrice .C en (2.11) et (2.12) : h sav0ir 

( ' 3 7 2 )  = 0, (CaC,) = ~,(C,CJ, (C,C,) = ~,(C,C,)' 

C3+12Cl = 0, C,+I,C, = 0. 

Nous Borivons (1.1) dans la forme 

U = AT = [E{(EE) + (CC))+SC(EC)]T 

ou 

(4.1). U = T+[E(CC)+2C(EC)] T = T+ST; 

et cherohons une solution en posant 

T = U+@,. 

L'Bquation ayant la forme 

U = T+8T. 

On deduit fadement pour a, l'equation 

-8U = Qb1+8@,- 

En repetant l'ophtion, nous obtenons successivement 

(4.2) 86U = @,+8@,, -888U = @,+8Q3. 

En raison des proprihtkk sp4oiales de lYop6rateur [(2. I 1 )  -(2. I 2)  ] nous ddduisons 
facilment 

(4.3) 688 = I;& 

En posant 8 3  A-E, oh E est l'ophrateur-unite, 1'Bquation (4.2) s'6orit 

ou 
(4.4) A(Q3+IgU) = I iU.  

L'Bquation originale eat 
AT = U. 
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Comme dBt A # 0, la solution est unique et l'on voit facilement que la solution de 
(4.4) est 

Q3+4U = 4 T .  
En Bcrivant 

cPS = T-U+GU-BGU = a ( T -  U), 

nous avons facilement 

En d6veloppant, nous svons le resultat suivant : 

La solution gBnerale nous donne le &me dsultat en posant I, = 0 et en utilisant 
les relations particulibres (2.1 1) et (2.12). 

On p u t  aussi traiter de mgme lea autres 1% = 0, I, = 0. 

Si les coefficients h de 
N r Ao+AICl+AtC,+ h3Cs (nombre quelconque dans [C],) 

sont ohoisis dans l'alghbre [V],, cee nombres forment une nouvele alghbre [cVla4. 

egt donc Bquivalent B trouber l'hverse de. B en tant que nombre algebrique. L'in- 
verse est aussi un nomber dam [cV] et on peut le trouver facilement de la facon suivante. 

Nous vkrifions d'abord les r&ultats suivants t i  partir de la rhgle de multiplioation 
et des identites pour l'alghbre [V],. 

R = 2L+I,M, X = 4(EC)% = 2(CC)+2(Ec,), 
et D = Ig-414, le discriminant des Bquations 

x%+Ifi+I, = 0, 
on a alors 

L(EC) = M(EC) = 0; d'oh LX = MX = RX = 0 
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Dam ce qui suit, nous employons les abrdviations suivltntes : s = 2f I,, 
2 ,  = 1+12+1,, z = 1+5I,-I,, et y = 2-1,. 

Comme B = (EE)+(CC)+SC(EC), en le multipliant par son conjug6 
B* = (EE)+(CC)-2C(EC), 

nous avons 
BB* = (EE+CC)2--4C2(EC)2 

BB* = (1+ 

aprbs factorisation; 

Comme 

1 [li-q;-M] [to+X(l+ 12)+C2X] 
BB* = [ to+X-C2X][to+X(1+12)+C2X] 

aprbs 17addition du mcme facteur dans le numkrateur et le ddnominateur de I'expression 
de droite. 

En faisant la multiplication, on obtient pour le ddnominateur 

to[x+y(X+I2)+RI. 
Nous observons que 

[x+Y(X+I~)+RI[X-Y(X+I~)-VRI 
= Q = t+t- = 22-4I4y2 

On p u t  donc exprimer faoilement 17inverse par 176quation suivante : 

En supprimant les crochets, on obtient un dsultat 6quivalent B oelui de l'article 
principal. 

Reprinted from Bull Soc Mgth France 83, pp. 81-88, 1956 (Gauthier - Villars Publishers, Paris). 



Solution of a Tensor Equation Occurring in the Unitary 
Field Theory 

By S. N. Bose, 
University of Calcutta. 

Summary - The solution to the tensor equation on which the determination of c, 
depends, is explicitly expressed in terms of the C and their invariants. 

Note that the iteration gives a rigoroua solution when 
det C = 0.  

1. In a preceding article (I) it has been shown that i t  is possible to  reduce the 
calculation of the &ne coefficients c, in terms of g"" and their derivatives to the 
solution of the tensor equation 

The tensors U and T are antisyminetric with regard to  the indices p and v, C are 
the elements of a matrix C formed from the symmetric and antisymmetric parts of the 
tensor g : 

1 1 c = " 3  = 5 ( g p r - g r u ) i  4 r  = 3 ( g t k f g k : ) ,  

(1.2) I spfstk = d[. 

The eigenvalues x of the matrix C satisfy the equation 

IP and I4 are even invariants of C ; from the equation (1.2) i t  immediately follows that 
the odd invariants are zero. 

The eigenvector M of C corresponding to the eigenvalue a satisfies the equation 

The transposed matrix C ( C = C k, ) has the same eigenvalues as C but its eigen- 
vectors El are different. 

If the characteristic equation has all its roots distinct, then there exists a complete 
series of eigenvectors M and %3 of C and C and we can express the elements of C in 
terms of the eigenvectors : that is 
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The solution is easily calculated from (1.1) : 

and the summation is over the 24 possible combinations of (abc). 
The solution (1.6) can be written in the form of a tensor equation 

the components of the tensor B being 

(1.7) is identical to (1.5). 
I intend to carry out the summation in (1.7) and obtain the components of B in terms 

of the elements of C. 

2. By means of C and of the unitary matrix E we can form an algebra (CJ with 
addition and matrix multiplication. 

The general formula of a matrix A in {CJ is 

A  = &+/LIC,+P&,+P~C~; 
C, = C, C, = CC, C,  = CCC. 

All the matrices A commute and therefore have the same eigehvector M as C. 
The matrices A of the transposed algebra also have the same eigenvector M as 75. 
If a , a ,  b , 6 are the roots of the characteristic equation (1.31, one can easily see 

that the basic matrices develop in the following way : 

- 
where f (a) = Ma Ma,. . and by adding the lower and upper indices t o  the above 
formulae, one gets 

c ! ~  = M:AZ: - - B ~ M $ )  a+(. ! B P M ; - B ~ M ~  "- i b  1 
Let us now deduce a new algebra {V6), where the matrix V is formed from any two 

elements A, B of (C4) : 

17 = ( A R ) .  
with 
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The rule of composition ( 2 . 3 )  shows that all the matrices V of {V6) commute among 
themselves. 

All the matrices V have the same eigenvectors with six components as  ( C C )  ; i t  is 
easily seen that  the six eigenvalues of ( C C )  are obtained by multiplying the eigenvalues 
of C two by two. These are 

( 2 . 4 )  aZ, bb, ab, a, d, 6b; 
and the eigenvectors with six components are deduced from the eigenvectors of C 
through a similar rule t o  (2 .3 )  ; for example : 

are the componen-ts of Mab, the vector whichcorresponds to the eigenvalue ab of ( C C ) .  
The matrices V oftke transposed algebra {Vs), also have t h e ~ a m e  eigenvectors with 

six components as  ( C_ C ) ; it is easily noticed that  the vectors M (ab) are deduced from 
the eigenvectors of C by the following rule : - -  - -  

Z:: = M t  M ~ - I M $  M;, ... 

As the bases of the algebra m6), we can take any six linearly independent matrices 
of V6. 

We choose the following six matrices whose expansion we give in terms of the 
eigenvectors : 

C (L!!E) = V(uC + ~ ( b b )  -+ V(ab) + ~ ( d b )  + t7(ab) + V(d6), 

( (CC) = - a 2 ~ ( u d ) - h ~ ~ ( b 6 ) + a b l  ~ ' ( u b )  + ~ ( d b ) ] - u b [ v ( a h )  j- V ( d h ) ]  

I V(ab) = B(ab)  M(ab). ... 
The formulae ( 2 . 6 )  are obtained in a manner completely similar to the manner used 

to obtain the formulas (2 .2 ) .  
The four other combinations which can be formed from the basic elements of {C4) 

depend on the six above mentioned equations by virtue of the four identities mentioned 
below : 

(EC,)+(G C?)+I,(EC) = 0, 
2(CC3) + (C2C2) + I,(CC) - I  ,(E E )  = 0, 

( 2 . 7 )  
(C2C3)  -I , (EC) = 0, 
(C3C3)- 12(C2C2)- [,[(CC)-I- 2(EC2)] = (1.  

I t  is also easily shown that by multiplying V1 and V2 in (V6) with 
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we have V1 == (AB) ,  V ,  = (CD) ,  

With (2.8), the identities in (2.7) and the general identity of Cayley - Hamilton : 

each matrix of the form (C, C,) can be reduced t o  a linear function of the six elements 
of the basis adopted in (2.6). 

We can choose the bases and demonstrate the analogous identities for all algebras 
Vn c n - 1 ) composed from {CJ [by a process similar t o  (2.3)l. 

2 

With the minors m3 of any matrix C4, a conjugate matrix D can be formed. 
In the case of C studied here, where C = Sa is the product of the symmetric 

component S by the antisymmetric a ,  it is easily seen that D is given by 

where A' and s' are formed similarly from the minors m3 of a and S. 
We take for granted that always 

One can nevertheless have 

The case 11 a 11 = 0 is interesting for the unitary field theory. Therefore we will discuss 
the particular properties of V6 when I 1  C 11 = 0 as a consequence of 11 a 11 = 0. 

a is an antisymmetric matrix of order 4. Therefore A which is the determinant of a 
is a perfect sequare and 6 is a factor of all the minors m3 of a. 

If 11 a 11 = 0, A and D, conjugate minors of C, are identically zero. For the conjugate 
matrix, we have an identity analogous t o  (2.9) ; 

(2.10) C,+IaC1+D = O (C,  = CCC). 

When 

we have 

and from the identities (2.7) we immediately obtain 
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We will use these relations to deduce the solution of (1.1) in the particular case 
I,, = 0. 

3. Now we carry out the summation indicated in (1.6) and (1.7). Let us note some 
simple properties of the denominator D (ah) : 

With the help of these simple relations, we can easily regroup the terms to be 
summed up : 

We use the following notations to  write the final results : 

The summation (1.7) is written as 

After regrouping we get 

Let us make use of(2.2) and (2.6) to express X, Y, U, V and f(a)f f ( a ) ,  . . . ; X, Y, 
U,V are functions of matrices of (V6) and (C3, and we obtainn after an easy calculation 
the result in its final form 
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where the coefficient d, g, .+I., v, f ,  h are functions only of the invariants of C. If 

to = 1+1,+14, t+ = h$+Iph++14, t- = AB+Iph-+I4; 

t+ - t- 
-+- x '= t -t- 

2 
1+614-I,, ks Y = 2-1. 

and 

are functions of the invariants 
The coefficients of (3.5) are 

4. We have expressed the final result (3.6) in terms of the matrices deduced from 
C following fixed rules, with coefficients which are functions of the invariants of C. 
This result is valid in all the cases, even when for particular matrices there is no 
complete system of eigenvedors and we can no longer develop the resolvent matrix B 
as per (3.3) but the general result (3.5) always remains true. The expression (3.6) thus 
gives the general s~lut ion of the problem posed in (1.1). 

Nevertheless it is interesting t o  observe that in the particular cases I4 = 0 or I p  = 0, 
I4 = 0, we can easily put the solution in the form of a total sum of a small number of 
terms, thanks to a method of iteration. 

Let us briefly discuss the case I4 = 0. 
We have already deduced the special properties of the matrix C in (2.11) and 

(2.12) : to wit 
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and look for a n h t i o n  by putting 
T = U+@,. 

The equation having the form 
U = T+8T. 

we easily deduce for the equation 
-8U = @1+8cP8. 

By repeating the operation, we successively obtain 

Beacause of special properties of the operator l(2.11) - (2.1211 we easily deduce 

By putting 6 =. A - E, where E is the unit operator, the equation (4 .2)  is written as 

(4 .4)  A(@3+IEU) = G U .  
The original equation is 

AT = U .  

With det A # 0, the solution is unique and one easily sees that the solution of (4.4) is 

By writing 
@3 = T -  U+6U--88U = I.$(T- U), . 

we easily have 

By developing this, we have the following result : 
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The general solution gives us the same result by putting I4 = 0, and using the 
particular relations (2.11) and (2.12). 

We can similarly treat the other cases I2 = 0, I4 = 0. 

Post-script 

If the coefficients h of 

are chosen in the algebra [V]& these numbers form a new algebra [cVIz4. 
To solve 

U = [e(EE)+e(cc)+2c(Ec)] T zz BT 

is thus equivalent to finding the inverse of B as an algebraic number. The inverse is 
also a number in [cVl and we can easily find i t  in the following way. 

First, we verify the following results as  per the rule of multiplication and the 
identities for the algebra WIG. 

If 
= ( E ) ,  M = 2(EC2)+12(CC), 

R = 2L+12M, X = 4(EC)2 = 2(CC)+2(EC2), 

and D = 1: - 414 is the discriminant of the equations 
x2+12x+I, = 0 ,  

then we have 
L(EC) = M(EC)  = 0; d'oh LX = M X  = RX = 0 
R L =  DL, R M =  DM,  R R =  DR, M 2 =  R 

and 
XX,+212X+D = R. 

In what follows we use the the following abbreviations : s = 2 + 12, to = 1 + I 2 + I4 
x =  1 + 514-12, andy = 2-12. 

With B = (EE) + (CC) + 2C(EC), by multiplying it with its conjugate 

we have 

or 

B* = (EE)+(CC)-2C(EC),  

BB*' = (EE+ CC)2-4C2(EC)2 

BB* = ( I +  ?I&!! ) ( t 0 + ~ - c 2 ~ )  
to 
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after factorization ; with ( 1  - - " ; ~ " ) ( l + ~ ]  I t ,  

after adding the same factor in the numerator and denominator of the right side of the 
equation. 

By multiplying we obtain for the denominator 

" 

We can thus easily express the inverse by the following equation : 

By eliminating the brackets, we obtain a result equivalent to the one in the main 
paper. 

EngBtsh translation of Bull Soc Math France 88, pp. 81-88, 1955 IGauthier - Villars Publishers, Paris). 
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