Open Notebook for Standard ML (SML)

2013-01-20 22:37

Contents

1

References

1.1 Standard ML e
1.2 GNU Emacs e

1.2.1 GNU Emacs Reference Cards
1.3 Sublime Text 2 e

Basic Standard ML

SML Basis Library

3.1 Lists . o o e e
3.2 SErings e e e

1 References

1.1 Standard ML

o Standard ML of New Jersey (SML/NJ)

e Moscow ML - Lightweight implementation of Standard ML

e Standard ML Wikipedia entry

e SML, Some Basic Examples - a good cheatsheet of simple examples, very good

e Basics of Standard ML - Michael P. Fourman - A nice basic 21 page introduction.
e SML Tutorial - University of Chicago - 34 page PDF presentation

e Tips for Computer Scientists on Standard ML - All of SML in a 20 page PDF

o A Gentle Introduction to ML - A nice online overview (about 55 pages)

e Standard ML Basis Library Documentation - documents the standard functions
Programming in Standard ML 97 - Tutorial Introduction - Stephen Gilmore, Stephen Gilmore - 94 page PDF Book
Notes on Programming Standard ML of New Jersey - Riccardo Pucella, Cornell University - 249 page PDF book

e Programming in SML - Robert Harper, Carnegie Mellon - 297 page PDF book

— Programming in SML Example Source Code

e SML Style Guide from a Cornell course
e Using the SML REPL

1.2 GNU Emacs

e Emacs SML Editing Mode Documentation
e GNU Emacs Main Web Page
¢ GNU Emacs on-line documentation

PO RO

()

http://www.smlnj.org
http://www.itu.dk/~sestoft/mosml.html
http://en.wikipedia.org/wiki/Standard_ML
http://classes.soe.ucsc.edu/cmps112/Spring03/languages/sml/SMLExampleCodeFragments.html
http://homepages.inf.ed.ac.uk/mfourman/teaching/mlCourse/notes/L01.pdf
http://www.classes.cs.uchicago.edu/archive/2007/winter/22610-1/docs/sml-tutorial.pdf
http://www.itu.dk/people/tofte/publ/tips.pdf
http://ftp.utcluj.ro/pub/docs/diverse/ml/gentle-intro-ML/
http://www.standardml.org/Basis/
http://homepages.inf.ed.ac.uk/stg/NOTES/notes.pdf
http://www.cs.cornell.edu/riccardo/prog-smlnj/notes-011001.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/examples/
https://www.cs.cornell.edu/courses/cs312/2008sp/handouts/style.htm
http://www.smlnj.org/doc/FAQ/usage.html
http://www.smlnj.org/doc/Emacs/sml-mode.html
http://www.gnu.org/software/emacs/
http://www.gnu.org/software/emacs/manual/html_node/emacs/index.html

[I

© ® N o wu

11

12

1.2.1 GNU Emacs Reference Cards

These reference cards (except for the SML Mode one) comes with Emacs in the etc/refcards directory)

e GNU Emacs Reference Card source - Nice PDF cheat sheet on one double-sided page
e GNU Emacs Survival Card source - A basic overview

e GNU Emacs SML Mode Card source - The beginnings of an SML Mode reference card
e GNU Emacs Dired Card source - Directory mode reference card

1.3 Sublime Text 2
You can use the standard Sublime Text 2 Package Control system to add SML support:

« First, if you have not done so already, install the Package Contol package by going to Sublime Package Control

e Next install the Sublime REPL package using Package Control. Note that Sub,ime REPL does not support SML.
We will fix that later

o Next install the SML Language Definitions again using Package Control

e Now we will add SML support to the REPL.

— Go to the Default Sublime Commands Gist and download the 2 files there. These files will add support for
SML in the SublimeREPL

— To use, create a SML subfolder in Packages/User and drop these files inside. (You can navigate to the Pack-
ages/User folder by selecting the Preferences -> Browse Packages command from within Sublime)

— Assuming you installed the SML Language definitions using Sublime Package Control, its location in
the Main.sublime-menu will be incorrect. The edit the location to be Packages/User/SML (Standard
ML)/SML.tmLanguage (or whereever your SML Language definitions package got installed). You might
also have to edit the location of your SML executable as well (but I did not)

The above instructions should work, and are the simplest way I know of to add SML support, including an SML REPL
to Sublime Text 2. There are some excellent posts with more details on the subject locaated at:

e How I Configured Sublime text 2
e Sublime Text 2 for SML code errors highlighting
e Sublime Text 2

2 Basic Standard ML

(x This is a comment (* Comments can be nested x) x)
(x Bind a value to a variable x)
(x val <var> = <expression> x)

val x = 42; (% binds a value to a variable x)

(x Bind a function value to a variable x)

(% fun <var> (<var>: <type>, <var>: <type>, ...) = <expression> x*)
fun pow(x: int, exp: int) =
ify=20
then 1

else x x pow(x, y-1)

3 SML Basis Library

3.1 Lists

refcard.tex
survival.tex
smlmode-refcard.tex
dired-ref.tex
http://wbond.net/sublime_packages/package_control
https://github.com/wuub/SublimeREPL
https://github.com/seanjames777/SML-Language-Definition
https://gist.github.com/4507534
https://class.coursera.org/proglang-2012-001/forum/thread?thread_id=521
https://class.coursera.org/proglang-2012-001/forum/thread?thread_id=638&post_id=3977
https://class.coursera.org/proglang-2012-001/forum/thread?thread_id=18&post_id=75

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

open List

foo: int list

val foo = []

val foo = [42, O,
19 foo

[1, 2] @ foo
revAppend (11, 12
null foo

hd foo

tl foo

last foo

length foo

nth (foo, i)
take (foo, 1)
drop (foo, 1)

rev foo
concat 1

app f foo
map f foo

*)

mapPartial f foo

find f foo

(* documentation - will return a list of functions on the list type x)

(% declares foo to be a list of type int x)
(x make foo an empty listx)
25, ~2]

(* ”cons” an element onto the head of a list x*)
(* returns a list with [1, 2] appended to foo x*)
(x returns (rev 11) @ 12 x)

(* returns true if list is nullx)

(* returns the first element of the list. It raises Empty if foo is nilx)
(% returns the rest of the list. It raises Empty if foo is nil x)

(* returns the last element of the list. It raises Empty if foo is nil x)
(x returns the number of element the list. x*)

(% returns the i(th) element of the list foo, counting from Q.

It raises Subscript if i < @ or i >= length foo. nth(foo,@) = hd foo *)
(* returns the first i elements of the list foo.
It raises Subscript if i < @ or i » length foo.
(* returns what is left after dropping the first i elements of the list foo.
It raises Subscript if i < @ or i » length foo. drop(foo, length foo) = [] *)
(% returns a list consisting of foo’s elements in reverse order. x*)

(x takes a list of lists, and returns the list that is the concatenation of

take(foo, length foo) = foo *)

all the lists in 1 in order. x)
(% applies function f to the elements of foo, from left to right x*)
(x applies f to each element of 1 from left to right, returning the list of results

(% applies f to each element of 1 from left to right,
with SOME stripped, where f was defined.
f is not defined for an element of 1 if f applied to the element returns NONE.
This is equivalent to: ((map valOf) o (filter isSome) o (map f)) foo x*)

(x applies f to each element x of the list 1, from left to right, until f x

returning a list of results,

evaluates to true.

filter f foo
those x

partition f foo

neg)

foldl f init foo

*)

foldr f init foo

empty. *)
exists f foo

all f foo

tabulate (n,
to right.

collate f (11,

foo) (x*

It returns SOME(x)
(x applies f to each element x of foo,

if such an x exists; otherwise it returns NONE. x)
from left to right, and returns the list of

for which f x evaluated to true,
argument list. x)
(* applies f to each element x of 1,

in the same order as they occurred in the

from left to right, and returns a pair (pos,
where pos is the list of those x for which f x evaluated to true,
list of
those for which f x evaluated to false.
same relative
order they possessed in foo. x)
(x ”fold left” returns f(xn,...,f(x2,

and neg is the

The elements of pos and neg retain the

f(x1, init))...) or init if the list is empty.

(x ”fold right” returns f(x1, f(x2, ..., f(xn, init)...)) or init if the list is
(* ”There Exists” applies f to each element x of the list 1,
until f x evaluates to true; it returns true if such an x
otherwise. x)
(* ”For All” applies f to each element x of the list 1, from left to right,
until f x evaluates to false; it returns false if such an x exists and true
otherwise.
It is equivalent to not(exists (not o f) 1)). x*)

returns a list of length n equal to [f(@), f(1), ...,

from left to right,
exists and false

f(n-1)], created from left

It raises Size if n < @ x)

12)(* performs lexicographic comparison of the two lists using the given ordering f on
the list elements. x)

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

3.2 Strings
A String in SML is a Vector

of Chars

(*

open Strings

val foo = ”A String” (%
var emp = 7 (*
str c (*
toString s (*

documentation - will return a list of functions on the String type x*)

declares foo to be a string x)

declare smp to be the empty string x*)
is the string of size one containing the character c.
returns a string corresponding to s,

*)

with non-printable characters replaced

by SML escape sequences.

Int.toString n (*
size foo (*
sub (foo, i) (*
if i < @ or |fool| <=
extract (foo, i, NONE)
extract (foo, i, SOME j)
substring (foo, i, j)
(*
foo A bar (*
|[bar| > maxSize. x)
concat 1 (*
concatWith s 1 (*
a separator.
implode 1 (*

equivalent to concat

(*

explode foo

This is equivalent to translate Char.toString s x)
Converts the integer n to a string x*)

*)

This raises Subscript

returns |fool, the number of characters in string foo.
returns the i(th) character of foo, counting from zero.
i. %)

These return substrings of foo.

The first returns the substring of foo from the i(th) character to the end of
the string, i.e., the string foo[i..|fool-1].

This raises Subscript if i < @ or |fool|l < i.

The second form returns the substring of size j starting at
the string foo[i..i+j-1].

It raises Subscript if i < @ or j < @ or |fool < i + j.

Note that, if defined, extract returns the empty string when i =

index i, i.e.,

| fool .

The third form returns the substring foo[i..i+j-1], i.e., the substring of
size j starting at index 1i.
This is equivalent to extract(foo, i, SOME j). x)

is the concatenation of the strings foo and bar. This raises Size if |fool +

takes a list of lists, and returns the list that is the concatenation of

all the lists in 1 in order. x)

returns the concatenation of the strings in the list 1 using the string s as

This raises Size if the size of the resulting string would be greater than
maxSize. x*)

generates the string containing the characters in the list 1.

(List.map str 1).

This raises Size if the resulting string would have size greater than

*)

is the list of characters in the string foo x)

This is

maxSize.

	References
	Standard ML
	GNU Emacs
	GNU Emacs Reference Cards

	Sublime Text 2

	Basic Standard ML
	SML Basis Library
	Lists
	Strings

