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acknowledgements

The material presented in this book is as a result of four decades of experience in the
field of control engineering. During the 1960s, following an engineering apprentice-
ship in the aircraft industry, I worked as a development engineer on flight control
systems for high-speed military aircraft. It was during this period that I first observed
an unstable control system, was shown how to frequency-response test a system and
its elements, and how to plot a Bode and Nyquist diagram. All calculations were
undertaken on a slide-rule, which I still have. Also during this period I worked in
the process industry where I soon discovered that the incorrect tuning for a PID
controller on a 100 m long drying oven could cause catastrophic results.

On the 1st September 1970 I entered academia as a lecturer (Grade 1) and in that
first year, as I prepared my lecture notes, I realized just how little I knew about
control engineering. My professional life from that moment on has been one of
discovery (currently termed °‘life-long learning’). During the 1970s I registered for
an M.Phil. which resulted in writing a FORTRAN program to solve the matrix
Riccati equations and to implement the resulting control algorithm in assembler on a
minicomputer.

In the early 1980s I completed a Ph.D. research investigation into linear quadratic
Gaussian control of large ships in confined waters. For the past 17 years I have
supervised a large number of research and consultancy projects in such areas as
modelling the dynamic behaviour of moving bodies (including ships, aircraft missiles
and weapons release systems) and extracting information using state estimation
techniques from systems with noisy or incomplete data. More recently, research
projects have focused on the application of artificial intelligence techniques to
control engineering projects. One of the main reasons for writing this book has been
to try and capture four decades of experience into one text, in the hope that engineers
of the future benefit from control system design methods developed by engineers of
my generation.

The text of the book is intended to be a comprehensive treatment of control
engineering for any undergraduate course where this appears as a topic. The book
is also intended to be a reference source for practising engineers, students under-
taking Masters degrees, and an introductory text for Ph.D. research students.
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is a calculator. However, it is recognized that powerful software packages exist to
aid control system design. At the time of writing, MATLAB, its Toolboxes and
SIMULINK have emerged as becoming the industry standard control system design
package. As a result, Appendix 1 provides script file source code for most examples
presented in the main text of the book. It is suggested however, that these script files
be used to check hand calculation when used in a tutorial environment.
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in Semester 5 (first Semester) and Chapters 9 and 10 in Semester 6 (second Semester).
However, some of the advanced material in Chapters 9 and 10 could be held back
and delivered as part of a Masters programme.

When compiling the material for the book, decisions had to be made as to what
should be included, and what should not. It was decided to place the emphasis on the
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consulted as necessary.
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Introduction to control
engineering

1.1 Historical review

Throughout history mankind has tried to control the world in which he lives. From
the earliest days he realized that his puny strength was no match for the creatures
around him. He could only survive by using his wits and cunning. His major asset
over all other life forms on earth was his superior intelligence. Stone Age man devised
tools and weapons from flint, stone and bone and discovered that it was possible to
train other animals to do his bidding — and so the earliest form of control system was
conceived. Before long the horse and ox were deployed to undertake a variety of
tasks, including transport. It took a long time before man learned to replace animals
with machines.

Fundamental to any control system is the ability to measure the output of the
system, and to take corrective action if its value deviates from some desired value.
This in turn necessitates a sensing device. Man has a number of ‘in-built’ senses
which from the beginning of time he has used to control his own actions, the actions
of others, and more recently, the actions of machines. In driving a vehicle for
example, the most important sense is sight, but hearing and smell can also contribute
to the driver’s actions.

The first major step in machine design, which in turn heralded the industrial
revolution, was the development of the steam engine. A problem that faced engineers
at the time was how to control the speed of rotation of the engine without human
intervention. Of the various methods attempted, the most successful was the use of
a conical pendulum, whose angle of inclination was a function (but not a linear
function) of the angular velocity of the shaft. This principle was employed by James
Watt in 1769 in his design of a flyball, or centrifugal speed governor. Thus possibly
the first system for the automatic control of a machine was born.

The principle of operation of the Watt governor is shown in Figure 1.1, where
change in shaft speed will result in a different conical angle of the flyballs. This in
turn results in linear motion of the sleeve which adjusts the steam mass flow-rate to
the engine by means of a valve.

Watt was a practical engineer and did not have much time for theoretical analysis.
He did, however, observe that under certain conditions the engine appeared to hunt,
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Flyballs

Nt

Fig. 1.1 TheWatt centrifugal speed governor.

where the speed output oscillated about its desired value. The elimination of hunting,
or as it is more commonly known, instability, is an important feature in the design of
all control systems.

In his paper ‘On Governors’, Maxwell (1868) developed the differential equations
for a governor, linearized about an equilibrium point, and demonstrated that stabil-
ity of the system depended upon the roots of a characteristic equation having
negative real parts. The problem of identifying stability criteria for linear systems
was studied by Hurwitz (1875) and Routh (1905). This was extended to consider the
stability of nonlinear systems by a Russian mathematician Lyapunov (1893). The
essential mathematical framework for theoretical analysis was developed by Laplace
(1749-1827) and Fourier (1758-1830).

Work on feedback amplifier design at Bell Telephone Laboratories in the 1930s was
based on the concept of frequency response and backed by the mathematics of complex
variables. This was discussed by Nyquist (1932) in his paper ‘Regeneration Theory’,
which described how to determine system stability using frequency domain methods.
This was extended by Bode (1945) and Nichols during the next 15 years to give birth to
what is still one of the most commonly used control system design methodologies.

Another important approach to control system design was developed by Evans
(1948). Based on the work of Maxwell and Routh, Evans, in his Root Locus method,
designed rules and techniques that allowed the roots of the characteristic equation to
be displayed in a graphical manner.
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The advent of digital computers in the 1950s gave rise to the state-space formula-
tion of differential equations, which, using vector matrix notation, lends itself readily
to machine computation. The idea of optimum design was first mooted by Wiener
(1949). The method of dynamic programming was developed by Bellman (1957), at
about the same time as the maximum principle was discussed by Pontryagin (1962).
At the first conference of the International Federation of Automatic Control
(IFAC), Kalman (1960) introduced the dual concept of controllability and observ-
ability. At the same time Kalman demonstrated that when the system dynamic
equations are linear and the performance criterion is quadratic (LQ control), then
the mathematical problem has an explicit solution which provides an optimal control
law. Also Kalman and Bucy (1961) developed the idea of an optimal filter (Kalman
filter) which, when combined with an optimal controller, produced linear-quadratic-
Gaussian (LQG) control.

The 1980s saw great advances in control theory for the robust design of systems
with uncertainties in their dynamic characteristics. The work of Athans (1971),
Safanov (1980), Chiang (1988), Grimble (1988) and others demonstrated how uncer-
tainty can be modelled and the concept of the Hoo norm and u-synthesis theory.

The 1990s has introduced to the control community the concept of intelligent
control systems. An intelligent machine according to Rzevski (1995) is one that is
able to achieve a goal or sustained behaviour under conditions of uncertainty.
Intelligent control theory owes much of its roots to ideas laid down in the field of
Artificial Intelligence (AI). Artificial Neural Networks (ANNs) are composed of
many simple computing elements operating in parallel in an attempt to emulate their
biological counterparts. The theory is based on work undertaken by Hebb (1949),
Rosenblatt (1961), Kohonen (1987), Widrow-Hoff (1960) and others. The concept of
fuzzy logic was introduced by Zadeh (1965). This new logic was developed to allow
computers to model human vagueness. Fuzzy logic controllers, whilst lacking the
formal rigorous design methodology of other techniques, offer robust control with-
out the need to model the dynamic behaviour of the system. Workers in the field
include Mamdani (1976), Sugeno (1985) Sutton (1991) and Tong (1978).

1.2 Control system fundamentals

1.2.1 Concept of a system

Before discussing the structure of a control system it is necessary to define what is
meant by a system. Systems mean different things to different people and can include
purely physical systems such as the machine table of a Computer Numerically
Controlled (CNC) machine tool or alternatively the procedures necessary for the
purchase of raw materials together with the control of inventory in a Material
Requirements Planning (MRP) system.

However, all systems have certain things in common. They all, for example,
require inputs and outputs to be specified. In the case of the CNC machine tool
machine table, the input might be the power to the drive motor, and the outputs
might be the position, velocity and acceleration of the table. For the MRP system
inputs would include sales orders and sales forecasts (incorporated in a master
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Inputs< ) —> >Outpu'(s
\ \A
/
Boundary

Fig. 1.2 The concept of a system.

production schedule), a bill of materials for component parts and subassemblies,
inventory records and information relating to capacity requirements planning. Mate-
rial requirements planning systems generate various output reports that are used in
planning and managing factory operations. These include order releases, inventory
status, overdue orders and inventory forecasts. It is necessary to clearly define the
boundary of a system, together with the inputs and outputs that cross that boundary.
In general, a system may be defined as a collection of matter, parts, components or
procedures which are included within some specified boundary as shown in Figure
1.2. A system may have any number of inputs and outputs.

In control engineering, the way in which the system outputs respond in changes to
the system inputs (i.e. the system response) is very important. The control system
design engineer will attempt to evaluate the system response by determining a
mathematical model for the system. Knowledge of the system inputs, together with
the mathematical model, will allow the system outputs to be calculated.

It is conventional to refer to the system being controlled as the plant, and this, as
with other elements, is represented by a block diagram. Some inputs, the engineer will
have direct control over, and can be used to control the plant outputs. These are
known as control inputs. There are other inputs over which the engineer has no
control, and these will tend to deflect the plant outputs from their desired values.
These are called disturbance inputs.

In the case of the ship shown in Figure 1.3, the rudder and engines are the control
inputs, whose values can be adjusted to control certain outputs, for example heading
and forward velocity. The wind, waves and current are disturbance inputs and will
induce errors in the outputs (called controlled variables) of position, heading and
forward velocity. In addition, the disturbances will introduce increased ship motion
(roll, pitch and heave) which again is not desirable.

Rudder —»
Engines ——»
Wind @ ———>»
Waves ——»
Current —»

—— » Position
Ship ———  » Forward Velocity

——————» Heading
— " Ship Motion
(roll, pitch, heave)

Fig. 1.3 A ship as a dynamic system.
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Disturbance
Input

Control Input -

+ Controlled Variable
—>®—> Plant —— e
Output

Summing
Point

Fig. 1.4 Plant inputs and outputs.

Generally, the relationship between control input, disturbance input, plant and
controlled variable is shown in Figure 1.4.

1.2.2 Open-loop systems

Figure 1.4 represents an open-loop control system and is used for very simple
applications. The main problem with open-loop control is that the controlled vari-
able is sensitive to changes in disturbance inputs. So, for example, if a gas fire is
switched on in a room, and the temperature climbs to 20 °C, it will remain at that
value unless there is a disturbance. This could be caused by leaving a door to the
room open, for example. Or alternatively by a change in outside temperature. In
either case, the internal room temperature will change. For the room temperature to
remain constant, a mechanism is required to vary the energy output from the gas fire.

1.2.3 Closed-loop systems

For a room temperature control system, the first requirement is to detect or sense
changes in room temperature. The second requirement is to control or vary the energy
output from the gas fire, if the sensed room temperature is different from the desired
room temperature. In general, a system that is designed to control the output of a
plant must contain at least one sensor and controller as shown in Figure 1.5.

Forward Path

v

Summing
Point £ rror Control Output
Desired Value * Signal Signal Value
4>®4> Controller > Plant »>

Measured Value

Sensor <

Feedback Path

Fig. 1.5 Closed-loop control system.
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Figure 1.5 shows the generalized schematic block-diagram for a closed-loop, or
feedback control system. The controller and plant lic along the forward path, and the
sensor in the feedback path. The measured value of the plant output is compared at
the summing point with the desired value. The difference, or error is fed to the
controller which generates a control signal to drive the plant until its output equals
the desired value. Such an arrangement is sometimes called an error-actuated system.

1.3 Examples of control systems

1.3.1 Room temperature control system

The physical realization of a system to control room temperature is shown in Figure
1.6. Here the output signal from a temperature sensing device such as a thermocouple
or a resistance thermometer is compared with the desired temperature. Any differ-
ence or error causes the controller to send a control signal to the gas solenoid valve
which produces a linear movement of the valve stem, thus adjusting the flow of gas to
the burner of the gas fire. The desired temperature is usually obtained from manual
adjustment of a potentiometer.

Insulation
) Outside
Desired - Control Temperature
Temperature | Potentio- Signal Gas Solenoid Actual
——p| meter > »—[1 Valve Room
Controller 4L Temperature
Measured - e Gas
Temperature i Gas Fire —»Heat
Flow-rate ~ Heat —»Loss
[ > Input
| —»  C
| > Thermometer
Fig. 1.6 Room temperature control system.
Outside
Temperature
Gas Heat I_nsula-
Error Control Flow-rate | ogg | tion Actual
. ; ; (m°/s)
Desired Signal Signal (W)\ Temperature
Temperature| Potentio-|  + (V) (V)| Gas Gas _ (°C)
—» meter —>®—> Controller —p{ Solenoid —» Burner —>®—> Room P>
(°C) (V) _ Valve +
Heat
Input
(W)
Thermometer |4

\

Fig. 1.7 Block diagram of room temperature control system.
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A detailed block diagram is shown in Figure 1.7. The physical values of the signals
around the control loop are shown in brackets.

Steady conditions will exist when the actual and desired temperatures are the same,
and the heat input exactly balances the heat loss through the walls of the building.

The system can operate in two modes:

(a) Proportional control: Here the linear movement of the valve stem is proportional to
the error. This provides a continuous modulation of the heat input to the room
producing very precise temperature control. This is used for applications where temp-
erature control, of say better than 1°C, is required (i.e. hospital operating theatres,
industrial standards rooms, etc.) where accuracy is more important than cost.

(b) On—off control: Also called thermostatic or bang-bang control, the gas valve is
either fully open or fully closed, i.e. the heater is either on or off. This form of
control produces an oscillation of about 2 or 3°C of the actual temperature
about the desired temperature, but is cheap to implement and is used for low-cost
applications (i.c. domestic heating systems).

1.3.2 Aircraft elevator control

In the early days of flight, control surfaces of aircraft were operated by cables
connected between the control column and the elevators and ailerons. Modern
high-speed aircraft require power-assisted devices, or servomechanisms to provide
the large forces necessary to operate the control surfaces.

Figure 1.8 shows an elevator control system for a high-speed jet.

Movement of the control column produces a signal from the input angular sensor
which is compared with the measured elevator angle by the controller which generates
a control signal proportional to the error. This is fed to an electrohydraulic servovalve
which generates a spool-valve movement that is proportional to the control signal,

Desired
Angle Elevator

Output Angular
Sensor

" Control Control/Signal

Column

Actual
Angle

Controller

Angular
Sensor Measured Angle /

Hydraulic Electrohydraulic
Cylinder Servovalve

Fig. 1.8 Elevator control system for a high-speed jet.
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Fluid
Desired Error Control Flows-rate Hydraulic Actual
Angle Signal Signal (m/s) Force Angle
(deg) | Input |(V)+_ (V) M | servo —1(N) (deg)
. - Hydraulic ~
— gggtsjl)arr —>(X)—>| Controller —» a1 ] Cylinder || Elevator >

Output
Angular
Sensor

A

V)

Fig. 1.9 Block diagram of elevator control system.

thus allowing high-pressure fluid to enter the hydraulic cylinder. The pressure differ-
ence across the piston provides the actuating force to operate the elevator.

Hydraulic servomechanisms have a good power/weight ratio, and are ideal for
applications that require large forces to be produced by small and light devices.

In practice, a ‘feel simulator’ is attached to the control column to allow the pilot to
sense the magnitude of the aerodynamic forces acting on the control surfaces, thus
preventing excess loading of the wings and tail-plane. The block diagram for the
elevator control system is shown in Figure 1.9.

1.3.3 Computer Numerically Controlled (CNC) machine tool

Many systems operate under computer control, and Figure 1.10 shows an example of
a CNC machine tool control system.

Information relating to the shape of the work-piece and hence the motion of the
machine table is stored in a computer program. This is relayed in digital format, in a
sequential form to the controller and is compared with a digital feedback signal from
the shaft encoder to generate a digital error signal. This is converted to an analogue

Computer
Controller Machine Table Movement
—
Shaft
Encoder
Computer 565 565 _
Program DC-Servomotor 7777 /777 5
_’I>—> TS F A Dty Loy 7] ettt B
Lead-Screw X
i Bearing U
Digital Power
- Controller Amplifier Tachogenerator
Digital Positional Feedback
r Analogue Velocity Feedback

Fig. 1.10 Computer numerically controlled machine tool.
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Digital
Desired Position . . Control Actual Actual
Digital Signal Torque Velocity Position
Error (V) Nm (m/s) (m)
L V) DC :
Computer| + Digital + Power Machine
Program [ >&™ Controller Amplifier [ SEIVO =¥ ropjg Integrator

Analogue Tacho-
Velocity Feedback generator

Digital Positional | Shaft
Feedback | Encoder

A

Fig. 1.11 Block diagram of CNC machine-tool control system.

control signal which, when amplified, drives a d.c. servomotor. Connected to the
output shaft of the servomotor (in some cases through a gearbox) is a lead-screw to
which is attached the machine table, the shaft encoder and a tachogenerator. The
purpose of this latter device, which produces an analogue signal proportional to
velocity, is to form an inner, or minor control loop in order to dampen, or stabilize
the response of the system.

The block diagram for the CNC machine tool control system is shown in Figure 1.11.

1.3.4 Ship autopilot control system

A ship autopilot is designed to maintain a vessel on a set heading while being
subjected to a series of disturbances such as wind, waves and current as shown in
Figure 1.3. This method of control is referred to as course-keeping. The autopilot can
also be used to change course to a new heading, called course-changing. The main
elements of the autopilot system are shown in Figure 1.12.

The actual heading is measured by a gyro-compass (or magnetic compass in a
smaller vessel), and compared with the desired heading, dialled into the autopilot by
the ship’s master. The autopilot, or controller, computes the demanded rudder angle
and sends a control signal to the steering gear. The actual rudder angle is monitored
by a rudder angle sensor and compared with the demanded rudder angle, to form a
control loop not dissimilar to the elevator control system shown in Figure 1.8.

The rudder provides a control moment on the hull to drive the actual heading
towards the desired heading while the wind, waves and current produce moments that
may help or hinder this action. The block diagram of the system is shown in Figure 1.13.

Desired Heading Actual rudder-angle

Auto-pilot Steering-gear

Gyro-coerbés‘S‘ .

VXY —ol.
_tu_aI_Héa_dl_n_q@D ___ [ D 0 _._‘.::’._.:_._._. ...............
SAAVAN Demanded rudder-angle
Measured rudder-angle

A

Fig. 1.12 Ship autopilot control system.
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Actual Disturbance

. Course Demanded Rudder Mc:\lment Actual
Desired Error Rudder Angle (Nm) Hoadi
Heading ) : Angle (deg) [Rudder (edae |;19
(deg) Potentio-| * Autopilot | * Steering] + ¥ - 9

—P Charact- —Ng}—b Hull >

meter v (Controller) | Gear a
(V) (V)4 eristics |
Rudder Rudder
Angle Moment
Sensor (Nm)
Measured Gyro- P
Heading (V) Compass

Fig. 1.13 Block diagram of ship autopilot control system.

1.4 Summary

In order to design and implement a control system the following essential generic
elements are required:

Knowledge of the desired value: Tt is necessary to know what it is you are trying to
control, to what accuracy, and over what range of values. This must be expressed
in the form of a performance specification. In the physical system this information
must be converted into a form suitable for the controller to understand (analogue
or digital signal).

Knowledge of the output or actual value: This must be measured by a feedback
sensor, again in a form suitable for the controller to understand. In addition, the
sensor must have the necessary resolution and dynamic response so that the
measured value has the accuracy required from the performance specification.
Knowledge of the controlling device: The controller must be able to accept meas-
urements of desired and actual values and compute a control signal in a suitable
form to drive an actuating element. Controllers can be a range of devices, including
mechanical levers, pneumatic elements, analogue or digital circuits or microcomputers.
Knowledge of the actuating device: This unit amplifies the control signal and
provides the ‘effort’ to move the output of the plant towards its desired value. In
the case of the room temperature control system the actuator is the gas solenoid valve
and burner, the ‘effort” being heat input (W). For the ship autopilot system the
actuator is the steering gear and rudder, the ‘effort’ being turning moment (Nm).
Knowledge of the plant: Most control strategies require some knowledge of the
static and dynamic characteristics of the plant. These can be obtained from
measurements or from the application of fundamental physical laws, or a com-
bination of both.

1.4.1 Control system design

With all of this knowledge and information available to the control system designer,
all that is left is to design the system. The first problem to be encountered is that the
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Define System
Performance
Specification

v

Identify System
Components

r

Model Behaviour Select

of Plant and Alternative
System Components
Components

A

No

Is Component

Response Acceptable?
Yes

Define Control
Strategy

<
<

Simulate Modify
System Control
Response Strategy
A

No

Does Simulated
Response Meet

Performance Specification? Yes

Implement
Physical System

Measure System Modify Control
Response Strategy
No
Does System
Yes

Response Meet
Performance Specification?

Fig. 1.14 Steps in the design of a control system.
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knowledge of the system will be uncertain and incomplete. In particular, the dynamic
characteristics of the system may change with time (time-variant) and so a fixed
control strategy will not work. Due to fuel consumption for example, the mass of an
airliner can be almost half that of its take-off value at the end of a long haul flight.

Measurements of the controlled variables will be contaminated with electrical
noise and disturbance effects. Some sensors will provide accurate and reliable data,
others, because of difficulties in measuring the output variable may produce highly
random and almost irrelevant information.

However, there is a standard methodology that can be applied to the design of
most control systems. The steps in this methodology are shown in Figure 1.14.

The design of a control system is a mixture of technique and experience. This book
explains some tried and tested, and some more recent approaches, techniques and
methods available to the control system designer. Experience, however, only comes
with time.



System modelling

2.1 Mathematical models

If the dynamic behaviour of a physical system can be represented by an equation, or
a set of equations, this is referred to as the mathematical model of the system. Such
models can be constructed from knowledge of the physical characteristics of the
system, i.e. mass for a mechanical system or resistance for an electrical system.
Alternatively, a mathematical model may be determined by experimentation, by
measuring how the system output responds to known inputs.

2.2 Simple mathematical model of a motor vehicle

Assume that a mathematical model for a motor vehicle is required, relating the accel-
erator pedal angle 6 to the forward speed u, a simple mathematical model might be

u(t) = ab(t) (2.1)

Since u and 6 are functions of time, they are written u(¢) and 6(¢). The constant a
could be calculated if the following vehicle data for engine torque 7, wheel traction
force F, acrodynamic drag D were available

T = b(t) (2.2)
F=cT (2.3)
D = du(?) (2.4)

Now aerodynamic drag D must equal traction force F

D=F
du(t) = cT
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Forward
Speed
u()
(m/s)

Accelerator angle 6(t) (degrees)
Fig. 2.1 Vehicle forward speed plotted against accelerator angle.

from (2.2)
du(t) = cbo(1)

giving
u(t) = (%) 0(¢) (2.5)

Hence the constant for the vehicle is

. (%) 2.6)

If the constants b, ¢ and d were not available, then the vehicle model could be
obtained by measuring the forward speed u(r) for a number of different accelerator
angles 0(¢) and plotting the results, as shown in Figure 2.1.

Since Figure 2.1 shows a linear relationship, the value of the vehicle constant « is
the slope of the line.

2.3 More complex mathematical models

Equation (2.1) for the motor vehicle implies that when there is a change in accelerator
angle, there is an instantaneous change in vehicle forward speed. As all car drivers
know, it takes time to build up to the new forward speed, so to model the dynamic
characteristics of the vehicle accurately, this needs to be taken into account.

Mathematical models that represent the dynamic behaviour of physical systems
are constructed using differential equations. A more accurate representation of the
motor vehicle would be

e% + fu = g6(¢) 2.7)

Here, du/dt is the acceleration of the vehicle. When it travels at constant velocity, this
term becomes zero. So then
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Su(r) = g6(1)
u(t) = </§) 0(1) 2:8)

Hence (g/f) is again the vehicle constant, or parameter a in equation (2.1)

2.3.1 Differential equations with constant coefficients

In general, consider a system whose output is x(z), whose input is y(¢) and contains
constant coefficients of values a, b, ¢, ..., z. If the dynamics of the system produce a
first-order differential equation, it would be represented as

dx
X + bx = cy(?) 2.9)

a

If the system dynamics produced a second-order differential equation, it would be
represented by
d’x b dx
G h
dr dr
If the dynamics produce a third-order differential equation, its representation
would be

+ cx = ey(t) (2.10)

dx d’x dx
a——+b +c—

a5 a7 dz + ex = fy(?) (2.11)

Equations (2.9), (2.10) and (2.11) are linear differential equations with constant
coefficients. Note that the order of the differential equation is the order of the highest
derivative. Systems described by such equations are called linear systems of the same
order as the differential equation. For example, equation (2.9) describes a first-order
linear system, equation (2.10) a second-order linear system and equation (2.11) a
third-order linear system.

2.4 Mathematical models of mechanical systems

Mechanical systems are usually considered to comprise of the linear lumped para-
meter elements of stiffness, damping and mass.

2.4.1 Stiffness in mechanical systems

An elastic element is assumed to produce an extension proportional to the force (or
torque) applied to it.
For the translational spring

Force < Extension

15
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(a) Translational Spring (b) Rotational Spring

Fig. 2.2 Linear elastic elements.

If xi(#) > x,(¢), then
P(1) = K(xi(1) — xo(1)) (2.12)
And for the rotational spring
Torque o< Twist
If 6i(r) > 0,(¢), then
T(1) = K(6i(1) — 00(1)) (2.13)

Note that K, the spring stiffness, has units of (N/m) in equation (2.12) and (Nm/rad)
in equation (2.13).

2.4.2 Damping in mechanical systems

A damping element (sometimes called a dashpot) is assumed to produce a velocity
proportional to the force (or torque) applied to it.
For the translational damper

Force «x Velocity

P(1) = Cv(1) = cdgt" (2.14)
And for the rotational damper
Torque < Angular velocity
T(t) = Cuw(t) = Cdde; (2.15)
i
c P(Y)
| —>
e N —— )
|
— » T(1) I;, w(h)
(a) Translational Damper (b) Rotational Damper

Fig. 2.3 Linear damping elements.
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Note that C, the damping coefficient, has units of (Ns/m) in equation (2.14) and
(Nm s/rad) in equation (2.15).

2.4.3 Mass in mechanical systems

The force to accelerate a body is the product of its mass and acceleration (Newton’s
second law).
For the translational system

Force o< Acceleration

d d’
P(t) = ma(t) = md—‘; =m dt)go (2.16)
For the rotational system
Torque < Angular acceleration
dw,  d%
T(1) = To(1) = 1% -1 2.17)

In equation (2.17) I is the moment of inertia about the rotational axis.

When analysing mechanical systems, it is usual to identify all external forces by
the use of a ‘Free-body diagram’, and then apply Newton’s second law of motion in
the form:

Z F = ma for translational systems
or
Z M = I« for rotational systems (2.18)

Example 2.1

Find the differential equation relating the displacements x;j(f) and x,(f) for the
spring—mass—damper system shown in Figure 2.5. What would be the effect of
neglecting the mass?

P a(t)

(a) Translational Acceleration (b) Angular Acceleration

Fig. 2.4 Linear mass elements.

17
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K
4_, Spring m |

(0 Damper
X,(f)
Fig. 2.5 Spring—mass—damper system.
dx,
K(x —x,) ¢—— m —> Cﬁ

Fig. 2.6 Free-body diagram for spring—mass—damper system.

Solution

Using equations (2.12) and (2.14) the free-body diagram is shown in Figure 2.6.

From equation (2.18), the equation of motion is

Z Fy = ma,

dx, d’x,
K(xi — x,) — CW:m iz
d’x, dx,
KXi — KXO = WIW ?
Putting in the form of equation (2.10)
d*x dx
m dtzo + Cd—lo + Kx, = Kx;(1)

Hence a spring—mass—damper system is a second-order system.

If the mass is zero then

ZF\ZO

dx
K(xi—x,)—C dto =0
dx
Kx; — Kx, =C dlo
Hence
dx,
C + Kx, = Kxi(1)

d¢

Thus if the mass is neglected, the system becomes a first-order system.

(2.19)

(2.20)
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Torque T(1) c Angular velocity
/\‘_gz _______ _’____@__%f\«”w

Y Y

Fig. 2.7 Flywheelin bearings.

Example 2.2

A flywheel of moment of inertia 7 sits in bearings that produce a frictional moment of
C times the angular velocity w(#) of the shaft as shown in Figure 2.7. Find the
differential equation relating the applied torque 7'(¢) and the angular velocity w(?).

Solution
From equation (2.18), the equation of motion is

ZM:Ia

dw
() - Co=1g
li—f + Cw=T() 2.21)

Example 2.3

Figure 2.8 shows a reduction gearbox being driven by a motor that develops a torque
T (). It has a gear reduction ratio of ‘n” and the moments of inertia on the motor
and output shafts are I, and I, and the respective damping coefficients Cp, and C,.
Find the differential equation relating the motor torque 7},(7) and the output angular
position 6,(¢).

a and b are the pitch circle radii
I, Cn of ?hg gears. Hence gear reduction
] ] ratio is n=bla

\
pasps=
T ¥on | | .

|—|I

Il
— ==

0,(1)
lo M e

I
e

Fig. 2.8 Reduction gearbox.
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Motor Shaft

X(t) = Gear tooth Output Shaft
reaction force

Fig. 2.9 Free-body diagrams for reduction gearbox.

Gearbox parameters
Im = 5% 10 %kgm?
I, = 0.01 kgm’
Cm = 60 x 107® Nms/rad
Co, = 0.15Nm s/rad
n=150:1

Solution
The free-body diagrams for the motor shaft and output shaft are shown in Figure 2.9.
Equations of Motion are

(1) Motor shaft

d*0,
E M = ImF
d*0p

b,
T(1) = G = aX(0) = I~ 3"

dt

re-arranging the above equation,

1 d%0,, do,,
X(1) = - (Tm(t) — I T Cn W) (2.22)
(2) Output shaft
d’6,,
M =1I,——>
Z dtz
2
px(e)— ¢, 3% _j 4%

dr ° de
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re-arranging the above equation,

L/, &%,  db,
X(1) = b <10 T +Co W) (2.23)

Equating equations (2.22) and (2.23)

d%o, de,

b
= (’0 TG E)

a

d%0,, dby,
(Tm(t) - Im W - Cm W)

Kinematic relationships

D () = o)

a

doy _ db,
dr 7 dr

4’0, d%0,
az "ag

Hence

d*e, do, d?e, do,
n (Tm(l) — nImF — I’lcm E) = (10 W + Co E)

giving the differential equation

2

d’, db,
(Io + n’In) 2 T (Gt n*Cn) 3 = "Tn() (2.24)

The terms (I, 4+ n°I,) and (C, + n*>Cy,) are called the equivalent moment of inertia I,
and equivalent damping coefficient C. referred to the output shaft.
Substituting values gives

I, = (0.01 + 50% x 5 x 107%) = 0.0225 kg m?
Ce = (0.15+ 50% x 60 x 107) = 0.3 Nm s/rad

From equation (2.24)

2
d0, + 0.3d9°

0.0225
dr? dr

= 50T (1) (2.25)

2.5 Mathematical models of electrical systems

The basic passive elements of electrical systems are resistance, inductance and capa-
citance as shown in Figure 2.10.

21
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—> (1)
(a) Resistance

v,(D) L vo(1)
0000000000000000000000

—> (1)
(b) Inductance

V(1) I I c vo(1)
—> ()
(c) Capacitance

Fig. 2.10 Passive elements of an electrical system.

For a resistive element, Ohm’s Law can be written
(v1(2) — va(1)) = Ri(2)

For an inductive element, the relationship between voltage and current is

di
dt
For a capacitive element, the electrostatic equation is
(1) = C(ri (1) — va(1))
Differentiating both sides with respect to ¢

f%:mozcémm—h@)

Note that if both sides of equation (2.28) are integrated then

(1)~ 1a(0) = o / idi

(@) =wm@)=L

Example 2.4

(2.26)

(2.27)

(2.28)

(2.29)

Find the differential equation relating v;(¢) and v,(¢) for the RC network shown in

Figure 2.11.

Solution
From equations (2.26) and (2.29)

vi(0) = va(t) = Ri(7)

nm:%/m:

(2.30)
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R
v ity c = vo(f)

Fig. 2.11 RCnetwork.

or
C% =i(t) (2.31)
substituting (2.31) into (2.30)
vi() = wa(t) = RC% (2.32)
Equation (2.32) can be expressed as a first-order differential equation
RC% + v = () (2.33)

Example 2.5
Find the differential equations relating v;(¢) and v,(¢) for the networks shown in
Figure 2.12.

R L
—1 e
vy (D r\ cL AU
i(t)

<

(a)
i (0)+ (D) R, R,
— 1} {
N
—
vi(f) () C,T vy(h) i C, T vo(f)

v

(b)

Fig. 2.12 Electrical networks.
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Solution for Network (a) Figure 2.12
From equations (2.26), (2.27) and (2.29)

v (f) — va(f) = Ri(?) + L9

dr
. (2.34)
n(t) = Ie / idt
or
dV2
2 2.
C T i(1) (2.35)
substituting (2.35) into (2.34)
dV2 d de
() — wn(t) = RCw +L <C dl)
or
() = a(1) = RC% n LC‘LV2 (2.36)
Equation (2.36) can be expressed as a second-order differential equation
Lcd2 +RC%+V i (0) 2.37)
Solution for Network (b) Figure 2.12
System equations
vi() = v3(t) = Ry (i1 (1) + 02(1)) (2.38)
1 ) dvs
v3(t) = F/ iidt or C1 =11(7) (2.39)
1
v3(1) — v2(1) = Roix(1) (2.40)
1 [, dv, .
va(t) = a/ irdt or Czd—; = ir() (2.41)
From equation (2.40)
v3(0) = Roia (1) + va ()
Substituting for () using equation (2.41)
dv,
v3(t) = RyCr—— —|— va(t) (2.42)

dr
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Hence from equations (2.42) and (2.39)

d dv,
i) =Cr— & {chz T Vz(l)}

d d\)z

=R CiCr—= a7 +C1 dz (2.43)
Substituting equations (2.41), (2.42) and (2.43) into equation (2.38)
dv d?y dv, dv
vi(1) — {chzd—t2+ Vz(l)} = {R2C1C2 a2 2+ O o TG d:}
which produces the second-order differential equation
dZ

RIR,C\(Cy— a7 —|—(R C +R1C2+R2C2)—+V2 =vi(t) (2.44)

2.6 Mathematical models of thermal systems

It is convenient to consider thermal systems as being analogous to electrical systems
so that they contain both resistive and capacitive elements.

2.6.1 Thermal resistance Ry

Heat flow by conduction is given by Fourier’s Law
KA, — 62)
¢

The parameters in equation (2.45) are shown in Figure 2.13. They are

Or = (2.45)

(6, — 6,) = Temperature differential (K)
A = Normal cross sectional area (m?)
¢ = Thickness (m)
K = Thermal conductivity (W/mK)
Ot = Heat flow (J/s = W)

04 Qr

L

Fig. 2.13 Heat flow through a flat plate.
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Equation (2.45) can be written in the same form as Ohm’s Law (equation (2.26))
(01(1) — 02(1)) = RrQ1(1) (2.46)

where Rt is the thermal resistance and is

14
2.6.2 Thermal capacitance Cy
The heat stored by a body is
H(t) = mC,0(1) (2.48)
where
H = Heat (J)
m = Mass (kg)

C, = Specific heat at constant
pressure (J/kg K)
0 = Temperature rise (K)

If equation (2.48) is compared with the electrostatic equation

o) = Cv(1) (2.49)
then the thermal capacitance Cr is

Cr =mCy (2.50)

To obtain the heat flow Qr, equation (2.48) is differentiated with respect to time

dH de
or
dg
or(t) = Cry, (2.52)

Example 2.6

Heat flows from a heat source at temperature 6;(¢) through a wall having ideal
thermal resistance Rt to a heat sink at temperature 6,(¢) having ideal thermal
capacitance Ct as shown in Figure 2.14. Find the differential equation relating
01(¢) and 65(¢).

Solution
(1) Wall: From equation (2.46)

(01(1) — 02(0))

Or() =1

(2.53)
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Wall
N
Heat
Source Heat
61(1) Sink Oa(t)
Cr
v
Fig. 2.14 Heat transfer system.
(2) Heat sink: From equation (2.52)
de
0r(n) = Crg (2.54)

Equating equations (2.53) and (2.54)
()~ 0x(1) _ ., dby

C
Rt T dt
Re-arranging to give the first-order differential equation
dé
RTch—t2 + 6, = 0,(1) (2.55)

2.7 Mathematical models of fluid systems

Like thermal systems, it is convenient to consider fluid systems as being analogous to
electrical systems. There is one important difference however, and this is that the
relationship between pressure and flow-rate for a liquid under turbulent flow condi-
tions is nonlinear. In order to represent such systems using linear differential equa-
tions it becomes necessary to linearize the system equations.

2.7.1 Linearization of nonlinear functions for small
perturbations

Consider a nonlinear function Y = f(x) as shown in Figure 2.15. Assume that it is
necessary to operate in the vicinity of point @ on the curve (the operating point)
whose co-ordinates are X, Y.

For the small perturbations AX and AY about the operating point « let

AX = x

2.56
AY =y (2.56)

27
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If the slope at the operating point is

dy
dx

a
then the approximate linear relationship becomes
_dYy

YT ax

x (2.57)

Example 2.7

The free-body diagram of a ship is shown in Figure 2.16. It has a mass of 15 x 10°kg
and the propeller produces a thrust of K, times the angular velocity n of the propeller,
K, having a value of 110 x 10° Ns/rad. The hydrodynamic resistance is given by the
relationship R = C, V2, where C, has a value of 10,000 Ns?/m?. Determine, using
small perturbation theory, the linear differential equation relating the forward speed
v(¢) and propeller angular velocity n(f) when the forward speed is 7.5m/s.

Solution
Linearize hydrodynamic resistance equation for an operating speed V, of 7.5m/s.

R=CyV?
dRr
av = 2C,V
dR
—| =2C\V,
dv|, ¢
=2x 10000 x 7.5
dR
il = C = 150000 Ns/m
Y
AY
i Y = f(x)
Ya .............................................................. 5 2 Approximate Iinear
relationship
S S PR
X, X

Fig. 2.15 Linearization of a nonlinear function.



System modelling 29

X,V,a,
m
T=K,n
—> «—
R=C,V?
Fig. 2.16 Free-body diagram of ship.
Hence the linear relationship is
R=Cv (2.58)
Using Newton’s second law of motion
Z Fy = may
dv
T—R=m—
T
dv
K,n—Cv= ma
dv
m—+ Cv=K,n (2.59)
dz
Substituting values gives
d
(15 x 106)d—:+ (150 x 10%)y = (110 x 10*)n(?) (2.60)

Example 2.8
In Figure 2.17 the tank of water has a cross-sectional area 4, and under steady
conditions both the outflow and inflow is ¥, and the head is H,,.

(a) Under these conditions find an expression for the linearized valve resistance Ry
given that flow through the valve is

V = A4,Cq\/2gH,

where

V = volumetric flow-rate (m?/s)
A, = valve flow area (m?)
C4 = coefficient of discharge

g = acceleration due to gravity (m/s’)
H = head across the valve (m)
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(b) If the steady value of the head H, is 1.5m, what is the valve resistance Ry when

A, = 15x 1073 m?
g=9.81m/s?
Cy=0.6

(c) If the inflow now increases an amount v; producing an increase in head / and an
increase in outflow v,, find the differential equation relating v; and v, when the
tank cross-sectional area A is 0.75m?.

Solution

(a) Flow through the valve is given by

V = A,Cy\/2gH

now

ar

dH

av
dH|,

The linearized relationship is

hence

= A,C4(29)"? x 0.5H, >

= AVCd = —

2H, h

h = RfV2

Fig. 2.17 Tank and valve system.

2.61)
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(b) Inserting values gives

R 1 2% 1.5
f T 15x 103 x 0.6V 981

Ry = 61.45s/m? (2.62)

(c) Tank (Continuity Equation)

Inflow — Outflow = A d—h

dt
dh
(Va + Vl) - (Va + VZ) = Aa
dh
—v=A— 2.63
Vi — T (2.63)
Valve (Linearized Equation)
h= Rsz
and
dh de
=R = 2.64
dt Tdr 2.64)
Substituting equation (2.64) into equation (2.63)
dV2
vy — AR —2
Vi—W"n f dr
giving
dV2
AR{‘E + vy = vi(2) (2.65)
Inserting values gives
d
46.09% vy = ni(0) (2.66)

2.8 Further problems

Example 2.9

A solenoid valve is shown in Figure 2.18. The coil has an electrical resistance of 4 €2,
an inductance of 0.6 H and produces an electromagnetic force F.(¢) of K. times the
current (). The valve has a mass of 0.125kg and the linear bearings produce
a resistive force of C times the velocity u(z). The values of K. and C are 0.4 N/A
and 0.25 Ns/m respectively. Develop the differential equations relating the voltage
v(¢) and current i(¢) for the electrical circuit, and also for the current i(z) and velocity
u(t) for the mechanical elements. Hence deduce the overall differential equation
relating the input voltage v(¢) to the output velocity u(z).
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u(t) R.LK,

+— X nNnnAnnn K
< Fo(0)
4—

m ) ) (VAW N
7 A c

()

V()

Fig. 2.18 Solenoid valve.
Solution

L%JrRi =w(?)

du .
m + Cu = K.i(t)

d*u du

Example 2.10

The laser-guided missile shown in Figure 2.19 has a pitch moment of inertia of
90kgm?. The control fins produce a moment about the pitch mass centre of
360 Nm per radian of fin angle 5(¢). The fin positional control system is described
by the differential equation

o.z% + B(1) = u(h)

where u(t) is the control signal. Determine the differential equation relating the
control signal u(z) and the pitch angle 6(¢).

Solution

e _d%

Fig. 2.19 Laser-guided missile.
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Fig. 2.20 Torsional spring—mass—damper system.

Example 2.11

A torsional spring of stiffness K, a mass of moment of inertia 7 and a fluid damper
with damping coefficient C are connected together as shown in Figure 2.20. If the
angular displacement of the free end of the spring is #;(¢) and the angular displace-
ment of the mass and damper is 6,(7), find the differential equation relating 6;(¢) and
0,(1) given that

I =2.5kgm?
C =12.5Nms/rad
K =250 Nm/rad

Solution

d%0, de,
2. 12.5—22 4+ 2506, = 2500
5 AT 5 T 500, 506;(7)

Example 2.12
A field controlled d.c. motor develops a torque 7y, (¢) proportional to the field current
ir(f). The rotating parts have a moment of inertia 7 of 1.5kgm? and a viscous
damping coefficient C of 0.5 Nm s/rad.

When a current of 1.0 A is passed through the field coil, the shaft finally settles
down to a steady speed w,(#) of Srad/s.

(a) Determine the differential equations relating i¢(f) and wq(?).
(b) What is the value of the coil constant K., and hence what is the torque developed
by the motor when a current of 0.5 A flows through the field coil?

Solution

dw,
1
(a) T

(b) K. =2.5Nm/A. T = 1.25Nm

+ Cw, = K.i(2)
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R
1] ¥
V(0 cT ()
N RZ A
L
Fig. 2.21 Passive RC network.
Oven
v(?) Qo yr
Burner 01
Ry

Fig. 2.22 Drying oven.

Example 2.13
Figure 2.21 shows a passive electrical network. Determine the differential equation

relating v (¢) and vy (7).

Solution

dV2
R _ =
1C T + <

R+ Ry
R

) vy = vi(1)

Example 2.14
A drying oven which is constructed of firebrick walls is heated by an electrically
operated gas burner as shown in Figure 2.22. The system variables and constants are
v1(¢) = burner operating voltage (V)

Qi(t) = heat input to oven (W)

0,(¢) = internal oven temperature (K)

0s(t) = temperature of surroundings (K)

K = burner constant = 2000 W/V
Rt = thermal resistance of walls = 0.5 x 10~ min K/J

Ct = oven thermal capacitance = 1 x 10*7J /K

Find the differential equation relating v;(¢), 6,(f) and 64(¢).

Solution

dé,
SW + 00 = V](t) + QS(Z)



Time domain analysis

3.1 Introduction

The manner in which a dynamic system responds to an input, expressed as a function
of time, is called the time response. The theoretical evaluation of this response is said
to be undertaken in the time domain, and is referred to as time domain analysis. It is
possible to compute the time response of a system if the following is known:

e the nature of the input(s), expressed as a function of time
e the mathematical model of the system.

The time response of any system has two components:

(a) Transient response: This component of the response will (for a stable system)
decay, usually exponentially, to zero as time increases. It is a function only of the
system dynamics, and is independent of the input quantity.

(b) Steady-state response: This is the response of the system after the transient
component has decayed and is a function of both the system dynamics and the
input quantity.

X,(t)
Transient Period x(t)

< X(t)

Steady-State Error

Transient
Error

Steady-State Period

L

Fig. 3.1 Transient and steady-state periods of time response.
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The total response of the system is always the sum of the transient and steady-state
components. Figure 3.1 shows the transient and steady-state periods of time
response. Differences between the input function xi() (in this case a ramp function)
and system response x,(#) are called transient errors during the transient period, and
steady-state errors during the steady-state period. One of the major objectives of
control system design is to minimize these errors.

3.2 Laplace transforms

In order to compute the time response of a dynamic system, it is necessary to solve
the differential equations (system mathematical model) for given inputs. There are
a number of analytical and numerical techniques available to do this, but the one
favoured by control engineers is the use of the Laplace transform.

This technique transforms the problem from the time (or 7) domain to the Laplace
(or 5) domain. The advantage in doing this is that complex time domain differential
equations become relatively simple s domain algebraic equations. When a suitable
solution is arrived at, it is inverse transformed back to the time domain. The process
is shown in Figure 3.2.

The Laplace transform of a function of time f{) is given by the integral

ZLIf(0] = /0 f(e™dr = F(s) 3.1

where s is a complex variable o £ jw and is called the Laplace operator.

s Domain F(s)

> Algebraic
equations
Laplace g
Transform .
, Inverse ~
Z1fit)=Fs) Laplace 2 FA)]=f)
Transform
Time Domain f(t)
Differential <

equations

Fig. 3.2 The Laplace transform process.
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3.2.1 Laplace transforms of common functions

Example 3.1
f(t) =1 (called a unit step function).

Solution
From equation (3.1)

ZLLA(0] = F(s) = /0 S le s

= [_l(e—sf)]
s 0

= {—1(0— 1)} _1 (3.2)
N N

Example 3.2
fay=c

LU = F(s) = /0 " eatgsigy

00
_ / ef(SJru)tdt
0
00
e (s+a)t)
s + a 0

— (0 —1)}
S+Cl

(3.3)

Table 3.1 gives further Laplace transforms of common functions (called Laplace
transform pairs).

3.2.2 Properties of the Laplace transform

(a) Derivatives: The Laplace transform of a time derivative is

dtnf (1) = "F(s) = f(0)"" = f'(0)s" > — - - (3.4)

where £{(0), //(0) are the initial conditions, or the values of f(¢), d/dz f(¢) etc. at 1 = 0
(b) Linearity

LN £ /(0] = Fi(s) £ Fa(s) (3.5)
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Table 3.1 Common Laplace transform pairs

Time function f(t) Laplace transform £ f(¢)] = F(s)
1 unit impulse 4(¢) 1
2 unit step 1 /s
3 unit ramp ¢ 1/s?
n!
4 lll F
—at 1
S (s+a)
—at a
6 1-e s(s + a)
7  sinwt MLM
8 coswt 2 jwz
9 e “sinwt +
(s + a)” + w?
_at a . A
10 e “(coswt — ;sm wt) m
(c) Constant multiplication
ZLlaf (1] = aF(s) (3.6)
(d) Real shift theorem
LIft—T)=e TF(s) for T>0 (3.7)
(e) Convolution integral
t
| At = ndr = FoF (3.8)
0
(f) Initial value theorem
J0) =lim [ /()] = lim [sF(s)] (3.9)
(g) Final value theorem
f(e0) = lim [f(D] = lim [sF(s)] (3.10)

3.2.3 Inverse transformation

The inverse transform of a function of s is given by the integral

f(ty=27'[F(s)] = 2% / U'ﬂw F(s)e’ds (3.11)
o—Jw
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In practice, inverse transformation is most easily achieved by using partial fractions
to break down solutions into standard components, and then use tables of Laplace
transform pairs, as given in Table 3.1.

3.2.4 Common partial fraction expansions

(1) Factored roots
K A4 N B
ss+a) s (s+a)

(3.12)

(i) Repeated roots

K A B C

—=—+4+—=4+— 3.13
$2(s + a) s+s2+(s+a) (3.13)

(iii) Second-order real roots (h> > 4ac)

K B K 7é+ B n C
s(as? +bs+c¢) ss+d)(s+e) s (s+d) (s+e)

(iv) Second-order complex roots (b> < 4ac)

K 4 Bs+C
s(as> +bs+c¢) s as>+bs+c

Completing the square gives

A Bs+C
—t (3.14)
S (s+a)y 4w

Note: In (iii) and (iv) the coefficient a is usually factored to a unity value.

3.3 Transfer functions

A transfer function is the Laplace transform of a differential equation with zero
initial conditions. It is a very easy way to transform from the time to the s domain,
and a powerful tool for the control engineer.

Example 3.3
Find the Laplace transform of the following differential equation given:

(a) initial conditions x, = 4, dx,/dt =3
(b) zero initial conditions
d’x, dx

W+3d—;+2x0:5
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Fig. 3.3 The transfer function approach.

Solution
(a) Including initial conditions: Take Laplace transforms (equation (3.4), Table 3.1).

(52 Xo(s) — 4s — 3) + 3(sXo(s) — 4) + 2Xo(s) = g

5
S Xo(8) + 35Xo(s) 4+ 2Xo(s) = S+ 4s+3+ 12

54 4s* 415
(52 + 35 + )Xo (s) = DA s
45> + 155+ 5
Xo(s) = ———"7—— 1
e e P (3.15)
(b) Zero initial conditions
Att=0,x,=0,dx,/dt=0.
Take Laplace transforms
5
S Xo(8) + 35Xo(5) + 2Xo(s) = "
5
Xo(s) = (3.16)

s(s2 + 35 +2)
Example 3.3(b) is easily solved using transfer functions. Figure 3.3 shows the general
approach. In Figure 3.3

e Xj(s) is the Laplace transform of the input function.

o X,(s) is the Laplace transform of the output function, or system response.

e G(s) is the transfer function, i.e. the Laplace transform of the differential equation
for zero initial conditions.

The solution is therefore given by
Xo($) = G(s)Xi(s) (3.17)
Thus, for a general second-order transfer function

d’x, dx,
dr? +b dr

(as® + bs + )Xo (s) = KXi(s)

a + cxo = Kxi(?)

Hence

K
Xo(s) = {m}x(s) (3.18)
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X(s) K X(8)

2
as +bs+c

Fig. 3.4 General second-order transfer function.

Xi(s)=5/s 1 X,(S)
—_—

sz+33 +2

Fig. 3.5 Example 3.3(b) expressed as a transfer function.

Comparing equations (3.17) and (3.18), the transfer function G(s) is

K

G(s) = as? +bs+c

(3.19)

which, using the form shown in Figure 3.3, can be expressed as shown in Figure 3.4.
Returning to Example 3.3(b), the solution, using the transfer function approach is
shown in Figure 3.5. From Figure 3.5

5

ol = {F 312

(3.20)

which is the same as equation (3.16).

3.4 Common time domain input functions

3.4.1 The impulse function

An impulse is a pulse with a width Ar — 0 as shown in Figure 3.6. The strength of an
impulse is its area 4, where

A = height & x Ar. (3.21)

The Laplace transform of an impulse function is equal to the area of the function.
The impulse function whose area is unity is called a unit impulse 6(¢).

3.4.2 The step function

A step function is described as xi(?) = B; Xi(s) = B/s for ¢ > 0 (Figure 3.7). For a unit
step function x;(¢) = 1; Xj(s) = 1/s. This is sometimes referred to as a ‘constant
position” input.
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Impulse

x® | /
Pulse
e /

[P
<

At

A
v

Fig. 3.6 Theimpulse function.

x(f)

Fig. 3.7 The step function.

3.4.3 The ramp function

A ramp function is described as x;(r) = Qt; Xi(s) = Q/s* for t > 0 (Figure 3.8). For a
unit ramp function x;(#) = t; X;(s) = 1/s*. This is sometimes referred to as a ‘constant
velocity’ input.

3.4.4 The parabolic function

A parabolic function is described as x;(f) = Kt*; X;(s) = 2K /s> for t > 0 (Figure 3.9).
For a unit parabolic function x;(7) = #3; Xi(s) = 2/s. This is sometimes referred to as
a ‘constant acceleration’ input.
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x(t)

Fig. 3.8 The ramp function.

Fig. 3.9 The parabolic function.

3.5 Time domain response of first-order systems

3.5.1 Standard form

Consider a first-order differential equation

dx,

a& + bxo = cxi(t) (3.22)

a

Take Laplace transforms, zero initial conditions
asXo(s) + bXo(s) = cXi(s)
(as + b)Xo(s) = cXi(s)



44  Advanced Control Engineering

The transfer function is

4

G5) = 12 =

as+b
To obtain the standard form, divide by b
G(s) = —L
) 1+5s
which is written
= .2
) =17y (3.23)

Equation (3.23) is the standard form of transfer function for a first-order system,
where K = steady-state gain constant and 7 = time constant (seconds).

3.5.2 Impulse response of first-order systems

Example 3.4 (See also Appendix 1, examp34.m)
Find an expression for the response of a first-order system to an impulse function of
area A.

Solution
From Figure 3.10

AK AK|T

X =T = G D) (3-24)
or
AK 1

Equation (3.25) is in the form given in Laplace transform pair 5, Table 3.1, so the
inverse transform becomes

AK AK
Xo(l) _ O at _eft/T

e - (3.26)

The impulse response function, equation (3.26) is shown in Figure 3.11.

X (s)=A K X,(s)
1+Ts

Fig. 3.10 Impulse response of a first-order system.
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Fig. 3.11 Response of a first-order system to an impulse function of area A.

3.5.3 Step response of first-order systems

Example 3.5 (See also Appendix 1, examp35.m)
Find an expression for the response of a first-order system to a step function of
height B.

Solution
From Figure 3.12

_ BK 1/T
X =7 = BK (m) (3.27)

Equation (3.27) is in the form given in Laplace transform pair 6 Table 3.1, so the
inverse transform becomes

xo(t) = BK(l e T) (3.28)
If B =1 (unit step) and K = 1 (unity gain) then
Xo(t) = (1 - e”/T) (3.29)

When time ¢ is expressed as a ratio of time constant 7, then Table 3.2 and Figure 3.13
can be constructed.

Table 3.2 Unit step response of a first-order system

t/T 0 025 0.5 0.75 1 1.5 2 2.5 3 4
Xo(f) 0 0221 0393 0.527 0.632 0.770 0.865 0920 0.950 0.980

45
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Xi(S)=B/S K XO(S)

1+Ts

Fig. 3.12 Step response of a first-order system.

3.5.4 Experimental determination of system time constant

using step response

Method one: The system time constant is the time the system takes to reach 63.2% of

its final value (see Table 3.2).

Method two: The system time constant is the intersection of the slope at t = 0 with

the final value line (see Figure 3.13) since

Xo(t)=1—eYT
dxo o 1 7I/T o 1 7[/T
FT (‘?)e =7°
dx 1
d7l0|t:0 :? at t = O

This also applies to any other tangent, see Figure 3.13.

1.2

A
A

A%

306

0.4

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

Number of Time Constants

Fig. 3.13 Unit step response of a first-order system.

(3.30)

(3.31)
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3.5.5 Ramp response of first-order systems

Example 3.6
Find an expression for the response of a first-order system to a ramp function of

slope Q.
Solution
From Figure 3.14
OK _ QOK/T 4 §+ C
S2(1+Ts) s2(s+1/T) s 2 (s+1/T)

Xo(s) = (3.32)

(See partial fraction expansion equation (3.13)). Multiplying both sides by

s2(s 4+ 1/T), we get
0K 1 1 )
ER _ us(s+=) +B(s+=
T S s+T + s+T + Cs

K A B
ie. %T:A§+?s+B&+?+C§ (3.33)
Equating coefficients on both sides of equation (3.33)
(s): 0=A+C (3.34)
A
(s"): 0=7+B (3.35)
0o, QK_B
(s°) : T (3.36)
From (3.34)
C=-4
From (3.36)
B= Q0K
Substituting into (3.35)
A=—-QKT
Hence from (3.34)
C = QKT
X (s)=Q/s’ K X,(s)
- " s [

Fig. 3.14 Ramp response of a first-order system (see also Figure A1.1).
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X,(t) x (1/T)

0 1 2 3 4 5 6 7
Number of Time Constants

Fig. 3.15 Unit ramp response of a first-order system.

Inserting values of 4, B and C into (3.32)

QKT QK QKT

Xo(s) = — + 2 D (3.37)
Inverse transform, and factor out KQ
xo(t) = KQ(t —T+ Te’t/T) (3.38)
If 0 =1 (unit ramp) and K = 1 (unity gain) then
Xo(fy=1—T + Te /T (3.39)

The first term in equation (3.39) represents the input quantity, the second is the
steady-state error and the third is the transient component. When time ¢ is expressed
as a ratio of time constant 7, then Table 3.3 and Figure 3.15 can be constructed. In
Figure 3.15 the distance along the time axis between the input and output, in the
steady-state, is the time constant.

Table 3.3 Unit ramp response of a first-order system

YT 0 1 2 3 4 5 6 7
x0T 0 1 2 3 4 5 6 7
(/T 0 0368 1.135 205 3.018 4007 5 6
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3.6 Time domain response of second-order systems
3.6.1 Standard form

Consider a second-order differential equation

d*x, , dx,
d; + b% ¥ exo = exi(f) (3.40)

Take Laplace transforms, zero initial conditions

a

as> Xo(s) + bsXo(s) + cXo(s) = eXi(s)
(as® + bs + )Xo (s) = eXi(s) (3.41)

The transfer function is

Xo e
G = — =
(s) X; ) as? +bs+c
To obtain the standard form, divide by ¢
G(s) = c
(5) Ty
which is written as
K
G(s 3.42
©) L2+ Es+1 (:42)
This can also be normalized to make the s> coefficient unity, i.e.
K 2
Gls) = - (3.43)

§% + 2¢wns + w2

Equations (3.42) and (3.43) are the standard forms of transfer functions for a second-
order system, where K = steady-state gain constant, w, = undamped natural
frequency (rad/s) and ¢ = damping ratio. The meaning of the parameters w, and ¢
are explained in sections 3.6.4 and 3.6.3.

3.6.2 Roots of the characteristic equation and their
relationship to damping in second-order systems

As discussed in Section 3.1, the transient response of a system is independent of the
input. Thus for transient response analysis, the system input can be considered to be
zero, and equation (3.41) can be written as

(as® + bs + ) Xo(s) = 0
If X,(s) # 0, then
as* +bs+c¢=0 (3.44)
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Table 3.4 Transient behaviour of a second-order system

Discriminant ~ Roots Transient response type
b* > 4dac s1 and s, real Overdamped
and unequal Transient
(—ve) Response
b* = 4ac s1 and s, real Critically
and equal Damped Transient
(—ve) Response
b* < 4dac s1 and s, complex Underdamped
conjugate of the Transient
form: 51,50 = —0c £ jw  Response

This polynomial in s is called the Characteristic Equation and its roots will determine
the system transient response. Their values are

—b £ Vb* —4ac
2a

S1, 82 =

(3.45)

The term (b — 4ac), called the discriminant, may be positive, zero or negative which
will make the roots real and unequal, real and equal or complex. This gives rise to the
three different types of transient response described in Table 3.4.

The transient response of a second-order system is given by the general solution

Xo(f) = Ae"! + Be! (3.46)

This gives a step response function of the form shown in Figure 3.16.

Underdamping (s1and s, complex)

Critical damping
(s, and s, real and equal)

Overdamping
(s, and s, real and unequal)

Fig. 3.16 Effect that roots of the characteristic equation have on the damping of a second-order system.
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3.6.3 Critical damping and damping ratio

Critical damping

When the damping coefficient C of a second-order system has its critical value Cg, the
system, when disturbed, will reach its steady-state value in the minimum time without
overshoot. As indicated in Table 3.4, this is when the roots of the Characteristic
Equation have equal negative real roots.

Damping ratio {

The ratio of the damping coefficient C in a second-order system compared with the
value of the damping coefficient C. required for critical damping is called the
Damping Ratio ¢ (Zeta). Hence

_C 3.47
¢ o (3.47)
Thus

(=0 No damping

¢ <1 Underdamping

¢ =1 Critical damping

¢ >1 Overdamping
Example 3.7

Find the value of the critical damping coefficient C; in terms of K and m for the
spring-mass—damper system shown in Figure 3.17.

F m ) l
l +ve

X,(t)
: l
N A

X,(1)

Lumped Parameter Diagram Free-Body Diagram

(a) (b)

Fig. 3.17 Spring—mass—damper system.

51
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Solution
From Newton’s second law

Z Fx = mx,
From the free-body diagram
F(1) — Kxo(t) — Colt) = miol0)
Taking Laplace transforms, zero initial conditions
F(s) — KXo(s) — CsXo(s) = ms*>Xo(s)
or
(ms®> + Cs + K)Xo(s) = F(s)
Characteristic Equation is

ms>+Cs+K=0

ie. s+ =0

i + N
m m
and the roots are

1]cC Cc\?
S1, 82 = < — =+ (—> —45
2 1m m m

For critical damping, the discriminant is zero, hence the roots become

G
LT o
Also, for critical damping
G 4K
m>  m
2 4Knm?
2=
m
giving
C. =2V Km

(3.48)

(3.49)

(3.50)

(3.51)

3.6.4 Generalized second-order system response to a unit step

input

Consider a second-order system whose steady-state gain is K, undamped natural
frequency is w, and whose damping ratio is ¢, where ¢ < 1. For a unit step input, the

block diagram is as shown in Figure 3.18. From Figure 3.18

Ku?
X,(s) = n
o(s) (5% + 2¢wns + w2)

(3.52)



X(s)=1/s - Kw? —:(O(S)
S +20u,S + 52

A

Fig. 3.18 Step response of a generalized second-order system for ¢ < 1.

Expanding equation (3.52) using partial fractions

A Bs+C
X, =—
O(S) + (S2 T ZCUJHS T wrzl)

Equating (3.52) and (3.53) and multiply by s(s* 4+ 2¢wns + w?)

sz A(s + 2¢wns + wy, ) + Bs* + Cs
Equating coefficients
(s)): 0=4+B
(s"): 0=20wnd+C
(") : Ku?=uwid
giving
A=K, B=-K and C=-2(w,K
Substituting back into equation (3.53)

T s+ 2Cwn
Xo(s) = K { - {WWH

Completing the square

XO(S):Kl—{ S—;ZC&Jn }]
15 G+ Cwn)” +wy — Cup

:Kl— s+ 2C¢wn

P et + (@vT@)

Time domain analysis

(3.53)

(3.54)

The terms in the brackets { } can be written in the standard forms 10 and 9 in

Table 3.1.
Term (1) = -3 5
5+ G + (wny/T= Q)
2¢wn 1-¢
Term (2) = —{ }
wn /1= ¢ ﬂ+@n+@mf_?y
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Inverse transform

1 — {e@’"[ (cos (wn\/ 1— C2>t - u}n\j%_czsin (wn\/l — C2> t) }

o]

Equation (3.55) can be simplified to give

Xo(t) = K |} — eCW“I{COS(wn /1 — <2>l‘—|— (

Xo(t) =K

) sin(wnm>tH (3.56)

1-¢2
When ( =0
Xo(f) = K[1 — e”{coswyt + 0}]
= K[l — coswy!] (3.57)

From equation (3.57) it can be seen that when there is no damping, a step input will
cause the system to oscillate continuously at w, (rad/s).

Damped natural frequency wqy
From equation (3.56), when 0 < { > 1, the frequency of transient oscillation is

given by
wg=wpV 1 —¢2 (3.58)

where wq is called the damped natural frequency. Hence equation (3.56) can be

written as
Xo(H) =K [1 - e@’“t{coswdt + (\/%—CJ sin deH (3.59)
efgwnt )
=K|1- e sin (wqt + ¢) (3.60)
where
1_ 2
tan ¢ = ¢ (3.61)
¢
When ¢ = 1, the unit step response is
Xo(1) = K[1 — e '(1 + wy1)] (3.62)

and when ¢ > 1, the unit step response from equation (3.46) is given by

. { <1+#>e<<+¢zﬁ>wﬂf
2 2 /C 1

l_ ¢ (/1) wnt
+<2 —2\/C2—I>e( =) H (3.63)

Xo() =K
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Fig. 3.19 Unit step response of a second-order system.

The generalized second-order system response to a unit step input is shown in Figure
3.19 for the condition K = 1 (see also Appendix 1, sec_ord.m).

3.7 Step response analysis and performance
specification

3.7.1 Step response analysis

It is possible to identify the mathematical model of an underdamped second-order
system from its step response function.

Consider a unity-gain (K = 1) second-order underdamped system responding to
an input of the form

xi(t) = B (3.64)

The resulting output x,(¢) would be as shown in Figure 3.20. There are two methods
for calculating the damping ratio.

Method (a): Percentage Overshoot of first peak
%Overshoot = ‘iB‘ x 100 (3.65)

Now
ay = Be~@n (/)
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Be !
(with reference to final value)

< T/2 T >
Fig. 3.20 Step response analysis.
Thus,
Be*CWn (7/2)
%Overshoot = — 5 x 100 (3.66)
Since the frequency of transient oscillation is wq, then,
27
T=—
wd
2w
= (3.67)
wn/ 1 = ¢
Substituting (3.67) into (3.66)
%Overshoot = ¢~ 27n/2en V1= 5 100
%Overshoot = ¢~/ V1-¢ (3.68)

Method (b): Logarithmic decrement. Consider the ratio of successive peaks a; and a;
a; = Be (/2 (3.69)

4y = Be—GnG7/) (3.70)
Hence

(/2

a_ D e/}

a4 e @G

_ bt — Xn/\/1C (3.71)
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Equation (3.71) can only be used if the damping is light and there is more than one
overshoot. Equation (3.67) can now be employed to calculate the undamped natural
frequency

2
wy = — (3.72)
Ty/1 =2

3.7.2 Step response performance specification

The three parameters shown in Figure 3.21 are used to specify performance in the
time domain.

(a) Rise time t.: The shortest time to achieve the final or steady-state value, for the
first time. This can be 100% rise time as shown, or the time taken for example
from 10% to 90% of the final value, thus allowing for non-overshoot response.

(b) Overshoot: The relationship between the percentage overshoot and damping
ratio is given in equation (3.68). For a control system an overshoot of between
0 and 10% (1 < ¢ > 0.6) is generally acceptable.

(c) Settling time tg: This is the time for the system output to settle down to within a
tolerance band of the final value, normally between +2 or 5%.

Using 2% value, from Figure 3.21
0.02B = Be s
Invert
50 = etwnts

Xo(t) N Be'(””‘

. / (with reference to final value)

~~-. _ Overshoot *2or5%of B

Rise t
Time t

Settling Time

v

<
<

Fig. 3.21 Step response performance specification.

57



58 Advanced Control Engineering

Take natural logs
In 50 = Cwn i

giving

t = <<1 )ln 50 (3.73)

n

The term (1/{w,) is sometimes called the equivalent time constant 7, for a second-
order system. Note that In 50 (2% tolerance) is 3.9, and In20 (5% tolerance) is 3.0.
Thus the transient period for both first and second-order systems is three times the
time constant to within a 5% tolerance band, or four times the time constant to
within a 2% tolerance band, a useful rule-of-thumb.

3.8 Response of higher-order systems

Transfer function techniques can be used to calculate the time response of higher-
order systems.

Example 3.8 (See also Appendix 1, examp38.m)

Figure 3.22 shows, in block diagram form, the transfer functions for a resistance
thermometer and a valve connected together. The input x;(¢) is temperature and the
output x,(?) is valve position. Find an expression for the unit step response function
when there are zero initial conditions.

Solution
From Figure 3.22

25
Xo(s) = 3.74
ols) S(1 4 28)(s2 + 5+ 25) (3.74)
12.5
= 3.75
s(s + 0.5)(s2 + 5 + 25) (3.75)
A B Cs+D
= 4+ + 3.76
s (5405 (s+0.5)7%+(4.97)° (3.76)
Resistance Thermometer Valve
X (s)=1/s , 1 25 »Xo(8)
1+2s S,+s+25

Fig. 3.22 Block diagram representation of a resistance thermometer and valve.
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Note that the second-order term in equation (3.76) has had the ‘square’ completed
since its roots are complex (h> < 4ac). Equate equations (3.75) and (3.76) and multi-
ply both sides by s(s + 0.5)(s> + s + 25).

12.5 = (s 4+ 1.55% +25.55 + 12.5)4 + (s* 4 s> + 255)B

+ (s34 0.55)C + (s> + 0.55)D 3.77)
Equating coefficients
(s): 0=4+B+C
(s): 0=154+B+0.5C+D
(s"): 0=2554+425B+0.5D
(") : 12.5=12.54
Solving the four simultaneous equations
A=1, B=-1.01, C=0.01, D=-05
Substituting back into equation (3.76) gives
Xos) :1 1.01 0.01s—0.5 (3.78)

- +
s (s+0.5)  (s40.5)7 + (4.97)°
Inverse transform
Xo(f) =1 —1.01e7* — 0.01e7>%(10.16 5in 4.97¢ — cos 4.971) (3.79)
Equation (3.79) shows that the third-order transient response contains both first-
order and second-order elements whose time constants and equivalent time constants
are 2 seconds, i.e. a transient period of about 8 seconds. The second-order element

has a predominate negative sine term, and a damped natural frequency of 4.97 rad/s.
The time response is shown in Figure 3.23.

1.2

Fig. 3.23 Time response of third-order system.



60 Advanced Control Engineering

3.9 Further problems

Example 3.9

A ship has a mass m and a resistance C times the forward velocity u(¢). If the thrust
from the propeller is K times its angular velocity w(¢), determine:

(a) The first-order differential equation and hence the transfer function relating U(s)

and w(s).

When the vessel has the parameters: m = 18000 x 10°kg, C = 150000 Ns/m, and

K = 96000 Ns/rad, find,

(b) the time constant.

(c) an expression for the time response of the ship when there is a step change of w(¢)
from 0 to 12.5rad/s. Assume that the vessel is initially at rest.

(d) What is the forward velocity after
(i) one minute
(i1) ten minutes.

Solution

(a) m(du/dt) + Cu = Kw(?)
U . K/C
=9 =T om0

(b) 120 seconds
(C) u([) — 8(1 _ e70.008331)
(d) () 3.148m/s

(i) 7.946m/s

Example 3.10

(a) Determine the transfer function relating V> (s) and V(s) for the passive electrical

network shown in Figure 3.24.

(b) When C =2uF and R| = R, = 1 M(), determine the steady-state gain K and

time constant 7.

(c) Find an expression for the unit step response.

vi(f)

A4

Rz

Fig. 3.24 Passive electrical network.

Vg(t)
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Solution
V> Ry/R + R,
a) —(5) =
@) Vi ) 1+ (R1R2C/R1 + Rz)S
(b) 0.5
1.0 seconds

(©) vo(t) = 0.5(1 —e ")

Example 3.11
Determine the values of w, and ¢ and also expressions for the unit step response for
the systems represented by the following second-order transfer functions

() 220 = 3er

1 02552 + 5+ 1
X, 10
(i) 71(3) = 7 6555
X 1
U A |
Solution
i) 2.0

1.0 (Critical damping)
Xo(f) =1 —e (14 21)
(if) 2.236
1.342 (Overdamped)
Xo(t) =2 —2.5¢7" +0.5¢7
(iii) 1.0
0.5 (Underdamped)
Xo() = 1 — e %%(c0s0.866¢ + 0.577 sin 0.8661¢)

Example 3.12

A torsional spring of stiffness K, a mass of moment of inertia 7 and a fluid damper
with damping coefficient C are connected together as shown in Figure 3.25. The
angular displacement of the free end of the spring is #;(¢) and the angular displace-
ment of the mass and damper is 6,(7).

Fig. 3.25 Torsional system.
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(a) Develop the transfer function relating 6;(s) and 6,(s).

(b) If the time relationship for 6;(¢) is given by 6;(z) = 4t then find an expression for
the time response of 6,(#). Assume zero initial conditions. What is the steady-
state error between 6;(¢) and 6,()?

Solution
by 1
W80T G @

(b) Oo(t) =4t — 0.2 +e725(0.2c0s 9.682¢ — 0.361 sin 9.6821)
0.2 radians.

Example 3.13
When a unity gain second-order system is subject to a unit step input, its transient
response contains a first overshoot of 77%, occurring after 32.5 ms has elapsed. Find

(a) the damped natural frequency

(b) the damping ratio

(c) the undamped natural frequency

(d) the system transfer function

(e) the time to settle down to within +2% of the final value

Solution
(a) 96.66rad/s
(b) 0.083
(c) 96.99rad/s
1

(@ G = 5106 % 10352 4 1712 % 1035 4 1
(e) 0.486 seconds

Example 3.14
A system consists of a first-order element linked to a second-order element without
interaction. The first-order element has a time constant of 5 seconds and a steady-
state gain constant of 0.2. The second-order element has an undamped natural
frequency of 4rad/s, a damping ratio of 0.25 and a steady-state gain constant of
unity.

If a step input function of 10 units is applied to the system, find an expression for
the time response. Assume zero initial conditions.

Solution

xo(f) = 2.0 — 2.046¢ 02 4 ¢! (0.046 cos V151 — 0.094 sin x/ﬁz)



Closed-loop control
systems

4.1 Closed-loop transfer function

Any system in which the output quantity is monitored and compared with the input,
any difference being used to actuate the system until the output equals the input is
called a closed-loop or feedback control system.

The elements of a closed-loop control system are represented in block diagram
form using the transfer function approach. The general form of such a system is
shown in Figure 4.1.

The transfer function relating R(s) and C(s) is termed the closed-loop transfer
function.

From Figure 4.1

C(s) = G(s)E(s) 4.1
B(s) = H(s)C(s) 4.2)
E(s) = R(s) — B(s) (4.3)

Substituting (4.2) and (4.3) into (4.1)

C(s) = G){R(s) — H()C(s))
C(s) = G(s)R(s) — G(s)H(s)C(s)
CO{1 + Gs)H(5)} = Gs)R(s)

G(s)

1+ G(s)H(s) “@4)

Cw=

The closed-loop transfer function is the forward-path transfer function divided by
one plus the open-loop transfer function.
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Forward Path

v

Summing
point Take-off
Ris) + E(s) point C(s)
EE— G(s) >
A
B(s)

A

Feedback Path

Fig. 4.1 Block diagram of a closed-loop control system. R(s) = Laplace transform of reference input r(t);
C(s) = Laplace transform of controlled output c(t); B(s) = Primary feedback signal, of value H(s)C(s);
E(s) = Actuating or error signal, of value R(s) — B(s); G(s) = Product of all transfer functions along the
forward path; H(s) = Product of all transfer functions along the feedback path; G(s)H(s) = Open-loop
transfer function; @ = summing point symbol, used to denote algebraic summation; e = Signal take-off
point; — = Direction of information flow.

4.2 Block diagram reduction

4.2.1 Control systems with multiple loops

A control system may have several feedback control loops. For example, with a ship
autopilot, the rudder-angle control loop is termed the minor loop, whereas the
heading control loop is referred to as the major loop. When analysing multiple loop
systems, the minor loops are considered first, until the system is reduced to a single
overall closed-loop transfer function.

To reduce complexity, in the following examples the function of s notation (s) used
for transfer functions is only included in the final solution.

Example 4.1
Find the closed-loop transfer function for the system shown in Figure 4.2.

Solution
In Figure 4.2, the first minor loop to be considered is G;3 H3. Using equation (4.4), this
may be replaced by

G3

Gt = 2
! 1+ G3H;

4.5)
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First Minor Loop

A i
DR 6 R w1 G

&
A

<
7Y

Hs

A

Fig. 4.2 Multiple loop control system.

Now Gy, is multiplied by, or in cascade with G,. Hence the combined transfer
function is

G,Gs
GGy = +———— 4.6
2Uml 1+ G3H3 ( )

The reduced block diagram is shown in Figure 4.3.
Following a similar process, the second minor loop G, may be written

GGy
_ 1+G3H;3
Gmo = 1+ GGy Hy
1+G3H;

Multiplying numerator and denominator by 1 + G3Hj

G1G3

G =
m T G3H; + G2G3H,

But G, is in cascade with Gy, hence

GGGy
G Gy = 4.7
T+ Gy Hs + GoGs H, @7

Transfer function (4.7) now becomes the complete forward-path transfer function as
shown in Figure 4.4.



66 Advanced Control Engineering

Second Minor Loop
Cascade

|

|

i

|
RS 4 i . | o)
_:Ai : 1 1+ GgHa : g

! i

! |

! |

| o |

i

|

H> :

|

|

|

|

|

H1 <
Fig. 4.3 First stage of block diagram reduction.
R(s) + G1G.Gs Cls)

1+ G3H3 + GgGng I

Hy

A

Fig. 4.4 Second stage of block diagram reduction.

The complete, or overall closed-loop transfer function can now be evaluated

G1G,G;
g(?) o 1+G3H3+G2G3 H,
R * l+ G1G,G3H,
1+G3H3+G>G3 Hy

Multiplying numerator and denominator by 1 + G3H3; + G,G3 H;

G1(5)G2(5)G3(s)
1 + G3(8)Hs(s) + Ga(s)G3(s)Ha(s) + G1(8)Ga(s)G3(s)H (5)

C
2 = (48)
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4.2.2 Block diagram manipulation

There are occasions when there is interaction between the control loops and, for the
purpose of analysis, it becomes necessary to re-arrange the block diagram configur-
ation. This can be undertaken using Block Diagram Transformation Theorems.

Table 4.1 Block Diagram Transformation Theorems

forward loop

(98]

Transformation Equation Block diagram Equivalent block diagram

1. Combining X Y X Y
blocks in Y=(GG)X Gs G —»
cascade

2. Combining
blocks in X Y
parallel; or Y=G\X*tGX X R < GG, P
eliminating a

. Removing a X + Y
block from Y=GX+G,X g; ‘X‘
a forward B +

path

4. Eliminating

a feedback Y=G\(X*Gy) | X % G Y X
loop 1 —>

+1

W

. Removing a
block from X 1 |+
_ + _ <>
a feedback Y=Gi(X1GY) Ge > G )
loop

6. Rearranging w. y > w v +
: - +
summing Z=W+X*tYy X + + z v + Z
points Y- X

. Moving a
summing
point ahead
of a block

1+

~

oo

. Moving a
summing
point Z=G(X tY)
beyond
a block

Re)

. Moving a
take-off
point ahead
of a block

Y=GX

10. Moving a
take-off
point beyond
a block

Y=GX

67
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Example 4.2
Moving a summing point ahead of a block.
Equation Equation
Z=GX+Y Z={X+(1/G)Y}G (4.9)
Z=GX+Y

A complete set of Block Diagram Transformation Theorems is given in Table 4.1.

Example 4.3
Find the overall closed-loop transfer function for the system shown in Figure 4.6.

Solution

Moving the first summing point ahead of G|, and the final take-off point beyond G4
gives the modified block diagram shown in Figure 4.7. The block diagram shown in
Figure 4.7 is then reduced to the form given in Figure 4.8. The overall closed-loop
transfer function is then

G161G31Gs
E(s) _ (076162 H )1+ G3Ga )
- G1G2G3GaH3
R U G 6, 1+ 6rGa)
_ GI(S)G2(S)G3(S)G4(S) (4 10)
(1 + G1(9)G2(s)H1())(1 + G3(5)Ga(s)H2(s)) + G2(5)G3(s) H3(s)
X z
— > G G —
1 «
G

Fig. 4.5 Moving a summing point ahead of a block.

A
E

H

Fig. 4.6 Block diagram with interaction.
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G [ Hs |« G ¢
R(s) * X~ C(s)
(s) 66 |
Hi
Fig. 4.7 Modified block diagram with no interaction.
Hs
GG, |
R(S) + - G1 G2 G3G4 C(S)
—> 1+GiGoH, Y 1+ GsGuHs >

Fig. 4.8 Reduced block diagram.

4.3 Systems with multiple inputs

4.3.1 Principle of superposition

A dynamic system is linear if the Principle of Superposition can be applied. This
states that ‘“The response y(f) of a linear system due to several inputs x;(?),
x(1), ..., x,(?), acting simultaneously is equal to the sum of the responses of each
input acting alone’.

Example 4.4
Find the complete output for the system shown in Figure 4.9 when both inputs act
simultaneously.

Solution

The block diagram shown in Figure 4.9 can be reduced and simplified to the form
given in Figure 4.10. Putting R,(s) = 0 and replacing the summing point by +1 gives
the block diagram shown in Figure 4.11. In Figure 4.11 note that C'(s) is response to
R;(s) acting alone. The closed-loop transfer function is therefore

1 GG,

Q(S) _ T+l
- GGy H,

Ry 1+ 14+G,H,
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or

G1(5)Ga2(s)Ri(s)

1 _
CO =TT GOMmEO) + 6i5)GOm )

4.11)

Now if Ri(s) = 0 and the summing point is replaced by —1, then the response C'(s)
to input R,(s) acting alone is given by Figure 4.12. The choice as to whether
the summing point is replaced by +1 or —1 depends upon the sign at the summing
point.

Note that in Figure 4.12 there is a positive feedback loop. Hence the closed-loop
transfer function relating R»(s) and C"(s) is

11 —Gi1GH,
( ) 1+G>H»

- 1— (70102H1>
14+G>H,
Ri(s) + X + T Cl(s)
G1 GZ >
Hz <
+
Hs <
+
Ra(s)
Fig. 4.9 System with multiple inputs.

Ri(s)  + GiG; C(s)
> > 1+ G2H2 >

— A

R,

Hy

RQ(S)

Fig. 4.10 Reduced and simplified block diagram.
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Ri(s) * GiGo Cl(s)
1+ GgHg v

H1 +1 |«

Fig. 4.11 Block diagram for R;(s) acting alone.

1+ GgHg

Ra(s) +

Q
VE

Fig. 4.12 Block diagram for R,(s) acting alone.

or

—G1(5)Ga()H () Ro(s)
1 4+ Ga(s)Ha(s) + G1(8)Ga(s)H, (5)

It should be noticed that the denominators for equations (4.11) and (4.12) are
identical. Using the Principle of Superposition, the complete response is given by

C(s) = C'(s) + C"(s) (4.13)

Cl(s) = (4.12)

or

(G1(9)G2(5)R1(5) — (G1(5)G2()H1(5) Ra(5)

O =TT G0 + GG H ()

(4.14)

4.4 Transfer functions for system elements

4.4.1 DC servo-motors

One of the most common devices for actuating a control system is the DC servo-
motor shown in Figure 4.13, and can operate under either armature or field control.

(a) Armature control: This arrangement is shown in schematic form in Figure 4.14.
Now air gap flux ® is proportional to i, or

& = Kip (4.15)
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ef( t)

l (1)
Field
Ry, L coil

<

Armature
winding
Ra; La

(a) Physical Arrangement

R
—f T
e(d) L

v

(b) Schematic Diagram

Fig. 4.13 Simple DC servo-motor.

where Ky is the field coil constant.
Also, torque developed Ty, is proportional to the product of the air gap flux and
the armature current

Tm(t) = (DKamia(Z) (416)
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0(t) w(t)

Fig. 4.14 DC servo-motor under armature control. e,(t) = Armature excitation voltage; e,(t) = Back emf;
i,(t) = Armature current; R, = Armature resistance; [, = Armature inductance; e; = Constant field
voltage; /s = Constant field current; T, = Torque developed by motor; 6(t) = Shaft angular displacement;
w(t) = Shaft angular velocity = dé/dt.

where K, is the armature coil constant.
Substituting (4.15) into (4.16) gives

Tin(1) = (Kra Kamir)ia (1) (4.17)
Since i is constant
T (t) = Kyia(2) (4.18)
where the overall armature constant K, is
K, = Kpq Kams (4.19)

When the armature rotates, it behaves like a generator, producing a back emf ey(7)
proportional to the shaft angular velocity

ep(t) = Ky % = Kpw(t) (4.20)

where Kj, is the back emf constant.
The potential difference across the armature winding is therefore

di .
ea(?) — en(t) = Ly d—; + Rala (4.21)

Taking Laplace transforms of equation (4.21) with zero initial conditions
Eq(s) — Ep(s) = (Las + Ra)1u(s) (4.22)

Figure 4.15 combines equations (4.18), (4.20) and (4.22) in block diagram form.
Under steady-state conditions, the torque developed by the DC servo-motor is

T = {&4() — Koo}



74 Advanced Control Engineering

E.s) + 1 1a(s) p Tin(8)
— g | S — a S
Las+ R,

Ey(s)

4

P «A9)
Fig. 4.15 Block diagram representation of armature controlled DC servo-motor.
or
K, K, K;
Tin()) = (2 )ead = (= )o@ (4.23)
R, R,

From equation (4.23), the relationship between T1,(¢), w(f) and E,(f) under steady-
state conditions is shown in Figure 4.16.

(b) Field control: This arrangement is shown in schematic form in Figure 4.13,
with the exception that the armature current i, is held at a constant value. Equation
(4.17) may now be written as

Tm(t) = (deKamia)if(l) (424)
and since i, is a constant, then
T (1) = Krir(2) (4.25)

where the overall field constant K is
Kf = deKanlia (426)

In this instance, the back emf e, does not play a part in the torque equation, but it
can produce difficulties in maintaining a constant armature current i,.
The potential difference across the field coil is

di

en()) = Leg+ R 4.27)

Taking Laplace transforms of equation (4.27) with zero initial conditions
Er(s) = (Lrs + Re)Ir(s) (4.28)

Figure 4.17 combines equations (4.25) and (4.28) in block diagram form.
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Tm(1)
(Nm)_

Increasing es()

w(1) (rad/s)

Fig. 4.16 Steady-state relationship between T, (t), w(t) and e,(t) for an armature controlled DC servo-
motor.

Tm(s)
K >

Eds) 1 K(s)

LfS + R1

v

Fig. 4.17 Block diagram representation of field controlled DC servo-motor.

Under steady-state conditions, the torque developed by the DC servo-motor is
K,
Tt = ()0 429)
f

The relationship between Tp,(¢), er(f) and w(¢) under steady-state conditions is shown
in Figure 4.18.

4.4.2 Linear hydraulic actuators

Hydraulic actuators are employed in such areas as the aerospace industry because
they possess a good power to weight ratio and have a fast response.

Figure 4.19 shows a spool-valve controlled linear actuator. When the spool-valve
is moved to the right, pressurized hydraulic oil flows into chamber (1) causing the
piston to move to the left, and in so doing forces oil in chamber (2) to be expelled to
the exhaust port.

The following analysis will be linearized for small perturbations of the spool-valve
and actuator.
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Tl T(D) Increasing ex(f)
(Nm) (Nm) A f

&(t) (V) w(t) (rad/s)
(a) (b)

Fig. 4.18 Steady-state relationship between T,(t), ef(t) and w(t) for a field controlled DC servo-motor.

Qleak

Fig. 4.19 Spool-valve controlled linear actuator.

It is assumed that:

e the supply pressure P is constant

the exhaust pressure P, is atmospheric

the actuator is in mid-position so that V| = V', = V,, which is half the total volume
of hydraulic fluid V;

the hydraulic oil is compressible

the piston faces have equal areas A

0, and O, are the volumetric flow-rates into chamber (1) and out of chamber (2)
the average, or load flow-rate QO has a value (0 + 0,)/2

Py and P, are the fluid pressures in chamber (1) and chamber (2)

the load pressure Py has a value (P} — P,)
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(a) Actuator analysis: The continuity equation for the chambers may be written

Z Oin — Z Oou = (rate of change of chamber volume)
+ (rate of change of oil volume) (4.30)

In equation (4.30), the rate of change of chamber volume is due to the piston
movement, i.e. dV/d¢. The rate of change of oil volume is due to compressibility
effects, 1.e.:

Bulk Modulus of oil, 3 = Volumetric stress/Volumetric strain

dp

ﬂ:—mqv

(4.31)

Note that in equation (4.31) the denominator is negative since an increase in pressure
causes a reduction in oil volume.

Hence
dv _dp
Voo
Giving, when differentiated with respect to time
dv '\ dP

For chamber (1), equation (4.30) may be expressed as

. oAy () dPy
Ql - Qleak = ? + (?) W (433)

and for chamber (2)

. S dV2 V2 dP2
Oleak — 02 = ar + (ﬁ) a7 (4.34)
Now
. -
Or = 0 ' 0>
Thus, from eqations (4.33) and (4.34)
s 1/dv, dV, 1 dp, dp;
OL = QleakJri (dldl> +ﬁ <V1dl V2dt> (4.35)

If leakage flow-rate Qleak is laminar, then

Qleak = CpPL (436)
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where C,, is the leakage coefficient. Also, if V1 =V, = V,, then
diy dyy  dV,

——=—= 4.
dt dt dt (4.37)
Hence equation (4.35) can be written
. dv, V,d
= CpP —— (P —P 4.
QO = CpPL + dt+2ﬁdt( 1 — P2) (4.38)
or
i o dXO Vt dPL
QL =CpPL +AT @W (4.39)
where
dv, dX,
=4
dt dt
and
Vo = 3

(b) Linearized spool-valve analysis: Assume that the spool-valve ports are rectan-
gular in form, and have area

Ay, = WX, (4.40)
where W is the width of the port.

From orifice theory
. 2
Ql :CdWXV ;(PS_PI) (441)
. 2
0, = Cy WX, ;(Pz —0) (4.42)

whereo Cy is a coefficient of discharge and p is the fluid density.
Equating (4.41) and (4.42)

and

Pi— P =P (4.43)
since

PL=P — P
Equation (4.43) may be re-arranged to give

_Ps+PL
- 2

P (4.44)
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From equations (4.41) and (4.42) the load flow-rate may be written as

. 2 /P, —P
OL = CaWX, ;< s 5 L) (4.45)

Hence
Or = F(Xv,PL) (4.46)

Equation (4.45) can be linearized using the technique described in section 2.7.1. If ¢y,
xy and pp. are small perturbations of parameters Qp, Xy and Pp about some operat-
ing point ‘a’, then from equation (4.46)

. 00L 0L
= v+ = 4.4
gL X, ax +6PL a17L (4.47)
or
gL = Kgxy — Kepr (4.48)
where
Ky (flow gain) = Cq4 Wy /l(PS — Pr,) (4.49)
P
and

(flow-pressure coefficient which has a negative value)

—Ca WXy, 1
K. = 1/ 4.50
2 p(Ps — Pra) ( )

Note that Py, and Xy, are the values of P and X, at the operating point ‘a’.

The relationship between Op, Py and Xy, from equation (4.45), together with the
linearized relations ¢, Py and x, are shown in Figure 4.20.

Equation (4.39) is true for both large and small perturbations, and so can be
written

. dx, Vi dpL
=A—+C —— 4.51
qL a + CppL +4ﬂ T (4.51)
Equating (4.48) and (4.51) gives
dx, VidpL
Kyxy =A—+ (Cp + K. — 4.52
qX dl+( p+ c)PL+4ﬁ dr ( )

Taking Laplace transforms (zero initial conditions), but retaining the lower-case
small perturbation notation gives

Kqxy(s) = Asxo(s) + {(Cp + K.) + L%s}pL(s) (4.53)

79
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Q

mSS

Increasing X,

Linearized

Ps PL (Pa)

Fig. 4.20 Pressure—Flow-rate characteristics for a spool-valve.

The force to accelerate the mass m is shown in Figure 4.21. From Figure 4.21

2 Fu= mx (4.54)

Take Laplace transforms with zero initial conditions and using lower-case notation
m
pL(s) = ZSZXO(S) (4.55)

Inserting equation (4.55) into (4.53) gives

Vi m
Kqxy(s) = Asxo(s) + {(Cp + K + 4—ﬂts} (232)x0(s) (4.56)
Equation (4.56) may be re-arranged to give the transfer function relating x,(s) and
Xy($)
AP_
] m

Xo(B), Xo(1), Xo(f)

<

Fig. 4.21 Free-body diagram of load on hydraulic actuator.
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X Ky
2(s) = 4 —= (4.57)
v s{ (@) ()

Equation (4.57) can be written in the standard form

K
0= : (4.58)
Xy S(%S2+&s+1)
“hh Wnh
where
L K
Ky (hydraulic gain) = 7‘4
' 4342
wnh (hydraulic natural frequency) =
mVy
i ' - Cp + K 46
hydraulic d o) —
G (hydraulic damping ratio) ( 2 > mV,A?

Since the Bulk Modulus of hydraulic oil is in the order of 1.4 GPa, if m and V, are
small, a large hydraulic natural frequency is possible, resulting in a rapid response.
Note that the hydraulic damping ratio is governed by Cp and K. To control the level
of damping, it is sometimes necessary to drill small holes through the piston.

4.5 Controllers for closed-loop systems

4.5.1 The generalized control problem

A generalized closed-loop control system is shown in Figure 4.22. The control
problem can be stated as: “The control action u(f) will be such that the controlled
output ¢(¢) will be equal to the reference input r;(¢) for all values of time, irrespective
of the value of the disturbance input r(¢)’.

In practice, there will always be transient errors, but the transient period should be
kept as small as possible. It is usually possible to design the controller so that steady-
state errors are minimized, or ideally, eliminated.

RQ(S)
Disturbance
Input
Cls)
Ri(s) + E(s) Controller Us)+ Plant >
Reference Input & Control Controlled
Action Output

Fig. 4.22 Generalized closed-loop control system.
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4.5.2 Proportional control

In this case, the control action, or signal is proportional to the error e(¢)
u(t) = Kje(t) (4.59)
where K| is the proportional gain constant.

If the plant dynamics are first-order, then Figure 4.22 can be described as shown in
Figure 4.23. The plant transfer function is

K
= Ts) = C(s) (4.60)

()~ Reto)
And the proportional control law, from equation (4.59) becomes
U(s) = Ki(Ri(s) — C(5)) (4.61)
Inserting equation (4.61) into equation (4.60) gives

{Ki1(Ri(s) — C(s) — Ra(s)} K

C(s) = ) (4.62)
which can be written as
{(1 + K1 K) + Ts}C(s) = K| KR (s) — KRa(s) (4.63)
Re-arranging equation (4.63) gives
Ri(s) — Ry (s)
C(s) = <1+K1 ) <1+K K) (4.64)

{1+ (+k)s}

When r(f) is a unit step, and () is zero, the final value theorem (equation (3.10))
gives the steady-state response

(1) = KK as t
_ ~ .
¢ TrKK e9)

Ra(s)
Proportional
Controller

Ry(s) + E(s) K, Us) + - % C(s)‘
—’(g)—’ +Ts >

Fig. 4.23 Proportional control of a first-order plant.
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When r,(f) is a unit step, and r(¢) is zero, the final value theorem (equation (3.10))
gives the steady-state response

(1) K as t
- = s
1+ KK o

Hence, for the system to have zero steady-state error, the terms in equation (4.64)

should be
KK \_,
1+KK)

K
(1 +K1K> =0

This can only happen if the open-loop gain constant K; K is infinite. In practice this is
not possible and therefore the proportional control system proposed in Figure 4.23
will always produce steady-state errors. These can be minimized by keeping the open-
loop gain constant K; K as high as possible.

Since the closed-loop time-constant form equation (4.64) is

T

Then maintaining K; K at a high value will reduce the closed-loop time constant and
therefore improve the system transient response.

This is illustrated in Figure 4.24 which shows a step change in r((¢) followed by a
step change in (7).

(4.65)

Summary

For a first-order plant, proportional control will always produce steady-state errors.
This is discussed in more detail in Chapter 6 under ‘system type classification” where
equations (6.63)—(6.65) define a set of error coefficients. Increasing the open-loop

of) Steady-state

Error
l f1(t)

KiKlarge

rz(t)

KiK small

Time(s)

Fig. 4.24 Step response of a first-order plant using proportional control.
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gain constant (which is usually achieved by increasing the controller gain K;) will
reduce, but not eliminate them. A high controller gain will also reduce the transient
period. However, as will be shown in Chapters 5 and 6, high open-loop gain
constants can result in the instability of higher-order plant transfer functions.

4.5.3 Proportional plus Integral (PI) control

Including a term that is a function of the integral of the error can, with the type of
plant shown in Figure 4.23, eliminate steady-state errors.
Consider a control law of the form

u(t) = Kye(t) + K / edt (4.67)
Taking Laplace transforms

U(s) = (K1 + %) E(s)

=K (1 +K_|S)E(S)

=K (1 + 1) E(s) (4.68)
Tis

In equation (4.68), T; is called the integral action time, and is formally defined as:

‘The time interval in which the part of the control signal due to integral action

increases by an amount equal to the part of the control signal due to proportional
action when the error is unchanging’. (BS 1523).

Inserting the PI control law given in equation (4.68) into the first-order plant
transfer function shown in equation (4.60) gives

(Ki(1 + 1/Tis)(Ri(s) — C(s)) — Ra(s)K
(1+Ts)

C(s) = (4.69)
which can be written as
{TiTs* + Ti(1 + K| K), + K| K}C(s) = K1 K(1 4+ Tis)Ri(s) — K\ KTisRy(s)  (4.70)

Re-arranging gives

(1 4+ Tis)R (s) — TisRa(s)
) 11l

C(s) = ( 4.71)

The denominator is now in the standard second-order system form of equation
(3.42). The steady-state response may be obtained using the final value theorem
given in equation (3.10).

() =1 +0)r1(t) — (0)ra(r) ast— oo 4.72)
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of)

I’1(t)

(

rg(t)

Time (s)
Fig. 4.25 Step response of a first-order plant using Pl control.

When there are step changes in r(¢) and r(¢):

C(s) = (I+ OZsRl(s) B

= Ri(s)
c(t) = ri(1) (4.73)

()

sRy(s)
s

Thus, when () and r,(¢) are unchanging, or have step changes, there are no steady-
state errors as can be seen in Figure 4.25. The second-order dynamics of the closed-
loop system depend upon the values of T;, T, K} and K. Again, a high value of K; will
provide a fast transient response since it increases the undamped natural frequency,
but with higher order plant transfer functions can give rise to instability.

Summary

For a first-order plant, PI control will produce a second-order response. There will be
zero steady-state errors if the reference and disturbance inputs r;(¢) and ry(f) are
either unchanging or have step changes. The process of including an integrator within
the control loop to reduce or eliminate steady-state errors is discussed in more detail
in Chapter 6 under ‘system type classification’.

Example 4.5 (See also Appendix 1, examp45.m)
A liquid-level process control system is shown in Figure 4.26. The system parameters
are

A=2m*>  Ry=15s/m’

H =1V/m K,=0.1m?sV K, =1 (controller again)

(a) What are the values of 7; and ¢ when the undamped natural frequency wy is
0.1rad/s?

(b) Find an expression for the time response of the system when there is a step
change of /4(f) from 0 to 4m. Assume zero initial conditions.
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Control Valve

u(t) K,

vi(1)
LY /11\
hn(f) .| Controller 3
Tank
Area A ha(D
< v
L] Outlet valve
Pressure transducer Resistance & /1N V(0
H;

Fig. 4.26 Liquid-level process control system.

The controller is given in equation (4.68). The inflow to the tank is

vi(t) = Keu(?) (4.74)

The tank dynamics are expressed, using equation (2.63) as

V](Z) — Vz(l) =4 dia (475)
dr
and the linearized outflow is
ha(1)
va(1) Re (4.76)
The measured head Ay, () is obtained from the pressure transducer
h(1) = Hiha(1) (4.77)

From equations (4.75) and (4.76), the tank and outflow valve transfer function is

Re

H,
7, 9= 1+ ARss

7 4.78)

The block diagram for the control system is shown in Figure 4.27. From the block
diagram, the forward-path transfer function G(s) is

KiKoRe (1+4)
_ KiKyRi(1 + Tys)
N Tis(1 + ARy)

G(s) =
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PI Controller Tank and valve
Control valve
Ha(s)
K| 1 +l U(S) N K, V1( )k Ry a;
Tis 1+AR:s

Pressure tranducer

H, <

Fig. 4.27 Block diagram for liquid-level process control system.

Using equation (4.4), the closed-loop transfer function becomes

H K1 Ky Ry (1+T}s)
. e
M () = __URTH T (4.80)

= K Ko ReH (14 Tis)
Hq 1+ I(ARffTis12+T,s)s
which simplifies to
H. K Ky Re(1 + Tis
(s = 5 KRl + Tis) 4.81)
Hy (AR Ty)s?> + Ti(1 + K1 KyReHy)s + K1 Ky Ry Hy

Equation (4.81) can be expressed in the standard form of equation (3.42) for a
second-order system.
Putting H; = 1, then

Hy oo (1 + Tis)
Ha (%)Sz +Ti (Klléva + 1>S +1

(a) Comparing the denominator terms with the standard form given in equation (3.42)

(4.82)

AT; 1
== 4.83
<K1 Kv> wy (459
1 2¢
T‘(KlKva+ l) = (4.84)
From equation (4.83)
KK, 1x0.l
i= A Zm:5 seconds

From equation (4.84)

wnT; 1
= —+1
¢ 2 <K1KVRf + >

0.1%5 I
) (1><o.1><15+1> = 0417
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(b) Inserting values into equation (4.82)

(14 5s)
100s2 4 8.34s + 1

H, .
Fd(s) = (4.85)

For a step input of height 4m

0.01(1+5s) 14

H. — _
A9 = | 7770.0834 1 0.0 5

Expanding by partial fractions using 3.2.4 (iv)

0.04 +0.2s A Bs+ C

H. = [
) = (@ 7008345+ 001) 5 | &+ 0.0834s + 001

(4.86)

Multiplying through by s(s?> 4+ 0.0834s + 0.01)
0.04 +0.25 = A(s> + 0.0834s + 0.01) 4+ Bs*> + Cs

Equating coefficients
(s)): 0=A+B
(s"): 0.2=0.08344 + C
(s°): 0.04=0.014
giving
A=4 B=-4 C=-0.1336

Substituting values back into (4.86) and complete the square to give

4 —4s5 —0.1336
Hy(s) == + -

4.87
s (s+0.0417)% + 0.09092 (4-87)

Inverse transform using Laplace transform pairs (9) and (10) in Table 3.1.

Hys) = - { ) } = 1.4697{ 00909 }
s (s +0.0417)% +0.09092 (s + 0.0417)? + 0.09092

_ 0.0417 .
ha(1) = 4 — 4= 004171 (cos 0.09097 — 0.0900 51 0.0909z)

— 1.4697e %17 5in 0.0909¢
which simplifies to give

ha(1) = 4[1 — e %17 (05 0.09097 — 0.0913 sin 0.09097)] (4.88)
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10 20 3 40 50 60 70 80 90 100
t(s)

Fig. 4.28 Response of the Pl controlled liquid-level system shown in Figure 4.26 to a step change in hq(t)
from 0 to 4 m.

In equation (4.88) the amplitude of the sine term is small, compared with the cosine
term, and can be ignored. Hence

ha() = 4(1 — e %17 ¢050.0909¢) (4.89)

The time response depicted by equation (4.89) is shown in Figure 4.28.

4.5.4 Proportional plus Integral plus Derivative (PID) control

Most commercial controllers provide full PID (also called three-term) control action.
Including a term that is a function of the derivative of the error can, with high-order
plants, provide a stable control solution.

Proportional plus Integral plus Derivative control action is expressed as

d
u(t) = Kye(t) + K» / edt + Kgd—j (4.90)
Taking Laplace transforms

Us) = (K1 by K3s) ECs)

K, K
1< +K1S+K1S> (s)

=K (1 P Tds)E(s) (4.91)
TiS
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In equation (4.91), Ty is called the derivative action time, and is formally defined as:
‘The time interval in which the part of the control signal due to proportional action
increases by an amount equal to the part of the control signal due to derivative action
when the error is changing at a constant rate’ (BS 1523).

Equation (4.91) can also be expressed as

U(s) =

Ki(T\Tys* + Tis + 1
1(TiTas Rkl ) E(s) (4.92)

Tis

4.5.5 The Ziegler-Nichols methods for tuning PID controllers

The selection of the PID controller parameters K, 7; and Ty can be obtained using
the classical control system design techniques described in Chapters 5 and 6. In the
1940s, when such tools were just being developed, Ziegler and Nichols (1942) devised
two empirical methods for obtaining the controller parameters. These methods are
still in use.

(a) The Process Reaction Method: This is based on the assumption that the open-
loop step response of most process control systems has an S-shape, called the process
reaction curve, as shown in Figure 4.29. The process reaction curve may be approxi-
mated to a time delay D (also called a transportation lag) and a first-order system of
maximum tangential slope R as shown in Figure 4.29 (see also Figure 3.13).

The Process Reaction Method assumes that the optimum response for the closed-
loop system occurs when the ratio of successive peaks, as defined by equation (3.71),
is 4:1. From equation (3.71) it can be seen that this occurs when the closed-loop
damping ratio has a value of 0.21. The controller parameters, as a function of R and
D, to produce this response, are given in Table 4.2.

o(f)

o

Fig. 4.29 Process reaction curve.
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Table 4.2 Ziegler—Nichols PID parameters using the
Process Reaction Method

Controller type K T; Tq

P 1/RD - —

PI 0.9/RD D/0.3 -
PID 1.2/RD 2D 0.5D

Table 4.3 Ziegler—Nichols PID parameters using the
Continuous Cycling Method

Controller type K T; Ty
P K./2 - -

PI Ku/2.2 T./1.2 -
PID K /1.7 T./2 T./8

Note that the Process Reaction Method cannot be used if the open-loop step
response has an overshoot, or contains a pure integrator(s).

(b) The Continuous Cycling Method: This is a closed-loop technique whereby,
using proportional control only, the controller gain K| is increased until the system
controlled output ¢(¢) oscillates continually at constant amplitude, like a second-
order system with no damping. This condition is referred to as marginal stability
and is discussed further in Chapters 5 and 6. This value of controller gain is called
the ultimate gain K, and the time period for one oscillation of ¢(¢) is called the
ultimate period T,,. The controller parameters, as a function of K, and T, to provide
a similar closed-loop response to the Process Reaction Method, are given in
Table 4.3.

The two Ziegler—Nichols PID tuning methods provide a useful ‘rule of thumb’
empirical approach. The control system design techniques discussed in Chapters 5
and 6 however will generally yield better design solutions.

Of the two techniques, the Process Reaction Method is the easiest and least
disruptive to implement. In practice, the measurement of R and D is very subjective,
and can lead to errors.

The Continuous Cycling Method, although more disruptive, has the potential to
give better results. There is the risk however, particularly with high performance
servo-mechanisms, that if K, is increased by accident to slightly above the marginal
stability value, then full instability can occur, resulting in damage to the system.

Actuator saturation and integral wind-up

One of the practical problems of implementing PID control is that of actuator
saturation and integral wind-up. Since the range of movement in say, a control valve,
has physical limits, once it has saturated, increasing the magnitude of the control
signal further has no effect. However, if there is a difference between desired and
measured values, the resulting error will cause a continuing increase in the integral
term, referred to as integral wind-up. When the error term changes its sign, the
integral term starts to “‘unwind,” and this can cause long time delays and possible
instability. The solution is to limit the maximum value that the integral term
can have.
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4.5.6 Proportional plus Derivative (PD) control

Proportional plus Derivative control action is expressed as

u(t) = Kye(t) + m% (4.93)

Taking Laplace transforms
K
Us) = K; (1 + —3) E(s)
K

= K (1 + Tq4s)E(s) (4.94)

The inclusion of a derivative term in the controller generally gives improved damping
and stability. This is discussed in more detail in Chapters 5 and 6.

4.6 Case study examples

Example 4.6.1 CNC Machine-Tool Positional Control (See also Appendix 1,
examp461.m)

The physical configuration and block diagram representation of a CNC machine-
tool is shown in Figures 1.10 and 1.11. The fundamental control problem here is that,
by design, the lead-screw (by the use of re-circulating ball-bearings) is friction-free.
This means that the positional control system will have no damping, and will oscillate
continuously at the undamped natural frequency of the closed-loop system.

Damping can be introduced in a number of ways:

(a) A dashpot attached to the lead-screw: This is wasteful on energy and defeats the
objective of a friction-free system.

(b) Velocity feedback: A signal from a sensor that is the first derivative of the
output (i.e. velocity) will produce a damping term in the closed-loop transfer
function.

(c) PD control: A PD controller will also provide a damping term. However, the
practical realization will require an additional filter to remove unwanted high
frequency noise (see Chapter 6 for further details on lead-lag compensation).

Most machine-tool manufacturers employ velocity feedback to obtain the necessary
damping. Since overshoot in a cutting operation usually cannot be tolerated, the
damping coefficient for the system must be unity, or greater.

For this study, the machine-tool configuration will be essentially the same as
shown in Figure 1.10, with the exception that:

(1) A gearbox will be placed between the servo-motor and the lead-screw to provide
additional torque.

(i) The machine table movement will be measured by a linear displacement trans-
ducer attached to the table. This has the advantage of bringing the table ‘within
the control-loop’ and hence providing more accurate control.
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System element dynamic equations: With reference to Figures 1.11 and 4.31

1. Controller

Proportional control, gain K;(V/m)

. (4.95)
Control signal U;(s) = K;(Xq(s) — Xin(5))

2. Power amplifier

Gain K>(V/V)

. (4.96)
Control signal U,(s) = Kx(U1(s) — Ba(s))

3. DC servo-motor: Field controlled, with transfer function as shown in Figure 4.17.
It will be assumed that the field time constant L;/R; is small compared with the
dynamics of the machine table, and therefore can be ignored. Hence, DC servo-
motor gain K3 (Nm/V).

Motor Torque Ty (s) = K3U;(s) (4.97)

4. Gearbox, lead-screw and machine-table: With reference to Figure 2.9 (free-body
diagram of a gearbox), the motor-shaft will have zero viscous friction Cy,, hence
equation (2.22), using Laplace notation, becomes

X(s) = é(Tm(S) — Ins"0m(s)) (4.98)

The output shaft in this case is the lead screw, which is assumed to have zero moment
of inertia /, and viscous friction C,. The free-body diagrams of the machine-table
and lead-screw are shown in Figure 4.30.
For lead-screw
Work in = Work out

bX(1)0,(1) = F(1)x,(1)
or
00(1)

Fo=bX(0 20

(4.99)

Xo(1), Xo(1), Xo(1)
«——
Oo(1)

bX(1) m

== ANNANNNNNNN

P

Fig. 4.30 Free-body diagrams of lead-screw and machine-table.
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Now the pitch p of the lead-screw is

_ Xo(1)
AT (4.100)
Substituting (4.100) into (4.99)
F(t):@ (4.101)

The equation of motion for the machine-table is
F(t) = m¥, (4.102)
Equating (4.101) and (4.102) gives
1 .
X(0) = 4 (pmo)

Taking Laplace transforms

1
X(s) =5 ( pms*Xo(s)) (4.103)
Equating (4.98) and (4.103) gives
pmszXO(s) = g (Tm(s) - Imszﬂm(s)) (4.104)
Now
b/a = gear ratio n
Om(s) = nbo(s)
Hence
§20m(s) = ns>0,(s)
and
0o(s) = Xols) (4.105)
P
Equation (4.105) can be substituted into (4.104)
s Xo(s) = nTom(s) — nln gszXo(s)
or
P\
nTm(s) = | pm —1—7 5 Xo(5) (4.106)

giving the transfer function for the gearbox, lead-screw and machine-table as

X, _ n
T—(s) = (4.107)

N (pm + n*l, /p)s>

where the term n1,,/p may be considered to be equivalent mass of I, referred to the
machine-table.



Closed-loop control systems 95

5. Tachogenerator

Gain H, (Vs/rad)
Feedback signal Bx(s) = H»50,(s) (4.108)

or, from equation (4.105)

By(s) = % SXo(s) (4.109)

6. Position transducer

Gain H;(V/m)
Feedback signal Xp,(s) = Hy Xo(s) (4.110)

The system element dynamic equations can now be combined in the block diagram
shown in Figure 4.31. Using equation (4.4), the inner-loop transfer function is
K> Ksnp

G =
) (p*m + n2ly)s + K, KsnHy

@.111)

Again, using equation (4.4), the overall closed-loop transfer function becomes

X, K1 K> K3np
—(5) = 5 5 5 (4.112)
X4 (p?m + n?ly)s> + Ko KsnHys + Ky Ky KsnpHy
which can be written in standard form
1
X —_
T = T (4.113)
m+n?ly,
© () () 1
Power DC Machine |
Controller Amplifier ~ Servomotor Table ntegrator
Ui(s) Us(s) Tus) n sX(s) X
X5 T s R Pl e RS
_t(?_’ T > p K > [pm N n_pm] > S >
Xm(S
(s) By(s)
Tachogenerator
S0o(8)
e 1
Hy |«

Position Transducer

Fig. 4.31 Block diagram of CNC machine-tool control system.
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Specification: The CNC machine-table control system is to be critically damped with
a settling time of 0.1 seconds.

Control problem: To select the controller gain K| to achieve the settling time and
tachogenerator constant to provide critical damping.

System parameters
K, =2V/V K3 =4Nm/V
n=10:1 p=5%x10"m
m=>50kg I,=10x 107%kgm?
H; =60V/m
Calculation of K;: In general, the settling time of a system with critical damping is

equal to the periodic time of the undamped system, as can be seen in Figure 3.19.
This can be demonstrated using equation (3.62) for critical damping

Xo(H) =1 — e (1 + wy)]

when
1 =27/wy
Xo(t) = [1 —e (1 + 2m)]
=0.986 (4.114)

Thus, for a settling time of 0.1 seconds for a system that is critically damped, the
undamped natural frequency is
27

wn = g7 = 62.84rad/s 4.115)

Comparing the closed-loop transfer function given in equation (4.113) with the
standard form given in (3.42)

K\ K>, KsnpH
2 18 83np I
=|——7FF— 4.116
wn (me +n21m ) ( )
Hence
K = (P*m + n? Iy )2
K2K3an1

{5 x 1073)? x 50} + (10% x 10 x 107°)
N (2x4x10x5x 1073 x 60)

= 0.365V/V 4.117)

] x 62.842

Again, comparing equation (4.113) with the standard form (3.42)

20 H

Wn B KipH,

4.118)
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Hence
2(KipH
H,y = CKipH,
Wn
~ 2x1x0.365%x5x107% x 60
o 62.84

—=3.485 x 107* Vs/rad (4.119)

Example 4.6.2 Temperature control system (See also Appendix 1, examp462.m)
The general form of a temperature control system is shown in Figure 1.6 with the
corresponding block diagram given in Figure 1.7.
The system variables are:
04(f) = Desired temperature (°C)
Om(?) = Measured temperature (V)
0,(1) = Actual temperature (°C)
0s(t) = Temperature of surroundings (°C)
u(t) = Control signal (v)
¥(7) = Gas flow-rate (m>/s)
Qi(t) = Heat flow into room (J/s = W)
0,(?) = Heat flow though walls (W)

System equations

1. Controller: The control action is PID of the form given in equation (4.91)

U®=m0+%+n0%@—%® (4.120)

2. Gas solenoid valve: This is assumed to have first-order dynamics of the form

K
14+ Ts

gm: (4.121)

where K, is the valve constant (m3/s V).

3. Gas burner: This converts gas flow-rate ¥(¢) into heat flow Q;i(?) i.e.:

0i(s) = K3V () (4.122)
where K3 is the burner constant (Ws/m?).
4. Room dynamics: The thermal dynamics of the room are

dé,

Qi(1) = Qo(1) = C1—;

(4.123)

Equation (4.123) is similar to equation (2.54), where Cr is the thermal capacitance
of the air in the room.
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The heat flow through the walls of the building is as given in equation (2.53), i.e.
(0o(1) — 05(1))

Oo(1) = = (4.124)
where Rt is the thermal resistance of the walls, see equation (2.47).
Substituting equation (4.124) into (4.123) gives
. Go(l) — es(l) _ dao
0i(1) ( R ——Ch*dl (4.125)
Multiplying through by Rt
dé,
RﬂM0+W0:%m+RﬂHEF (4.126)

Taking Laplace transforms
RrQi(s) + b5(s) = (1 + RrCrs)fo(s) (4.127)
Equation (4.127) can be represented in block diagram form as shown in Figure 4.32.

5. Thermometer: The thermometer equation is

Om(s) = H10o(s) (4.128)

The complete block diagram of the temperature control system is shown in Figure
4.33.
From Figure 4.33

K K> K3 R (T Tys? + Tis + 1)(04(s) — H,04(s))

+04(s) = (1 + RrCrs)fo(s) (4.129)

Tis(1 + Tys)
Os(s)
Q) X 1 o(s)
Fr + 1+RCrs
Fig. 4.32 Block diagram representation of the thermal dynamics of the room.
0(s)
PID Controller Valve Burner Room
6i(s) 4 1 ] Us) kg, [Ys Q(s) * 0o(8)
Ki[1+—+Ts N 2 4>| }_> R 1 >
0 (S) 1[ TiS d 1+Tis Ks T + 1+ RTCTS g
n _

Hi e

Fig. 4.33 Block diagram of temperature control system.
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Equation (4.129) can be re-arranged to give

HA(TiTas® + Tis + Da(s) + T 126,(s)

Oo(s) = (4.130)
(@ZIHTIZ)SB + (Ti(KT;;lTZ) + Tde)Sz + Ti(Klel + 1)5 +1
where the forward-path gain K is
Kr = K1 K>, K3 Rt (4.131)

Control problem: Given the system parameters, the control problem is to determine
the controller settings for K;, T; and Tg4. This will be undertaken using the Zeigler—
Nichols process reaction method described in Section 4.5.5(a).

System parameters.

K2K3 =5W/V RT =0.1Ks/J
Ct=80J/K H =10V/K
T, = 4 seconds

Process reaction curve: This can be obtained from the forward-path transfer function

0o K> K3 Rt

O(s) = 4.132
oY= T Tl + ReCrs) (4132)
Inserting values into equation (4.132) gives
) .5
2 (s) 0 (4.133)

T 7 (1 +as)(1+ 89)

Figure 4.34 shows the response to a unit step, or the process reaction curve.
From the R and D values obtained from the process reaction curve, using the
Zeigler—Nichols PID controller settings given in Table 4.2

K, =12/RD = 26.144
T; = 2D = 3.0 seconds
T4 =0.5D = 0.75 seconds

Assuming that the temperature of the surroundings 6s(f) remains constant, the
closed-loop transfer function (using equation (4.130)) for the temperature control
system, is

970(9) B (22582 +3s+ 1)
04" 7.344s3 + 5.004s% + 3.2295 + 1

(4.134)

The response to a step change in the desired temperature of 0-20°C for the closed-
loop transfer function given by equation (4.134) is shown in Figure 4.35.
From Figure 4.35, the ratio of successive peaks is

a 8.92

=272y 4.1
o 198+ (4.135)



100 Advanced Control Engineering
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Fig. 4.34 Process reaction curve for the temperature control system shown in Figure 4.33.
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Fig. 4.35 Closed-loop step response of temperature control system using PID controller tuned using
Zeigler—Nichols process reaction method.

This corresponds to a damping ratio of 0.23. These values are very close to the
Zeigler—Nichols optimum values of 4.0 and 0.21 respectively.

Example 4.6.3 Ship Autopilot (See also Appendix 1, examp463.m)
A ship has six degrees-of-freedom, i.e. it is free to move in six directions simultan-
eously, namely three linear motions — surge (forward), sway (lateral) and heave
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(vertical) together with three rotational motions — roll, pitch and yaw. This analysis
considers rotation about the yaw axis (i.e. heading control) only.

Figure 1.12 shows a typical ship autopilot system and Figure 1.13 shows the
corresponding block diagram. Rotation about the yaw axis is in effect rotation about
the z, or vertical axis of the vessel, called the ‘7’ direction since r is the symbol for
yaw-rate. Hence hydrodynamic coefficients for the yaw axis are therefore given the
subscript ‘7’. Yaw hydrodynamic coefficients are given the symbol ‘N’. In this
analysis the dynamics of the steering gear are neglected.

The system variables are

W4(7) = Desired heading (radians)
W,(f) = Actual heading (radians)
6(f) = Rudder angle (radians)

Figure 4.36 shows the hull free-body diagram. Disturbance effects (wind, waves and
current) are not included.

System equations

1. Hull dynamics: In Figure 4.36, X, Y, is the earth co-ordinate system where X, is
aligned to north. All angles are measured with respect to X,. A consistent right-
hand system of co-ordinates is used, with the exception of the rudder-angle, which
has been selected to be left-hand to avoid negative coefficients in the hull transfer
function.

Xo
Actual Course

Desired Course

Fig. 4.36 Free-body diagram of ship hull dynamics.
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From Figure 4.36 the equation of motion for the yaw axis is
Z Mg = Lapu(1)
(N56(1) = (Niha(1)) = Ltpa(0)
Taking Laplace transforms
Nid(s) = (15 + Nes)tha(s)

Hence the hull transfer function becomes

(4.136)

(4.137)

(4.138)

2. Control action: In this case, the autopilot (controller) is considered to provide

proportional control only.

6(s) = Ki(tha(s) — 1a(s))

(4.139)

3. Gyro-compass. This provides a measured heading proportional to the actual

heading

Ym(s) = Hi1pa(s)

(4.140)

Combining equations (4.138), (4.139) and (4.140) produces the block diagram shown

in Figure 4.37.
Using equation (4.4), the closed-loop transfer function is

’d} K1 K> Ns
a $(I,5+Nr)
—)=—%na (4.141)
’(/}d 1 + S(llz;gﬁ-;/\/r)l
Equation (4.141) simplifies to give
1
%(s) =r— — (4.142)
2 2 \
¢ (KleNﬁHl)S + (K]K2N5H1>S +1
) Hull
) Steering Rudder .
Autopilot Gear Characteristics Dynamics
us) &s) 1 Yals)
K1 » K2 » N(s » S(IZS+ Nr) L

Gyro-Compass

Hy [«

Fig. 4.37 Block diagram of ship autopilot control system.
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Equation (4.142) is in the standard form given in equation (3.42).

Control problem: For a specific hull, the control problem is to determine the autopilot
setting (K) to provide a satisfactory transient response. In this case, this will be when
the damping ratio has a value of 0.5. Also to be determined are the rise time, settling
time and percentage overshoot.

System parameters: The ship to be controlled is a cargo vessel of length 161 m with a
MARINER type hull of total displacement 17000 tonnes.

K> = 1.0rad/V Ns = 80 x 10° Nm/rad
Ny =2 x 10 Nms/rad I, = 20 x 10° kg m?
H; =1.0V/rad

Inserting values into equation (4.142) gives

A 1 (4.143)

“(s) =
g 20x10° '\ 2 2x10°
(K1><80><106 57+ { &rsoxtos ) 1

which simplifies to
Ya 1
2 5) =
G @

Comparing equation (4.144) with the standard form given in equation (3.42)

(4.144)

1 250
—=— 4.145
s (4.145)
and
2¢ 25
—=— 4.146
oK (4.140)
Given that ¢ = 0.5, then from equation (4.146)
K
Wn =55 (4.147)
Substituting (4.147) into (4.145) gives
252 250
K? K
Hence
625
K = 750 2.5 (4.148)
and from equation (4.147),
2.5

wn = 55 = 0.1radss (4.149)
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Fig. 4.38 Unit step response of ship autopilot control system. RiseTime (to 95%) = 23 seconds;
Percentage Overshoot = 16.3%;
Settling time (to £2%) = 81 seconds.

From equations (3.58) and (3.59) the unit step response for the ship autopilot control
system is given by the expression

Ya(f) = 1 — 729505 0.08667 + 0.577 sin 0.08667) (4.150)

Figure 4.38 shows the system unit step response. From Figure 4.38

4.7 Further problems

Example 4.7
For the block diagrams shown in Figure 4.39 find an expression for the complete
output when all inputs act simultaneously.

Solutions

(@) C(s) = LOWGUIGIENRI(S) + G3()(1+ Ga(Hy ) Rals)
) ) =T G300 Ha () + Ga(s) H3(5) + G1(5)G2(5)G3(5) H (5)

(b) C(s) = (G1(5)G2(5)G3(5)G4 () R1(5) — (G1(5)G2(5)G3(5)G4(5)H1 () Ro(s) — (G3(5)G4(5)) R3(s)
8= 1+ G3(s)Ha(s) + G1(5)Ga(5)G3(5)Ga(s)H1 (s)

Example 4.8

The speed control system shown in Figure 4.40 consists of an amplifier, a field-
controlled DC servomotor and a tachogenerator. The load consists of a mass of
moment of inertia / and a fluid damper C. The system parameters are:

I=0.75kgm> C =0.5Nms/rad
K, =5Nm/A H; =0.1Vs/rad
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(b

-~

Fig. 4.39 Block diagrams for closed-loop systems.

Amplifier l,= constant
()

Vo()

D.C. Servo-motor

Fig. 4.40 Speed control system.

Find the value of K; to give the system a closed-loop time constant of one second.
What is the steady-state value of w,(z) when v;(¢) has a value of 10 V.

Solution
0.5A/V
33.3rad/s
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Error
Detector

Velocity Feedback

I, = constant

H;

K; Gear ratio '’
= Tachogenerator

7

Ii(

Amplifier

Field Controlled L ¢
D.C. Servo-motor ©

Positional Feedback

Fig. 4.41 Angular positional control system. Ky = Error detector gain (V/rad); K; = Amplifier gain (A/V);
K3 = Motor constant (Nm/A); n = Gear ratio; H; = Tachogenerator constant (V s/rad); /, = Load moment
of inertia (kg m?); C, = Load damping coefficient (Nms/rad).

Example 4.9
Find an expression for the closed-loop transfer function relating 6;(s) and 6,(s) for
the angular positional control system shown in Figure 4.41.

Solution
0, 1

—(s) =
0; ) o 2+ Co+Ky K3n? Hy s+ 1
K|K2K3n K|K2K3n

Example 4.10

A hydraulic servomechanism consists of the spool-valve/actuator arrangement
shown in Figure 4.19 together with a ‘walking beam’ feedback linkage as shown in
Figure 4.42. The spool-valve displacement x,(¢) is given by the relationship

—>
x(1)
a Spool-Valve
- > X(1)
v
'y o — — —— == -+ —
b
Hydraulic Actuator
v o — — — . . . . _ _ L _m
4—

Fig. 4.42 Hydraulic servomechanism with ‘walking beam’ feedback linkage.
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Amplifier Actuator
"o 2 R 5 (1)
- s(1+0.5s) >

Sensor

A

3

Fig. 4.43 Block diagram of a servomechanism.

b
(D) = (m) (o) — (fﬂ) *o(1)

If the forward-path transfer function is given by equation (4.57), find an expression for
the closed-loop transfer function relating Xj(s) and X,(s). The system parameters are

m = 50 kg Vi=4x107m? B3=14GPa
A=0.0lm’ Ky =10.0m*/s  K.=6x 10" m>/Ns
Cpo=6x10"m°/Ns a=5b=0.15m

Solution

500
0.357 x 107653 + 0.12 x 107352 + s + 500

Xo, .
Yi(s) =

Example 4.11

A servomechanism consists of an amplifier, actuator and sensor as shown in block
diagram form in Figure 4.43. If the input to the system is a constant velocity of the
form

0:(t) = 2t

find an expression for the time response of the system.

Solution

0,(1) = 0.667¢ — 0.0222 + ¢~/(0.0222 cos 7.68¢ — 0.083 sin 7.681)

Example 4.12

Figure 4.44 shows the elements of a closed-loop temperature control system. A
proportional controller compares the desired value 6;(f) with the measured value
vo(?) and provides a control signal u(¢) of K; times their difference to actuate the valve
and burner unit. The heat input to the oven Q;(¢) is K; times the control signal.

107
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Proportional
Controller Valve/Burner
Q(H Thermometer
0i(t
( ) ,(1 U(t) Kg -
" c Oo(1)
Vo(1)
R

Measurement Systems

Ks

A

Fig. 4.44 Closed-loop temperature control system.

The walls of the oven have a thermal resistance Rt and the oven has a thermal
capacitance Ct and operating temperature 6,(¢). The heat transfer equation for the
oven may be written

0(1) dd,

0i(0) — Ry =Cr &

The thermometer and measurement system feed a measured value of H; times 6,(¢) to
the controller. The system parameters are

K =5 K,=15)J/V H =1V/K

Find

(a) The open-loop time constant

(b) The closed-loop time constant

(c) The percentage steady-state error in the output when the desired value is con-
stant.

Solution

(a) 50 seconds
(b) 3.125 seconds
(c) 6.25%

Example 4.13
Figure 4.45 shows the block diagram representation of a process plant being con-
trolled by a PID controller.

(a) Find an expression for the complete response C(s) when R;(s) and R,(s) act
simultaneously.

(b) Using the Ziegler—Nichols Process Reaction Method, determine values for K, T;
and Ty when T = 10 seconds and 7, = 20 seconds.
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Ra(s

PID Controller 2(s) Process Plant
1+
Ri(s) C(s)
o) Kifl+ 2= + Tus —»(%)—» —L >
Tis (1+T1s)(1+T28)

Fig. 4.45 Process plant under PID control.

(c) Insert the values into the expression found in (a). Using MATLAB, or otherwise,
determine the response c() when r() is a unit step and r,(¢) is zero. What is the
ratio of successive peaks?

Solution

(a) C(s) = K\(T;Tys*> + Tis + 1)Ry(s) + TisRy(s)
T: T, T2$3 + Ti(Tl + T, + K Td)SZ ¥ Tl(l +K1)S TK

(b) Ky =172 T;=6seconds T4 =1.5seconds

17.2(9s> + 65 + 1)
5(1200s3 4 334.852 + 109.25 + 17.2)

2.75

(© C@s) =

109



Classical design in the
s-plane

5.1 Stability of dynamic systems

The response of a linear system to a stimulus has two components:

(a) steady-state terms which are directly related to the input
(b) transient terms which are either exponential, or oscillatory with an envelope of
exponential form.

If the exponential terms decay as time increases, then the system is said to be stable. If
the exponential terms increase with increasing time, the system is considered unstable.
Examples of stable and unstable systems are shown in Figure 5.1. The motions
shown in Figure 5.1 are given graphically in Figure 5.2. (Note that (b) in Figure
5.2 does not represent (b) in Figure 5.1.) The time responses shown in Figure 5.2 can
be expressed mathematically as:

For (a) (Stable)

Xo(1) = Ae™ 7" sin(wt + ¢) (5.1
For (b) (Unstable)
Xo(1) = Ae”" sin(wt + @) (5.2)
For (c) (Stable)
Xo(f) = Ae™™ (5.3)
For (d) (Unstable)
Xo(f) = Ae” (5.4)

From equations (5.1)—(5.4), it can be seen that the stability of a dynamic system
depends upon the sign of the exponential index in the time response function, which
is in fact a real root of the characteristic equation as explained in section 5.1.1.
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Xo(t) /ﬂﬁ@%\{;« t)
=

(a) Stable (b) Unstable

s N\

///T// / T//
N N

(c) Stable (d) Unstable

Fig. 5.1 Stable and unstable systems.

Ay
X(1) \\\ Xo(1)
\\~~\\‘—\‘ Al->
\////_ L - !
@
(b)
Xo(t) Xo(t)
A
A
t t
(c) (d)

Fig. 5.2 Graphical representation of stable and unstable time responses.
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5.1.1 Stability and roots of the characteristic equation

The characteristic equation was defined in section 3.6.2 for a second-order system as

as* +bs+c¢=0 (5.5)
The roots of the characteristic equation given in equation (5.5) were shown in section
3.6.2. to be
—b £+ Vb2 — dac
Sty 82 = ——— ——— (5.6)
a

These roots determine the transient response of the system and for a second-order
system can be written as

(a) Overdamping

S1 = —01

(5.7)
S = —0
(b) Critical damping
S| =8 =—0 (58)
(¢) Underdamping
S1, $» = —0 +jw (5.9

If the coefficient » in equation (5.5) were to be negative, then the roots would be
S1, S = 40 :tjw (5.10)

The roots given in equation (5.9) provide a stable response of the form given in
Figure 5.2(a) and equation (5.1), whereas the roots in equation (5.10) give an
unstable response as represented by Figure 5.2(b) and equation (5.2).

The only difference between the roots given in equation (5.9) and those in equation
(5.10) is the sign of the real part. If the real part o is negative then the system is stable,
but if it is positive, the system will be unstable. This holds true for systems of any
order, so in general it can be stated: ‘If any of the roots of the characteristic equation
have positive real parts, then the system will be unstable’.

5.2 The Routh-Hurwitz stability criterion

The work of Routh (1905) and Hurwitz (1875) gives a method of indicating the
presence and number of unstable roots, but not their value. Consider the character-
istic equation

aps" + ap 18"+ as+ap=0 (5.11)
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The Routh—Hurwitz stability criterion states:

(a) For there to be no roots with positive real parts then there is a necessary, but not
sufficient, condition that all coefficients in the characteristic equation have the
same sign and that none are zero.

If (a) above is satisfied, then the necessary and sufficient condition for stability is either

(b) all the Hurwitz determinants of the polynomial are positive, or alternatively
(c) all coefficients of the first column of Routh’s array have the same sign. The
number of sign changes indicate the number of unstable roots.

The Hurwitz determinants are

D D a  as
1 =ai » =
ap dap (512)
a, ay ds ag
ay dasz ds ap dx d4 dg
Di=lay a as| D4= a; az as| etc.
a @ a  ay
Routh’s array can be written in the form shown in Figure 5.3.
In Routh’s array Figure 5.3
1 1
bl __ an—l al1—3 bz — aﬂ—l aﬂ—5 etc. (513)
ay—1| dn ap-2 au_1| an ap—4
1| b by 1| b b3
c=— = etc. 5.14
by |an—1 an3 by |an—1 ans ( )

Routh’s method is easy to apply and is usually used in preference to the Hurwitz
technique. Note that the array can also be expressed in the reverse order, commen-
cing with row s".

0
s P1
s'| @
-3
s" ¢y G G
—2
s" by b, b,
n—1
s an-1 an-3 an-5
n
S an an-2 an-4

Fig. 5.3 Routh’s array.
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Example 5.1 (See also Appendix 1, Al.5)
Check the stability of the system which has the following characteristic equation

sSfr2 P A5 +2=0 (5.15)

Test 1: All coefficients are present and have the same sign. Proceed to Test 2, i.e.
Routh’s array

s0 2

sl

st | -1 2 (5.16)
$3 2

st 1 2

The bottom two rows of the array in (5.16) are obtained from the characteristic
equation. The remaining coefficients are given by

12 4] 1
bl_z‘l 1’_5(2—4)_—1 (5.17)

12 o] 1
b2_§‘1 2|_§(4—0)_2 (5.18)
b3 =0 (5.19)
cl——l‘_zl i‘:—l(—4—4):8 (5.20)
¢y =0 (5.21)

118 o] 1
d1:§’1 2‘:§(16—0):2 (5.22)

In the array given in (5.16) there are two sign changes in the column therefore there
are two roots with positive real parts. Hence the system is unstable.

5.2.1 Maximum value of the open-loop gain constant for the
stability of a closed-loop system

The closed-loop transfer function for a control system is given by equation (4.4)

G(s)

C

- = 5.23
RY T T 5 60H) (5-23)
In general, the characteristic equation is most easily formed by equating the denomi-
nator of the transfer function to zero. Hence, from equation (5.23), the characteristic

equation for a closed-loop control system is

1+ G(s)H(s) = 0 (5.24)
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Proportional Control
Controller Valve Plant
R(s) 4 B R 4 . 5 CXf)
X ! s " (S+5+2) '

Fig. 5.4 Closed-loop control system.

Example 5.2 (See also Appendix 1, examp52.m)
Find the value of the proportional controller gain K; to make the control system
shown in Figure 5.4 just unstable.

Solution
The open-loop transfer function is

8K

G(s)H(s) = st (5.25)
The open-loop gain constant is
K =8K; (5.26)
giving
G(s)H(s) = st (5.27)
From equation (5.24) the characteristic equation is
b s(s? +Ks 12) 0 (5.28)
or
(P +5+2)+K=0 (5.29)
which can be expressed as
S+ +25+K=0 (5.30)

The characteristic equation can also be found from the closed-loop transfer function.
Using equation (4.4)
G(s)

C p—
Y ST 6wHG)

Given the open-loop transfer function in equation (5.27), where H(s) is unity, then

C ZL
Z(s) = ) (5.31)
Ry X

s(s2+5+2)
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Multiplying numerator and denominator by s(s> + s + 2)
C K

- = 5.32
R(S) s(2+s+2)+K (5-32)
C K
- = 5.33
R(S) $+524+25+K (5.33)
Equating the denominator of the closed-loop transfer function to zero
S+ 4+254+K=0 (5.34)

Equations (5.30) and (5.34) are identical, and both are the characteristic equation. It
will be noted that all terms are present and have the same sign (Routh’s first
condition). Proceeding straight to Routh’s array

50 K

5! 2-K)

s 1 K
$3 1 2

(5.35)

where
1 K

bl:l‘l 2

‘ze—m

by =0

=K
To produce a sign change in the first column,

K>2 (5.36)
Hence, from equation (5.26), to make the system just unstable
K =025
Inserting (5.36) into (5.30) gives
S+ +254+2=0

factorizing gives
(*+2s+1)=0

hence the roots of the characteristic equation are
s=-—1
s=0+jV2
and the transient response is
e(t) = Ae™" + Bsin(v2t + ¢) (5.37)

From equation (5.37) it can be seen that when the proportional controller gain K is
set to 0.25, the system will oscillate continuously at a frequency of v/2 rad/s.
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5.2.2 Special cases of the Routh array

Case 1: A zero in the first column

If there is a zero in the first column, then further calculation cannot normally proceed
since it will involve dividing by zero. The problem is solved by replacing the zero with
a small number £ which can be assumed to be either positive or negative. When the
array is complete, the signs of the elements in the first column are evaluated by
allowing ¢ to approach zero.

Example 5.3
P42+ 287 +45+3=0
0 3
5! 4 —6/e
5* 3 (5.38)
5 2 4
st 1 2 3

Irrespective of whether ¢ is a small positive or negative number in array (5.38), there
will be two sign changes in the first column.

Case 2: All elements in a row are zero
If all the elements of a particular row are zero, then they are replaced by the
derivatives of an auxiliary polynomial, formed from the elements of the previous row.

Example 5.4
P24 +653 +125% +85+16=0

s 16

s! 8/3

5 6 16

S8 24 (5.39)
5t 2 12 16

$ 1 6 8

The elements of the s* row are zero in array (5.39). An auxiliary polynomial P(s) is
therefore formed from the elements of the previous row (s*).
ie.
P(s) = 2s* + 125 + 16
dP(s)

= 8s® + 24s (5.40)
ds

The coefficients of equation (5.40) become the elements of the s° row, allowing the
array to be completed.
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5.3 Root-locus analysis

5.3.1 System poles and zeros

The closed-loop transfer function for any feedback control system may be written in
the factored form given in equation (5.41)

G(s)

o K(;(S - ch)(S - ZcZ) e (S - ch)

0=

where s = pe, P2, - - -

L+ GEH() (5= pea)s —pea) .- (s = pen)

, Pen are closed-loop poles, so called since their values make

(5.41)

equation (5.41) infinite (Note that they are also the roots of the characteristic

equation) and s = z1, Ze, - .
equation (5.41) zero.

., Zen are closed-loop zeros, since their values make

The position of the closed-loop poles in the s-plane determine the nature of the
transient behaviour of the system as can be seen in Figure 5.5. Also, the open-loop
transfer function may be expressed as

G(s)H(s) =

where Z01> 2025 - -

X
K S Na

K(s — zo1)(s — z02) - . . (8 — Zon)

., Zon are open-loop zeros and po;, po2, - - -

X X /

(s — po1)(s — po2) - - - (s — pon) (5.42)

, Pon are open-loop poles.

o x

N
N

\
\

)'d

X

,.\ TV 5

X

Fig. 5.5 Effect of closed-loop pole position in the s-plane on system transient response.
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5.3.2 The root locus method

This is a control system design technique developed by W.R. Evans (1948) that
determines the roots of the characteristic equation (closed-loop poles) when the
open-loop gain-constant K is increased from zero to infinity.

The locus of the roots, or closed-loop poles are plotted in the s-plane. This is a
complex plane, since s = o + jw. It is important to remember that the real part o is
the index in the exponential term of the time response, and if positive will make the
system unstable. Hence, any locus in the right-hand side of the plane represents an
unstable system. The imaginary part w is the frequency of transient oscillation.

When a locus crosses the imaginary axis, o = 0. This is the condition of marginal
stability, i.e. the control system is on the verge of instability, where transient oscilla-
tions neither increase, nor decay, but remain at a constant value.

The design method requires the closed-loop poles to be plotted in the s-plane as K
is varied from zero to infinity, and then a value of K selected to provide the necessary
transient response as required by the performance specification. The loci always
commence at open-loop poles (denoted by x) and terminate at open-loop zeros
(denoted by o) when they exist.

Example 5.5
Construct the root-locus diagram for the first-order control system shown in
Figure 5.6.

Solution
Open-loop transfer function
G(s)H(s) = K (5.43)
Ts
Open-loop poles
s=0

Open-loop zeros: none
Characteristic equation

1+ G(s)H(s) =0
Substituting equation (5.3) gives

K
l1+—=0
+ Ts
ie. Ts+K=0 (5.44)
R(s) + K C(s)
?\S L

Fig. 5.6 First-order control system.
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r 3

Fig. 5.7 Root-locus diagram for a first-order system.

Roots of characteristic equation

K
. (5.45)
When K is varied from zero to infinity the locus commences at the open-loop pole
s = 0 and terminates at minus infinity on the real axis as shown in Figure 5.7.
From Figure 5.7 it can be seen that the system becomes more responsive as K is
increased. In practice, there is an upper limit for K as signals and control elements

saturate.
Example 5.6
Construct the root-locus diagram for the second-order control system shown in
Figure 5.8.
Open-loop transfer function
K
G(s)H(s) = 5.46
OHO = " (5.46)
Open-loop poles
s=0,—4

Open-loop zeros: none
Characteristic equation

1+ G(s)H(s) = 0

R(s) + K C(s)
s(s+4)

v

Fig. 5.8 Second-order control system.
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Table 5.1 Roots of second-order characteristic
equation for different values of K

K Characteristic equation Roots

0 s>4+45=0 s=0,—4

4 SP2+45+4=0 s=-24+j0

8 sP4+4s+8=0 s=-2%j2
16 s2+4s+16=0 s=-2+j3.46

Substituting equation (5.4) gives
K
e —
s(s+4)
ie. s 4+454+K=0 (5.47)

1+

Table 5.1 shows how equation (5.7) can be used to calculate the roots of the
characteristic equation for different values of K. Figure 5.9 shows the corresponding
root-locus diagram.

In Figure 5.9, note that the loci commences at the open-loop poles (s = 0, —4)
when K = 0. At K = 4 they branch into the complex space. This is called a break-
away point and corresponds to critical damping.

jw
A
b K=16
-3
p K=8 -2
-1
K=0 K=4 K=0
%
-5 -4 -3 -2 -1 7
-1
b K=8 -2
- -3
b K=16
v

Fig. 5.9 Root locus diagram for a second-order system.
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5.3.3 General case for an underdamped second-order system

For the generalized second-order transfer function given in equation (3.43), equating
the denominator to zero gives the characteristic equation

52+ 20wns +wr =0 (5.48)
If ¢ < 1 in equation (5.48), then the roots of the characteristic equation are

81,80 = —(n Ejwn V1 = G (5.49)

Hence a point P in the s-plane can be represented by Figure 5.10.
From Figure 5.10, Radius

OP = \/(Cwn)z + (w,ﬂ/l — 42)2 (5.50)

Simplifying (5.50) gives

OP = wy (5.51)
Also from Figure 5.10
COSQZM: (5.52)
Wn

Thus, as ( is varied from zero to one, point P describes an arc of a circle of radius wy,
commencing on the imaginary axis (8 = 90°) and finishing on the real axis (G = 0°).

Limits for acceptable transient response in the s-plane
If a system is

(1) to be stable
(2) to have acceptable transient response (¢ > 0.5)

—Cwn O o

Fig. 5.10 Roots of the characteristic equation for a second-order system shown in the s-plane.
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—

Unacceptable
Acceptable Region
Region (¢ >0.5)

60°

o
—60° K

Fig. 5.11 Region of acceptable transient response in the s-plane for ¢ > 0.5.

then the closed-loop poles must lie in an area defined by
B ==4cos 10.5=+60° (5.53)
This is illustrated in Figure 5.11.

5.3.4 Rules for root locus construction

Angle and magnitude criteria
The characteristic equation for a closed-loop system (5.24) may also be written as

G(s)H(s) = —1 (5.54)

Since equation (5.54) is a vector quantity, it can be represented in terms of angle and
magnitude as

G(s)H(s) = 180° (5.55)
[G(s)H (s5)
|G(s)H(s)| = 1 (5.56)

The angle criterion
Equation (5.55) may be interpreted as ‘For a point s; to lie on the locus, the sum of
all angles for vectors between open-loop poles (positive angles) and zeros (negative
angles) to point s; must equal 180°.

In general, this statement can be expressed as

Y Pole Angles — ¥ Zero Angles = 180° (5.57)
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& 0, ‘\ &
&

Fig. 5.12 Application of the angle criterion.

Example 5.7
Consider an open-loop transfer function

K(s+ a)

G(s)H(s) = m

Figure 5.12 shows vectors from open-loop poles and zeros to a trial point s;. From
Figure 5.12 and equation (5.57), for s; to lic on a locus, then

(01 + 02 + 03) — (¢1) = 180° (5.58)

The magnitude criterion
If a point s; lies on a locus, then the value of the open-loop gain constant K at that
point may be evaluated by using the magnitude criterion.

Equation (5.56) can be expressed as

e
or
_ 1D
O] (560

Equation (5.60) may be written as

_ Product of pole vector magnitudes

= . 5.61
Product of zero vector magnitudes (5-61)
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jw

i Ixl

Iyl

Fig. 5.13 Application of the magnitude criterion.

For Example 5.7, if s; lies on a locus, then the pole and zero magnitudes are shown in
Figure 5.13. From Figure 5.13 and equation (5.61), the value of the open-loop gain
constant K at position s is
_ Il
[wl

(5.62)

If there are no open-loop zeros in the transfer function, then the denominator of
equation (5.62) is unity.

5.3.5 Root locus construction rules

1. Starting points (K = 0): The root loci start at the open-loop poles.

2. Termination points (K = oo): The root loci terminate at the open-loop zeros when
they exist, otherwise at infinity.

3. Number of distinct root loci: This is equal to the order of the characteristic equation.

Symmetry of root loci: The root loci are symmetrical about the real axis.

5. Root locus asymptotes: For large values of k the root loci are asymptotic to
straight lines, with angles given by

b

(1426

== m

where
k=0,1,...(n—m—1)
n = no. of finite open-loop poles
m = no. of finite open-loop zeros
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6. Asymptote intersection: The asymptotes intersect the real axis at a point given by

Y open-loop poles — ¥ open-loop zeros

a (n—m)

7. Root locus locations on real axis: A point on the real axis is part of the loci if the sum
of the number of open-loop poles and zeros to the right of the point concerned is odd.

8. Breakaway points: The points at which a locus breaks away from the real axis can
be calculated using one of two methods:

(a) Find the roots of the equation

d_K
ds

S=0p
where K has been made the subject of the characteristic equationi.ec. K = ...
(b) Solving the relationship

m

1 1 1
Z:(Gb +lpih Z:(Ub + |z

where |p;| and |z;| are the absolute values of open-loop poles and zeros and
oy 1s the breakaway point.

9. Imaginary axis crossover: The location on the imaginary axis of the loci (mar-
ginal stability) can be calculated using either:

(a) The Routh—Hurwitz stability criterion.
(b) Replacing s by jw in the characteristic equation (since ¢ = 0 on the imagin-
ary axis).

10. Angles of departure and arrival: Computed using the angle criterion, by position-
ing a trial point at a complex open-loop pole (departure) or zero (arrival).

11. Determination of points on root loci: Exact points on root loci are found using the
angle criterion.

12. Determination of K on root loci: The value of K on root loci is found using the
magnitude criterion.

Example 5.8 (See also Appendix 1, examp58.m and examp58a.m)
A control system has the following open-loop transfer function

K

COHG) = 52613

(a) Sketch the root locus diagram by obtaining asymptotes, breakaway point and
imaginary axis crossover point. What is the value of K for marginal stability?

(b) Locate a point on the locus that corresponds to a closed-loop damping ratio of
0.5. What is the value of K for this condition? What are the roots of the
characteristic equation (closed-loop poles) for this value of K?
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Solution
Part (a)

Open loop poles: s=0,-2,—5 n=3
Open-loop zeros: none m =10

Asymptote angles (Rule 5)

CA4+0r T
0, = o _3_60, k=0 (5.63)
1+2
92:( + )ﬂ-:7r:1800, k=1 (564)
3-0
l+4)r 5
93:(3+_0)7T:?7T=300°(—60°), k=2, ien-m-1 (5-65)

Asymptote intersection (Rule 6)
y 21O+ D)+ (-0

a 30 (5.66)
0, = —2.33 (5.67)
Characteristic equation: From equation (5.24)
K
1+ GG LS) =0 (5.68)
or
S+2)(s+5)+K=0
giving
S +7%2+10s+K=0 (5.69)

Breakaway points (Rule 8)

Method (a): Re-arrange the characteristic equation (5.69) to make K the subject

K=—5—75—10s (5.70)

K
d—:—3s2—14s—10:0 (5.71)

ds

Multiplying through by —1
35+ 145+10=0 (5.72)
—14+ 142 - 120
S1, 82 = 0p = 6

op = —3.79, —0.884 (5.73)
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Method (b)
1 1 1

B E R — 5.74
O’b+0'b+2+0b—‘r5 ( )
Multiplying through by,

(b + 2)(op + 5)

(ob 4+ 2)(ob + 5) + op(op + 5) + op(op +2) =0

(5.75)
U%)+70'b+ 10+0'%,+50'b+0%+20b =0
30p + 140, + 10 =0
op = —3.79, — 0.884 (5.76)

Note that equations (5.72) and (5.75) are identical, and therefore give the same roots.
The first root, —3.79 lies at a point where there are an even number of open-loop poles to
the right, and therefore is not valid. The second root, —0.884 has odd open-loop poles to
the right, and is valid. In general, method (a) requires less computation than method (b).

Imaginary axis crossover (Rule 9)
Method (a) (Routh—Hurwitz)

50 K

s | @ao— k)7

s 7 K
5 1 10

From Routh’s array, marginal stability occurs at K = 70.

Method (b): Substitute s = jw into characteristic equation. From characteristic
equation (5.69)

(jw)® + 7(jw)* + 10(jw) + K = 0

—jw? = 7w + 10jw+ K =0 (5.77)
Equating imaginary parts gives
—w 4+ 10w =0
w? =10
w==£3.16rad/s (5.78)
Equating real parts gives
~T*+K =0
8: K = 7w’ =170 (5.79)

Note that method (b) provides both the crossover value (i.e. the frequency of
oscillation at marginal stability) and the open-loop gain constant.
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4 T T T T T T / T
K=70
3F ]
GsHI(s)=——K
s(s+2)(s+5)
2+ (=05 ]
(B=60°) -,
S K=11.35
o ]
< b5 ¢ .0
> T PO
© 0 «— e : .,
£
2 /
£ X
1+ _
o+ _
_3 - .
_4 1 1 1 1 1 1 \ 1
9 -8 -7 -6 5 4 -3 1

Real Axis

Fig. 5.14 Sketch of root-locus diagram for Example 5.8.

The root locus diagram is shown in Figure 5.14.

Part (b) From equation (5.52), line of constant damping ratio is

B =cos 1(¢) = cos '(0.5) = 60°

(5.80)

This line is plotted on Figure 5.14 and trial points along it tested using the angle

criterion, i.e.

01 + 0, + 03 = 180°
Ats=-0.74+j1.25
120 + 44 + 16 = 180°

Hence point lies on the locus.

(5.81)
(5.82)

Value of open-loop gain constant K: Applying the magnitude criterion to the above

point

K = |d||b]|c]
=14x18x4.5=1135

(5.83)
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X+5 Jw

X+2 |

X
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AV
N

S, 5 -2 a

Fig. 5.15 Determination of real closed-loop pole.

Closed-loop poles (For K = 11.35): Since the closed-loop system is third-order, there
are three closed-loop poles. Two of them are given in equation (5.81). The third lies
on the real locus that extends from —5 to —oo. Its value is calculated using the
magnitude criterion as shown in Figure 5.15.

From Figure 5.15

x(x + 2)(x + 5) = 11.35 (5.84)

Substituting x = 0.73 (i.e. s; = —5.73) in equation (5.84) provides a solution. Hence
the closed-loop poles for K = 11.35 are

s=—5.73,-0.7+j1.25 (5.85)

Example 5.9 (See also Appendix 1, examp59.m)
The open-loop transfer function for a control system is

K

CWOHO) = 5727 13)

Find the asymptotes and angles of departure and hence sketch the root locus
diagram. Locate a point on the complex locus that corresponds to a damping ratio
of 0.25 and hence find

(a) the value of K at this point
(b) the value of K for marginal stability

Solution
Open-loop poles: s=0,

4+ 16-52
#:—2@'3 n=>3

Open-loop zeros: None m =10
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Asymptote angles (Rule 5)

1+ 0)r 7 -
O =55 =3=060" k=0 (5.86)
92:(1+2)7T:7r=180°, k=1 (5.87)
3-0

Asymptote intersection (Rule 6)

g o MO+ (243 +(=2-j3)} 0

a 3 (5.89)
oy = —1.333 (5.90)
Characteristic equation
S +45% + 135+ K =0 (5.91)
Breakaway points: None, due to complex open-loop poles.
Imaginary axis crossover (Rule 9)
Method (b)
(jw)® +4G{w)* + 13jw+ K =0
or
—jw® — 4 + 13jw+ K =0 (5.92)
Equating imaginary parts
— 4+ 13w =0
w =13
w = +3.6rad/s (5.93)
Equating real parts
—4’ +K=0
K=52 (5.94)

Angle of departure (Rule 10): If angle of departure is 84, then from Figure 5.16

0, + O + 04 = 180°
fq = 180 — 0, — Oy
fq = 180 — 123 — 90 = —33° (5.95)

Locate point that corresponds to ¢ = 0.25. From equation (5.52)

B =cos™'(0.25) = 75.5° (5.96)
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Fig. 5.16 Root locus diagram for Example 5.9.

Plot line of constant damping ratio on Figure 5.16 and test trial points along it using
angle criterion.
Ats=-0.8+j2.9

104.54+79.5 -4 = 180°

Hence point lies on locus.
Applying magnitude criterion

K=30x60x125=225 (5.97)

5.4 Design in the s-plane

The root locus method provides a very powerful tool for control system design. The
objective is to shape the loci so that closed-loop poles can be placed in the s-plane at
positions that produce a transient response that meets a given performance specifica-
tion. It should be noted that a root locus diagram does not provide information
relating to steady-state response, so that steady-state errors may go undetected,
unless checked by other means, i.e. time response.
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Table 5.2 Compensator characteristics

Compensator  Characteristics

PD One additional zero
PI One additional zero

One additional pole at origin
PID Two additional zeros

One additional pole at origin

5.4.1 Compensator design

A compensator, or controller, placed in the forward path of a control system will
modify the shape of the loci if it contains additional poles and zeros. Characteristics
of conventional compensators are given in Table 5.2.

In compensator design, hand calculation is cumbersome, and a suitable computer
package, such as MATLAB is generally used.

Case Study

Example 5.10 (See also Appendix 1, examp510.m)
A control system has the open-loop transfer function given in Example 5.8, i.e.

1
G(S)H(S) = m . K=1

A PD compensator of the form
G(s) = Ki(s + a) (5.98)
is to be introduced in the forward path to achieve a performance specification

Overshoot less than 5%
Settling time (£2%) less than 2 seconds

Determine the values of K| and « to meet the specification.

Original controller

The original controller may be considered to be a proportional controller of gain K and the
root locus diagram is shown in Figure 5.14. The selected value of K = 11.35 is for a
damping ratio of 0.5 which has an overshoot of 16.3% in the time domain and is not
acceptable. With adampingratio of 0.7 the overshoot is 4.6% which is within specification.
This corresponds to a controller gain of 7.13. The resulting time response for the original
system (K= 11.35) is shown in Figure 5.20 where the settling time can be seen to be 5.4
seconds, which is outside of the specification. This also applies to the condition K=7.13.

PD compensator design

With the PD compensator of the form given in equation (5.98), the control problem,
with reference, to Figure 5.14, is where to place the zero a on the real axis. Potential
locations include:

(1) Between the poles s =0, -2, i.c. at s = —1
(i) At s = —2 (pole/zero cancellation)
(iii) Between the poles s = =2, —5,i.e at s = =3
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Fig. 5.17 Root locus diagram for compensator K1(s + 1).
Option 1 (zero positioned at s = —1): The cascaded compensator and plant transfer
function become
Ki(s+1)
G(s)H(s) =——— 5.99
(H(s) s(s 4+ 2)(s + 95) (5-99)
The root locus diagram is shown in Figure 5.17.
It can be seen in Figure 5.17 that the pole at the origin and the zero at s = —1

dominate the response. With the complex loci, ( = 0.7 gives K; a value of 15.
However, this value of K; occurs at —0.74 on the dominant real locus. The time
response shown in Figure 5.20 shows the dominant first-order response with the
oscillatory second-order response superimposed. The settling time is 3.9 seconds,
which is outside of the specification.

Option 2: (zero positioned at s = —2): The cascaded compensator and plant transfer
function is

Ki(s+2)
s(s+2)(s+5)

The root locus diagram is shown in Figure 5.18. The pole/zero cancellation may be
considered as a locus that starts at s = —2 and finishes at s = —2, i.e. a point on
the diagram. The remaining loci breakaway at s = —2.49 and look similar to the
second-order system shown in Figure 5.9. The compensator gain K that corresponds
to ¢ = 0.7 is 12.8. The resulting time response is shown in Figure 5.20 and has an
overshoot of 4.1% and a settling time of 1.7 seconds, which is within specification.

G(s)H(s) = (5.100)
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Fig. 5.18 Root locus diagram for compensator K (s + 2).

Option 3: (zero positioned at s = —3): The cascaded compensator and plant transfer
function is

K, (S + 3)
s(s + 2)(s +5)

The root locus diagram is shown in Figure 5.19. In this case the real locus occurs
between s = —5 and —3 and the complex dominant loci breakaway at o, = —1.15.
Since these loci are further to the right than the previous option, the transient
response will be slower. The compensator gain that corresponds to ¢ =0.7 is
K; = 5.3. The resulting time response is shown in Figure 5.20, where the overshoot
is 5.3% and the settling time is 3.1 seconds.

G(s)H(s) = (5.101)

Summary: Of the three compensators considered, only option 2 met the performance
specification. The recommended compensator is therefore

G(s) = 12.8(s + 2) (5.102)
Case study

Example 5.11 (See also Appendix 1, examp511.m)
A ship roll stabilization system is shown in Figure 5.21. The system parameters are

Fin time constant 77 = 1.0 seconds
Ship roll natural frequency w, = 1.414rad/s
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G(s)H(s)=
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Fig. 5.19 Root locus diagram for compensator K7 (s + 3).
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Fig. 5.20 Time response for the three options considered.
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Stabilization Ship Roll
Fin Dynamics
¢(S) + 84(s) 1 8.(s) Kyn als)
Controller > 1+Ts > 5 > >
h f S"+2(w,S+w;,

Fig. 5.21 Ship roll stabilization system.

Ship roll damping ratio (= 0.248
Ship steady-state gain Ky = 0.5

Performance specification

Without stabilization, the step response of the roll dynamics produces a 45% over-
shoot and a settling time of 10 seconds. The stabilization control system is required to
provide a step response with an overshoot of less than 25%, a settling time of less
than 2 seconds, and zero steady-state error.

(a) Proportional control: With a proportional gain Kj, the open-loop transfer

function is
K K2

G(s)H(s) = 5.103
WHS) = T T2 + 26oms + o0 (5.103)
Inserting values
K
G(s)H(s) = 5.104
WHES = T D@+ 07552) (5.104)
where
K = K| KW (5.105)
Open-loop poles: s=—1,—-035+j1.37 n=3
Open-loop zeros: None m =0
Asymptote angles (Rule 5)
1+0r =
0, = =-=60°, k=0 5.106
'=3-0 37 (5.106)
1+2
o, = DT g0 k=1 (5.107)
3—-0
1+4) Sn
0; = =—=2300°, k=2 5.108
= = 300 (5.108)
Asymptote intersection (Rule 6)
-1 —0.354+j1.37 —0.35—-j1.37)} -0
o 1EDH( +il37) +( j1.37)} (5.109)

a 3-0
o, = —0.57 (5.110)
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Characteristic equation

1+(s+1)(s21-|<-0.7s+2):0 (511D
giving
S +1.724+2Ts+Q+K)=0 (5.112)
Breakaway points: None
Imaginary axis crossover (Rule 9)
From characteristic equation (5.112)
(jw)* + 1.7(jw)* 4+ 2.7(jw) + 2+ K) = 0
—jw? = 1.7 + 27w+ 2+ K) =0
Equating imaginary parts
27w =0
W =27
w = +1.643rad/s (5.113)
Equating real parts
1.7 4+ Q2+ K)=0
K=17w*-2=259 (5.114)

The root locus diagram is shown in Figure 5.22. It can be seen that proportional
control is not appropriate since as the controller gain K| is increased the complex loci
head towards the imaginary axis, making the response even more oscillatory than the
open-loop response, until at K = 2.59 (K; = 2.59) the system becomes unstable.
Also, since no pure integrator is present in the control loop, there will be significant
steady-state errors.

(b) PID control: In order to achieve an acceptable response, the complex loci need
to be attracted into the left-hand-side of the s-plane. This might be achieved by
placing a pair of complex zeros to the left of the open-loop poles. In addition, a pure
integrator needs to be introduced. This points to a PID controller of the form

Ki(s*> + bs + ¢)

G(s) = : (5.115)
putting b = 4 and ¢ = 8 gives a pair of complex zeros
s=-24j2
The open-loop transfer function now becomes
K(s®> +4s+8
Gs)H(s) = — R~ +ds+8) (5.116)

s(s+ D(s2 4+ 0.7s + 2)

The root locus diagram is shown in Figure 5.23. The control strategy however,
has not worked. The pure integrator and the open-loop pole s = —1 produce a
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Fig. 5.22 Proportional control, ship roll stabilization system.
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Fig. 5.23 PID control, ship roll stabilization system.
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Fig. 5.24 PIDD control, ship roll stabilization system.
breakaway point at s = —0.6. This in turn creates a second pair of complex loci that

terminate at the new open-loop zeros, leaving the original complex loci to crossover
the imaginary axis as before.

(c) PIDD control: If an additional open-loop zero is placed on the real axis, to the
left of the open-loop pole s = —1, a further breakaway point will occur to the left of
the new zero. This should have the effect of bringing one pair of complex loci back to
the real axis, whilst allowing the original complex loci to terminate at the complex
open-loop zeros. If a new real zero is placed at s = —2, the open-loop transfer
function becomes
K(s +2)(s* + 45+ 8)
s(s+ D2+ 0.7s +2)

The resulting root-locus diagram is shown in Figure 5.24.

The control strategy for the root-locus diagram shown in Figure 5.24 is called
PIDD, because of the additional open-loop zero. The system is unstable between
K =0.17 and K = 1.06, but exhibits good transient response at K = 10.2 on both
complex loci.

Figure 5.25 shows the step response for (a) the hull roll action without a stabilizer
system, and (b) the hull roll action with a controller/compensator with a control law

10.2(s + 2)(s> 4 4s + 8)
s

G(s)H(s) = (5.117)

G(s) = (5.118)
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Fig. 5.25 Ship hull step response with and without stabilizers system.

System performance
(1) Without stabilizer system

Rise time (95%) 1.3 seconds
Percentage Overshoot 45%
Settling time (+£2%) 10.0 seconds

(i1) With stabilizer system

Rise time (95%) 0.14 seconds
Percentage overshoot 22.8%
Settling time (+2%) 1.4 seconds
With the stabilizer system, the step response meets the performance specification.

5.5 Further problems

Example 5.12
Use the Routh—Hurwitz criterion to determine the number of roots with positive real
parts in the following characteristic equations

(@) s*4+3574+652+254+5=0 Ans: two
(b) > +2s* +35° +45> +25s+1=0 Ans: none
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Example 5.13
Find the value of the open-loop gain constant K to make the control system, whose
open-loop transfer function is given below, just unstable.

K
G(S)H(S) = m Ans: 72

Example 5.14
A feedback control system has the following open-loop transfer function

K

GCOHES) = 36 13)

(a) Sketch the root locus by obtaining asymptotes, breakaway point and imaginary
axis cross-over point.

(b) A compensating element having a transfer function G(s) = (s+2) is now
included in the open-loop transfer function. If the breakaway point is —0.56,
sketch the new root locus. Comment on stability of the system with, and without
the compensator.

(c) Demonstrate that for the compensated system the co-ordinates —2.375,
—1.8 £j4.0 lie on the curve. What is the value of K for these points?

Solution

@) o,=-2, 0, =-047, w==+j2.24rad/s
(b) With compensator, system stable for all K
(c) K=23

Example 5.15
A feedback control system employing proportional control has the following open-
loop transfer function

K
s+ D(s2+s+1)

G(s)H(s) =

(a) Using asymptotes, sketch the root locus diagram for the closed-loop system and

find
(1) the angles of departure from any complex open-loop poles,
(i1) the frequency of transient oscillation at the onset of instability,
(iii) the value of K to give the dominant closed-loop poles a damping ratio ¢ of
0.3

(b) To improve the steady-state performance the proportional controller is replaced
by a proportional plus integral controller. The forward-path transfer function
now becomes

K(s+2)

Gs) = s(s+D(s2+s5+1)
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Demonstrate that

(1) the two breakaway points occur at

op, = —0.623
Op, = —-2.53

(i1) the imaginary axis crossover occurs when K = 0.464

Solution
(a) (1) £30°, (ii) 1.414rad/s, (iii)) K = 0.55

Example 5.16

(a) The laser guided missile shown in Figure 5.26(a) has a pitch moment of inertia of
90kgm?. The control fins produce a moment about the pitch mass centre of
360 Nm per radian of fin angle 5. The fin positional control system has unity gain
and possesses a time constant of 0.2 seconds. If all other aerodynamic effects are
ignored, find the transfer functions of the control fins and missile (in pole-zero
format) in the block diagram given in Figure 5.26(b).

(b) You are to conduct a feasibility study to evaluate various forms of control
action. Initially proportional control is to be considered. Using asymptotes only,
construct the root locus diagram and give reasons why it would be unsuitable.

Missile
Controller Fin Dynamics Dynamics
U(s) B(s) 04(3)
Op(S) + A
L IOD— e M G M G >

Fig. 5.26 Laser guided missile.
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(¢) An open-loop zero is now introduced at s = —2. Again construct the root-locus
diagram using asymptotes and comment on the suitability of the system.

(d) Open-loop zeros at s = —2 and s = —3 are now introduced. Demonstrate that at
s = —2.45 the complex loci join the real axis prior to terminating at the open-
loop zeros. Show also that a trial point on the locus exists when jw = 1.45 and the
damping ratio ¢ = 0.7. Sketch the root locus diagram and evaluate the controller
gain that corresponds to ( = 0.7.

Solution

(@) Ga(s) =5/(s+5) Gi(s) =4/s
(b) System unstable for all K

(c) System stable for all K

(d) Controller gain = 0.24



Classical design in the
frequency domain

6.1 Frequency domain analysis

Control system design in the frequency domain can be undertaken using a purely
theoretical approach, or alternatively, using measurements taken from the compon-
ents in the control loop. The technique allows transfer functions of both the system
elements and the complete system to be estimated, and a suitable controller/compen-
sator to be designed.

Frequency domain analysis is concerned with the calculation or measurement of
the steady-state system output when responding to a constant amplitude, variable
frequency sinusoidal input. Steady-state errors, in terms of amplitude and phase
relate directly to the dynamic characteristics, i.e. the transfer function, of the system.

Consider a harmonic input

0i(t) = A sinwt (6.1)
This can be expressed in complex exponential form
0i(1) = Ae (6.2)
The steady-state response of a linear system will be
0o(1) = Az sin(wt — ¢) (6.3)
or
0,(1) = Arel@=9 (6.4)

where ¢ is the phase relationship between the input and output sinewaves as shown in
Figure 6.1. The amplitude ratio 4,/A4; is called the modulus and given the symbol |G|.
Thus

A
A_l = |G| 6.5)

or

Ar = A1|G| (6.6)
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1.51
) 0i(t) = A, sinwt
o) ' ' 0() = A, sin(wt—o)
(1) 1 ;
X
0.5 A,
Ay
0
0 0.1 0.2 0.3 04 05 0 0.7 0.8 0.9 1
wt (rad)
-0.5
-1 —> ¢
—15)
Fig. 6.1 Steady-state input and output sinusoidal response.
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Fig. 6.2 Harmonic response diagram.

Substituting equation (6.6) into (6.3)
0o(1) = A;|G|e "~
= A1|Gle™e?

(6.7)
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0o(1) = (41e)(|Gle™?)
= 6i(1)|Gle ™ (6.8)
Since |G| and ¢ are functions of w, then equation (6.8) may be written
%W = l6le (69

For a given value of w, equation (6.9) represents a point in complex space P(w). When
w is varied from zero to infinity, a locus will be generated in the complex space. This
locus, shown in Figure 6.2, is in effect a polar plot, and is sometimes called a
harmonic response diagram. An important feature of such a diagram is that its shape
is uniquely related to the dynamic characteristics of the system.

6.2 The complex frequency approach

Relationship between s and jw. From equation (6.2)
0i1) = Are
do . ; .
— = ju(41e™") = jwbi(r)
dr
Taking Laplace transforms
56;(5) = jwbi(s) (6.10)
or
5§ = jw (6.11)
Hence, for a sinusoidal input, the steady-state system response may be calculated by
substituting s = jw into the transfer function and using the laws of complex algebra
to calculate the modulus and phase angle.

6.2.1 Frequency response characteristics of first-order systems

From equation (3.23)

0o K
—_— = = . ] 2
70 =G0 = (6.12)
For a sinusoidal input, substitute equation (6.11) into (6.12).
0 .. . K
E(Jw) = G(jw) = 5T (6.13)

Rationalize, by multiplying numerator and denominator of equation (6.13) by the
conjugate of (6.13), i.e.

. K(I—jwl)
CU) = G50 = jwT)
_K(1 - jwT)

T2 7? (6.14)
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Equation (6.14) is a complex quantity of the form « + jb where
K

Real part a = m (615)
—KwT
Imaginary part b= TC:;TZ (6.16)

Hence equation (6.14) can be plotted in the complex space (Argand Diagram) to
produce a harmonic response diagram as shown in Figure 6.3.

In Figure 6.3 it is convenient to use polar co-ordinates, as they are the modulus and
phase angle as depicted in Figure 6.2. From Figure 6.3, the polar co-ordinates are

|G(jw)| = Va* + b?
- K 2 _KwT \2 (6.17)
o 1 +w?T? + 1+ w?T?

(6.18)

which simplifies to give

R —

W) = —=
! V14 w?T?
Comparing equations (6.14) and (6.18), providing there are no zeros in the transfer

function, it is generally true to say
. K
|G(jw)| = - . (6.19)
/Denominator of G(jw)

N Re

< b= —Ka;T
N 1+ T

I a()

Fig. 6.3 A pointin complex space for a first-order system.
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Fig. 6.4 Graphical display of frequency domain data for a first-order system.

Table 6.1 Modulus and phase for a first-order system

w (rad/s) |G(jw)| /G(jw) (degrees)
0 K -0
T K/\/2 —45
[ 0 -90

The argument, or phase angle is

/G(jw) = tan™! (é> (6.20)
a
7KLE)T2
—1 ) 14+w?T
= tan {—*K }
1+w?T?

/G(jw) = tan" ! (—wT) (6.21)

which gives



150 Advanced control engineering

Using equations (6.18) and (6.21), values for the modulus and phase angle may be
calculated as shown in Table 6.1. The results in Table 6.1 may be represented as a
Polar Plot, Figure 6.4(a) or as a rectangular plot, Figures 6.4(b) and (c). Since the
rectangular plots show the system response as a function of frequency, they are
usually referred to as frequency response diagrams.

6.2.2 Frequency response characteristics of second-order

systems
From equation (3.42) the standard form of transfer function for a second-order
system is
K
G(s)=———— 6.22
) L2+ %5+ 1 (6.22)
Substituting s = jw ’
K
G(jw) = : (6.23)
2 G + 2 (jw) + 1
or
. K
G(jw) = 5 (6.24)
(- )
Rationalizing gives
2
@) )
G(jw) = N2 ] (6.25)
(@) ()
Using equations (6.17) and (6.19), the modulus is
. K
G(jw)] = ~ (6.26)
2 2
-6} xte)
And from equation (6.20), the argument is
)
/G(jw) = tan (6.27)

Table 6.2 Modulus and phase for a second-order system

w (rad/s) |G(jw)| /G(jw) (degrees)
0 K -0
whn K/2¢ -90

00 0 —180




Classical design in the frequency domain 151

Re

0.5K

2K | w=wpn

Fig. 6.5 Polar plot of a second-order system.

From equations (6.26) and (6.27) the modulus and phase may be calculated as shown
in Table 6.2. The results in Table 6.2 are a function of ¢ and may be represented as a
Polar Plot, Figure 6.5, or by the frequency response diagrams given in Figure 6.6.

6.3 The Bode diagram

The Bode diagram is a logarithmic version of the frequency response diagrams
illustrated in Figures 6.4(b) and (c), and also Figure 6.6, and consists of

(1) a log modus—log frequency plot
(i1) a linear phase—log frequency plot.

The technique uses asymptotes to quickly construct frequency response diagrams by

hand. The construction of diagrams for high-order systems is achieved by simple

graphical addition of the individual diagrams of the separate elements in the system.
The modulus is plotted on a linear y-axis scale in deciBels, where

G(jw)| dB = 201og)q |G(jw)| (6.28)

The frequency is plotted on a logarithmic x-axis scale.
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Fig. 6.6 Frequency response diagrams for a second-order system.

6.3.1 Summation of system elements on a Bode diagram
Consider two elements in cascade as shown in Figure 6.7.

G1(jw) = |G (jw)|e’ (6.29)
Ga(jw) = |Ga(jw)|e’” (6.30)
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R(w) ——»  Gi(jw) Ga(jw) - C(jw)

Fig. 6.7 Summation of two elements in cascade.

©(0) = Gi(i)Ga )

= [G1(jw)||Ga(jw)]e" @+ (6.31)
Hence
C . . .
\ﬁ(m = 161§ Ga(jw)
or
C . . .
‘R(Jw)‘dB = 201log( |G1(jw)| + 201og( |G2(jw)] (6.32)
and
C . . .
Zf(JW) = @1+ ¢ = LG (jw) + LGa(jw) (6.33)

In general, the complete system frequency response is obtained by summation of the
log modulus of the system elements, and also summation of the phase of the system
elements.

6.3.2 Asymptotic approximation on Bode diagrams

(a) First-order lag systems

These are conventional first-order systems where the phase of the output lags behind

the phase of the input.

(1) Log modulus plot: This consists of a low-frequency asymptote and a high-
frequency asymptote, which are obtained from equation (6.18).

Low frequency (LF) asymptote: When w — 0, |G(jw)| — K. Hence the LF
asymptote is a horizontal line at K dB.

High frequency (HF) asymptote: When w > 1/T, equation (6.18) approximates
to

. K
Gjo)] = — (6.34)
As can be seen from equation (6.34), each time the frequency doubles (an increase of
one octave) the modulus halves, or falls by 6dB. Or alternatively, each time the
frequency increases by a factor of 10 (decade), the modulus falls by 10, or 20dB.
Hence the HF asymptote for a first-order system has a slope which can be expressed
as —6dB per octave, or —20 dB per decade.
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From equation (6.34), when w = 1/T, the HF asymptote has a value of K. Hence
the asymptotes intersect at w = 1/7 rad/s. Also at this frequency, from equation
(6.18) the exact modulus has a value

. K
G(jw)| = —
G(jw)l 7
Since 1/4/2 is —3 dB, the exact modulus passes 3 dB below the asymptote intersection
at 1/T rad/s. The asymptotic construction of the log modulus Bode plot for a first-
order system is shown in Figure 6.8.

IG ()l
dB

LF Asymptote

\‘\\ HF Asymptote
s\ —6dB/octave
N\ (—20dB/decade)
N\

log w

Fig. 6.8 Bode modulus construction for a first-order system.

ZG(jw)
(degrees)
0 LF Asymptote
MF Asymptote

45 F—————————= :— —————————
|
|
|
|
|
: HF Asymptote

P S S S i
1 1 10 log.

107 T T 9«

Fig. 6.9 Bode phase construction for a first-order system.
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(i1) Phase plot: This has three asymptotes

e A LF horizontal asymptote at 0°

e A HF horizontal asymptote at —90°

e A Mid-Frequency (MF) asymptote that intersects the LF asymptote at 1/10T
and the HF asymptote at 10/7 (i.e. a decade either side of 1/T).

The Bode phase plot for a first-order system is given in Figure 6.9.

(b) First-order lead systems
These are first-order systems where the phase of the output (in steady-state) leads the
phase of the input. The transfer function of a first-order lead system is

G(s) = K(1 4 Ts) (6.35)

and
1G(jw)| = KV 1 4 w?T? (6.36)
/G(jw) = tan" ' (wT) (6.37)

The Bode diagram, given in Figure 6.10, is the mirror image, about the frequency
axis, of the first-order lag system. Note that the transfer function given in equation
(6.35) is also that of a PD controller.

(c) Second-order systems
(1) Log modulus plot

LF asymptote: A horizontal line at KdB
HF asymptote: When w > wy, equation (6.26) approximates to

K
(=)

From equation (6.38), an octave increase in frequency will reduce the modulus by
a quarter, or —12dB and a decade frequency increase will reduce the modulus
by a factor of 100, or —40dB. Hence the HF asymptote for a second-order system
has a slope of —12dB/octave or —40 dB/decade. The LF and HF asymptotes inter-
sect at w = wy. Also at wy, the exact value of modulus from equation (6.26) is

G(jw)| =

(6.38)

1G(jw) :Z—KC

The value of the modulus relative to the LF asymptote is

|G(jw)|dB = 201og, (KI/(2C) = 201log, (21C> (6.39)
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|G(jw)l
dB
. (+20 dB/decade)
3dB
v
logw
ZG(jw)
(degrees) >~ [ T T T T T T TT YTt /"

45

|
|
|
|
|
|
|
|
!
1

T logw

(b) Phase

Fig. 6.10 Bode gain and phase for a first-order lead system.

Hence
¢ = 0.25, Relative modulus = +6dB
¢ = 0.5, Relative modulus = 0dB
¢ = 1.0, Relative modulus = —6dB

(i1) Phase plot: This has two asymptotes:

e A LF horizontal asymptote at 0°
e A HF horizontal asymptote at —180°.

The phase curve passes through —90° at w = w,. Its shape depends upon ¢ and is
obtained from the standard curves given in Figure 6.11.
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(b) Phase

Fig. 6.11 Bode gain and phase for a second-order system.
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(d) A pure integrator
Consider a pure integrator of the form

K
G(s) = " (6.40)
now
K
G(jw)=—+
() 0+ jw
Rationalizing
. KO0 —jw
G(jw) = KO~ ) 2J ) (6.41)
w
From equation (6.17)
. K22 K
|G(jw)| = /0 +——=— (6.42)
w w
and from equation (6.20)
K 2
/6(jw) = tan”! (+/‘*’) —tan"! (~00) = ~90° (6.43)

It can be seen from equation (6.42) that the modulus will halve in value each time the
frequency is doubled, i.e. it has a slope of —6 dB/octave (—20 dB/decade) over the
complete frequency range.

Note that

|G(jw)| = KdB when w =1
|G(jw)) =1=0dB when w=K

The Bode diagram for a pure integrator is shown in Figure 6.12.

|Gl ZG(jw)
dB —6 dB/octave d 0
Kir=====~ N\ (-20 dB/decade) (9°9"®S)
|
|
I
U r T i
| |
| |
| |
| |
| | —90
| |
| |
| I
1.0 K logw logw

Fig. 6.12 Bode diagram for a pure integrator.
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Example 6.1 (See also Appendix 1, examp61.m)
Construct, using asymptotes, the Bode diagram for

2

=— 6.44
G = 105 (6.44)
Low Frequency asymptote is a horizontal line at KdB,
ie. +6dB

Asymptote intersection (break frequency) occurs at 1/7, i.e. 2rad/s. The Bode
diagram is shown in Figure 6.13.

10

IG(jw)l 5 =t <
dB I~ —6 dB/octave

~

10" 10° 2 10° 10°
w (rad/s)
(a) Bode Gain

ZG(jw) ™
(degrees) AN
0

107 10° 2 10' 10?
w (rad/s)
(b) Bode Phase

Fig. 6.13 Bode diagram for G(s) = 2/1 + 0.5s.
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Example 6.2 (See also Appendix 1, examp62.m)
Draw the Bode diagram for

4
() 0.255240.25 + 1 6.45)
40
IG(jw)!
dB l8 dB
20
12 o z | —12dBloctave
0 \\}S///
N
-20
—-40
—60
10" 10° 2 10’ 10°
w (rad/s)
(a) Bode Gain
0 I e e
£G(jw) N
(degrees)
-50
—-100
—-150
N~
-200
10" 10° 2 10' 10°
w (rad/s)

(b) Bode Phase

Fig. 6.14 Bode diagram for a second-order system, K = 4, wy, = 2, ( = 0.2.
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Comparing equation (6.45) with the standard form given in (6.22)
1

2
wn

=0.25

i.e. wp, =2rad/s

2

—C =02
Wn

ie. (=02

Low Frequency asymptote is a horizontal line at KdB
ie. 20log,,(4)=+12dB

The log modulus relative to the LF asymptote at w = wy, is given by equation (6.39)
. 1
|G(jw)l,, = 20logy, (04> =8dB

(Hence the absolute log modulus at w = wy, is 20 dB). The Bode diagram is given by
Figure 6.14. Note in Figure 6.14 that the phase curve was constructed by reading the
phase from Figure 6.11(b), an octave either side of w;,.

Example 6.3
Construct, on log-linear graph paper, using asymptotes, and validate using
MATLAB or a similar tool, the Bode diagrams for

@ G =775

®) 6 =7 O.Ssl)(l + 4s)
© GO = oo s
(d) G(s) = o

5(0.2552 +0.1s + 1)

6.4 Stability in the frequency domain

6.4.1 Conformal mapping and Cauchy’s theorem

In Chapter 5 the stability of linear control systems were considered in the s-plane.
Using a process of conformal transformation or mapping, it is possible to map a
contour from one complex plane to another. It is therefore possible to transfer
stability information from the s-plane to another complex plane, the F(s)-plane.
The relationship between the contours in the two complex planes is given by
Cauchy’s theorem, which states: ‘For a given contour in the s-plane that encircles
P poles and Z zeros of the function F(s) in a clockwise direction, the resulting
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S1
IF(s)l

ZF(s)

Re

(a) s-plane (b) F(s)-plane

Fig. 6.15 Mapping of a contour from the s-plane to the F(s)-plane.

contour in the F(s)-plane encircles the origin a total of N times in a clockwise

direction’.
Where
N=Z-P (6.46)
Consider a function
s+ z)(s+22)

F(s) (6.47)

(s p)s+p)
where z; and z, are zeros of F(s) and p; and p, are poles. Equation (6.47) can be
written as
F(s) = [F(s)| ZF(s)

The mapping of a contour from the s-plane to the F(s)-plane is shown in Figure 6.15.
From Figure 6.15

|al|b]
|<[ld]

|F(s)| = (6.48)

and
[F(s) = ¢z1 + ¢ — Gp1 — P2 (6.49)

As 51 in Figure 6.15(a) is swept clockwise around the contour, it encircles two zeros
and one pole. From Cauchy’s theorem given in equation (6.46), the number of
clockwise encirclements of the origin in Figure 6.15(b) is

N=2-1=1 (6.50)

6.4.2 The Nyquist stability criterion

A frequency domain stability criterion developed by Nyquist (1932) is based upon
Cauchy’s theorem. If the function F(s) is in fact the characteristic equation of a
closed-loop control system, then
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F(s) =1+ G(s)H(s) (6.51)

Note that the roots of the characteristic equation are the closed-loop poles, which are
the zeros of F(s).

In order to encircle any poles or zeros of F(s) that lie in the right-hand side of the
s-plane, a Nyquist contour is constructed as shown in Figure 6.16. To avoid poles at
the origin, a small semicircle of radius e, where € — 0, is included.

Figure 6.17(a) shows the 1 + G(s)H(s) plane when Z — P = 2, i.e. two clockwise
encirclements. However, if the contour is plotted in G(s)H(s) plane as shown in
Figure 6.17(b), then it moves one unit to the left, i.e. encircles the —1 point.

+Hw

r— e

Fig. 6.16 s-plane Nyquist contour.

Im

Re (-1 , j0)

-
.

(a) 1+G(s)H(s) plane (b) G(S)H(s) plane

Fig. 6.17 Contoursinthe 1 4+ G(s)H(s) and G(s)H(s) planes.
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The Nyquist stability criterion can be stated as: ‘A closed-loop control system is
stable if, and only if, a contour in the G(s)H (s) plane describes a number of counter-
clockwise encirclements of the (—1, jO) point, the number of encirclements being
equal to the number of poles of G(s)H(s) with positive real parts’.

Hence, because there is a net clockwise encirclement of the (—1, jO) point in Figure
6.17(b) the system is unstable. If, however, there had been a net counter-clockwise
encirclement, the system would have been stable, and the number of encirclements
would have been equal to the number of poles of G(s)H(s) with positive real parts.

For the condition P = 0, the Nyquist criterion is: ‘A closed-loop control system is
stable if, and only if, a contour in the G(s)H(s) plane does not encircle the (1, jO)
point when the number of poles of G(s)H(s) in the right-hand s-plane is zero’.

In practice, only the frequencies w = 0 to 400 are of interest and since in the
frequency domain s = jw, a simplified Nyquist stability criterion, as shown in Figure
6.18 is: ‘A closed-loop system is stable if, and only if, the locus of the G(jw)H (jw)
function does not enclose the (—1, j0) point as w is varied from zero to infinity.
Enclosing the (-1, j0) point may be interpreted as passing to the left of the point’.
The G(jw)H(jw) locus is referred to as the Nyquist Diagram.

An important difference between analysis of stability in the s-plane and stability in
the frequency domain is that, in the former, system models in the form of transfer
functions need to be known. In the latter, however, either models or a set of
input—output measured open-loop frequency response data from an unknown system
may be employed.

Margins of stability
The closer the open-loop frequency response locus G(jw)H(jw) is to the (—1, jO)

point, the nearer the closed-loop system is to instability. In practice, all control

Im

G(jw)H(jw) plane

Re

Stable

Unstable

Fig. 6.18 Nyquist diagram showing stable and unstable contours.
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Fig. 6.19 Gain margin (GM) and phase margin (PM) on the Nyquist diagram.
systems possess a Margin of Stability, generally referred to as gain and phase
margins. These are shown in Figure 6.19.

Gain Margin (GM): The gain margin is the increase in open-loop gain required
when the open-loop phase is —180° to make the closed-loop system just unstable.

Nyquist diagram

1
GM =————————— (6.52)
|G(jw)H(jw)] 50
Bode diagram
1
GM = 20log {} (6.53)
UGG H(jw)l 150

Phase Margin (PM): The phase margin is the change in open-loop phase, required
when the open-loop modulus is unity, (or 0dB on the Bode diagram) to make the
closed-loop system just unstable.

Phase Margin = 180 — /G(jw)H (jw)(mod = 1) (6.54)
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Controller Plant

Ki S(s°+ 25 + 4)

Q
&

Fig. 6.20 Closed-loop control system.

Example 6.4 (See also Appendix 1, examp64.m)

v

Construct the Nyquist diagram for the control system shown in Figure 6.20 and find

the controller gain K; that

(a) makes the system just unstable. (Confirm using the Routh stability criterion)
(b) gives the system a gain margin of 2 (6 dB). What is now the phase margin?

Solution
Open-loop transfer function
K
Gs)H(s) =————
(H(s) s(s2+2s+4)
where
K = 4K,
K
H(s) = ——
GOH() $3 + 257 +4s
G H () = a
(jw)? + 2(jw)* + djw
_ K
C—2w? +j(dw — WP)
Rationalizing
. . K{—2w? —j(4w — w*)}
G(Jw)H(jw) =

(Jw)H(jw) 1 T (e — )

From equation (6.19)
. . K
|G(jw)H (jw)| =

4ot + (4w — W3

From equation (6.20)

—2w?

—tant (42 o
2w

JG(jw)H(jw) = tan™! {_(4‘”7_“’3)}

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)
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Table 6.3 Data for Nyquist diagram for system in Figure 6.20

w (rad/s) 0.5 1.0 1.5 2.0 25 3.0 4.0 5.0
IGUWH(W)|(K =1) 0515 0278  0.191  0.25  0.073  0.043 0018  0.0085
/G(jw)H(jw) (deg) ~105  —124  —150 180  —204  -220 236  —245

The Nyquist diagram is constructed, for K = 1, at frequencies either side of the 180°
point, which, from equation (6.59) can be seen to be w = 2rad/s. Using equations
(6.58) and (6.59), Table 6.3 may be evaluated.

(a) From equation (6.52)
GM =1/0.125=28
Value of K to make system just unstable

Kunstab:K'GM
=1x8=8

From equation (6.56)

K, for instability = 2

(b) For a GM of 2, the locus must pass through the (—0.5, jO) point in Figure 6.21.
This can be done by multiplying all the modulus values in Table 6.3 by four and
re-drawing Figure 6.21. Alternatively, the scales of Figure 6.21 can be multiplied
by a factor of four (without re-drawing). Hence the unit circle is 0.25 x 4 and the
PM can be seen to have a value of 50° when the GM is 2.0.

Value of K to give a GM of 2 is the original K times 4, i.e. | x 4 = 4. From (6.56)
K =10
Hence, to give a GM of 2 and a PM of 50°, the controller gain must be set at 1.0. If it

is doubled, i.e. multiplied by the GM, then the system just becomes unstable. Check
using the Routh stability criterion:

Characteristic equation

1+ WIM =0 (6.60)

S 4282 +4s+K=0 (6.61)
Routh’s array

S K

st 38— K)

2 K

s 4

Thus when K > 8 then the system is unstable.
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g Unit circle T
//'V\ on new N
J scale AN

New scale —1q

-0.6 -0.5 -0.4
Original scale

Fig. 6.21 Nyquist diagram for system in Figure 6.20.

System type classification
Closed-loop control systems are classified according to the number of pure integra-
tions in the open-loop transfer function. If

KHIl/nzl (S + Z,‘)

G(s)H(s) = Ny ANTET )

(6.62)

Then n in equation (6.62) is the ‘type number’ of the system and [] denotes the
product of the factors. The system ‘type’ can be observed from the starting point
(w— 0) of the Nyquist diagram, and the system order from the finishing point
(w — ), see Figure 6.22.

System ‘type’ and steady-state errors
From the final value theorem given in equation (3.10) it is possible to define a set of
steady-state error coefficients.

1. Position error coefficient

K, =1im G(s)
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K

G =
(S)H(s) s(1+Ts) Im
Im
_ K
GSHS) = T
Re
Re
(a) First-order type zero system (b) Second-order type one system
Im
K
G(s)H(s) = Re
(s)Fs) s(1+Ts)
(c) Third-order type two system
Fig. 6.22 Relationship between system type classification and the Nyquist diagram.
For a step input,
1
ey = 6.63
S=TTE (6:63)
2. Velocity error coefficient
K, =lim s G(s)
s—0
For a ramp input,
1
“= (6.64)
3. Acceleration error coefficient
K, =lim s G(s)
5—0
For a parabolic input,
1
(6.65)

Css = 7

169
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Table 6.4 Relationship between input function, system
type and steady-state error

Input function Steady-state error

Type zero Type one Type two

Step constant Zero Zero
Ramp increasing constant zero
Parabolic increasing increasing constant

Table 6.4 shows the relationship between input function, system type and steady-
state error. From Table 6.4 it might appear that it would be desirable to make most
systems type two. It should be noted from Figure 6.22(c) that type two systems are
unstable for all values of K, and will require some form of compensation (see
Example 6.6).

In general, type zero are unsatisfactory unless the open-loop gain K can be raised,
without instability, to a sufficiently high value to make 1/(1 + K}) acceptably small.
Most control systems are type one, the integrator either occurring naturally, or
deliberately included in the form of integral control action, i.e. PI or PID.

Stability on the Bode diagram
In general, it is more convenient to use the Bode diagram in control system design
rather than the Nyquist diagram. This is because changes in open-loop gain do not
affect the Bode phase diagram at all, and result in the Bode gain diagram retaining its
shape, but just being shifted in the y-direction.

With Example 6.4 (see also Appendix 1, examp64a.m and examp64b.m), when the
controller gain set to K; = 1.0, the open-loop transfer function is

G(s)H(s) = (6.66)

s(s2+2s+4)
Equation (6.66) represents a pure integrator and a second-order system of the form

1 1
5(0.2552 +0.55 + 1)

G(s)H(s) = (6.67)
As explained in Figure 6.12 the pure integrator asymptote will pass through 0dB at
1.0rad/s (for K =1 in equation (6.67)) and the second-order element has an
undamped natural frequency of 2.0rad/s and a damping ratio of 0.5.

Figure 6.23(a), curve (i), shows the Bode gain diagram for the transfer function
given in equation (6.66), which has a gain margin of 6 dB (the amount the open-loop
gain has to be increased to make the system just unstable. Figure 6.23(a), curve (ii),
shows the effect of increasing K by a factor of two (6dB) to make the system just
unstable. For curve (ii) the open-loop transfer function is

8

COHO) = o770

(6.68)

Figure 6.23(b) shows the Bode phase diagram which is asymptotic to —90° at low
frequencies and —270° at high frequencies, passing through —180° at 2rad/s. To
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determine the phase margin, obtain the open-loop phase when the modulus is 0 dB
(on curve (i), Figure 6.23(a), this is approximately 1.1 rad/s), and subtract the phase
from 180° to give a PM of 50° as shown.

30
20
\\ System just unstable
10 BN —
I~ ™~ ..
0
0 = -
—~ NS IGM:GdB
) PO TN
= -10 : B
[ 1 N
O} ! RN
-20 : -
-30 ; S
-40 i
50 :
10™ 10° 10’
Frequency (rad/s)
(a) Bode Gain
-50 T
Phase i
(degrees) i
~100 ————F—————1—] i
T
\\: N
| * Pv=50°
-150
-180 r
—-200
\
-250 -
-300
10™ 10° 10’

Frequency (rad/s)
(b) Bode Phase

Fig. 6.23 Stability on the Bode diagram.
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6.5 Relationship between open-loop and closed-loop
frequency response

6.5.1 Closed-loop frequency response

When designing a control system it is essential to

(a) ensure that the system is stable for all operating regimes
(b) ensure that the closed-loop performance meets the required specification.

Time domain performance specifications are described in section 3.7 and Figure 3.21.
Frequency domain performance specifications are given in terms of gain and phase
margins to provide adequate stability together with information relating to the
closed-loop frequency response. Figure 6.24 shows the closed-loop frequency
response of a control system. The closed-loop modulus is usually defined as

‘%(jw)‘ =M (6.69)

Bandwidth (wg): This is the frequency at which the closed-loop modulus M has fallen
by 3dB below its zero frequency value. (This is not true for systems that do not
operate down to dc levels.)

Peak modulus (Mp): This is the maximum value that the closed-loop modulus M
rises above its zero frequency value.

Peak frequency (wp): This is the frequency that the peak modulus occurs. Note that
wp < WB-

Second-order system closed-loop frequency response
Many closed-loop systems approximate to second-order systems. Equation (6.26)
gives the general equation for modulus. If, when K is set to unity, this equation is

HE Ml
M)
@B) 8l —m

Bandwidth

A

Wp ws log w (rad/s)

Fig. 6.24 Closed-loop frequency response.
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squared, differentiated with respect to w? and equated to zero (to find a maximum),
then

1
e — 6.70
o= (6.70)
wp =wny/1—2¢ (6.71)

If, as a rule-of-thumb, M, is limited to 3dB (v/2), then from equations (6.70), (6.71)
and Figure 6.11

¢=10.38
wp = 0.84wy, (6.72)
wp = l.4w,

In general, for a unity feedback control system, the closed-loop frequency response is
given by equation (6.73)

C .. G(jw
R(Jw) e (6.73)
Equation (6.73) can be expressed in rectangular co-ordinates as
C . X(jw) +3Y (jw)
= - / _ 6.74
R = T XG0 +5v (o) 6749
Hence
C. X(jw) + Y (jw)|
—(jw)| =M = ——= 6.75
R0 = v = (679
Equation (6.75) can be expressed as an equation of a circle of the form
. M> N\ M\’
<X(]w) + ]\/[2—1> +Y(]w) = <M2 — 1> (676)
ie.
("
centre (——— O)
2 . )
M1 (6.77)
radius =+ M
M? -1
Also, from equation (6.73)
C . . . . .
L Uw) = AX(jw) + Y (jw)) — A1 + X(jw) + Y(jw)) (6.78)

let

N = tan{zi(jw)} (6.79)
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Equation (6.78) can also be expressed as an equation of a circle of the form

A . 1\* 1/N*+1
(X(]w)—i—i) +(Y(Jw)—ﬁ> —Z< e ) (6.80)
ie.
centre —l1/2, 1/2N
y N2 F 1 (6.81)
radius T

The M and N circles can be superimposed on a Nyquist diagram (called a Hall chart)
to directly obtain closed-loop frequency response information.

Alternatively, the closed-loop frequency response can be obtained from a Nyquist
diagram using the direct construction method shown in Figure 6.25. From equation

(6.73)
c. . |G(jw)| _ |OB|
el - AN 6.82
209 =y ko= (52
Also from equation (6.73)
C
/= (jw) = /G(jw) — /(1 + G(j
() = £G(je) = 41+ G(jw) 653
= /COB — /OAB
Im
A C
_N\&1+G(w) o) ! Re
Z£G(jw)
1+G(jw)l
IG(jw)l
B
(o)

Fig. 6.25 Closed-loop frequency response from Nyquist diagram using the direct construction method.



Classical design in the frequency domain

40
/—\ M contours /—WB\
30 >5 B
ARV EN-uEN

20
s A oS ™
=
% 10 >( 3 §<
(0} -3dB
240 -6 dB
-10 -12dB
W S ML

/ / / / Jcor toxrs \

-30

R RIEEIIEEN
-360 -270 -180 —90 0

Open-Loop Phase (deg)
Fig. 6.26 The Nichols chart.
Hence
C .
ZE(]w) = —/ABO (6.84)

The Nichols chart

The Nichols chart shown in Figure 6.26 is a rectangular plot of open-loop phase on
the x-axis against open-loop modulus (dB) on the y-axis. M and N contours are
superimposed so that open-loop and closed-loop frequency response characteristics
can be evaluated simultaneously. Like the Bode diagram, the effect of increasing the
open-loop gain constant K is to move the open-loop frequency response locus in the
y-direction. The Nichols chart is one of the most useful tools in frequency domain
analysis.

Example 6.5
For the control system given in Example 6.4, determine

(a) The controller gain K, to give the best flatband response. What is the bandwidth,
gain margin and phase margin?

(b) The controller gain K; to give a peak modulus M, of 3dB. What is the band-
width, gain margin and phase margin?

175
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(c) For the controller gain in (b), what, in the time domain, is the rise-time, settling
time and percentage overshoot?

Solution

(a) The open-loop transfer function for Example 6.4 is given by equation (6.55)
K

COHO) =527 0

(6.85)

Figure 6.27 (see also Appendix 1, fig627.m) shows the Nichols chart for K =4
(controller gain K; = 1). These are the settings shown in the Bode diagram in Figure
6.23(a), curve (i), and (b), where

Gain margin = 6dB
Phase margin = 50°

From Figure 6.27 it can be seen that the peak modulus M, is 4dB, occurring at
wp = 1.63rad/s. The bandwidth wp is 2.2rad/s. For the best flatband response, the
open-loop frequency response locus should follow the 0dB M contour for as wide

% 0dB
/e.\z&ds

PO \

N\ ST \
g b &JL@ — w=04 -3dB
: (| P A
g& ON- g A s —6dB

e
. = m)=/0 éf/ms —
I )

- ou/w/=2.67 Aﬁ /T \ \ e
_15 ( 1500 | 1200 -sr o0 30° —20° -1107

20 \ \ \ \ | | | [l-eoa

-200 -180 -160 -140 -120 -100 -80 -60 -40 20 0
Open-Loop Phase (deg)

Fig. 6.27 Nichols chart for Example 6.5, K = 4.
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Fig. 6.28 Nichols chart showingbest flatbandresponse (curve (a)) and response with M,=3dB (curve (b)).

a frequency range as possible. This is shown in Figure 6.28, curve (a). To obtain curve
(a), the locus has been moved down by 2dB from that shown in Figure 6.27. This
represents a gain reduction of

gain reduction factor = alog(—2/20) = 0.8 (6.86)

Hence, for best flatband response
K=40x08=32 (6.87)
Controller gain K; = K/4 =3.2/4=0.8 (6.88)

From Nichols chart

Gain margin = 8.15dB
Phase margin = 60° (6.89)
Bandwidth = 2.02rad/s

(b) To obtain curve (b), the locus has been moved down by 0.5 dB from that shown
in Figure 6.27. This represents a gain reduction of

gain reduction factor = alog(—0.5/20) = 0.944 (6.90)
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Fig. 6.29 Closed-loop frequency response showing best flatband response (curve (b)) and response with
M,=3dB (curve (a)).

Hence, for a peak modulus of M, = 3dB,
K=4.0x0.944 = 3.8 (6.91)
Controller gain K| = K/4 = 3.8/4 =0.95 (6.92)
From Nichols chart
Gain margin = 6.36dB
Phase margin = 53° (6.93)
Bandwidth = 2.1 rad/s

Figure 6.29 (see also Appendix 1, fig629.m) shows the closed-loop modulus frequency
response. Curve (a) is the best flatband response, curve (b) is the response with M, set
to 3dB.

6.6 Compensator design in the frequency domain

In section 4.5, controllers, particularly PID controllers for closed-loop systems were
discussed. In Chapter 5 it was demonstrated how compensators could be designed
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in the s-plane to improve system performance. In a similar manner, it is possible
to design compensators (that are usually introduced in the forward path) using
frequency domain techniques.

The general approach is to re-shape the open-loop frequency response locus
G(jw)H(jw) in such a manner that the closed-loop frequency response meets a given
frequency domain specification in terms of bandwidth and peak modulus.

PD cascade compensation: In Chapter 5, case-study Example 5.10, it was demon-
strated how a cascaded PD compensator could improve both system performance
and stability. However, in this chapter, Figure 6.10 gives the frequency response
characteristics of a PD controller/compensator. The important thing to note about
Figure 6.10 is that, in theory, above w = 1/T, the log modulus increases at
+6dB/octave for evermore. In practice this will not happen because eventually
system elements will saturate. But what will happen, however, is that any high
frequency noise in the system will be greatly amplified. It therefore becomes neces-
sary, in a practical application, both with PD and PID controllers, to introduce, at
some suitable high frequency, a low-pass filter.

6.6.1 Phase lead compensation

A phase lead compensator is different from the first-order lead system given in
equation (6.35) and Figure 6.10 because it contains both numerator and denominator
first-order transfer functions.

(a) Passive lead compensation
A passive lead network (using two resistors and one capacitor) has a transfer func-
tion of the form

11 +aly)

=S a1 654

There are two disadvantages of passive lead compensation:

(1) the time constants are linked

(i1) the gain constant 1/« is always less than unity (called insertion loss) and addi-
tional amplification of value « is required to maintain the value of the open-loop
gain K.

(b) Active lead compensation
An active lead compensation network is shown in Figure 6.30. For an inverting
operational amplifier

Vo Z;
— ) =—= 6.95
p0=-7 (6.95)
where Z; = input impedance and Zy = feedback impedance.
Now
1 1 1+ R Cjs
SR P AP oy ) )

Zi R Ry
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Fig. 6.30 Active lead compensation network.
Hence
R,
Zi=——+— 6.96
" 14 R Cis ( )
and
R,
Iy =—— 6.97
f 14+ RyCos ( )
Inserting equations (6.96) and (6.97) into (6.95)
Vo —Ry (1 4+ RiCys
— ) =— 6.98
V; () R, {1 + R2C2S} ( )
or, in general
14+ Tis
G(s) =K 6.99
O (6.99)

Thus from equation (6.99) it can be seen that the system designer has complete

flexibility since, K, 77 and T are not linked. For a lead network, 7 must be greater

than 7,. The Bode diagram for an active lead network is shown in Figure 6.31.
From equation (6.99)

- (1 +ij1)} Ki(1+jwT)(1 — jwT?)
G(jw) = K , = 6.100
() {a+wm (1 +2T2) (6.100)
expanding
. Ki(1 —jwTs + jwT + T, Trw?
G(jw) = K1 J&+%ﬁ 1 Towr) (6.101)
w?Ty)
giving
. K {(1 + T\ T>w?) 4+ ju(T) — T»)
G(juw) = 14 1(12+ ZTJZ (Th ~ 7)) (6.102)
w*T3)
From equation (6.20)
tang = T = T2) (6.103)

(1 + T\ Trw?)
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Fig. 6.31 Frequency response characteristics of a lead compensator.

To find wy,, differentiate equation (6.103) with respect to w, and equate to zero. This
gives

1
vTiT,

Wm =

(6.104)
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Fig. 6.32 Relationship between ¢y, and the spacing of 1/T7 and 1/T; in octaves.

Substituting equation (6.104) into (6.103) to give

T\ - T
ém = tan™! {ﬁ} (6.105)

The value of ¢, depends upon the spacing of 1/77 and 1/7, on the logw axis, see
Figure 6.32.

Design procedure for lead compensation

1.
2.

Set K to a suitable value so that any steady-state error criteria are met.

Plot the open-loop frequency response and obtain the phase margin and the
modulus crossover frequency. (i.e. the frequency at which the modulus passes
through 0dB)

. Set wy, to the modulus crossover frequency and estimate the phase advance ¢y,

required to provide a suitable phase margin. From equations (6.104) and (6.105),
determine 7 and 7>.

. Plot the compensated system open-loop frequency response. Note that the

modulus crossover frequency has now increased. Reduce the compensator gain
K so that the modulus crossover frequency returns to its original value, and the
desired phase margin is met.

Case study

Example 6.6
The laser guided missile shown in Figure 5.26 has an open-loop transfer function
(combining the fin dynamics and missile dynamics) of

G(s)H(s) = (6.106)

$2(s +5)
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Fig. 6.33 Nichols chart for uncompensated laser guided missile.

Design a cascade lead compensator that will ensure stability and provide a phase
margin of at least 30°, a bandwidth greater than Srad/s and a peak closed-loop
modulus M, of less than 6dB.

Solution

The open-loop transfer function is third-order type 2, and is unstable for all values of
open-loop gain K, as can be seen from the Nichols chart in Figure 6.33. From Figure
6.33 it can be seen that the zero modulus crossover occurs at a frequency of 1.9 rad/s,
with a phase margin of —21°. A lead compensator should therefore have its max-
imum phase advance ¢, at this frequency. However, inserting the lead compensator
in the loop will change (increase) the modulus crossover frequency.

Lead compensator design one

Place wy, at the modulus crossover frequency of 2rad/s and position the compen-
sator corner frequencies an octave below, and an octave above this frequency. Set
the compensator gain to unity. Hence

wm =2rad/s 1/T) = 1rad/s 1/T, =4rad/s
K=10 ¢yn=369°
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Fig. 6.34 Nichols chart for lead compensator, design one.

The compensator is therefore
(6.107)

The Nichols chart for the uncompensated and compensated system (curve (a)) is shown
in Figure 6.34 (see also Appendix 1, fig634.m). From Figure 6.34, curve (a)

Gain margin = 2dB
Phase margin = 4°

Modulus crossover frequency = 3.0rad/s

Figure 6.35 shows the Bode gain and phase for both compensated and uncompen-
sated systems. From Figure 6.35, it can be seen that by reducing the open-loop gain
by 5.4dB, the original modulus crossover frequency, where the phase advance is
a maximum, can be attained.

. . 54
Gain reduction = alog (20> =0.537 (6.108)



Classical design in the frequency domain 185

Hence the lead compensator transfer function is

0.537(1 + 5)

(1 +0.255) (6.109)

G(s) =

The open-loop frequency response contours for the compensator given in equation
(6.109) are curves (b) in Figures 6.34 and 6.35 which produce

Gain margin = 7dB
Phase margin = 15°

Modulus crossover frequency = 2rad/s
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Fig. 6.35 Bode gain and phase for lead compensator, design one.
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Fig. 6.36 Closed-loop frequency response for lead compensator one.

Figure 6.36 shows the closed-loop frequency response using lead compensator one
and defined by equation (6.109) (modulus only). From Figure 6.36

Peak modulus M, = 11.6dB
Bandwidth = 3.4rad/s

This design does not meet the performance specification.

Lead compensator design two
From Figure 6.34 it can be seen that to achieve the desired phase margin of at least
30° then the compensator must provide in the order of an additional 20° of phase
advance, i.e. 57° in total, at the modulus crossover frequency.

From Figure 6.32, this suggests four octaves between the corner frequencies. Let
1/T) remain at 1 rad/s and Position 1/75 at 16 rad/s (4 octaves higher). This provides

¢m = 61.9°
wm = 4rad/s
The design two compensator is therefore

(1+s)

G0 = T370.06259)

(6.110)

The open-loop Bode gain and phase with the lead compensator given in equation
(6.110) inserted in the control loop is shown in Figure 6.37. From Figure 6.37 curve (i)
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it can be seen that the modulus crossover frequency is 3.37rad/s, and the phase
margin is (180 — 152.4), or 27.6°. This is close to, but does not quite achieve the
specification. However, from Figure 6.37, the maximum phase advance of —145.3°
occurs at 1.9 rad/s. At this frequency, the open-loop gain K is 6.8 dB. Therefore, if the
open-loop gain is reduced by this amount as shown in Figure 6.37, curve (ii) then the
modulus crossover frequency becomes 1.9rad/s and the phase margin is (180 —
145.3), or 34.7°, which is within specification. The compensator gain K; therefore
becomes

K, = alog (%ﬁ) = 0.457 (6.111)
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Fig. 6.37 Open-loop bode gain and phase for design two lead compensator.
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Fig. 6.38 Nichols chart for lead compensator design two.

Figure 6.38, curve (a) shows the Nichols chart for the value of K; given in equation
(6.111). It can be seen that M, = 5dB, but the bandwidth is 3.43 rad/s, which is
outside of specification. However, because of the shape of the locus, it is possible to
reduce the gain margin (18.6 dB in curve (a)) which will increase the bandwidth, but
not significantly change the peak modulus, or the phase margin. Figure 6.38, curve
(b) shows the open-loop gain K increased by 4.85dB. This now has a peak modulus
of 5.5dB, a phase margin of 30.6° and a bandwidth of 5.09 rad/s, all of which are
within specification. The new compensator gain K| is therefore

4.85
K| = 0.457 x alog (T)
=0.457 x 1.748 = 0.8 (6.112)
The final lead compensator is
0.8(1+s)

G(s) = (6.113)

(1 + 0.06255)
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Fig. 6.39 Closed-loop frequency response for both lead compensator designs.

System frequency domain performance

Closed-loop peak M, = 5.5dB
Gain margin = 13.75dB
Bandwidth = 5.09 rad/s
Phase margin = 30.6°

Figure 6.39 shows, for both lead compensator designs, the closed-loop frequency
response characteristics for the system.

6.6.2 Phase lag compensation

Using passive components, a phase lag compensator may be constructed, whose
transfer function is of the form

(6.114)

where « is a number greater than unity. Passive lag networks suffer the same
disadvantages of passive lead networks as discussed earlier.

The active network shown in Figure 6.30 has the transfer function given in
equation (6.99)
Ki(1+ Tys)

G(s) = 0+ )

(6.115)
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Fig. 6.40 Frequency response characteristics of alag compensator.

When T, is greater than 7, equation (6.115) is an active lag network, whose Bode
diagram is shown in Figure 6.40. The relationships between T, 7>, wy, and ¢y, are as
given in equations (6.104) and (6.105), except, in this case, ¢, is negative. The same
comment applies to Figure 6.32 which shows the relationship between the spacing of
reciprocals of T, and T and ¢p,.

Design procedure for lag compensation

1. Set K to a suitable value so that any steady-state error criteria are met.

2. Identify what modulus attenuation is required to provide an acceptable phase mar-
gin and hence determine the spacing between 1/7, and 1/7; (i.e. 6 dB attenuation
requires a one octave spacing, 12 dB attenuation needs a two octave spacing, etc.).

3. Position 1/7T; one decade below the compensated modulus crossover frequency,
and hence calculate wy, using equation (6.104).

4. Adjust compensator gain K if necessary.
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Case study

Example 6.7
A process plant has an open-loop transfer function

30

COHE) =T 059 191 + 109

(6.116)

As it stands, when the loop is closed, the system is on the verge of instability, with a
GM of 1.4dB, a PM of 4° and a modulus crossover frequency of 1.4 rad/s. Reducing
the open-loop gain K by 12dB (i.e. K = 7.5) provides an acceptable GM of 13.5dB,
PM of 52° with a modulus crossover frequency of 0.6rad/s. However, this gain
setting produces an unacceptable step steady-state error of 12%. Design a lag
compensator that maintains the open-loop gain K at 30, but provides gain and phase
margins, similar to setting K at 7.5. What is now the steady-state step error?

Solution
Required modulus attenuation is 12dB. This reduces the modulus crossover fre-
quency from 1.4 to 0.6 rad/s.

Position 1/T} one decade below 0.6rad/s i.e. 0.06 rad/s. For a 12dB attenuation,
two octaves are required in the compensator, thus 1/7T; is positioned at 0.015 rad/s.
From equation (6.104) wy, is 0.03 rad/s, and from equation (6.105) (using a negative
value), ¢, = —36.9°.

Hence the required lag compensator is

Ki(1 + 16.67s)

G = =1 66.675)

(6.117)

The compensated and uncompensated open-loop frequency response is shown in
Figure 6.41. From this Figure the compensated gain margin is 12.5dB, and the phase
margin is 48°. In equation (6.117), K; does not need to be adjusted, and can be set to
unity. When responding to a step input, the steady-state error is now 4.6%.

6.7 Relationship between frequency response and time
response for closed-loop systems

There are a few obvious relationships between the frequency response and time
response of closed-loop systems:

(1) As bandwidth increases, the time response will be more rapid, i.e. the settling
time will decrease.

(i1) The larger the closed-loop peak M,, the more oscillatory will be the time
response.
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Fig. 6.41 Lag compensated and uncompensated open-loop bode diagram for Example 6.7.

Since many closed-loop systems approximate to second-order systems, a few inter-
esting observations can be made. For the case when the frequency domain specifica-
tion has limited the value of M, to 3dB for a second-order system, then from
equation (6.72)
¢=0.38
wp = 0.84w, (frequency that M, occurs) (6.118)
wp = l.4w, (bandwidth)
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Equation (3.73) gives the time for a second-order system to settle down to within a
tolerance band of +2%
1
ts = In 50
S (m) !

or
3912
ts = (6.119)
Cwn
Inserting the values in equation (6.118) into equation (6.119) gives
10.29 144
ts = =— (6.120)
Wn WB

Thus the settling time is inversely proportional to the bandwidth. Comparing equa-
tion (6.70) with equation (3.68) gives

% overshoot = e 2™ x 100 (6.121)

Hence a closed-loop system with an undamped natural frequency of 1.0rad/s and a
damping ratio of 0.38 has the following performance:

e Frequency domain
M, (equation (6.70)) = 1.422 = 3.06dB
wp (equation (6.72)) = 1.4rad/s.

e Time domain
ts (equation (6.120)) = 10.29 seconds
% overshoot (equation (6.121)) = 27.5%

6.8 Further problems

Example 6.8

A spring—mass—damper system has a mass of 20kg, a spring of stiffness 8000 N/m
and a damper with a damping coefficient of 80 Ns/m. The system is excited by a
constant amplitude harmonic forcing function of the form

F(t) = 160 sin wt

(a) Determine the system transfer function relating F(¢) and x(¢) and calculate values
for w, and (.

(b) What are the amplitudes of vibration when w has values of 1.0, 20 and 50 rad/s.

(¢) Find the value of the damping coefficient to give critical damping and hence, with
this value, determine again the amplitudes of vibration for the angular frequen-
cies specified in (b).

Solution

(a) wyp =20rad/s, ¢ =0.1

(b) 0.02m, 0.1 m and 0.0038 m

(c) C =800Ns/m 0.02m, 0.01 m and 0.0028 m
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Example 6.9
Construct, using asymptotes and standard second-order phase diagrams, the Bode
diagrams for

. 12
() 66 = 135
2

(W) ) = 5002552 + 0.015 + 1)
(i) G(s) = 4< L )

1+0.5s

0.5
s(s>+0.55+ 1)

When the loop is closed, will the system in (iv) be stable or unstable?

(iv) G(s)H(s) =

Solution
The system will have marginal stability.

Example 6.10
A control system has an open-loop transfer function

K

G(s)H(s) = 5(0.2552 +0.255 + 1)

Set K = 1 and plot the Nyquist diagram by calculating values of open-loop modulus
and phase for angular frequency values from 0.8 to 3.0rad/s in increments of
0.2rad/s. Hence find the value of K to give a gain margin of 2 (6dB). What is the
phase margin at this value of K?

Solution
K = 0.5, Phase margin = §2°

Example 6.11
An open-loop frequency response test on an unknown system produced the following
results:

w (rad/s) 02 04 038 1.6 30 40 46 5 6 8 10 20 40

|G(jw)H(jw)] (dB) 28 22 16 10.7 7.5 7.3 7.0 6.0 09 -93 -28 36 —54
/G(jw)H(jw) (deg)—91 —-92 —-95 —100 —115 —138 —162 —180 —217 —244 —259-262-266

Plot the Bode diagram on log-linear paper and determine

(a) The open-loop transfer function.

(b) The open-loop gain constant K to give a gain margin of 4.4 dB. What is the phase
margin for this value of K?

(¢) The closed-loop transfer function (unity feedback) for the value of K found in (b).

(d) The closed-loop peak modulus M}, and bandwidth.
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Table 6.5 Open-loop frequency response data

w (rad/s) 0.1 0.3 0.7 1.0 1.5 2.0 3.0 5.0 10.0
|G(jw)H(jw)| (dB) 17 7 0.5 -2 -5 9 185 33 51
[G(w)H(w) (deg)  —92  —98  —112 123 150  —180  —220 224 258
Solution

5.0

(@) G()H(s) = 5(0.0452 +0.1s + 1)

(b) K = 1.5, Phase margin = 79°

37.5
§3+2.552 + 255+ 37.5

© S =
(d) M, =4.6dB, wg = 5.6rad/s.

Example 6.12

(a) An open-loop frequency response test on a unity feedback control system pro-
duced the data given in Table 6.5. Plot the Bode Diagram and determine the
system open-loop and closed-loop transfer functions. What are the phase and
gain margins?

(b) A phase lead compensation network of the form

B l(l + aTs)

Gls) = a (1 + Ts)

is to be introduced in the forward path. The maximum phase advance ¢y, is to be
37° and is to occur at wy, = 2rad/s. Determine the expression for the phase angle
¢ and hence prove that ¢, and wy, are as given below. Find from these expres-
sions the values of  and T and calculate values for ¢ when w =1, 1.5, 2, 3 and
Srad/s. Plot the compensator frequency response characteristics.

1

Ta

Wm =

(c) Produce a table using the frequencies specified in part (a) for the compete open-
loop frequency response including the compensation network and an amplifier to
make up the insertion loss of 1/a.

Plot these results on a Nichols chart and determine

(i) Maximum closed-loop peak modulus, M,
(i) Bandwidth (to —3 dB point)
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Solution 0.7
@ GWHE) = G52+ 055+ 1)
€l — 1
R T 03565 + 0.71452 + 1.4295 + 1

Phase margin = 66° and Gain margin = 9 dB

1 (149
®) G5 =7 {(1 ¥ 0.25s)}

(c) M, =1dB and Bandwidth = 2.7rad/s
Example 6.13

(a) A unity feedback control system has an open-loop transfer function

1

G(s)H(s) = s(1+ )1 +0.55)

Construct, using asymptotes, the Bode diagram and read off values of open-loop
modulus and phase for the following frequencies

w (rad/s) = 0.1, 0.5, 1.0, 1.4, 2.0, 4.0, 6.0 and 10.0

You may assume that at frequencies of 1.0 and 2.0 rad/s the open-loop phase angles
are —162° and —198° respectively.
Plot the results between 0.1 and 2.0 rad/s on a Nichols Chart and determine

(i) the phase and gain margins
(ii) the maximum closed-loop modulus M,
(iii) the bandwidth to the —3 dB point

(b) The performance specification calls for a maximum closed-loop modulus of
+1dB and a bandwidth of at least 1.8 rad/s. In order to achieve this, the follow-
ing active lead compensation element is placed in the forward path

_ Ki(1 +Ths)
N

Show that the phase advance ¢ is given by

1 (T — T»)
¢ = tan |:1 + T T2w2:|
The frequency of maximum phase advance is to occur at the frequency that corre-
sponds to —180° on the Bode diagram constructed in section (a). The lower break
frequency 1/7 is to be half this value and the upper break frequency 1/73 is to be
twice this value. Evaluate 7| and 7, and calculate values of ¢ for the frequencies
specified in section (a). Construct the Bode diagram for the compensation element
for the condition K; = 1, and read off values of modulus at the same frequencies as
the calculated phase values.
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(c) Using the tables of modulus and phase for the plant and compensator found in
sections (a) and (b), determine values for the new overall open-loop modulus and
phase when the compensator is inserted in the forward path.

Plot these results on a Nichols Chart and adjust the compensator gain K;so that the
system achieves the required performance specification.
What are now the values of

(i) the phase and gain margins

(if) the maximum closed-loop modulus, M,
(iii) the bandwidth
(iv) the compensator gain constant K,

Solution
(a) (i) Phase margin = 32° and Gain margin = 9.6dB
(i) M, = 5dB

(ii1)) Bandwidth = 1.3 rad/s

Ki(1 + 1.4295)
(1+0.357s)

(¢c) (i) Phase margin = 47° and Gain margin = 13.5dB
(i) M, = 1dB
(ii1) Bandwidth = 1.85rad/s
(iv) K; = 0.861

(b) G(s) =
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7.1 Microprocessor control

As a result of developments in microprocessor technology, the implementation of
control algorithms is now invariably through the use of embedded microcontrollers
rather than employing analogue devices. A typical system using microprocessor
control is shown in Figure 7.1.

In Figure 7.1

e RAM is Random Access Memory and is used for general purpose working space
during computation and data transfer.

¢ ROM, PROM, EPROM is Read Only Memory, Programmable Read Only Mem-
ory and Erasable Programmable Read Only Memory and are used for rapid
sources of information that seldom, or never need to be modified.

e A/D Converter converts analogue signals from sensors into digital form at a
given sampling period 7 seconds and given resolution (8 bits, 16 bits, 24 bits,
etc.)

e D/A Converter converts digital signals into analogue signals suitable for driving
actuators and other devices.

The elements of a microprocessor controller (microcontroller) are shown in Figure
7.2. Figure 7.2 shows a Central Processing Unit (CPU) which consists of

o the Arithmetic Logic Unit (ALU) which performs arithmetic and logical oper-
ations on the data

and a number of registers, typically

e Program Counter — incremented each time an instruction is executed

e Accumulator(s) — can undertake arithmetic operations

e Instruction register — holds current instruction

e Data address register — holds memory address of data

Control algorithms are implemented in either high level or low level language. The
lowest level of code is executable machine code, which is a sequence of binary
words that is understood by the CPU. A higher level of language is an assembler,
which employs meaningful mnemonics and names for data addresses. Programs
written in assembler are rapid in execution. At a higher level still are languages
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Microprocessor ROM
System RAM | PROM
Memory | EPROM
Memory
r(kT)
v
A/D c(KT) Microprocessor u(kT)| D/A
Converter > Controller » Converter

3 -

» Plant

Q
P

~
=

v

Sensor |4

Fig. 7.1 Microprocessor control of a plant.

program counter

accumulator(s)
ALU | |

instruction register

data address register
CPU | |

clock

address bus

data bus

A4

RAM

A

Fig. 7.2 Elements of a microprocessor controller.

such as C and C++, which are rapidly becoming industry standard for control

software.
The advantages of microprocessor control are

e Versatility — programs may easily be changed

e Sophistication — advanced control laws can be implemented.

A4

ROM
PROM
EPROM

199
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The disadvantages of microprocessor control are

e Works in discrete time — only snap-shots of the system output through the A/D
converter are available. Hence, to ensure that all relevant data is available, the
frequency of sampling is very important.

7.2 Shannon’s sampling theorem

Shannon’s sampling theorem states that ‘A function f(¢) that has a bandwidth wy, is
uniquely determined by a discrete set of sample values provided that the sampling
frequency is greater than 2w,’. The sampling frequency 2wy, is called the Nyquist
frequency.

It is rare in practise to work near to the limit given by Shannon’s theorem. A useful
rule of thumb is to sample the signal at about ten times higher than the highest
frequency thought to be present.

If a signal is sampled below Shannon’s limit, then a lower frequency signal, called
an alias may be constructed as shown in Figure 7.3.

To ensure that aliasing does not take place, it is common practice to place an anti-
aliasing filter before the A/D converter. This is an analogue low-pass filter with a
break-frequency of 0.5ws where wy is the sampling frequency (ws > 10wy). The higher
ws 18 In comparison to wy, the more closely the digital system resembles an analogue
one and as a result, the more applicable are the design methods described in Chapters
5 and 6.

1.5+
Original Signal Alias
(1) g g
14
0.5
0 - - :
D oy} 0/2 0. 0. 0.5 0.
-0.5
_1<
—1.51

Fig. 7.3 Construction of an alias due to undersampling.
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7.3 Ideal sampling

An ideal sample /*(¢) of a continuous signal f(¢) is a series of zero width impulses
spaced at sampling time 7" seconds apart as shown in Figure 7.4.
The sampled signal is represented by equation (7.1).

/() = Z S(kT)é(t — kT) (7.1)
k=—00

where 6(t — kT) is the unit impulse function occurring at t = k7.

A sampler (i.e. an A/D converter) is represented by a switch symbol as shown in
Figure 7.5. It is possible to reconstruct f(¢) approximately from f*(z) by the use of a
hold device, the most common of which is the zero-order hold (D/A converter) as
shown in Figure 7.6. From Figure 7.6 it can be seen that a zero-order hold converts a
series of impulses into a series of pulses of width 7. Hence a unit impulse at time ¢ is
converted into a pulse of width 7, which may be created by a positive unit step at
time ¢, followed by a negative unit step at time (¢ — 7)), i.e. delayed by 7.

The transfer function for a zero-order hold is

L) = e P

7.2
ot (7.2)
Gn(s) =
f(1) (9
T f(6T) f(kT)
— |
t 0 T 2T 3T 4T 5T 6T ..... kT t
(a) Continuous Signal (b) Sampled Signal

Fig. 7.4 The sampling process.

f(t) ){ (1)

Fig. 7.5 A sampler.
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f*(8) f(t)

T T
—» <+ —-» <+

(a) Discrete Time Signal (b) Continous Time Signal

Fig. 7.6 Construction of a continuous signal using a zero-order hold.

7.4 The z-transform

The z-transform is the principal analytical tool for single-input-single-output dis-
crete-time systems, and is analogous to the Laplace transform for continuous systems.
Conceptually, the symbol z can be associated with discrete time shifting in a
difference equation in the same way that s can be associated with differentiation in
a differential equation.
Taking Laplace transforms of equation (7.1), which is the ideal sampled signal,

gives
F(s)=Z1/" 0] =Y _f(kT)e ™™ (7.3)
k=0
or
Fis) =Y fkn)(e”)™ (7.4)
k=0
Define z as
z=¢T (7.5)
then
F(z) =Y _f(kT)z=* = Z[ f(1] (7.6)
k=0

In ‘long-hand’ form equation (7.6) is written as

F)=fO)+f(Dz"' +fQT)z2 4 +f(kT)z* (7.7)

Example 7.1
Find the z-transform of the unit step function f(z) = 1.
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(1)

1.0

0 T 2T 3T 4T t

Fig. 7.7 z-Transform of a sampled unit step function.

Solution
From equations (7.6) and (7.7)

Z[1()] = i 1(kT)z"% (7.8)
k=0
or
F@) =14z 4224 427* (7.9)

Figure 7.7 shows a graphical representation of equation (7.9).
Equation (7.9) can be written in ‘closed form’ as

1
N0 =—— =7 (7.10)
z—1 1-z71
Equations (7.9) and (7.10) can be shown to be the same by long division
l+z 42724
z— l)z 0 0
z—1
0+1
1—z!
0+z!
z7h—z72 (7.11)

Table 7.1 gives Laplace and z-transforms of common functions.
z-transform Theorems:

(a) Linearity
Z[/i(0) £ /2(0)] = Fi(2) = Fx(2) (7.12)
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Table 7.1 Common Laplace and z-transforms

(@) or f(kT) F(s) F(z)
1 8(0) | 1
2 8(t —kT) ek 27k
1 z
3 1(7) -
K z—1
1 Tz
4 ‘ = .
5= z—=1)
1 z
5 —at _
¢ (s+a) z—e T
6 1-ew « RECETSN
s(s + a) (z—=1)(z—eT)
; Dt 14 e a @l — 1 ey + (1 — e —aTeT))
a s2(s + a) a(z — 1)(z — e—T)
8 sinwr w zsinwT
52+ w? z2 —2zcoswT + 1
K z(z — coswT)
? coswt s2+w? 22 = 2zcoswT + 1
10 e “sinwt . A ze T sinwT
(s + a) + w? 22 — 2ze~4T coswT + e~2T
_ (s+a) 22 — 27T coswT
1 ] at B -
e " coswt s+ 0)2 T2 22 —2ze—aT coswT + e—24T
(b) Initial Value Theorem
f(0) =1lim F(z) (7.13)
z—0
(c) Final Value Theorem
. zZ—
f(c0) =lim [( >F(Z)] (7.14)

7.4.1

The discrete time response can be found using a number of methods.

Inverse transformation

(a) Infinite power series method

Example 7.2

A sampled-data system has a transfer function

G(s) = SL
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If the sampling time is one second and the system is subject to a unit step input
function, determine the discrete time response. (N.B. normally, a zero-order hold
would be included, but, in the interest of simplicity, has been omitted.) Now

Xo(2) = G(2)Xi(2) (7.15)
from Table 7.1
z z
Y@ = (=) (=9) (7.16)
for T =1 second
z z
Xol2) = (z - 0.368) (z - 1)
22
= (7.17)

22 — 1.368z + 0.368
By long division

1+1.3682"" +1.503272 + - -
2 - 1.3682+0.368) 2 0 0 0

22— 1.368z + 0.368

0+ 1.368z — 0.368
1.368z — 1.871 + 0.503z"!

0+ 1.503 — 0.503z""
1.503 — 2.056z ' +0.553z72 (7.18)

Thus
Xo(0) =1
Xo(1) = 1.368
X0(2) = 1.503

(b) Difference equation method

Consider a system of the form

by + b1271 + b2272 =+
l4+aiz ' +ayz2+---

%’(z) - (7.19)

Thus
A4 az" +az 2+ )Xo(2) = (bo+ b1z + bz 2 + - )Xi(2) (7.20)
or
Xo(2) = (—arz7' =@z = )Xo(2) + (bo + bz +baz P+ )Xi(2) (7.21)
Equation (7.21) can be expressed as a difference equation of the form
XokT) = —ayxo(k — )T — apxo(k —2)T — - - -
+ boxi(kT) + b1 xi(k — )T + baxi(k —2)T + - - - (7.22)
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In Example 7.2

Xo, o 1
Yi(s) = 1 Ts
z z
= = .2
z—e T z-0.368 (7.23)
Equation (7.23) can be written as
X, 1
20 yyy= 7.24
Y9 T T=03682 (7.29)
Equation (7.24) is in the same form as equation (7.19). Hence
(1 —0.3682""X,(2) = Xi(2)
or
Xo(2) = 0.36827 ' X, (2) + Xi(2) (7.25)

Equation (7.25) can be expressed as a difference equation
Xo(kT) = 0.368x,(k — )T + xi(kT) (7.26)
Assume that x,(—1) = 0 and x;(kT) = 1, then from equation (7.26)

o0 =0+1=1, k=0
Xo(1) = (0.368 x 1)+ 1 =1.368, k=1
Xo(2) = (0.368 x 1.368) + 1 = 1.503, k=2 etc.

These results are the same as with the power series method, but difference equations
are more suited to digital computation.

7.4.2 The pulse transfer function

Consider the block diagrams shown in Figure 7.8. In Figure 7.8(a) U*(s) is a sampled
input to G(s) which gives a continuous output X,(s), which when sampled by a

Us) U=(s) a(s) Xo(8) >§ X5(s)
T T
(a)
U@ Xo(2)
. G(2) >

(b)

Fig. 7.8 Relationship between G(s) and G(2).
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Us) U(s) X(s) X*(s) X,(9) X%
J{—> Gi(s) —>§—> Gy(s) J{J,

T T T

\4

U > U] 6y X9 b |97 X

T T

Fig. 7.9 Blocks in cascade.

synchronized sampler becomes X (s). Figure 7.8(b) shows the pulse transfer function
where U(z) is equivalent to U*(s) and X,(z) is equivalent to X;(s).
From Figure 7.8(b) the pulse transfer function is

%(z) = G(2) (7.27)

Blocks in Cascade: In Figure 7.9(a) there are synchronized samplers either side of
blocks G(s) and G,(s). The pulse transfer function is therefore

%6 = GG (7.28)

In Figure 7.9(b) there is no sampler between G (s) and G,(s) so they can be combined
to give G(s)Ga(s), or G1Ga(s). Hence the output X,(z) is given by
Xo(2) = Z{G1G2(9)} U(2) (7.29)

and the pulse transfer function is

Xo

F(Z) = G1Ga(2) (7.30)
Note that G1(2)Ga(z) # G1G2(2).

Example 7.3 (See also Appendix 1, examp73.m)

A first-order sampled-data system is shown in Figure 7.10.

Find the pulse transfer function and hence calculate the response to a unit step and
unit ramp. 7 = 0.5 seconds. Compare the results with the continuous system
response X,(z). The system is of the type shown in Figure 7.9(b) and therefore

G(s) = G1Ga(s)

Inserting values

G(s) = (1 — e“‘){s(sfr 1)} (7.31)
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1-¢™
. s »oS

T

X(S) XAS)

‘_.

1

Fig. 7.10 First-order sampled-data system.

Taking z-transforms using Table 7.1.

PR z(1 —e™7)
Go)=(1-:z ){—(Z Y E—— (7.32)
or
(z—1 z(1 —e™7)
G(z) = < e >{(Z TG e—T)} (7.33)
which gives
l—e T
For T = 0.5 seconds
0.393
6@ = <z - 0.607) (7.35)
hence
Xo 0.393z7!
%9 (1 - 0.607z—l> (7.36)
which is converted into a difference equation
Xo(kT) = 0.607x0(k — 1)T + 0.393xi(k — )T (7.37)

Table 7.2 shows the discrete response x,(k7') to a unit step function and is compared
with the continuous response (equation 3.29) where

Xo(t) = (1 —e ") (7.38)

From Table 7.2, it can be seen that the discrete and continuous step response is
identical. Table 7.3 shows the discrete response x(k7T) and continuous response x(¢)
to a unit ramp function where x,(?) is calculated from equation (3.39)

Xo()=t—1+¢e"! (7.39)

In Table 7.3 the difference between x,(k7T) and x,(7) is due to the sample and hold.
It should also be noted that with the discrete response x(k7T), there is only knowledge
of the output at the sampling instant.
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Table 7.2 Comparison between discrete and continuous step response

k kT (seconds) Xi(kT) Xo(kT) Xo(?)
-1 -0.5 0 0 0
0 0 1 0 0
1 0.5 1 0.393 0.393
2 1.0 1 0.632 0.632
3 1.5 1 0.776 0.776
4 2.0 1 0.864 0.864
5 2.5 1 0.918 0.918
6 3.0 1 0.950 0.950
7 3.5 1 0.970 0.970
8 4.0 1 0.982 0.982

Table 7.3 Comparison between discrete and continuous ramp response

k kT (seconds) xi(kT) Xo(kT) Xo(1)
-1 -0.5 0 0 0
0 0 0 0 0
1 0.5 0.5 0 0.107
2 1.0 1.0 0.304 0.368
3 1.5 1.5 0.577 0.723
4 2.0 2.0 0.940 1.135
5 2.5 2.5 1.357 1.582
6 3.0 3.0 1.805 2.050
7 3.5 3.5 2.275 2.530
8 4.0 4.0 2.757 3.018

7.4.3 The closed-loop pulse transfer function

Consider the error sampled system shown in Figure 7.11. Since there is no sampler
between G(s) and H(s) in the closed-loop system shown in Figure 7.11, it is a similar
arrangement to that shown in Figure 7.9(b). From equation (4.4), the closed-loop
pulse transfer function can be written as

c . G
9 = Tr6H0) (7.40)
In equation (7.40)

GH(z) = Z{GH(s)} (7.41)
R(s) + E(s) EX(s) Cls)
e ————>» Gl 8

N T
H(s) <

Fig. 7.11 Closed-loop error sampled system.
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Fig. 7.12 Closed-loop error and output sampled system.

Consider the error and output sampled system shown in Figure 7.12. In Figure 7.12,
there is now a sampler between G(s) and H(s), which is similar to Figure 7.9(a). From
equation (4.4), the closed-loop pulse transfer function is now written as

G(2)

1+ GQ)H(?) (7.42)

fe=

7.5 Digital control systems

From Figure 7.1, a digital control system may be represented by the block diagram
shown in Figure 7.13.

Example 7.4 (See also Appendix 1, examp74.m)
Figure 7.14 shows a digital control system. When the controller gain K is unity and
the sampling time is 0.5 seconds, determine

(a) the open-loop pulse transfer function

(b) the closed-loop pulse transfer function

(c) the difference equation for the discrete time response

(d) a sketch of the unit step response assuming zero initial conditions
(e) the steady-state value of the system output

t et i us(|  Zero u(t
r%%‘/ @) Digial (2 Order ( )> Plant ,, C(1)
X T Controller Hold >

microprocessor

A

Sensor

Fig. 7.13 Digital control system.
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A9 > o 1 ER
- K s 1 s(s+2) g
T=0.5

T

Fig. 7.14 Digital control system for Example 7.4.

Solution
l—e T 1
Gis) =K 7.43
(@) G(s) ( . ){S(S n 2)} (7.43)
Given K =1
1
Gis)=(1—e ™I —— 7.44
) ( ¢ ){sz(s + 2)} (7.44)
Partial fraction expansion
1 A B C
S S 7.45
s2(s +2) {s+s2+(s+2)} (7.45)
or
1 =5(s42)4 + (s +2)B+5°C (7.46)
Equating coefficients gives
A=-0.25
B=0.5
C =025

Substituting these values into equation (7.44) and (7.45)

ey [—0.25 05 0.25
G(s)=(1-e T){ ; +s—2+m} (7.47)
or
_ eyl 2 1
G(s)=0.25(1—¢ ){ s+s2+(s+2)} (7.48)
Taking z-transforms
_ " —z 2Tz z
G(z) = 0.25(1 z ){(z _— + Co1y + o= e2T)} (7.49)

Given T = 0.5 seconds

-1 ~1  2x05 1
G(z)=0.25< - >z{(2_1)+(z1)2+(Z_0.368)} (7.50)
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Hence
B B —1(z—=1)(z—0.368) + (z — 0.368) + (z — 1)2
G(z) =0.25(z 1){ o l)z(z ~0368) } (7.51)
—z2 4+ 1.3682 —0.368 +z — 0.368 + 22 — 2z + 1
G(z) = 0.25{ = 1)z — 0.368) } (7.52)

which simplifies to give the open-loop pulse transfer function

0.092z + 0.066
6 = <zz 1368z + 0.368> (7.53)

Note: This result could also have been obtained at equation (7.44) by using z-trans-
form number 7 in Table 7.1, but the solution demonstrates the use of partial frac-
tions.

(b) The closed-loop pulse transfer function, from equation (7.40) is

( 0.092240.066 )

C 22-1.368240.368
Z(2) = 7.54
R @ (1 4 ,0.092:4+0.066 ) (7.54)
Z7—1.368z+0.368
which simplifies to give the closed-loop pulse transfer function
C 0.092z 4 0.066
R = 21276 1043 (7.55)
or
C 0.092z~" +0.066z72
—(2) = 7.56
RO T 112761+ 04342 (7.:56)

(¢c) Equation (7.56) can be expressed as a difference equation
c(kT) = 1.276c(k — 1)T — 0.434c(k — 2)T 4 0.092r(k — 1)T + 0.066r(k — 2)T
(7.57)

(d) Using the difference equation (7.57), and assuming zero initial conditions, the
unit step response is shown in Figure 7.15.

Note that the response in Figure 7.15 is constructed solely from the knowledge of the
two previous sampled outputs and the two previous sampled inputs.

(e) Using the final value theorem given in equation (7.14)

(00) = lim Kﬂ) %(Z)R(Z):| (7.58)

z

. z—1 0.092z + 0.066 z
C(Oo)_?l‘%{( z ){1—1.276z+0.434}(z—1)] (7.59)




o(kT)

0.8

0.6

0.4

0.2

0

Fig. 7.15 Unit step response for Example 7.4.

7.6 Stability in the z-plane

7.6.1
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/

S

0.5

1

c(o0) = (1

Hence there is no steady-state error.

0.092 4 0.066
—1.276 + 0.434

3.5 4 45KT

(7.60)

Mapping from the s-plane into the z-plane

Just as transient analysis of continuous systems may be undertaken in the s-plane,
stability and transient analysis on discrete systems may be conducted in the z-plane.
It is possible to map from the s to the z-plane using the relationship

now

therefore

7= e(a:i:]w)T _ eO’T

(7.61)

e™T  (using the positive jw value) (7.62)
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P(2)

|Z|=enT

LZ=wT=271wlws

Re
Fig. 7.16 Mapping from the s to the z-plane.
If e°7 = |z| and T = 27/ws equation (7.62) can be written
z = |z]eICmelws) (7.63)

where wq is the sampling frequency.

Equation (7.63) results in a polar diagram in the z-plane as shown in Figure 7.16.
Figure 7.17 shows mapping of lines of constant ¢ (i.e. constant settling time) from the
s to the z-plane. From Figure 7.17 it can be seen that the left-hand side (stable) of the
s-plane corresponds to a region within a circle of unity radius (the unit circle) in the z-
plane.

Figure 7.18 shows mapping of lines of constant w (i.e. constant transient fre-
quency) from the s to the z-plane.

—o =0 +0 O uz_—;)s Q/J Re

= w=_% | stable region

s-plane z-plane

Fig. 7.17 Mapping constant o from sto z-plane.
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. Im
> 8 K]
X 3
ws g : s
3 4
o K r=1 Re
s-plane z-plane
Fig. 7.18 Mapping constant w from s to z-plane.
jw
Im
7
ﬂ
8 95 10
6
Ws o
5
1 2 3 o 10 8
5 6 7
8 9 10
s-plane z-plane

Fig. 7.19 Corresponding pole locations on both s and z-planes.

Figure 7.19 shows corresponding pole locations on both the s-plane and z-plane.

7.6.2 The Jury stability test

In the same way that the Routh—Hurwitz criterion offers a simple method of
determining the stability of continuous systems, the Jury (1958) stability test is
employed in a similar manner to assess the stability of discrete systems.

Consider the characteristic equation of a sampled-data system

0@)=ay"+ a1 2" '+ +az+a,=0 (7.64)

215
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Table 7.4 Jury’s array

0 1 2

z z V4 V4 z
ay aj a cee Aap—1 [
ay ap—1 ay—2 R ay ap
bO bl b2 cee bn—l

bn—l bn—2 bn—} R bO

lo I b R

I8 12 I c.. l()

my mg my

ny my mgy

The array for the Jury stability test is given in Table 7.4 where

ap dp—fk
b =
Ay aj
bO bn—l—k
or = (7.65)
bnfl bk
€0 Cn—2—k
dy =
Cp—-2 Ci

The necessary and sufficient conditions for the polynomial Q(z) to have no roots
outside or on the unit circle are
Condition1 Q(1) >0
Condition 2 (—=1)"Q(—=1) >0
Condition 3 |ag| < ay
|bo| > |bu1]

(7.66)
col > [en—2]

Condition n  |ng| > |my|

Example 7.5 (See also Appendix 1, examp75.m)

For the system given in Figure 7.14 (i.e. Example 7.4) find the value of the digital
compensator gain K to make the system just unstable. For Example 7.4, the char-
acteristic equation is

1+G(z)=0 (7.67)
In Example 7.4, the solution was found assuming that K = 1. Therefore, using
equation (7.53), the characteristic equation is

K(0.092z + 0.066)

1 =
13682+ 0.368)

0 (7.68)
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or
0(z) = 2 + (0.092K — 1.368)z + (0.368 + 0.066K) = 0 (7.69)

The first row of Jury’s array is

| Z° z! z?

(0.368 +0.066K)  (0.092K — 1.368) 1

(7.70)

Condition 1: Q(1) >0
From equation (7.69)

O(1) = {1 +(0.092K — 1.368) + (0.368 + 0.066K)} > 0 (7.71)
From equation (7.71), Q(1) > 0if K > 0.

Condition 2 (—1)"Q(—1) > 0
From equation (7.69), when n = 2

(=D?0(=1) = {1 — (0.092K — 1.368) + (0.368 + 0.066K)} > 0 (7.72)
Equation (7.72) simplifies to give
2.736 — 0.026K > 0

or

2.736
K < 0026 105.23 (7.73)

Fig. 7.20 Root locus diagram for Example 7.4.



218 Advanced Control Engineering

Condition 3: |ag| < az
|0.368 + 0.066K| < 1 (7.74)
For marginal stability

0.368 4 0.066K =1

_ (7.75)
k=17038 g5
0.066
Hence the system is marginally stable when K = 9.58 and 105.23 (see also Example
7.6 and Figure 7.20).

7.6.3 Root locus analysis in the z-plane

As with the continuous systems described in Chapter 5, the root locus of a discrete
system is a plot of the locus of the roots of the characteristic equation

14+ GH(z) =0 (7.76)

in the z-plane as a function of the open-loop gain constant K. The closed-loop system
will remain stable providing the loci remain within the unit circle.

7.6.4 Root locus construction rules

These are similar to those given in section 5.3.4 for continuous systems.

1. Starting points (K = 0): The root loci start at the open-loop poles.

2. Termination points (K = 00): The root loci terminate at the open-loop zeros when
they exist, otherwise at co.

3. Number of distinct root loci: This is equal to the order of the characteristic
equation.

4. Symmetry of root loci: The root loci are symmetrical about the real axis.

5. Root locus locations on real axis: A point on the real axis is part of the loci if the
sum of the open-loop poles and zeros to the right of the point concerned is odd.

6. Breakaway points: The points at which a locus breaks away from the real axis can
be found by obtaining the roots of the equation

d
i {GH(2)} =0

7. Unit circle crossover: This can be obtained by determining the value of K for
marginal stability using the Jury test, and substituting it in the characteristic
equation (7.76).

Example 7.6 (See also Appendix 1, examp76.m)
Sketch the root locus diagram for Example 7.4, shown in Figure 7.14. Determine the
breakaway points, the value of K for marginal stability and the unit circle crossover.
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Solution
From equation (7.43)

e s 1

and from equation (7.53), given that 7" = 0.5 seconds

e =K <22 2019;2; (—)k.006.§68> 7.78)
Open-loop poles
22 —1.3682+0.368 = 0 (7.79)
z=10.684 £0.316
=1 and 0.368 (7.80)
Open-loop zeros
0.092z +0.066 =0
z=-0.717 (7.81)
From equations (7.67), (7.68) and (7.69) the characteristic equation is
2% +(0.092K — 1.368)z + (0.368 + 0.066K) = 0 (7.82)

Breakaway points: Using Rule 6

d
—{GH =
Z{GHE} =0
(2% — 1.368z + 0.368)K(0.092) — K(0.092z 4 0.066)(2z — 1.368) =0  (7.83)
which gives

0.09222 +0.132z — 0.1239 = 0
z=0.647 and —2.084 (7.84)

K for marginal stability: Using the Jury test, the values of K as the locus crosses the
unit circle are given in equations (7.75) and (7.73)

K =9.58 and 105.23 (7.85)
Unit circle crossover: Inserting K = 9.58 into the characteristic equation (7.82) gives
22 —0487z+1=0 (7.86)

The roots of equation (7.86) are
z=10.244 +j0.97 (7.87)

or

z=1/4759 =1/41.33rad (7.88)
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Since from equation (7.63) and Figure 7.16
z = |z| lwT (7.89)
and 7' = 0.5, then the frequency of oscillation at the onset of instability is

0.5w =1.33

(7.90)
w = 2.66rad/s

The root locus diagram is shown in Figure 7.20.
It can be seen from Figure 7.20 that the complex loci form a circle. This is usually
the case for second-order plant, where

Radius = Z |open-loop poles|
Centre = (Open-loop zero, 0) (7.91)

The step response shown in Figure 7.15 is for K = 1. Inserting K =1 into the
characteristic equation gives

22— 1.276z+0.434 =0
or
z=0.638 +j0.164

This position is shown in Figure 7.20. The K values at the breakaway points are also
shown in Figure 7.20.

7.7 Digital compensator design

In sections 5.4 and 6.6, compensator design in the s-plane and the frequency domain
were discussed for continuous systems. In the same manner, digital compensators
may be designed in the z-plane for discrete systems.

Figure 7.13 shows the general form of a digital control system. The pulse transfer
function of the digital controller/compensator is written

%(z) = D(z) (7.92)

and the closed-loop pulse transfer function become

C . D()G(2)
ﬁ(z) = m (7.93)

and hence the characteristic equation is

1 + D(z)GH(z) = 0 (7.94)
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7.7.1 Digital compensator types

In a continuous system, a differentiation of the error signal e can be represented as

u(t) = d—

e
dr
Taking Laplace transforms with zero initial conditions

%(s) =5 (7.95)

In a discrete system, a differentiation can be approximated to

e(kT)—e(k — )T

kT) =
u(kT) .
hence
U 1 —z7!
E(Z) =—7 (7.96)
Hence, the Laplace operator can be approximated to
11—z z-1
s = = 7.97
TTT T: (7.97)

Digital PID controller: From equation (4.92), a continuous PID controller can be
written as

U . Kl(Tdesz +Tis+ 1)
z (s) = Tos (7.98)
Inserting equation (7.97) into (7.98) gives
v K{TTE) T 1)
—(z) = — (7.99)
E Ti(%)
which can be simplified to give
U . Kl(bzzz + b1z + bO)
E(z) = - (7.100)
where
T
b=
2Ty
by = <1 —T> (7.101)
Ty T
by = <? + T] + 1)

221
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Tustin’s Rule: Tustin’s rule, also called the bilinear transformation, gives a better
approximation to integration since it is based on a trapizoidal rather than a rect-
angular area. Tustin’s rule approximates the Laplace transform to

2z 1)

Inserting this value of s into the denominator of equation (7.98), still yields a digital
PID controller of the form shown in equation (7.100) where

T,
b=
T 2Ty
— (L 2y
by (ZTi T ) (7.103)
T Ty
==+=+1
by Qn+7x%>

Example 7.7 (See also Appendix 1, examp77.m)
The laser guided missile shown in Figure 5.26 has an open-loop transfer function
(combining the fin dynamics and missile dynamics) of

G(s)H(s) = (7.104)

20
s2(s +3)

A lead compensator, see case study Example 6.6, and equation (6.113) has a transfer
function of

0.8(1 + )

) = T 0.06259)

(7.105)

(a) Find the z-transform of the missile by selecting a sampling frequency of at least
10 times higher than the system bandwidth.

(b) Convert the lead compensator in equation (7.105) into a digital compensator
using the simple method, i.e. equation (7.97) and find the step response of the
system.

(c) Convert the lead compensator in equation (7.105) into a digital compen-
sator using Tustin’s rule, i.e. equation (7.102) and find the step response of the
system.

(d) Compare the responses found in (b) and (c) with the continuous step response,
and convert the compensator that is closest to this into a difference equation.

Solution
(a) From Figure 6.39, lead compensator two, the bandwidth is 5.09rad/s, or
0.81 Hz. Ten times this is 8.1 Hz, so select a sampling frequency of 10 Hz, i.e.
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T =0.1 seconds. For a sample and hold device cascaded with the missile

dynamics
l—e T 20
G(s) = < g ) {SZ(S ¥ 5)} (7.106)
o Ts 20
Gis)y=(1-—¢e ){s3(s n 5)} (7.107)

For T = 0.1, equation (7.107) has a z-transform of

0.002962% + 0.01048z + 0.0023

GG = 35 606522 +2.2131z — 0.6065

(7.108)

(b) Substituting

z—1
Tz

S =

into lead compensator given in equation (7.105) to obtain digital compensator
Tz+(z—1)
- I FE
D(z) = 0'8{T2+0‘0625(:1)}
Tz

This simplifies to give
5.4152z — 4.923

DE) == "03s46 (7.109)
(c) Using Tustin’s rule
_2(z—1)
TTET
Substituting into lead compensator
T+ D)+2(z—1)
_ T(z+1)
D(z) = 0.8 T(z+1)+0.0625{2(z—1)}
T+
This simplifies to give
7.467z — 6.756
D(Z)_—Z—O.lll (7.110)

(d) From Figure 7.21, it can be seen that the digital compensator formed using
Tustin’s rule is closest to the continuous response. From equation (7.110)

7.467 — 6.756z""

1—0.111z"! (7.11)

U
E(Z) =
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2 -
c(kT) Continuous
1.8
Simple method
1.6
Tustin’s rule
1.41
1.2
1 1.5 2 2.5 3 3.5 4 4.5 5

kT (seconds)

Fig. 7.21 Comparison between discrete and continuous response.

Hence the difference equation for the digital compensator is

u(kT) = 0.111u(k — )T + 7.467e(kT) — 6.756e(k — )T (7.112)

7.7.2 Digital compensator design using pole placement
Case study

Example 7.8 (See also Appendix 1, examp78.m)
The continuous control system shown in Figure 7.22(a) is to be replaced by the digital
control system shown in Figure 7.22(b).

(a) For the continuous system, find the value of K that gives the system a damping
ratio of 0.5. Determine the closed-loop poles in the s-plane and hence the values
of o and w.

(b) Find the closed-loop bandwidth wy, and make the sampling frequency w; a factor
of 10 higher. What is the value of 77

(c) For the sampled system shown in Figure 7.22(b), find the open-loop pulse trans-
fer function G(z) when the sample and hold device is in cascade with the plant.

(d) With D(z) set to the value of K found in (a), compare the continuous and discrete
step responses.
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R Ci
(8) B A R
(@)
As)  + - 3 als)
- T

Fig. 7.22 Continuous and digital control systems.

(e) By mapping the closed-loop poles from the s to the z-plane, design a compensator
D(z) such that both continuous and sampled system have identical closed-loop
response, i.e. ( =0.5.

Solution
(a) The root-locus diagram for the continuous system in shown in Figure 7.23. From
Figure 7.23 the closed-loop poles are

s = —0.5£0.866 (7.113)

or
o=-0.5 w=0.866rad/s
and the value of K is 0.336.

(b) Plotting the closed-loop frequency response for the continuous system gives a
bandwidth wy, of 1.29 rad/s(0.205 Hz). The sampling frequency should therefore
be a factor of 10 higher, i.e. 12.9 rad/s(2.05 Hz). Rounding down to 2.0 Hz gives
a sampling time 7" of 0.5 seconds.

3
(1 _ 1
(©) Gz)=(1-z )Z{SZ(S n 1)} (7.114)
Using transform 7 in Table 7.1

C3{e " =05z 4 (1 — 1.5¢7%%)}
6 = (z— Dz —e 1)
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(=05 jw

K= OQ ------------------------ 0.866

v
Fig. 7.23 Root locus diagram for continuous system.

Hence

0.3196(z + 0.8467)
(z — 1)(z — 0.6065)

G(z) = (7.115)

(d) With D(z) = K = 0.336, the difference between the continuous and discrete step
response can be seen in Figure 7.24.
(e) Mapping closed-loop poles from s to z-plane

ol =
inserting values
|z| = e 0305 = 0.779 (7.116)
/z=wT
=0.866 x 0.5 = 0.433 rad (7.117)
=24.8°

Converting from polar to cartesian co-ordinates gives the closed-loop poles in the z-
plane

z=10.707 £j0.327 (7.118)
which provides a z-plane characteristic equation

22— 1.414z +0.607 = 0 (7.119)
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1.4 Discrete

Continuous

0.8

0.6 1

0.4 4

0.2

O T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10
t, KT (seconds)

Fig. 7.24 Continuous and digital controllers set to K = 0.336.

The control problem is to design a compensator D(z), which, when cascaded with
G(z), provides a characteristic equation

1 + D(z)G(z) = 0 (7.120)

such that the equations (7.119) and (7.120) are identical. Let the compensator be of
the form

_K(iz—a)
D(z2) C1D) (7.121)
Select the value of a so that the non-unity pole in G(z) is cancelled
DHGE) - K(z —0.6065) 0.3196(z + 0.8467) (7.122)

(z+b)  (z— 1)z — 0.6065)

Hence the characteristic equation (7.120) becomes

0.3196K(z +0.8467)
z+b)(z-1) o

which simplifies to give

2 4+ (0.3196K + b — 1)z + (0.2706K — b) = 0 (7.123)
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Continuous
c(t) and Discrete

0.8

0.6

0.4

0.2-

0 1 2 3 4 5 6 7 8 9 10
t, KT (seconds)

Fig. 7.25 Identical continuous and discrete step responses as a result of pole placement.

Equating coefficients in equations (7.119) and (7.123) gives

0.3196K +b— 1= —1.414 (7.124)
0.2706K —b = 0.607 (7.125)
Add 0.5902K —1 = —0.807

or
0.5902K = 0.193

K =0.327 (7.126)

Inserting equation (7.126) into (7.125)
(0.2706 x 0.327) — 0.607 = b

(7.127)

b=-0.519
Thus the required compensator is
U 0.327(z — 0.6065)
D(2) = —=(2) =
@=%z06 (z—0.519)

(7.128)

Figure 7.25 shows that the continuous and discrete responses are identical, both with

¢ = 0.5. The control algorithm can be implemented as a difference equation

(1 — 0.6065z1)

U
29 = 0327 05101

hence

(7.129)

ukT) = 0.327e(kT) — 0.1983e(k — 1)T + 0.519u(k — 1)T (7.130)
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7.8 Further problems

Example 7.9
Assuming that a sample and hold device is in cascade with the transfer function G(s),
determine G(z) for the following

(@) G(s) = (s—il—il)’ T = 0.1 seconds
(b) G(s) = 2 T = 0.5seconds
s+ D(s+2) o
1
(c) G(s) = m, T = 1.0seconds
Solution
0.095
@) GG = 4505
B 0.155(z + 0.606)
(®) 6 = 5973z 10223
0.426(z + 0.847
©) Gz) = 2% )

z2 — 1.607z + 0.607

Example 7.10
The computer control system shown in Figure 7.26 has a sampling time of 0.5
seconds

(a) Find the open-loop pulse transfer function G(z) and hence determine the open-
loop poles and zeros for the combined sample and hold and the plant.

(b) From (a) evaluate the difference equation relating c¢(kT), c(k — )T, c(k — 2)T,
u(k — 1)T and u(k — 2)T.

(c) If the computer has the control algorithm

ukT) = 1.5¢(kT)

Computer

R(s) + T 5 Cls)
—t —> K > S > s(s+4) >

T

Fig. 7.26 Computer control system for Example 7.10.
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using a tabular approach, calcuate the system response when the input is a unit
step applied at k7" = 0 for the discrete time values of k7" =0, 0.5, 1.0, 1.5, 2.0 and
2.5 seconds. Assume that at k7 less than zero, all values of input and output
are zero.

Solution

0.1419(z + 0.523)
22— 1.135z + 0.135

poles z=1,0.135
zeros z = —0.523

(@) G(z) =

(b) c(kT) = 1.135¢(k — )T — 0.135¢(k — 2)T + 0.1419u(k — )T + 0.0743u(k — 2)T

© kT 0 05 10 1.5 20 25
ekT) 0 0213 0.521 0.752 0.889 0.959

Example 7.11

A unity feedback computer control system, has an open-loop pulse transfer function
0.426K(z + 0.847)

z2 — 1.607z + 0.607

G(2) =

(a) Determine the open-loop poles and zeros, the characteristic equation and break-
away points.

(b) Using the Jury test, determine the value of K at the unit-circle crossover points.

(c) Find the radius and centre of the circular complex loci, and hence sketch the root
locus in the z-plane.

Solution

(a) poles z=1,0.607
zeros z = —0.847

2 +(0.426K — 1.607)z + (0.361K + 0.607) = 0
breakaway points z = 0.795, —2.5

(b) K =1.06,47.9
(c) radius = 1.607, centre = —0.847, 0

Example 7.12
A unity feedback continuous control system has a forward-path transfer function
K

G(s) = s(s+5)

(a) Find the value of K to give the closed-loop system a damping ratio of 0.7. The
above system is to be replaced by a discrete-time unity feedback control system
with a forward-path transfer function
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1—e ™\ [ 1
G(S):D(Z)< ; )(s(s+5>>

(b) If the sampling time is 0.2 seconds, determine the open-loop pulse transfer
function.

(c) The discrete-time system is to have the identical time response to the continuous
system. What are the desired closed-loop poles and characteristic equations in

(1) the s-plane
(i1) the z-plane

(d) The discrete-time compensator is to take the form

Ki(z+a)
D(z)= "1 7
@="C7p
Find the values of K| and b if a is selected to cancel the non-unity open-loop pole.
Solution
(a) K=12.8
0.0147(z 4+ 0.718
(b) G() = 24T )

(z — D)(z — 0.368)
(C) —2.48 £i2.56, s>+ 55+ 128 =0
0.531 £j0.298, 22— 1.062z+0.371 =0

(z — 0.368)

@ D) = 1221 —r



State-space methods for
control system design

8.1 The state-space-approach

The classical control system design techniques discussed in Chapters 5-7 are gener-
ally only applicable to

(a) Single Input, Single Output (SISO) systems
(b) Systems that are linear (or can be linearized) and are time invariant (have
parameters that do not vary with time).

The state-space approach is a generalized time-domain method for modelling, ana-
lysing and designing a wide range of control systems and is particularly well suited to
digital computational techniques. The approach can deal with

(a) Multiple Input, Multiple Output (MIMO) systems, or multivariable systems
(b) Non-linear and time-variant systems
(c) Alternative controller design approaches.

8.1.1 The concept of state

The state of a system may be defined as: “The set of variables (called the state
variables) which at some initial time ¢,, together with the input variables completely
determine the behaviour of the system for time 7 > #;’.

The state variables are the smallest number of states that are required to describe
the dynamic nature of the system, and it is not a necessary constraint that they are
measurable. The manner in which the state variables change as a function of time
may be thought of as a trajectory in n dimensional space, called the state-space.
Two-dimensional state-space is sometimes referred to as the phase-plane when one
state is the derivative of the other.
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8.1.2 The state vector differential equation

The state of a system is described by a set of first-order differential equations in terms
of the state variables (xj, x2, ..., x;) and input variables (uy, up, ..., u,) in the
general form

dx1

W =anxy + apxy + -+ agpx, +bnuy + - - - + bty

dX2

a = X1+ anxy + -+ apXy + by + - - 4 byt 8.1
dx,

? = X1+ X2+ F pp Xy + Dy + - -+ Dyt

The equations set (8.1) may be combined in matrix format. This results in the state
vector differential equation

X = AX + Bu (8.2)
Equation (8.2) is generally called the state equation(s), where lower-case boldface

represents vectors and upper-case boldface represents matrices. Thus

x is the n dimensional state vector

X1
X2
) (8.3)
_xn -
u is the m dimensional input vector
Fun T
[25)
. (8.4)
uﬂl
A is the n X n system matrix
an ap ... diy
azy dzp ... dy
(8.5)
Apl Ap2 ... dpp
B is the n x m control matrix
b ... bim
bz] e bzm
. (8.6)
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K
C
P(t)
l Cy Ky T)
Wy
v i
m m
(a) (b)
Fig. 8.1 Spring—mass—damper system and free-body diagram.
In general, the outputs (1, y2, ..., yn) of a linear system can be related to the state

variables and the input variables
y = Cx+ Du

Equation (8.7) is called the output equation(s).

Example 8.1

(8.7)

Write down the state equation and output equation for the spring—mass—damper

system shown in Figure 8.1(a).

Solution
State variables

Input variable
u= P(t)
Now
Z Fy, = my
From Figure 8.1(b)
P(t) — Ky — Cy = my
or

&y K C. 1
Sy A, x50 p
ds? m? my+m @)

(8.8)

(8.9)

(8.10)

(8.11)
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From equations (8.9), (8.10) and (8.11) the set of first-order differential equations are

X1 = X2

. K ¢ 1 (8.12)
Xp=——X| ——Xo+—U
m m m

and the state equations become

x 0 1 . 0
1 1
[562] =| K C [xz] + 1 |u (8.13)
m m m
From equation (8.8) the output equation is
y=[1 0]{“] (8.14)
X2

State variables are not unique, and may be selected to suit the problem being studied.
Example 8.2
For the RCL network shown in Figure 8.2, write down the state equations when

(a) the state variables are v,(¢) and v,
(b) the state variables are v,(¢) and i(¢).

Solution
a
@ X1 = (1)
. (8.15)
X2 = V) = X
From equation (2.37)
d2V2 dv2
LC———+ RC—/— = 1
CS2+ RC =m0 (8.16)
From equations (8.15) and (8.16) the set of first-order differential equations are
)'c1 = X2
1 RC 1
Xp=——X] ——X2+—1u (8.17)

v, (D) i(?) c v,()

Fig. 8.2 RCL network.
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and the state equations are

fCl X
HE R ERE ®.18)
LC L LC
(b) X1 = va(f) (8.19)
x> = i(1) '
From equations (2.34) and (2.35)
Lg = —y(1) — Ri(t) + v1(2) (8.20)
dvy .
Cq =10 (8.21)

Equations (8.20) and (8.21) are both first-order differential equations, and can be
written in the form

1
X]=—=X
IR (8.22)
X7 fle fzxz +Zu
giving the state equations
; 0 1 . 0
{sz 1 R [x;]-i- 1|u (8.23)
L L L

Example 8.3
For the 2 mass system shown in Figure 8.3, find the state and output equation when
the state variables are the position and velocity of each mass.

Solution
State variables

X1=y1 X2=J
X3=)2 X4=)n

System outputs

Y1, V2
System inputs

u = P(t) (8.24)

For mass m

Y B =mj

K>y(y2 —y1) — Kiy1 + P(1) — Ciyy = mijh (8.25)
For mass m;

ZFy = m2j/"2

— Ky (y2 — y1) = mpjr (8.26)
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K A()
Ky, PO O
v, (0
| . .
K, Ko(Yo= Y1)
Yo>Y4
yz(f)l my my

(a) (b)

Fig. 8.3 Two-mass system and free-body diagrams.

From (8.24), (8.25) and (8.26), the four first-order differential equations are

X] = X2
. K K C K 1
Xp=|————|X| ——Xp+—X3+—1U
m;  ny mg nn n
X3 = X4
K K
X4 =—X] ——X3
ny noy
Hence the state equations are
0 1 0 0
fC] _ Kl + K2 _ £ & 0 X1
X2 | m my  my 2| L
X3 o 0 0 0 1 X3
X K K X
4 K3 0 _K, 4
np ny
and the output equations are
X

»i| |1 0 0 O0f]x
yz_OOIOX3

X4

(8.27)

oy |u (8.28)

(8.29)
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U(S) » bnq Sn71 + .+ b1S + bo Y(S) »
S 4 ans S et as+a,
Fig. 8.4 Generalized transfer function.
8.1.3 State equations from transfer functions
Consider the general differential equation
d"y a1y dy d 1y du
ar + an—1 T + -t qr +apy = by arT +--+ b a4 + bou (8.30)

Equation (8.30) can be represented by the transfer function shown in Figure 8.4.
Define a set of state variables such that

X’l = X2
Xz = X3
(8.31)
Xp = —@pX] — A1X2 — * = Q1 Xy T U
and an output equation
y=boxi +bixa+---+by_1x, (8.32)
Then the state equation is
X1 0 1 0 0 X1 0
X 0 0 1 . 0 X2 0
: = : : + | |u (8.33)
xn—l 0 0 0 1 Xn—1 0
Xn —ay) —d —day ... —dp—| Xn 1

The state-space representation in equation (8.33) is called the controllable canonical
form and the output equation is

X
X2
y=[by b1 by ... by1]]|X3 (8.34)

Xn

Example 8.4 (See also Appendix 1, examp84.m)
Find the state and output equations for
4

Y 5=
U T 9132 +6s12
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).Cl 0 1 0_ X1 0
ol=10 0 1]|x|+]|0]u (8.35)
Xg -2 -6 73_ X3 1

Solution
State equation

Output equation

)
y=[4 0 0]|x (8.36)
_x3
Example 8.5
Find the state and output equations for
X(S) B 582+ 7s+ 4
U S +32+65+2

Solution
The state equation is the same as (8.35). The output equation is

X1
y=[4 7 5][@} (8.37)

X3

8.2 Solution of the state vector differential equation

Consider the first-order differential equation

% = ax(t) + bu(?) (8.38)
where x(7) and u(t) are scalar functions of time. Take Laplace transforms
sX(s) — x(0) = aX(s) + bU(s) (8.39)
where x(0) is the initial condition. From equation (8.39)
x="0 4, Py (8.40)
(s—a) (s—a)
Inverse transform
t
x(7) = e“x(0) + / e“Dpu(r)dr (8.41)
0

where the integral term in equation (8.41) is the convolution integral and 7 is a
dummy time variable. Note that
20 s

at _ ar et
e =14at+ o +- 4+ T (8.42)
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Consider now the state vector differential equation
X = Ax + Bu (8.43)
Taking Laplace transforms

sX(s) — x(0) = AX(s) + BU(s) (8.44)

(sI — A)X(s) = x(0) + BU(s)
Pre-multiplying by (sI — A)~!
X(s) = (sT — A)~'x(0) + (sT — A)"'BU(s) (8.45)

InVCI‘SC transform
t
x(1) = eA'x(0) + / ADBU(r)dT (8.46)
0
if the initial time is ¢, then

t
x(1) = eAl-0x(0) + / eAIBu(r)dr (8.47)

fo

The exponential matrix e*’ in equation (8.46) is called the state-transition matrix ®(r)

and represents the natural response of the system. Hence

D(s) = (sI— A)! (8.48)
D)=L I—A) =M (8.49)
Alternatively
2.2 k ik
cp(z):I+Az+Az—f+--~+Ak—f (8.50)

Hence equation (8.46) can be written
t
x(1) = ®()x(0) + / O(t — 7)Bu(r)dr (8.51)
0

In equation (8.51) the first term represents the response to a set of initial conditions,
whilst the integral term represents the response to a forcing function.

Characteristic equation
Using a state variable representation of a system, the characteristic equation is given
by

(5T — A)| =0 (8.52)
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8.2.1 Transient solution from a set of initial conditions

Example 8.6
For the spring—mass—damper system given in Example 8.1, Figure 8.1, the state

equations are shown in equation (8.13)
+ 0 1 . 0
1| _ 1
HEE AN -

Given: m = 1kg, C=3Ns/m, K =2N/m, u(f) = 0. Evaluate,

(a) the characteristic equation, its roots, w, and ¢
(b) the transition matrices @(s) and @(¢)
(c) the transient response of the state variables from the set of initial conditions

¥(0) = 1.0,
¥(0) =0

Solution
Since x; = y and x, = y, then x;(0) = 1.0, x»(0) = 0.
Inserting values of system parameters into equation (8.53) gives

o= 1% Sl

(a) (sT—A) = [(‘) (S)} - [_02 _13} = B (s:rls)] (8.54)

From equation (8.52), the characteristic equation is
IGI—A)| =s(s+3)—(=2)=s>+35+2=0 (8.55)
Roots of characteristic equation
s=-1,-2 (8.56)

Compare equation (8.55) with the denominator of the standard form in equation
(3.43)

wr=2 ie w,=14l4rad/s

. (8.57)
2wy, =3 ie (¢=1.061
(b) The inverse of any matrix A (see equation A2.17) is
_, Adjoint A
Al =" 8.58
det A (8.58)

From equation (8.48)
D(s) = (sT — A)~!
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Using the standard matrix operations given in Appendix 2, equation (A2.12)

Minors of ®(s) = [(Sj—13) 3]

Co-factors of ®(s) = [(S T 3) _sz}

The Adjoint matrix is the transpose of the Co-factor matrix

Adjoint of ®(s) = [(“j;‘) lg] (8.59)
Hence, from equations (8.58) and (8.48)
(s+3) 1
1 2 1 2
o) = | CT DI s+ D +2) (8.60)
S+ Ds+2) (s+Ds+2)
Using partial fraction expansions
( 2 1 > ( 11 >
®(s) = s+1 s+2 s+1 s+4+2 (8.61)
5 1 R n 2
s+1 s42 s+1 s42
Inverse transform equation (8.61)
B (26_' _ 6_2’) (e—t _ e—21)
(I)(l) - |:_2(er _ 672[) (—€7Z 4 2672[) (862)

Note that the exponential indices are the roots of the characteristic equation (8.56).

(¢c) From equation (8.51), the transient response is given by

x(1) = ®(£)x(0) (8.63)

xi] | Qe —e?) (e —e ) 1

|:x;:| o |:—2(et _ e—2t) (_e—t + 262[):| |:0:| (864)
xi() = Qe —e )

x(t) = —2(6_[ — e_z’)

Hence

(8.65)

The time response of the state variables (i.e. position and velocity) together with the
state trajectory is given in Figure 8.5.

Example 8.7
For the spring-mass—damper system given in Example 8.6, evaluate the transient
response of the state variables to a unit step input using

(a) The convolution integral
(b) Inverse Laplace transforms

Assume zero initial conditions.
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Xz(t)
1 .
/ xi(f)
0 ¢ x(1)
X:
/ ’
—14
(a) (b)
Fig. 8.5 State variable time response and state trajectory for Example 8.4.
Solution
(a) From equation (8.51)
0] ['entt=7 ont-n]|"
Hn=a0|, |+ e T } d 8.66
X ”M “aszl(r—v) om(—7 || L|"DT (560
m
Given that u(r) = 1 and 1/m = 1, equation (8.66) reduces to
t
P1a(t — 7')}
1) = d
o= | Lzm(t -]
Inserting values from equation (8.62)
! ef(t77) _ e72(t77)
x(1) = /0 e (=7 | De=2t-7) dr (8.67)
Integrating
e— (=7 _ 1g=20-17"
x(1) = 2 (8.68)
e—(l—T) 4 e—Z(t—T) 1o
Inserting integration limits (7 = ¢ and 7 = 0)
xi] l—e '+ %efz’_ (8.69)
X2 —t =2t .

(b) An alternative method is to inverse transform from an s-domain expression.

Equation (8.45) may be written

X(s) = D(s)x(0) + D(s)BU(s)

(8.70)
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1.0 X(t)

05. /X1(t)

Xo(t)

1.0 xi(t)

(a) (b)

Fig. 8.6 State variable step response and state trajectory for Example 8.5.

2 1 1 1
s+1 s+2 s+1 s+2

s 1 B 1 -1 N 2
s+1 s+2 s+1 s+2

)
X(s) = s(s +_1)1 2 s(s;r 2) 8.72)

L s(s+l)+s(s+2)

Hence from equation (8.61)

X(s) = cp(s)m + m% 8.71)

Simplifying

Inverse transform

i ety 11 a2t
x(7) = (1=e) =3l ~e )] (8.73)
(I —e )+ (1—e2)
which gives
X l_efrJrlefzt
[ 1} =12 2 (8.74)
X2 e—r_efm

Equation (8.74) is the same as equation (8.69).
The step response of the state variables, together with the state trajectory, is shown
in Figure 8.6.

8.3 Discrete-time solution of the state vector
differential equation

The discrete-time solution of the state equation may be considered to be the vector
equivalent of the scalar difference equation method developed from a z-transform
approach in Chapter 7.
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The continuous-time solution of the state equation is given in equation (8.47). If
the time interval (¢ — fy) in this equation is 7', the sampling time of a discrete-time
system, then the discrete-time solution of the state equation can be written as

T
x[(k + D)T] = e*Tx(kT) + { / eATBdT}u(kT) (8.75)
0

Equation (8.75) can be written in the general form
x[(k+ )T = A(T)x(kT) + B(T)u(kT) (8.76)
Note
A(T)#A and B(T)#B

Equation (8.76) is called the matrix vector difference equation and can be used for the
recursive discrete-time simulation of multivariable systems.

The discrete-time state transition matrix A(7) may be computed by substituting
T =t in equations (8.49) and (8.50), i.c.

A(T) = ®(T) =erT (8.77)
or
A’T? Ak Tk
AT) =T+ AT =5+ oo = (8.78)

Usually sufficient accuracy is obtained with 5 < k < 50.
The discrete-time control matrix B(7") from equations (8.75) and (8.76) is

B(T) = /0 ' e " Bdr (8.79)

or

Put 7 within the brackets

00 ka+1
B(7) = {z_:(lw 1),}

Hence

AT? AT} AFTRH
B(T) = {IT +—— b B :
(T) { tor gt +(k+1)!} (8.80)

Example 8.8 (See also Appendix 1, examp88.m)

(a) Calculate the discrete-time transition and control matrices for the spring-mass-
damper system in Example 8.6 using a sampling time 7 = 0.1 seconds.

(b) Using the matrix vector difference equation method, determine the unit step
response assuming zero initial conditions.
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Solution
(a) The exact value of A(T') is found by substituting 7" = ¢ in equation (8.62)

AT) — ®(T) — (2670.1 N 670.2) (efo.l B efo.z)
( ) - ( ) - —2(670'1 _ efo.z) (_e—().l + 26—0.2)
_ [ 0.991 0.086}

(8.81)
—0.172 0.733

An approximate value of A(T) is found from equation (8.78), taking the series as far
as k =2.

ar=] 0, %]

-02 -03

AT> T0 1][0 1701> [-001 -0.015
20 | -2 =3]|-2 -3)1x2 | 003 0035

using the first 3 terms of equation (8.78)

A(T)%[l 0}+[ 0 0. }Jr[—o.m —0.015}
0 1 02 -0.3 0.03  0.035
0.99 0.085
{—0.17 0.735}

~
~

(8.82)

Since in equation (8.66), u(7) is unity, the exact value of B(T") can be obtained by
substituting 7" = ¢ in equation (8.69)

1_ o014 1402
B(T) = lz o _egm ] (8.83)
B(T) — [0.00453] @54
~ 1 0.0861 '

An approximate value of B(7T') is found from equation (8.80), taking the series as far
as k =2.

2 23
B(T) ~ (IT)B + (%)B + (%)B

0 0.005 ~0.0005
~ [0.1] * {—0.015} * {0.00117}
0.0045
[0.08617}

~
~

(8.85)

(b) Using the values of A(T") and B(T') given in equations (8.81) and (8.84), together
with the matrix vector difference equation (8.76), the first few recursive steps of
the discrete solution to a step input to the system is given in equation (8.86)
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kT =0
[x1(0.1)] [ 0.991 0.086][0 n 0.00453 | — 0.00453
| x2(0.1) | | —0.172 0.733] |0 0.0861 ~ | 0.0861
kT =0.1
[x1(0.2) ] [0.991  0.086][0.00453 " 0.00453 | — 0.016
| x2(0.2) | | —0.172 0.733 ]| 0.0861 0.0861 ~10.0148
kT =0.2
[x1(0.3) ] 0991 0.086]|[0.016| [0.00453 ] | — [0.033 ] (8.86)
| X2(0.3) | | —0.172 0.733]]0.148 | ~ | 0.0861 | [0.192] '
kT =0.3
[ x1(0.4) ] [ 0.991  0.086][0.033] = [0.00453 | — [0.054 ]
| x2(0.4) | | —0.172 0.733]|0.192| | 0.0861 | |0.227 |
kT =04
[ x1(0.5) ] [ 0991 0.086][0.054] [0.00453] | — [0.078 ]
| x2(0.5) | | —0.172 0.733]|0.227 | * | 0.0861 | |0.243 |
Example 8.9
A system has a transfer function
Y 1
U(S)_s2+2s+l

The system has an initial condition y(0) = 1 and is subject to a unit ramp function
u(t) = t. Determine

(a) The state and output equations
(b) The transition matrix ®(s)
(c) Expressions for the time response of the state variables.

Solution

w [2]=[0 L)z [0

y=I1 0][;“;]

s+ 2 1
(b) ®(s) = (S+1_)(1S+1) (S+1);S+l)

(s+DE+1D (+DE+1)

© xi| _ [3e 42" =241
X2 | 2ee M+ 1 —e!
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8.4 Control of multivariable systems

8.4.1 Controllability and observability

The concepts of controllability and observability were introduced by Kalman (1960)
and play an important role in the control of multivariable systems.
A system is said to be controllable if a control vector u(¢) exists that will transfer
the system from any initial state x(#y) to some final state x(¢) in a finite time interval.
A system is said to be observable if at time 7, the system state x(#;) can be exactly
determined from observation of the output y(7) over a finite time interval.

If a system is described by equations (8.2) and (8.7)
x=Ax+B
X = Aaxm o (8.87)
y = Cx + Du

then a sufficient condition for complete state controllability is that the n x n matrix
M =[B:AB:...:A" 'B] (8.88)

contains 7 linearly independent row or column vectors, i.e. is of rank n (that is, the
matrix is non-singular, i.e. the determinant is non-zero. See Appendix 2). Equation
(8.88) is called the controllability matrix.

The system described by equations (8.87) is completely observable if the n x n
matrix

N = [CTATCT: (A7) T (8.89)

is of rank n, i.e. is non-singular having a non-zero determinant. Equation (8.89) is
called the observability matrix.

Example 8.10 (See also Appendix 1, examp810.m)
Is the following system completely controllable and observable?

912 S
]

From equation (8.88) the controllability matrix is

Solution
M = [B:AB]

where

hence

(8.90)
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Equation (8.90) is non-singular since it has a non-zero determinant. Also the two row
and column vectors can be seen to be linearly independent, so it is of rank 2 and
therefore the system is controllable.

From equation (8.89) the observability matrix is

N = [CT:ATCT]
where
T ~T 2 3 1| |-5
we= |3 S]]
hence
N = [CT:ATCT] = {_11 _55] (8.91)

Equation (8.91) is singular since it has a zero determinant. Also the column vectors
are linearly dependent since the second column is —5 times the first column and
therefore the system is unobservable.

8.4.2 State variable feedback design

Consider a system described by the state and output equations

X = Ax + Bu
(8.92)
y =Cx
Select a control law of the form
u=(r—Kx) (8.93)

In equation (8.93), r(¢) is a vector of desired state variables and K is referred to as the
state feedback gain matrix. Equations (8.92) and (8.93) are represented in state
variable block diagram form in Figure 8.7.
Substituting equation (8.93) into equation (8.92) gives
x = Ax + B(r — Kx)
or
x = (A — BK)x + Br (8.94)

In equation (8.94) the matrix (A — BK) is the closed-loop system matrix.
For the system described by equation (8.92), and using equation (8.52), the
characteristic equation is given by

IsT— A)| =0 (8.95)

The roots of equation (8.95) are the open-loop poles or eigenvalues. For the closed-
loop system described by equation (8.94), the characteristic equation is

s — A+ BK)| =0 (8.96)

The roots of equation (8.96) are the closed-loop poles or eigenvalues.
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r + u + X y
@@ﬁ B > / > C >

Fig. 8.7 Control using state variable feedback.

Regulator design by pole placement
The pole placement control problem is to determine a value of K that will produce

a desired set of closed-loop poles. With a regulator, r(f) = 0 and therefore equation
(8.93) becomes

u=—Kx

Thus the control u(#) will drive the system from a set of initial conditions x(0) to a set
of zero states at time ¢, i.e. x(¢;) = 0.
There are several methods that can be used for pole placement.

(a) Direct comparison method: If the desired locations of the closed-loop poles
(eigenvalues) are

S =, S = [y ey S = Uy (8.97)
then, from equation (8.96)
IsT— A + BK| = (s — fu)(s — f12) - .. (5 — 1) (8.98)
=5 4+ a, 15"+ s+ ap (8.99)
Solving equation (8.99) will give the elements of the state feedback matrix.
(b) Controllable canonical form method: The value of K can be calculated directly using
k=[ag—ap:a; —az:...:Qp_2 —ap_n:0,_1 — a,,_l]T*l (8.100)

where T is a transformation matrix that transforms the system state equation into
the controllable canonical form (see equation (8.33)).

T = MW (8.101)
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where M is the controllability matrix, equation (8.88)

ay ay ... dp— 1
ar azy ... 1 0
w=| : (8.102)
a1 1 ... 0 0
1 o ... 0 0

Note that T =1 when the system state equation is already in the controllable
canonical form.

(c) Ackermann’s formula: As with Method 2, Ackermann’s formula (1972) is a direct
evaluation method. It is only applicable to SISO systems and therefore u(f) and
y(t) in equation (8.87) are scalar quantities. Let

K=[0 0...0 1M !¢A) (8.103)
where M is the controllability matrix and
HA) = A"+, A" A+ gl (8.104)

where A is the system matrix and o; are the coefficients of the desired closed-loop
characteristic equation.

Example 8.11 (See also Appendix 1, examp811.m)
A control system has an open-loop transfer function

When x| = yand x; = x|, express the state equation in the controllable canonical form.
Evaluate the coefficients of the state feedback gain matrix using:

(a) The direct comparison method
(b) The controllable canonical form method
(¢c) Ackermann’s formula

such that the closed-loop poles have the values

s=-2,8=-2
Solution
From the open-loop transfer function
J+4y=u (8.105)
Let
X1 =y (8.1006)
Then
561 = X2

. (8.107)
Xo=—4x, 4+ u
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Equation (8.106) provides the output equation and (8.107) the state equation

2] =10 L] [

y=[1 O]M

X2
The characteristic equation for the open-loop system is
s 0 01 244540
— = S
0 s 0 —4

:sz—l—als—i—ao

[sT—A| =

Thus

a) = 4, apg = 0
The required closed-loop characteristic equation is

(s+2)(s+2)=0

or
S +4s+4=0
ie.
s+ as+aog=0
hence

o] = 4, oy = 4
(a) Direct comparison method: From equations (8.99) and (8.111)

|sT — A +BK| = s> + 45+ 4

s 0 0 1 0 2
5010 T [kt = s
{S - }—i—[o 0] =5 +4s+4
0 s+4 kl kz
g -l =5 +45+4
ki s+4+k

S+ @ +k)s+k =s>+4s+4
From equation (8.114)

ki =4
G+k)=4 ie k=0

(8.108)

(8.109)

(8.110)

(8.111)

(8.112)

(8.113)

(8.114)

(8.115)
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(b) Controllable canonical form method: From equation (8.100)

K=[ag—ay:a — a1]T71

=[4—-0:4—4T!
=[4 0]T! (8.116)
now
T =MW
where
M = [B:AB]
0 170 1
s[5 0=
giving
M:[(l) 14} (8.117)

Note that the determinant of M is non-zero, hence the system is controllable.
From equation (8.102)

Hence

0 1 4 1 1 0
e A Y ] I T

Thus proving that equation (8.108) is already in the controllable canonical form.
Since T~! is also I, substitute (8.118) into (8.116)

K=[4 0]I=[4 0] (8.119)
(c) Ackermann’s formula: From (8.103)

K=[0 1M '¢A) (8.120)
From (8.117)

4 1 [-4 -1 4 1
Ml_{ ] [1 o} (8.121)

From (8.104)

HA) = A% + a1 A + ol
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inserting values

) 0 1 JO )L o
= + +
0 —4 - 0 1
[0 —4 0 4 4 0
0 16 0 —16 0 4
40 (8.122)
o 4 '

Insert equations (8.121) and (8.122) into (8.120)

4 1174 0
K=10 1]{1 0”0 4]

o p1[te 4
0 11y ]

K=[4 0] (8.123)

These results agree with the root locus diagram in Figure 5.9, where K = 4 produces
two real roots of s = —2, s = —2 (i.e. critical damping).

8.4.3 State observers

In section 8.4.2 where state feedback design was discussed, it was assumed that all the
state variables were available for the control equation (8.93) for a regulator

u=(r—Kx)
whenr =0
u=—Kx (8.124)

Equations (8.124) requires that all state variables must be measured. In practice this
may not happen for a number of reasons including cost, or that the state may not
physically be measurable. Under these conditions it becomes necessary, if full state
feedback is required, to observe, or estimate the state variables.

A full-order state observer estimates all of the system state variables. If, however,
some of the state variables are measured, it may only be necessary to estimate a few
of them. This is referred to as a reduced-order state observer. All observers use some
form of mathematical model to produce an estimate X of the actual state vector x.
Figure 8.8 shows a simple arrangement of a full-order state observer.

In Figure 8.8, since the observer dynamics will never exactly equal the system
dynamics, this open-loop arrangement means that x and x will gradually diverge. If
however, an output vector y is estimated and subtracted from the actual output
vector y, the difference can be used, in a closed-loop sense, to modify the dynamics of
the observer so that the output error (y — ¥) is minimized. This arrangement, some-
times called a Luenberger observer (1964), is shown in Figure 8.9.
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System

Observer

Fig. 8.8 A simple full-order state observer.

Let the system in Figure 8.9 be defined by
X = Ax + Bu (8.125)
y =Cx (8.126)

Assume that the estimate X of the state vector is

% = A% + Bu + K.(y — CX) (8.127)

where K. is the observer gain matrix.
If equation (8.127) is subtracted from (8.125), and (x — X) is the error vector e, then

e=(A—-K.Ce (8.128)
and, from equation (8.127), the equation for the full-order state observer is
x = (A — K.O)X + Bu + K.y (8.129)

Thus from equation (8.128) the dynamic behaviour of the error vector depends upon
the eigenvalues of (A — K.C). As with any measurement system, these eigenvalues
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y
u + X X
i B ./ 1 c ——
+
System
A — |
> B
Observer

Fig. 8.9 The Luenberger full-order state observer.

should allow the observer transient response to be more rapid than the system itself
(typically a factor of 5), unless a filtering effect is required.

The problem of observer design is essentially the same as the regulator pole
placement problem, and similar techniques may be used.

(a) Direct comparison method:. If the desired locations of the closed-loop poles
(eigenvalues) of the observer are
S:p’laS:qu"'ss = ,un
then
5T — A + KeC| = (5 — u1)(s — f12) . (5 — 1)
=5+ 1"+ s+ ag (8.130)
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(b) Observable canonical form method. For the generalized transfer function shown
in Figure 8.4, the observable form of the state equation may be written

Xl 0 0...0 —day X1 b()
X’z 1 0...0 —d X2 b]
=|. . L F .o |u
Xn 0 0...1 —a, Xp b,—1 8.131)
X1
X2
y=[0 0...0 1]
Xp

Note that the system matrix of the observable canonical form is the transpose of the
controllable canonical form given in equation (8.33).
The value of the observer gain matrix K, can be calculated directly using

Qo — Ao
o] —dad
Ke=Q| . (8.132)
Qp—1 — dp—1

Q is a transformation matrix that transforms the system state equation into the
observable canonical form

Q= (WN)! (8.133)

where W is defined in equation (8.102) and N is the observability matrix given in
equation (8.89). If the equation is in the observable canonical form then Q = 1.

(c) Ackermann’s formula: As with regulator design, this is only applicable to systems
where u(¢) and y(¢) are scalar quantities. It may be used to calculate the observer
gain matrix as follows

Ke=¢(AN7'[0 0...0 177

or alternatively _1

C 0
CA 0

K. = $(A) : : (8.134)
CA"! 1

where ¢(A) is defined in equation (8.104).

Example 8.12 (See also Appendix 1, examp812.m)
A system is described by

X
y=[1 0][ ]

X2



258 Advanced Control Engineering
Design a full-order observer that has an undamped natural frequency of 10 rad/s and
a damping ratio of 0.5.

Solution
From equation (8.89), the observability matrix is

N = {CT:ATCT} - [(1) ﬂ (8.135)

N is of rank 2 and therefore non-singular, hence the system is completely observable
and the calculation of an appropriate observer gain matrix K, realizable.
Open-loop eigenvalues:

|sST— Al = s> + 35+ 2 =s> 4 ars + ap (8.136)
Hence
610:2, a =3

And the open-loop eigenvalues are

S +354+2=0
(s+1)(s+2)=0
s=—1, s=-2 (8.137)

Desired closed-loop eigenvalues:
$*+ 2Cwns + wi =0
2+ 105+ 100 = s> + s+ g = 0 (8.138)
Hence
ap =100, «a; =10
and the desired closed-loop eigenvalues are the roots of equation (8.138)

w1 = —5 +]8.66, uy = —5—j8.66 (8.139)
(a) Direct comparison method. From equation (8.130)

IsT — A + K.C| = s> + a; + ag

s 0 0 1 kel
- + [1 0] =s"+10s+100
0 S -2 —3 keZ
N -1 kel 0
+ = s> + 10s + 100
2 s+3 ke O
s+ ke -1
= s> 4 105 + 100
2+k62 3+3

§ + (3 + ket)s + ket + 2 + key) = s> + 105 + 100 (8.140)
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From equation (8.140)
B+ke)=10, k=7 (8.141)

ke +2 + keo) = 100
ke =100 —2 —21 =77 (8.142)

(b) Observable canonical form method. From equation (8.132)

K.=Q —040 - ao]
|1 —a
Q'mo—z
STl 10-3
98
=Q (8.143)
|7
From equation (8.133)
Q= (WN)™
and from equation (8.102)
e 1) 301
W[l 0]{1 O} (8.144)
Since from equation (8.135)
v o T |10
No[b 9] et ] 169
Thus
T |3 1|{1l O] |3 1
WN" = [1 0} [0 1} = {1 0] (8.1406)
and
Lo -1 0 1
Q——l{—l 3 ] = [1 _3} (8.147)
Since Q # I then A is not in the observable canonical form.
From equation (8.143)
0 1 98 7
<[ e

(c) Ackermann’s Formula: From (8.134)

-1
AN
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Using the definition of ¢(A) in equation (8.104)
0 1 1
r—2 -3 0 10 100 0 1 0710
k=l Tl Sl [ wolllo ][]
L6 7 —-20 -30 0 100 0 1][1

:?i 777H(1> ﬂm

—1
KCZ(A2+a1A+aOI)[1 0] m (8.149)

98 770 7
SRRy
14 77111 77
8.4.4 Effect of a full-order state observer on a closed-loop
system

Figure 8.10 shows a closed-loop system that includes a full-order state observer. In
Figure 8.10 the system equations are

x = Ax + Bu
y =Cx (8.151)
The control is implemented using observed state variables
u=—Kx (8.152)
If the difference between the actual and observed state variables is
e(r) = x(1) — x(1)
then
X(1) = x(1) —e(?) (8.153)
Combining equations (8.151), (8.152) and (8.153) gives the closed-loop equations
x = Ax — BK(x — e)
= (A — BK)x + BKe (8.154)
The observer error equation from equation (8.128) is
e=(A—-K.Ce (8.155)
Combining equations (8.154) and (8.155) gives

x] [A-BK BK |[x
HE AR 1N 5159

Equation (8.156) describes the closed-loop dynamics of the observed state feedback
control system and the characteristic equation is therefore

|sIA + BK||sT — A + K.C| =0 (8.157)
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System

r=0 + u . y
x = Ax+Bu
:_§ > y =Cx >

Ke K
AT % X
—> B / —— C
+
Full-Order
Observer
A
X
K K

Fig. 8.10 Closed-loop control system with full-order observer state feedback.

Equation (8.157) shows that the desired closed-loop poles for the control system are
not changed by the introduction of the state observer. Since the observer is normally
designed to have a more rapid response than the control system with full order
observed state feedback, the pole-placement roots will dominate.

Using the state vectors x(7) and X(¢) the state equations for the closed-loop system
are

From equations (8.151) and (8.152)

x = Ax — BKx (8.158)
and from equation (8.129)

x = (A — K.O)% — BKx + K.Cx

8.159
= (A — K.C — BK)X + K.Cx (5159

Thus the closed-loop state equations are

X A —BK X
[X} N {KeC A—KeC—BK] |:x] (8.160)
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8.4.5 Reduced-order state observers

A full-order state observer estimates all state variables, irrespective of whether they
are being measured. In practice, it would appear logical to use a combination of
measured states from y = Cx and observed states (for those state variables that are
either not being measured, or not being measured with sufficient accuracy).

If the state vector is of nth order and the measured output vector is of mth order,
then it is only necessary to design an (n — m)th order state observer.

Consider the case of the measurement of a single state variable x;(¢). The output
equation is therefore

y=x=Cx=[1 0...0]x (8.161)
Partition the state vector
_ ™
X = |:Xc:| (8.162)

where X, are the state variables to be observed.
Partition the state equations

B Rl [l
If the desired eigenvalues for the reduced-order observer are
S = e, § = M2es - -5 § = U(n—1)e
Then it can be shown that the characteristic equation for the reduced-order observer is
IS — Ace + KeAie| = (5 — pie) - - . (8 — fn—1)e)
="+ ap2es" P+ es + Qoe (8.164)

In equation (8.164) A.. replaces A and A, replaces C in the full-order observer.
The reduced-order observer gain matrix K. can also be obtained using appropriate
substitutions into equations mentioned earlier. For example, equation (8.132)

becomes
Qoe — Uoe
Qe — dle
K. = Q. . (8.165)
Q(n—2)e — A(n—2)e
where dqe, - .., au-2) are the coefficients of the open-loop reduced order character-

istics equation
ST — Ace| = 8" + a(u_2)e8™" % + d1es + doe (8.166)
and

Q. = (WNO)™! (8.167)
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where
ay ay . [4)70) 1
a as 1 0
W, = : (8.168)
[277)] 1...0 0
1 0...0 0
and

Ne = [Al, : A TAL, ¢ ... 1 (A T)"2AT, (8.169)

and Ackermann’s formula becomes

A 1770
AreAee 0
Ke = ¢(Ace) : X (8.170)
AleAgg3 0
AyeA"? 1
where
D(Ace) = AL+ dAE £ A + oyl (8.171)
Define
Xe1 =X — Koy
Then
X = %o — Koy (8.172)

The equation for the reduced-order observer can be shown to be
;‘el = (AeeKeAle)iel + {AelKeall + (Aee - KeA1e)Ke}y + (Be — Keb])u (8173)

Figure 8.11 shows the implementation of a reduced-order state observer.
Case study

Example 8.13  (See also Appendix 1, examp813.m)
(a) In case study Example 5.10 a control system has an open-loop transfer function

1
G(s)H(s) = m
The controller was a PD compensator of the form
G(s) = Ki(s + a)
With K; = 15 and a = 1, the system closed-loop poles were
s = —3.132 £j3.253

s =—0.736
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System

r=0 @ u » X=Ax+Bu y=xi
y=Cx

v

»  Be— Koby

At — Keay

A

ml

Reduced-Order
Observer

T

I

I

I

:

I
AN o | +

et : Ao — KeAro

+ :

I

I

I

I

I

I

I

I

X4

Key

Fig. 8.11 Implementation of a reduced-order state observer.

with the resulting characteristic equation
s+ 757 +255+15=0

Demonstrate that the same result can be achieved using state feedback methods.

(b) Design a reduced second-order state observer for the system such that the poles
are a factor of 10 higher than the closed-loop system poles, i.e.

s = —31.32 £j32.53
which correspond to w, = 45.16rad/s and ( = 0.7.

Solution

1
3+ 7s24+10s+0

(a) G(®)H(s) =
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From equations (8.33) and (8.34)

0: 1 0 0
Ao 00 ........ 1 B 0 C—[1 0 0] 8.174)
0:-10 —7 1
Open-loop characteristic equation
£ 4782 4+10s4+0=0
(8.175)
$ +a232+a1s+a0 =0
Closed-loop characteristic equation
S 4T+ 255+ 15=0
(8.176)

s3+a2s2+a1s+a0:0

Using direct comparison method
sT — A + BK| = 5° 4 7s* +- 255 + 15

s 0 0 0 1 0 0
00s 0| —|0 0 1 |+|0|[k ky k3]l=5+7s*>+255+15
0 0 s 0 —-10 -7 1]
s —1 0 [0 0 0
0 s —1[+]0 0 0|l=s+7>+255+15
0 10 s+7 L ki ko ks
K -1 0
0 s —1 =5 4+ 75>+ 255+ 15
ki 10+ky s+7+k;
(8.177)
Expanding the determinant in equation (8.177) gives
ki=15 k=15 k3 =0
Hence
X1
u=-—[15 15 0]|x (8.178)
X3

since x; = X1, this is identical to the original PD controller
G(s) = 15(s+ 1)

Although the solution is the same, the important difference is with state feedback, the
closed-loop poles are placed at directly the required locations. With root locus, a
certain amount of trial and error in placing open-loop zeros was required to achieve
the desired closed-loop locations.
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(b) Reduced-order state observer: Partitioning the system equation A in (8.174) and

inserting in equation (8.164)

S —1 kel
+
10 s+7 ke
5+ ke
10 + keZ

- + [1 0]
0 s 10 -7 ke»

0

)
—1

s+7

=5 + 2wns + wn2

= s> +63.25 + 2039.4

2
=8 + a1eS + Qe

4 (7 + ket)s + (Thker + 10 + keo) = s* + 63.25 + 2039.4

Equating coefficients in equation (8.179)

(7 +ket) = 63.2 ke = 56.2

(7 x 56.2 + 10 + key) = 2039.4
ke = 1636

Referring to Figure 8.11 and partitioned systems (8.174) and (8.163)

L
0
Ao — Keay) = O}
0
-10

Aee - KeAle =

ass] 0 L1
Jss]= Lo

1 56.2
|- a0
-7 1636

[—56.2 1}
| —1646 —7

(8.179)

(8.180)

(8.181)

(8.182)

Inserting equation (8.182) into Figure 8.11 gives the complete state feedback and

reduced observer system shown in Figure

8.12.

Comparing the system shown in Figure 8.12 with the original PD controller given
in Example 5.10, the state feedback system may be considered to be a PD controller
where the proportional term uses measured output variables and the derivative term

uses observed state variables.

8.5 Further problems

Example 8.14

For the d.c. motor shown in Figure 4.14, the potential difference across the armature

winding is given by equation (4.21)

ea(t) —

(1) =

di,
La 3. Ra .a
a + R,iy(1)
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System

-
Il
o
S
v
R
i
o
o
-
5
o
<
i
x
v

X3 0-10-7 X3 1

y=[100x

A

H

+
Reduced-Order
0 Observer
)A(e1
4 B
X 1636 |
[15 15 Q] 4-"” sy
+ Ko
K X
Key
1
56.2 | |
1636

Fig. 8.12 Complete state feedback and reduced observer system for case study Example 8.11.

where, from equation (4.20)

do
en(t) = Ky 4

and the torque T1,(¢) developed by the motor is given by equation (4.18)
Tm(t) = Kaia(t)

If the load consists of a rotor of moment of inertia / and a damping device of
damping coefficient C, then the load dynamics are

do d%

where 6 is the angular displacement of the rotor.
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(a) Determine the state and output equations when the state and control variables
are
X1=0, x2=X1, X3=lh, uU=e

(b) Determine the state and output equations when the state and control variables

are
xX1=0, Xo=X1, X3=X3, uU=ey
Solution
(a) 0 1 0
. 0
X1 0 ¢ kK X1 0
Xy | = 1 1 X2 | + 1 u
By LK RUES T
L, L,
0=[1 0 O0]x
(b)) 0 1 0 0
’F‘ 0 0 1 X 0
Xy | = Xy | + u
BT, wkrrRO (R V|0 &
L, L, 1 L1
=01 0 0]x

Example 8.15
Find the state and output equations for the positional servomechanism shown in

Figure 8.13 when the state and control variable are

xp=c(t), xp2=x1, u=r()

Solution

X 0 1 ¥ 0

. = K C + | K |u

X2 - — X2 —
m m m

c=[1 0]x

R(s) + 1 C(s)
_8 K »  m&+Cs >

Fig. 8.13 Block diagram of positional servomechanism.
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4(s+4) | a0 C(s)

(s+16) s(s+2)

Fig. 8.14 Closed-loop control system.

Example §.16
Find the state and output equations for the closed-loop control system shown in
Figure 8.14 when the state and control variables are

xp=ct), xa=X1, x3=XxX3, u=r(t)

Solution
X1 0 1 0 X 0
X | = 0 0 1 X2+ [0 |u
X3 —640 —192 18| | x3 1

c=1[640 160 0]x

Example 8.17

Figure 8.15 shows the block diagram representation of a car cruise control system
where U(s) is the desired speed, X(s) is the accelerator position and V(s) is the actual
speed.

(a) Find the state and output equations when the state and control variables are
xp=x(¢0), x2=v(t), u=u(t)

(b) Determine the continuous-time state transition matrix ®(z).
(c) For a sampling time of 0.1 seconds, evaluate from ®(z) the discrete-time state
transition matrix A(7).

Accelerator Servo Vehicle Dynamics
+
Us) 2 X | 3 o)
X s (s+3)

Fig. 8.15 Car cruise control system.

269
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(d) Using the first three terms of equation (8.80), compute the discrete-time control
transition matrix B(7). Using the difference equations

x(k + )T = A(T)X(kT) + Bu(kT)

determine values for the state variables when u(kT) is a piece-wise constant
function of the form

kT(sec) 0 01 02 03 04
wkT) 10 15 20 25 30

Assume zero initial conditions.

Solution
o] [-2 o][2
w [5]-13 Sl
v=[0 1]x
B e % 0
(b) CD(Z) - [3(_6—3r+e—2t) e—3r:|
0819 0
© AT = {0.234 0.741]
0.181
@) B(T) = [0.025}
kT (sec) 0 0.1 0.2 0.3 0.4
wkT) 10 15 20 25 30
X1 0 1.81 4.197 7.057 10.305
X2 0 0.25 0.984 2.211 3915

Example 8.18
The ship roll stabilization system given in case-study Example 5.11 has a forward-
path transfer function

Ga K

—(S) - 2

bd (s+ 1)(s* +0.75 4+ 2)

(a) For the condition K =1, find the state and output equations when
X = ¢)a([), Xp =X, X3 =Xy and u = 5(1([).

(b) Calculate the controllability matrix M and the observability matrix N and
demonstrate that the system is fully controllable and fully observable.

(c) Determine the state feedback gain matrix K that produces a set of desired closed-
loop poles

s =—3.234+j3.3
s=-32
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(d) Find the observer gain matrix K. for a full-order state observer that produces a
set of desired closed-loop poles

s=—16.154+j16.5
s=—16

(e) If output ¢,(r) = x| is measured, design a reduced-order state observer with
desired closed-loop poles

s=-16.15£i16.5

Solution
X1 0 1 0 X1 0
@ (x| =10 0 1 X0+ |0 |u
X3 -2 =27 =17 X3 1
¢u:[1 0 O]X
0 0 1
by M= |0 1 —-1.7
1 —-1.7 0.19

det(M) = —1, rank(M) = 3
System fully controllable.

1 0 0
01 0
0 0 1

det(N) = 1, rank(N) = 3
System fully observable.
(c) K=[66.29 39.34 7.968]

(d) Ke =[8527.2 10472 46.6]
(e) Ke=[530.3 30.6]

N =




Optimal and robust control
system design

9.1 Review of optimal control

An optimal control system seeks to maximize the return from a system for the
minimum cost. In general terms, the optimal control problem is to find a control u
which causes the system

x = g(x(7), u(?), 1) 9.1

to follow an optimal trajectory x(#) that minimizes the performance criterion, or cost
function

J = /[1 h(x(t), u(z), H)dt 9.2)

The problem is one of constrained functional minimization, and has several
approaches.

Variational calculus, Dreyfus (1962), may be employed to obtain a set of differ-
ential equations with certain boundary condition properties, known as the Euler—
Lagrange equations. The maximum principle of Pontryagin (1962) can also be
applied to provide the same boundary conditions by using a Hamiltonian function.

An alternative procedure is the dynamic programming method of Bellman (1957)
which is based on the principle of optimality and the imbedding approach. The
principle of optimality yields the Hamilton—Jacobi partial differential equation,
whose solution results in an optimal control policy. Euler-Lagrange and Pontrya-
gin’s equations are applicable to systems with non-linear, time-varying state equa-
tions and non-quadratic, time varying performance criteria. The Hamilton—Jacobi
equation is usually solved for the important and special case of the linear time-
invariant plant with quadratic performance criterion (called the performance index),
which takes the form of the matrix Riccati (1724) equation. This produces an optimal
control law as a linear function of the state vector components which is always stable,
providing the system is controllable.

9.1.1 Types of optimal control problems

(a) The terminal control problem: This is used to bring the system as close as possible
to a given terminal state within a given period of time. An example is an
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automatic aircraft landing system, whereby the optimum control policy will focus
on minimizing errors in the state vector at the point of landing.

(b) The minimum-time control problem: This is used to reach the terminal state in the
shortest possible time period. This usually results in a ‘bang—bang’ control policy
whereby the control is set to upy,y initially, switching to uy,;, at some specific time.
In the case of a car journey, this is the equivalent of the driver keeping his foot
flat down on the accelerator for the entire journey, except at the terminal point,
when he brakes as hard as possible.

(¢) The minimum energy control problem: This is used to transfer the system from an
initial state to a final state with minimum expenditure of control energy. Used in
satellite control.

(d) The regulator control problem: With the system initially displaced from equilib-
rium, will return the system to the equilibrium state in such a manner so as to
minimize a given performance index.

(e) The tracking control problem: This is used to cause the state of a system to track
as close as possible some desired state time history in such a manner so as to
minimize a given performance index. This is the generalization of the regulator
control problem.

9.1.2 Selection of performance index

The decision on the type of performance index to be selected depends upon the
nature of the control problem. Consider the design of an autopilot for a racing yacth.

Conventionally, the autopilot is designed for course-keeping, that is to minimise
the error v.(¢) between that desired course 14(¢) and the actual course ,(¢) in the
presence of disturbances (wind, waves and current). Since 4(?) is fixed for most of
the time, this is in essence a regulator problem.

Using classical design techniques, the autopilot will be tuned to return the vessel on
the desired course within the minimum transient period. With an optimal control
strategy, a wider view is taken. The objective is to win the race, which means
completing it in the shortest possible time. This in turn requires:

(a) Minimizing the distance off-track, or cross-track error y.(#). Wandering off track
will increase distance travelled and hence time taken.

(b) Minimizing course or heading error (7). It is possible of course to have zero
heading error but still be off-track.

(¢c) Minimizing rudder activity, i.e. actual rudder angle (as distinct from desired
rudder angle) 6,(¢), and hence minimizing the expenditure of control energy.

(d) Minimizing forward speed loss u.(f). As the vessel yaws as a result of correcting
a track or heading error, there is an increased angle of attack of the total velocity
vector, which results in increased drag and therefore increased forward speed
loss.

From equation (9.2) a general performance index could be written

J=/]h(ye(l), Pe(1), ue(1), ba(1))d1 93)
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Quadratic performance indices
If, in the racing yacht example, the following state and control variables are defined

X1 = ye(t)’ Xy = ¢8(t), X3 = u(’(t)a u= 63(1)

then the performance index could be expressed
h
J = / {(quix1 + g2x2 + q33x3) + (r1u) de (9.4)
fo
or
1
J = / (Qx + Ru)dr 9.5)
to

If the state and control variables in equations (9.4) and (9.5) are squared, then the
performance index become quadratic. The advantage of a quadratic performance
index is that for a linear system it has a mathematical solution that yields a linear
control law of the form

u(r) = —Kx(?) (9.6)

A quadratic performance index for this example is therefore

1
J = / {(g1x] + 42233 + g33x3) + (ru?) }di .7
)

f gqu 0 0 X1
J= / i %2 w1 0 gn 0 || x| + [l | de
fo 0 0 g3 [xs

or, in general
4
J= / (xTQx + u'Ru)dr 9.8)
Ly

Q and R are the state and control weighting matrices and are always square and
symmetric. J is always a scalar quantity.

9.2 The Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) provides an optimal control law for a linear
system with a quadratic performance index.

9.2.1 Continuous form

Define a functional equation of the form

f(x, 1) = muin /Zl h(x,w)d¢ 9.9
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where over the time interval ¢y to fq,

S, 1) = f(x(0)

S(x,0)=0
From equations (9.1) and (9.2), a Hamilton—Jacobi equation may be expressed as
9 . "
y = —min | &(x,u) + A g(x,u) (9.10)
ot u ox
For a linear, time invariant plant, equation (9.1) becomes
X = Ax + Bu (9.11)
And if equation (9.2) is a quadratic performance index
1
J= / (xTQx + u'Ru)ds 9.12)
to
Substituting equations (9.11) and (9.12) into (9.10)
i) . ar\"
‘—f = —min [x"Qx + u'Ru + —f (Ax + Bu) (9.13)
ot u 0x
Introducing a relationship of the form
f(x, 1) =x"Px (9.14)
where P is a square, symmetric matrix, then
o 10
—=x —P 9.15
o Yo Y ©.15)
and
of
—=2P
ox X
o',
—| =2x'P 9.16
| - ©.16)
Inserting equations (9.15) and (9.16) into (9.13) gives
P
x! aa—tx = —min [XTQX +u'Ru + 2x"P(Ax + Bu)] (9.17)
u
To minimize u, from equation (9.17)
alof /ot
% =2u'R+2x"PB=0 (9.18)

Equation (9.18) can be re-arranged to give the optimal control law

U, = —R7'BTPx (9.19)
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or
uopr = —Kx (9.20)
where
K =R 'BTP (9.21)
Substituting equation (9.19) back into (9.17) gives
xPx = —x"(Q + 2PA — PBR'B"P)x 9.22)
since
2x"PAx = x"(ATP + PA)x
then
P=-PA—ATP-Q+PBR'B'P (9.23)

Equation (9.23) belongs to a class of non-linear differential equations known as the
matrix Riccati equations. The coefficients of P(¢) are found by integration in reverse
time starting with the boundary condition

X (t)P(t)x(t1) = 0 9.24)

Kalman demonstrated that as integration in reverse time proceeds, the solutions of
P(7) converge to constant values. Should #; be infinite, or far removed from ¢, the
matrix Riccati equations reduce to a set of simultaneous equations

PA+A™P+Q—-PBR 'B'P=0 (9.25)

Equations (9.23) and (9.25) are the continuous solution of the matrix Riccati
equation.

9.2.2 Discrete form

From equation (8.76) the discrete solution of the state equation is
x[(k+ )T = A(T)x(kT) + B(T)u(kT) (9.26)
For simplicity, if (kT') is written as (k), then
x(k + 1) = A(T)x(k) + B(T)u(k) (9.27)

The discrete quadratic performance index is
N—1
J = Z (xT(k)Qx(k) + u (k)Ru(k))T (9.28)
k=0

The discrete solution of the matrix Riccati equation solves recursively for K and P in
reverse time, commencing at the terminal time, where

K(N — (k+ 1)) = [TR + BY(T)P(N — k)B(T)]"'BY(T)P(N — k)A(T) (9.29)
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P(N — (k+1) = [TQ+ K" (N — (k + 1) TRK(N — (k + 1))] +[A(T)
—B(T)K(N — (k + ))]"P(N — k)[A(T) — B(T)K(N — (k + 1))]

(9.30)

As k is increased from 0 to N — 1, the algorithm proceeds in reverse time. When run
in forward-time, the optimal control at step k is

Uopi (k) = —K(k)x(k) 9.31)

The boundary condition is specified at the terminal time (k = 0), where

xT(N)P(N)x(N) = 0 (9.32)

The reverse-time recursive process can commence with P(N) = 0 or alternatively,

with P(V — 1) = TQ.

Example 9.1 (See also Appendix 1, examp91.m)

The regulator shown in Figure 9.1 contains a plant that is described by

[jﬂ [EOIO]Xlz] [2] i ml'

and has a performance index

J:/ |:XT|:(2) ?]x—i—uz}dt
0

Determine

(a) the Riccati matrix P
(b) the state feedback matrix K
(c) the closed-loop eigenvalues

Fig. 9.1 Optimal regulator.

Xx = Ax+Bu
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Solution

(a)

L) el

2 0
Q= R =scalar =1
0 1

From equation (9.25) the reduced Riccati equation is

PA+A"P+Q—PBR 'BTP =0 (9.33)
0 1 — -2
PA — {Pn PIZ} { ] _ [ P12 Pii Plz] 9.34)
pa o pnll-1 =2 —p2» P —2p»
0 -1 _ _
ATP — [ } {Pu Plz] _ [ P21 P22 } 9.35)
1 =21lpa p» pit —2pa pi2 — 2p»

[pii pi2]]0 P p2
PBR 'BTP = H ]1[0 1][ ]
P21 P2 | ] P2 p»
_Plz
= ][Pn P2
L P22

—P12P21 P12p2
= s ] (9.36)
| P22P21 P

Combining equations (9.34), (9.35) and (9.36) gives

[—Plz P —21712] N l —p2i —p2 ]

—pn P —2p» pi—2pa pra—2p»
20 Pup2a pi2p2

0 11 - lean P%z ]

(9.37)

+ —0

Since P is symmetric, py; = p12. Equation (9.37) can be expressed as four simultan-
eous equations

—pi2—p+2-p;=0 (©.38)

Pt — 2p12 — p22 — pi2pn =0 (9.39)
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—p2 +pi = 2p12 — piopn =0 (9.40)
P12 —2p0 +pia—2pn+1-ph =0 9.41)
Note that equations (9.39) and (9.40) are the same. From equation (9.38)
Ph+2p12—2=0
solving
P12 =pn =0.732 and —2.732
Using positive value
pi12 =pxn =0.732 (9.42)
From equation (9.41)

2p12 —4dpp +1—p3, =0
p%z +4py —2464 =0

solving
P22 = 0.542 and —4.542
Using positive value
P2 =0.542 (9.43)
From equation (9.39)

i — (2 x 0.732)—0.542 — (0.732 x 0.542) = 0
P = 2403 (9.44)

From equations (9.42), (9.43) and (9.44) the Riccati matrix is

2.403 0.732
= (9.45)
0.732  0.542
(b) Equation (9.21) gives the state feedback matrix
2.403 0.732
K=R 'BTP=1[0 1] (9.46)
0.732 0.542

Hence

K =[0.732 0.542]
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(¢c) From equation (8.96), the closed-loop eigenvalues are

sl —A+BK| =0

s 0 0 1 0
- + [0.732 0.542]| =0
0 s -1 =2 1
s =1 0 0
+ =0
1 s+2 0.732 0.542
) —1
=0
1.732 s+ 2.542

§* 425425+ 1.732 =0
s1, 8o = —1.271 +£j0.341
In general, for a second-order system, when Q is a diagonal matrix and R is a scalar
quantity, the elements of the Riccati matrix P are
b2

P = {;}Pupzz — P22dz1 — p12axn

qub3

;
P2 =P =75
b3

2
azzi\/a§2+( Plz;i- q2)

ayn £ \/ a3, + (9.47)

| S

D =

r
2
b;

9.3 The linear quadratic tracking problem

The tracking or servomechanism problem is defined in section 9.1.1(e), and is directed
at applying a control u(¢) to drive a plant so that the state vector x(z) follows a desired
state trajectory r(¢) in some optimal manner.

9.3.1 Continuous form

The quadratic performance index to be minimized is

J= / B [(r —x)"Q(r — x) + u"Ru|ds (9.48)

fo

It can be shown that the constrained functional minimization of equation (9.48)
yields again the matrix Riccati equations (9.23) and (9.25) obtained for the LQR,
combined with the additional set of reverse-time state tracking equations

§=(A—BR'B"P)'s — Qr (9.49)
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Optimal Controller
Plant

r R s v + Uopt X y

J;’> s=(A-BR"B'P)'s-Qr —> _R'BT "Q cC =

Reverse-Time Equations Commaﬁj
vector

Tracking vector
K

Fig. 9.2 Optimal tracking system.

where s is a tracking vector, whose boundary condition is
s(t1)) =0 (9.50)
and the optimal control law is given by

U, = —R7'B"Px — R7'BTs

If
v=—R'Bls
and
K=R'B'P
Then
Uopt =V — Kx (9.51)

Hence, if the desired state vector r(¢) is known in advance, tracking errors may be
reduced by allowing the system to follow a command vector v(f) computed in
advance using the reverse-time equation (9.49). An optimal controller for a tracking
system is shown in Figure 9.2.

9.3.2 Discrete form

The discrete quadratic performance index, writing (k7T') as (k), is
N-1
J =Y (k) — x(k) ' Q(r(k) — x(k)) + u" ()Ru(k)] T (9.52)
k=0

Discrete minimization gives the recursive Riccati equations (9.29) and (9.30). These
are run in reverse-time together with the discrete reverse-time state tracking equation

S(N — (k + 1)) = F(T)s(N — k) + G(T)x(N — k) (9.53)
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having the boundary condition
s(N)=0
F(T) and G(T) are the discrete transition and control matrices and are obtained by
converting the matrices in the continuous equation (9.49) into discrete form using
equations (8.78) and (8.80).
The command vector v is given by
V(N — k) = —R'BTs(N — k) (9.54)
When run in forward-time, the optimal control at time (kT) is
Uopi(KT) = v(kT) — K(kT)x(kT) (9.55)
The values of x(kT') are calculated using the plant state transition equation
x(k+ DT = A(T)x(kT) + B(T)uop (K T) (9.56)

Example 9.2 (See also Appendix 1, examp92.m)
The optimal tracking system shown in Figure 9.2 contains a plant that is described by

=1 V0]

The discrete performance index is

L 10 0 [r(kT) — x1(kT) 2
J —;{(rl(kT) = x1(kT)(r2(kT) — x2(kT)){ 0 J Lz(kT) _ xz(kT)} +ulkT) }T

It is required that the system tracks the following desired state vector

ri(kT) 1.0sin (0.6284kT)
r(kT) 0.6cos (0.6284kT)
over a period of 0-20 seconds. The sampling time 7 is 0.1 seconds.

In reverse-time, starting with P(N) =0 at NT = 20 seconds, compute the state
feedback gain matrix K(k7) and Riccati matrix P(kT) using equations (9.29) and
(9.30). Also in reverse time, use the desired state vector r(kT) to drive the tracking
equation (9.53) with the boundary condition s(N) = 0 and hence compute the com-
mand vector v(kT).

In forward-time, use the command vector v(k7T') and state vector x(kT') to calculate
Uopi(kKT') in equation (9.55) and hence, using the plant state transition equation (9.56)
calculate the state trajectories.
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Solution

The reverse-time calculations are shown in Figure 9.3. Using equations (9.29) and
(9.30) and commencing with P(N) = 0, it can be seen that the solution for K (and also
P) settle down after about 2 seconds to give steady-state values of

K(kT) =[2.0658 1.4880]

8.0518 2.3145} (9.57)

PkT) =
*T) [2.3145 1.6310

Using equation (9.49), together with equations (8.78) and (8.80), to calculate F(T")
and G(T) in equation (9.53), for T = 0.1 seconds, the discrete reverse-time state
tracking equation is

sitN — (k+ 1))
so(N — (k + 1))

0.9859 —0.2700] [ s1(N — k)
0.0881  0.7668 || s:(N — k)

l—o.9952 0.0141 1[r1(N—k)1
_|_

—0.0460 —0.0881 | | (N — k)
and
V(N — k) = —1[0 1][2&:’]3} 9.58)

Then the command vector v (in this case a scalar) is generated in reverse-time as
shown in Figure 9.3. The forward-time response is shown in Figure 9.4.

4

° L V(kT) | Ki(KT) | ky(kT)
IV T [ W —
1 / \
ANINEI A
ST
\ r1(\kT) rz(/kT) \

Desired states, Command Vector and Feedback Gains
o

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Fig. 9.3 Reverse-time solutions for a tracking system.
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2

1.5

" X,(KT)

1 Kf LKD)
0.5 % 2 = Q<
<

0
r,(kT) \ \
X (KT)

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Desired States, Actual States and Optimal Control

Fig. 9.4 Forward-time response of a tracking system.

The optimal control is calculated using equation (9.55) and the values of the state
variables are found using the plant state transition equation (9.56)

xi(k+ 1T
Xk +1)T

—0.0950 0.9002 | | x2(kT) 0.0950

[ 0.9952 0.0950] [xl(kT)

l0.00481
Uop(kT)  (9.59)

where A(T') and B(T) are calculated from equations (8.78) and (8.80). From Figure
9.4 it can be seen that after an initial transient period, the optimal control law takes
the form of a phase lead compensator. Because of the weighting of the Q matrix in
the performance index, x{(kT') tracks r;(kT) more closely than x,(kT) tracks ra(kT).

9.4 The Kalman filter

In the design of state observers in section 8.4.3, it was assumed that the measure-
ments y = Cx were noise free. In practice, this is not usually the case and therefore
the observed state vector X may also be contaminated with noise.

9.4.1 The state estimation process

State estimation is the process of extracting a best estimate of a variable from a
number of measurements that contain noise.

The classical problem of obtaining a best estimate of a signal by combining two
noisy continuous measurements of the same signal was first solved by Weiner (1949).
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His solution required that both the signal and noise be modelled as random process
with known statistical properties.

This work was extended by Kalman and Bucy (1961) who designed a state
estimation process based upon an optimal minimum variance filter, generally
referred to as a Kalman filter.

9.4.2 The Kalman filter single variable estimation problem

The Kalman filter is a complementary form of the Weiner filter. Let A, be a
measurement of a parameter x and let its variance P, be given by

P, = E{(Ax - /Ix)z} (9.60)

where A, is the mean and E{ } is the expected value.
Let B, be a measurement from another system of the same parameter and the
variance Pp, 1s

Py = E{(B\ — B\)*} (9.61)
Assume that x can be expressed by the parametric relationship
x=A,K+ B(1 —K) (9.62)

where K is any weighting factor between 0 and 1. The problem is to derive a value of
K which gives an optimal combination of 4, and B, and hence the best estimate of
measured variable x, which is given the symbol X (pronounced x hat).

Let P be the variance of the weighted mean

P=E{(x - %’} (9.63)
The optimal value of K is the one that yields the minimum variance, i.e.
dp
— =0 9.64
iK (9.64)

Substitution of equation (9.62) into (9.63) gives
P=KP,+ (1 —K)*Pg (9.65)
Hence K is given by
d
g P+ (1= K)'Pg} =0

From which
Pp

K=—"2> 9.66
Py+ Pp ©-66)

Substitution of equation (9.66) into (9.62) provides

. Py
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X Measurement X+ Pa +(S§) P
—> System A * L
+
X Measurement X+ Ps Ps—Ps K
> System B >

Fig. 9.5 Integration of two measurement systems to obtain optimal estimate.

or

X=A,— K(Ax — By) (9.68)

K is the Kalman gain and the total error variance expected is
P =Py~ K(Ps~ Pp) .69
so that
X=x+P4y—K(P4— Pp) (9.70)

Equation (9.70) is illustrated in Figure 9.5.

9.4.3 The Kalman filter multivariable state estimation problem

Consider a plant that is subject to a Gaussian sequence of disturbances w(kT') with
disturbance transition matrix Cq(7"). Measurements z(k + 1)7 contain a Gaussian
noise sequence v(k + 1)7 as shown in Figure 9.6.

The general form of the Kalman filter usually contains a discrete model of the
system together with a set of recursive equations that continuously update the
Kalman gain matrix K and the system covariance matrix P.

The state estimate X (k + 1/k + 1) is obtained by calculating the predicted state
x(k + 1/k) from

X(k+ 1/k)T = A(T)x(k/R)T + B(T)u(kT) (9.71)

and then determining the estimated state at time (k + 1)7 using
X(k+ 1/k+ DT =x(k + 1/k)T + Kk + D){z(k + DT — C(T)x(k + 1/k)T} (9.72)

The term (k/k) means data at time k based on information available at time k. The
term (k + 1/k) means data used at time k + 1 based on information available at time
k. Similarly (k 4+ 1/k 4+ 1) means data at time k + 1 based on information available at
time k + 1.

The vector of measurements is given by

2k + 1)T = C(T)x(k + DT + v(k + )T (9.73)
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Disturbance noise

|—|W(kT)

Plant
v
Measurement noise
Cu(T) v(k+1)T
X(kT) + + xX(k+1)T y(k+1)T+ z(k+1)T
=5 A(T) S == € ) >
+
u(kT)
— B(T)

Fig. 9.6 Plant with disturbance and measurement noise.

where

z(k + 1)T is the measurement vector
C(T) is the measurement matrix
v(k + 1)T is a Gaussian noise sequence

The Kalman gain matrix K is obtained from a set of recursive equations that
commence from some initial covariance matrix P(k/k)

P(k + 1/k) = A(T)P(k/k)AT(T) 4+ C4(T)QCI(T) (9.74)
K(k + 1) = P(k + 1/k)CT(T){C(T)P(k + 1/k)C™(T) + R} (9.75)
P(k + 1/k + 1) = {I — K(k + DC(T)}P(k + 1/k) (9.76)

The recursive process continues by substituting the covariance matrix P(k + 1/k + 1)
computed in equation (9.76) back into (9.74) as P(k/k) until K(k + 1) settles to a
steady value, see Appendix 1, script files kalfilc.m for the continuous solution and
kalfild.m for the above discrete solution. In equations (9.74)—(9.76)

C4(T) is the disturbance transition matrix
Q is the disturbance noise covariance matrix

R is the measurement noise covariance matrix

Equations (9.71)—(9.76) are illustrated in Figure 9.7 which shows the block diagram
of the Kalman filter.

The recursive equations (9.74)—(9.76) that calculate the Kalman gain matrix and
covariance matrix for a Kalman filter are similar to equations (9.29) and (9.30) that
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X(k/IK)T
X(k+1/k+1)T
Backward +
— Step <):(%><}: K(k+1)
+
X(k/ k)T
X(k+1/K)T
e
+ L1
L> A(T) ;i > c(T)
+
u(kT)
—> B(T)

Fig. 9.7 The Kalman filter.

z(k+1)T

y(k+1/K)T

calculate the feedback matrix and Riccati matrix for a linear quadratic regulator. The
difference is that the Kalman filter is computed in forward-time, the LQR being

computed in reverse-time.

9.5 Linear Quadratic Gaussian control system design

A control system that contains a LQ Regulator/Tracking controller together with a
Kalman filter state estimator as shown in Figure 9.8 is called a Linear Quadratic

Gaussian (LQG) control system.

———> LQ Optimal Uopt(KT)
—> Controller

Plant

Kalman Filter
State Estimator

Fig. 9.8 Linear Quadratic Gaussian (LQG) control system.
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Case study

Example 9.3 (See also Appendix 1, examp93.m)

China clay is used in the paper, ceramics and fertilizer industries, and is washed from
quarry faces, by high pressure hoses. A pressing operation reduces the moisture
content in the clay to about 30%, and then the clay is extruded into small cylindrical
shaped noodles. The clay noodles are then passed through the band drying oven
shown in Figure 9.9 at rates varying between 2 and 15 tonnes/hour. Upon exit, the
moisture content of the clay should be controlled to a desired level of between 4 and
12%, with a deviation of no more than +1%. The process air is heated by mixing the
exhaust gas from a gas burner with a large quantity of dilution air to meet the
specified air flow-rate into the dryer.

An existing control arrangement uses a PID controller to control the temperature
of the process air (measured by thermocouples) and the dry clay moisture content
measured by samples taken by the works laboratory. If this is out of specification,
then the process air temperature is raised or lowered. The dry clay moisture content
can be measured by an infrared absorption analyser, but on its own, this is consid-
ered to be too noisy and unreliable.

The important process parameters are

(a) Burner exhaust temperature #,(¢) (°C)
(b) Dryer outlet temperature #4(¢) (°C)
(¢) Dryer outlet clay moisture content me(¢) (%)

The important control parameters are

(1) Burner gas supply valve angle v,(¢) (rad)
(i) Dryer clay feed-rate fi(¢) (tonnes/hour)

Process Air
[
Wet
Clay In - TopBand —»
[ ]
Middle Band —
( J
Lower Band - _y DryClay
Out
[ J
|

v v v v

Exhaust Air

Fig. 9.9 Band drying oven.
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A proposed control scheme by Drew and Burns (1992) uses an LQG design, whereby
the three process parameters are controlled in an optimal manner, their values
(particularly the moisture control) being estimated.

System model: The dynamic characteristics of the dryer were measured experimen-
tally. This yielded the following transfer functions

Burner model

Ty 420
Gi(s) _Va(s) =17 475 9.77)
Dryer model
~Tq, . 0.119
Gy(s) = ?b(s) =13 2008 (9.78)
Moisture models
M —0.167
Gai(s) = Td(s) =1 4405 (9.79)
My, 0.582
G3(s) = 71(5") = m (9.80)
Equations (9.79) and (9.80) can be combined to give
—0.167T, S582F;
Mi(s) = 0.167T4(s) + 0.582F;(s) 9.81)

1 +440s
The block diagram of the system is shown in Figure 9.10.
Continuous state-space model: From equations (9.77)—(9.81)
471y + 1y (1) = 420v,(1)
2007 + tg(f) = 0.119¢4(2) (9.82)
440ms + me(t) = —0.16714(¢) + 0.582f(7)

F(s) — K :
Clay Feed-rate | f |
(Disturbance | |
input ! 'Moi
pub I Burner Dryer Moisture :z\:llg:]stgunrte
- T,(s) Ty(s) :
Va(s) 1 I Ty(s) |570] Ti(s) | @ M)
Valve Angle Gt;(s) i’ Gcz(s) Gals) |

Burner Temperature

1
|
| Dryer Temperature
1
1
1

Fig. 9.10 Model of band dryer system.
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Define the state variables
Xy =1y, X2 =1, X3=my
and the control variables
Uy = v,
and the disturbance variables
wi =0, wy=0, w3=F£f
then equations (9.82) can now be written as

x; = —0.02128x; + 8.93617u; + cq11w1
X2 = 0.00060x; — 0.00500x5 + cg2ow> (9.83)
x3 = —0.00038x; — 0.00227x3 + 0.00132w3

where c¢41; and c4p, are unknown burner and dryer disturbance coefficients, and are
given an arbitrary value of 0.1. The state equations are written in the form

X = AXx + Bu + Cyw

X —0.0213 0 0 X 8.9362
Xy | = 0.0006 —0.005 0 x| + 0 u
X3 0 —0.00038 —0.0023 | | x3 0
0.1 0 0 wi ]
+ 1 0 0.1 0 Wy

0 0 0.00132] [ ws |

Iy 1 X1
wl=10 X2 (9.84)
me 0 X3

Discrete system model: The discrete system model (without disturbances) is given by

x(k + DT = A(T)x(kT) + B(T)u(kT) (9.85)

and the output equation is

S = O

.
0
l_

For a sampling time of 2 seconds, from equations (8.78) and (8.80)

0.9583 0 0 17.4974
A(T) = |0.0012  0.9900 0 |: B(T)=| 00105 (9.86)
0  —0.0008 0.9955 0

LQR Design: Using the quadratic performance index

J = / (x"Qx + u"Ru)ds
0
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where Q and R are diagonal matrices of the form

Gu 0 0 0
Q=10 ¢gn 0| R:[él . } (9.87)
0 0 g »

From equations (9.20) and (9.21), the optimal control law is
U = —Kx
where
K=R'B"P (9.88)

The design procedure employed was to maintain R as unity scalar, and systematically
vary the diagonal elements of Q to achieve the performance specification. This was to
maintain a dry clay moisture content of 6%, +1%, as the clay feed-rate varied from 6
to 10 tonnes/hour. Also the drying oven temperature 74 should not vary more than
+3°C from the set point of 50°C. At each design setting, the clay feed-rate was
varied according to

ws(f) = 8 + 2sin(0.001547) (9.89)

Some results are presented in Table 9.1.
It was found that ¢;; had little effect, and was set to zero. From Table 9.1, the
settings that meet the performance specification are

0 0 ©0
Q=10 05 0 r=1 (9.90)
0 0 20

From equation (9.25), the Riccati matrix is

0 01 —02
P=| 01 108 —30 (9.91)
02 —30 3670.4

which gives, from equation (9.88), the feedback gain matrix
K=1[0.0072 0.6442 —1.8265] (9.92)

The same results are also obtained from the discrete equations (9.29) and (9.30).

Table 9.1 Variations in dryer temperature and moisture content

q» g3 Variation in temperature tqy (°C)  Variation in moisture content (%)

Max Min Max Min
3 1 0.17 0 2.09 —-2.11
1 3 0.99 0 1.74 —-2.13
0.5 3 1.524 0 1.5 —2.15
0.5 6 2.05 —2.05 1.27 —1.27
0.5 10 2.42 —2.42 1.1 —1.1
0.5 20 2.86 —2.86 0.89 —0.89
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The closed-loop eigenvalues are

s = —0.0449 £+ j0.0422

s = —0.0033 ©-93)
Implementation: The optimal control law was implemented by using
u; = Ke
where
e=(r—x) (9.94)

This is shown in Figure 9.11.

A discrete simulation was undertaken using equations (9.85) and (9.86) together
with a disturbance transition matrix C4(7'), which was calculated using Cq4 in equa-
tion (9.84) and equation (8.80) for B(7T'), with a sampling time of 2 seconds.

0.1958 0 0
Cy(T) = 10.0001 0.199 0 (9.95)
0 —0.0001 0.0026
The desired state vector was
450
r=1 50 (9.96)
-6

Note that the moisture content r3 is negative because of the moisture model in
equation (9.79). The initial conditions were

200
x(0) = | 30 9.97)
-30

w
Optimal Controller

r| + e uy . X y
— K ™~ X=Ax+Bu+Cyw c —
- Dryer

Fig. 9.11 Optimal control of band dryer.
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and the disturbance vector

w=10 (9.98)

where ws, the clay feed-rate was set at a value between 6 and 10 tonnes/hour. Figure
9.12 shows the time response of u;(¢), the gas-valve angle in radians. The valve angle
was not allowed to have a negative value, so remained closed for the first 80 seconds
of the simulation, when the dryer was cooling. The steady-state angle was 0.95
radians, or 54°.

Figure 9.13 indicates the burner temperature time response (7). The temperature
falls from its initial value, since the gas valve is closed, and then climbs with a
response indicated by the eigenvalues in equation (9.93) to a steady-state value of
400 °C, or a steady-state error of 50 °C.

Figure 9.14 shows the combined response of the dryer temperature 74(f) and the
moisture content my(f), the latter being shown as a positive number. The dryer
temperature climbs to 48 °C (steady-state error of 2°C) and the moisture falls to
6%, with no steady-state error. In this simulation the clay feed-rate ws(¢) was
constant at 8 tonnes/hour.

As the band dryer is a type zero system, and there are no integrators in the
controller, steady-state errors must be expected. However, the selection of the
elements in the Q matrix, equation (9.90), focuses the control effort on control-
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Fig. 9.12 Time response of gas-valve angle u; (t).
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Fig. 9.13 Time response of burner temperature t,(t).

ling the moisture content, at the expense of, in particular, the burner temperature
tp(2).

Figure 9.15 shows the final 500 seconds of the moisture content simulation as the
clay feed-rate is varied between 6 and 10 tonnes/hour. After 1 000 seconds, as the clay
leaves the dryer, the moisture content is between 5.2% and 6.8%, which is within the
specification of £1% of the set point of 6%.

Kalman filter design: If the three stages of the covariance matrix P are written as
P(k/k) = Py; P(k+ 1/k) =P, and P(k+ 1/k+ 1) =P3, then recursive equations
(9.74), (9.75) and (9.76) become

P, = AP,AT + C4QC)
K = P,C'{CP,C" +R}"' (9.99)
P; = {I - KC}P,

Equation set (9.99) is simpler to visualize, but remember the system matrices are the
transition matrices A(7T'), B(T') and C4(T). Before recursion can start, values for R,
the measurement noise covariance matrix, and Q, the disturbance noise covariance
matrix must be selected.

Measurement noise covariance matrix R: The main problem with the instrumentation
system was the randomness of the infrared absorption moisture content analyser.
A number of measurements were taken from the analyser and compared with samples
taken simultaneously by work laboratory staff. The errors could be approximated to
a normal distribution with a standard deviation of 2.73%, or a variance of 7.46.



296 Advanced Control Engineering

60

50

/

] /D%er

Temperature

40

30

Moisture
Content
= \&

10

Dryer Temperature (°C) and Moisture Content (%)

0 100 200 300 400 500 600 700 800 900 1000
Time (s)
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The thermocouples measuring the burner and dryer temperatures were relatively
noise-free, with standard deviations in the order of 0.1 °C. The variance was therefore
set at 0.01, giving

001 0 0
R=| 0 001 0 (9.100)
0 0 746

Disturbance noise covariance matrix Q: This was set as a diagonal matrix, where ¢,
and ¢y represent changes in the burner and dryer temperatures as a result of
changing heat transfer through the walls of the dryer, due to wind and variations
in external temperature.

On the other hand, ¢33 is a measure of clay feed-rate variations, and a standard
deviation of 0.3 tonnes/hour seemed appropriate. In the absence of any other infor-
mation, standard deviations of the burner and dryer temperatures was also thought to
be in the order of 0.3 °C. Thus, when these values are squared, the Q matrix becomes

01 0 0
Q=1|0 01 0 (9.101)
0 0 0.1

Before equations (9.99) can be run, and initial value of P(k/k) is required. Ideally,
they should not be close to the final value, so that convergence can be seen to have
taken place. In this instance, P(k/k) was set to an identity matrix. Figure 9.16 shows
the diagonal elements of the Kalman gain matrix during the first 20 steps of the
recursive equation (9.99).
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Fig. 9.16 Convergence of diagonal elements of Kalman gain matrix.
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The final values of the Kalman Gain matrix K and covariance matrix P were

0.4408  0.0003 0 0.0044 0 0
K= {0.0003 0.4579 0 ; P= 0 0.0046 0 (9.102)
0 —0.0006 0.0325 0 0 0.2426

The full LQG system, comprising of the LQ optimal controller and Kalman filter was
then constructed. Figure 9.17 shows a set of moisture content measurements z3(k7")
together with the estimated moisture content X3(k 7).

9.6 Robust control
9.6.1 Introduction

The robust control problem is to find a control law which maintains system response
and error signals within prescribed tolerances despite the effects of uncertainty on the
system. Forms of uncertainty include

Disturbance effects on the plant

Measurement noise

Modelling errors due to nonlinearities
Modelling errors due to time-varying parameters

In previous chapters, linear models have been used to describe plant dynamics.
However, in section 2.7.1 it was demonstrated that nonlinear functions could be
linearized for small perturbations about an operating point. It is therefore possible to
describe a nonlinear system by a series of linear models each constructed about
a known operating point. If the operating point can be linked to a measurement, then
a simple robust system may be constructed using an LQG approach. The feedback
and Kalman gain matrices are calculated in advance for each operating point and
some form of interpolation used to provide a ‘Gain Scheduling Controller.’

The disturbance and measurement noise is taken into account by the Kalman
filter. In the following example, undertaken by the author (1984), a non-linear
simulation of a ship of length 161 m and displacement 17000 tonnes was given
a series of step changes in demanded rudder-angle at forward speeds of 2.572m/s
(5knots), 5.145m/s (10 knots) and 7.717 m/s (15 knots). At each forward speed a linear
model was constructed and the Q and R matrices in an LQG implementation selected
to return the closed-loop eigenvalues back to some desired value (Ackermann’s
formula could not be used since y(¢) and u(z) were vector, not scalar quantities).

A subset of the state error variables is

e1(t) = cross-track position error
ey(t) = cross-track velocity error
e3(t) = heading error

e4(t) = heading-rate error
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The feedback control is of the form
Uopt = Ke
where the values of K for the three forward speeds are

Kos = [0.0121 1.035 7.596 160.26]
Ks.ias = [0.0029 0.3292 1.81 25.963] (9.103)
K777 =[0.0013  0.1532 0.8419 8.047]

If the forward velocity of the ship is the state variable uy, a best estimate of which is
given by the Kalman filter, the gain scheduling controller can be expressed as

ky = 0.08u;>°
ky = 6.0u; '
ks = 50.0u; " 109

k4 = 2090.0u >

Equation set (9.104) approximates to an inverse square law, and increases the
controller gains at low speeds, where the control surfaces are at their most insensitive.

In general, however, robust control system design uses an idealized, or nominal
model of the plant G,(s). Uncertainty in the nominal model is taken into account by
considering a family of models that include all possible variations. The control
system 1is said to have robust stability if a controller can be found that will stabilize
all plants within the family. However, on its own, robust stability is not enough, since
there may be certain plants within the family that are on the verge of instability.
A controller is said to have robust performance if all the plants within the family meet
a given performance specification.

9.6.2 Classical feedback control

Figure 9.18 shows a classical feedback control system D(s) is a disturbance input,
N(s) is measurement noise, and therefore

Y(s) = G(s)U(s) + D(s)
B(s) = Y(s) + N(s) (9.105)
U(s) = C(s)(R(s) — B(5))

Controller/Compensator Plant D(s)
R(s) +® E(s) ) us &) + Y(s)
= +

+ N(s)
B(s) %

Fig. 9.18 Classical feedback control system.
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Eliminating U(s) and B(s) from equations (9.105) gives

_ G(s)C(s)R(s) D(s) G(s)C(s)N(s)
1+ G)C(s) 1+ G(s)C(s) 1+ G(s)C(s)

Y(s) (9.106)

Define a sensitivity function S(s) that relates Y (s) and D(s) when R(s) = N(s) =0
1

Y
(=S =—F 9.107
=50 =1%60 ©.107)
and define a complementary sensitivity function
G(s)C(s)
Tis)=1—-8SG6)=—-+—-— 9.108
) ) = 1T 6meE ©-108)
Thus, when N(s) = 0, equation (9.106) may be written
Y(s) = T(s)R(s) + S(s)D(s) (9.109)

If T(s) = 1 and S(s) = 0 there is perfect set-point tracking and disturbance rejection.
This requires that G(s)C(s) is strictly proper (has more poles than zeros), so that

lim G(s)C(s) = 0 (9.110)

However, if N(s) # 0, then equation (9.106) becomes
Y(s) = T(s)R(s) + S(s)D(s) — T(s)N(s) (9.111)

Hence, if T'(s) = 1, there will be both perfect set-point tracking and noise acceptance.
Considering the problem in the frequency domain however, it may be possible that at
low frequencies T(jw) — 1 (good set-point tracking) and at high frequencies
T(jw) — 0 (good noise rejection).

9.6.3 Internal Model Control (IMC)

Consider the system shown in Figure 9.19 G(s) is the plant, Gy(s) is the nominal
model, R(s) is the desired value, U(s) is the control, D(s) is a disturbance input, Y (s) is
the output and N(s) is the measurement noise. C(s) is called the IMC controller and is
to be designed so that y(¢) is kept as close as possible to r(¢) at all times.

From Figure 9.19, the feedback signal B(s) is

B(s) + G(s)U(s) + D(s) + N(s) — G (s)U(s)
or
B(s) = (G(s) — G (s))U(s) + D(s) + N(s) (9.112)

If, in equation (9.112) the model is exact, i.e. Gy (s) = G(s) and the disturbance D(s)
and noise N(s) are both zero, then B(s) is also zero and the control system is
effectively open-loop. This is the condition when there is no uncertainty. However,
if Gi(s) # G(s), and D(s) and N(s) are not zero, then B(s) expresses the uncertainty of
the process.
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Fig. 9.19 Block diagram of an IMC system.

9.6.4 IMC performance

From Figure 9.19
Y(s) = G()U(s) + D(s)
B(s) = Y(s) + N(s) = Gu(s)U(s) (9.113)
U(s) = C(s)(R(s) — B(s))

Eliminating U(s) and B(s) from equations (9.113) gives

_ G(s)C(s)R(s) n (I - C)Gm($))D(s) G(s)C(s)N(s)
T 1+ CO)NG(s) = Gm(s)) 14 C(s)G(S) — Gm(9) 14 C(s)(G(s) — G(5))
9.114)

Y(s)

The sensitivity function S(s) that relates Y (s) and D(s) when R(s) = N(s) =0 is

Y _ _ 1 - C(S)Gm(s)
Y =50 = T E0G0) — Gne) ©-115)
and the complementary sensitivity function
_ _ C(9)G(5)
1O =1=59) = 13766/66) - Gn)) ©-116)
Thus, when N(s) = 0, equation (9.114) may be written
Y(s) = T(s)R(s) + S(s)D(s) (9.117)

If T(s) =1 there is perfect set-point tracking. This will occur if Gy (s) = G(s) and
C(s) = 1/G(s). If S(s) = 0 there is perfect disturbance rejection. Again, this will occur
if Gm(s) = G(s) and C(s) = 1/Gm().

Two degree-of-freedom IMC system
If good set-point tracking and good disturbance rejection is required when the
dynamic characteristics of R(s) and D(s) are substantially different, then it may be
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> Gn(s)

Cy(s)

Fig. 9.20 Two degree-of-freedom IMC system.

necessary to introduce a second controller, which provides a second degree-of-free-
dom of control action. A two degree-of-freedom IMC system is shown in Figure 9.20.
With a two degree-of-freedom IMC system, equation (9.114) becomes

Y(s) = G(s)Cr(s)R(s) (1 = C4(5)Gm(5))D(s)
L+ Ca(s)(G(9) = Gm(s)) 1+ Ca(s)(G(s) — Gm(s)) ©.118)
G(s)Ca(s)N(s) :

1+ Ca(s)(G(s) — Gm(s))

In equation (9.118) Cy(s) is designed for set-point tracking and Cq(s) for disturbance
rejection.

9.6.5 Structured and unstructured model uncertainty

Unstructured model uncertainty relates to unmodelled effects such as plant distur-
bances and are related to the nominal plant G,,(s) as either additive uncertainty £,(s)

G(s) = G(s) + La(s) (9.119)
or multiplicative uncertainty #p,(s)
G(s) = (1 4 £in(5))Gm(s) (9.120)
Equating (9.119) and (9.120) gives
Ly(s) = lim(s)Gm(s) (9.121)
Block diagram representations of additive and multiplicative model uncertainly are
shown in Figure 9.21.

Structured uncertainty relates to parametric variations in the plant dynamics, i.e.
uncertain variations in coefficients in plant differential equations.
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Fig. 9.21 Additive and multiplicative model uncertainty.

9.6.6 Normalized system inputs

All inputs to the control loop (changes in set-point or disturbances) are generically
represented by V'(s). The input V(s) is found by passing a mathematically bounded
normalized input V!(s) through a transfer function block W(s), called the input
weight, as shown in Figure 9.22.

Specific inputs

Impulse Vi(s)=1 W(s)=1

9.122)
Step Vigs)=1 W(s)=1/s
Thus for specific inputs
V(s) = W(s)V(s) = W(s) (9.123)
Sets of bounded inputs may be represented by
v (0)]2= /OOO HORIES! (9.124)

The left-hand side of equation (9.124) is called ‘the 2-norm of the input signal v'()
squared’. Norms are mathematical measures that enable objects belonging to the

Vi) Ws) Ve

Fig. 9.22 Transformation of a normalized bounded input V'(s) into an actual input V/(s).
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same set to be compared. Using Parseval’s theorem, equation (9.124) may be trans-
formed into the frequency domain

IMoli=a:/ ey

2
— dw <1 9.125
o7 ) WGy ©.125)

For a realizable controller to exist, all external signals that enter the control loop
must be bounded.

9.7 H;- and H..-optimal control

9.7.1 Linear quadratic H,-optimal control

The scalar version of equation (9.48), when u(?) is not constrained, and Q is unity, is
called the Integral Squared Error (ISE), i.e.

ISE = / ! e (ndt (9.126)

1o

The H,-optimal control problem is to find a contoller ¢(¢) such that the 2-norm of the
ISE (written He(l)||§) is minimized for just one specific input v(z).

If, in equation set (9.105) B(s) and Y(s) are eliminated and U(s) is written as
C(s)E(s), then

1
m {R(S) — D(S) — N(S)}

= S(s){R(s) — D(s) — N(s)} (9.127)

E(s) =

Also, from equation (9.123), for a specific input
V(s) = W(s) (9.128)

Using Parseval’s theorem, from equation (9.126) the H,-optimal control problem can
be expressed in the frequency domain as

1 o0
min||e(7)||3= min— / |E(jw)|*dw (9.129)
c c 27T —00

Substituting equations (9.127) and (9.128) into (9.129) gives

oo

. 1 . .
mine(0]3=min o [ [S()W (j)ds 9.130)

Thus the H,-optimal controller minimizes the average magnitude of the sensitivity
function weighted by W (jw), where W (jw) depends upon the specific input V(jw). In
mathematical terms, the controller minimizes the 2-norm of the sensitivity function
weighted by W (jw).
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9.7.2 H..-optimal control

With H . -optimal control the inputs V'(jw) are assumed to belong to a set of norm-
bounded functions with weight W(jw) as given by equation (9.125). Each input
V' (jw) in the set will result in a corresponding error E(jw). The H,-optimal controller
is designed to minimise the worst error that can arise from any input in the set, and
can be expressed as

min|le()|| ,,= min sup|S(jw) W (jw)| (9.131)

In equation (9.131), sup is short for supremum, which means the final result is the
least upper bound. Thus the H.,-optimal controller minimizes the maximum magni-
tude of the weighted sensitivity function over frequency range w, or in mathematical
terms, minimizes the co-norm of the sensitivity function weighted by W (jw).

9.8 Robust stability and robust performance

9.8.1 Robust stability

Robust stability can be investigated in the frequency domain, using the Nyquist
stability criterion, defined in section 6.4.2.

Consider a Nyquist contour for the nominal open-loop system G, (jw)C(jw) with
the model uncertainty given by equation (9.119). Let Z,(w) be the bound of additive
uncertainty and therefore be the radius of a disk superimposed upon the nominal
Nyquist contour. This means that G(jw) lies within a family of plants 7 (G(jw) € )
described by the disk, defined mathematically as

7 ={G:|G(jw) — Gm(jw)| < la(w)} (9.132)
and therefore
[la(jw)| < la(w) (9.133)
If the multiplicative uncertainty in equations (9.120) and (9.121) is defined as
. la(jw)
ln(jw) = 5~ (9.134)
B G0 C ()
and the bound of multiplicative uncertainty
= Za("‘})
la(W) = ———F— (9.135)
|G (jw)C(jw)|
From equation (9.135) the disk radius (bound of uncertainty) is
Za(w) = |Gm(jw)c(jw)|zm(w) (9.136)

From the Nyquist stability criterion, let N(k, G(jw)) be the net number of clockwise
encirclements of a point (k,0) of the Nyquist contour. Assume that all plants in the
family 7, expressed in equation (9.132) have the same number (n) of right-hand plane
(RHP) poles.
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Im
(_1 ,O)
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1 1Gn(jw) C(jw)!
114+ G(jw) C(jw)!
11+ G(jw) C(jw)!
for some G(jw)er
|Gin(jw) C(j) Zm(w)
Fig. 9.23 Robust stability.
There will be robust stability of a specific controller C(jw) if and only if
N(—1, G(jw)C(jw)) = —n for all G(jw) € 7 (9.137)
It is also necessary for the nominal plant G,,(jw) to be stable
N(=1, Gn(jw)C(jw)) = —n (9.138)

From Figure 9.23 robust stability occurs when the vector magnitude
|1 + G (jw)C(jw)| (see also Figure 6.25) exceeds the disk radius |Gy (jw)C(jw)|lm(w)

|1+ Gu(j)C()| > |G () fm(w) for all w
or

Gm(Jw)C(jw)
1+ Gn(jw)C(jw)

lm(w) < 1 (9.139)

Equation (9.139) uses the magnitude of the complementary sensitivity function 7'(jw)
as defined in equation (9.108). Thus

|T(jw)|fm(w) < 1 for all w (9.140)

Robust stability can therefore be stated as: ‘If all plants G(s) in the family = have the
same number of RHP poles and that a particular controller C(s) stabilizes the
nominal plant Gy (s), then the system is robustly stable with the controller C(s) if
and only if the complementary sensitivity function 7'(s) for the nominal plant G, (s)
satisfies the following bound

1T (jw)lm(@)l[oc = sup| T(jw)lm(w)| < 1 (9.141)
w
where the LHS of equation (9.141) is the infinity norm of T'(jw)lm(jw). This means

that robust stability imposes a bound on the oo norm of the complementary sensi-
tivity function 7'(jw) weighted by £ (w)’.
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9.8.2 Robust performance

Robust stability provides a minimum requirement in an environment where there is
plant model uncertainty. For a control system to have robust performance it should
be capable of minimizing the error for the worst plant (i.e. the one giving the largest
error) in the family G(jw) € .

For the H,,-control problem, from equation (9.131), the co-norm of the weighted
sensitivity function can be written

[SW | o= sup|S(jw) W (jw)| (9.142)

If, as part of the design process, a bound is placed upon the sensitivity function
|SGw)| < W (jw)| ™" (9.143)
Should an H,, controller be found such that
ISW] <1 (9.144)
then the bound in equation (9.143) is met. Hence, for robust performance

ISW]| .= sup|S(jw)W(jw)| <1 for all G(jw) € 7 (9.145)

From Figure 9.23 representing robust stability, the actual frequency response
G(jw)C(jw) will always lie inside the region of uncertainty denoted by the disk, or

11+ G(jw)C(jw)| = 1 4+ Gn(jw)C(jw)| — |Gm(jw)C(jw)lm(w)  for all G(jw) € 7
(9.146)

giving
[Sn(i)|
T 1= [Tu(jw)lm(w)

1S(jw)| = ’ for all G(jw) e ™ (9.147)

1 + G(jw)C(jw)

where Sp,(jw) is the sensitivity function for the nominal plant

1

Sm(jw) = - p 9.148
) = T G (GIC ) O14

Using equation (9.147), equation (9.145) can be expressed as
SmUDWUD a0 (9.149)

1 - le(jw)wm(w)
or

| Tin(jw)lom(@)| + |Sm(jw) W (jw)| < 1 for all w (9.150)



Optimal and robust control system design 309

D(s)

R(s) + 1 + Y(sz
2 (1+5)(1+2s) A "

Fig. 9.24 Control system.

Robust performance then means that the closed-loop system will meet the perform-
ance specification given in equation (9.145) if and only if the nominal system is
closed-loop stable (equation (9.141)) and that the sensitivity function S,(jw) and
complementary sensitivity function 7},(jw) for the nominal system satisfy the rela-
tionship given in equation (9.150).

Example 9.4

(a) For the control system shown in Figure 9.24 produce the Bode magnitude plots
for the sensitivity function |S(jw)| and the complementary sensitivity function
|T(jw)| when K = 10. Comment on their values.

(b) For a step input, let W (s) = 1/s. Produce Bode magnitude plots for |S(jw) W (jw)|
when K = 10, 50 and 100 and identify the optimal value using both H, and H,
criteria.

Use a frequency range of 0.01-100 rad/s for both (a) and (b).

Solution
(a) From equation (9.107)

1 1
SS = =
) 14+ GH)C(s) 1+ —(1+.y)1(<1+23)
252 4+ 35+ 1
= .1 1
252+ 35+ (1 + K) ©.151)
From equation (9.108)
25 4+ 35+ 1
Ts)=1-SE)=1-
(s) S(s) {2s2—|—3s+(1 —i—K)}
K
(9.152)

T2 135+ (1+K)

The Bode magnitude plots for |S(jw)| and |T(jw)| are shown in Figure 9.25 for
K = 10. From Figure 9.25 it can be seen that up to 1rad/s, the system has a set-
point tracking error of —0.8dB (|T(jw)]) and a disturbance rejection of
—20dB (|S(jw)|)-
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(b) For a specific input of a unit step, let W(s) = 1/s. Hence the weighted sensitivity
function is

252 + 35+ 1
{252 + 35+ (1 + K)}

S(s)W(s) = (9.153)

The Bode magnitude plots for |S(jw) W (jw)| for K = 10, 50 and 100 are shown in
Figure 9.26.

From Figure 9.26 it can be seen that the Hy-norm, or average value of the weighted
sensitivity function (equation (9.130)) reduces as K increases and hence, using this
criteria, K = 100 is the best value. Using the H,,-norm as defined in equation (9.131),
the maximum magnitude of the weighted sensitivity function occurs at the lowest
frequency. The least upper bound therefore is 0dB, occurring at 0.01 rad/s when
K = 100, so this again is the best value.

Example 9.5
A closed-loop control system has a nominal forward-path transfer function equal to
that given in Example 6.4, i.e.

Gm(s)C(s) = S 125+ 4)

10

e \haaull
L

[S(jw)

Il
\

[ T(jw)!

Gain
(dB)

10 10 10° 10 10
Frequency (rad/s)

Fig. 9.25 Bode magnitude plots for |S(jw)| and |T(jw)|.
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Let the bound of the multiplicative model uncertainty be

0.5(1 4 5)

In(s) = (1 +0.253)

What is the maximum value that K can have for robust stability?

Solution

At frequencies below 1rad/s, lm(w) — 0.5 and at frequencies above 4rad/s
fm(w) — 2.0. From equation (9.141), for robust stability

| T(jw)lm(w)| < 1 (9.154)
now
T(s) = Gn(s)C(s)
1+ Gu(5)C(s)
therefore
oy
T(S) _ 57425 +4s
s e
K
T =
() S +22+4s+K
20
10
0
1S (i) WAool K=10 f\\‘
-10 —
50 K =50
N
-30 = \\\
K=100
-40
107 10" 10° 10’ 10°

Frequency (rad/s)

Fig. 9.26 Bode magnitude plot of weighted sensitivity function for Example 9.4.
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10
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I T(jw) 7,y ()]

(dB) —20

—40

10° 10 10 10

Frequency (rad/s)

Fig. 9.27 Bode plot of |T(jw)Zm(w)| for Example 9.5.

thus
- 0.5K(1 +s)
T = 3025007 122 1 ds 1 K)

The Bode magnitude plot for equation (9.155) is shown in Figure 9.27 when K = 2
and 3.5.

In Example 6.4, when there was no model uncertainty, K for marginal stability was
8, and for a gain margin of 6 dB, K was 4. In this example with model uncertainty,
from equation (9.154) marginal stability occurs with K = 3.5, so this is the maximum
value for robust stability. For robust performance, equation (9.150) applies. For a
specific step input let W (s) = 1/s now

(9.155)

§3 4+ 2s% + 4s
Sm(s) = $+252+4s+ K ©-156)
and
 s(s* 4254 4)
S()W(s) = s(s3 4+ 252 + 45+ K)
hence
242544
Sn()W(s) = =5+ (9.157)

S +22+4s5+ K

The Bode magnitude plot of the weighted sensitivity function is shown in Figure 9.28
for K =2, 2.5 and 3.5.
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10
4 I —
5 N~
t TR v| 2dB
0 i)
1S(jew) W(jw)! K=2 K=25 K=35 T
dB > \
\
-10 \
-15 \\\
\
N\
20 — —
107 107 10’ 10’
Frequency (rad/s)
Fig. 9.28 Bode magnitude plot of weighted sensitivity function for Example 9.5.
For robust performance
| T (jw) + ln(@)| + [Sm(jw)W (jw)| < 1 for all w (9.158)

From Table 9.2 it can be concluded that:

(a) The control system has robust stability up to K = 3.5.

(b) The Hy,-norm is >1 for all values of K considered. Therefore equations (9.145)
and (9.150) are not met and the system cannot be considered to have robust
performance.

From (b) above, it must be concluded that the controller C(s) must be something
more sophisticated than a simple gain constant K.

Table 9.2 Robust performance for Example 9.5

w (rad/s) 0.01 1.5

K 2 2.5 3.5 2 2.5 3.5

| Ton G0l (W) 0.5 (—6dB) 0.5 (not shown in 0.5 0.5 0.63 (not shown in 1.0
Figure 9.27) Figure 9.27)

|Sim W) W (jw)| 2.0 (6dB) 1.58 1.12 0.96 1.05 1.26

Sum 2.5 2.08 1.62 1.46 1.68 2.26
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9.9 Multivariable robust control

9.9.1 Plant equations

The canonical robust control problem is shown in Figure 9.29.

In Figure 9.29, u, are the inputs to the plant P, from the controller and u; are the
disturbance and noise inputs. Also, y; are the outputs to be controlled and y, are the

outputs that are fed back to the controller.

If Py, (s) and the plant uncertainty A(s) are combined to give P(s), then Figure 9.29
can be simplified as shown in Figure 9.30, also referred to as the two-port state-space

representation.
The state and output equations are

X = Ax + Bju; + Bow,
yi = Cix+Dyuy + Doy
v, = Cox + Dyju; + Dpuwy

Equation (9.159) can be combined

X A B] Bz X
vi|=|Ci Dy Dppf|wm
Y, C: Dy D |w

Uncertainty

A(S) <

Plant

u, Controller \A

C(s)

Fig. 9.29 The canonical robust control problem.

(9.159)

(9.160)
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u Yi
e —
P(s)
u; A
C(s) <

Fig. 9.30 Two-port state-space augmented plant and controller.

Hence the augmented plant matrix P(s) in Figure 9.30 is

P(s) — : | L (9.161)
C, : Dy Dn

From the partitioned matrix in equation (9.161), the closed-loop transfer function
matrix relating y; and u is

Ty u; = Py1(s) + P1a(s) (I — C(s) Px(s)) ' Cls) Py (s), (9.162)
where

uy(s) = C(s)y,(s) (9.163)

9.9.2 Singular value loop shaping

The singular values of a complex n x m matrix A, denoted by o;(A) are the non-
negative square-roots of the eigenvalues of ATA ordered such that

oy >0y >--->0p p=min{n, m} (9.164)

The maximum singular value ¢ of A and the minimum singular value o of A are
defined by

a(A) = [|A],
o(A) = [[A7;"if AT exists (9.165)

As with a SISO system, a sensitivity function may be defined

S(s) = (I + G(s)C(s)) ! (9.166)
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where G(s) is the non-augmented plant matrix. For good performance S(s) should
be as small as possible. The complementary sensitivity function is

T(s) = G(s) C(s) (I + G(s)C(s))_1 (9.167)
where
Ss)+T) =1 (9.168)

The singular value of the sensitivity function & (S(jw)) and of the complementary
sensitivity function & (T(jw)) can be displayed as Bode plots and play an important
role in robust multivariable control system design.

The singular values of S determine the disturbance attenuation, and thus a per-
formance specification may be written

F(S(jw)) < [W,!(jw)] (9.169)

where |W;'(jw)| is a desired disturbance attenuation factor. If Ap(s) is a diagonal
matrix of multiplicative plant uncertainty as illustrated in Figure 9.29, it can be
shown that the size of the smallest stable A, (s) for which the system becomes
unstable is

o(Am(jw)) = 1/5(T(jw)) (9.170)
or alternatively
F(T(jw) < [Wi'(jw)| 9.171)

where |Wr(jw)| is the size of the largest anticipated multiplicative plant uncertainty.

9.9.3 Multivariable H, and H.. robust control

The H;-optimal control problem is to find a stabilizing controller C(s) in equation
(9.163) for an augmented plant P(s) in equation (9.161), such that the closed-loop
transfer function matrix Ty,u; in equation (9.162) is minimized.

Thus

| o 12
min || Ty, u |, = min{—/ trace(Tylul(jw)TTylul(jw))dw} (9.172)
C(s) C(s) |7 Jo

where T is the complex conjugate transpose, and trace is the sum of the diagonal
elements. The H,, robust control problem is to find a stabilizing controller C(s) for
an augmented plant P(s), such that the closed-loop transfer function matrix Ty, u;
satisfies the infinity-norm inequality

[Ty u]| o= sup omax(Tyu(jw)) < 1 9.173)

Equation (9.173) is also called the ‘small gain’ infinity-norm control problem.
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9.9.4 The weighted mixed-sensitivity approach

Multivariable loop shaping in robust control system design may be achieved using
a weighted mixed sensitivity approach. As with the SISO systems described in section
9.8.2, the sensitivity function S(s) given in equation (9.166) and the complementary
sensitivity function T(s) given in equation (9.167) may be combined with weights
Wi(s) and Wr(s) to give

Ty,u = {VVJT((?) ?8] (9.174)

where the infinity norm of Ty, u; is <1 as given in equation (9.173). Equation (9.174)
defines a mixed-sensitivity cost function since both S(s) and T(s) are penalized. Note
that if W(s) weights the error and Wr(s) the output, the two-port augmented plant
given in Figure 9.30 may be represented by Figure 9.31.

Example 9.6 (See also Appendix 1, examp96.m)
A plant has a transfer function

200
5) = 9.17
O = 337+ 1025 4 200 ©-175)
given the sensitivity and complementary weighting functions
100 + s
W) = 7(1 ¥ 1oos>
L+ 100 (9.176)
+ S
Wals) = ( 100+s>

Augmented Plant

v
=
)

v

u, °+
—® e r» G(s) > W(s) >
Yo

C(s)

Fig. 9.31 Weighted mixed-sensitivity approach.
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determine the singular value Bode magnitude plots for

(a) the plant G(jw)

(b) the weighting functions W, !(jw) and W5'(jw)

(c) the cost function Ty, u;(jw) at its optimal value of 7y (given in W(s))

(d) the H.-optimal controller C(jw)

Find also the state-space and transfer function expressions for the controller.

Solution
The state-space representation of the plant G(s) is

-3 =102 =200 : 1

Ag Bg _ 1 0 0 0

[Cd Dg}_ 0 1 0 1o ©-177)
0 0 200 0

The singular value frequency response G(jw) is shown in Figure 9.32.

The frequency response of the reciprocal of the weighting functions W.!'(jw)
(y=1) and Wy!(jw) are given in Figure 9.33.

The optimal value of Ty,u; is achieved when (v = 0.13) and its singular value
frequency response is shown in Figure 9.34.

The controller single value frequency response C(jw) is illustrated in Figure 9.35.

10

1G(jw) —30
(dB)

-80 ; o 1 2
107 10 10 10
Frequency (rad/s)

Fig. 9.32 Plant singular value Bode magnitude plot.
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Fig. 9.33 Weighting functions Bode magnitude plots.

-2

—4
[Ty u(jw)l
(@B) 6

-18
107 1072 107 10° 10’ 102 10°
Frequency (rad/s)

Fig. 9.34 Singular value Bode magnitude plot of [Ty us (jw)| when vy = 0.13.
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40—
30
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|1C(jw)!
(dB) 10
0 pam
-10 /
—20
-30
107 10? 107 10° 10’ 10° 10°
Frequency (rad/s)
Fig. 9.35 Controller single value Bode magnitude plot | C(jw)|.
The state-space representation of the controller C(s) is
—0.01 —0.002 0.004 0.015 0.137 1 —7.976
—0.009 —7.763 21.653 37.164 621.89 : 0.091
A. B. —0.046 —2.032 —3.148 —2.234 —81.88 : 0.582
[Cc Dc:| - :
0.435 0.107 8.807 —102.25 -37.78 : —8.8
0.676 0.197 13.558  —3.728 —162.51 : —13.66
[ —0.086 0.169 0.121  —0.654  —11.17 : 0

(9.178)
and the controller transfer function is

C1595% 4 16.4 x 10%5% + 63.9 x 10352 + 1.6 x 10% + 3.18 x 10°
T 55427558 +20.4 X 1035 + 324.8 x 10352 + 3.78 x 1065 + 37.8 x 103
(9.179)

C(s)

The results in this example were obtained using the MATLAB Robust Control
Toolbox.
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9.10 Further problems

Example 9.7

In a multivariable optimal regulator system, the plant state equations are

y=[1 0

If the performance index to be minimized is

J = /0 h (xTQx + u*)dt

(9.180)

(9.181)

(a) Determine, by hand, the elements of the Riccati matrix P in the reduced Riccati

equation

PA+A"™P+Q—-PBR 'BTP =0
given that
=[5
(b) Find the optimal feedback matrix K so that
K=R"'B'P
and hence calculate the closed-loop eigenvalues.

Solutions
1703 0.183
@) P= [0.183 0.193}

(b) K =[0.732 0.772]
5 = —2.544 £i0.675

Example 9.8
A plant and measurement system are described by

X = Ax + Bu + Cyw
y =Cx
Z=YyY+V

(9.182)

(9.183)

(9.184)

(9.185)
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where w(¢) is a Gaussian sequence of disturbances and v(7) is a Gaussian sequence of
measurement noise. z(¢) is the measured value of y(¢) that is contaminated with
measurement noise v(z). The plant parameters are

0 1 0 0
-50 —-102 —-4.5 100
- - - (9.186)
05 0 O 1 00
Ca=1]10 05 0 C=10 10
| 0 0 10 10 0 1
The measurement noise and disturbance covariance matrices are
0.1 0 O] 0.1 0 O
R=]0 01 0 Q=0 01 0 (9.187)
0 0 6] 0 0o 2

(a) For a sampling time of 0.1 seconds, using equations (8.78) and (8.80) calculate
the discrete-time state transition, control and disturbance matrices A(7T"), B(T)
and Cy(T).

(b) Starting with an initial covariance matrix P(k/k) equal to the identity matrix,

perform 20 recursions of equations (9.74), (9.75) and (9.76) to compute the
Kalman gain matrix K(k + 1) and covariance matrix P(k + 1/k + 1).

Solutions
[ 0.993 0.085 0.004] 0.014
(a) A(T)=|-0.199 0.587 0.067 B(T) = ]0.398
| —3.370 —7.074 0.284 | 6.740
[ 0.050 0.002  0.001 ]
Cy(T)= | —0.004 0.043 0.040
| —0.100 —0.207 0.674 |
[ 0.040 —0.006 —0.002]
(b) K(k+1) = |-0.006 0.137 0.003
| —0.133  0.155 0.218 |
[ 0.004 —0.001 —0.013]
P(k+1/k+1)= | —-0.001 0.014 0.016
| —0.013  0.016 1.310 |

Example 9.9

The plant described in Example 9.8 by equations (9.185) and (9.186) is to be
controlled by a Linear Quadratic Gaussian (LQG) control scheme that consists of
a LQ Regulator combined with the Kalman filter designed in Example 9.8. The
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quadratic performance index to be minimized for the LQ regulator is of the form
given in equation (9.181) where

—_—

00 0
Q=0 5 0| R=1 (9.188)
0 0 1

Using the recursive equations (9.29) and (9.30), solve, in reverse time, the Riccati
equation commencing with P(N) = 0.

If the sampling time is 0.1 seconds, the values of the discrete-time state transition
and control matrices A(7) and B(T') calculated in Example 9.8 may be used in the
recursive solution.

Continue the recursive steps until the solution settles down (when k& = 50, or
kT = 5 seconds) and hence determine the steady-state value of the feedback matrix
K(0) and Riccati matrix P(0). What are the closed-loop eigenvalues?

Solutions
K(©0)=[-0.106 —0.581 0.064]
11.474 3.406 0.153

P(0) = | 3.406 3.952 0.163
0.153  0.163 0.1086

closed-loop eigenvalues = —1.230

—4.816 +2.974

Example 9.10
A unity-feedback control system has a nominal plant transfer function

Gn(s) = m (9.189)
and an integral controller in the forward path
C(s) = g (9.190)
If the bound of the multiplicative model uncertainty is
Im(s) = 0.25(1 + 45) (9.191)

(1+0.255)
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determine:

(a) Expressions for the sensitivity and complementary sensitivity function S(s) and
T(s) for the nominal plant.
(b) The maximum value that K can have for robust stability.

Solutions
2 4+ 75 + 10s
@) St = $3+7s2+10s+ K
T(s) K
S) =
S +T2+10s + K
(b) Kpax = 4.5

Example 9.11
A plant has a transfer function

100
§2 4+ 25+ 100

and sensitivity and complementary weighting functions

s+ 100
W.Y(S)=v< Sl )

!
Wirls) = <ss++100)

Find the optimal value for v and hence the state-space and transfer functions for the
H-optimal controller C(s).

G(s) =

Solutions
Yopt = 0.0576
-2.8 3.0 —1.4 150.9 —4.55
-30 222 50.1 258.0 3.10
A. B¢ B
C. D. -2.7 39.6 -74.5 196.1 2.99
-32 =363 -23.2 —1871.1 7.44
| —0.33 1.68 1.02 —4942 0 |

1.86 x 10%s® + 0.1898 x 10°s> + 0.5581 x 10°s + 18.6031 x 10°
s* 4+ 1.97 x 10353 + 0.2005 x 10952 + 1.3531 x 1005 + 1.1546 x 10°

C(s) =



10

Intelligent control system
design

10.1 Intelligent control systems

10.1.1 Intelligence in machines

According to the Oxford dictionary, the word intelligence is derived from intellect,
which is the faculty of knowing, reasoning and understanding. Intelligent behaviour
is therefore the ability to reason, plan and learn, which in turn requires access to
knowledge.

Artificial Intelligence (Al) is a by-product of the Information Technology (IT)
revolution, and is an attempt to replace human intelligence with machine intelli-
gence. An intelligent control system combines the techniques from the fields of Al
with those of control engineering to design autonomous systems that can sense,
reason, plan, learn and act in an intelligent manner. Such a system should be able
to achieve sustained desired behaviour under conditions of uncertainty, which
include:

(a) uncertainty in plant models

(b) unpredictable environmental changes

(c) incomplete, inconsistent or unreliable sensor information
(d) actuator malfunction.

10.1.2 Control system structure

An intelligent control system, as considered by Johnson and Picton (1995), comprises
of a number of subsystems as shown in Figure 10.1.

The perception subsystem
This collects information from the plant and the environment, and processes it into a
form suitable for the cognition subsystem. The essential elements are:

(a) Sensor array which provides raw data about the plant and the environment

(b) Signal processing which transforms information into a suitable form

(¢) Data fusion which uses multidimensional data spaces to build representations of
the plant and its environment. A key technology here is pattern recognition.



326 Advanced Control Engineering

Intelligent Control System

Cognition Actuation
Subsystem "l Subsystem

Perception
Subsystem

4

Environment

Plant <

Fig. 10.1 Intelligent control system structure (adapted from Johnson and Picton).

The cognition subsystem
Cognition in an intelligent control system is concerned with the decision making
process under conditions of uncertainty. Key activities include:

(a) Reasoning, using
(1) knowledge-based systems
(i1) fuzzy logic
(b) Strategic planning, using
(i) optimum policy evaluation
(i1) adaptive search and genetic algorithms
(iii) path planning
(c) Learning, using
(1) supervised learning in neural networks
(i1) unsupervised learning in neural networks
(ii1) adaptive learning

The actuation subsystem

The actuators operate using signals from the cognition subsystem in order to drive the

plant to some desired states. In the event of actuator (or sensor) failure, an intelligent

control system should be capable of being able to re-configure its control strategy.
This chapter is mainly concerned with some of the processes that are contained

within the cognition subsystem.

10.2 Fuzzy logic control systems

10.2.1 Fuzzy set theory

Fuzzy logic was first proposed by Zadeh (1965) and is based on the concept of fuzzy
sets. Fuzzy set theory provides a means for representing uncertainty. In general,
probability theory is the primary tool for analysing uncertainty, and assumes that the
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uncertainty is a random process. However, not all uncertainty is random, and fuzzy
set theory is used to model the kind of uncertainty associated with imprecision,
vagueness and lack of information.

Conventional set theory distinguishes between those elements that are members of
a set and those that are not, there being very clear, or crisp boundaries. Figure 10.2
shows the crisp set ‘medium temperature’. Temperatures between 20 and 30°C lie
within the crisp set, and have a membership value of one.

The central concept of fuzzy set theory is that the membership function u, like
probability theory, can have a value of between 0 and 1. In Figure 10.3, the member-
ship function p has a linear relationship with the x-axis, called the universe of
discourse U. This produces a triangular shaped fuzzy set.

Fuzzy sets represented by symmetrical triangles are commonly used because they
give good results and computation is simple. Other arrangements include non-
symmetrical triangles, trapezoids, Gaussian and bell shaped curves.

Let the fuzzy set ‘medium temperature’ be called fuzzy set M. If an element u of the
universe of discourse U lies within fuzzy set M, it will have a value of between 0 and
1. This is expressed mathematically as

pm(w) € [0,1] (10.1)

When the universe of discourse is discrete and finite, fuzzy set M may be expressed as
M =3 i) (10.2)
i1

In equation (10.2) */* is a delimiter. Hence the numerator of each term is the member-
ship value in fuzzy set M associated with the element of the universe indicated in the
denominator. When n = 11, equation (10.2) can be written as

M = 0/0 + 0/5 + 0/10 + 0.33/15 + 0.67/20 + 1/25 + 0.67/30 + 0.33/35

+ 0/40 + 0/45 + 0/50 (10.3)
1 Medium
Temperature
1.0 +
Membership

Function 0.8 1
0.6 +
0.4+

0.2 +

0 10 20 30 40 50
Temperature (°C)

Fig. 10.2 Crisp set ‘'medium temperature'.
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Medium
Temperature
10+ P
Membership g4
Function '
0.6 +
M
0.4+
0.2+
0 10 20 30 40 50

Universe of Discourse (Temperature (°C))

Fig. 10.3 Fuzzy set ‘medium temperature’.

Note the symbol ‘4’ is not an addition in the normal algebraic sense, but in fuzzy
arithmetic denotes a union operation.

10.2.2 Basic fuzzy set operations

Let A and B be two fuzzy sets within a universe of discourse U with membership
functions pua and up respectively. The following fuzzy set operations can be defined as

Equality: Two fuzzy sets A and B are equal if they have the same membership
function within a universe of discourse U.

pa(w) = pup(u) forallu e U (10.4)

Union: The union of two fuzzy sets A and B corresponds to the Boolean OR function
and is given by

uaus() = parp(u) = max{ua(u), ug(u)} forallue U (10.5)

Intersection: The intersection of two fuzzy sets A and B corresponds to the Boolean
AND function and is given by

puanp(u) = min{pa(u), pp(u)} forallu e U (10.6)

Complement: The complement of fuzzy set A corresponds to the Boolean NOT
function and is given by

p-a(w) =1 —pa(u) forallue U (10.7)

Example 10.1

Find the union and intersection of fuzzy set low temperature L and medium tem-
perature M shown in Figure 10.4. Find also the complement of fuzzy set M. Using
equation (10.2) the fuzzy sets for n = 11 are
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Membership
Function 0.8 1

0.6 T L M

0.4 T

0.2 T

0 10 20 30 40 50
Universe of Discourse (Temperature (°C))

Fig. 10.4 Overlapping sets ‘low’and ‘medium temperature'.

L =0/0+0.33/5+0.67/10 + 1/15 4+ 0.67/20 4 0.33/25
+0/30+0/354---+0/50
M =0/0+0/5+0/10 4+ 0.33/15 4+ 0.67/20 + 1/25 + 0.67/30
+0.33/35+0/40 4 --- 4+ 0/50
(a) Union: Using equation (10.5)
pr+m(u) =max(0, 0)/0 + max(0.33,0)/5 + max(0.67,0)/10
+ max(1,0.33)/15 + max(0.67,0.67)/20 + max(0.33, 1)/25
+ max(0, 0.67)/30 + max(0, 0.33)/35 + max(0, 0)/40 + - - -
-+ max(0, 0)/50 (10.9)

(10.8)

pir () = 0/0 + 0.33/5 + 0.67/10 + 1/15 + 0.67/20 + 1/25 + 0.67/30
+0.33/354+0/40 + - - - +0/50 (10.10)

(b) Intersection: Using equation (10.6) and replacing ‘max’ by ‘min’ in equation
(10.9) gives

prom(u) = 0/0 4+ 0/5 4 0/10 4+ 0.33/15 4 0.67/20 4 0.33/25
+0/304---+0/50 (10.11)
Equations (10.10) and (10.11) are shown in Figure 10.5.
(c) Complement: Using equation (10.7)
p-m(@) = (1 —0)/0+ (1 —0)/5+ (1 —0)/10+ (1 —0.33)/15
+(1-0.67)204+ (1 — 1)/25+ (1 — 0.67)/30 + (1 — 0.33)/35
+(1-0)/40+---+(1—-0)/50 (10.12)

Equation (10.12) is illustrated in Figure 10.6.
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1.0

Membership
Function 0.8 -

0.6 1
0.4 1

0.2 1

0 10 20 30 40 50
Temperature (°C)

Fig. 10.5 'Union’and ‘intersection’ functions.

i
1.0 1
Membership
Function 0.8+
p-m(U)
0.6 T
0.4
0.2+
0 10 20 30 40 50

Temperature (°C)

Fig. 10.6 The complement of fuzzy set M.

10.2.3 Fuzzy relations

An important aspect of fuzzy logic is the ability to relate sets with different universes
of discourse. Consider the relationship

IF L THEN M (10.13)

In equation (10.13) L is known as the antecedent and M as the consequent. The
relationship is denoted by

A=LxM (10.14)
or

min{pp(u1), pm(v1)} - .. min{p (), pm(v) } (10.15)

LxM= min{pr (), pm(vi)} - .. min{pr (), pm(ve) }
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where u; — u; and v; — v, are the discretized universe of discourse. Consider the
statement
IF L is low THEN M is medium (10.16)

Then for the fuzzy sets L and M defined by equation (10.8), for U from 5 to 35 in
steps of 5

min (0.33,0) ... min(0.33,1) ... min(0.33, 0.33)
min (0.67,0) ... min(0.67,1) ... min(0.67, 0.33)
LxM= . . . . . (10.17)
min(0,0) ... min(0,1) ... min(0, 0.33)
which gives
[0 0 0.33 0.33 0.33 0.33 0.33]
0 0 033 0.67 0.67 0.67 0.33
0 0 033 0.67 1 0.67 0.33
LxM=1|0 0 033 0.67 0.67 0.67 0.33 (10.18)
0 0 033 033 033 033 0.33
00 0 0 0 0 0
|10 0 O 0 0 0 0 |

Several such statements would form a control strategy and would be linked by their
union

A=A +A,+A3+---+A, (10.19)

10.2.4 Fuzzy logic control

The basic structure of a Fuzzy Logic Control (FLC) system is shown in Figure 10.7.

The fuzzification process

Fuzzification is the process of mapping inputs to the FLC into fuzzy set membership
values in the various input universes of discourse. Decisions need to be made
regarding

(a) number of inputs
(b) size of universes of discourse
(c) number and shape of fuzzy sets.

A FLC that emulates a PD controller will be required to minimize the error e(f) and
the rate of change of error de/d¢, or ce.

The size of the universes of discourse will depend upon the expected range (usually
up to the saturation level) of the input variables. Assume for the system about to be
considered that e has a range of +6 and ce a range of £1.

The number and shape of fuzzy sets in a particular universe of discourse is a trade-
off between precision of control action and real-time computational complexity. In
this example, seven triangular sets will be used.
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Fig. 10.7 Fuzzy Logic Control System.

Each set is given a linguistic label to identify it, such as Positive Big (PB), Positive
Medium (PM), Positive Small (PS), About Zero (Z), Negative Small (NS), Negative
Medium (NM) and Negative Big (NB). The seven set fuzzy input windows for ¢ and
ce are shown in Figure 10.8. If at a particular instant, e(f) = 2.5 and de/dr = —0.2,
then, from Figure 10.8, the input fuzzy set membership values are

ips(@) = 0.7 ppi(e) = 0.4

pns(ce) = 0.6 p,(ce) = 0.3 (10.20)

The fuzzy rulebase
The fuzzy rulebase consists of a set of antecedent—consequent linguistic rules of
the form

IF e is PS AND ce is NS THEN u is PS (10.21)

This style of fuzzy conditional statement is often called a ‘Mamdani’-type rule, after
Mamdani (1976) who first used it in a fuzzy rulebase to control steam plant.

The rulebase is constructed using a priori knowledge from either one or all of the
following sources:

(a) Physical laws that govern the plant dynamics
(b) Data from existing controllers
(c) Imprecise heuristic knowledge obtained from experienced experts.

If (c) above is used, then knowledge of the plant mathematical model is not required.

The two seven set fuzzy input windows shown in Figure 10.8 gives a possible 7 x 7
set of control rules of the form given in equation (10.21). It is convenient to tabulate
the two-dimensional rulebase as shown in Figure 10.9.

Fuzzy inference

Figure 10.9 assumes that the output window contains seven fuzzy sets with the same
linguistic labels as the input fuzzy sets. If the universe of discourse for the control
signal u(¢) is £9, then the output window is as shown in Figure 10.10.
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n(e) 1.01
0.8
0.6 ~NE NM NS Z PS PM PB
0.4+ '
0.2+
-6 -4 -2 0 2 25 4 6
Error (e)
1(ce)1.0-
0.8
0.6 ~NE NM NS z PS PM PB
0.4+ |
0.2+
-1 -0.67 -0.33 —20.2 0 0.33 0.67 1

Rate of Change Of Error (ce)

Fig. 10.8 Seven set fuzzy input windows for error (e) and rate of change of error (ce).
Assume that a certain rule in the rulebase is given by equation (10.22)

OR IF eis A AND ceis BTHEN u = C (10.22)

From equation (10.5) the Boolean OR function becomes the fuzzy max operation,
and from equation (10.6) the Boolean AND function becomes the fuzzy min oper-
ation. Hence equation (10.22) can be written as

pic(u) = max[min (pa(e), ps(ce))] (10.23)

Equation (10.23) is referred to as the max—min inference process or max—min fuzzy
reasoning.

In Figure 10.8 and equation (10.20) the fuzzy sets that were ‘hit’ in the error input
window when e(f) = 2.5 were PS and PM. In the rate of change input window when
ce = —0.2, the fuzzy sets to be ‘hit’ were NS and Z. From Figure 10.9, the relevant
rules that correspond to these ‘hits’ are
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e
NB NM NS Zz PS PM PB
ce
NB NB NB NB NM Zz PM PB
NM NB NB NB NM PS PM PB
NS NB NB NM NS PS PM PB
Zz NB NM NS z PS PM PB
PS NB NM NS PS PM PB PB
PM NB NM NS PM PB PB PB
PB NB NM z PM PB PB PB
Fig. 10.9 Tabular structure of a linguistic fuzzy rulebase.
p(u) 1.0
0.8 1
0.6 T+
NB NM NS Z PS PM PB
04t
0.2 1
-9 -6 -3 0 3 6 9

Control Signal (u)

Fig. 10.10 Seven set fuzzy output window for control signal (u).

. OR IF e is PS AND ce i1s NS

OR IF eis PS AND ce is Z
THEN u = PS

. OR IF e is PM AND ce is NS

ORIF eis PM and ceis Z
THEN « = PM

(10.24)

(10.25)
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Applying the max—min inference process to equation (10.24)
pps (1) = max[ min(ups(e), pns(ce)), min(ups(e), pz(ce))] (10.26)
inserting values from equation (10.20)
pps(¢) = max[ min(0.7,0.6), min(0.7, 0.3)]
= max[0.6, 0.3] = 0.6 (10.27)
Applying the max—min inference process to equation (10.25)
pem (1) = max[min(upm(e), pns(ce)), min(upm(e), piz(ce))] (10.28)
inserting values from equation (10.20)
ppm(u) = max[ min(0.4, 0.6), min(0.4, 0.3)]
= max[0.4, 0.3] =04 (10.29)

Fuzzy inference is therefore the process of mapping membership values from the
input windows, through the rulebase, to the output window(s).

The defuzzification process

Defuzzification is the procedure for mapping from a set of inferred fuzzy control
signals contained within a fuzzy output window to a non-fuzzy (crisp) control signal.
The centre of area method is the most well known defuzzification technique, which in
linguistic terms can be expressed as

Sum of first moments of area

Cri trol signal = 10.30
risp control signa Sum of areas ( )
For a continuous system, equation (10.30) becomes
S up(uydu
u(t) = —F— (10.31)
J p(u)du
or alternatively, for a discrete system, equation (10.30) can be expressed as
u(eT) = izt ikt4) (10.32)
> iy )
For the case when e(f) = 2.5 and ce = —0.2, as a result of the max—min inference

process (equations (10.27) and (10.29)), the fuzzy output window in Figure 10.10 is
‘clipped’, and takes the form shown in Figure 10.11.
From Figure 10.11, using the equation for the area of a trapezoid

0.6(6 + 2.4)

Arcaps = 5 =2.52 (1033)
Areapy = w =0.96 .
From equation (10.30)
u([):(2.52><3)—1—(0.96><6):3'83 (10.34)

2.5240.96
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-9 -6 -3 0 3 6 9
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Fig. 10.11 Clipped fuzzy output window due to fuzzy inference.

Hence, for given error of 2.5, and a rate of change of error of —0.2, the control signal
from the fuzzy controller is 3.83.

Example 10.2
For the input and output fuzzy windows given in Figure 10.8 and 10.10, together
with the fuzzy rulebase shown in Figure 10.9, determine

(a) the membership values of the input windows e and ce.
(b) the max—min fuzzy inference equations
(c) the crisp control signal u(f)

when e = —3 and ce = 0.3
Solution
(a) When ¢ = —3 and ce = 0.3 are mapped onto the input fuzzy windows, they are

referred to as fuzzy singletons. From Figure 10.8

e=-3 ,LLNs(e) =0.5 MNM(e) =0.5 (10.35)

ce = 0.3, using similar triangles

L _ z(ce)
0.33  (0.33-10.3)
uz(ce) = 0.09 (10.36)
and
L pes(ee)
0.33 0.3

pips(ce) = 0.91 (10.37)
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(b) The rules that are ‘hit’ in the rulebase in Figure 10.9 are

.ORIF eis NS and ce is Z
OR IF e is NS and ce is PS
THEN u = NS (10.38)

.ORIF eis NM and ce is Z
OR IF e 1s NM and ce is PS
THEN u = NM (10.39)

Applying max—min inference to equation (10.38)
pns(u) = max[ min(uns(e), pz(ce)), min(uns(e), pps(ce))] (10.40)
Inserting values into (10.40)

pns (1) = max[ min(0.5, 0.09), min(0.5, 0.91)]

(10.41)
= max[0.09,0.5] = 0.5

and similarly with equation (10.39)

pnm () = max[ min(unm(e), pz(ce)), min(unm(e), pps(ce))]
— max[ min(0.5,0.09), min(0.5,0.91)] (10.42)
= max[0.09,0.5] = 0.5

Using equations (10.41) and (10.42) to ‘clip’ the output window in Figure 10.10, the
output window is now as illustrated in Figure 10.12.

(c) Due to the symmetry of the output window in Figure 10.12, from observation,
the crisp control signal is

u(t) = —4.5

Example 10.3 (See also Appendix 1, exampl03.m)
Design a fuzzy logic controller for the inverted pendulum system shown in Figure
10.13 so that the pendulum remains in the vertical position.

The inverted pendulum problem is a classic example of producing a stable closed-
loop control system from an unstable plant.

Since the system can be modelled, it is possible to design a controller using the pole
placement techniques discussed in Chapter 8. Neglecting friction at the pivot and the
wheels, the equations of motion from Johnson and Picton (1995) are

P F + ml(0 sin 6 — 6 cos )

10.43
M +m (1043)

é_gSinﬁJrcosﬂ(%W)

(4 — mcos?
3 M+m

(10.44)
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Fig. 10.12 Fuzzy output window for Example 10.2.

Fig. 10.13 Aninverted pendulum.

In equations (10.43) and (10.44), m is the mass and ¢ is the half-length of the
pendulum and M is the mass of the trolley. F(¢) is the applied force to the trolley
in the x-direction. If it is assumed that 6 is small and second-order terms (62) can be
neglected, then

. F—ml
. 80+ (3
0= M (10.46)

¢ (% B M,im)
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If the state variables are
x; =6, xzzé, x3=x and x4 =X
and the control variable is
u=F(1)

then from equations (10.45) and (10.46), the state equations become

fC] 0 1 0 0 X1 0
Xo| _|ax 0 0 Offx by
al=10 o001 x3+0u (10.47)
fC4 day 0 0 0 X4 b4
where
P 3g(M + m)
T {aM + m) = 3m}
Gt — —3gm
T4 + m) = 3m
3 (10.48)
by = L{4(M + m) — 3m}
1 3m
bs = <M+m){l +4(M+m)—3m}
and the output equation is
y=0Cx (10.49)

where C is the identity matrix. For a regulator, with a scalar control variable
u=—Kx

The elements of K can be obtained by selecting a set of desired closed-loop poles as
described in section 8.4.2, and applying one of the three techniques discussed.
Data for simulation

{=1m M=1kg m=0.5kg

3 % 9.81(1.5)
- — 938l
e TSR I I
~3%9.81 x 0.5
WEaxis-1s - 7
by 3 —0.667

T1{@ <1515

1 L5
bs = <1.5){1 Taxis - 1.5} = 0.889
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If the required closed-loop poles are
s = —2 +j2 for the pendulum, and
s = —4 + j4 for the trolley, then the closed-loop characteristic equation is

s 1280 47257 4 1925 + 256 = 0 (10.50)

Using Ackermann’s Formula in equations (8.103) and (8.104), the state feedback
matrix becomes

K=[-17483 —57.12 -39.14 —29.36] (10.51)

Using the fuzzy logic approach suggested by Johnson and Picton (1995), four,
three set input windows (one for each state variable) and one, three set output
window has been selected as shown in Figure 10.14. Using heuristic knowledge from
broom-balancing experiments, the following Mamdani-type rulebase was con-
structed:

IF 6 is PB and 6 is PB then F is PB

—_—

2. IF 0 is PB and 6 is Z then F is PB

3. IF 0is PB and 6 is NB then F is Z

4. 1F @ is Z and 6 is PB then F is PB

5. IF#is Z and 0 is Z then F is Z

6. IF 0is Z and 6 is NB then F is NB (10.52)
7. IF 0is NB and 6 is PB then F is Z

8. IF 0is NB and 6 is Z then F is NB

9. IF 0is NB and 6 is NB then F is NB
10. 1IF 6 is PB then F is PB

11. IF @ is NB then F is NB

The rulebase can be extended up to 22 rules by a further set of 11 rules replacing 6
with x and 6 with x.
For the rulebase given in equation (10.52), the fuzzy max—min inference process is

ppp(1t) = max[ppp(6), min(upp(9), 1p(6)), min(upp(6), 1z(0)), min(uz(6), upp(9))]
ping () = max[png(9), min(uz(9), s (0)), min(uns(6), pz(9)), min(uns(6), fns(6))]
1iz(u) = max[min(upp(9), g (60)), min(uz(6), uz(6)), min(ungs(9), tps(6))]

Again, a similar inference process occurs with x and x. Following defuzzification,
a crisp control force F() is obtained.

Figure 10.15 shows the time response of the inverted pendulum state variables
from an initial condition of # = 0.1 radians. On each graph, three control strategies
are shown, the 11 set rulebase of equation (10.52), the 22 set rulebase that includes
x and X, and the state feedback method given by equation (10.51).

For the pendulum angle, shown in Figure 10.15(a), the 11 set rulebase gives the
best results, the state feedback being oscillatory and the 22 set rulebase diverging
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1(6)
1.0
NB PB NB PB
-0.1 0 0.1 0 -0.5 0 0.5 6
X)
1.0
NB PB NB PB
-1.0 0 1.0 X -1.0 0 1.0 X

-100 0 100 F

Fig. 10.14 Input and output fuzzy windows for the inverted pendulum problem.

after a while. The same comments apply to the pendulum angular rate, given in
Figure 10.15(b).

With the trolley displacement and velocity shown in Figures 10.15(c) and (d), the
state feedback, although oscillatory, give the best results since there is no steady-state
error. The positional error for both rulebases increases with time, and there is a
constant velocity steady-state error for the 11 set rulebase, and increasing error for
the 22 set rulebase. Figure 10.15(e) shows the control force for each of the three
strategies.

The 11 and 22 set rulebase simulations were undertaken using SIMULINK,
together with the fuzzy logic toolbox for use with MATLAB. More details on the
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(Fig. 10.15 continued)
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Fig. 10.15 Inverted pendulum state variable time response for three control strategies.

MATLAB Fuzzy Inference System (FIS) editor can be found in Appendix 1. Figure
10.16 shows the control surface for the 11 set rulebase fuzzy logic controller.

10.2.5 Self-organizing fuzzy logic control

Self-Organizing Fuzzy Logic Control (SOFLC) is an optimization strategy to create
and modify the control rulebase for a FLC as a result of observed system
performance. The SOFLC is particularly useful when the plant is subject to time-
varying parameter changes and unknown disturbances.

Structure
A SOFLC is a two-level hierarchical control system that is comprised of:

(a) alearning element at the top level
(b) a FLC at the bottom level.

The learning element consists of a Performance Index (PI) table combined with a rule
generation and modification algorithm, which creates new rules, or modifies existing
ones. The structure of a SOFLC is shown in Figure 10.17. With SOFLC it is usual to
express the PI table and rulebase in numerical, rather than linguistic format. So, for
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Fig. 10.17 Self-Organizing Fuzzy Logic Control system.
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oo ° NB NM NS z PS PM PB
NB -50 -40 -30 —20 | -10 0 10
NM —42 -32 —22 —12 -2 8 18
NS -36 -26 -16 -6 4 14 24
z -30 —20 -10 0 10 20 30
PS —24 -14 -4 6 16 26 36
PM -18 -8 2 12 22 32 42
PB -10 0 10 20 30 40 50

Fig. 10.18 Tabular structure of a numerical fuzzy rulebase.

example, the fuzzy rulebase in Figure 10.9, might take the form as shown in Figure
10.18.

Rulebase modification
If the numerical structure of the fuzzy rulebase does not give an acceptable response,
then the values in certain cells will need to be adjusted.

Let the error, rate of change of error and control signal at time ¢ be e(¢), ce(f) and
u(?) respectively, and assume that a given PI is a function of e(f) and ce(?).

If there are unacceptable errors at time ¢, because of the dynamics of the plant,
these will be as a result of control action taken d seconds previously, or at time
(t — d). The parameter d is a ‘delay in reward’ parameter and is related to the settling
time of the plant, having a typical value of between 37 and 57, where T is the
dominant time constant of the plant.

The value of the PI is therefore determined using e(t — d) and ce(t — d) and applied
to u(t) as a correction factor to the rulebase in the form

IF e(t) is ... and ce(?) is ... THEN u(f) = - - + PI (10.53)

where the PI is read from a Performance Index table of the form shown in Figure
10.19. When the values of e(t — d) and ce(¢t — d) are within an acceptable range, the
PI tends to zero and the fuzzy rulebase settles down and convergence for the self-
organizing process has been achieved. The PI table is usually designed heuristically,
based upon an intuitive understanding of the learning process, and the trade-off
between speed of learning and stability of the rulebase.
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co ° NB NM NS z PS PM PB
NB -5 -4 -3 -3 -2 -1 0
NM -4 -3 -3 -2 -1 0 1
NS -3 -3 -2 -1 0 1 2
z -3 -2 -1 0 1 2 3
PS -2 -1 0 1 2 3 3
PM -1 0 1 2 3 3 4
PB 0 1 2 3 3 4 5

Fig. 10.19 Performance Index table.

10.3 Neural network control systems

10.3.1 Artificial neural networks

The human brain is comprised of many millions of interconnected units, known
individually as biological neurons. Each neuron consists of a cell to which is attached
several dendrites (inputs) and a single axon (output). The axon connects to many
other neurons via connection points called synapses. A synapse produces a chemical
reaction in response to an input. The biological neuron ‘fires’ if the sum of the
synaptic reactions is sufficiently large. The brain is a complex network of sensory
and motor neurons that provide a human being with the capacity to remember,
think, learn and reason.

Artificial Neural Networks (ANNs) attempt to emulate their biological counter-
parts. McCulloch and Pitts (1943) proposed a simple model of a neuron, and Hebb
(1949) described a technique which became known as ‘Hebbian’ learning. Rosenblatt
(1961), devised a single layer of neurons, called a Perceptron, that was used for
optical pattern recognition.

One of the first applications of this technology for control purposes was by
Widrow and Smith (1964). They developed an ADaptive LINear Element
(ADLINE) that was taught to stabilize and control an inverted pendulum. Kohonen
(1988) and Anderson (1972) investigated similar areas, looking into ‘associative’
and ‘interactive’ memory, and also ‘competitive learning’. The back propagation
training algorithm was investigated by Werbos (1974) and further developed by
Rumelhart (1986) and others, leading to the concept of the Multi-Layer Perceptron
(MLP).
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Artificial Neural Networks have the following potential advantages for intelligent
control:

e They learn from experience rather than by programming.

o They have the ability to generalize from given training data to unseen data.
e They are fast, and can be implemented in real-time.

e They fail ‘gracefully’ rather than ‘catastrophically’.

10.3.2 Operation of a single artificial neuron

The basic model of a single artificial neuron consists of a weighted summer and an
activation (or transfer) function as shown in Figure 10.20. Figure 10.20 shows a
neuron in the jth layer, where

X1 ...X; are inputs

wji ... wj are weights

b; is a bias

J; is the activation function
yj is the output

The weighted sum s; is therefore
N
si(0) = > wixi(1) + by (10.54)
i=1

Equation (10.54) can be written in matrix form
5i(t) = W;x + b; (10.55)

The activation function f(s) (where s is the weighted sum) can take many forms, some
of which are shown in Figure 10.21. From Figure 10.21 it can be seen that the bias b;
in equations (10.54) and (10.55) will move the curve along the s axis, i.e. effectively

_ Synaptic
bias b Connections

Activation
function

X\ ————O——> Yi

X

Weighted
Summer

Xi

Wi

Fig. 10.20 Basic model of a single artificial neuron.
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setting the threshold at which the neuron ‘fires’. So in the case of the hard-limiting
function, if b; = 0, the neuron will ‘fire’ when s;(¢) changes from negative to positive.

The sigmoid activation function is popular for neural network applications since it
is differentiable and monotonic, both of which are a requirement for the back-
propagation algorithm. The equation for a sigmoid function is

(10.56)

10.3.3 Network architecture

Feedforward networks
An ANN is a network of single neurons jointed together by synaptic connections.
Figure 10.22 shows a three-layer feedforward neural network.

The feedforward network shown in Figure 10.22 consists of a three neuron input
layer, a two neuron output layer and a four neuron intermediate layer, called a
hidden layer. Note that all neurons in a particular layer are fully connected to all
neurons in the subsequent layer. This is generally called a fully connected multilayer
network, and there is no restriction on the number of neurons in each layer, and no
restriction on the number of hidden layers.

f(s) f(s)
1.0
1.0
s s
(a) Hard-Limiting (Unit Step) (b) Linear (Ramp)
f(s) f(s)
1.0+ 1.0+

/

1.0+

(c) Hyperbolic Tangent (d) Sigmoid

Fig. 10.21 Activation functions.
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Input Hidden Output
layer layer layer

Fig. 10.22 Three-layer feedforward neural network.

Feedback (recurrent) networks
Recurrent networks are based on the work of Hopfield and contain feedback paths.
Figure 10.23 shows a single-layer fully-connected recurrent network with a delay
(z7") in the feedback path.

If, in Figure 10.23, the inputs occur at time (k7") and the outputs are predicted at
time (k + 1)7, then the network can be represented in matrix form by

vk + DT = Wiy(kT) + Wax(kT) (10.57)

Equation (10.57) is in the same form as the discrete-time solution of the state
equation (8.76).

10.3.4 Learning in neural networks

Learning in the context of a neural network is the process of adjusting the weights
and biases in such a manner that for given inputs, the correct responses, or outputs
are achieved. Learning algorithms include:

(a) Supervised learning: The network is presented with training data that represents
the range of input possibilities, together with the associated desired outputs. The
weights are adjusted until the error between the actual and desired outputs meets
some given minimum value.

(b) Unsupervised learning: Also called open-loop adaption because the technique
does not use feedback information to update the network’s parameters. Applica-
tions for unsupervised learning include speech recognition and image compres-
sion. Important unsupervised networks include the Kohonen Self-Organizing
Map (KSOM) which is a competitive network, and the Grossberg Adaptive
Resonance Theory (ART), which can be used for on-line learning.
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Fig. 10.23 Recurrent neural network.

10.3.5 Back-Propagation

The Back-Propagation Algorithm (BPA) is a supervised learning method for training
ANNSs, and is one of the most common forms of training techniques. It uses a
gradient-descent optimization method, also referred to as the delta rule when applied
to feedforward networks. A feedforward network that has employed the delta rule
for training, is called a Multi-Layer Perceptron (MLP).

If the performance index or cost function J takes the form of a summed squared
error function, then

M
Z(d ) (10.58)

where d; and y; are the desired and actual network outputs respectively. Using
gradient-descent, the weight increment Awj; is proportional to the (negative) slope

oJ

= 10.59
H oy (10.59)

Awji = —

where 4 is a constant. From equations (10.58) and (10.59),

a1 9
=3 2 G, 0’
=1 SN

aWj[
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using the chain rule,

_ Z — )2 ayl
aw/l 8}/’/ ’ 8W./i

giving

Z( j— ) 2 (10.60)

(“)w,, 3WJ,

If the activation function is the sigmoid function given in equation (10.56), then its

derivative is
of ey 1 RS
dsi (1+e9)? 14+ew \l4e

or
0 . .
T~ -1 (10.61)
N
Since f(s) is the neuron output y;, then equation (10.61) can be written as
Ay;
2 — (1 = s 10.62
ds; yi(l =) (10.62)

From equation (10.60), again using the chain rule,

9y _ 0y; 05
Owj;  Os; Owj;

(10.63)

If, in equation (10.54), the bias b; is called wj, then equation (10.54) may be
written as

N
5= Z WjiX; (10.64)
i=0
thus
0Os; 0 & 8w,,
L= o> i = Z X = X (10.65)

ow;i  Ow; parc ow;i

Substituting equations (10.62) and (10.65) into (10.63) gives

Jyi

61—1)/, = y](l — yj)x,- (1066)



Intelligent control system design 353

Putting equation (10.66) into (10.60) gives

oJ 2 I
oy _M;(dj — 3l = ¥ (10.67)
or
awﬂ Z 8jxi (10.68)
where
b = (dj — ypyi(1 = y)) (10.69)

Substituting equation (10.68) into (10.59) gives

M
Awji =1 bx; (10.70)
J=1

where
2
M
This leads to a weight increment, called the delta rule, for a particular neuron
Ale'(kT) = n&ixi (1071)
where 7 is the learning rate and has a value of between 0 and 1. Hence the new weight
becomes
wii(kT) = wj(k — )T + Awy(kT)
or
wii(kT) = wji(k — )T + nd;x; (10.72)
Consider a three layer network. Let the input layer be layer one (¢ = 1), the hidden
layer be layer two (¢ = 2) and the output layer be layer three (¢ = 3). The back-
propagation commences with layer three where d; is known and hence §; can be

calculated using equation (10.69), and the weights adjusted using equation (10.71).
To adjust the weights on the hidden layer (¢ = 2) equation (10.69) is replaced by

N
(8], = (1 = lz Wi 1 (10.73)

141
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Hence the 6 values for layer ¢ are calculated using the neuron outputs from layer ¢
(hidden layer) together with the summation of w and ¢ products from layer ¢+ 1
(output layer). The back-propagation process continues until all weights have been
adjusted. Then, using a new set of inputs, information is fed forward through the
network (using the new weights) and errors at the output layer computed. The
process continues until

(i) the performance index J reaches an acceptable low value
(i1) a maximum iteration count (number of epochs) has been exceeded
(iii) a training-time period has been exceeded.

For either (ii) or (iii), it may well be that a local minima has been located. Under these
conditions the BPA may be re-started, and if again unsuccessful, a new training set
may be required.

The equations that govern the BPA can be summarized as

Single neuron summation

sj = i wjiX; + b; (10.74)
i1
Sigmoid activation function
Yi=1 +le—5’/ (10.75)
Delta rule
Aw;(kT) = no;x; (10.76)
New weight
wii(kT) = wji(k — DT + Aw(kT) (10.77)
Output layer
b = yi(1 = y)(dj =) (10.78)
| M
= 5; (d; — y;)* (10.79)

Other layers

8], = (1 = )] [Zwﬂ] (10.80)

141

Learning with momentum
When momentum is used in the BPA, the solution stands less chance of becoming
trapped in local minima. It can be included by making the current change in weight
equal to a proportion of the previous weight change summed with the weight change
calculated using the delta rule.
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The delta rule given in equation (10.76) can be modified to include momentum as
indicated in equation (10.81).

Awi(kT) = (1 — a)ndpx; + alwj(k — 1)T (10.81)

where « 1s the momentum coefficient, and has a value of between 0 and 1.

Example 10.4
The neural network shown in Figure 10.24 is in the process of being trained using a
BPA. The current inputs x; and x, have values of 0.2 and 0.6 respectively, and the

desired output d; = 1. The existing weights and biases are
Hidden layer

1.0 15 1.0
W,= (05 20| b=1|-05
25 3.0 1.5

Output layer
(t=2)

Hidden layer
(=1

X()=1

Input layer
(1=0)

Fig. 10.24 Training using back-propagation.
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Output layer
W;=[3.0 2.0 1.0] b;=[-4.0]

Calculate the output y; and hence the new values for the weights and biases. Assume
a learning rate of 0.5.

Solution

Forward propagation
Hidden layer (¢ = 1): Single neuron summation

J=1: st =wi+wnx +wpxs
J=2: 55 =wy + Wa x| + waXxp
J=3: s3=w3+ w3xX] + wxy

51 w11 w12 X W10

> = [ wa wa |:;€1 ] + | Wy (1082)
2

53 w31 W3 w30

Sigmoid activation functions (j = 1 to 3)
1 1 1

or

yl = 1 + e—.yl y2 = 1 + e—sz y3 = 1 + e—S} (10.83)
Output layer (£ = 2)
J=1: sp=wio+wiyr +wpy2 +wizys (10.84)
N (10.85)
yj_yl_1+e*‘YI '
Inserting values into equations (10.82) and (10.83)
S 1.0 1.5 1.0
51 =105 20 {82} + 1 -0.5
53 2.5 3.0 ’ 1.5
N 2.1 Sy = 0.8 S3 = 3.8
y1 = 0.891 y2 = 0.690 y3 =0.978
Inserting values into equations (10.84) and (10.85)
s1=1.031 y; =y =0.737 (10.86)

Back propagation
Output layer (¢ = 2): From equation (10.69)

o = yi(1 = y(d; — ;)
Since j =1
81 = 0.737(1 — 0.737)(1 — 0.737)
— 0.051 (10.87)
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Delta rule

Awj(kT) = nb;x;
Awig = 0.5 x0.051 x 1 =0.0255
Awyp = 0.5 x 0.051 x 0.891 = 0.0227
Awip, = 0.5 x 0.051 x 0.69 = 0.0176
Awiz = 0.5 x 0.051 x 0.978 = 0.0249

New weights and biases for output layer

=[3.0227 2.0176 1.0249] b, =[—3.975] (10.88)

Hidden layer (£ = 1): From equation (10.80)

(6], = [l ~ [Z wid ]

141

To illustrate this equation, had there been two neurons in layer (¢ 4 1), i.e. the output
layer, then values for 6; and 8, for layer (¢ + 1) would have been calculated. Thus, for
layer ¢ (the hidden layer), the [¢;], values would be

J=1: [01], = 1A =yl w1161 + warbalyy
J=2 [62y = [2(1 = y2)y[w1201 + wa2d2]yy
J =3 [63], = 31 — y3)]e[wiz61 + wazdalyyy

However, since in this example there is only a single neuron in layer (¢ + 1), 6, = 0.
Thus the 6 values for layer ¢ are

j=1: [6], =[0.891(1 — 0.891)][3.0227 x 0.051] = 0.015
j=2 [8], = [0.690(1 — 0.690)][2.0176 x 0.051] = 0.022 (10.89)
j=3: [65], =[0.978(1 — 0.978)][1.0249 x 0.051] = 0.001

Hence, using the delta rule, the weight increments for the hidden layer are

Awio =0.5x0.015 x 1 =0.0075
Awyp =0.5x%0.015x 0.2 =0.0015
Awip = 0.5 % 0.015 x 0.6 = 0.0045
Awy =0.5x0.022 x 1 =0.0110
Awy; =0.5x0.022 x 0.2 = 0.0022
Awyp = 0.5 % 0.022 x 0.6 = 0.0066
Awszp = 0.5 % 0.001 x 1 = 0.0005
Awsz; = 0.5 % 0.001 x 0.2 = 0.0001
Awsp = 0.5 % 0.001 x 0.6 = 0.0003
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The new weights and biases for the hidden layer now become

1.0015  1.5045 1.0075
W, = [0.5022 2.0066 | b, = | —0.489 (10.90)
2.5001 3.0003 1.5005

10.3.6 Application of neural networks to modelling, estimation
and control

An interesting and important feature of a neural network trained using back-propa-
gation is that no knowledge of the process it is being trained to emulate is required.
Also, since they learn from experience rather than programming, their use may be
considered to be a ‘black box’ approach.

Neural networks in modelling and estimation

Providing input/output data is available, a neural network may be used to model the
dynamics of an unknown plant. There is no constraint as to whether the plant is
linear or nonlinear, providing that the training data covers the whole envelope of
plant operation.

Consider the neural network state observer shown in Figure 10.25. This is similar
in operation to the Luenberge full-order state observer given in Figure 8.9. If the
neural network in Figure 10.25 is trained using back-propagation, the algorithm will
minimize the PI

N
J =" (y(kT) = 5(kT) (y(kT) — §(kT)) (10.91)
k=1

Richter et al. (1997) used this technique to model the dynamic characteristics
of a ship. The vessel was based on the Mariner Hull and had a length of 161 m
and a displacement of 17000 tonnes. The training data was provided by a three
degree-of-freedom (forward velocity, or surge, lateral velocity, or sway and turn, or

u(kT) y(kT)
r————>{ Plant >

Y(KT)-Y(KT) %;
~ V(kT)
Neural

—> Network —‘r c

Fig. 10.25 Neural network state observer.

> X(KT)
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yaw-rate) differential equation model produced by Burns and was based on previous
work by Morse and Price.

The training file consisted of input data of the form: Time elapsed #(kT"), Rudder
angle 8(kT), Engine speed n(kT) with corresponding output data Forward velocity
u(kT), Lateral velocity v(kT), Yaw-rate r(kT).

With the engine speed held constant, the rudder was given step changes of 0°,
+10°, £20° and 4+30°. Figure 10.26 shows training and trained data for a rudder

7.5

Actual

6.5 Neural
Network

5.5

Forward (Surge) Velocity (m/s)

4.5

0 50 100 150 200 250 300 350 400
Time (s)

(a)

1.2

Neural

0.6 / Network
0.4 /

0.2

0 20 40 60 80 100 120 140 160 180 200

Time (s)

(b)

Lateral (Sway) Velocity (m/s)
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-0.4
\ Actual
. \
-0.8 \ \

T

Yaw-Rate (deg/s)
)
(o]

\\ Neural
1o Netvyork
o 20 40 60 80 100 120 140 160 180 200
Time (s)

()

Fig. 10.26 Training and trained data for a neural network model of a Ship's Hull.

angle of +20° (where positive is to port, or left). The input and output data was
sampled every 5 seconds, during the transient period of the turn (0—300 seconds).

The selected network had a 3-6-6-6-3 structure, i.e. input and output layers
comprising 3 neurons in each, separated by three hidden layers of 6 neurons. During
learning, 4 million epochs were trained. The learning rate and momentum were
initially set at 0.3 and 0.8, but were reduced in three steps to final values of 0.05
and 0.4 respectively.

Inverse models
The inverse model of a plant provides a control vector u(k7) for a given output
vector y(kT') as shown in Figure 10.27.

u(kT) y(KT)
— SN

+<% Error

Plant

Neural
Network <

N

Fig. 10.27 Neural network plant inverse model.
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uc(kT)

Existing
r———>{ Controller

rkT)  + e(kT) VkT)

Plant ————

Error

y(kT)
Neural

L——> Network
Controller Unn(KT)

J

Fig. 10.28 Training a neural network controller.

So, for example, with the ship model shown in Figure 10.26, the inverse model could
be trained with time, forward velocity, lateral velocity and yaw-rate as input data and
rudder angle and engine speed as output data.

Neural networks in control

Controller emulation: A simple application in control is the use of neural networks to
emulate the operation of existing controllers. It may be that a nonlinear plant
requires several tuned PID controllers to operate over the full range of control
actions. Or again, an LQ optimal controller has difficulty in running in real-time.
Figure 10.28 shows how the control signal from an existing controller may be used to
train, and to finally be replaced by, a neural network controller.

Error back-propagation through plant model

All closed-loop control systems operate by measuring the error between desired
inputs and actual outputs. This does not, in itself, generate control action errors that
may be back-propagated to train a neural network controller. If, however, a neural
network of the plant exists, back-propagation through this network of the system
error (r(kT) — y(kT)) will provide the necessary control action errors to train the
neural network controller as shown in Figure 10.29.

Internal Model Control (IMC)

Internal Model Control was discussed in relation to robust control in section 9.6.3
and Figure 9.19. The IMC structure is also applicable to neural network control. The
plant model Gy,(s) in Figure 9.19 is replaced by a neural network model and the
controller C(s) by an inverse neural network plant model as shown in Figure 10.30.

10.3.7 Neurofuzzy control

Neurofuzzy control combines the mapping and learning ability of an artificial neural
network with the linguistic and fuzzy inference advantages of fuzzy logic. Thus
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i\

r(kT) + Neural uc(kT) y(kT)
L N%:L Network ——————> Plant >
- Controller

Control

Action Error Back-
Propagation

Error Through Plant
Model

System Error

Fig. 10.29 Control action error generated by system error back-propagation through plant model.

d(kT)
r(kT) + e(kT Plant u(kT)
Inverse > Plant
- Model
Plant
> Model

Fig. 10.30 Application of neural networks to IMC.

a neurofuzzy controller has the potential to out-perform conventional ANN or fuzzy
logic controllers. The general architecture of a neurofuzzy scheme is to employ neural
network learning to upgrade either the membership functions or rulebase of the fuzzy
logic element.

The Adaptive Network based Fuzzy Inference System (ANFIS)

The ANFIS neurofuzzy controller was implemented by Jang (1993) and employs
a Takagi-Sugeno—Kang (TSK) fuzzy inference system. The basic ANFIS architecture
is shown in Figure 10.31.

Square nodes in the ANFIS structure denote parameter sets of the membership
functions of the TSK fuzzy system. Circular nodes are static/non-modifiable and
perform operations such as product or max/min calculations. A hybrid learning rule
is used to accelerate parameter adaption. This uses sequential least squares in the
forward pass to identify consequent parameters, and back-propagation in the back-
ward pass to establish the premise parameters.
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Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
(Premise Parameters) (Consequent Parameters)
X1 Xo
As

X1
Wy Wy W1 f; 1

" "

B _

Wil

X2

ANAN

B

X1 Xo

Fig. 10.31 The Adaptive Network based Fuzzy Inference System (ANFIS) architecture (after Craven).

If the fuzzy inference system has inputs x; and x, and output f'as shown in Figure
10.31, then a first-order TSK rulebase might be

Rule 1: If x; is A; and x; is B
then fi = p1x1 + q1x2 + 1
Rule 2: If x, is A, and x; is B,
then f> = pax1 + gax2 + 12
Rule n: If x1s 4, and x, is B,
then f, = p,x1 + guxa + 1y (10.92)

Where A4;...A,, By...B, are membership functions and p;...p,, ¢qi...q, and
ry ...r, are constants within the consequent functions.

Layer 1 contains adaptive nodes that require suitable premise membership func-
tions (triangular, trapezoidal, bell, etc). Hence

Y1 = pgi(x;) (10.93)
Layer 2 undertakes a product or T-norm operation.
Vo, =wi = pai(x)ppi(x2) .. ppi(xy) 1=1,2....n (10.94)

Layer 3 calculates the ratio of the firing strength of the rules

_ Wi

== 10.95
V3, w E;l:l " ( )
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Layer 4 generates the linear consequent functions as given in equation (10.92). Layer
5 sums all incoming signals

=f= Zw, = ’ o Wi (10.96)

_1 Wi

A limitation of the ANFIS technique is that it cannot be employed on multivariable
systems. The Co-active ANFIS (CANFIS) developed by Craven (1999) extends the
ANFIS architecture to provide a flexible multivariable control environment. This
was employed to control the yaw and roll channels of an Autonomous Underwater
Vehicle (AUV) simultaneously.

Predictive Self-Organizing Fuzzy Logic Control (PSOFLC)

This is an extension of the SOFLC strategy discussed in section 10.2.5 and illustrated
in Figure 10.17. Predictive Self-Organizing Fuzzy Logic Control is particularly useful
when the plant dynamics are time-varying, and the general architecture is shown in
Figure 10.32.

In Figure 10.30 the predictive neural network model tracks the changing dynamics
of the plant. Following a suitable time delay, e, (kT) is passed to the performance
index table. If this indicates poor performance as a result of changed plant dynamics,
the rulebase is adjusted accordingly. Richter (2000) demonstrated that this technique
could improve and stabilize a SOFLC when applied to the autopilot of a small
motorized surface vessel.

» PI
Time Rulebase
Delay
A
r(kT) +8e(kT) o FLc u(kT) S Plant R y(l:T)
Y 4
L Vi en(kT) +

Neural
Network
Model

4

Fig. 10.32 Predictive Self-Organizing Fuzzy Logic Control (PSOFLC).
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10.4 Genetic algorithms and their application to control
system design

10.4.1 Evolutionary design techniques

In any design problem there is a multi-dimensional space of possible solutions. Some
of these solutions may be acceptable, but not the best (local optima) and there may
exist a single best solution (global optimum).

It has been shown in Chapter 9 that it is possible to obtain an optimal mathemat-
ical solution for a control system with linear plant dynamics. An alternative
approach is to use ‘heuristics’, or knowledge acquired through experience, to search
for optimal solutions. One such technique is to employ a Genetic Algorithm (GA).
This is a search algorithm based upon the evolutional process of natural selection of
the fittest members of a given population to breed the next generation.

10.4.2 The genetic algorithm (GA)

In the early 1960s Rechenburg (1965) conducted studies at the Technical University
of Berlin in the use of an evolutionary strategy to minimize drag on a steel plate.
Genetic algorithms were used by Holland (1975) and his students at the University of
Michigan in the late 1970s and early 1980s to analyse a range of engineering
problems. In particular, Goldberg (1983) used GAs to optimize the design of gas
pipeline systems.

The basic element of a GA is the chromosome. This contains the genetic inform-
ation for a given solution and is typically coded as a binary string. For example, an
eight digit binary number such as 11001001 represents a chromosome that contains
eight genes. Initially, a population of chromosomes, created randomly, represent
a number of solutions to a given problem.

A ‘fitness function’, which is in effect a performance index, is used to select the best
solutions in the population to be parents to the offsprings that will comprise the next
generation. The fitter the parent, the greater the probability of selection. This
emulates the evolutionary process of ‘survival of the fittest’. Parents are selected
using a roulette wheel method as shown in Figure 10.33. Here there are four
candidate parents P1, P2, P3 and P4, having selection probabilities (from the fitness
function) of 0.5, 0.3, 0.15 and 0.05 respectively. For the example in Figure 10.33, if
the roulette wheel is spun four times, P1 may be selected twice, P2 and P3 once, and
P4 not at all.

Offsprings are produced by selecting parent chromosomes for breeding, and cross-
ing over some of the genetic material. The amount of genetic material passed from
parent to offspring is dictated by the random selection of a crossover point as indicated
in Figure 10.34, where P1 and P2 are the parents, and 01 and 02 the offsprings.

Mutation is allowed to occur in some of the offsprings, the amount being con-
trolled by the mutation rate, typically a very small number. This results in the
random change in a gene in an offspring, i.e. from 0 to 1.

The breeding of successive generations continues until all offsprings are acceptably
fit. In some cases, all offsprings will eventually have the same genetic structure,
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Pointer

Fig. 10.33 Roulette wheel selection.

Crossover Point
P1 1100\:/01 1>011_1%110
P21011\o11o 02 1011|1o11
Fig. 10.34 Genetic material transfer during breeding.

representing a global optimum, or in other cases, several solutions, called clustering
may evolve. In this latter case, the system designer makes the decision as to which is
the best solution.

Example 10.5
A system has a fitness function

J=1+sinax (10.97)

as shown in Figure 10.35. Assume that the solution space has 31 values and that each
solution can be represented by a five digit binary string ranging from 00000 to 11111.
The value of a in equation (10.97) is therefore 11.6° (0.203 rad). If the population has
four members, spinning a coin (heads = 1, tails = 0) produced the following initial
population

00101 11110 00001 00011
Determine the offsprings from the initial generation and the subsequent generation.

Solution
From Figure 10.35 it can be seen that the optimal solution occurs when xj9 = 8, or
x, = 01000.

Table 10.1 shows the selection of parents for mating from the initial population. If
a random number generator is used to generate numbers between 0.0 and 1.0, then
the cumulative probability values in Table 10.1 is used as follows:

Values between 0 and 0.342, Parent 1 selected
Values between 0.343 and 0.488, Parent 2 selected
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Fig. 10.35 Fitness function for Example 10.5.

Table 10.1 Selection of parents for mating from initial population

Parent X2 xio J=f(x) p=J/EJ Cumulative Roulette
probability  wheel hits

1 00101 5 1.848 0.342 0.342 2

2 11110 30 0.792 0.146 0.488 1

3 00001 1 1.201 0.222 0.710 0

4 00011 3 1.571 0.290 1.000 1

Total 5.412 1.000 4

Mean 1.353 0.250 1

Maximum 1.848 0.342 2

Values between 0.489 and 0.710, Parent 3 selected
Values between 0.711 and 1.000, Parent 4 selected

The random number generator produced the following values: 0.326, 0.412, 0.862
and 0.067. Hence Parent 1 was selected twice, Parents 2 and 4 once and Parent 3 not
at all. The selected parents were randomly mated with random choice of crossover
points. The fitness of the first generation of offsprings is shown in Table 10.2.

From Tables 10.1 and 10.2 the total fitness of the initial population was 5.412,
whereas the total fitness of their offsprings was 5.956, an increase of 10%. Note that
if each offspring was perfect, they would have a value of 8y, or 01000,, thus giving
the maximum fitness that any population could have of 2 x 4 = 8.0.

The next spin of the random number generator produced values: 0.814, 0.236,
0.481 and 0.712, giving the roulette wheel hits shown in Table 10.2.

The second generation of offsprings is shown in Table 10.3. From Table 10.3 the
total fitness of the second generation of offsprings is 7.204, or an increase of 33%
above the initial population. As things stand, since the two most significant binary
digits in the second generation offsprings are 00, subsequent breeding will not
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Table 10.2 Fitness of first generation of offsprings

Parent Breeding  Offspring X2 xio J=fx) p=J/>.J Cumulative Roulette
probability  wheel hits

1 001% 1 00110 6 1.937 0.325 0.325 1

2 11110 2 1ror - 29 0.600 0.101 0.426 0

1 031;%1 3 00011 3 1.571 0.264 0.690 1

4 00011 4 00101 5 1.848 0.310 1.000 2

Total 5.956 1.000

Mean 1.489 0.250

Maximum 1.937 0.325

Table 10.3 Fitness of second generation of offsprings

Parent Breeding  Offspring X2 xio J=f(x)
1 ()01‘1>% 1 00101 5 1.848
4 00101 2 00110 6 1.937
3 j();%ll 3 00101 5 1.848
4 0101 4 00011 3 1.571
Total 7.204
Mean 1.801
Maximum 1.937

produce strings greater than 00111, or 7. If all four offsprings had this value, then a
total fitness for the population would be 7.953, which is close to, but not the ideal
fitness of 8.0 as explained earlier. However, if mutation in a particular offspring
changed one of the two most significant digits from 0 to 1, a perfect optimal value
could still be achieved. Also to bear in mind, is the very limited size of the population
used in this example.

Example 10.6
The block diagram for an angular positional control system is shown in Figure 10.36.
The system parameters are:

Amplifier gain K; = 3.5

Servomotor constant K3 = 15 Nm/A

Field resistance Ry =202

Gear ration =5

Equivalent moment of inertia of motor and load 7, = 1.3 kgm?
Sampling time 7" = 0.05 seconds.

Using a GA with a population of 10 members, find the values of the controller gain
K; and the tachogenerator constant K4 that maximizes the fitness function

N-1
J= 100/ > {OkT) = 6o(kT)' T (10.98)
k=0

when the system is subjected to a unit step at time k7 = 0. Perform the summation
over a time period of 2 seconds (N = 40). Allow a search space of 0-15 for K; and
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Fig. 10.36 Angular positional control system.

0-1 for K4. Assume that the solution space has 255 values and that each solution
can be represented by an eight digit binary string, the first four digits representing
K, and the second four representing Ky.

Solution
The plant transfer function is

K2K3I’l
Rflesz

%(s) = (10.99)

If the state variables are x; = 6y(¢) and x» = 6y(¢) = x,, then the state equations
become

0
X] o 0 1 X1
=0 o] |
Rel.
and the output equations
Q() - _1 0 X1
9() o _0 1 X2
Inserting values into the state equations
fC] - 0 1_ X1 0
{xz} - {o 0] [)Q} * [10.096}” (10.100)
For a sampling time of 0.05 seconds, the discrete form of equation (10.100) is
xitk+ DT | |1 0.05]|x1(kT) 0.0126
[xz(k+ DT =0 1 || k)| | 0.5048 |“ET) (10.101)

From Figure 10.36 the control law is
wkT) = K{(6i(kT) — x(kT)) — nKyx2(kT) (10.102)
where 6;(kT) =1.0 for all kT > 0.
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Hence values of K| and K, generated by the GA are inserted into equation (10.102)
and the control u(kT) used to drive the discrete plant equation (10.101). The fitness
function J is updated at each sampling instant to give an overall value at the end of
each simulation. For a population of 10 members, 10 simulations are required per
generation.

Since the required search space is K; 015, K4 0-1, the following are examples of
population membership

K Ky

1111 1111 K =15 K4=1

0011 0111 K; =3 K4=7/15=0.467
1001 1100 K3 =9 Ky4=12/15=0.8

Table 10.4 shows the parent selection for mating from a randomly seeded initial
population. The random numbers (0—1) from the roulette wheel spins were: 0.145,
0.422, 0.977, 0.339, 0.607, 0.419, 0.075, 0.027, 0.846, 0.047.

The fitness of the first generation of offsprings is given in Table 10.5. Further
breeding produced the sixth generation of offsprings given in Table 10.6. Inspection of
Table 10.6 reveals that values of K; = 15, K4 = 0.333 produces a global maximum of
J = 1065. Figure 10.37 shows the unit step response of the system in Example 10.6 for

(a) the maximum of the first generation of offsprings (J = 841)
(b) the global maximum of the sixth generation of offsprings (J = 1065)

Use of Schemata (Similarity templates): As the progression through generations of
solutions takes place, there evolves certain similarities between genes within chromo-
somes. These similarities can be exploited using a similarity template or schema, that
sits within a schemata framework.

A schema employs a don’t care symbol “*’, so, for example, the sixth generation of
offsprings in Table 10.6 could have employed the template

The use of schemata will aid the speed of convergence.

Table 10.4 Parent selection from initial population for Example 10.6

Parent K, Ky J p=J/>.J Cumulative  Roulette
probability — wheel hits
1011 1001 11 0.600 647 0.157 0.157 4
0100 1010 4 0.667 233 0.056 0.213 0
0001 0111 1 0.400 112 0.027 0.240 0
1001 1010 9 0.667 497 0.122 0.362 1
1o orrr - 14 0.467 923 0.224 0.586 2
0101 0001 5 0.067 375 0.092 0.678 1
1001 1101 9 0.867 18 0.004 0.682 0
0110 1101 6 0.867 46 0.011 0.693 0
1101 1010 13 0.667 691 0.168 0.861 1
0101 0100 5 0267 573 0.139 1.000 1
Total 4115 1.000 10
Mean 411.5 0.100 1
Maximum 923 0.224 4
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Table 10.5 Fitness of first generation of offsprings for Example 10.6

Parent Offspring K, K J
1011 1001 10100111 10 0.467 712
1110 0111 1111 1001 15 0.600 841
0101 3001 0101 0100 5 0.267 573
0101 0100 0101 0001 5 0.067 375
1011]1001 1011/1010 11 0.667 596
1001/1010 1001/1001 9 0.600 541
1101 1310 1101 1301 13 0.600 747
1011 1001 1011 1010 11 0.667 596
1011 1001 10100111 10 0.467 713
1110 0111 1111 1001 15 0.600 841
Total 6535
Mean 653.5
Maximum 841

Table 10.6 Fitness of sixth generation of offsprings for Example 10.6

Offspring K, Ky J
1110 0101 14 0.333 1030
1111 0110 15 0.400 1029
1110 0100 14 0.267 1021
1111 0101 15 0.333 1065
1111 0111 15 0.467 970
1111 0100 15 0.267 1041
1110 1000 14 0.533 858
1110 0111 14 0.467 923
1111 1000 15 0.533 905
1111 0101 15 0.333 1065
Total 9907
Mean 990.7
Maximum 1065

1.2
Bolt)

1 / //_/_,

0.8
/ First generation

0.6
0.4 /
0.2
0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1
Time (s)

T T
|~ Sixth generation

A

Fig. 10.37 Comparison between best first generation and best sixth generations solutions for Example 10.6.
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Other applications of Genetic Algorithms

(a) Optimal control: Optimal control problems such as the linear quadratic regulator
discussed in section 9.2 can also be solved using GAs. The discrete quadratic
performance index given in equation (9.28) can be employed as a (minimum)
fitness function directly. Alternatively, as shown in Example 10.6 the reciprocal
of equation (9.28) provides a (maximum) fitness function.

(b) Self-Organizing Fuzzy Logic Control: Genetic Algorithms may be used to adapt
both membership functions and rulebase structures in a SOFLC system.

Figure 10.38 shows an input window with three triangular fuzzy sets NB, Z and
PB. Each set is positioned in its regime of operation by the centre parameter ¢ so that,
for example, NB can only operate on the negative side of the universe of discourse.
The width of each set is controlled by parameter w.

The chromosome string could take the form

[er wi 2 wo 3 ws3] (10.103)
C
1 o > & »
1.0t
NB Z PB
u
Wy w3

| »

Fig. 10.38 Adaption of membership function features using genetic algorithms.

If each parameter is a 4-bit string, the configuration in Figure 10.38 would be
represented by
[100011111000111110001111] (10.104)

10.4.3. Alternative search strategies

In addition to evolutionary search strategies such as GAs, there are a number of
other search techniques that are employed for design optimization.
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Simulated annealing
The physical annealing process consists of heating a metal up to a prescribed
temperature and then allowing it to cool slowly. During cooling, the molecules form
crystals which are in a minimum energy condition. The metal, therefore, settles to
a global minimum energy state.

With simulated annealing, an energy term E is defined, which then becomes the
performance index to be minimized. For a given energy change AFE at temperature 7,
the probability P of accepting a solution is

P = ¢ AE/KT (10.105)

where k is the Boltzmann constant. If the energy of the system has decreased, then the
system may move to the new state, based on the probability given by equation
(10.105). As cooling proceeds along a prescribed schedule, the system avoids local
minima, and settles down to a global minimum energy state.

Tabu search

Like simulated annealing, tabu search is a technique designed to avoid the problem
of becoming trapped in local optima. The procedure is basically hill-climbing, which
commences at an initial solution and searches the neighbourhood for a better solu-
tion. However, the process will recognize, and avoid areas of the solution space that
it has already encountered, thus making these areas ‘tabu’. The tabu moves are kept
in a finite list, which is updated as the search proceeds.

10.5 Further problems

Example 10.7

A fuzzy logic controller has input and output fuzzy windows as shown in Figure
10.39. The fuzzy rulebase is given in Figure 10.40. If defuzzification is by the centre of
area method, calculate crisp control signals u(f) when the error e(¢) and the rate of
change of error ce() have the following values:

e(t) ce(t) [Answeru(?)]
0

0 -2 —6.67
i) -4 -1 ~2.66
i) 1 L5 3.01
(v) 4 -15 0.106

Note: For the centre of area method, use only those values inside the dotted lines in
the output window.

Example 10.8

The angular positional control system shown by the block diagram in Figure 10.36 is
to have the velocity feedback loop removed and controller K| replaced by a fuzzy
logic controller (FLC) as demonstrated by Barrett (1992). The inputs to the FLC
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we) 1 ce)
1.0+ 1.0+
0.8+ 08+
0.6 T 0.6+
NB PB
0.4+ 0.4+
0.2+ 02+
-5 0 5 e -2
Input Windows
(@)
wlu)
1.0 7T
0.8 T
0.6 T
0.4+
0.2+
-10 0 10
Output Window
P ©
Fig. 10.39 Input and output fuzzy windows for Example 10.7.
e
NB 4 PB
ce
NB NB NB 4
Z NB 4 PB
PB 4 PB PB

Fig. 10.40 Fuzzy rulebase for Example 10.7.

are angular error e¢(kT') and rate-of-change of angular error ce(kT). The output from
the FLC is a control signal u(kT). The input and output fuzzy windows have the
same number of fuzzy sets, but different scales for the universes of discourse as
shown in Figure 10.41. The fuzzy rulebase is given in Figure 10.42. If the state

variables are

x1 = 0o()

X2 = Oy(1) = Xy
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NB NM NS ZE PS PM PB
1.0
-4 -3 —2 —1 0 1 2 3 4
Normalized Universe of Discourse
| [ I [ I [ |
-3 —2 -1 0 1 2 3 e(kT)
| | | | | I | | |
-8 -6 -4 -2 0 2 4 6 8  ce(kT)
I I [ I I I I I I [ I
-5 -4 -3 -2 -1 0 1 2 3 4 5  u(kT)

Fig. 10.41 Input and output fuzzy windows for Example 10.8.

° NB NM NS ZE PS PM PB
ce
NB NB NB NM NS ZE PM PB
NM NB NB NM NM PS PM PB
NS NM NS NS NS PS PM PM
ZE NM NS NS ZE PS PS PM
PS NM NM NS PS PS PS PM
PM NB NM NS PM PM PB PB
PB NB NM ZE PS PM PB PB

Fig. 10.42 Fuzzy rulebase for Example 10.8.
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then the state and output equations for the plant are as given in equation (10.100)
)'cl 0 1 X1 0
= + u
X2 0 0f]x 10.096
01 1 0 X1
92 B 0 1 X2
and, for a sampling time of 0.2 seconds, the discrete form of equation (10.106) is

[xl(k+ I)T} _ {1 0.2] [xl(kT)] N [0.2019]u(kT) (10.107)

(10.106)

x(k+1)T 0 1 ||x2kT) 2.0192

If the system, which is initially at rest when k7 = 0, is given a unit step input at this
time, determine e(kT), ce(kT), u(kT), x;(kT) and x,(kT) for values of kT =0,
0.2, 0.4 and 0.6 seconds.

Assume that
e(kT) = (6 — 0p) = 1 — x1(kT)
ce(kT) = d/d#(6; — 0y)
_do; db

T dr dr

de
=0— d—t‘) = —x3(kT)

Solution

Table 10.7 Solution to Example 10.8

kT xi(kT) x2(kT)  ekT)  cekT)  ukT) xi(k+ )T  xak+ )T

0 0 0 1 0 1.083 0.2187 2.187
0.2 0.2187 2.187 0.7813  —2.187 0.666 0.7906 3.532
0.4  0.7906 3.532 0.2094 -3.532 —1.32 1.2305 0.867
0.6 1.2305 0.867 —0.2305 —0.867 —0.511 1.3007 —0.165

Example 10.9

A neural network has a structure as shown in Figure 10.43. Assuming that all
the activation functions are sigmoids, calculate the values of yj» and y;, when the
inputs are

(a) X1 = 0.3, Xy = 0.5
() x1 =09, x, =0.1

when the weights and biases are
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Y2 Y22

Output layer
(1=2)

Hidden layer
(t=1)

Xo=1

Input layer
(1=0)

X1 X2

Fig. 10.43 Neural network structure for Example 10.9.

Hidden layer

Output layer
-3 =21 3
Wﬂ:[ 1 2 3] bﬁ:[—z]

Solution
(@) y12 = 0.450, y»» = 0.862
(b) y12 = 0.405, yy = 0.906

Example 10.10

In Example 10.9(b), if the target values for the outputs are dj; =0 and dp =1,
calculate new values for the weights and biases using the back-propagation algo-
rithm. Assume a learning rate of 0.5 with no momentum term.
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Solution
Output layer: 6; = —0.098, 6, = 0.008 (Equation 10.78)

W | 3047 2036 0954] [ 2951
2701 1.004 2.003 3.004| 27 | -2.996

Hidden layer: 6; = 0.0016, 6, = 0.042, 63 = —0.003 (Equation 10.80)

1.0007  2.00008 2.0008
W =|3019 30021 | by=|-1979

1.999  0.9999 0.9985

Example 10.11
A system has a parabolic fitness function

J=—x*+2x (10.108)

Using a genetic algorithm, find the value of x that maximizes J in equation (10.108).
Assume that the solution space has 31 values in the range x = 0 to 2 and that each
solution can be represented by a five digit binary string ranging from 00000 to 11111.
Let the population have four members and it is initially seeded by spinning a coin
(heads = 1, tails = 0).

Solution

x(2) 01110 01111 10000 10001
x(10) 14 15 16 17

X 0.903 0.968 1.032 1.097

J 0.990591 0.998976 0.998976 0.990591

Hence x = 0.968 and 1.032 both give optimum solutions.

Example 10.12

The closed-loop control system analysed by the root-locus method in Example 5.8
can be represented by the block diagram shown in Figure 10.44. Using root-locus, the
best setting for K; was found to be 11.35, representing a damping ratio of 0.5.

Proportional Plant
Controller
R(s) * E(s) U(s) 1 C(s)
> Ki Y S(s+2)(s+5) >

Fig. 10.44 Block diagram for Example 5.8.
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Validate, or otherwise, using a genetic algorithm that this value of K; maximizes
the fitness function

N—1
J =100 / S {(r(kT) — «(kT))*T} (10.109)
k=0

when the system is subjected to a unit step at time k7 = 0. Using a sampling time
T = 0.05 seconds, perform the summation over a time period of 10 seconds
(N = 200). Allow a search space of 0-100 for K;. Assume that the solution space
has 255 values and that each solution can be represented by an eight digit binary
string chromosome. Use a randomly seeded initial population of 10 members.

If the state variables are

x1 = c(?)
Xy = ¢(t) = x4
X3 = ¢(t) = X,
From Figure 10.44, the plant differential equation may be written as
X3 =0x; — 10x, — Tx3 +u

The plant state and output equations are then

X 0 1 0 X 0
X =10 0 | Xy |+ |0 |u
X3 0 —10 =7 | x3 1
C=[1 0 O] (10.110)
For a sampling time of 0.05 seconds, the discrete form of equation (10.110) is
xitk+1)T 1.0 0.0498 0.0011 | [ x;(KT) 0.00002
Xok+1)T | =10.0 09889 0.0420 | | x2(kT) | + | 0.00111 |wu(kT)
x3(k+ 1T 0.0 —0.4201 0.6948 | | x3(kT) 0.04201
(10.111)
Solution

Ki(2) 00011101 00101001 00110011 00111000 10000001 10110011

Ki(10) 29 41 51 56 129 179
K 11.37 16.08 20.0 21.96 50.59 70.20
J 112.99 124.51 126.63 125.82 48.18 7.77

Thus the value of K; that maximizes the fitness function in equation (10.109) is
K; = 20.0. This produces an overshoot of 38% when kT = 2.0 seconds, and repre-
sents an w, of 1.847 rad/s and a ¢ of 0.303.



Appendix 1
Control system design
using MATLAB

A1.1 Introduction

MATLAB, its Toolboxes and SIMULINK have become, over a number of years, the
industry standard software package for control system design. The purpose of this
Appendix is to introduce the reader to some of the more useful aspects of MATLAB,
and to illustrate how the software may be used to solve examples given in the main
text of the book.

A1.1.1 Getting started

The examples given in this Appendix were generated using MATLAB Version 5.3.
Once the software has been installed, MATLAB is most easily entered by clicking the
MATLAB icon. Alternatively, in a Windows environment, MATLAB can be entered
by clicking the following sequence

Start —» Programs —» MATLAB for Windows — MATLAB 5.3

The user should now be in the MATLAB command window, which contains some
helpful comments together with the MATLAB prompt ». MATLAB commands are
typed after the prompt, and entered using ‘Return’ (or ‘Enter’). Terminating the
command with ‘> will suppress the result of the command being printed in the
command window. Comments are preceded by the ‘%’ symbol.

A1.2 Tutorial 1: Matrix operations

This tutorial introduces the reader to matrix operations using MATLAB. All text in
courier font is either typed into, or printed into the command window.

»% Matrix Operations
»% To enter a matrix
»A=[1 3;5 9];

»B=[4 -7;10 0] ;

»A



A=
1 3
5 9
»B
B=
4 -7
10 0

Appendix 1 Control system design using MATLAB 381

»% Note that MATLAB is case sensitive

»% Matrix Addition
»A+B % Terminating with *;
ans=
5 -4
15 9
»% Matrix Multiplication
»A*B
ans=
34 -7
110 -35
»% Determinant of a Matrix
»det (A)
ans=
-6
»% Inverse of a Matrix
»inv (A)
ans=
-1.5000 0.5000
0.8333 -0.1667
»% Check
»C=1inv (A) ;
»A*C
ans=
1.0000 0.0000
0.0000 1.0000
»% Solve A*—1*B
» A\B
ans=
-1.0000 10.5000
1l.6667 -5.8333
»% Solve A*B -1
»A/B
ans=
-0.4286 0.2714
-1.2857 1.0143
»% Eigenvalues of a Matrix
»eig(A)
ans=
-0.5678
10.5678

will suppress ‘ans’

»% Coefficients of Characteristic Equation (as*2+bs+c)

»poly (A)
ans=
1.0000 -10.0000 -6.0000

»% Roots of Characteristic Equation (as*2+bs+c=0)

»ce=[1 -10 —-61];
»roots(ce)
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ans=
10.5678
-0.5678
»% Note that roots(ce) and eig(A) give the same result
»% Transpose of a Matrix
»A'
ans=
1 5
39
»% Rank of a Matrix
»rank (A)
ans=
2
»% Create an Identity Matrix
»I=eye(3);
» I
I=
1 00
010
0 0 1
Condition of a Matrix
The higher the Condition Number, the more ill-conditioned the
matrix is
»% LoglO of Condition Number gives approx. number of decimal
»% places
»% lost due to round-off errors
»cond (A)
ans=
19.2815
»% Tutorial End

0% 0° o°

o©

The above session may be printed by clicking
File —» Print
MATLAB may be closed by clicking

File — Exit MATLAB

A1.3 Tutorial 2: Time domain analysis
This tutorial introduces the reader to time domain analysis using MATLAB. It uses
commands from the Control System Toolbox. A list of the commands can be found using
»help control
More information on individual commands can be obtained, for example
»help step
will provide more detail on how to use the step command.

Script files: A script file is an ASCII text file of MATLAB commands, that can be
created using
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(a) a text editor
(b) the MATLAB editor/debugger
(c) a word processor that can save as pure ASCII text files.

A script file should have a name that ends in “.m’, and is run by typing the name of
the file (without “.m’) after the MATLAB prompt, or by typing the sequence

File —» Run Script — enter file name

The advantage of a script file is that it only needs to be created once and saves the
labour of continually typing lists of commands at the MATLAB prompt.

The examples given in this tutorial relate to those solved in Chapter 3. Consider
a first-order transfer function

Gis)=1/1+s

The impulse response function (Example 3.4, Figure 3.11) can be created by the
following script file

File name: examp34.m

%impulse response of transfer function G(s)=num(s)/den(s)
snum and den contain polynomial coefficients

%in descending powers of s

clf

num=[1];

den=[1 11;

impulse (num,den) ;

grid;

printsys(num,den, ‘s’);

This shows how a transfer function is entered into MATLAB, where num =[1] is the
numerator (K =1) and den=[1 1] represents the ‘s’ coefficient and the ‘s’
coefficient respectively. ‘ Impulse (num, den) computes and plots the impulse
response and grid produces a rectangular grid on the plot. Printsys (num,
den, ‘s’) prints the transfer function at the MATLAB prompt. A hard copy
can be obtained by selecting, from the screen plot

File —» Print

The step response of a first-order system (Example 3.5, Figure 3.13) is obtained using
the step command

File name: examp35.m

% step response of transfer function G(s)=num(s)/den(s)
snum and den contain polynomial coefficients
%in descending powers of s

clf

num=[1];
den=[1 17];
step (num,den) ;
grid;

printsys(num,den,‘s’);

383
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SIMULINK: The Control System Toolbox does not possess a ‘ramp’ command, but
the ramp response of a first-order system (Example 3.6, Figure 3.15) can be obtained
using SIMULINK, which is an easy to use Graphical User Interface (GUI). SIMU-
LINK allows a block diagram representation of a control system to be constructed
and real-time simulations performed.

With MATLAB Version 5.3, typing simulink at the MATLAB prompt brings
up the SIMULINK Library Browser. 