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Module 2 Outline

1 Physical laws and equations
2 Transfer function model
3 Model of actual systems
4 Examples
5 From s-domain to time-domain
6 Introduction to state space representation
7 State space canonical forms
8 Analytical examples
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Physical Laws and Models

Any controls course is generally about dynamical or dynamic
systems

By definition, dynamical systems are dynamic because they change
with time

Change in the sense that their intrinsic properties evolve, vary

Examples: coordinates of a drone, speed of a car, body temperature,
concentrations of chemicals in a centrifuge

Physicists and engineers like to represent dynamic systems with
equations—because nerdiness

Why? Well, the answer is fairly straightforward

Equations allow us to get away from chaos
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Physical Laws
For many systems, it’s easy to understand the physics, and hence
the math behind the physics

– Examples: circuits, motion of a cart, pendulum, suspension system

For the majority of dynamical systems, the actual physics is complex

Hence, it can be hard to depict the dynamics with differential eqns

– Examples: human body temperature, thermodynamics, spacecrafts

This illustrates the needs for models

Dynamic system model: a mathematical description of the actual
physics

Very important question: Why do we need a system model?
Because control

Remember George Box’s quote:
All models are wrong, but some are useful.
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Modeling in Control 101: Transfer Functions?

* TFs: a mathematical representation to describe relationship between
inputs and outputs of the physics of a system, i.e., of the differential
equations that govern the motion of bodies, for example

Input: always defined as u(t)—called control action

Output: always defined as y(t)—called measurement or sensor data

TF relates the derivatives of u(t) and y(t)

Why is that important? Well, think of
∑

F = ma

‘F ’ above is the input (exerted forces), and the output is the
acceleration, ‘a’

©Ahmad F. Taha Module 02 — Control Systems Preliminaries, Introduction to State Space 5 / 55



Intro TF Models Actual Models System Classification Modern Control State-Space Representation Other Canonical Forms

Construction of Transfer Functions

For linear systems, we can often represent the system dynamics
through an nth order ordinary differential equation (ODE):

y (n)(t) + an−1y (n−1)(t) + an−2y (n−2)(t) + · · ·+ a0y(t) =

u(m)(t) + bm−1u(m−1)(t) + bm−2u(m−2)(t) + · · ·+ b0u(t)

The y (k) notation means we’re taking the kth derivative of y(t)

Given that ODE description, we can take the Laplace transform
(assuming zero initial conditions for all signals)

L
[
f (n)(t)

]
= snF (s)− sn−1f (0)− sn−2f (1)(0)− . . .− sf (n−2)(0)− f (n−1)(0)

⇒ H(s) = Y (s)
U(s) = sm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
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Transfer Functions (Are Boring)

Given this TF:

H(s) = Y (s)
U(s) = sm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

For a given control signal u(t) or U(s), we can find the output of
the system, y(t), or Y (s)

Impulse response: defined as h(t)—the output y(t) if the input
u(t) = δ(t)

Step response: the output y(t) if the input u(t) = 1+(t)

For any input u(t), the output is: y(t) = h(t) ∗ u(t)

But...Convolutions are nasty...Who likes them?
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TFs of Generic LTI Systems

So, we can take the Laplace transform: Y (s) = H(s)U(s)

Typically, we can write the TF as:

H(s) = Y (s)
U(s) = sm + bm−1sm−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

Roots of numerator are called the zeros of H(s) or the system
Roots of the denominator are called the poles of H(s)
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Example

Given: H(s) = 2s + 1
s3 − 4s2 + 6s − 4

Zeros: z1 = −0.5

Poles: solve s3 − 4s2 + 6s − 4 = 0, use MATLAB’s roots command

* poles=roots[1 -4 6 -4]; poles = {2, 1 + j , 1− j}

Factored form:

H(s) = 2 s + 0.5
(s − 2)(s − 1− j)(s − 1 + j)

Please go through http://engineering.utsa.edu/˜taha/
teaching2/EE3413_Module2.pdf for a review of Laplace
transforms and ODEs
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Analyzing Generic Physical Systems
Seven-step algorithm:

1 Identify dynamic variables, inputs (u), and system outputs (y)
2 Focus on one component, analyze the dynamics (physics) of this

component

– How? Use Newton’s Equations, KVL, or thermodynamics laws...
3 After that, obtain an nth order ODE:

n∑
i=1

αi y (i)(t) =
m∑

j=1
βju(j)(t)

4 Take the Laplace transform of that ODE
5 Combine the equations to eliminate internal variables
6 Write the transfer function from input to output
7 For a certain control U(s), find Y (s), then y(t) = L−1[Y (s)]
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Active Suspension Model
Each car has 4 active suspension systems (on each wheel)

System is nonlinear, but we consider approximation. Objective?

Input: road altitude r(t) (or u(t)), Output: car body height y(t)
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Active Suspension Model — Equations for 1 Wheel

We only consider one of the four systems

System has many components, most important ones are: body (m2)
& wheel (m1) weights
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Active Suspension Model — Equations for Car Body

We now have 2 equations depicting the car body and wheel motion
Objective: find the TF relating output (y(t)) to input (r(t))

What is H(s) = Y (s)
R(s) ?
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Active Suspension Model — Transfer Function

Differential equations (in time):

m1ẍ(t) = ks(y(t)− x(t)) + b(ẏ(t)− ẋ(t))− kw (x(t)− r(t))
m2ÿ(t) = −ks(y(t)− x(t))− b(ẏ(t)− ẋ(t))

Take Laplace transform given zero ICs:

– Solution:

Find H(s) = Y (s)
R(s)

– Solution:
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Basic Circuits Components
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Basic Circuits — RLCs & Op-Amps
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TF of an RLC Circuit — Example

Apply KVL (assume zero ICs):

vi (t) = Ri(t) + Ldi(t)
dt + 1

C

∫
i(τ)dt

vo(t) = 1
C

∫
i(τ)dt

Take LT for the above differential equations:

Vi (s) = RI(s) + LsI(s) + 1
Cs I(s)

Vo(s) = 1
Cs I(s)⇒ I(s) = CsVo(s)

⇒ Vo(s)
Vi (s) = 1

LCs2 + RCs + 1
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Generic Circuit Analysis
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General Discussion on Equivalent Systems

©Ahmad F. Taha Module 02 — Control Systems Preliminaries, Introduction to State Space 19 / 55



Intro TF Models Actual Models System Classification Modern Control State-Space Representation Other Canonical Forms

Dynamic Models in Nature

Predator-prey equations are 1st order non-linear, ODEs

Describe the dynamics of biological systems where 2 species interact

One species as a predator and the other as a prey

Populations change through time according to these equations:

ẋ(t) = αx(t)− βx(t)y(t)

ẏ(t) = δx(t)y(t)− γy(t)

– x(t): # of preys (e.g., rabbits)

– y(t): # of predators (e.g., foxes)

– ẋ(t), ẏ(t): growth rates of the 2 species—function of time, t

– α, β, γ, δ: +ve real parameters depicting the interaction of the
species
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Mathematical Model

ẋ(t) = αx(t)− βx(t)y(t)

ẏ(t) = δx(t)y(t)− γy(t)

Prey’s population grows exponentially (αx(t))—why?

Rate of predation is assumed to be proportional to the rate at which
the predators and the prey meet (βx(t)y(t))

If either x(t) or y(t) is zero then there can be no predation

δx(t)y(t) represents the growth of the predator population

No prey ⇒ no food for the predator ⇒ y(t) decays

Is there an equilibrium? What is it?
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Dynamics in Epidemiology

Epidemiology: The branch of medicine that deals with the
incidence, distribution, and possible control of diseases and other
factors relating to health

In the past 10 years, mathematicians, biologists, and physicists
studied mathematical models of epidemics

Why is that important?

Various models focus on different things:
SIR Model: S for the number susceptible, I for the number of
infectious, and R for the number recovered
SIS Model: Infections like cold and influenza, do not possess lasting
immunity
SEIR: E for exposed
MSIR: M stands for maternally-derived immunity
SEIS and many, many more
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SIR Model

Here, we present the dynamic model for the SIR model
We take flu as an example of the SIR model
Define variable S(t), I(t),R(t) representing the number of people in
each category at time t. The SIR model can be written as

dS
dt = −βIS

N
dI
dt = βIS

N − γI

dR
dt = γI.

N is the total number of people, with S(t) + I(t) + R(t) = N
The force of infection F can be written as F = βI/N
β is the contact rate, and γ is the transition rate (rate of recovery)
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So who do these quantities vary?

Blue represents Susceptible, Green represents Infected, and Red
represents the Recovered population.
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System Model—Generalization Beyond ODEs
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Input & Output Signals
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Causality in Systems

Causality is the basic property in systems that one process caused
another process to happen
Do not confuse causation with correlation: causation necessitates a
relationship between the cause and effect—correlation does not
Anyway, here’s some rigorous definitions

DEF1 A system N is causal if the output at time t does not depend on the
values of the input at any time t ′ > t

DEF2 A system N mapping x to y is causal IFF for any pair of input
signals x1(t) and x2(t) such that x1(t) = x2(t), ∀ t ≤ t0, the
output satisfies

y1(t) = y2(t), ∀ t ≤ t0.

DEF3 If h(t) is the impulse response of the system N , then the system is
causal IFF

h(t) = 0, ∀ t < 0
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Discrete vs. Continuous & Linear vs. Nonlinear Systems
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Time-Invariant vs. Time-Varying & Lumped vs.
Distributed Systems
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Examples

Are these systems linear? Nonlinear? TV? TI? Discrete? Continuous?
Causal? Non-Causal?

y(t) = (u(t))2

y(t) = t2u(t)

y(t) = u(t)− u(t − 1)

y(t) = u(t)− u(t + 1)

ẏ(t) = (u(t))2 + u(t − 1)

y(k + 1) = y(k) + u(k)
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Modern Control

In the undergrad control course, methods that pertain to the
analysis and design of control systems via frequency-domain
techniques were presented

– Root locus, PID controllers, compensators, state-feedback control,
etc...

– These studies are considered as the classical control theory—based
on the s-domain

This course focuses on time-domain techniques

– Theory is based on State-Space Representations—modern control

Why do we need that? Many reasons
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ODEs & Transfer Functions

For linear systems, we can often represent the system dynamics
through an nth order ordinary differential equation (ODE):

y (n)(t) + a1y (n−1)(t) + a2y (n−2)(t) + · · ·+ an−1ẏ(t) + any(t) =

b0u(n)(t) + b1u(n−1)(t) + b2u(b−2)(t) + · · ·+ bn−1u̇(t) + bnu(t)

Input: u(t); Output: y(t)—What if we have MIMO system?

Given that ODE description, we can take the LT (assuming zero
initial conditions for all signals):

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an
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ODEs & TFs

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an

This equation represents relationship between one system input
and one system output

This relationship, however, does not show me the internal states
of the system, nor does it explain the case with multi-input
system

For that (and other reasons), we discuss the notion of system state

Definition: x(t) is a state-vector that belongs to Rn: x(t) ∈ Rn

x(t) is an internal state of a system

Examples: voltages and currents of circuit components
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ODEs, TFs to State-Space Representations

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an

State-space (SS) theory: representing the above TF of a system by
a vector-form first order ODE:

ẋ(t) = Ax(t) + Bu(t), x initial = xt0 , (1)
y(t) = Cx(t) + Du(t), (2)

– x(t) ∈ Rn: dynamic state-vector of the LTI system, u(t):
control input-vector, n = order of the TF/ODE

– y(t): output-vector and A,B,C ,D are constant matrices

– For the above transfer function, we have one input U(s) and one
output Y (s), hence the size of y(t) and u(t) is only one (scalars),
while the size of vector x(t) is n, which is the order of the TF

Objective: learn how to construct matrices A,B,C ,D given a TF
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State-Space Representation 1

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an

Given the above TF/ODE, we want to find

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

The above two equations represent a relationship between the input
and output of the system via the internal system states
The above 2 equations are nothing but a first order differential
equation
Wait, WHAT? But the TF/ODE was an nth order ODE. How do we
have a first order ODE now?
Well, because this equation is vector-matrix equation, whereas the
ODE/TF was a scalar equation
Next, we’ll learn how to get to these 2 equations from any TF
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State-Space Representation 2 [Ogata, P. 689]
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State-Space Representation 3 [Ogata, P. 689]
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State-Space Representation 4 [Ogata, P. 689]
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Final Solution

Combining equations (9-74,75,76), we can obtain the following
vector-matrix first order differential equation:

ẋ(t) =


ẋ1(t)
ẋ2(t)

...
ẋn−1(t)

ẋn(t)

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1




x1(t)
x2(t)

...
xn−1(t)

xn(t)


︸ ︷︷ ︸

Ax(t)

+


0
0
...
0
1

 u(t)

︸ ︷︷ ︸
Bu(t)

y(t) =
[
bn − anb0| bn−1 − an−1b0| · · · | b1 − a1b0

]


x1(t)
x2(t)

...
xn−1(t)

xn(t)


︸ ︷︷ ︸

Cx(t)

+ b0u(t)︸ ︷︷ ︸
Du(t)
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Remarks

For any TF with order n (order of the denominator), with one input
and one output:

– A ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n,D ∈ R

– Above matrices are constant ⇒ system is linear time-invariant
(LTI)

– If one term of the TF/ODE (i.e., the a’s and b’s) change as a
function of time, the matrices derived above will also change in time
⇒ system is linear time-varying (LTV)

The above state-space form is called the controllable canonical form

You can come up with different forms of A,B,C ,D matrices given a
different transformation
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State-Space and Block Diagrams

From the derived eqs. before, you can construct the block diagram
An integrator block is equivalent to a 1

s , the inputs and outputs of
each integrator are the derivative of the state ẋi (t) and xi (t)
A system (TF/ODE) of order n can be constructed with n
integrators (you can construct the system with more integrators)
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Example 1
Find a state-space representation (i.e., the state-space matrices) for
the system represented by this second order transfer function:

Y (s)
U(s) = s + 3

s2 + 3s + 2
Solution: look at the previous slides with the matrices:

H(s) = Y (s)
U(s) = b0sn + b1sn−1 + · · ·+ bn−1s + bn

sn + a1sn−1 + · · ·+ an−1s + an
=

b0︷︸︸︷
0 s2 +

b1︷︸︸︷
1 s +

b2︷︸︸︷
3

s2 + 3︸︷︷︸
a1

s + 2︸︷︷︸
a2

– First, n = 2⇒ A ∈ R2×2,B ∈ R2×1,C ∈ R1×2,D ∈ R

ẋ(t) =
[

0 1
−2 −3

]
︸ ︷︷ ︸

A

x(t) +
[

0
1

]
︸︷︷︸

B

u(t)

y(t) =
[
3 1

]︸ ︷︷ ︸
C

x(t) + 0︸︷︷︸
D

u(t)
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Other State-Space Forms Given a TF/ODE1

Observable Canonical Form:

1Derivation from Ogata, but similar to the controllable canonical form.
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Block Diagram of Observable Canonical Form

©Ahmad F. Taha Module 02 — Control Systems Preliminaries, Introduction to State Space 44 / 55



Intro TF Models Actual Models System Classification Modern Control State-Space Representation Other Canonical Forms

Other State-Space Forms Given a TF/ODE

Diagonal Canonical Form2:

⇓ ⇓ ⇓

2This factorization assumes that the TF has only distinct real poles.
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Block Diagram of Diagonal Canonical Form
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Example 1 Solution for other Canonical Forms
Find the observable and diagonal forms for

Y (s)
U(s) =

b0︷︸︸︷
0 s2 +

b1︷︸︸︷
1 s +

b2︷︸︸︷
3

s2 + 3︸︷︷︸
a1

s + 2︸︷︷︸
a2

Solution: look at the previous slides with the constructed
state-space matrices:

– Observable Canonical Form:

ẋ(t) =
[

0 −2
1 −3

]
︸ ︷︷ ︸

A

x(t) +
[

3
1

]
︸︷︷︸

B

u(t), y(t) =
[
0 1

]︸ ︷︷ ︸
C

x(t) + 0︸︷︷︸
D

u(t)

– Diagonal Canonical Form:

ẋ(t) =
[
−1 0
0 −2

]
︸ ︷︷ ︸

A

x(t)+
[

1
1

]
︸︷︷︸

B

u(t), y(t) =
[
2 −1

]︸ ︷︷ ︸
C

x(t)+ 0︸︷︷︸
D

u(t)
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State-Space to Transfer Functions
Given a state-space representation:

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

can we obtain the transfer function back? Yes:
Y (s)
U(s) = C(sI − A)−1B + D

Example: find the TF corresponding for this SISO system:

ẋ(t) =
[
−1 0
0 −2

]
︸ ︷︷ ︸

A

x(t)+
[

1
1

]
︸︷︷︸

B

u(t), y(t) =
[
2 −1

]︸ ︷︷ ︸
C

x(t)+ 0︸︷︷︸
D

u(t)

Solution:
Y (s)
U(s) = C(sIn−A)−1B+D =

[
2 −1

](
s
[

1 0
0 1

]
−
[
−1 0
0 −2

])−1 [1
1

]
+0

= s + 3
s2 + 3s + 2 , that’s the TF from the previous example!
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MATLAB Commands

ss2tf(A,B,C,D,iu)

tf2ss(num,den)

Demo
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Important Remarks

So why do we want to go from a transfer function to a
time-representation, ODE form of the system?
There are many benefits for doing so, such as:

1 Stability analysis for MIMO systems becomes way easier
2 We have powerful mathematical tools that help us design controllers
3 RL and compensator designs were relatively tedious design problems
4 With state-space representations, we can easily design controllers
5 Nonlinear dynamics: cannot use TFs for nonlinear systems
6 State-space is all about time-domain analysis, which is far more

intuitive than frequency-domain analysis
7 With Laplace transforms and TFs, we had to take inverse Laplace

transforms. In many cases, the Laplace transform does not exist,
which means time-domain analysis is the only way to go

We will learn how to get a solution for y(t) for any given u(t) from
the state-space representation of the system without Laplace
transform—via ODE solutions for matrix-vector equations
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State Space Generalization: Nonlinear Lumped Systems
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State Space Generalization: LTV Systems
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State Space Generalization: LTI Systems
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Important Remarks, Milestones
We have introduced state-space (SS) representations
The main use of SS is to generate real-time values and numerical
solutions for x(t), the vector that includes the states of the system
The main problem to be solved here is: Given an initial condition for
system x(0) and a control input u(t) (single input (scalar), or
multiple inputs (vector)), what will the state of the system (x(t))
be? What about y(t)?
To answer this question, we need to find a solution to the
matrix-vector differential equation:

ẋ(t) = Ax(t) + Bu(t)
If the system has one state, no controls, the solution is obvious
If the system has multiple states, controls, solution is a bit
complicated
To find the answer to the above question, we will have to go
through a review of basic mathematical concepts—next Module
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Questions And Suggestions?

Thank You!
Please visit

engineering.utsa.edu/˜taha
IFF you want to know more ,
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