A new additive function and the F. Smarandache function

Yanchun Guo

Department of Mathematics, Xianyang Normal University Xianyang, Shaanxi, P.R.China

Abstract For any positive integer n, we define the arithmetical function F(n) as F(1) = 0. If n > 1 and $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ be the prime power factorization of n, then $F(n) = \alpha_1 p_1 + \alpha_2 p_2 + \cdots + \alpha_k p_k$. Let S(n) be the Smarandache function. The main purpose of this paper is using the elementary method and the prime distribution theory to study the mean value properties of $(F(n) - S(n))^2$, and give a sharper asymptotic formula for it.

Keywords Additive function, Smarandache function, Mean square value, Elementary method, Asymptotic formula.

§1. Introduction and result

Let f(n) be an arithmetical function, we call f(n) as an additive function, if for any positive integers m, n with (m, n) = 1, we have f(mn) = f(m) + f(n). We call f(n) as a complete additive function, if for any positive integers r and s, f(rs) = f(r) + f(s). In elementary number theory, there are many arithmetical functions satisfying the additive properties. For example, if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ denotes the prime power factorization of n, then function $\Omega(n) = \alpha_1 + \alpha_2 + \cdots + \alpha_k$ and logarithmic function $f(n) = \ln n$ are two complete additive functions, $\omega(n) = k$ is an additive function, but not a complete additive function. About the properties of the additive functions, one can find them in references [1], [2] and [5].

In this paper, we define a new additive function F(n) as follows: F(1) = 0; If n > 1 and $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ denotes the prime power factorization of n, then $F(n) = \alpha_1 p_1 + \alpha_2 p_2 + \cdots + \alpha_k p_k$. It is clear that this function is a complete additive function. In fact if $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ and $n = p_1^{\beta_1} p_2^{\beta_2} \cdots p_k^{\beta_k}$, then we have $mn = p_1^{\alpha_1 + \beta_1} p_2^{\alpha_2 + \beta_2} \cdots p_k^{\alpha_k + \beta_k}$. Therefore, $F(mn) = (\alpha_1 + \beta_1)p_1 + (\alpha_2 + \beta_2)p_2 + \cdots + (\alpha_k + \beta_k)p_k = F(m) + F(n)$. So F(n) is a complete additive function. Now we let S(n) be the Smarandache function. That is, S(n) denotes the smallest positive integer m such that n divide m!, or $S(n) = \min\{m : n \mid m!\}$. About the properties of S(n), many authors had studied it, and obtained a series results, see references [7], [8] and [9]. The main purpose of this paper is using the elementary method and the prime distribution theory to study the mean value properties of $(F(n) - S(n))^2$, and give a sharper asymptotic formula for it. That is, we shall prove the following:

Theorem. Let N be any fixed positive integer. Then for any real number x > 1, we

have the asymptotic formula

$$\sum_{n \le x} (F(n) - S(n))^2 = \sum_{i=1}^{N} c_i \cdot \frac{x^2}{\ln^{i+1} x} + O\left(\frac{x^2}{\ln^{N+2} \sqrt{x}}\right),$$

where c_i $(i=1, 2, \dots, N)$ are computable constants, and $c_1 = \frac{\pi^2}{6}$.

§2. Proof of the theorem

In this section, we use the elementary method and the prime distribution theory to complete the proof of the theorem. We using the idea in reference [4]. First we define four sets A, B, C, D as follows: $A = \{n, n \in \mathbb{N}, n \text{ has only one prime divisor } p \text{ such that } p \mid n \text{ and } p^2 \nmid n, p > n^{\frac{1}{3}}\}$; $B = \{n, n \in \mathbb{N}, n \text{ has only one prime divisor } p \text{ such that } p^2 \mid n \text{ and } p > n^{\frac{1}{3}}\}$; $C = \{n, n \in \mathbb{N}, n \text{ has two deferent prime divisors } p_1 \text{ and } p_2 \text{ such that } p_1 p_2 \mid n, p_2 > p_1 > n^{\frac{1}{3}}\}$; $D = \{n, n \in \mathbb{N}, \text{ any prime divisor } p \text{ of } n \text{ satisfying } p \leq n^{\frac{1}{3}}\}$, where \mathbb{N} denotes the set of all positive integers. It is clear that from the definitions of A, B, C and D we have

$$\sum_{n \le x} (F(n) - S(n))^{2} = \sum_{\substack{n \le x \\ n \in A}} (F(n) - S(n))^{2} + \sum_{\substack{n \le x \\ n \in B}} (F(n) - S(n))^{2} + \sum_{\substack{n \le x \\ n \in D}} (F(n) - S(n))^{2}$$

$$= W_{1} + W_{2} + W_{3} + W_{4}.$$
(1)

Now we estimate W_1 , W_2 , W_3 and W_4 in (1) respectively. Note that F(n) is a complete additive function, and if $n \in A$ with n = pk, then S(n) = S(p) = p, and any prime divisor q of k satisfying $q \le n^{\frac{1}{3}}$, so $F(k) \le n^{\frac{1}{3}} \ln n$. From the Prime Theorem (See Chapter 3, Theorem 2 of [3]) we know that

$$\pi(x) = \sum_{p \le x} 1 = \sum_{i=1}^{k} c_i \cdot \frac{x}{\ln^i x} + O\left(\frac{x}{\ln^{k+1} x}\right),\tag{2}$$

where c_i $(i = 1, 2, \dots, k)$ are computable constants, and $c_1 = 1$. By these we have the estimate:

$$W_{1} = \sum_{\substack{n \leq x \\ n \in A}} (F(n) - S(n))^{2} = \sum_{\substack{pk \leq x \\ (pk) \in A}} (F(pk) - p)^{2}$$

$$= \sum_{\substack{pk \leq x \\ (pk) \in A}} F^{2}(k) \ll \sum_{\substack{k \leq \sqrt{x} \\ k
$$\ll (\ln x)^{2} \sum_{\substack{k \leq \sqrt{x} \\ k \leq \sqrt{x}}} k^{\frac{2}{3}} \left(\frac{x}{k}\right)^{\frac{5}{3}} \frac{1}{\ln \frac{x}{k}} \ll x^{\frac{5}{3}} \ln^{2} x.$$
(3)$$

130 Yanchun Guo No. 1

If $n \in B$, then $n = p^2 k$, and note that $S(n) = S(p^2) = 2p$, we have the estimate

$$W_{2} = \sum_{\substack{n \leq x \\ n \in B}} (F(n) - S(n))^{2} = \sum_{\substack{p^{2}k \leq x \\ p > k}} (F(p^{2}k) - 2p)^{2}$$

$$= \sum_{k \leq x^{\frac{1}{3}}} \sum_{k
$$\ll \sum_{k \leq x^{\frac{1}{3}}} \frac{k^{2} \cdot x^{\frac{1}{2}}}{k^{\frac{1}{2}} \ln x} \ll \frac{x^{\frac{4}{3}}}{\ln x}.$$
(4)$$

If $n \in D$, then $F(n) \leq n^{\frac{1}{3}} \ln n$ and $S(n) \leq n^{\frac{1}{3}} \ln n$, so we have

$$W_4 = \sum_{\substack{n \le x \\ n \in D}} (F(n) - S(n))^2 \ll \sum_{n \le x} n^{\frac{2}{3}} \ln^2 n \ll x^{\frac{5}{3}} \ln^2 x.$$
 (5)

Finally, we estimate main term W_3 . Note that $n \in C$, $n = p_1 p_2 k$, $p_2 > p_1 > n^{\frac{1}{3}} > k$. If $k < p_1 < n^{\frac{1}{3}}$, then in this case, the estimate is exact same as in the estimate of W_1 . If $k < p_1 < p_2 < n^{\frac{1}{3}}$, in this case, the estimate is exact same as in the estimate of W_4 . So by (2) we have

$$W_{3} = \sum_{\substack{n \leq x \\ n \in C}} (F(n) - S(n))^{2} = \sum_{\substack{p_{1}p_{2}k \leq x \\ p_{2} > p_{1} > k}} (F(p_{1}p_{2}k) - p_{2})^{2} + O\left(x^{\frac{5}{3}} \ln^{2} x\right)$$

$$= \sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{2} \leq \frac{x}{p_{1}k}} (F^{2}(k) + 2p_{1}F(k) + p_{1}^{2}) + O\left(x^{\frac{5}{3}} \ln^{2} x\right)$$

$$= \sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1} < p_{2} \leq \frac{x}{p_{1}k}} p_{1}^{2} + O\left(\sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1} < p_{2} \leq \frac{x}{p_{1}k}} kp_{1}\right) + O\left(x^{\frac{5}{3}} \ln^{2} x\right)$$

$$= \sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \left(\sum_{i=1}^{N} c_{i} \cdot \frac{x}{p_{1}k \ln^{i} \frac{x}{p_{1}k}} + O\left(\frac{x}{p_{1}k \ln^{N+1} x}\right)\right) + O\left(x^{\frac{5}{3}} \ln^{2} x\right)$$

$$- \sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \sum_{p_{2} \leq p_{1}} 1 + O\left(\sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} \sum_{p_{1} < p_{2} \leq \frac{x}{p_{1}k}} kp_{1}\right). \tag{6}$$

Note that $\zeta(2) = \frac{\pi^2}{6}$, from the Abel's identity (See Theorem 4.2 of [6]) and (2) we have

$$\sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \sum_{p \leq p_{1}} 1 = \sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} p_{1}^{2} \left[\sum_{i=1}^{N} \frac{c_{i} \cdot p_{1}}{\ln^{i} p_{1}} + O\left(\frac{p_{1}}{\ln^{N+1} p_{1}}\right) \right]$$

$$= \sum_{i=1}^{N} \sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} \frac{c_{i} \cdot p_{1}^{3}}{\ln^{i} p_{1}} + O\left(\sum_{k \leq x^{\frac{1}{3}}} \sum_{k < p_{1} \leq \sqrt{\frac{x}{k}}} \frac{p_{1}^{3}}{\ln^{N+1} p_{1}}\right)$$

$$= \sum_{i=1}^{N} \frac{d_{i} \cdot x^{2}}{\ln^{i+1} x} + O\left(\frac{2^{N} \cdot x^{2}}{\ln^{N+2} x}\right), \tag{7}$$

where d_i $(i = 1, 2, \dots, N)$ are computable constants, and $d_1 = \frac{\pi^2}{6}$.

$$\sum_{k \le x^{\frac{1}{3}}} \sum_{k < p_1 \le \sqrt{\frac{x}{k}}} p_1 < p_2 \le \frac{x}{p_1 k} k p_1 \ll \sum_{k \le x^{\frac{1}{3}}} k \sum_{p_1 \le \sqrt{\frac{x}{k}}} p_1 \cdot \frac{x}{p_1 k \ln x} \ll \sum_{k \le x^{\frac{1}{3}}} \frac{x^{\frac{3}{2}}}{\sqrt{k} \ln^2 x} \ll \frac{x^{\frac{5}{3}}}{\ln^2 x}.$$
(8)

$$\sum_{k \le x^{\frac{1}{3}}} \sum_{k < p_1 \le \sqrt{\frac{x}{k}}} \frac{p_1 x}{k \ln^{N+1} x} \ll \sum_{k \le x^{\frac{1}{3}}} \frac{x^2}{k^2 \ln^{N+2} x} \ll \frac{x^2}{\ln^{N+2} x}.$$
 (9)

From the Abel's identity and (2) we also have the estimate

$$\sum_{k \le x^{\frac{1}{3}}} \sum_{k < p_1 \le \sqrt{\frac{x}{k}}} p_1^2 \frac{x}{p_1 k \ln \frac{x}{p_1 k}} = \sum_{k \le x^{\frac{1}{3}}} \frac{1}{k} \sum_{k < p_1 \le \sqrt{\frac{x}{k}}} \frac{x p_1}{\ln \frac{x}{k p_1}}$$

$$= \sum_{i=1}^{N} b_i \cdot \frac{x^2}{\ln^{i+1} x} + O\left(\frac{x^2}{\ln^{N+1} x}\right), \tag{10}$$

where b_i $(i = 1, 2, \dots, N)$ are computable constants, and $b_1 = \frac{\pi^2}{3}$.

Now combining (1), (3), (4), (5), (6), (7), (8)and(9) we may immediately deduce the asymptotic formula:

$$\sum_{n \le x} (F(n) - S(n))^2 = \sum_{i=1}^{N} a_i \cdot \frac{x^2}{\ln^{i+1} x} + O\left(\frac{x^2}{\ln^{N+2} \sqrt{x}}\right),$$

where a_i $(i=1, 2, \dots, N)$ are computable constants, and $a_1 = b_1 - d_1 = \frac{\pi^2}{6}$. This completes the proof of Theorem.

References

- [1] C.H.Zhong, A sum related to a class arithmetical functions, Utilitas Math., 44(1993), 231-242.
 - [2] H.N.Shapiro, Introduction to the theory of numbers, John Wiley and Sons, 1983.
- [3] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem (in Chinese), Shanghai Science and Technology Press, Shanghai, 1988.
- [4] Xu Zhefeng, On the value distribution of the Smarandache function, Acta Mathematica Sinica (in Chinese), 49(2006), No.5, 1009-1012.
- [5] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.
 - [6] Tom M. Apostol. Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- [7] Yi Yuan and Kang Xiaoyu, Research on Smarandache Problems (in Chinese), High American Press, 2006.
- [8] Chen Guohui, New Progress On Smarandache Problems (in Chinese), High American Press, 2007.
- [9] Liu Yanni, Li Ling and Liu Baoli, Smarandache Unsolved Problems and New Progress (in Chinese), High American Press, 2008.