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Figure: A sequence of noisy localization estimates of a fast driving go-kart in red, and the result of smooth-

ing in black. ◼

Abstract: Geodesic averages have been used to generalize curve subdivision and Bézier curves to Rieman-

nian manifolds and Lie groups. We show that geodesic averages are suitable to perform smoothing of 

sequences of data in nonlinear spaces. In applications that produce temporal uniformly sampled manifold 

data, the smoothing removes high-frequency components from the signal. As a consequence, discrete 

differences computed from the smoothed sequence are more regular. Our method is therefore a simpler 

alternative to the extended Kalman filter. We apply the smoothing technique to noisy localization esti-

mates of mobile robots. ◼
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Figure: Geodesic averages in the Lie group SE(2) used in applications: Le�, quartic B-spline refinement 

used in curve subdivision. Center, mean of a 3-point sequence based on Dirichlet weights. Right, mean of a 

5-point sequence based on Gaussian weights used for smoothing. The input points are indicated as red 

arrowheads. The geodesic average is indicated in gray. ◼

Introduction

During a certain period in history, points in the Euclidean plane were constructed using ruler and compass 

only. Given the coordinates (0, 0) and (1, 0) to start with, the limited set of operations yields numbers such 

as the square root of two, but not π.

The construction of binary averages along geodesics in a nonlinear space M is of equal puritan spirit: The 

single permitted operation to produce a new point in M is to evaluate the geodesic τ that connects two 

sufficiently close points p and q in M at a certain ratio λ ∈ ℝ. For the ratios λ = 0, and λ = 1, the geodesic is 

defined to give τ(0) = p, and τ(1) = q. The operation is denoted with [p, q]λ. The points p and q are drawn 

from an initial collection of points in M.

Example: In the Euclidean space, geodesics are straight lines, and [p, q]λ = p + λ(q - p) is the affine combina-

tion between two points p, q ∈ ℝn. ◼

Geodesic averages of the binary type [p, q]λ, or in nested fashion, for instance [[p, q]σ, r]λ appear in the 

literature. However, there is no unified terminology for the expressions. [2007 Wallner/Yazdani/Grohs]  use 

the term “geodesic combinations”.  [2014 Dyn/Sharon] refer to “geodesic average between two points on 

the manifold”,  “geodesic weighted average”,  “repeated binary average”,  and “geodesic inductive mean”.



Definition: The term binary average refers to an expression of the form [p, q]λ. The term geodesic average 

refers to the nested computation of binary averages, for instance [[p, q]σ, r]λ for p, q, r ∈ M and λ, σ ∈ℝ. ◼

In the article, we use geodesic averages to perform smoothing of a sequence of points from a Riemannian 

manifold, or Lie group. The geodesic averages are derived from window functions that are commonly used 

in the convolution of linear signals to attenuate high-frequency components. Discrete differences of Lie 

group-valued sequences show the low-pass filter characteristic of the nonlinear smoothing operator.

The article is structured as follows: We recap the concept of geodesics in Riemannian manifolds and Lie 

groups. We present previous work on curve subdivision and Bézier curves in nonlinear spaces in a unified 

framework. Then, we define smoothing using geodesic averages. The new smoothing method is applied to 

sequences of manifold-valued data generated by real-world mobile robots. In the conclusion, we list 

further applications of geodesic averages.

Geodesics in Riemannian Manifolds and Lie Groups

Let M be a Riemannian manifold. Between two sufficiently close points p, q ∈ M with p ≠ q a unique shortest 

path τp,q : ℝ→ M exists with parameterization  proportional to arc-length and τp,q(0) = p, and τp,q(1) = q. We 

refer to τp,q as the geodesic that connects p and q. For all p ∈ M, we define τp,p(λ) := p for all λ ∈ ℝ. For 

enhanced readability, when referring to τp,q, we assume that the points p, q ∈ M are sufficiently close so 

that the geodesic τp,q is well-defined and unique.

The binary average is defined as short-hand [p, q]λ := τp,q(λ). The shortest path from p to q is the same as 

the shortest path from q to p reversed: The relation [p, q]λ = [q, p]1-λ holds for all p, q ∈ M and λ ∈ ℝ. In 

particular, [p, q]1/2 = [q, p]1/2.

Example: The 2-dimensional sphere M = S2 of unit radius embedded in the 3-dimensional Euclidean space 

ℝ3 centered at the origin is a Riemannian manifold. For two points p = (1, 0, 0), and q = 0, 1 5 , 2 5  

from the sphere, and λ = 0.4 the binary average is [p, q]λ ≈ (0.8090, 0.2628, 0.5257). The general formula for 

the binary average [p, q]λ for two, non-antipodal points p, q ∈ S2 is stated in a later section. ◼

For a Lie group (M, .) the geodesics are parameterized by

[p, q]λ = p.exp(λ log(p-1.q)) for sufficiently close p, q ∈ M and λ ∈ ℝ.

The group action “.”  and the inverse p-1 are available for a Lie group but not for a general manifold.

Example: Consider the rotation group M = SO(3). An element p ∈ SO(3) is a 3×3 orthogonal matrix with 

determinant +1. The group action is matrix multiplication. The matrix logarithm maps to the vector space 

of skew-symmetric 3×3 matrices. An implementation of the logarithm is stated in [2009 Chirikjian]. The 

matrix exponential is obtained using [1815 Rodrigues] formula. ◼

Curve Generation using Geodesic Averages

Geodesic averages were proposed for the definition of Bézier curves, and curve subdivision in nonlinear 

spaces, and analyzed in [1995 Park/Ravani] and [2007 Wallner/Yazdani/Grohs].  We revisit the constructions 

to gain an intuition for the concept, and facilitate the introduction of smoothing in the next section.

In Euclidean space, the computation of an affine combination of points does not depend on the ordering of 

the added terms. In contrast, a geodesic average consists of binary averages that do not commute in a 

nonlinear space. The design requirements for a geodesic average from a given affine combination are

• the geodesic average reduces to the affine combination when evaluated in Euclidean space, and

• if the affine weight mask is symmetric, the structure of the geodesic average should reflect the symmetry.

When a geodesic average involves more than two points, there is not a unique solution to the constraints.

We visualize the nested structure of a geodesic average as a binary tree. A binary average is represented as 
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a non-leaf node. The geodesic split ratio determines the position of such a node for better intuition. If you 

try and take a cat apart to see how it works, the first thing you have on your hands is a non-working cat.

Curve Subdivision

[2007 Wallner/Yazdani/Grohs]  analyze convergence and smoothness of curve subdivision based on 

geodesic averages. The authors show that “the nonlinear schemes essentially have the same properties

regarding C1 and C2 smoothness as the linear schemes they are derived from”.  The article features an 

illustration of curve subdivision in SE(3).

[2014 Dyn/Sharon] derive conditions on curve subdivision which “guarantee convergence from any initial 

manifold-valued sequence. The definition and analysis of convergence are intrinsic to the manifold.”  The 

convergence analysis is carried out for several schemes including cubic and quartic B-spline refinement. 

The authors point out that the framework does not yield a contractivity factor for the quintic B-spline 

scheme.

Figure: Comparison of two limit curves generated by subdivision in SE(2). The curve in green is based on 

quartic B-spline refinement. The curve in blue is based on quintic B-spline rules with curvature comb 

indicated in gray. The eleven control points that define the curves are indicated as red arrowheads. ◼

[2018 Hakenberg] uses curve subdivision in SE(2) for the intuitive design of planar curves with favorable 

curvature that are suitable for use as trajectories for car-like mobile robots.

In the following, M denotes a Riemannian manifold or Lie group. We reproduce the generalization of cubic 

and quartic B-spline refinement to geodesic averages from previous work.

Cubic B-spline subdivision requires midpoint insertion and vertex repositioning. For points p, q, r ∈ ℝn in 

the Euclidean space, the operations are the affine combinations:

midpoint insertion 1
2

p + 1
2

q

vertex repositioning 1
8

p + 3
4

q + 1
8

r.

For the ordered 3-point sequence p, q, r ∈ M the geodesic averages are

midpoint insertion [p, q]1/2          

vertex repositioning [[p, q]3/4, [r, q]3/4]1/2 

Another possibility for vertex repositioning is the geodesic average [[p, r]1/2, q]3/4.

Quartic B-spline subdivision is a dual scheme and requires only the definition of a single affine combina-

tion. For points p, q, r ∈ ℝn in Euclidean space the computation is

vertex insertion 5
16

p + 5
8

q + 1
16

r.

For the ordered sequence of three points p, q, r ∈ M, [2014 Dyn/Sharon] suggest to use the combination of 
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two geodesics for which the authors ascertain contractivity

vertex insertion [[p, q]2/3, r]1/16

Another variant that uses only two geodesics defines

vertex insertion [p, [q, r]1/11]11/16

[2018 Hakenberg] proposes the averaging along three geodesics

vertex insertion [[p, q]3/8, [q, r]1/8]1/2

Initial experiments have not indicated a qualitative advantage of one variant over another. The limit curves 

are very similar. In fact, there are infinitely many combinations of using three binary averages that all 

simplify to the weight mask [5 /16, 5 /8, 1 /16] in the Euclidean space:

vertex insertion  [[p, q]α, [q, r]β]γ for α = 16γ-11
16 (γ-1)

, β = 1
16γ , and γ ∈ (0, 1)⊂ℝ.

The three cases listed above correspond to γ = 1 /16, γ = 11 /16, and γ = 1 /2 respectively. ◼

The discourse shows that an affine combination in the Euclidean space does not translate to a unique 

geodesic average in general. Different nested binary averages exist that satisfy the design requirements. 

Because geodesic averages do not commute in nonlinear spaces, the choice of the geodesic average 

impacts the result of curve subdivision. Reality is frequently inaccurate.

Bézier Curves

[1995 Park/Ravani] define Bézier curves on Riemannian manifolds. For a moment, nothing happened. Then, 

a�er a second or so, nothing continued to happen. [2007 Popiel/Noakes] join Bézier curves on a manifold 

so that the resulting curve is C2 at the intersection point. The article features the hyperbolic 2-space as an 

example.

↔

↔

Figure: Geodesic average that evaluates a Bézier curve spanned by four control points in SE(2) at parame-

ter values 1 /3 and 3 /4 respectively, and the corresponding binary tree that encodes the nesting of the 

binary averages. ◼
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Figure: Two Bézier curves generated by three and four control points in SE(2) respectively projected to the 

plane in blue. The curvature comb is indicated in gray. ◼

Smoothing

In Euclidean space, the smoothing of a sequence of data is the convolution of the sequence with a kernel of 

affine weights. Every point in the sequence is replaced with the affine combination evaluated from the 

range-n neighborhood of the original point.

For the smoothing of a sequence of values from a Riemannian manifold, or Lie group M, we propose a 

similar procedure. However, a geodesic average takes the place of the affine combination: Every point in 

the sequence is replaced with the geodesic average evaluated from the range-n neighborhood of the 

original point.

Moving average “filters data by replacing every value by the mean value in its range-n neighborhood” 

[Mathematica, MeanFilter]. For n = 1, the mean of three points is computed as

replacement of q 1
3

p + 1
3

q + 1
3

r.

For the ordered sequence of three points p, q, r ∈ M we define the geodesic average as

replacement of q [[p, q]1/3, [r, q]1/3]1/2

For a range-2 neighborhood, the mean of five points is computed as

replacement of r 1
5

p + 1
5

q + 1
5

r + 1
5

s + 1
5

t.

For the ordered sequence of five points p, q, r, s, t ∈ M we define the geodesic average as

replacement of r [[[p, q]1/2, r]1/5, [[t, s]1/2, r]1/5]1/2

Moving average is an example of a linear smoothing filter, in which the affine weights in the mask used in 

the convolution are all equal. In general, the weights in the mask are sampled from a window function, and 

normalized to add up to 1. The window function determines the spectral properties of the linear filter. 

Examples of window functions are Blackman, Gaussian, Hamming, Hann, Nuttall, Parzen, and Tukey,  see 

[2018 Wikipedia].

Example: The Gaussian window function w is defined as

w : - 1
2

, 1
2
 →ℝ with w(x) = exp- 50

9
x2.

The smoothing mask of length 3 is the evaluation of the window function at parameter values 

x ∈ {-1 /2, 0, 1 /2}, with the resulting values normalized to add up to 1. We obtain 

m ≈ [0.1664, 0.6672, 0.1664].

For the ordered sequence of three points p, q, r ∈ M we define the geodesic average as
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replacement of q [[p, q]0.6672, [r, q]0.6672]1/2

For the ordered sequence of five points p, q, r, s, t ∈ M we define the geodesic average as

replacement of r [[[p, q]α, r]β, [[t, s]α, r]β]1/2

with α≈ 0.7392 and β ≈ 0.3434. In the diagrams, the decimal values are rounded. ◼

                   

Figure: Averaging a sequence of 5 points in SE(2) using a geodesic average defined by Dirichlet (le�), and 

Gaussian (right) window function. ◼

A symmetric affine weight mask of width 3 has the form [ω1, 1 - 2ω1, ω1]. To evaluate the center of a 

sequence of 3 points p, q, r ∈ M, the geodesic average of the form [[p, q]α, [r, q]α]1/2 is used. We require that 

the geodesic average reduces to the affine combination in Euclidean space. Thus, α = 1 - 2ω1.

                                    

Figure: Binary trees that encode geodesic averages of the form [[p, q]α, [r, q]α]1/2 with weights derived from 

common window functions. ◼

A symmetric affine weight of width 5 has the form [ω1, ω2, 1 - 2ω1 - 2ω2, ω2, ω1]. To evaluate the center 

of a sequence of 5 points p, q, r, s, t ∈ M, the geodesic average of structure [[[p, q]α, r]β, [[t, s]α, r]β]1/2 is 

used. The requirement that the geodesic average reduces to the affine combination in Euclidean space 

implies β = 1 - 2ω1 - 2ω2, and α =ω2 / (ω1 +ω2).

 

Figure: Binary trees that encode geodesic averages of the form [[[p, q]α, r]β, [[t, s]α, r]β]1/2 with weights 

derived from common window functions. ◼

The implementation [2018 IDSC-Frazzoli]  solves the split ratios in the system of nonlinear equations given 

symmetric affine masks of arbitrary size. We refrain from stating the general expressions here.
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Figure: Binary tree with split ratios derived from a symmetric affine mask of width 13 sampled from the 

Gaussian window function. ◼

In Euclidean space the impact of a filter is quantified in the frequency domain before and a�er smoothing. 

Frequency decomposition of a manifold-valued sequence is not available in general. However, for a Lie 

group-valued sequence, frequency analysis of the sequence of discrete differences between all successive 

points from the original sequence is available. The discrete difference between two points p, q ∈ M from a 

Lie group is the expression log(p-1.q), which is a value in the Lie algebra, and vector space. That means the 

sequence of discrete differences permits coordinate-wise discrete frequency decomposition.

The previous paragraph motivates the use of established window functions to derive geodesic averages for 

use in smoothing operators.

A smoothing filter in Euclidean space reproduces signals that are uniformly sampled from a constant 

function, or a linear function. Smoothing based on geodesic averages reproduces sequences that are 

uniformly sampled from a single geodesic in a Riemannian manifold, or Lie group.

Applications of Smoothing using Geodesic Averages

We apply the smoothing method based on geodesic averages to sequences of pose data in the special 

Euclidean group SE(2) ,and SE(3). In each case, the data originates from a real mobile robot. Then, we 

demonstrate the smoothing of a sequence of synthetic data with random perturbations in S2.

Our implementation of geodesic averages in SE(2) is based on [2018 Hakenberg]. The implementation for 

SE(3) makes use of the formulas for exp : (3)→ SE(3) and log : SE(3)→(3) stated in [2017 Ethan Eade]. 

There is no point in using the word ‘impossible’ to describe something that has clearly happened.

Smoothing the Pose of a Go-Kart in SE(2)

We apply smoothing to the pose sequence produced from a lidar-based localization estimation of a go-kart 

in motion. The pose of the vehicle is represented by an element in the Lie group SE(2). The sampling rate is 

20[Hz]. The vehicle was driven around several laps of a race track. The repository [2018 IDSC-Frazzoli]  

contains a reference to the dataset.

For smoothing, we use a geodesic average derived from the Gaussian window function of width 13 corre-

sponding to a duration of 0.65[s] in real-time. The discrete difference between two points p, q ∈ SE(2) with 

sampling time difference Δt is a value in the Lie algebra (2), and computed as (Δt)-1 log(p-1.q).
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Figure: Sequence of vehicle pose estimates of a fast driving go-kart in red. The result of applying the 

smoothing filter is indicated in gray. ◼

  

Figure: Discrete differences yield the tangent velocity u, side-slip velocity v, and heading rate ω before 

(blue) and a�er smoothing (yellow).

The sequence of discrete differences evaluated from the raw pose sequence exhibits high-frequency 

components. The sequence of discrete differences evaluated from the smoothed pose sequence is physi-

cally more plausible. The conventional estimation of these derivatives requires the design of an extended 

Kalman filter, and typically incorporates additional sensor information, see [2008 Pierre Pettersson].

Smoothing the Pose of a Micro Aerial Vehicle in SE(3)

We apply smoothing to the sequence of poses in SE(3) defined in the dataset ‘MH_04_difficult’ from [2016 

Burri et al.]. The position and orientation estimate of the aerial vehicle is sampled at a rate of 200[Hz]. We 

use a geodesic average derived from the Gaussian window function of width 49 corresponding to a duration 

of 0.245[s] in real-time.

                    

Figure: Raw pose in black, and the 3-axis orientation frame in red, green, blue of the dataset in the time 

interval 52.5 - 60.5[s] le�, as well as the corresponding part of the smoothed sequence, right. ◼
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The advantage of smoothing the raw sequence in SE(3) is evident when computing discrete differences. 

The numerical derivative between two points p, q ∈ SE(3) with sampling time difference Δt is a value in the 

Lie algebra (3), and computed as (Δt)-1 log(p-1.q).

  

Figure: The orientation components of the discrete differences before (blue) and a�er the smoothing 

(yellow) during the time 10 - 35[s]. ◼

The smoothing operation attenuates high-frequency components in the sequence. During the time 

10 - 18[s] the drone is stationary and does not rotate at all. This fact is better reflected in the smoothed 

sequence.

2-Dimensional Sphere

The 2-dimensional sphere M = S2 of unit radius embedded in Euclidean space centered at the origin with 

induced metric is a Riemannian manifold. Any geodesic on S2 is a great circle. The geodesic that connects 

two non-antipodal points p, q ∈ S2 is parameterized by λ ∈ ℝ using the formula for [p, q]λ as

SO3ad[{ωx_, ωy_, ωz_}] :=
0 -ωz ωy
ωz 0 -ωx
-ωy ωx 0

S2Split[p_, q_, λ_] := With{a = ArcCos[p.q]},

IfSin[a] ⩵ 0, p, MatrixExpSO3adCross[p, q] λ a  Sin[a].p

            

Figure: Sequence of perturbed points (red) from a loxodrome (gray) are smoothed using a mask of width 15 

with weights derived from the Blackman, Hann, and Gaussian window functions. The result is the sequence 

in blue. ◼

Conclusion
We propose the smoothing of sequences of points from a Riemannian manifold, or Lie group using geodesic 

averages. We motivate the design of geodesic averages based on conventional window functions. The 

geodesic average substitutes the affine combination in conventional convolution. Besides that, the method 

is parameter free.

Experiments on datasets from actual mobile robots in SE(2) and SE(3) indicate that the smoothed pose 

sequence is physically more plausible than the raw data. Evidence are the more regular discrete differences 

of the smoothed sequence.
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Despite the nonlinear terms, we found the smoothing method presented in the article to be robust in 

practical applications. The method is simpler than alternatives such as the bidirectional extended Kalman 

filter, see [1965 Rauch/Tung/Striebel].

Future Work

We plan to investigate the following extensions:

• The smoothing method discussed in the article is symmetric around a sample and repositions the data in 

an offline fashion. An online estimation is an affine combination between the past estimate and the current 

measurement, which can be formulated as a geodesic average as well.

• Geodesic averages can be adapted to the smoothing of sequences of non-uniformly sampled data.

• The geodesic average corresponding to a given affine combination is not unique. Therefore, guidelines for 

the choice of geodesic average backed by analytical, or experimental results are useful.

• Feature preserving filters exist for linear spaces, see [2011 Gastal/Oliveira].  For feature preserving filters, 

the weight mask depends on the input data. For instance, the geodesic average may depend on the dis-

tance of data points.
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