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Abstract— Newly developed cable driven redundant parallel
manipulators (CDRPM) have numerous advantages compared
to that of the conventional parallel mechanisms. However, there
exist some challenging issues in over-constrained mechanisms
like CDRPMs. In contrast to serial manipulators, complexity
of parallel manipulator forward kinematics (FK) is one of the
main issues being under study in the control of such manipula-
tors. Moreover, using extra sensory data is a common approach
in the FK solution of rigid–linked parallel manipulators, which
is considered by fewer researchers for CDRPMs. In this paper,
tension force sensors of the cables are used as an extra sensor to
simplify analytical solution of the FK for a planar CDRPM. To
find a suitable solution, geometrical and physical characteristics
of the robot are analyzed. It is shown that the proposed method
provides the required accuracy and significantly improves the
process time compared to the conventional methods.

I. INTRODUCTION

New designs of parallel manipulators are gaining more

attraction among researchers and practitioners in a many

applications. A closed chain mechanism causes a stiffer

structure capable of performing in high accelerations for a

fully constrained manipulator [1]. In a parallel mechanism,

each limb contributes in the movement of the payload; and

therefore, it can carry more payload to moving mass ratio.

This characteristics of parallel manipulator (PM) make them

suitable for special applications such as the popular Stewart-

Gough platform in flight simulators [2]. However, additional

to the complexity of production [3], and control [4] of such

manipulators, there are some challenges to the structures of

conventional parallel manipulators to accommodate stringent

requirements for a wide range of applications. The main

limitations of the parallel manipulators are their limited

workspace [5] and existence of singularity regions within

its workspace [6]. Using an electric powered cable–driven

actuator, as an alternative for the massive and stroke–limited

linear actuator, the workspace of the manipulator can be

inevitably extended even within the size of a football stadium

[7], or a platform of large adaptive reflector with two square

kilometer footprint [8]. By installing the driver units on the

fixed platform, only light-weight cables mass is added to the

mass of the end-effector. Therefore, manipulators such as a

RoboCrane can carry large forces as the weight of a shipping
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Fig. 1. The schematics of a 4RPR planar cable driven redundant parallel
manipulator

cargo with the use of a CDRPM structure [9]. However, a

cable can only carry tension forces, and to guarantee that

the cables are always under tension, different methods are

being used in the manipulator structure or control system. A

suitable solution for high acceleration applications, is to use

redundant actuator(s), and to use a redundancy resolution

technique in the manipulator control system, in order to

ensure that all the cables are always under tension. This

can be performed in a fully–constrained or over–constrained

moving platform [10], with the payoff of more complex

geometrical [11], or force feasible workspace analysis [12].

In CDRPMs, forward kinematics defines the problem of

finding the pose of the moving platform as a function of

the cable lengths. The Planar CDRPM has four actuator

variables and forward kinematic solution should calculate

the position and orientation of the end-effector in a three

dimensional workspace as a function of these four variables.

Forward kinematic solution is known as a challenging prob-

lem in the parallel manipulators [13], and various researches

are dedicated to find the solution of FK problems for

different parallel manipulators. However, most of the studies

in the literature focused on the fully actuated manipulators

in which the number of actuator variables are equal to the

dimension of the workspace. Moreover, other alternatives

of solutions to this problem has been proposed by using

additional sensors for the passive joints [14] or solving
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the problem as an optimization problem [15]. Another

solution to the forward kinematic equations is to simplify

relations between coordinates of the attachment points and

inverse kinematics by means of a closed form solution[16].

This solution can be fused with a linear sensor data in

order to increase the precision of the forward kinematic

solution[17]. In another research the nonlinear equations of

forward kinematics is converted into two groups of linear

matrix equations[18], while [14] proposes to solve algebraic

polynomial relations for the attachment points instead of

solving complicated trigonometric equations.

Most of above mentioned semi–analytical solutions highly

depend on the measurement of the actuator length and

orientation. Therefore, they cannot be used in the forward

kinematics analysis of the Planar CDRPM. In this paper,

a quasi–analytical method is used to satisfy the required

performance for the purpose of kinematics analysis and

online implementation in control. The general structure

consist of the four actuated three degrees of freedom planar

cable driven redundant parallel manipulator shown in figure

1. This manipulator is a basic stage for the development of a

forward kinematics solution for a six dimensional CDRPM

which is under investigation for possible high speed and

wide workspace applications such as virtual acceleration

generator. In this paper, inverse and forward kinematics

of this manipulator are fully analyzed. Then, geometrical

relations of joint space variables are combined with the

other physical relationships to simplify the FK solution by

means of tension force sensors data. The results show that

the proposed method provides the required performance, and

moreover, significantly improves the process time compared

to conventional method.

II. INVERSE KINEMATICS

A. Mechanism Description

The planar CDRPM under study is illustrated in figure 1.

This robot is a planar three degrees of freedom manipulator

with one degree of actuator redundancy. This robot has four

identical cable limbs. The cable driven limbs are modeled as

revolute-prismatic-revolute (RPR) joints, since the cables

can only bear tension force and are not exposed to radial

or bending forces. Two cartesian coordinate systems A and

B are attached to the fixed base and moving platform.

Points A1, A2, A3, A4 lie on the fixed circular frame with

an RA radius and B1, B2, B3, B4 lie on the moving circular

frame with RB radius. The origin O of the fixed coordinate

system is located at the centroid of the circular frame.

Similarly, the origin G of the moving coordinate system is

considered to be located at centroid of the circular moving

platform. The transformation from the moving platform to

the fixed base frame can be described by a position vector

named −→g =
−−→
OG and the angle of rotation between two

coordinate system denoted by φ. Consider ai and Bbi denote

the position vectors of points Ai and Bi in the coordinate

system A and B, respectively. Moreover, αi denotes the

angle between each cable with respect to the x axis and
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Fig. 2. ith Attachment point on the moving platform and related vectors

φi is the absolute rotation angle of Ei =
−−→
GBi vector.

Furthermore, it is assumed tha the tension force of the

cables, τ = [τ1, τ2, . . . , τ4]
T

, are measured at Bi points.

Although in the FK analysis of the Planar CDRPM, all the

attachment points, are considered to be arbitrary on a circle,

the geometric parameters given in table I are used in the

simulations.

B. Inverse Kinematics

The inverse kinematic analysis is the first and simplest

step in the kinematics analysis of PMs, which is used

in the dynamics analysis [19] and control [20] of such

manipulators. For inverse kinematic analysis of the Planar

CDRPM, it is assumed that the position and orientation of

the moving platform G = [xG, yG]
T
, φ are given and the

problem is to find the joint variable of the CDRPM, L =
[L1, L2, L3, L4]

T
. From the geometry of the manipulator as

illustrated in figure 2 the following loop closure equation

can be derived:

A−−−→AiBi +
A −→ai =

A −→g +A Ei (1)

The length of the i’th limb is obtained through taking the

dot product of the vector
−−−→
AiBi with itself. Therefore, for

i = 1, . . . , 4:

Li =
{

[g +Ei − ai]
T [g +Ei − ai]

}

1

2 . (2)

Assume that the moving attachments are located at a distance

of RB from the origin of the moving coordinate and Ei’s

polar coordinate is written as (RB , φi) with respect to the

fixed coordinate. Therefore, length of the cables can be

determined by the components of equation 2 :

Li =

[

(xG − xAi +RB cos(φi))
2 (3)

+(yG − yAi +RB sin(φi))
2

]
1

2

.

C. Jacobian Analysis

Jacobian analysis plays a vital role in the study of robotic

manipulators [21]. Let the actuated joint speed be denoted by
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a vector L̇ and the linear and angular velocity of the moving

platform be described by a vector ẋ =
[

ẋG ẏG φ̇
]T

.

Then the differential kinematics relation can be given by

the following equation:, in which, J is the Jacobian matrix

of the manipulator.

L̇ = J · ẋ, (4)

The Jacobian matrix not only reveals the relation between

the joint velocities L̇ and the moving platform velocities ẋ,

but also constructs the transformation needed to find the

actuator forces τ from the forces acting on the moving

platform F . When J becomes singular, there will be a non-

zero twist ẋ for which the active joint velocities are zero,

and this singularity is called forward kinematics singularity.

In this section we investigate the Jacobian of the CDRPM

platform shown in figure 1. For this manipulator, the input

vector is given by L = [L1, L2, L3, L4]
T

, and the output

vector can be described by the velocity of the centroid G
and the angular velocity of the moving platform as follows:

ẋ =

[

V G

ωG

]

, (5)

in which, ωG = φ̇Ẑi is the angular velocity of the moving

platform in Ẑ axis direction. The Jacobian matrix can be

derived by formulating a velocity loop-closure equation for

each limb.

VG + ωG ×Ei = L̇iŜi + Li (ωi × Ŝi) (6)

where, the Ŝi vector is the unit vector of the i’th cable from

Ai to Bi with respect to the fixed coordinate. Furthermore

ωi denotes the angular velocity of i’th limb with respect to

the fixed frame A. To eliminate ωi, dot-multiply both sides

of equation 6 by Ŝi.

L̇i = Ŝi

T
V G + (Ei × Ŝi)

T ωG. (7)

Using a matrix form of equation 7 for i = 1, 2, 3, 4, the

CDRPM Jacobian matrix J is derived as following.

J =













Ŝ
T

1 (E1 × Ŝ1)
T

Ŝ
T

2 (E1 × Ŝ2)
T

Ŝ
T

3 (E1 × Ŝ3)
T

Ŝ
T

4 (E4 × Ŝ4)
T













(8)

Note that equation 8 denotes the general form of the jacobian

matrix of the manipulator in terms of the full vector of linear

and angular velocities. However, for a planar manipulator

only the first two columns of this matrix corresponding to

the planar velocities ẋG and ẏG and the last column of the

matrix corresponding to the angular velocity φ̇ is needed. By

this means the CDRPM Jacobian matrix J becomes a non–

square 4 × 3 matrix, since the manipulator is a redundant

manipulator, as follows:

J =









cos(α1) sin(α1) RB sin(φ1 − α1)
cos(α2) sin(α2) RB sin(φ2 − α2)
cos(α3) sin(α3) RB sin(φ3 − α3)
cos(α4) sin(α4) RB sin(φ4 − α4)









(9)

III. FORWARD KINEMATICS

Finding the Cartesian position of the end–effector by

means of joint variable measurements is called forward

kinematics. This problem is a challenging issue for the

parallel manipulators. In this research, the cables tension

forces is used as an extra sensory data in the solution of FK.

Note that tension forces of the CDRPMs cables are usually

measured for the purpose of control. Hence they may be

used for forward kinematics solution with no additional cost.

Furthermore, including the force sensor data significantly

improves the forward kinematic solution performance and

process cost. For the rigid-linked PMs, a rotational sensor

is positioned on the revolute, universal or spherical joints

to measure absolute angle of the actuator, and these can

be used for the purpose of forward kinematics analysis.

However, in CDRPMs, the angle of cables, αi, cannot

be easily measured at fixed attachment point. Therefore,

the FK solution discussed in this section consists of both

geometrical and statical force balancing properties of the

manipulator to extract a polynomial solution for the FK

problem.

A. Forward Kinematics Formulation

The basic statical force balancing equation can be given

as below:

JT τ = W e (10)

in which, W e is the moving platform exerted wrench to the

environment, consisting of the following forces and moment:

W e = [fx fy mz]
T

(11)

Substitution of parametric amounts of the Jacobian matrix

equation 9 into equation 10 leads to:




cos(α1) . . . cos(α4)
sin(α1) . . . sin(α4)

RB sin(φ1 − α1) . . . RB sin(φ4 − α4)



 τ = W e

(12)

Since PM’s forward kinematic equations are usually com-

plex and cannot be solved in realtime control systems, αi

angles are usually measured by extra sensors. This extra

sensory method is not useful for the cable driven PMs

because their fixed attachment points are on the cable driver

units and the angle is hardly measurable. However, equation

12 presents the relation between αi angles and the force

vectors:

4
∑

i=1

τi cos(αi) = fx,

4
∑

i=1

τi sin(αi) = fy, (13)

RB

4
∑

i=1

τi sin(φi − αi) = mz.

Fortunately, the forces can be measured quite accurately.

Moreover, for the purpose of control and redundancy reso-

lution in these types of manipulators, force feedback of the
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cables is very popular and force sensors usually exist in the

system control loop [20]. On the other hand, geometrical

relation between position vector of the moving platform

centroid, xG, yG, and the joint variables can be extracted

from equation 2, for i = 1, . . . , 4, as following:

Li cos(αi) = xG − xAi
+RB cos(φi) (14)

Li sin(αi) = yG − yAi
+RB sin(φi) (15)

Hence, the relationship between end–effector pose,

(xG, yG, φ) and the trigonometric functions of αi angles

can be found as following.

cos(αi) =
xG + xi

Li

(16)

sin(αi) =
yG + yi

Li

(17)

in which, xi and yi are two intermediate variables defined

as following:

xi = −xAi
+RB cos(φi) (18)

yi = −yAi
+RB sin(φi) (19)

Now, using the set of equations 13, and the latter four

equations, the relation between the position of the end–

effector to its orientation is derived as:

xG =

(

fx −
4
∑

i=1

τixi(φ)
Li

)

/

(

4
∑

i=1

τi
Li

)

(20)

yG =

(

fy −
4
∑

i=1

τiyi(φ)
Li

)

/

(

4
∑

i=1

τi
Li

)

(21)

In order to simplify the calculations, reconsider the square

of equation 3 as:

L2
i = (xG + xi)

2 + (yG + yi)
2 (22)

First try to solve for xG and yG. This can be accomplished

by reordering the equation 22 into:

x2
G + y2G + rixG + siyG + ui = 0 (23)

in which, for i = 1, . . . , 4,






ri = 2xi

si = 2yi
ui = x2

i + y2i − L2
i

(24)

Equation 23 provides four quadratic relations for xG and

yG for each limb. Subtracting each two equations from each

other results into a linear equation in terms of xG and yG.

A

[

xG

yG

]

= b (25)

in which,

A =









r1 − r2 s1 − s2
r2 − r3 s2 − s3
r3 − r4 s3 − s4
r4 − r1 s4 − s1









; b =









u2 − u1

u3 − u2

u4 − u3

u1 − u4









(26)

Note that both of the A and b matrices are functions of

xi and yi and only depends on the end–effector orientation

φ with respect to the fixed frame. Numerical solution of

TABLE I

STRUCTURAL PARAMETERS OF THE PLANAR MANIPULATOR

Description Quantity

RA: Radius of the fixed attachment points 90 m

RB : Radius of the moving attachment points 10 m

θAi
: Angle of the fixed attachment points

[

−

3π

4
,−π

4
, π

4
, 3π

4

]

θBi
: Angle of the moving attachment points

[

−

π

4
,− 3π

4
, 3π

4
, π

4

]

this equation is discussed in [8]. However, by substitution

of equations 20 and 21 into equation 23, results into an

equation in which the inverse kinematics equation is related

to the measured actuator forces τi and the indeterminate

variables are changed to fx, fy , and the φ angle. Two cases

are therefore, distinguished for the solution of the forward

kinematics. First consider the case where no external forces

are applied to the moving platform fx = fy = 0. In this case

the inverse kinematics equations are only a function of φ,

which can be easily solved. Next, Consider the case where

external forces exists fx, fy �= 0. In this case, such forces

can also be determined in the process of forward kinematics

solution. In order to do that, equation 25 is expanded and

rearranged by a symbolic manipulator software to factor fx,

fy , and φ. The rearrangement leads to the following system

of equations for i = 1, . . . , 4

0 = (ei,1 + ei,2fx + ei,3fy)

+ (ei,4 + ei,5fx + ei,6fy) cos(φ) (27)

+ (ei,7 + ei,8fx + ei,9fy) sin(φ)

in which, ei,js are coefficients of indeterminate parameters

derived by such manipulations. These parameters depend

on the manipulator geometrical properties, xAi
, yAi

, RB , θB ,

and joint variables, Li and τi. The details of these compo-

nents are quite involved, and are not elaborated for the sake

of simplicity.

Now consider the system of equations in 27, and notice

that fx and fy must be first determined by one equation in

the set 27 then substituted in the others. In fact by carefully

examining the details of each pair of equation 27, fx and fy
are symbolically determined from pairs i = 1, 2, respectively

and then substituted in the next two pais. Finally, through

these substitution and the standard change of variable t =
tan(φ/2), the set of trigonometric equation will be reduced

to two sixth–order polynomials as following:

c0 + c1t+ c2t
2 + c3t

3 + c4t
4 + c5t

5 + c6t
6 = 0 (28)

d0 + d1t+ d2t
2 + d3t

3 + d4t
4 + d5t

5 + d6t
6 = 0 (29)

in which, ci’s and di’s are coefficients that are determined as

a linear combinations of ei,js. Finally, combination of these

two polynomials results into a fifth–order polynomial which

can be solved numerically. In order to verify the accuracy

and integrity of the solution a simulation study is performed

which is detailed in the next section.
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Fig. 3. Desired Trajectory devised for the Planar CDRPM

IV. SIMULATION RESULTS

The Planar CDRPM with three degree of freedom and

one degree of redundancy is analyzed here. Assume that

the planar parallel manipulator has four fixed attachment

points which are distributed equally on a circle with radius of

RA = 90m while moving attachment points are distributed

on RB = 10m radius circle in a way that insures cross con-

figuration of cables related to each other. A fixed coordinate

system is considered at the center of the manipulator and a

moving coordinate system is attached to the moving platform

which initially coincides with the fixed coordinate system.

Figure 1 represents this configuration. Based on the assumed

coordinate systems, position of the fixed attachment points

in the fixed coordinate system and the moving attachment

points in the moving coordinate system are represented in

table I. Also a set of trajectories as shown in figure 3 is

considered for the moving platform to follow during the

simulation.

The method presented in this paper to solve for the

forward kinematics requires the actuator force at any time.

In real robot these forces is measured by the force sensors

installed at each moving attachment point but for simulations

a set of three trajectories shown in figure 4 is assumed. Two

of these trajectories are assumed to be the sum of inertial and

disturbance forces exerted on the moving platform in x and

y directions and the third one is assumed to be the moment

exert on moving platform in z direction. Furthermore, by

means of manipulator’s jacobian these forces is mapped to

forces in joint space which in this case are the forces exert by

the cables on moving platform. These forces are also shown

in figure 5. Finally, by using inverse kinematic relation of

manipulator, the desired trajectories of the moving platform

can be used to find the cable lengths as shown in figure 6.

To verify the accuracy and integrity of the obtained solution,

these length and joint space forces are used in the proposed

forward kinematic solution to determine the final location of

moving platform, and the results are compared to the original

trajectories. Figure 7 shows the error between calculated

forward kinematics solution using the proposed method to
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Fig. 4. Assumed exerted forces on the Planar manipulator moving platform

that of the original trajectories. This simulation took 0.3793

sec in an Intel core2 Duo (T7500) machine with 1 gigabyte

of RAM.

In order to compare efficiency of this method to conven-

tional forward kinematics solutions, the results proposed in

[8] is shown in figure 8. This numerical solution took 0.7018

sec on the same computer. As it can be seen from figure 8

and 7 it is obvious while the error is nearly the same for

both method, the proposed method in this paper is twice

faster.

V. CONCLUSIONS

In this paper, forward kinematics of a planar cable driven

parallel manipulator is derived. Since parallel manipulator’s

forward kinematics equations are usually complex and can-

not be solved in realtime control systems, in conventional

methods the actuators rotation angles, αi, are measured

by extra sensors. This extra sensory method is not useful

for the cable driven PMs because their fixed attachment

points are on the cable driver units and the angle is hardly

measurable. The proposed method in this paper, shows

that the data of cables tension force sensors can be used

instead of the extra passive joint sensor. Moreover, for the

purpose of control and redundancy resolution in these types

of manipulators, force control of the cables is very popular

and force sensors usually exist in the system control loop.

The method examined on a given planar cable driven parallel

manipulator. It is shown that the proposed method not only

provides the sufficient performance, but also significantly

reduces the process time compared to a similar method. This

method is under development for further applications in the

spatial cable driven manipulators.
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