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CMPEN 411
VLSI Digital Circuits

Spring 2012

Lecture 13: Designing for Low Power

[Adapted from Rabaey’s Digital Integrated Circuits, Second Edition, ©2003       
J. Rabaey, A. Chandrakasan, B. Nikolic]
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Review: Designing Fast CMOS Gates

 Transistor sizing

 Progressive transistor sizing

 fet closest to the output is smallest of series fets

 Transistor ordering

 put latest arriving signal closest to the output

 Logic structure reordering

 replace large fan-in gates with smaller fan-in gate network

 Logical effort

 Buffer (inverter) insertion

 separate large fan-in from large CL with buffers

 uses buffers so that the path delay is minimized
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Why Power Matters

 Packaging costs

 Power supply rail design

 Chip and system cooling costs

 Noise immunity and system reliability

 Battery life (in portable systems)

 Environmental concerns

 Office equipment accounted for 5% of total US commercial 
energy usage in 1993

 Energy Star compliant systems
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Why worry about power? – Power Dissipation
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Power delivery and dissipation will be prohibitive
Source: Borkar, De Intel
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Why worry about power? – Chip Power Density
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Chip Power Density Distribution => Heat
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 Heat dissipation => temperature,   

higher power density => higher temperature

 Power density is not uniformly distributed across the chip

Intel Pentium 4:  (0.18 um)  64 W  @ 217 mm2

Intel Pentium 4:  (90 nm)  103W @ 112 mm2
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7/50

Examples

IBM Power G4 die temperature profile
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Apple Power G5
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Problem Illustration
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Power and temperature are BAD

 and can be EVIL

Source: Tom’s Hardware Guide

http://www6.tomshardware.com/cpu/01q3/010917/heatvideo-01.html
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Power and Energy Figures of Merit

 Power consumption in Watts

 determines battery life in hours

 Peak power

 determines power ground wiring designs

 sets packaging limits

 impacts signal noise margin and reliability analysis

 Energy efficiency in Joules

 rate at which power is consumed over time

 Energy = power * delay

 Joules = Watts * seconds

 lower energy number means less power to perform a 
computation at the same frequency
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Power versus Energy
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Energy is area under curve

Lower power design could simply be slower

Two approaches require the same energy
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PDP and EDP

 Power-delay product (PDP) = Pav * tp = (CLVDD
2)/2

 PDP is the average energy consumed per switching event         
(Watts * sec = Joule)

 lower power design could simply be a slower design

 allows one to understand tradeoffs better
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 Energy-delay product (EDP) = PDP * tp = Pav * tp
2

 EDP is the average energy
consumed multiplied by the                                                 
computation time required

 takes into account that one                                                             
can trade increased delay                                                              
for lower energy/operation                                                              
(e.g., via supply voltage                                                             
scaling that increases delay,                                                              
but decreases energy                                                              
consumption)
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Understanding Tradeoffs

1/Delay
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 Which design is the “best” (fastest, coolest, both) ?

better
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CMOS  Power Equations

P = CL VDD
2 f +    tscVDD Ipeak f      + VDD Ileak

Dynamic 

power

Short-circuit 

power

Leakage 

power
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Dynamic Power Consumption

Energy/transition = CL * VDD
2  * P01

Pdyn = Energy/transition * f = CL * VDD
2 *   P01 * f

Pdyn = CEFF * VDD
2 * f     where CEFF = P01 CL

Not a function of transistor sizes!

Data dependent - a function of switching activity!

Vin Vout

CL

Vdd

f01
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Lowering Dynamic Power

Pdyn = CL VDD
2 P01 f

Capacitance:

Function of fan-out, 

wire length, transistor 

sizes

Supply voltage:

Has been dropping 

with successive 

generations

Clock frequency:

Increasing…

Activity factor:

How often, on average, 

do wires switch?
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Short Circuit Power Consumption

Finite slope of the input signal causes a direct 

current path between VDD and GND for a short 

period of time during switching when both the 

NMOS and PMOS transistors are conducting.

Vin Vout

CL

Isc
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Short Circuit Currents Determinates

 Duration and slope of the input signal, tsc

 Ipeak determined by 

 the saturation current of the P and N transistors which 
depend on their sizes, process technology, temperature, etc.

 strong function of the ratio between input and output slopes

- a function of CL

Psc = tsc VDD Ipeak f01
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Impact of CL on Psc

Vin Vout

CL

Isc  0

Vin Vout

CL

Isc  Imax

Large capacitive load

Output fall time significantly 

larger than input rise time.

Small capacitive load

Output fall time substantially 

smaller than the input rise 

time.
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Ipeak as a Function of CL
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minimized by 

matching the rise/fall 
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slope engineering.
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is small, Ipeak is large.
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Psc as a Function of Rise/Fall Times
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When load capacitance 

is small (tsin/tsout > 2 for 

VDD > 2V) the power is 

dominated by Psc

If VDD < VTn + |VTp| then 

Psc is eliminated since 

both devices are never 

on at the same time.

W/Lp = 1.125 m/0.25 m

W/Ln = 0.375 m/0.25 m

CL = 30 fF
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Is Transistor a Good Switch?

On

I = ∞

I = 0

Off

I = 0

I = 0

I ≠ 0

I = 1ma/u

I ≠ 0

I ≠ 0
Sub-threshold Leakage
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Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

VDD Ileakage

Vout

Drain junction 

leakage

Subthreshold currentGate leakage
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Leakage as a Function of VT
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 Continued scaling of supply voltage and the subsequent 
scaling of threshold voltage will make subthreshold 
conduction a dominate component of power dissipation.

 An 90mV/decade VT

roll-off - so each 
270mV increase in 
VT gives 3 orders of 
magnitude reduction 
in leakage (but 
adversely affects 
performance)
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TSMC Processes Leakage and VT

80

0.25 V

13,000

920/400

0.08 m 

24 Å

1.2 V

CL013 
HS

52

0.29 V

1,800

860/370

0.11 m 

29 Å

1.5 V

CL015 
HS

42 Å42 Å42 Å42 ÅTox (effective)

43142230FET Perf. 
(GHz)

0.40 V0.73 V0.63 V0.42 VVTn

3000.151.6020Ioff (leakage) 
(A/m)

780/360320/130500/180600/260IDSat (n/p) 
(A/m)

0.13 m 0.18 m 0.16 m 0.16 m Lgate

2 V1.8 V1.8 V1.8 VVdd

CL018 
HS

CL018 
ULP

CL018 
LP

CL018 
G

From MPR, 2000



Sp12   CMPEN 411   L13   S.28

Exponential Increase in Leakage Currents
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Itanium example

90%

5% 5%

Dynamic

I/O

Leakage

example

Itanium 2  (Intel)

0.18 um, 1.5V, 1Ghz, 221M transistors

Latest generation Itanium  (Intel)

0.13 um, 1.3V, 1.5Ghz, 410M transistors

74%

5%

21%

Dynamic

IO

Leakage
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Next Lecture

Constant 
Throughput/Latency

Variable 
Throughput/Latency

Energy Design Time Non-active Modules Run Time

Active

(Dynamic)

Logic design

Reduced Vdd

TSizing

Multi-Vdd

Clock Gating

DFS, DVS

(Dynamic Freq, 
Voltage 
Scaling)

Leakage

(Standby)

Multi-VT

Stack effect

Pin ordering

Sleep Transistors

Multi-Vdd

Variable VT

Input control

Variable VT


