CMPEN 411 VLSI Digital Circuits Spring 2012

Lecture 13: Designing for Low Power

[Adapted from Rabaey's *Digital Integrated Circuits*, Second Edition, ©2003 J. Rabaey, A. Chandrakasan, B. Nikolic]

Review: Designing Fast CMOS Gates

- Transistor sizing
- Progressive transistor sizing
 - fet closest to the output is smallest of series fets
- Transistor ordering
 - put latest arriving signal closest to the output
- Logic structure reordering
 - replace large fan-in gates with smaller fan-in gate network
- Logical effort
- Buffer (inverter) insertion
 - separate large fan-in from large C₁ with buffers
 - uses buffers so that the path delay is minimized

Why Power Matters

- Packaging costs
- Power supply rail design
- Chip and system cooling costs
- Noise immunity and system reliability
- Battery life (in portable systems)
- Environmental concerns
 - Office equipment accounted for 5% of total US commercial energy usage in 1993
 - Energy Star compliant systems

Why worry about power? - Power Dissipation

Lead microprocessors power continues to increase

Power delivery and dissipation will be prohibitive

Source: Borkar, De Intel®

Why worry about power? - Chip Power Density

Source: Borkar, De Intel®

Chip Power Density Distribution => Heat

- Heat dissipation => temperature,
 higher power density => higher temperature
- Power density is not uniformly distributed across the chip
 Intel Pentium 4: (0.18 um) 64 W @ 217 mm²

Intel Pentium 4: (90 nm) 103W @ 112 mm²

Examples

Apple Power G5

What happens when the CPU cooler is removed?

www.tomshardware.de www.tomshardware.com

Power and temperature are BAD

and can be EVIL

Source: Tom's Hardware Guide http://www6.tomshardware.com/cpu/01q3/010917/heatvideo-01.html

Power and Energy Figures of Merit

- Power consumption in Watts
 - determines battery life in hours
- Peak power
 - determines power ground wiring designs
 - sets packaging limits
 - impacts signal noise margin and reliability analysis
- □ Energy efficiency in Joules
 - rate at which power is consumed over time
- Energy = power * delay
 - Joules = Watts * seconds
 - lower energy number means less power to perform a computation at the same frequency

Power versus Energy

PDP and EDP

- □ Power-delay product (PDP) = $P_{av} * t_p = (C_L V_{DD}^2)/2$
 - PDP is the average energy consumed per switching event (Watts * sec = Joule)
 - lower power design could simply be a slower design
- □ Energy-delay product (EDP) = PDP * t_p = P_{av} * t_p²
 - EDP is the average energy consumed multiplied by the computation time required
 - takes into account that one can trade increased delay for lower energy/operation (e.g., via supply voltage scaling that increases delay, but decreases energy consumption)

allows one to understand tradeoffs better

Understanding Tradeoffs

■ Which design is the "best" (fastest, coolest, both) ?

CMOS Power Equations

$$P = C_L V_{DD}^2 f + t_{sc} V_{DD} I_{peak} f + V_{DD} I_{leak}$$

Dynamic power

Short-circuit power

Leakage power

Dynamic Power Consumption

$$P_{dyn}$$
 = Energy/transition * f = C_L * V_{DD}^2 * $P_{0\rightarrow 1}$ * f

$$P_{dyn} = C_{EFF} * V_{DD}^2 * f$$
 where $C_{EFF} = P_{0\rightarrow 1} C_L$

Not a function of transistor sizes!

Data dependent - a function of switching activity!

Lowering Dynamic Power

Short Circuit Power Consumption

Finite slope of the input signal causes a direct current path between V_{DD} and GND for a short period of time during switching when both the NMOS and PMOS transistors are conducting.

Short Circuit Currents Determinates

$$P_{sc} = t_{sc} V_{DD} I_{peak} f_{0\rightarrow 1}$$

- Duration and slope of the input signal, t_{sc}
- I_{peak} determined by
 - the saturation current of the P and N transistors which depend on their sizes, process technology, temperature, etc.
 - strong function of the ratio between input and output slopes
 - a function of C₁

Impact of C_L on P_{sc}

Large capacitive load

Small capacitive load

Output fall time significantly larger than input rise time.

Output fall time substantially smaller than the input rise time.

I_{peak} as a Function of C_I

When load capacitance is small, I_{peak} is large.

Short circuit dissipation is minimized by matching the rise/fall times of the input and output signals - slope engineering.

500 psec input slope

P_{sc} as a Function of Rise/Fall Times

When load capacitance is small ($t_{sin}/t_{sout} > 2$ for $V_{DD} > 2V$) the power is dominated by P_{sc}

If $V_{DD} < V_{Tn} + |V_{Tp}|$ then P_{sc} is eliminated since both devices are never on at the same time.

 $W/L_p = 1.125 \mu m/0.25 \mu m$ $W/L_n = 0.375 \mu m/0.25 \mu m$ $C_L = 30 \text{ fF}$

normalized wrt zero input rise-time dissipation

Sp12 CMPEN 411 L13 S.23

Is Transistor a Good Switch?

Leakage (Static) Power Consumption

Sub-threshold current is the dominant factor.

Leakage as a Function of V_T

Continued scaling of supply voltage and the subsequent scaling of threshold voltage will make subthreshold conduction a dominate component of power dissipation.

□ An 90mV/decade V_T roll-off - so each 270mV increase in V_T gives 3 orders of magnitude reduction in leakage (but adversely affects performance)

TSMC Processes Leakage and V_T

	CL018 G	CL018 LP	CL018 ULP	CL018 HS	CL015 HS	CL013 HS
V_{dd}	1.8 V	1.8 V	1.8 V	2 V	1.5 V	1.2 V
T _{ox} (effective)	42 Å	42 Å	42 Å	42 Å	29 Å	24 Å
L _{gate}	0.16 μm	0.16 μm	0.18 μm	0.13 μm	0.11 μm	0.08 μm
I _{DSat} (n/p) (μΑ/μm)	600/260	500/180	320/130	780/360	860/370	920/400
I _{off} (leakage) (ρΑ/μm)	20	1.60	0.15	300	1,800	13,000
V _{Tn}	0.42 V	0.63 V	0.73 V	0.40 V	0.29 V	0.25 V
FET Perf. (GHz)	30	22	14	43	52	80

Exponential Increase in Leakage Currents

Itanium example

Itanium 2 (Intel) 0.18 um, 1.5V, 1Ghz, 221M transistors

Next Lecture

	Consta Throughput		Variable Throughput/Latency		
Energy	Design Time	Non-active Modules		Run Time	
Active (Dynamic)	Logic design Reduced V _{dd} TSizing Multi-V _{dd}	Clock (Gating	DFS, DVS (Dynamic Freq, Voltage Scaling)	
Leakage (Standby)	Multi-V _T Stack effect Pin ordering	Sleep Transistors Multi-V _{dd} Variable V _T Input control		Variable V _T	