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Scott, D.S., A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer 

Science 121 (1993) 411-440. 

The paper (first written in 1969 and circulated privately) concerns the definition, axiomatization, and 

applications of the hereditarily monotone and continuous functionals generated from the integers 

and the Booleans (plus “undefined” elements). The system is formulated as a typed system of 

combinators (or as a typed I-calculus) with a recursion operator (the least fixed-point operator), and 

its proof rules are contrasted to a certain extent with those of the untyped d-calculus. For 

publication (1993), a new preface has been added, and many bibliographical references and com- 

ments in footnotes have been appended. 

Preface (1993) 

The main part of the text of this paper was written in England in October, 1969, 

mid-way through the term the author spent on leave from Princeton University 

visiting Professor Christopher Strachy and his Programming Research Group at 

Oxford University. The preparation of this paper for its long-delayed publication has 

been done while the author was on sabbatical leave from Carnegie Mellon University 

visiting Professor Bruno Buchberger at his Research Institute for Symbolic Computa- 

tion at the Johannes Kepler University, Linz, Austria. The author is very much 

indebted not only to the universities mentioned for these various opportunities to take 

leave and to enjoy hospitality at the places visited, but also to Todd and Mary Wilson 

and Kim Wagner for typing the manuscript from a very old photocopy of a typescript, 

for writing and fixing the necessary TEX macros to typeset the new version as 

a report, and for helping assemble the bibliography. 
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The author is also much indebted to the editors of this volume for the welcome 
suggestion that such “historical” papers might be published this way. This particular 
paper has, of course, an odd historical role: in it the author argues against the type-free 
calculi of Church and Curry, Kleene and Rosser, and their later uses by Bohm and 
Strachey. But then in November of 1969, after writing this report, the author himself 
saw that the method of monotone continuous functions (which grew out of traditional 
recursive function theory in discussing certain kinds of functionals) could be applied 
to posets other than just those generated from the integers (with bottom) by the very 
simple type constructors. In particular, it was recognized that there were posets whose 
continuous function spaces of self-maps could be identified with the given posets 
themselves. And so there actually were “traditional” models of il-calculus that could 
be defined without first going through the proof theory of the formal system itself (and 
which could be related to many other mathematically meaningful structures and 
theories as well). 

This revelation was both gratifying and embarrassing. After writing with tiresome 
sarcasm about the lack of meaning in the type-free I-calculus introduced only 
formally, the author himself found an interesting kind of semantical interpretation for 
the “type-free” language. This total shift of gears is the reason the present paper was 
not published: the foundational program being advocated had apparently been 
completely outmoded by the discovery of the more general lattice-theoretic models. 
However, the axiomatic program laid out here had much to recommend it, and it was 
continued and extended in many directions by Milner, Plotkin, and many others, to 
whom the paper had been circulated privately - often at nth hand. Gunter in his book 
[9, p. 1431 remarks, “The language PCF itself was introduced by Scott in what is 
probably the most well-known unpublished manuscript in Programming Language 
Theory”. That exaggerates history somewhat, but the proof system proposed was in 
fact one of the main motivations for Milner to make automated proofs for such 
axiomatics (see [S, p. 1533). And this project in turn led directly to the definition, 
design and implementation of the programming language ML - a very important 
event in the history of computer languages, since ML has since prospered and taken 
on a role, importance and life of its own never dreamed of in the mid-1970s. Moreover, 
the completeness problem for the theory of the type system of this paper turned out to 
be far more delicate than was initially apparent (see the historical introduction to the 
Kahn-Plotkin paper in this volume). 

On the other hand, the type-theoretical approach has not died out at all, because it 
has been taken over and absorbed into the applications of category theory to 
semantics and computation theory. The author is fond of saying that a category 
represents the “algebra of types”, just as abstract rings give us the algebra of 
polynomials, originally understood to concern only integers or rationals. One can of 
course think only of particular type systems, but, for a full understanding, one really 
needs also to take into account the general theory of types, and especially translations 

or interpretations of one system in another. Category theory together with the notion 
of functor and natural transformation between functors has been proved over and 
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over again in the last half-century to be the appropriate way to go about these studies. 

The author himself does not always like or enjoy the discipline of category theory, 

which seems ofttimes to carry along very, very heavy machinery and odd terminology, 

but he long ago came to the conclusion that it is quite unavoidable. The extremely 

active current research in semantics also shows that it is an especially fruitful way to 

think. The book of Gunter [9] with its wide-ranging historical comments and 

references is adequate proof of this assertion. 

The strange title of this paper ought perhaps to be explained. In 1966, Landin 

published an influential paper [14] which introduced a syntactical design style for 

programming languages, one of which he called ISWIM, standing for “If you See 

What I Mean”. Also Biihm in 1966 published the paper [3] which named a language 

of combinators called CUCH, standing for “Curry-Church”. There seemed to be 

a worrisome trend in funny acronyms starting here (of which perhaps the ultimate 

examplar is the well-known and very widely used editing/programming interface 

called GNU, recursively standing for “GNU is NOT Unix”). The author hoped to 

stop some proliferation by suggesting a return to the logically standard type-theoret- 

ical framework and thereby deter the creation of programming languages of doubtful 

foundation called (as a group) OWHY, standing for “Or What Have You.” No one 

really understood the joke, and the effort was doomed to be of no avail. And history 

proved the author to be too conservative in any case. 

In the body of the paper footnotes giving relevant comments and some references 

have been added for this publication. A brief afterthought has been added as a last 

section. Some comments in the original text have also been transposed to footnotes to 

help readability. Several editorial changes and corrections were incorporated, but the 

original text has essentially been preserved. The bibliography is to be found at the end 

of the paper. 

0. Introduction (1969) 

No matter how much wishful thinking we do, the theory of types is here to stay. 

There is no other way to make sense of the foundations of mathematics. Russell (with 

the help of Ramsey) had the right idea, and Curry and Quine are very lucky that their 

unmotivated formalistic systems are not inconsistent.’ This is not to disparage 

formalistic work. In my view it is only through formalism that we can find a clear idea 

of the scope of mathematical knowledge. And I freely admit that one’s research may be 

advanced by some purely formalistic play with symbols. My point is that formalism 

without eventual interpretation is in the end useless. Now, it may turn out that a system 

such as the ;l-calculus will have an interpretation along standard lines (and I have 

spent more days than I care to remember trying to find one), but until it is produced 

’ The author still believes this statement. 
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I would like to argue that its purposes can just as well be fulfilled by a system 
involving types. Indeed, as far as proofs are concerned, the system with types seems to 
be much better.2 

It is a pity that a system such as Zermelo-Fraenkel set theory is usually presented in 
a purely formal way, because the conception behind it is quite straightforwardly based 
on type theory. One has the concept of an arbitrary subset of a giuen domain and that 
the collection of all subsets of the given domain can form a new domain (of the next 
type!). Starting with a domain of individuals (possibly empty), this process of 
forming subsets is then iterated into the transfinite. Thus, each set has a type 
(or rank) given by the ordinal number of the stage at which it is first to be found 
in the iteration. One advantage of this method is that the types are built into the 
sets themselves and need not be made manifest in the formalism. (Computer people 
might say that the type checking in set theory is done at runtime rather than at compile 
time.) One disadvantage is that people tend to forget what is out of sight. But it is 

there, and one can make quite clear what is the type-theoretic background of set 
theory.3 

For the purposes of understanding computation, however, set-theoretical formal- 
ism is not too helpful in any direct way. In the first place, too much of set theory 
concerns the transfinite, and ordinary computation has rather to do with finite 
processes. In the second place the axioms of set theory are meant to capture 
something essential of the idea of an arbitrary subset, while computation theory is 
more interested in the notion of an algorithmically dejined subset (or function). Of 
course, one can define in set theory such notions as that of a general recursive 
function, but such definitions do not emphasize enough what is special about algo- 
rithms. Nor is it generally clear when a defined function is recursive. So what we want 
is a “restricted” system that is specially designed for algorithms.4 What I shall present 
below is an independent system with its own axioms and rules; but, since I observe the 
canons of type theory, it can be (and indeed must be) read as a fragment of set theory 
so that its theorems can be recognized as uulid. This is the main feature missing from 
the A-calculus. Now I have only thought of this system in the last few days, so it may 
still be imperfect.5 However, none of it is wrong (as will be seen from the simple 
character of the system), and it does seem to do in a much better way what I discussed 

r This statement remarkably remains true! Even with the subsequent 20-year development of the theory 

of domains, the proof principles for recursively defined (or reflexive) domains are still being discovered. This 

can be well appreciated by reading the two very recent papers of Pitts [18, 191. 
a Though set theory, and especially ZF set theory, underwent a truly vast development in the last 30 

years, the common understanding of the type structure is probably not yet fully appreciated - to judge by 

the many arguments the author has had with category theorists. 

4The subsequent development of intuitionistic ZF and the expansion of realizability interpretations has 
completely changed this position. Unfortunately, the axiomatics of “synthetic domain theory” have not 

been completely clarified so that a convenient foundation for computation theory and semantics can be 

given in set-theoretic terms (see [12, 251 and the references therein). 

SThe report was written at one sitting over a very short period and never revised. 
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as the “algebraic theory of procedures” in my talk on the last day of the W.G. 2.2 

meeting in Essex.6 

1. Types 

The first confusion we should avoid is that between logical types and what we might 

call data types. The former are what we invoke to study the latter. The theory of data 

types requires the logical types (and certain notions about objects of these types) for its 

formalization. For example, the idea of the set of all subsets of a set is a logical notion 

(or mathematical notion, if you prefer), because neither it, nor for that matter the 

“general” set, can ever present itself as an object of data - in any ordinary sense of that 

word. However, set-theoretical notions can be quite useful when, for instance, we wish 

to say that the set of all data (of a certain kind) has no proper subset with a particular 

property (say, of being closed under a specific operation). I like to imagine the data at 

the lowest logical type being structured by certain (fixed) relations and functions 

(objects of a higher logical type) and the theory of these allowing reference to (variable) 

objects of all the higher types - as in the example mentioned above.7 

Obviously, for a good theory we want to be able to sort out data into different 

categories (types?), and (this is where the confusion begins) we want to study many 

derived types. As a simple example we could think of persons as forming a basic type 

and organizations as forming a derived type. By an organization I suppose we all 

understand a sort of tree of persons. It has a head (a person) and some brunches which 

give the “chain of command”. Well, there is no confusion here; where the problem lies 

is in this: the objects of the various logical types are richly structured. As we all know, 

the theory of trees (of persons, say) can easily be simulated or modelled by objects of 

higher logical types (oh, a “mathematical” tree is an ordered pair of a set together with 

a relation that partially orders the set - in a special way). Now is this a good thing? 

Sometimes yes, sometimes no. If we think of organizations as occurring in “nature”, 

then we do not want to identify them with the mathematical models. It is like the 

distinction between abstract and concrete syntax: there is not always a good reason to 

consider an expression to be a string (sequence mathematically?) of symbols. Why? 

Because the string-oriented methods of breaking an “expression” into “parts” might 

not lead to the correct or useful notion of part. Similarly with organizations. 
To put the point in another way: it seems best to allow ourselves the freedom of 

keeping our data types as primitives. Computers have taught us this. Think of the 

numbers. There is no unique representation of numbers, and we do not want to choose 

a particular one. All we really want to say is that they form one data type and that they 

6 The meeting was in the summer of 1969, and the method discussed there was from the long-unpublished 
de Bakker-Scott paper [6]. 

‘And consider the subsequent development of “concrete domains” by many authors after the 
Kahn-Plotkin report. 
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have a certain structure. (I suppose they can be added, say, and can be tested in pairs 

for equality or order.) Indeed we may require several different types of numbers. In our 

theory about these numbers we very much want the results to be “machine indepen- 

dent”. That is, the theorems ought to be valid for all representations - satisfying 

certain explicit structural conditions. (Equals added to equals remain equal?) 

This attitude was somewhat obscured by Russell’s approach to mathematics: he 

wanted to reduce mathematics to logic. How? By dejning number. (The number two is 
the set of all two-element sets - be careful of type distinctions here!) The program is 

not quite successful. Why? Because one must still postulate the existence of an infinite 

set (a data type?) in order to have “enough” numbers. Set theory gets around this point 

by going to transfnite types! It is not exactly cheating, but it is not really satisfactory 

either. For our purposes it is much better to give a theory (theories) of number rather 

than definitions of number. And the same applies to the other data types. What we are 

going to do is to take what we need from Russell’s logic without taking over his 

philosophy of mathematics. 

Actually, it is fairer to say that we are stealing from Church’s logic rather than 

Russell’s, because my notation is closer to that of Church.8 The reason is that for 

algorithms it is more natural to considerfunctions rather than sets. We can reduce the 

notion of function to that of set, but it is not convenient to do so. A much better plan is 

to treat sets (and relations) as special functions (truth-valued) as Church does. 

To start with we have two “logical” types represented by the Greek letters 1 and o in 

Church’s notation. The first, z, stands for the type of all indiuiduals. I consider it to be 

the largest data type; all other data types are to be “included” in it - hence it is clearly 

a logical notion. (The exact way of treating the other data types will be discussed 

below.) The second, o, is the type of the truth values - a very logical notion. These are 

the two logical types of the lowest order. The higher types are represented as follows: If 

a and p are types, then so is (cl+fi). What (u-+/?) represents is the type offunctionsfrom 
objects of type a to those of type b. Again a logical construct. 

To be more precise, we must distinguish between type symbols and the (sets of) 

objects of the corresponding type. Type symbols are strings of “L”, “o”, “+” “(“, and 

“)“. From my informal remarks in the last paragraph, anyone can write down the 

“grammar” for this (context-free) “language”, and I shall not bother to do so. Aside 

from this collection of type symbols, we will also have a rich language of expressions. 
Each expression will have a (unique) type, and I shall write X: tl to mean that the 

expression X is of type 01. Again we must be careful to distinguish the expressions from 

what objects they denote. More on this later. 

In the first place as expressions we shall allow, for each type c(, an infinite list of 

variables denoted as follows by lower-case letters: 

a,,b,, . . . . x,,y,,z,,a&,...,zh,a~,... 

8 This goes back to the well-known paper [4]. 
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(I suppose I should do all this in abstract syntax because no one really cares what my 
variables look like. But I don’t have time to fuss.) Those subscripted variables are in 
the object language of expressions. In my metalanguuge I use unsubscripted x, y, z, etc. 
to range over variables of any type. The unsubscripted capital letters range over 
compound expressions. 

The compounds are made from the variables and constants by a certain rule. The 
constants are divided into two main classes: the logical and nonlogical constants. 
I choose not to discuss the latter at the moment - just remember to save room for 
them. And remember in general that any expression has its type -which must be given 
in the case of constants (and variables). The logical constants are infinite in number (so 
are the types); I list them along with their types (a,/?, y are arbitrary type symbols): 

52,:1, R,:o, T :o, I :o, 

~~:(o+(cI+(c(+a))), 

Kx, : (a+@-, E)), 

S=,,:((CI~(B~Y))j((a-,8)~(a~r))), 

Y,: ((ct-m)+cr). 

One can probably guess what they mean, but I leave that discussion for the next section.’ 
As for the other expressions, suppose X: c1 and F : (a+&; then we have 

F(X) : /?. 

That is to say the standard function-value notation is the only way in which 
compounds can be made. Note that the type of X must& the type of F for F(X) to be 
well formed. Note, too, how complicated the types of our constants are. In particular, 
it is possible to form an expression of any type using only constants and no variables. 

By a formula, we understand either an atomic formula of the form 

x< Y, 

where X and Y are expressions, or a list 

(possibly empty!) of atomic formulae @i. We identify the one-termed list with the 
atomic formula.‘O (S’ mce my natural syntax is string-like, note that in view of the fact 
that the concatenation of expressions is never an expression, we can write a list 
of atomic formulae without commas. Let us not worry about such small points, 
however.) If Y and @ are two lists, then (in the metalanguage!) 

‘Kleene and many other logicians had used typed combinators, but the languages with the typed 

fixed-point combinator had not been considered all that much in 1969 except by Platek in his thesis [20]. 
lo The lists of atomic formulae are really conjunctions, as is explained later. 
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means that every atomic formula in @ also occurs in Y. (The symbol “G” is a symbol 
of the object language; similarly for “k”.) 

By an assertion, we understand a string of the form 

where @ and Y are lists of atomic formulae. Intuitively lists of formulae are just 
conjunctions and I- gives an implication between conjunctions - but this will all be 
clear when we find out in the next section the meanings of all our symbols. After that 
we will discuss axioms and rules ofinference for generating the (or a good part of the) 
valid assertions in an “algebraic” way. 

If @ is a list and F is an expression of the same type as a variable x, then 

@[F/xl 

denotes the result of substituting F for x throughout @. 
We need a few abbreviations. If X and Y are expressions of the same type, then 

X=Y 

stands for the list 

x< Y, Y<X. 

If F is an expression, and if F(X)(Y)(Z) is well formed, then we abbreviate this as 

F(X, Y, Z). 

Similarly, for more than three terms. (Note this abbreviation is a convention in the 
metalanguage and is not - at the moment - “sugaring” in the object language.) Also, 
we have only Q, and 52, at the lowest type. For higher types we define Q,a_8) to be the 
expression: 

K+&%):(~+P). 

The notation 

is not common. We usually write 

(B-+X, Y), 

but we also need 1a for general purposes.” 

r1 Subsequently, the author’s notation changed because it was confusing (he felt) to use either $ or c for 
the information ordering within a domain. He thus adopted the “square” notation of E from lattice theory. 

This brought along n and L. and took I for the bottom element instead of .Q. It still seems to the author 

a better notation, but too many people prefer to write the easier <. However, in a system that might involve 

integers, sets (say as elements of power domains), and the information ordering, it seems cleaner to have 
different symbols for different notions. 
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2. Interpretation 

The classical way of viewing the theory of types is to assign to each type u a domain 

D,, where D, is a given domain of individuals, D, is the domain of two truth values 

(denoted by T and I for true andfalse), and each Dtn+Dj is the domain of all functions 

from D, with values in D, . This point of view is not convenient for our purposes. The 

reason is simple: classical type theory supposes total (everywhere defined) functions, 

while algorithms in general produce partial functions. We do not wish to reject 

a program if the function defined is partial - because as everyone knows it is not 

possible to predict which programs will “loop” and which will define total functions. 

The solution to this problem of total versus partial functions is to make a “math- 

ematical model” for the theory of partial functions using ordinary total functions. The 

idea is not at all original to the author (he has taken it from more “standard” versions 

of recursive function theory - in particular, from the thesis of Platek [20]). Other 

authors in recursive function theory discussed monotone and “hereditarily consistent” 

functionals, notably Kleene, Rogers, Putnam and Davis, but there may be a few points 

of originality. In one direction, the axiomatization of the next section - especially the 

induction rule - is original as far as the author knows. 

What we do is to adjoin a “fictitious” element Q, to the domain D, and an element 

Q, to D,. We call C& the “undefined” individual and 52, the “undefined” truth value. 

However, we need to distinguish the new elements from the old. To do this we create 

a relation < on D, and d on D, (same symbol - different relations) meaning, roughly, 

“is less or equally defined as”. Thus, a reasonable assumption is that 

for all XED,; but that 

xdy 

implies 

x=y 

for x, LED, with x # s2,.12 We make this assumption about < on D,, but for the 

moment not about D,. Thus, a “picture” of D, could be 

I2 [from the original text] I am sorry that I must use the same symbols in the metalanguage as some of 

those in the object language. It is a sad fact that there are just toofew symbols. If I were more careful with 
quotes I would say that the symbol “<” is being given the interpretation of denoting the relation <. 
Hopefully, the reader can take the required care in his own thought. 
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with the slanting lines indicating <. We are therefore involved with a three-valued 
“logic” with the new value 0, “in between” T and I but placed “a little lower down”. 
(Look at the picture!) We shall see presently how good a three-valued logic we have.’ 3 
(Similar pictures could be given for the “reasonable” view of D,.) 

The upshot of all this is that D, and D, are partially ordered by <. What about 
D,,,,, for example? Well, what is DC,,,). 7 In the classical version we took all functions; 
not so here. We want only the monotonic functions (as we shall find later - at most 
these). By monotonic we understand a functionf: D, + D, (this is the usual mathemat- 
ical notation) where x < y impliesf(x) < f(y). In words this means: the more you dejine 
an argument, the more you define its value under a “computable” function. The same 
idea can be applied to a variable fin the combination f (x). That is to say, if we de$ne 

to mean 

for all XED,, then the combination f(x) is monotonic in both f and x, and the set 
DC,_,,) is partially ordered. Note that there is a natural “smallest” element among the 
elements of Do_,,), namely the function fit,,,), such that 

Q(,+,)(x)=G 

for all XED,. Note too that once D+,) has its own 6, we can then define D+,),, and 
D~++,~,~,,,~~, etc., by the same plan of taking only the monotonic functions. Indeed we 
can now define D, for every type symbol a. 

The plan just described of using monotonic functions is almost correct, but not 
quite. An example will make it all clear. Let D, = (0, 1,2, . . . } u {Q,}, the domain of 
ordinary integers plus Q,. In pictures: 

0 1 2 3 ... n ... 

\\\I/ 
Q, 

Now the monotonic functions fare almost like ordinary functions except we allow 

f(n)=Q, 

for certain arguments n if we so desire. If we read this equation as: fis undefined at n, 
then we agree that f is dejined only for a subset of the integers. Conversely, iffo is 
defined on a subset S of the integers, with integer values, then we can extend f. to 

” Kleene introduced such a three-valued logic in [13], and it has been discussed by many, many authors. 
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a monotonic function f by defining 

This requires f(Q,) = 52,. Such functions we call strict. Not all functions need be strict; 
we allow the constant functions, say 

g(x)=O, all xEDI, 

where g(C?,) 252,. The need for the distinction between strict and nonstrict functions 
will become clear later.14 

We have not yet seen the difficulty with monotonic functions, however. The 
D(,,,) just described is fine. It is only when we come to DC+,),,) that there is 
a question. An element ~ED~(,,,),,) is a functional. The equation 

h(f)=n, 

wherefED(,,,) and nsD, means that h “computes” the value n from the argument 1: 
But fis afunction; an infinite object (e.g. it may have infinitely many function values). 
What does it mean to “compute” with an “infinite” argument? In this case it means 
most simply that h(f) is determined by asking of f (maybe by some algorithmic 
process) finitely many questions - that is to say, oalues: 

f(mO)J(ml ), . . . ,fh- I 1. 

That is, as a functional h is continuous in some sense. Now fortunately we do not need 
at this point to involve ourselves in topology to any great extent. We can use our 
partial ordering 6 to pin down what we need most. 

Note that even though D, is a very trivial partially ordered set, DC,,,, is not. The 
partial ordering on DC,,,) is q uite complex (at least as bad as the Boolean algebra of all 
sets of integers - if not worse). In particular, we can form in D(,,,) many infinite chains 
of functions: 

fO<fi <fz < ... <fn < ... 

For example, let f(x) = x for all XED, and define 

fn (x) = 
x for x=0,1,2 ,..., n, 

62, otherwise. 

Then the fn form a chain in the above sense and each fn<f: Actually it is easy to see 
that f is the least upper bound of the fn in the sense of the partial ordering < on D,,,,,. 

I4 But of course it did not become clear until very much later that there are many different categories of 
domains, and that sometimes it is necessary to work only with strict functions and to have functors that 

“lift” continuous functions to strict functions. 
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We can write 

f= q f”. 
n=O 

In fact, I+,,) has the property that every chain has a lub. What does this have to do 
with continuity? Well, it is easy to show in an intuitive way that 

h ( ) T? .Ll = Q h(h) 
n=O n=O 

holds for every chain offn if h is continuous. What we are going to do is to take the 
above equation as the abstract definition of continuity. (Note that the lub operation 
trivially works in the ground domain D,.) 

To be a bit more precise: suppose D, and D, have been defined and partially 
ordered by < relations in such a way that lubs of chains always exist. Then for 

4 a+Bj we allow only those functions h: D, + D, that are at the same time monotonic 
and continuous. This space DCa_pJ has a natural partial ordering, and (as should be 
proved by the reader) lubs of chains always exist in DCa+BJ. (Hint: 

Note that with this convention the application operation f(x) is always monotonic 
and continuous in each of f and x. 

We have now defined the domains D, for all CI, which means that all we have done 
so far is to specify the ranges ofour variables x,. (Note that D, can be any “abstract” set 
with a Q satisfying the lub condition. One should not always restrict attention to the 
integers.) The next step is to specify the meanings of the constants. Now we obviously 
want the symbols “Q,“, ‘X2,,“, “T , ” “I” to stand for the values L?,, Sz,, T, 1. The other 
constants are functions and must be so defined. Thus, 

~a(P1 x3 Y)’ 

! 

X if p=T, 

Y if p=l, 

52, if p=sZ,, 

for all PED,, x, YED,, where C&ED, has already been defined. Next 

I&(x, Y)=X 

for all XED, and YED,. Then 

S&f; 9,x)=.& g(x)) 

for allf~DC,+,p+,jj, gED(,+B), and XED,. The definition of Y is more difficult. 
Already we should be forced to prove something in order to see that the above 

definitions “make sense”. In particular, we need to know that the functions 
3=, K,,, S,,, do belong to the correct domains. This means that we must show (1) 
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that they are well-defined functions, and (2) that they are monotonic and continuous. 

Actually, this all follows from a “composition theorem” for monotonic and continu- 

ous functions; we give a representative example of an instance of this theorem. 

Theorem 2.1. Suppose functions g, h, k are monotonic and continuous, and suppose f is 
dejined by the equation 

f(x,y)=g(h(x,y)> k(x,y)). 

Then, f is monotonic and continuous (in each of its variables). 

The monotonic part of the theorem is obvious. To prove the continuity we must 

calculate 

=g ( q h(x,>y), i/ k(xm,y) 
I=0 m=O 1 

=lgo $‘/, g(W,> vh k(xm, y)). 

Now we note that in a partially ordered set a lub of lubs is just the lub over the double 

index set (in this case over the pairs (1, m).) Furthermore, to calculate a lub it is 

sufficient to find the lub of a cojinal subset. In our case the elements 

g(h(x,, y), k(x,, y)) are cofinal, because we assume the x, form a chain (x,<x,+~), and 

if n=max(E, m), then 

g(h(xi, Y), Wx,, y))<g(h(x,, Y), k(x,, Y)) 

by monotonicity. Hence, 

f(n$'ox.,y)=nv'g(h(x., y),k(x.,y)) 

=nvof (XII, y). 

Thus, f (x, y) is continuous in x. 

It is clear that the proof just given applies for any number of variables. Note too 

that the variables are independent and may belong to di;fSerent domains. Thus, in 

our example we could have had: XED,, YED~, h&C,,C8,,,,, kEDC,+C8+ajj, and 

g%+6-rE)) producingfED~OI-(P~E)). The reader should note in particular that our 

functions are all “Curried” (as the saying goes), so that f (x, y) really means f(x)(y). 

Thus, f(x) E & + Ej 3 and one should take care to remark that with x jixed, f (x)(y) is 
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continuous in y; whencef(x)E&,,) is correct. Then, with x uariable,f(x) is continu- 

ous in x, which gives the result. 

It is also clear, as remarked before, that appZicationf(x) is monotonic and continu- 

ous in fand in x. Therefore, any combination defines a good function. This remark, for 

example, justifies the definition of S,,,: 

S&(f; 93 x)=f(x)(g(x)), 

in Curried form, and shows why 

S,B,E((a-*(P-,Y))~((cc~B)~(a~Y))). 

We have followed Curry (and others) in giving names only to “combinators” 

K,, and &, because all others can be defined in terms of these. For example: 

I,(x) = x (the outright definition) 

= K .(,-.,(x)(K&)) 

= S&K+,) )(K,,)(x). 

Hence, 

I,=S~yor(Ka(a+Ea, )( K,,), (the indirect definition), 

where P=(,+((u+u)-+u)) and r=(a+(a-+a)). Another example: 

C(x)(f)=.04 

=I(f)(K(x)(f)) 

= S(I)(K(x))(f) 

= K(S(I))(x)(K(x))(f) 

=S(K(S(I)))(K)(x)(fL 

whence 

C=S(K(S(I)))(K), 

where we have left it to the reader to fill in the type subscripts. Obviously, this 

“economy” has only “theoretical” importance. The proper thing to do is to introduce 

a A-operator and write 

C,,=~f,,+,, kC&s,c41. 

We shall not do so at the moment because we do not want to formulate all the rules 

about free and bound variables. Our axioms are simpler if we keep to the “algebraic” 

theory that has only free variables. 

So K,, and Saa,, are the so-called combinutors, but what is x~? Answer: X= is 

the McCarthy operator for forming the conditional expression. Thus, instead of 
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3 &)(x)(y) we may write (informally) the more usual (p +x, y). Its properties are well 
known. What might not be so well known is its use at higher types. Thus, consider the 
definition 

Pa(x,Y)(P)= ~,(P)(X> Y)? 

where x,y~D,. What is Por(x,y)~D~,,,) ? Answer: it is an ordered pair. Indeed let us 
write informally 

(x, Y > = P&, Yk 

then we see 

(x, y)(T)=x, 

<x,Y)(J-)=Y, 

which shows why (x, y) is a pair. Note, however, that this is a logical construction and 
should not be confused with a data type for pairs of individuals. (By the way, one 
should check that X= really is monotonic and continuous.) 

Finally, we must interpret Y,. We use the notation for Curry’s “paradoxical” 
combinator, but we cannot use Curry’s definition. Why? Simple: my view is that the 
type-free theory makes no sense whatsoever. This remark applies to the theory as 
a whole and does not prevent me from gaining inspiration from parts of the theory.15 
The inspiration we need about Y, is the so-called fixed-point property: if FEDS,,,), 
then we want 

Ydf) =f(Ydf))* 

Two questions: how do we know f has a fixed point; and if it does, which one shall we 
choose for Y,( f )? Answer: we are lucky in being able to choose the least fixed point 
- “least” in the sense of < on Dta__,. It is constructed by iteration as follows: For 
XED,, let 

f"(x)=f(f(...f(x)...)), 
\ I 

n times 

where f" (x) =x. Then note 

r5 [from the original text] The same could have been said about infinitesimals in the calculus - except 

that nowadays they have a reasonable interpretation [in nonstandard analysis]. [comment 19931 Of 
course, once models for the type-free theory had been defined, the “paradoxical” definition could be used. 
Surprisingly, it turned out that these definitions, although giving fixed points, did not always have simple 

properties. See the discussion and references in Barendregt [l]. 
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and so 

and by induction 

_P(~a)~f”+‘mz)~ 

because f is monotonic. We can thus define 

Y,(f)= Q f”(G)> 
n=O 

and then calculate by continuity: 

f(Y,(f))= \j; f”+‘(%)=Y,(f). 
n=O 

This proves that f has a fixed point. Now suppose a is any other. Then 

&da, 

and so 

whence 

Thus, 

Y,(f)= t f”(%)ba. 
n=O 

This proves that Y,(f) is the least fixed point. 
We must still prove that Y,(f) is monotonic and continuous inf.16 The monotonic- 

ity is very easy, but the continuity requires some computation. Suppose fn < fn + r is 
a chain of functions in D,, _ aj. Then 

Let 

I6 [from the original text] Sorry about that! When one says what one means, one must demonstrate the 

correctness of one’s definitions. 
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we must show 

It is obvious from monotonicity that 

To complete the proof, compute: 

= a. 

Hence, a is a fixed point, and so Y (Vn”=ofn)<a. Thus, we have proved 

Y&D(( a-a)-a). 

Having now interpreted all of our constants, we can define the important notion of 

validity. Suppose X and Y are two expressions of the same type. In general, they 

contain variables; hence they do not denote, as they stand, anything in particular. But, 

if we assign values in the appropriate D, to each of the variables, then all of the 

symbols in the expressions become meaningful and X and Y have values. Thus, under 

the assignment to the variables, the atomic formula X < Y is either true or false. Now 

consider an assertion @ F Y. It is said to be valid if under every assignment of values to 

variables that makes all the atomic formulae of the list @ true, all the atomic formulae 

of Y are true also. That is, @ “implies” Y with the variables being universally 

quantified. 

Strictly speaking we have only defined validity with respect to the given domain D,. 
We are more interested at the moment in those assertions that are universally valid for 

all choices of D,. We shall see many examples of valid assertions in the next section. 
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Notice, however, how different our method is compared to the I-calculus. In the latter 

theory, validity of equations (interconvertibility) is defined in a purely formal manner. 

Here we have dejned validity “semantically” and must discover the formal properties 

of this notion. Of course in our metalanguage we are taking “on faith” the existence of 

the various higher-type continuous functions in the D, that we have been defining. But 

this is normal mathematics. The validity of conversions in A-calculus has no such 

mathematical foundation.‘7 

3. Axiomatization 

In the first place there are some very general properties oft- that would be the same 

for any similar theory. We give “axioms” (quite self-evidently valid assertions) and 

“rules of inference” (simple deduction methods that clearly preserve validity). 

(INCLUSION) 

(CONJUNCTION) 

(CUT) (OR SYLLOGISM) 
Q/-Y YE@ 

@FO 

(SUBSTITUTION) 
@kY 

@ [X/x] t Y [X/x] ’ 

where X and x are of the same type. 

Clearly, the rule of substitution can be generalized to simultaneous substitution for 

several variables. However, this more general rule can be proved as a derived rule of 

inference. 

Next the relation < enjoys several useful properties: 

(REFLEXIVITY) Ex<x. 

(TRANSITIVITY) x<y, y<zkxQz. 

(MONOTONICITY) x<y, f<skf(x)Gs(y). 

(EXTENSIONALITY) @ ;y;: ;(‘), where x is not in @. 
\ 

Note especially that we have stated these principles without type subscripts, This is 

a very convenient trick available in the metalanguage. The point is that, say, t- x < x is 

valid for variables x of all types. Similarly for the axiom of transitivity with the 

understanding that x, y, z are all of the same type - otherwise the formulae would not 

” [from the original text] At least to date, but I despair of ever seeing an adequate justification. 
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all be well formed. In the axiom of monotonicity and the rule of extensionality, x and 

y must be of the same type, say tl, and f and g must be of a type (a+p) for the 

assertions to make sense. 

It is interesting to ask why the rule of extensionality is correct. Well, suppose 

@/-f(x) <g(x) is valid. Since x is a variable being assumed not to occur in any 

formula of @, it is a “free” variable inf(x) < g(x). “Free” in the strongest sense that we 

are free to give it any value. Now consider @ k f< g. Give values to the variables in 

@ (and to f and g) to make all the formulae of @ true. By assumption f(x) <g(x) is true 

for all values of x (of the correct type!). Hence, by dejnition of $ for functions, f < g is 

true. Thus, we have shown that from the validity of @ Ff (x) <g(x), the validity of 

@ k f < g follows. 

By the way, remember that X= Y is short for X< Y, Y<X. Note that = is indeed 

an equality relation because we can now prove, as theorems from the axioms and rules 

we already have, that 

x= Y, Y=ZkX=Z, 

X=YFY=X, 

@[X/x], x= Yk@[Y/x]. 

The last one relies heavily on monotonicity. 

Inasmuch as we have assumed no “non-logical” constants, there is in general very 

little to say about individuals of type I except for the “undefined” individual 52,: 

(MINIMALITY,) k 52, < x,. 

Later we shall be able to prove this about all the types and all the 52, ~ which are 

defined and not primitive. If, and only in the case of individuals (and truth values), we 

wanted to have the “reasonable” view of Sz, and the other individuals, we might want 

to assume:” 

(DISCRETENESS,) @, @ [Q,/x,], y, d x, k @[y,/xJ . 

This principle means that the only y, <x, are Q, and x, itself. This is definitely not 

correct for higher types. In the case of truth values we shall not have to assume it, but 

shall prove it from the properties of the conditional expression. 

The first, most trivial, property of truth values is19 

(MINIMALITY,) t- 52, < x,. 

I8 The principle was stated incorrectly in the original paper. The revision was suggested by Todd Wilson. 

I9 Note here, as for type 1, we can use the particular variable x, for emphasis of the type. 
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Then we have for 1 #:‘O 

(CONDITIONALITY) E I=( T, x, y ) = x, 

I-- 3,(1,x,y)=y, 

t- z~.(Q,,x,y)=Q,, where x,y:a. 

Finally, we must express the idea that T, I are the only allowed truth values: 

(EXHAUSTION) 

This principle allows us to argue by cases. For example, we can prove all the 
well-known laws of the conditional expression by simple (but lengthy!!) arguments by 
cases. Thus, they are not needed as axioms, but they must be proved as “lemmas” very 
early on. 

The axioms for the combinators come directly from their definitions: 

(K-CONVERSION) t- K&x, y)=x, where x:01, y:/% 

(S-CONVERSION) I- S&f, g, x)=.0x, g(x)), 

where f:(a+(P+r)), g:(a+P), and X:CI. 
Sometimes people give other complicated equations for the combinators. This 

seems to be a desire to avoid using the rule of extensionality (say, in the work of 
Rosser). This would seem to be important only in the situation where one wanted to 
do away with variables altogether. We are not using bound variables here, but there 
seems to be no reason not to have free variables. Hence, all those equations may be 
proved by extensionality -just as we prove propositional truths by using the rule of 
exhaustion of cases. 

Finally, we must isolate the basic facts about the fixed-point operator: 

(STATIONARINESS) t-f(Y,(f))<Y,(f), wheref:(cl+a). 

This is slightly weaker than stating an equation - but the other direction can be 
proved by using the very important rule: 

(INDUCTION) 
@k y CWXI @, y I- y Cf(Wl 

@ k ‘y ~~,(f)lxl ’ 

where the type restrictions are these: x : CI and f: (a -+ c(), and where x must not occur in 
@. (We need x as a “free” variable as in the rule of extensionality.) 

2o [from the original text] Note that we could drop all the type subscripts, and the reader could very 
safely put them back in. It would be interesting to formalize rules for the metalanguage for doing this 

automatically. [comment 19931 This was done together with a type of polymorphism by Milner in ML to 
excellent effect. 
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As a first example of the use of induction we prove the fixed-point equation: thus, 

8, Qf(Q;2,) 

is obviously provable. Further, 

x G(x) E f(x) G f (f(x)) 

is provable by monotonicity. Therefore, by induction 

Y&I-)< f(Y,(f)). 

As a second example, we show that the fixed point is minimal: thus, 

f(a)<a t- Sz, <a 

is obvious. Further, 

f(a)<a,x<al-f(x)<a 

is easy to establish by monotonicity and transitivity. Therefore, by induction 

f(a)<a k Y,(.f)<a. 

Although he does not see how to prove it at the moment, the author is reasonably 
certain that these two instances of induction, though useful, are not the whole story. 
That is, it is not enough only to assume them as axioms; the full rule is really needed. 
For example, let us define (as a suitable combination of K’s and S’s) the composition 
operator 6 where for f: (/I -+ y), g : ( ct + p) and x : cx we have as provable: 

I- B&L 9, x)=f(g(x)). 

Now a mildly interesting theorem about fixed points is the following: 

B(f, g)= B(sJ-), B(.L h)= B(U)> s(Q)Gh(fi) k s(Y(f)) d h(Y(f))> 

where type subscripts must be written in so that it all makes sense. The easy proof by 
induction is clear. The author does not see how to prove this in any other way.2’ 

Having seen how useful induction is, one may well ask: why is it valid? We shall 
argue its correctness by a method that brings out some other useful points of the 
theory. Note in particular this property of the pairs we defined in the last section: 

x<x’, yby’ H P(x, y) < P(x’, y’), 

where in general @ H Y is short for the two assertions @ E !P and YE CD. Hence, we 
see that any list @ of formulae is such that there exists a (long) “paired” formula X < Y, 
where 

‘l In fact, there have been many subsequent studies of induction principles. See for example [18, 191, but 

also compare the proofs in [S]. 
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is provable. Next we recall the property of combinators whereby, if X is any 
expression and x is any variable, then there exists an expression F such that F does not 
contain x and 

F F(x)=X 

is provable. ” By these remarks it becomes clear that without loss of generality the 
Y of the induction rule can be taken to be of the form g(x) < h(x), where g and h are 
variables and their “definitions” g = G, h = H can be pushed into the @. Thus, the rule 
has the simpler looking form 

@tg(Q)6W) ~,s(x)dh(x)t-g(f(x))gh(f(x)) 

@ l--s(Y(f)) d V(f)) 
2 

where still x may not occur in @. 
The validity of the conclusion of the rule is now almost self-evident: assume values 

are given to the variables (except for x) so that @ is true. Then by the first assumption 

g(Q) < W4 

is true. Then by the second assumption where x is valued as Q, we have 

s(f(Q))dW-(52)). 

Applying the second (inductive) assumption repeatedly, we find 

s(f”(Q)) < Wf”(W) 

to be true. Now passing to the limit and using the continuity of g and h, we have 

true as desired. 
It is this rule of induction that I consider the main advantage of my system. As far as 

I know there is nothing like it for the &calculus. 23 Of course, the rule is very much like 
McCarthy’s principle of recursion-induction (see [ 151). In fact, I view my rule as being 
a more general version of McCarthy’s principle, which, after we gain more experience 
with it, will be even easier to apply. Note that the principle as I state it is “abstract” 
and does not require any “knowledge” of the integers in its formulation. Of course, 
I used ordinary integer-indexed iteration tojustgy the rule - but that argument was in 
the metalanguage. The “formal” connection with integer induction and recursion will 
be discussed in the next section. 

” [from the original text] The F can effectively be found from the X and can be called Ix [X] - this is 
a short-hand in the metalanguage. 

23 [from the original text] Morris in his thesis [17] proves a minimal fixed-point property for the 

I-calculus. The proof, however, is very complicated - like the Church-Rosser theorem - and it is not quite 
clear exactly what it gives one for proofs about I-expressions. 



A type-theoretical alternative to IS WIM, CUCH, 0 WHY 433 

Completeness 

We have presented a language (Section 1); we have interpreted it semantically 

(Section 2); we have written down many self-evident “axioms” and validity-preserving 

rules (Section 3); now it is time to ask: How much progress have we made? 1fwe could 

only show that the axioms were complete in the sense of allowing us to derive eoery 

valid assertion by formal proofs based on the axioms and using the rules, then we 

could be very satisfied by our progress. Such completeness is impossible, however. The 

argument is a standard one of showing that the class (of Giidel numbers) of valid 

assertions is not recursively enumerable. (The class of theorems is recursively enumer- 

able.) Standard as the argument is, it may be instructive to see how it can be expressed 

in our language. We will, by the way, assume the discreteness rule throughout. 

What we shall do is to introduce four nonlogical constants 0 : z, Z : (z --) o), + 1 : (I + I), 

and - 1: (I -+ z) of the types indicated. We shall then write down five simple equations 

involving these constants, in a list called d, such that any interpretation making 

& true must be isomorphic to the system of integer arithmetic. That is to say the system 

where 0 is zero, Z is the monadic predicate of being equal to zero, and where + 1 and 

- 1 are the successor and predecessor functions. It will thus be “difficult” to enumer- 

ate valid assertions of the formz4 

&t-Q. 

Now that we are moving a little away from “theory” and a little closer to “practice”, 

we must begin to “soften” our notation. Thus, the (-*,)-notation is better than the 

3 -notation. We shall also use the A-notation, but keep in mind that Ax[X] is 

a metalinguistic abbreviation for an expression F not involving the variable x such 

that l- F(x) = X is provable - which expression is not important.25 We shall also write 

x + 1 (with no parentheses) instead of + 1 (x) and similarly for x - 1. We could even 

introduce the many excellent features of format used in Landin’s ISWIM - but 

remember: our variables are forever typed!26 

The first four equations of d are very elementary: 

Z(Q,)=Q,, 

Z(O)=T, 

o-l=sz,, 

Ax,[x,+l-l]=~xI[xJ, 

Y(~,,)(~fi,,,)C~x,C(Z(xl)~O,Jil-r,(x,-1)+ 1)11)=~x,L-&l. 

24 Because, as is argued below, there is no recursive enumeration of all true equations between primitive 

recursive functions. 
” [from the original text] I could make it precise, if it were necessary. 

I6 [from the original text] Remember too that we have no “program points” nor assignment statements 

-just a “pure” functional calculus. 
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The last is harder to appreciate - especially with the subscripts -but all will be made 
clear. (As a first step, drop the subscripts.) The first equation means that the truth 
value for Q’s being zero is “undefined”. The second equation means the zero is zero; 
hence, 0 # Q because T # 52. We have not used # as part of our “official” notation 
before and we will not make it official now. What it means to say that T # 52 is that the 
assertion 

where @ is arbitrary, is provable (and hence valid). In other words, a false equation 
implies anything. The third equation means that the predecessor of zero is “unde- 
fined”. The fourth equation means that 

x+1-1=x 

is true for all values of XED, - and everyone knows what that means. 
The last equation involves a recursive definition. Indeed, let N : (z + 1) stand for the 

left-hand side of the equation. Then by “definition”, 

ä N(x)=(Z(x)+O, N(x-l)+l). 

What the fifth equation is telling us is that 

N(x)=x 

must hold for all x. That is telling us a lot! For one thing we will know that 

(Z(x)+O, x-l + 1)=x 

holds for all x. From our other equations we know that x + 1 # 0 for all x # Q (because 
0-l=O#x=x+l-1). We also know that O#O+l#O+l+l, etc. (Hence 
Sz + 1 = D by discreteness, but that is not too important.) What is new from the last 
equationisthatifx#Oandx#52,thenZ(x)=Iandx-l+l=x.(Hencex-1#52 
for x # 0, x # a.) In particular, we see Z(x)= T iff x =O. In other words, zero, 
successor, and predecessor have all the elementary relations they should. But even 
more than this is contained in the fifth equation, and that more is mathematical 

induction. 
To be more precise we shall derive this rule: 

&,@E!P[Q/x] JCz,@t-Y[O/x] d,@,YYY[x+l/x] 

&d,@PY 
7 

where x is not in @. To make the derivation even more transparent, we may assume 
without loss of generality that Y has the form 

9 (x) G h (x)3 

where x: z and g, h: (1 +a) for a suitable CL The problem then is to show that the 
hypotheses imply 

&,@ k g6h. 
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In view of what we have assumed in d, it will be sufficient to prove 

Now look at the dejnition of N. Note first that we can prove (by assumption) 

The desired conclusion will follow by our general rule of induction if only we can 

prove 

-($, @, Ax Csu-(x))l d Ax C4fc4)l 

We can now drop the Ax’s in the conclusion, and we can argue by cases Z(x)=Q, 

Z(x) = T, Z(x) = 1. Each case is easily done in view of our three assumptions. Thus, 

the proof is complete. 

That shows the deductive power of d. The semantic import should now be clear: 

any interpretation making ~2 true must be isomorphic to the integers. Now using the 

0, Z, + 1, - 1 notation it is clear that we can write down Y-definitions of any primitive 

recursive function (of any number of arguments). Consider two such definitions F and 

G. Clearly, now 

is valid (in all interpretations) if the functions defined by F and G in the standard 
integers are equal. It is well known that one cannot enumerate the pairs of equal 

primitive recursive functions; hence the class of valid assertions of our calculus cannot 

be recursively enumerable. 

Is this incompleteness result a cause for despair? I think not. The system is really 

very strong. Much stronger than what logicians call primitive recursive arithmetic 
because of the use of the higher types. It is more in the line of a higher-type theory of 

recursive functionals proposed by Gijdel and studied by him and others. Our system is 

more usable that Gbdel’s (I won’t say “stronger” because I do not know at the 

moment) in view of our use of partial functions. In particular, we can define not only 

primitive recursive but also general recursive functions - on the basis of d. 

It is enough to see how to define Kleene’s p-operator. The trick is a common one: 

suppose fis a given function and we want to find the least integer x such thatf(x) = 0 

andf(y) # 52 for smaller y. We define by recursion the function g such that 

and then the desired integer is g(0). More formally 
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It would be interesting to have a clearer idea of what the various definable partial 
functions of higher type really are - maybe the recursive functionals people already 
know.27 One particularly important question is this: suppose we fix the standard 
arithmetic interpretation of 0, 2, + 1, - 1. Suppose we consider a dejinition of a func- 
tion f:(z+r). We have just shown that every general recursive function may be 
defined, but conversely? Is every definable function general recursive? The answer may 
be yes, but the higher types make it complicated to see.28 A possible outline of an 
argument might be as follows: use an abstract machine to calculate f by symbolic 
manipulation of its definition. In fact, we might even be able to use (almost directly) 
Landin’s A-calculus machine. Our axioms for =), K, S, Y (and for 0, Z, + 1, - 1) tell us 
exactly how to make conversions. If the expression for fis F, we just try reducing 

F(O+l+l . . . +1) 
\ , Y 

n times 

until we “finally” get 

O+l+l... +1 
M’ 

f(n) times 

Clearly, if the reduction rules always work to produce an answer whenf(n) is defined, 
thenfis indeed general recursive because the rules are effective. 

Note that the rules can never give a wrong answer. The big question is whether, 
when we expect an answer semantically, we can alwaysJind it formally. If we could 
prove that, it would be a kind of completeness of our calculus - completeness for 
numerical equations - and would be the most we could hope for. It would also be 
_ theoretically at least - a very important result. One wonders what the situation 
would be on domains other than the well-worn integers. It strikes the author as 
significant that this question cannot even be asked of the A-calculus because the 
I-calculus has no meaning. One has to take the reduction rules “on faith” and has no 
“standards” to which they must match. 

A third question about completeness concerns the power of expression of 
our language: can we define everything we want? The answer is not all that clear 
because it is difficult to see just what we do want. Certainly we want what we have at 

“They did. See, for example, the study of Hyland [ll] and the brief remarks in [7]. 

‘s [from the original text] The proof might be contained in the thesis of Platek [20], but that is a very 
difficult work to read, to say the least. [comment 19931 The document is still difficult for the author to read, 

but the proof required is more simply based on the idea of “effectively given domains”. This means that 

since the domains used here are all algebraic cpos with effectively enumerable bases of finite elements, the 
genera1 recursiveness of all definable functions on the integers can be proved semantically by structural 

induction on the size of the definition. See [22, 10, 231 for various expositions. 
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the moment, but consider the simple truth function V :(o+(odo)) given the table: 

Axiomatically, V is determined by the following equations: 

k v (P, 4)= v (4, PI, 

b V(P, T)=T, 

k v (P, J-)=p. 

Then all the other facts about the table follow by monotonicity. (Note that this V is 
indeed monotonic.) Now the question is: do we want it? Is there any reason to exclude 
any monotonic truth function. 

By the way, it is an interesting exercise to prove that all monotonic truth functions 
of any number of arguments can be defined in terms of V and 1, where 1 : (o + o) is 
defined in the usual way: 

1 (P)=(P- J-2 T). 

The main trouble with V is that it is symmetric. Thus, consider the function 
definition: 

W=(V(fW) v ZMX))‘X, x+ 113 

where I inadvertently wrote (p V q) for V (p, q). To evaluate h in terms of the given 
functions f and g, we must calculate fand g in parallel. Thus, for a particular x, we 
start to calculate bothf(x) and g(x). If one of them gives the answer 0, we stop and are 
sure that h(x) = x. If both give answers other than 0, we know h(x) = x + 1. Otherwise, 
h(x) = 52. Well, that is a kind of algorithm, but it has a flavor different from the usual 
bread-and-butter calculations that proceed one step at a time. Do we enjoy this new 
flavor enough to call it computable? Some people would say yes, but I wonder. It 
seems harmless, but maybe we should think about it more.2g 

” [from the original text] Platek also discussed and rejected the idea in his thesis in his study of Kleene’s 
work. [comment 19931 Plotkin settled all the questions asked here when the symmetric V is allowed in 

[21]. As the discussion in the preface to the Kahn-Plotkin paper shows, extensive research on “sequential 

functions” has still not come to complete satisfactory conclusions. 
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5. Conclusions 

It seems to me that the idea of a monotonic and continuous function is a very 
natural one for anyone thinking about computability.30 What I have tried here is to 
give a logical calculus (or even: algebra) for the notion using type theory. The point is 
that the types are natural - the higher-type functionals are useful - and they have the 
advantage of possessing a semantical interpretation. It is important to remember that 
I consider the higher-type functionals as logical notions to be kept separated from the 
data types (more on this below). I think I have given enough detail here to demon- 
strate that this “algebra of computation” works very smoothly and naturally - though 
I admit that fully formal proofs would be very lengthy. (Should we think of automat- 
ing any proof procedure. q31 ) It is not very surprising that there is a nice algebra since 
all we really need are the conditional expression and the possibility of explicit 
definition (S and K) and of recursive definition (Y). (I ask again: do we want V ? any 
others??) There is the question of computational completeness mentioned in Section 4, 
however, and this should be given more thought. 

Now what about other data types? My present view is that all the data should be 
kept in type 1. In Section 4, I showed how one might structure the objects of type z as 
the integers with the aid of 0, Z, + 1, - 1. Numbers are only one type of data. We 
could imagine D, as being divided into many disjoint parts, each part with its own 
structure and with axioms for the structure given in the same style as in d. For 
example, one part might be LISTS (regarded as data rather than as logical constants), 
and we would need structure such as NIL, cons, cur, cdr. The axioms would be very 
similar to those in d. The advantage of the “axiomatic” approach over the “defini- 
tional” method would be in the freedom we would allow ourselves in representing the 
data, say, in a machine. We would only have to check that the data structure as 
implemented satisfied the axioms. (Question: what to do about “overflow”, that is, the 
finite character of most representations?) Now Hoare (to mention only one person) 
has already started writing down axioms for data structures, and it would seem that 
the present theory offers a rigorous framework for this activity. The idea requires 
much more study, however. 

Finally, we must agree that the study of A-calculus cannot replace the study of 
programming languages. It is true that the logical notation allows us to express many 

3o [from the original text] The recursive function people have been considering monotonic functions for 
a long time, and BekiC recently came across the idea again in his study of automata theory [2]. Park and 

Florentin also used the notion in discussions of the Floyd-Manna proof theory for programs. It is 

mentioned, for example, in the Eilenberg-Wright automata theory via categories. Indeed, it is a “folk” 
notion. The author became interested in it when trying to find the best induction principle for de Bakker’s 

algebraic approach to program equivalence - and he is indebted to de Bakker for many discussions on 

trying to develop a useful algebra. (See the later work in [S].) Of course, he knew about Platek’s work, but 

Platek does not “seem” to discuss continuity. 

31 Milner and coworkers did in his LCF! 
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computations and that the system could be given the look of a programming 
language, but we have not built into the theory logical notions corresponding to the 
full glory of the assignment statement and to the idea of jumps and goto’s. Landin has 
tried to do this with ISWIM, but the personal view of the author is that the result is 
not quite successful. Landin does have a clean, regular, and powerful language, but in 
a certain sense it is just another language: evaluation still must be done on a machine. 
Now maybe Landin’s evaluations are easier to follow than some other methods, but 
somehow I do not feel that he has given a “logical” explication of the notion of 
assignment. 32 M Y current idea is that we should take up Strachey’s plan of giving an 
“axiomatic” discussion of the store and its transformations using the theory of L and 
R values. The locations (addresses) and the stores would be treated as new data types. 
Why? Because they have machine representations. 33 Well, these ideas are still in 
a state of flux, but the author hopes that the distinction between logical and data types 
can help us sort out the features of a rather murky landscape. 

6. Afterthought (1993) 

The historical overview presented here by the revisions to the paper has been very 
brief and very, very selective. A long and tiring literature search would be required to 
write a really satisfactory discussion of all major developments and influences. There 
are many names that should have been mentioned. Twenty-five years is not such 
a long time, but the enormous number of conference proceedings and journal 
literature produced in theoretical areas of computer science and programming- 
language semantics over that period make a bibliographer’s task quite daunting. Also, 
each month brings several new papers from many very active centers of research. So, 
I doubt whether a good history can ever be written in my lifetime. But the author is 
not trying to excuse himself for not doing better! 

Rereading this paper after such an interval was a surprise for me, however. Despite 
some doubtful rhetoric, the paper still makes reasonable sense, has clear definitions, 
and suggests possible trends or problems that were indeed taken up with positive 
results. Moreover, not all the questions raised have been settled. The paper, therefore, 
served a function, and it is still worthwhile to stop to consider why. 

32 [from original text] I hope Landin will reply to this criticism, because it seems to me to be a basic 

“philosophical” point that should be cleared up. [comment 19933 The author rather doubts that he did. 

However. work by Milner, Plotkin, and many, many others have refined, contrasted and related “opera- 
tional semantics” to “denotational semantics”. 

s3 Indeed, the ideas were much developed, as shown by the books of Stoy [24] and Milne-Strachey [16]. 

Nevertheless, a really satisfactory mathematical theory of store and assignment is still missing. 
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