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Abstract

This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of

the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the

use of neural network models as vehicles for understanding cognition. The collection surveys

the core commitments of the PDP framework, the key issues the framework has addressed, and

the debates the framework has spawned, and presents viewpoints on the current status of these

issues. The articles focus on both historical roots and contemporary developments in learning,

optimality theory, perception, memory, language, conceptual knowledge, cognitive control, and

consciousness. Here we consider the approach more generally, reviewing the original motivations,

the resulting framework, and the central tenets of the underlying theory. We then evaluate the

impact of PDP both on the field at large and within specific subdomains of cognitive science and

consider the current role of PDP models within the broader landscape of contemporary theoretical

frameworks in cognitive science. Looking to the future, we consider the implications for cognitive

science of the recent success of machine learning systems called “deep networks”—systems that

build on key ideas presented in the PDP volumes.

Keywords: Connectionist models; Neural networks; Language; Cognition; Memory; Learning;

Cognitive control; Perception

1. Introduction

Cognitive science might succinctly be defined as the effort to answer three questions:

(a) What processes support the complex behaviors of intelligent systems? (b) What kinds

of representations do such processes operate on? (c) What is the initial basis of such pro-

cesses and representations, and how do they change with experience?
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A snapshot of the current state of the field will reveal vigorous discussion of these

questions. In many cases, these contemporary controversies have grown from seeds

planted over 25 years ago, with the publication of Parallel Distributed Processing—the

two-volume collection of articles that addressed shortcomings of the then-dominant sym-

bol processing approach, offered a neurally inspired framework for understanding many

aspects of cognition, and challenged many commonly held beliefs about the answers to

these core questions (Rumelhart, McClelland, and the PDP Research Group, 1986).

This special issue was initiated in the context of the selection of one of us (JLM) to

receive the David E. Rumelhart Prize in Cognitive Science in 2010. This provided an

opportunity, about 25 years after the publication of the parallel distributed processing

(PDP) volumes, to consider the contributions of the framework and to honor Rumelhart,

whose breakthrough contributions spearheaded the PDP approach. Rumelhart passed away

in 2011, 25 years after the publication of the PDP volumes. Though a few years have

now passed since these milestones, the consideration of these contributions is nevertheless

timely, since it comes at a moment when exciting breakthroughs in applying deep neural

networks to object recognition (Le et al., 2012), speech perception (Graves, Mohamed, &

Hinton, 2013), and sentence processing (Socher, Bauer, et al., 2013) have led to renewed

interest in the approach.

The papers assembled in this special issue address several central issues in contempo-

rary cognitive science as viewed through the lens of parallel distributed processing. Each

paper traces the development of current thinking from earlier work, places the issues in a

contemporary context, and provides pointers toward future directions.

Although each article stands on its own, separate consideration of these works would

obscure an important characteristic of the PDP approach—specifically that it offers a set of

principles, commitments, and practices that apply across many different cognitive domains.

In this introductory article, we consider the framework in general and the answers it gives

to the core questions raised above. We begin by considering the symbolic paradigm—
already known in the mid-1980s as “good old-fashioned Artificial Intelligence”—along

with the phenomena that provided the impetus for developing the PDP alternative. We then

review the central features of the PDP approach, consider the key areas where PDP has had

an impact, and examine the relationship between PDP and other approaches. We end with a

brief consideration of the relevance of the framework for the future.

2. Motivations for the parallel distributed processing approach

2.1. The symbolic framework

From the late 1950s through the 1970s, research in cognitive psychology was largely

shaped by the view that the mind is a discrete symbol-processing system, similar to a

Turing machine or a serial digital computer. The basic elements of cognition

were thought to include arbitrary symbols as representational primitives, structured

arrangements of such primitives, and rules for manipulating these to allow for new
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structured arrangements of symbols (Newell, 1990). Cognitive processes were likened to

computer programs—ordered lists of rules that, when applied to some symbolic input,

would produce the appropriate output. For instance, a process that computes the past

tense form of a verb from its present tense form might be described as follows:

IF goal is to generate past-tense form of verb X THEN

retrieve phonological segments of X

bind past tense morpheme [^d] to end of X

adjust phonology of past tense morpheme based on final segment of X

END

In this pseudo-code, there are representational units (like phonological segments of

words and the past-tense morpheme) that are stored in the memory, and there are proce-

dures for operating on these (like the binding operation that joins the past-tense mor-

pheme to the end of the word). Running through the steps of this procedure will produce

the correct response for the majority of verbs in the language, and it will also produce a

plausible response for novel verbs, thereby accounting for productive use of past tense

forms (Pinker, 1999). Of course, more elaborate systems of rules are required to capture

more complex cognitive processes—for example, procedures that take a sequence of

words as input and apply rules to derive a parse tree that describes the grammatical struc-

ture of the sentence (Woods, 1970), or procedures that take two-dimensional intensity

arrays as input and return the locations and orientations of the surfaces and edges of the

objects that gave rise to the intensity array (Marr, 1982).

This symbolic perspective brought with it implications and assumptions that had a pro-

found effect on cognitive theory. Processes were often thought to be modular: Each took

a particular kind of input and returned a particular kind of output, applying processes that

followed their own domain-specific rules and were impervious to other sources of input

(Fodor, 1983; Marr, 1982). Processes were also often thought to operate in a strictly

sequential fashion, with each successive process waiting for its predecessor to finish and

provide its output (Sternberg, 1969). Many models of human cognitive processes from

this period were built on the discrete stage assumption. Thus, in one early proposal,

visual word recognition was thought to involve one stage of processing that performs a

featural analysis of the stimulus; a second that takes the output of the first and produces a

string of identified letters; and a third that uses this string of letter identities as the basis

for identifying the word (Gough, 1972). Learning was cast as something of a discrete all-
or-nothing process—a given symbol, rule, or procedure was either stored in the system or

it was not, and policies were developed for determining when rules should be added or

merged (Anderson, 1975). Also, because the number of possible sets of rules is

unbounded, this view brought with it the assumption that a great deal of knowledge must
be innate to limit the search space. Language acquisition, for example, was assumed to

depend on a pre-specified “universal grammar” subject only to parameterization based on

the features of a given natural language (Chomsky, 1965). Finally, the neural underpin-

nings of the mind were thought to be essentially irrelevant to understanding cognitive

function. Just as one need not know the electronic workings of computer hardware to
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understand the steps of a computer program, so too might one understand the mind’s soft-

ware without worrying about its implementational details (Neisser, 1967).

By the late 1970s, however, it was becoming apparent that models built on these

assumptions were failing to capture many fairly basic and fundamental aspects of human

cognition. These shortcomings, briefly reviewed here, spurred the search for an alternative

set of basic principles for cognition. Some of the points are drawn from the pre-1980 lit-

erature and were part of the initial motivation for PDP, but more recent findings that

underline the motivating issues are also considered.

2.2. Graded constraint satisfaction and context sensitivity

One problem with the symbolic paradigm was the observation that cognitive out-

comes are constrained by multiple sources of information. The first chapter of the PDP

volumes (McClelland, Rumelhart, & Hinton, 1986) provided several examples. Visual

object recognition is accomplished by the simultaneous processing of multiple individu-

ally inconclusive cues, each of which may be consistent with many different interpreta-

tions. When reaching for an object in a cluttered environment, the locations of the

various objects, the current posture of the person reaching, the location of the hand,

and the shape, weight, and rigidity of the object to be grasped all exert constraints on

the trajectory of the reach. Language comprehension and production are simultaneously

shaped by syntactic, semantic, lexical, and morphological constraints, and by the setting

or context in which language is produced and by discourse and pragmatic constraints.

AI researchers (Minsky, 1974; Schank & Abelson, 1977) proposed “frames” and

“scripts” to represent the knowledge needed to guide processing (e.g., of a story about

an event such as a visit to a restaurant), but Rumelhart and Ortony (1976) argued that

the interpretation of everyday episodes and events requires simultaneous reliance on

multiple kinds of knowledge—not just one but several scripts or schemata need to be

simultaneously considered. In these and other cases, it was difficult to see how the

required sensitivity to many different sources of information could be achieved by mod-

ular, discrete, and serial symbol processing systems, or with reference to a single frame

or script as context.

The assumption that processing is modular—that a given process operates only on its

direct inputs and is unaffected by the operations of other modules—made it difficult to

capture the contextual effects on processing that had been robustly documented by the

late 1970s (Rumelhart, 1977). One example of such an influence is the word-superiority

effect: People can identify a letter more accurately when it appears in the context of a

familiar word or word-like letter string than when it appears in isolation or in an un-

wordlike letter string (Reicher, 1969; Wheeler, 1970). If the process that identifies letters

must be completed before the string’s status as a word is considered, then letter identifi-

cation should not depend on word context. Rumelhart (1977) argued that such context

effects are ubiquitous in perception and cognition and that this ubiquity called for an

approach to modeling cognition in which all aspects of processing can simultaneously

influence and be influenced by many different sources of information.
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2.3. Content sensitivity

Discrete symbolic approaches drew a bright line between representational structure

(the arrangement of elements of cognition) and content (the meanings and referents of

these elements). The rules thought to manipulate mental structures were thought to be

structure rather than content-sensitive (Fodor & Pylyshyn, 1988; Newell & Simon, 1961).

This arrangement was meant to account for the remarkable productivity of much of

human cognition. In the case of past-tense formation, for instance, the rule creates a

structure that binds together the supplied word-stem and the past-tense morpheme (Pin-

ker, 1991), as long as the stem is a member of the syntactic class of verbs, including a

potentially infinite set of novel verbs. The productivity of the rule arose because its use

did not depend in any important way on the content to which it was applied—so long as

word was “tagged” as a verb, the rule could be applied. Likewise, the rules for construct-

ing parse trees and the structural relations that result could be applied to any sentence so

long as the grammatical categories of the words were consistent with syntactic con-

straints, allowing people to process any syntactically well-formed sentence even if its

meaning was novel or anomalous (such as Chomsky’s famous example “Colorless green

ideas sleep furiously”). Some rule sets could be applied recursively ad infinitum, at least

in principle, thus allowing an infinite set of possible sentences to be generated or inter-

preted using a simple and finite set of rules (see Frazier & Fodor, 1978). These arguments

were mainly advanced in the context of linguistics, but cognitive scientists tried to draw

a more general take-home point: That the generative and flexible nature of many cogni-

tive processes must indicate the existence of underlying “rules” and abstract relational

structures that existed independent of the particular content to which they were applied

(Marcus, 2001).

A central problem for this approach, however, arose immediately when computational

linguists tried to use it to actually parse sentences. It became apparent that, in many

cases, the role assignments of nouns are strongly influenced by word meanings and by

the plausibility of the resulting event scenarios that the objects to which the sentence

referred might take on. For instance, in sentences like:

The birdwatcher saw the bird with binoculars.

human judgments indicate that the phrase “with binoculars” is interpreted syntactically as

attaching to the verb phrase of the sentence and semantically as the instrument of the

action of seeing, but in the sentence:

The bird saw the birdwatcher with binoculars.

the phrase “with binoculars” is usually interpreted syntactically as a constituent of the

object noun phrase (“the birdwatcher with binoculars”) and semantically as an object in the

birdwatcher’s possession (Oden, 1978). The outcome depends on semantic knowledge

about objects and their possible relations in events—in this case, the knowledge that
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birdwatchers and not birds use binoculars. Oden (1978) and Taraban and McClelland

(1988) demonstrated that changes to the verb, the agent, and even distance from the subject

to the object could affect such attachment decisions, and similar findings have been

reported for many other syntactic decisions. Thus, the structures that result do not appear to

be independent of the meanings of the words or of the events the sentences describe. What

was needed in language and in other domains was a way of understanding how behavior

could be simultaneously sensitive to familiar content while still sufficiently sensitive to

structure to allow successful processing of novel, and even semantically anomalous, inputs.

2.4. Sensitivity to quasiregular structure

The idea that cognitive flexibility and generativity arises from the application of rules

and abstract structures faced additional challenges. Perhaps most obviously, no matter

how rule-like behavior may seem in some domain, there are always exceptions. A canoni-

cal example again comes from past-tense formation in English (Pinker, 1999). The stan-

dard rule produces the correct past-tense form for most verbs, but there are many others

for which it fails (e.g., the past tense form of “go” is not “goed” but “went”). To accom-

modate such inconsistencies, discrete symbolic approaches typically proposed that, in

addition to the rules and structures that govern most behavior, there exists a memory-

based system for storing information about exceptional or irregular items. Any given item

is then processed either by the rule or the memory system.

In general, however, a sharp distinction cannot be drawn between regular and irregular

items. For one thing, many exceptional items come in clusters that can be characterized

by patterns of phonological (Bybee & Slobin, 1982) and semantic (Kopcke, 1988) simi-

larity. Attempts to show that languages make a categorical distinction between “algebra-

like” rule-following cases on the one hand and similarity-based patterns on the other

(e.g., Marcus, Brinkmann, Clahsen, Wiese, & Pinker, 1995) have not been successful (Al-

bright & Hayes, 2003; Hahn & Nakisa, 2000). Even more important is the fact that items

can vary in the extent of their participation in and contribution to the regular pattern in a

given domain. In past-tense inflection, for example, most exceptional forms share features

of the regular past tense pattern (McClelland & Patterson, 2002a). Some incorporate a

vowel reduction together with the regular past tense inflection (say-said and keep-kept).
Others differ somewhat more but still have considerable overlap with the regular form

(e.g., leave-left, mean-meant, etc.). Some that are past-tense like in that they end in a

short vowel followed by a /d/ or /t/ do not change at all (hit, cut) while some with long

vowels followed by /d/ or /t/ simply reduce the vowel to form the past tense (hide-hid).
Even past-tense forms unrelated to the base verb (go-went) contain some features of the

“add /d/ or /t/” past-tense schema (as do many other cases, such as bend/bent, send/sent).
This kind of structure—in which so-called exceptional items participate in the regular

patterns of a language to some degree—has been described as quasiregular structure

(Plaut, McClelland, Seidenberg, & Patterson, 1996; Seidenberg & McClelland, 1989).

Quasiregularity is not just a curiosity of inflectional morphology—it appears to

characterize many different domains of cognition. Derivational morphology also exhibits
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quasiregular structure (Seidenberg & Plaut, this issue). In reading, the mapping from

spelling to sound (and from sound to spelling) is quasiregular: For example, only one let-

ter in the exception word PINT deviates from typical spelling sound correspondences.

Indeed, partial conformity to regular spelling-sound correspondence rules arguably applies

to all so-called exceptions to English “rules” of orthography. Similarly, many natural

kinds share typical properties with many others but have one or two atypical properties,

such as the floppy ears of an elephant or the camel’s hump (Rogers, Lambon Ralph, Hod-

ges, & Patterson, 2003). In language as in nature, quasiregularity appears to be the rule,

not the exception!
In quasiregular domains the division of items into regular versus irregular forms seems

both arbitrary and inefficient—arbitrary because there is no principled way to decide how

“irregular” an item must be before it is handed off to the functionally independent

“exception” system; inefficient because, once handed off, those aspects of an item’s struc-

ture that are regular must be processed outside the regular system. Instead what one

wants is a system that can exploit varying degrees of regularity while still tolerating

deviations from the overall structure—a framework in which all linguistic forms are

influenced by knowledge of regularities, while also being open to item-specific and

similarity-based influences.

2.5. Learnability and gradual developmental change

Cognitive abilities change dramatically through the first decades of life. What do these

changes depend on and how do they occur? Central to the classical framework of cogni-

tive theory is the idea that each level of cognitive ability reflects knowledge in the form

of rules, and that change depends on the acquisition or “discovery” of new rules. The dis-

covery of a new rule is often thought to involve a sudden change or “aha moment” (Pin-

ker, 1999), before which the child lacks the rule and after which it is suddenly available.

Because many different systems of rules may be compatible with any set of observa-

tions, especially if these observations are restricted to positive examples (instances of

members of a category or of grammatical sentences, for instance), it has been standard in

classical theory to posit an initial set of proto-rules for each cognitive domain in which

young children demonstrate competency (Carey, 2000; Chomsky, 1965; Keil, 1989;

Spelke, Breinlinger, Macomber, & Jacobson, 1992). And because rules are discrete, there

was a tendency to posit that change involves relatively discrete, sudden transitions from

one pattern of performance to another, when a new rule is discovered. This connects nat-

urally with stage theories of development, in which cognition is thought to transition

through a series of distinct “stages” which might be pervasive across content domains as

proposed by Piaget (1970, 2008) or domain specific (Siegler, 1981). For symbolic theo-

ries, the shift from one developmental stage to another reflects the sudden acquisition of

a new ability, captured in the discovery of a new rule.

There are problems with this view, however, in both its claims about innate domain-

specific constraints and its portrayal of developmental trajectories. With regard to innate-

ness, one problem is the existence of many cognitive domains for which evolution may
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not have prepared us. Alphabetic writing systems have long been held up as an example,

and the discovery of cultures lacking counting systems has suggested that the ability to

count is another key example (Gordon, 2004). In both domains, just as in other aspects of

language and cognition, the relevant behaviors (reading, counting) are well described by

rules to at least a rough approximation. If evolution did not provide the basis for these

abilities then they provide case examples of systematic, rule-like cognitive domains that

are not innately specified and so must be learned. If rule-like behavior can be learned in

these cases, it is not clear why such behavior cannot be learned in other cases. Thus,

while there may be important characteristics of innate human abilities that enable the

mastery of alphabetic writing systems and systems of number, specific knowledge in the

form of rules may not be built in per se, in these or other domains.

A second problem with innateness arguments is the failure of linguistic universals to

hold up robustly across cultures (Evans & Levinson, 2009). Cross-cultural universality is

meant to be the hallmark of a shared genetic contribution to language. From a study of

30 languages, Greenberg (1963) proposed 45 mostly syntactical universals hypothesized

to be shared by all languages. Detailed studies of many more languages, however, have

found exceptions to all but a bare handful of quite general shared properties—for

instance, that all languages have nouns and verbs. Far more frequent are what have come

to be called linguistic tendencies: patterns that are observed across many languages but

differ in a few. The few exceptions prove that the more common patterns are not a neces-

sary consequence of our genetic heritage, and again shift the focus of research toward

understanding other forces that might shape language, including learning (see Evans &

Levinson, 2009 and responses).

Finally, the sheer number of cognitive domains that children may potentially need to

master is so great that the idea of domain-specific preparation seems unwieldy. What

appears to be needed is the ability to learn, with or without prior constraints that may

help to guide initial learning.

With regard to developmental trajectories, the central problem with earlier rule-based

accounts is the empirical observation that cognitive change in childhood, though marked

by periods of relative stability punctuated by periods of change, is not as abrupt as pro-

tagonists of discrete symbol-processing theories (e.g., Marcus et al., 1992) have claimed.

In fact, Brown (1973), drawing on Cazden (1968) in his book A First Language, noted
that children gradually acquire the use of the various inflectional morphemes of English,

increasing the probability of using such forms and the range of contexts in which they

use them over a period of about a year (McClelland & Patterson, 2002b). Similarly, con-

sider children’s performance in Piaget’s balance-scale task. Children are shown a scale

on which 1–5 weights are placed on a peg located 1–5 steps to either side of a fulcrum

and are asked to predict which side of the scale should go down. Children make remark-

ably consistent errors at different ages, and their behavior has been described by an

increasingly elaborate set of rules (Siegler, 1976). Careful studies of developing children,

however, subsequently found that children did not transition abruptly from one stage to

another, as though they had suddenly discovered a new rule. Instead, periods of stable

behavior were punctuated by unstable, probabilistic, and graded patterns of change
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(Siegler & Chen, 1998). Children who appear to employ a more complex rule one day

might revert the next day to a simpler rule, and a given child might make choices consis-

tent with different rules in the same session. Across these transition periods, behavior

improves gradually over time and can exhibit graded sensitivity to previously neglected

cues or a wider range of contexts that gradually increases over several years (Shirai &

Andersen, 1995; Wilkening & Anderson, 1980). This picture of gradual, graded, and

probabilistic change between periods of stable behavior appears to be inconsistent with

the discrete acquisition of new rules, as Brown (1973) pointed out. Recent evidence sug-

gests a similar picture for children’s mastery of counting principles (Davidson, Eng, &

Barner, 2012). In sum, the range of domains in which lawful patterns of behavior are

observed and the patterns of developmental change that are generally observed call for a

mechanistic theory of learning that does not depend crucially on initial domain knowl-

edge or on the sudden acquisition of rules of a discrete or categorical nature.

2.6. Graceful degradation

The investigation of effects of brain damage on cognition provided another source of

motivation for the PDP approach. Patterns of dissociation observed across different cases

are often striking, and they have led some to seek pure cases that were thought to reveal

most clearly the modular structure of cognitive machinery in the brain (Caramazza,

1984). However, patients with putative disruption of some hypothesized cognitive module

—the module for storing knowledge about animals, or for forming the regular past tense,

or for reading regular words aloud, to list just three examples—rarely perform completely

at floor in the impaired domain, and they rarely perform at ceiling in nominally spared

domains (Shallice, 1988). Thus, damage does not generally give rise to either as complete

or as specific a loss of function as one might expect in a truly modular system. Instead,

brain damage appears to cause graceful degradation: graded, probabilistic deficits, with

some sparing of function, and with performance strongly influenced by the frequency or

familiarity of the stimulus and/or its degree of consistency with other items. Under the

modular perspective, lack of specificity was easy to explain: Brain damage is not con-

strained to affect single modules but might simultaneously compromise several. The

graceful degradation of behavior within a single putative module was, however, harder to

reconcile with rule-based modular processes. It was not clear how or why damage to a

given module might allow the module to continue to perform its task adequately for some

items but not for others. What was needed was a means of understanding how damage to

a processing mechanism could still allow for partial sparing of performance, even if there

was a degree of specificity of the effect.

2.7. Inspiration from neuroscience

Researchers in the symbolic tradition were, of course, aware of many of these phenom-

ena and sought ways of making rule-based systems more graded, probabilistic, and sensi-

tive to multiple sources of information (Anderson, 1983; Laird, Newell, & Rosenbloom,
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1987). A final motivation that differentiated the PDP approach from these efforts stemmed

from the suspicion that brains might compute quite differently from conventional comput-

ers. Perhaps, by paying attention to the way brains actually compute, it might be possible

to find computational solutions to address the challenges facing discrete symbol processing

approaches we have outlined above. While Neisser (1967) and others steeped in the sym-

bol-processing framework had argued that the details of the hardware implementing cogni-

tive functions was irrelevant, Rumelhart (1989) offered a counter to that view:

Implicit in the adoption of the computer metaphor is [the assumption that] that we

should seek explanation at the program or functional level rather than the implementa-

tional level. It is thus often pointed out that we can learn very little about what kind of

program a particular computer may be running by looking at the electronics. In fact

we do not care much about the details of the computer at all; all we care about is the

particular program it is running. If we know the program, we know how the system

will behave [. . .]. This is a very misleading analogy. It is true for computers because

they are all essentially the same. [. . .]. When we look at an essentially different archi-

tecture, we see that the architecture makes a good deal of difference. It is the architec-

ture that determines which kinds of algorithms are most easily carried out on the

machine in question. It is the architecture of the machine that determines the essential

nature of the program itself. It is thus reasonable that we should begin by asking what

we know about the architecture of the brain and how it might shape the algorithms

underlying biological intelligence and human mental life. (p. 134)

Thus, a key factor in the development of PDP was the exploration of the possibility

that the characteristics of human cognitive abilities listed above, all of which pose chal-

lenges to the view that the mind is a discrete symbol processing machine like a digital

serial computer, might be addressed by exploring the computational capabilities of sys-

tems inspired not by the digital computer but by the characteristics of neural systems.

Many properties of neural systems seem well suited to addressing the challenges. Neurons

can be viewed as comparatively simple processors that integrate information from many

different sources, providing a potential mechanism for understanding behaviors that

appear to be shaped by many different constraints simultaneously. They operate in paral-

lel and are often reciprocally connected, so that large sets of neurons can all mutually

constrain one another as required by any approach to graded constraint satisfaction, con-

text effects, and sensitivity to both structure and content. Neural responses are intrinsi-

cally noisy and dependent on the simultaneous participation of large populations of

individual neurons, and synaptic connections between neurons can vary in their strength,

hinting at an account of the inherently graded and variable nature of both healthy and dis-

ordered behaviors. The synapses that connect neurons determine how activity can flow

through a neural system, so that changes to these connections can provide a candidate

mechanism for understanding learning and developmental change. Together these obser-

vations spurred the search for an alternative theoretical approach to cognition that, like

symbolic approaches, was both computationally rigorous and explicit in its mechanistic
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commitments, but that drew its inspiration from neuroscience rather than classical artifi-

cial intelligence.

3. The resulting framework

The theoretical framework that arose from these efforts—parallel distributed processing

or PDP—differs radically from symbolic approaches to cognition. Perhaps the most sali-

ent distinction is that PDP views cognition as emergent (Rumelhart, Smolensky, McClel-

land, & Hinton, 1986). According to the principle of emergence, the regular or law-like

behavior of a complex system is the consequence of interactions among constituent ele-

ments, each behaving according to comparatively simple principles that may bear little or

no obvious relation to the behavior of the system as a whole (Johnson, 2001; Lewes,

1879). An elegant example is the regular hexagonal structure of the honeycomb, which

represents an optimal partitioning of a volume into a set of cells that wastes no space

while providing each insect with the most room possible (Elman et al., 1996). Given the

elegance and regularity of the honeycomb’s “design,” a theorist might be tempted to sup-

pose that each bee possesses a set of rules for constructing the honeycomb. In fact, how-

ever, the insects simply nestle together and extrude a viscous substance—beeswax—that

surrounds its body. The pressure of extrusions from surrounding bees molds the beeswax

into its hexagonal shape as an emergent consequence. The elegance and regularity of the

resulting structure need not be known to the bee.

According to the PDP approach, cognitive processes and representations are like bee-

hives: They often have quite regular and elegant structure that may appear to reflect

accordance with some set of rules or principles of design, yet these properties may

emerge from the interactions of simple elements, each behaving according to principles

that bear little resemblance to those apparent in the overall behavior of the system. Sym-

bolic or rule-based approaches to cognition may sometimes provide useful approximate

descriptions of the system-level behavior, but they may not capture the underlying pro-

cesses and thereby may fail to capture important characteristics of the system’s behavior.

The PDP framework provides tools for understanding, not only how apparently systematic

and lawful behavior can arise from simpler elements but also the characteristics enumer-

ated above that symbolic cognitive systems lack (McClelland et al., 2010).

3.1. A bird’s-eye view of PDP models

What are the “simpler elements” that give rise to emergent behavior, and what are

the principles by which they operate? Fundamentally, the elements are assumed to be

neurons and synapses. PDP models are not formulated at the single neuron level, how-

ever, but capture what are thought to be key aspects of neural processing in simplified

form, abstracting away from many of the details of real neural systems. PDP models

are thus constructed from an ensemble of neuron-like processing units that are best con-

strued as providing a basis for approximating, with a small to moderate number of units
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(tens to thousands), the kinds of informational states that may exist in much larger pop-

ulations (up to tens of billions) of real neurons (Smolensky, 1986). Each unit adopts an

activation state that is a function of its inputs. Units transmit information about their

current activation to other units via weighted synapse-like connections. Often the units

in a model are organized into layers that determine the gross pattern of connectivity

existing in the network. Visible units interface with the environment, allowing inputs to

the network or outputs specifying observable responses. Hidden units are units whose

activations are not influenced directly by external events and do not directly produce

observable responses—they only receive inputs from and project outputs to other units.

Two examples of PDP models are shown in Fig. 1. In the following text, we describe

the general characteristics of such models; the figure and its caption provide additional

details, including some of the key equations that govern processing and learning in PDP

models.

Processing begins with the presentation of an input, which sets the activations of some

of the input units in the network. Each unit then carries out a simple computation: It

adjusts its activation in response to inputs from other units via weighted connections.

Positive connection weights produce excitatory influences, and negative weights produce

inhibitory influences; the magnitude of the weight determines the strength of the influ-

ence. Typically these influences are combined to produce a net input value which may

include a noise term to capture variability in neural activity. An activation function then

determines the activation of the unit, which may be binary (on or off with some probabil-

ity) or real-valued, based on its net input. Although simulations require activations to be

updated in a series of discrete steps, this is generally intended to approximate a process

in which all units are continuously updating their activations as the activations of other

units change.

In some models, connections and their weights are specified directly by the modeler,

and hidden units stand for entities designated by the modeler, such as words, concepts, or

specified features of items. In learning models, the values of connection weights are

determined by a learning rule. In such cases, input and output units often correspond to

items or features specified by the modeler, but hidden units in the network have no such

pre-specified designation. The functioning of the system and the representations that arise

over the hidden units then depend on the learning rule, as well as the connectivity, activa-

tion function, and initial conditions of the network. Interest may focus not only on the

behavior of the network after a period of learning but also on the time course of learning

and on changes in the network’s behavior as it learns.

Learning rules in PDP models can generally be characterized as adjusting connection

weights to optimize the network’s performance as specified by an objective function.

Often (as in the function shown in Fig. 1), this function measures the extent to which

the activations produced by the network deviate from target values specified in the train-

ing environment. The objective function can also, either additionally or alternatively,

incorporate sensitivity to correlated activity in the network inputs and can include terms

reflecting the magnitudes of the weights or unit activations. In any case, the actual

connection adjustment rule always reflects the assumption that learning optimizes the
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objective function, so it is the objective function rather than the learning rule per se that

is critical.

One well-known neural network learning algorithm (called back-propagation, Rumel-

hart, Hinton, & Williams, 1986) has been widely used in PDP models. This algorithm

changes each connection weight in the direction that reduces the discrepancy between the

network’s output and a teaching signal, as represented in an objective function like that

in Fig. 1. The computation that determines the correct direction of change for each

weight can be viewed as involving the propagation of error signals either backward

through connection weights (in a feedforward network, Fig. 1, left) or backward through

time (in a recurrent network, Fig. 1, right), hence the algorithm’s name. While the

method is powerful, it also has limitations as discussed below. Back propagation is, how-

ever, only one of many learning algorithms; some others are described by Hinton (this

issue).

A further crucial element of a learning model is the environment from which it learns.

This generally consists of an ensemble of items, each specifying inputs to the network

and sometimes target values for outputs from the network or reward signals that depend

on network outputs. In some cases the network’s outputs can influence the environment,

thereby affecting subsequent inputs. In any case, the network learns from exposure to

items from its environment, adjusting connection weights based on activation and possi-

bly error signals or reward signals.

3.2. Central tenets of the framework

We now consider the core principles or tenets that have guided the development of the

PDP framework from its inception. It is important, though, to recognize that not every

researcher working within the PDP approach agrees with all of these tenets, and even

modelers (such as ourselves) who accept all of these tenets often use simplified models

that do not incorporate all of them. Such simplification is necessary, not only for tracta-

bility but also for understanding. Any simulation that attempted to capture neural pro-

cesses in complete detail would not only be impractical, it would also quite likely be

impossible to understand, just as a map that fully captured all aspects of a real physical

space at full scale would be completely unwieldy and impractical (Rogers & McClelland,

2008a). We discuss the advantages and disadvantages of simplification more fully below.

3.2.1. Cognitive processes arise from the real-time propagation of activation via
weighted connections

Under PDP, all cognitive behaviors ultimately arise from the same underlying process:

Units adjust their current activation states according to the weighted sum of their inputs

from other units via the connections they receive. Different models adopt different poli-

cies for aggregating inputs and adjusting unit activations, but in all models the underlying

conception is the same: Cognitive processing involves the propagation of activation

among units via weighted connections in a neural network.
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3.2.2. Active representations are patterns of activation distributed over ensembles of
units

In the PDP framework active representations in the mind are thought to correspond to

the patterns of activation generated over a set of units. For example, a percept of a visual

input is assumed to be represented as a pattern of activation distributed over many neu-

rons in several different brain areas, and each neuron is thought to participate in the rep-

resentation of many different items. This representational scheme is held to apply to

(D)

(B)(A)

(C)
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essentially all kinds of cognitive content: Words, letters, phonemes, grammatical struc-

tures; visual features, colors, structural descriptions of objects; semantic, conceptual, and

schema representations; contents of working memory and contextual information affecting

processing of current inputs; speech plans, motor plans, and more abstract action plans—
all are thought to take the form of distributed patterns of activation over large neural pop-

ulations.

3.2.3. Processing is interactive
The PDP framework proposes that processing is interactive: Propagation of activa-

tion among units is generally bidirectional. Thus, if a given unit A sends a connection

to a second unit B, there will generally be connections from B back to A, either

directly or indirectly via other units. As a consequence, PDP models are often

dynamic: Processing of a given input does not complete in a single step but evolves

over time. As a given unit alters its activation, it changes the inputs it provides to

Fig. 1. Two examples of Parallel Distributed Processing (PDP) networks. In both activation propagates

among neuron-like processing units organized into layers as shown. The lines in A illustrate all connections

between units while the bi-directional arrows in B indicate that all units in the adjoined layers are reciprocally

connected. (A) The feed-forward model (Plaut et al., 1996) learns to map spellings of letter strings onto their

sounds, and can be viewed as a simplification of a part of the adjacent interactive model. Inputs to the graph-

eme units specify the spelling of a letter string. For each hidden unit the net input (neti) is computed and con-

verted into an activation value ai according to the equations shown; the process is then repeated for the output

units. Note that bi indicates the bias of unit i, a constant added in to the net input. The model learns from a

set of training examples, each consisting of an input pattern corresponding to the spelling of a word and a tar-

get output pattern corresponding to the word’s pronunciation. Learning occurs by adjusting each connection

weight wij (denoting a weight from unit j to unit i) according to Δwij, which follows the gradient of the objec-

tive function O with respect to each connection weight. O expresses the deviation between the activation ai of

each output unit and its target value Ti, specified by the environment. The function given here, called cross-

entropy, is one such function; the sum of the squared differences between each unit’s activation and target

value is an alternative. (B) The recurrent model (Dilkina et al., 2008) incorporates the principles of continu-

ous interactive processing and intrinsic variability that were left out of the feed-forward network for simplic-

ity. This model learns associations among visual properties of objects, associated actions, and spoken and

written representations of their names. It captures the hypothetical process by which, for example, the presen-

tation of the letters C, A, and T can give rise to patterns of activation corresponding to the phonemes in the

word “cat,” and patterns representing aspects of the meaning of the word “cat,” including actions associated

with cats and the visual properties of cats. The training environment consists of an orthographic, phonological,

visual, and action pattern for each of 240 concrete objects. Time is construed as a number of intervals broken

up into ticks whose duration corresponds to some fraction s of an interval and is small enough to approximate

a continuous process. Each unit’s net input is based in part on its activation from the previous tick as well as

on the activations of other units after the previous tick, subject to independent Gaussian noise represented by

ξi. Processing begins after an input is provided for one of the visible layers depicted in gray (orthography,

phonology, vision or action). On each tick, net inputs are calculated for all units and then activations are

updated, and a target value may be provided to any of the visible layers. The objective function O is calcu-

lated on a tick-by-tick basis, and the change made to each weight is the sum over ticks of the gradient of the

objective function on each tick with respect to the weight (see McClelland, 2013a,b for details). (C) A graphic

detail for a single unit illustrating the architectural elements corresponding to the terms in the equations. (D)

One common function by which net inputs are converted into unit activations.
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units downstream, which subsequently alter their own activations, with the potential of

feeding back to further alter the state of the original unit. Such mutual influences cause

units to continually change their activations over time, until the whole network

achieves a steady state, that is, a state in which all units have adopted the activations

specified by their inputs. Such steady states are called attractors, because the intrinsic

processing dynamics will cause a network to move its current global state toward a

nearby attractor state. In interactive networks, representations of inputs correspond to

the attractor state into which the system ultimately settles. Attractor dynamics lie at

the heart of the ability of PDP models to exhibit mutual constraint satisfaction, and to

find global interpretations of inputs that are mutually consistent. The settling process

itself provides a candidate mechanism for understanding how behavior unfold over time

in the framework.

3.2.4. Knowledge is encoded in the connection weights
Under PDP, the acquired knowledge that allows a system to behave appropriately does

not exist as a set of dormant data structures in a separate store but is encoded directly in

the network architecture, in the values of the connection weights that allow the system to

generate useful internal representations and outputs. The overall network behavior—the

internal representations and subsequent outputs generated in response to a given input—
depends critically upon the pattern of connectivity (which units send and receive connec-

tions to/from which other units) and the values of the connection weights. In this sense,

the knowledge is in the connections; the term connectionist models (Feldman & Ballard,

1982) refers to this property.

3.2.5. Learning and long-term memory depend on changes to connection weights
A corollary of the observation that knowledge is stored in the network weights is that

learning arises from changes to the weight values. Weight changes are governed by the

learning rule that describes how each weight should change with the unit activations and/

or error signals that arise in the course of processing different inputs. Models can vary in

the particular learning rules they adopt, but in all cases, changes in connection weights

arise from the patterns of activation that occur in the network as inputs (including target

patterns for output units) are processed. Thus, the generation of appropriate behaviors

across different stimuli and contexts, or the acquisition of useful internal representations,

all depend on the connection adjustment process.

A further corollary is that, in contrast to many other frameworks, copies of mental

states are not stored in long-term memory as such. Instead, the long-term memory trace

left behind by an experience is the pattern of connection weight changes it produces. On

this view, recollection of a prior experience involves the partial, imperfect reconstruction

of aspects of the pattern of activation corresponding to the original experience. This rec-

ollection will generally be shaped by the pattern of connection weight changes produced

by the experience, as well as by the connection changes produced by other experiences,

so that long-term memory is always a constructive process dependent on knowledge

derived from many different experiences.
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We note that the distinctions among processing, representation, and memory, which

are clearly demarked under symbolic approaches, become blurred as a consequence of

these proposals. Processing involves propagating activation among units (tenet 1). Active

representations are the patterns of activity so produced (tenet 2), which depend upon the

values of the connection weights (tenet 3). The connection weights are learned as a con-

sequence of the patterns of activation generated in the network (tenet 4). Thus, process-

ing, representation, and memory are all intrinsically related on this view.

3.2.6. Learning, representation, and processing are graded, continuous, and intrinsically
variable

Processing, learning, and representation are held to be intrinsically graded and con-

tinuous in the PDP framework. Because representations are coded as distributed patterns

of activation over units, representations of different items can be arbitrarily similar to

one another. It is common to think of each unit in a distributed representation as corre-

sponding to a dimension in a high-dimensional space, so that any given pattern of acti-

vation over units corresponds to a point in the space. All potential representations

reside somewhere within this space, which provides a natural medium for expressing

continuous-valued similarities among different representations. These similarities in turn

provide the basic mechanism for generalization in the framework: Items coded with

quite similar patterns of activation (residing near one another in the representational

space) will tend to evoke similar downstream consequences, and so to produce similar

outputs.

Learning is likewise graded and continuous: It arises from changes to connection

weight values expressed as continuous real-valued numbers so that change to any given

weight can be arbitrarily small. Moreover, the effect of a weight change is to alter the

evoked activations across units in a representation—and since the representations them-

selves are continuous, the effects of learning can likewise be fully continuous.

Processing, learning, and representation are also assumed to be subject to intrinsic vari-

ability. As a result, a given input may result in a distribution of alternative outcomes

(represented as quite different resulting patterns of activation) corresponding to alternative

interpretations of an ambiguous figure, word, or sentence. Even within a particular out-

come, activation will generally vary around a central tendency, and the time required to

reach an interpretation will also vary. Because learning depends on network activity and

because there may be variability in experiences, learned connection weights are also sub-

ject to variability. Whereas intrinsic variability might seem problematic, variability in

processing, representation, and learning generally increases the likelihood of finding glob-

ally consistent interpretations of inputs and leads to improved generalization and more

robust performance under damage.

3.2.7. Processing, learning, and representation depend on the statistical structure of the
environment

Finally, the statistical structure of the environment is critically important to understand-

ing cognition under the PDP view. Learning arises from the patterns of activation that
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arise within neural networks, and from the patterns of errors or violated expectations such

activations generate in daily experience. In many cases, and in contrast to some other

approaches, PDP explanations of cognitive phenomena depend on the nature of the statis-

tical structure present in everyday experience, and how this structure is exploited by

learning in PDP systems.

3.3. Capturing emergent structure: An example

With the basic elements and central commitments of PDP in place, we illustrate how

an emergentist approach as embodied in the PDP framework can lead to quite different

conclusions about basic issues in cognitive science drawing on Jeff Elman’s seminal work

on emergent representation of structure in language. Elman (1990, 1991) noted that many

aspects of linguistic processing require sensitivity to temporal structure at multiple differ-

ent time scales. For instance, word recognition requires the ability to segment a tempo-

rally continuous speech stream; syntactic processes such as subject-verb agreement

require the ability to encode and exploit potentially long-distance relations between

words; and sentence comprehension requires the ability to note both the ordering and

meanings of words in an utterance in order to determine who did what to whom. Under

classical psycholinguistic approaches, these abilities require considerable language-spe-

cific machinery: lexemes for denoting and storing information about word forms, repre-

sentations of grammatical classes that carry important information about inflectional

morphology and other syntactic information, and parsing trees that describe the overall

grammatical structure of the sentence. Elman (1990) demonstrated that many of the same

linguistic phenomena could emerge from a very simple processing system that learned to

predict upcoming sentence elements based on a learned internal representation of recent

preceding elements, without requiring any of these theoretical constructs.

Elman’s model, the simple recurrent network or SRN, is illustrated in Fig. 2A. Its

inputs represent information currently available in the environment, and its outputs

represent the model’s prediction about upcoming information as an utterance unfolds over

time. Input units send weighted connections to units in a hidden layer, which in turn send

connections to the output layer. Finally, the SRN incorporates the idea that the current

hidden state can be constrained by its own prior state, as well as the current input. To

implement this the model contains an additional layer of units, the context layer, which
retains a copy of the pattern of hidden layer activations on the previous processing step,

and has modifiable connections to the hidden layer, allowing the network to learn how to

use temporal context.

Elman (1990) used this framework to illustrate how word boundaries might be discov-

ered in a continuous speech stream, using a network that did not include word forms as rep-

resentational primitives. Instead, he simply constructed a training corpus based on a simple

narrative text, and presented the text to the network one letter at a time. With each letter,

the network was trained to predict the subsequent letter. After learning, prediction errors

tended to be high at the boundaries between words and low within words, so that prediction

error could serve as a signal for segmenting an otherwise continuous stream of letters into
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words. Though letters were used for simplicity, the same principles apply for sound

sequences. Thus, on this view, word segmentation emerges from sensitivity to the statistical

structure of sound sequences in spoken input. Knowledge of the word forms is latent in the

connection weights in the network and is not explicitly or transparently represented.

Elman (1990) also used the SRN to illustrate how other linguistic constructs, such as

grammatical classes and semantic categories, might emerge from word sequences. Each

word was assigned an arbitrary unique pattern, and word sequences were formed by string-

ing together a series of short sentences obeying simple grammatical and semantic con-

straints (e.g., action verbs require animate subjects, some action verbs also require direct

objects, while others do not; characteristics of objects vary across different action verbs).

When the network had learned, the similarity structure of the learned patterns over the hid-

den units captured information about each word’s grammatical class and aspects of its mean-

ing (Fig. 2B). For instance, verbs all tended to elicit grossly similar patterns of activation

(A) (B)

Fig. 2. (A) The simple recurrent network used by Elman (1990). The network is trained with a sequence of

patterns corresponding to words. When item i in the sequence is presented to the input units, item i+1 is used

as the target for the output units; this item becomes the input pattern for the next step in the sequence. The

activation and learning processes in the network are similar to those of the feedforward network shown in

Fig. 1A. The curved solid arrow from the hidden layer to the context layer corresponds to a copy operation,

which occurs after each item is processed, so that the hidden unit pattern resulting from processing item i is

available as context for processing item i+1. Panel B shows a hierarchical clustering analysis of the pattern

of activation on the hidden layer for each of the nouns and verbs in the training corpus. The similarities are

learned from the temporal structure of the sentences in the corpus and are not due to overt similarities among

the input and output patterns for nouns and verbs, which were arbitrarily assigned.

T. T. Rogers, J. L. McClelland / Cognitive Science (2014) 19



that were quite different from nouns, and within verbs, transitive verbs tended to cluster

together with one another and to differentiate from intransitive verbs. Within the nouns,

word representations clustered according to aspects of their meaning: Animate nouns all

elicited patterns that were similar to one another and dissimilar to inanimate nouns.

Recall that the network was not explicitly trained to generate semantic or grammatical

information, but simply to predict the upcoming word in a sentence. Nevertheless, the

internal representations emerging from learning in this task appeared to capture important

grammatical and semantic information. What accounts for this phenomenon? The answer

is that such information is present in the statistical characteristics of the training environ-

ment and is helpful for predicting subsequent words. Training Elman’s network to predict

each successive word causes it to assign similar connection weights and therefore similar

internal representations to items that make similar predictions. Semantic and grammatical

structure in the learned representations thus emerges as a consequence of the pressure to

optimize prediction. As in the case of word segmentation, however, the structure is not

directly or transparently represented—it is latent in the similarity structure of the patterns

of activation generated in response to each word, which in turn is the result of a learning

process sensitive to the statistical structure of the language. The structure is emergent.

Finally, Elman demonstrated that this simple learning and processing mechanism was

capable of explaining an aspect of linguistic processing central to the argument that gram-

matical processes must be based on a complex system of structure-sensitive rules—specif-

ically, the observation that people can correctly inflect verbs to agree with subjects even

in sentences where subject and verb are separated by a sequence of words corresponding

to one or more embedded clauses (Elman, 1991). For instance, in this sentence:

The man who owns dogs who chase cats likes ice-cream

the auxiliary verb near the end of the sentence must be the singular “likes” to agree with

its syntactic subject “the man,” despite the intervening clauses containing plural nouns.

Correctly predicting the singular verb seems to require that participants keep track of the

hierarchical grammatical structure of the sentence, which flags “the man” as the subject

of the main clause and joins this to the verb phrase “likes ice cream.” Under the symbolic

view, participants apply linguistic rules to construct parsing trees that explicitly assign

the relevant constituents to the appropriate roles. But Elman’s simulations showed

that the relevant constraints can be learned from sentences with embedded clauses exhib-

iting the appropriate agreement relationships. Thus, the network can acquire knowledge

of the grammatical constraints without explicit grammatical rules and without construct-

ing an explicit parse tree; no innate principles of grammar are necessary.

3.4. Simplification and variety in PDP models

With this brief overview of the framework and one example of its use, we are now in

a position to revisit questions about the simplifications adopted in PDP models. The mod-

els Elman used to investigate aspects of language do not adhere to all of the theoretical
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commitments stated earlier. For instance, the framework states that processing is continu-

ous, interactive, and intrinsically variable, yet all of Elman’s models are essentially deter-

ministic, feed-forward models in which activations are updated only once for each

successive input. Moreover, Elman’s different simulations vary in how they represent

inputs and outputs. In the word-segmentation simulation, the input is a sequence of let-

ters, while in the sentence-level models, words are pre-supposed. In different word-level

simulations, input word patterns are sometimes distributed patterns and sometimes

involve a unit dedicated to each word. From these examples, and from the highly variable

nature of the specific models that all fall under the umbrella of the PDP approach, it is

clear that there is significant variation from case to case. What justifies such deviations

from the core tenets?

The answer is that a given model is generally constructed to bring out the implications

of a subset of the tenets of the framework, and, as previously noted, simplification is of the

essence in allowing practical progress and understanding. The analogy to cartography intro-

duced above may again be helpful: Maps can be used for many different purposes, and the

elements incorporated in a given map depend upon the purpose. For a mountaineer, it is

critical to have a map expressing information about changes in elevation. For the traveler

who prefers to fly, it is more important that the map indicates the locations of airports and

flights that connect them. The best map for a given purpose is the one that strips away dis-

tracting details that may nevertheless be critical to other uses. Likewise, any individual

PDP model is constructed to serve a particular purpose—to allow the theorist to explore

and to illustrate the relationship between a set of hypothesized mechanisms and a particular

behavior. Features that are not critical for a particular purpose may be left out, even if these

features are part of the general framework and are critical in other contexts.

It must be acknowledged that there are pitfalls, as well as advantages, of such simplifi-

cation. Which features of a model are essential to its successes? Are its failures intrinsic

to the principles at stake or would a less simplified model capture phenomena that a sim-

plified model cannot explain? If different phenomena are addressed by models adopting

different simplifications, is an integrated model addressing all of the phenomena simulta-

neously possible? Will simplified models “scale up” when applied to larger, more com-

plex, and more realistic learning environments? These are legitimate questions that are

addressed in different ways in several of the articles in this special issue; the scaling

issues are especially important for machine learning applications, which we consider in

more detail below (and see Hinton, this issue). In our view, understanding how the phe-

nomena observed in a particular domain might actually emerge from interactions among

simple processing units is far from trivial, and each model that has been proposed pro-

vides only a partial understanding. We will consider how this understanding may advance

further in the future in the final section of this article.

3.5. Relation to rational and computational-level models

It is important to consider how the PDP approach to modeling cognition relates

to what Anderson (1990) calls a rational analysis and Marr (1982) called a
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computational-level analysis. Anderson and Marr both propose that the attempt to under-

stand a cognitive process should begin with an analysis of the problem to be solved.

Once we understand the problem itself, along with the information available to solve it,

we can formulate how we should best proceed to discover a solution. Certainly this is a

useful approach to artificial intelligence, where the goal is often to find the best possible

solution to specific, well-defined problems.

PDP has tended to take a somewhat different approach—framing the computational

problems more generally, asking how they might be addressed by brain-like hardware,

and only then considering specific problems. As one example, consider the Boltzmann

machine (Hinton & Sejnowski, 1986), an early neural network designed to illustrate how

a system of neuron-like elements could come to encode, through purely local computa-

tions, an overall interpretation of a complex sensory input. The Boltzmann machine was

formulated as a solution to a very general problem: That of achieving an optimal interpre-

tation based on partial and/or ambiguous evidence and graded, probabilistic constraints,

while relying on the properties of neural hardware. The Boltzmann machine frames an

approach to a broad class of specific cases, making it possible to view specific models,

such as the multinomial interactive activation model (McClelland, Mirman, Bolger &

Khaitan, this issue), as instances of this broader class. More important, the Boltzmann

machine learning algorithm (Ackley, Hinton, & Sejnowski, 1985) and its successors (e.g.,

deep learning methods based on restricted Boltzmann machines, Salakhutdinov & Hinton,

2009) provide a means whereby such optimal models can be learned for particular cases.

This contrasts with the approach of Marr (1982), who began by dividing a complex func-

tion (such as vision) into several better-defined and highly specific subtasks (such as iden-

tifying the surfaces of objects from the pattern of reflected light reaching the retina), then

explored solutions to the simpler sub-tasks.

Both approaches have clearly had a strong impact on cognitive science and both have

led to important insights. The virtues of optimality based approaches have been fre-

quently described in the literature (Griffiths et al., 2010; Tenenbaum, Griffiths, & Kemp,

2006), but the advantages of the PDP approach are less well known, so we will briefly

articulate them here.

First, human perception and action appear to exploit all possible sources of information

as they become available in real time. Many optimality analyses consider only what the

best outcome should be regardless of the time required to perform the computation. PDP

models typically address such constraints, for instance by modeling time dependence of

outcomes or by including pressure to respond quickly in the objective function. Indeed,

the objective function used in training recurrent neural networks as given by Fig. 1B is

often used to implement such a pressure, and as learning progresses responding occurs

more and more quickly (Plaut & Booth, 2000). This temporal connection also allows the

models to be constrained by a broader range of data, such as the response-time data that

are the bread-and-butter of cognitive psychology.

Second, whereas optimality analyses typically consider just the computational problem

and the available information, the PDP approach additionally considers how characteris-

tics of the available hardware (neurons and connections) constrain the nature of the
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solutions found (McClelland et al., 2010). We believe this to be a virtue because adher-

ence to these constraints can lead to new and quite different solutions to the general prob-

lems, as noted in the quotation from Rumelhart above. From this perspective, PDP offers

a set of general principles by which the mechanisms and structures available to humans

operate, within which the constrained optimization carried out by the learning mechanism

operates.

Third, a rational analysis requires an explicit representation of the details of the com-

putational problem, but such a characterization may not be straightforward or even appro-

priate for many problems of great interest. Various explicit characterizations of natural

structure have been proposed—hierarchies, directed graphs, clusters of exemplars gener-

ated from a set of prototypes, generative grammars, and so on—but we have argued that

these only roughly approximate natural environments, which can be quasiregular and sub-

ject to a wide range of interacting constraints. In such cases it may be better to allow the

structure latent in the environment, together with the constraints built into a network’s

objective function, to implicitly define the computational problem, and to then allow

the learning process to solve the problem by taking the structure as it actually is (see

McClelland et al., forthcoming).

Finally, explicit rational or computational-level analyses often pre-suppose a task

decomposition that may well not be valid. For example, many models of sentence pro-

cessing suppose that a syntactic parse tree of an incoming sentence must be formed as

a specific stage in the process of understanding, but this proposal has long been con-

tested (e.g. Schank, 1981). PDP models do not completely obviate the problem—they,

of course, must also delineate the nature of the task in some way. In many cases,

however, models can be formulated by stipulating only task elements that are largely

uncontroversial. The task can be posed more directly in terms of deriving appropriate

outputs given particular inputs. For instance, in the case of sentence comprehension, a

model may take phonological representations of a series of words as input and generate

single-word responses to questions about the meaning of the sentence as output

(McClelland, St. John, & Taraban, 1989). Since all theories of sentence processing must

allow for phonological inputs and judgments about sentence meaning as outputs, these

stipulations seem uncontroversial. Intermediate steps assumed by other theories that may

be more controversial, such as the construction of an explicit parsing tree, can be omit-

ted. For some tasks, of course, delineating the task solely with respect to uncontroversial

elements is very difficult. For instance, Chang, Dell, and Bock (2006) have suggested

that PDP models of speech production better capture important aspects of human behav-

ior when role-filling and structure assignment are computed by separate components of

the network—a solution that extends the scope of the framework to a challenging

domain but relies on a less straightforward and potentially controversial decomposition

of the task.

In summary, PDP models implicitly find solutions to posted computational challenges,

not by an explicit rational or computational-level analysis but by a constrained optimiza-

tion process, sensitive to the criteria embodied in the objective function, the affordances

of the underlying hardware, and the structure in the environment.
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4. Impact of the PDP approach

Having indicated the motivations for the PDP framework and the key elements of the

approach, we are now ready to consider its impact. Here we take an avowedly positive

stance, laying out some of the ways in which the framework (a) has offered new and pro-

ductive ways to think about basic issues in cognitive science, (b) has provided fruitful

new theories in specific cognitive domains, and (c) has begun to address some of the key

computational challenges that motivated the search for alternatives to symbolic

approaches. The subsequent section considers critiques, shortcomings, and challenges that

remain to be addressed.

4.1. Impact on representation and processing: No rules required

PDP models have been instrumental in illustrating how highly generative, productive

aspects of behavior might be supported by mechanisms that do not implement explicit

rules. The roots of this work lie in early models of word-reading and past-tense inflec-

tion that illustrated how correct responses (the phonological form of a word or the past-

tense form of a verb) could be generated from inputs (the visual form of a word or the

present-tense form of a verb) for both regular and irregular items within a single system

that did not possess separate “rule” and “exception” systems. Reading and inflectional

morphology constitute the two domains where arguments supporting rule-based

approaches to cognition had been most comprehensively advanced (Pinker, 1999)—so

the demonstration that rules were not necessary to explain behavior in these domains

served to challenge the broad assumption that much of cognition is rule based. This

challenge in turn altered the kinds of questions that language researchers and other cog-

nitive scientists were asking, and the kinds of evidence that entered into the argument. If

the interesting aspects of behavior in some domain do not depend on explicit sets of

rules, questions about how the rules are learned become moot. So too do accompanying

demonstrations that the rules are unlearnable and the resulting conclusion that much

rule-based knowledge must be innate. Instead, the nature of learning and memory, the

statistical structure of the learning environment, perceptual work in phonology and

orthography, and the demands placed on sequencing and articulatory systems, all became

relevant to understanding basic aspects of language. The reading and past-tense models

thus threatened a kind of domino effect with the potential to topple a fairly wide-ranging

set of assumptions about how language specifically, and cognitive science more gener-

ally, should be approached. Critical reactions to these ideas spurred the development of

more detailed models by both advocates (Coltheart, Rastle, Perry, Langdon, & Ziegler,

2001; Perry, Ziegler, & Zorzi, 2010) and critics (Joanisse & Seidenberg, 1999; Mac-

Whinney & Leinbach, 1991; Plaut et al., 1996; Plunkett & Marchman, 1996; Woollams,

Lambon Ralph, Plaut, & Nagaraja, 2007) of rule-based approaches to cognition—a tra-

jectory that is reviewed in detail by Seidenberg and Plaut (this issue). Regardless of

one’s perspective on the resulting theories, however, it is clear that these ideas opened
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the door to alternative ways of thinking about the mechanisms that support the remark-

able flexibility and generativity of human behavior.

4.2. Origins of knowledge and developmental change: Rethinking innateness

A common conclusion from much research in cognitive development has been that

mature cognition develops from initial, innately specified and domain-specific knowledge

structures. A major contribution of PDP over the past two decades has been to show that,

in many cases, evidence thought to support claims of innate domain-specificity is in fact

fully consistent with domain-general, experience-based approaches (Elman et al., 1996).

One form of evidence has been the fact that children and adults often behave in a

domain-specific manner—drawing quite different conclusions about the properties or

behaviors of items from different domains given some observation (Carey & Spelke,

1994; Gelman & Williams, 1998; Wellman & Gelman, 1997). For instance, children treat

different properties as “important” for generalizing new information depending upon what

“kind of thing” the items are thought to be (Carey, 1985)—extending internal properties

(e.g., “has warm blood inside”) across items with the same name even if they are differ-

ent in appearance, but extending physical properties (e.g., “is ten tons”) across similar-

looking items even if they have different names (Gelman & Markman, 1986). For some

researchers, such domain-specific behaviors pose a puzzle for knowledge acquisition: To

determine to which domain a given item belongs, it is necessary to know how its

observed properties should be weighted, but one cannot know the appropriate feature

weightings without knowing the domain (Gelman & Williams, 1998). To resolve the

apparent circularity, many theorists have proposed that we are born with innate knowl-

edge of domain-specific constraints that specify which classes, properties, and relation-

ships are important for organizing knowledge in which domains. But the paradox that

motivates this reasoning disappears in the PDP framework. PDP models are capable of

learning complex statistical relationships among properties of objects and events, and as a

consequence can show the emergence of domain-specific patterns of responding from the

application of a domain-general learning rule (Colunga & Smith, 2005; Mareschal,

French, & Quinn, 2000; Mayor & Plunkett, 2010; Rogers & McClelland, 2004; Wester-

mann & Mareschal, 2012). Thus, the empirical demonstration of domain-specific patterns

of responding in children and adults does not provide evidence that there exist innate

domain-specific knowledge structures.

The second argument concerns the relatively young ages at which infants can some-

times exhibit traces of domain-specific knowledge. Spelke, for instance, has provided evi-

dence that young infants expect unsupported objects to fall and are surprised when

objects pass through a barrier (Spelke et al., 1992). In these cases, however, the knowl-

edge that appears to emerge earliest in development encompasses the most common and

systematic structure in the environment. Essentially all physical objects, be they nonliv-

ing, inanimate, or animate, behave in accordance with the physical principles Spelke has

outlined. Consequently, these are precisely the kinds of things one would expect a

domain-general learning system to acquire most rapidly, and so they should be observed
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earliest in development. Indeed, features that are shared by all of the objects in the

domain of living things are learned very rapidly in the Rumelhart model of semantic

knowledge acquisition (Rogers & McClelland, 2004).

A third form of evidence is that children often show patterns of behavior over time that

others have seen as difficult to reconcile with simple learning-based accounts of develop-

mental change. U-shaped curves in cognitive development provide a dramatic example:

The child shows a correct pattern of behavior early in life (e.g., using “went” as the past-

tense of “go”), then exhibits incorrect responses that essentially never occur in the envi-

ronment (e.g., saying “goed” instead of “went”), later eliminating these apparently creative

errors (Siegler & Alibali, 2005). It may seem as though experience-driven learning pro-

cesses could never lead a child to abandon a correct behavior once learned, especially to

produce a form that is never actually encountered directly. Such findings have motivated

the appeal to some process other than incremental learning, such as the “discovery” of a

past-tense rule that “over-rides” the correct response the child had previously learned (Pin-

ker, 1999). PDP models have been integral in demonstrating that this conclusion does not

follow. In fact the same learning mechanisms that lead to stage-like patterns of change in

some models can also produce U-shaped patterns of change (Plunkett & Marchman,

19911; Rogers, Rakison, & McClelland, 2004). Thus, the U-shaped pattern does not com-

pel the conclusion that there are forces beyond general learning processes at play.

An advantage of the PDP approach to early cognitive abilities and their change over

the course of development is the focus this approach provides on explaining, not just how

early competencies arise, but how and why cognitive abilities change over time. Nativist

approaches to early competencies raise the question of why infants do not always succeed

at tasks of interest as soon as they can be tested, and how and why behaviors develop at

all. Nativists often suggest that young infants have the cognitive competency to succeed,

but lack the performance skills to display this knowledge. However, this proposal is not

always wedded to specific or testable claims about what performance characteristics are

needed or how these develop. The learning algorithms adopted in PDP theories, in con-

trast, provide concrete mechanisms that link patterns of developmental change to specific

claims about the structure of the environment, and about how experience with that struc-

ture will alter processing in the system (Elman et al., 1996; Mareschal, 2000; Munakata

& McClelland, 2003; Munakata, McClelland, Johnson, & Siegler, 1997; Plunkett &

Sinha, 1992). Because competence is always a matter of degree, partial success in less

demanding situations followed by greater robustness naturally emerges within the PDP

framework. The PDP approach to these issues overlaps with approaches taken by

researchers exploring dynamical systems approaches to development (Spencer, Thomas,

& McClelland, 2009; Spivey, 2008; Thelen & Smith, 1996).

4.3. Impact on cognitive neuropsychology: Explanation without the transparency
assumption

As noted earlier, the strongly modular cognitive neuropsychology that arose in the

1970s—and in particular, its adoption of the subtractivity or transparency assumption
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under which disordered behavior reflects the normal operation of undamaged components

absent the contribution of damaged modules—made it difficult to understand the often

graded and mixed patterns of impairment that characterize most neuropsychological syn-

dromes. The PDP framework transformed the landscape in several important ways (see

Shallice & Cooper, 2011 for detailed review).

First, damaged neural networks exhibit the graceful degradation often observed in

brain-damaged individuals: Small amounts of damage have subtle effects, and even with

large amounts of damage the system can often generate correct performance with short,

frequent, or typical items as well as partially correct responses to other inputs. Some of

the factors shown to influence network performance under damage were similar to those

that influence the behavior of neuropsychological populations. Indeed, performance with

frequent and typical items tends to be spared, as observed across a number of domains in

many patient groups (Patterson et al., 2006).

A second important contribution related to the interpretation of double dissociations in

neuropsychology. A double dissociation is observed when lesion A affects function 1

more than function 2, while lesion B affects function 2 more than function 1. Such disso-

ciations can, of course, be quite striking, with performance in the spared domain at or

near ceiling while performance in the affected domain is very seriously impaired. Classi-

cally, such a pattern was treated as implicating separate modules for function 1 and func-

tion 2. PDP models, when subjected to simulated damage, can also show very striking

patterns of double-dissociation (Plaut & Shallice, 1993), but importantly the dissociated

functions need not align with elements of the underlying architecture. For example, Farah

and McClelland (1991) illustrated how semantic knowledge about animals and manmade

objects can doubly dissociate in a system where items from both domains are represented

as distributed patterns of activation over interacting populations of units that encoded per-

ceptual or functional information. Representations of animals had a larger proportion of

visual than functional semantic features, whereas the reverse was true for manmade

objects. Removal of connections involving the visual semantic units thus produced a

greater knowledge deficit for animals than for manmade objects. Importantly, however,

the deficit affected both visual and functional attributes of animals: Because the units in

the semantic representations interacted with one another, loss of knowledge about visual

semantic properties led to catastrophic collapse of the animal representations, so that even

the functional information could not be recovered for these items. In contrast, the visual

properties of manmade objects often could be retrieved despite this damage, because

these properties received input from the intact functional features that made up most of

the representation for manmade objects. The reverse pattern was observed when connec-

tions to the functional features were damaged. The apparent double dissociation of

knowledge for animals versus artifacts did not arise because there were separate parts of

the network for processing these different kinds—instead, it arose from a more fundamen-

tal specialization for visual and functional information about all kinds of things, coupled

with learning about how these kinds of properties tend to covary with one another in the

environment. Several other groups have also relied on PDP models to offer explanations

for category-specific patterns of deficit that go beyond what could be provided by
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inferences based on the transparency assumption (Devlin, Gonnerman, Andersen, & Se-

idenberg, 1998; Lambon Ralph, Lowe, & Rogers, 2007; McRae & Cree, 2002; Tyler,

Moss, Durrant-Peatfield, & Levy, 2000).

In the intervening years, these and related ideas have been greatly elaborated. Plaut

(2002), building on earlier work by Jacobs & Jordan (1992), explored the possibility that

the degree of influence between populations of neurons might partly be a function of their

neuroanatomical proximity. Models that incorporate this constraint acquire an emergent,

graded form of functional specialization, such that some units contribute more to certain

input–output mappings than do others. From this idea, Plaut (2002) developed a computa-

tional account of optic aphasia, a puzzling syndrome that has resisted explanation under

standard modular assumptions (Farah, 1990). Separately, the Farah and McClelland model

has been extended to provide a comprehensive account of both the domain-general

semantic impairment observed in semantic dementia (Dilkina, McClelland, & Plaut,

2008; Rogers et al., 2004) and the category-specific impairment often observed in patients

with herpes viral encephalitis (Lambon Ralph, Lowe, & Rogers, 2007). Finally, PDP

models of single word reading have been able to address the puzzling symptom complex

of deep dyslexia (Plaut & Shallice, 1993), as well as effects of semantic deficits on read-

ing (Plaut et al., 1996; Woollams et al., 2007) and past-tense inflection (Joanisse &

Seidenberg, 1999). Other influential PDP models have now been developed to explain

disordered behavior in domains as diverse as cognitive control (Cohen, Aston-Jones, &

Gilzenrat, 2004), working memory (O’Reilly, Braver, & Cohen, 1999), many varieties of

aphasia (Ueno, Saito, Rogers, & Lambon Ralph, 2011), and sequential action (Botvinick

& Plaut, 2004). In general cognitive neuropsychology has come to rely more on explicit,

implemented models of healthy and impaired performance—a trend largely attributable to

the successes of PDP models in this area.

PDP approaches have had a similar impact in explorations of developmental disorders

associated with abnormal developmental profiles such as Williams syndrome or the so-

called Specific Language Impairment. Some have sought explanations for these conditions

in terms of the idea that the disorders impact specific modular subsystems, but there are

difficulties with this approach (Karmiloff-Smith, 1992), and alternatives based on the

possibility that alterations of parameters of neural networks have been articulated within

the PDP framework (Thomas & Karmiloff-Smith, 2003).

4.4. Impact on machine learning

Neural networks that preceded and later grew out of ideas described in the PDP vol-

ume have always played an important role in the field of machine learning, an outgrowth

of the field of artificial intelligence. While much of the motivation for the PDP approach

came from psychological considerations, the idea that artificial neural networks that learn

graded constraints from experience might provide the best way to emulate human capabil-

ities in a wide range of domains has deeper roots, originating with work by McCullough

and Pitts in the 1940s and reaching an early heyday in the 1950s with Rosenblatt’s per-

ceptron (Rosenblatt, 1958) and Samuel’s (1959) program that learned to play the game of
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checkers. Disenchantment with the perceptron set in during the 1960s (Minsky & Papert,

1969), but the emergence of back-propagation and related neural network learning meth-

ods in the early 1980s revived interest and fed a wave of excitement reflected in the crea-

tion of new communities such as the Neural Information Processing Systems community

in 1987. Much of the excitement depended on the fact that back-propagation afforded the

opportunity to train all layers of a multi-layer network. Excitement about the prospects of

multi-layer neural networks waned a second time during the 1990s (see Hinton, this issue,

for discussion) but several machine learning groups kept working with neural network

approaches throughout, and exciting new directions in what has come to be called deep

learning (i.e., learning in multi-layered neural networks) emerged in the early years of

the current century (Bengio, Lamblin, Popovici, & Larochelle, 2007; Hinton & Sala-

khutdinov, 2006; Hinton, this issue; Ranzato, Huang, Boureau, & LeCun, 2007). These

developments have continued to the present day, with ongoing successes at the forefront

of machine speech and object recognition and many other domains. We consider these

developments in more detail under the current theoretical landscape discussion below.

4.5. Impact on theories in particular cognitive domains

PDP has also had a strong impact on the development of specific theories in particular

domains within cognitive science. The progression of these ideas, and the current state of

the particular theories, are the focus of several of the remaining articles in this collection.

We briefly review each here to highlight what we view as the major contributions. We

note that a very broad range of researchers have contributed to these developments; only

a few of these can be cited here.

4.5.1. Interactive processes in perception, language, and cognition
Some of the earliest PDP models were targeted at understanding context effects: how

and why the processing of a given representational element is influenced by the concur-

rent processing of other elements (see McClelland et al., this issue). These ideas were

explored in two computational models that have continued impact today: The interactive

activation (IA) model of visual letter and word recognition (McClelland & Rumelhart,

1981)and the TRACE model of speech perception (McClelland & Elman, 1986), and

these ideas have been extended to processing of words in context, using both interactive

activation-like models (McRae, Spivey-Knowlton, & Tanenhaus, 1998; Spivey & Tanen-

haus, 1998) and outgrowths of Elman’s simple recurrent network (Tabor, Juliano, &

Tanenhaus, 1997). The interactive activation and competition process embodied in these

models has been adopted to address topics as wide-ranging as generalization in memory

(Kumaran & McClelland, 2012; McClelland, 1981), face processing (Burton, Bruce, &

Johnston, 1990), and person perception (Freeman & Ambady, 2011). McClelland et al.

review the early work of Rumelhart (1977) that led to the IA model, as well as the sub-

sequent uses of the model, and criticisms that arose about the approach, then present a

new version of the model that makes explicit its connection to probabilistic Bayesian

models of optimal inference and illustrates how such inference can arise as an emergent
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consequence of interactions among simple processing units, as Rumelhart originally

envisioned.

4.5.2. Reading and language processing
Research generated by controversies surrounding early models of past-tense inflection

(Rumelhart & McClelland, 1986) and single-word reading (Seidenberg & McClelland,

1989; Sejnowski & Rosenberg, 1987) has evolved considerably since these early models

were proposed (Harm & Seidenberg, 2004; Rueckl, Mikolinski, Raveh, Miner, & Mars,

1997; Sibley, Kello, Plaut, & Elman, 2008). This work, and its connection to more gen-

eral issues in theories of language processing, is reviewed by Seidenberg and Plaut (this

issue).

4.5.3. Optimality theory
Several of the principles outlined were exemplified by Smolensky’s (1986) model of

cognition and language processing known as Harmony Theory (Smolensky & Legendre,

2005). This theory has been applied extensively to topics in sentence comprehension and

phonology, and it has led to a revolutionary new theory of phonological representation

known as Optimality Theory based on graded constraints (Prince & Smolensky, 1997).

New developments in this theory are described in the paper by Smolensky, Goldrick, and

Mathis (this issue).

4.5.4. Long-term memory
Current views of long-term memory have been strongly shaped by both the successes

and failures of PDP models of memory. Early models (Anderson, Silverstein, Ritz, &

Jones, 1977; McClelland & Rumelhart, 1985) addressed the emergence of general knowl-

edge from experience with examples. Attempts to extend these ideas to multi-layer net-

works exposed the catastrophic interference problem (McCloskey & Cohen, 1989), which

then led to the complementary learning-systems view of long-term memory (McClelland,

McNaughton, & O’Reilly, 1995) that has continued to develop up to the present (Kuma-

ran & McClelland, 2012; McClelland, 2013a,b; Norman & O’Reilly, 2003; O’Reilly &

Rudy, 2000), as reviewed by O’Reilly et al. (this issue).

4.5.5. Semantics/conceptual knowledge
In the 1980s, similarity-based approaches to conceptual representation gave way to

an alternative view under which knowledge acquisition was seen as shaped by na€ıve
causal theories (Keil, 1989; Murphy & Medin, 1985). This research drew into focus

phenomena that strongly challenged the exemplar and prototype models that character-

ized similarity-based approaches, but it was never wed to a comparably mechanistic

account of knowledge acquisition. Rogers and McClelland (2004) were able to show,

however, that many of the key phenomena emerge spontaneously from domain-general

learning mechanisms in the PDP framework, which thus provides a new account of

conceptual development and knowledge acquisition that does not require pre-specified

domain knowledge. A rigorous mathematical analysis of the way in which these
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processes unfold developmentally in response to experience has recently been developed

(Saxe, McClelland, & Ganguli, 2013). Insights into other aspects of semantic and

conceptual development have been provided by modeling work from many other

investigators (Mareschal, 2000; McMurray, Horst, & Samuelson, 2012; Westermann &

Mareschal, 2012).

4.5.6. Cognitive control
A central problem for cognitive theory concerns the distinction between controlled and

automatic processes. Whereas some processes seem to require slow, deliberative and con-

scious mental effort, others appear to unfold almost automatically, with little effort or

even awareness. A central development since the publication of the PDP volumes has

been the elaboration of a theory of cognitive control that treats both control and automa-

ticity as matters of degree, in accordance with the general precepts of the framework.

The origins of this work (Cohen, Dunbar, & McClelland, 1990; Phaf, van der Heijden, &

Hudson, 1990) and its subsequent development—illustrating how neural networks can

learn to control their behavior to conform to task goals without positing a specialized

central executive—are reviewed by Botvinick and Cohen (this issue).

4.5.7. Sequential processing
Many aspects of behavior occur over time, and behavior is sensitive, not just to imme-

diate context constraints but also to temporal context. A central contribution of PDP has

been to provide a framework for understanding how temporal structure can shape learn-

ing, representation, and online processing, as exemplified in the early work of Elman

reviewed above. One well-known outcome of this work has been the demonstration that

such temporal sensitivity can lead to the acquisition of quite abstract implicit knowledge

structures, including knowledge structures that have many of the properties of a grammar

(Cleeremans & McClelland, 1991; French, Addyman, & Mareschal, 2011). Another out-

growth of this work has been its impact on current views of conscious and unconscious

processing—a connection elaborated in the current issue by Cleeremans.

5. Limitations and controversies

In the years since the PDP books appeared, the framework has attracted its fair share

of controversy and criticism. In some cases the controversies promoted the development

of new models, leading to important new insights. In other cases, these points have led to

the belief in some quarters that the framework is fundamentally flawed in important

respects. We here address what we take to be the central criticisms. In general, we agree

that early models (and, indeed, all existing models) do have their limitations, but this is

true of models of other kinds as well. We suggest that negative conclusions that some

have drawn about the validity of the core principles of PDP or the usefulness of the

approach have been overstated.
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5.1. Limitations and criticisms of back propagation

Earlier we noted several appealing aspects of the PDP approach to learning. Despite

these features, the utility of PDP learning models for understanding human learning today

remains controversial. One reason is probably the frequent use of backpropagation—the

form of learning where a network’s outputs are compared to an external “teaching” signal

that specifies what the outputs should have been, and weights throughout the system are

adjusted to reduce the discrepancy. Though backpropagation is capable, with appropriate

parameterizations and training experience, of acquiring essentially any input–output map-

ping, it has several properties that, for some, render it an unlikely candidate model for

human learning. First, standard backpropagation is fully supervised—each input is paired

with a “teaching” signal that specifies the correct output. In many learning scenarios, it

seems unlikely that people receive fully supervised experience. Second, backpropagation

can be quite slow, requiring thousands or even millions of learning trials to master some

behaviors. Third, some backprop networks suffer from catastrophic interference: Rapid

learning of new material can sometimes “over-write” prior learning, leading the system to

fail on previously learned material. Fourth, backpropagation learning is typically held to

be biologically implausible because it requires the transmission of information “back-

ward” from receiving units to the sending units, or even backward through time.

The criticism of backprop as biologically infeasible is, in our view, based on too literal

an interpretation of the algorithm. As we stressed in discussing learning in PDP models

above, the key insight has been to characterize the goal of learning in terms of optimizing

an objective function. The actual implementation, we of course agree, must be consistent

with the affordances of neural hardware, but the process may not literally involve propa-

gation of error signals backward through synaptic connections. Very early on (Hinton &

McClelland, 1988), it was observed that the relevant gradient information can be com-

puted from differences between activation signals at different times, and this idea has

been embedded in many successful algorithms (Hinton & Salakhutdinov, 2006; O’Reilly

& Munakata, 2000).

The concern about the need for a teaching signal needs to be carefully considered,

since the teacher may be nothing more than the sequence of experiences in the environ-

ment, both within and across modalities. Both auto-encoders (networks that learn to form

constrained representations that allow them to reproduce their input on their outputs) and

recurrent networks can be trained with backpropagation, but require only the sequence of

unlabeled training data; of course, learning the relations between spellings and sounds or

objects and their names does require exposure to situations in which these items occur in

temporal proximity, but in general, no special teacher is required. On the other hand, a

limitation of early models was their reliance on the propagation of signals all the way

through many randomly initialized layers of connections between units representing

inputs and others representing outputs. Much of the recent progress in machine learning

discussed earlier has involved strategies for remediating this problem—for instance, train-

ing hidden layers with the additional pressure to reproduce their own inputs, allowing

reliance on both labeled and unlabeled data, and the introduction of constraints that avoid
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reliance on idiosyncrasies and ensure robustness. These developments have led to inter-

esting new cognitive applications (Stoianov & Zorzi, 2012).

None of this is to say that back propagation learning can address all aspects of the

learning problem. The field of reinforcement learning, for example, focuses on under-

standing how learning systems can learn appropriate actions when there is no model of

the action itself but only information about its consequences in the form of distal out-

comes (Barto, 1994; Jordan & Rumelhart, 1992). A robust research program in reinforce-

ment learning has led to the development of algorithms that adhere to general

commitments of PDP and allow for the learning of complex sequential behaviors using

mechanisms that bear striking resemblance to those observed in a variety of neural struc-

tures (Montague, Dayan, & Sejnowski, 1996; Suri & Schulz, 2001). Successors to these

models are now helping to drive research into routine and goal-directed sequential action,

as described by Botvinick and Cohen (this issue).

All current learning models still have their limitations. The development of algorithms

that are directly informed by neuroscience, yet are capable of exhibiting the same flexibil-

ity and power as backpropagation while overcoming its limitations, continues as an

important ongoing research agenda. We agree that much more progress is needed before

we fully understand how changes in connections that support effective adaptation occurs,

and this effort must continue at many levels encompassing both computational and bio-

logical considerations.

5.2. Lack of transparency

A second limitation of PDP models is the fact that they can often be opaque: Espe-

cially for consumers of the research it can be difficult to fully understand a model’s

behavior, and in particular, to understand why it succeeds or fails (McCloskey, 1991).

Relatedly, it may be possible to show empirically that a given learning model generally

shows a particular pattern of behavior but difficult to formally prove that it is guaranteed

to do so or to delimit the conditions necessary for the pattern to emerge. Models are use-

ful partly because they can help the theorist to develop new insights into the causes of

otherwise puzzling patterns of data, but also because they help the theorist to communi-

cate these insights to others. The mechanisms supporting behavior in an implemented

model are fully observable and open to experimental manipulation. Thus, it is possible to

work out in great detail why a model exhibits an interesting set of behaviors, which in

turn can provide for clear and detailed hypotheses about why similar patterns are

observed in human behavior. If, however, the causes of the model behavior remain opa-

que to the theorist or are not made sufficiently clear to the reader, lack of transparency

can be a serious limitation.

Several lengthy debates in the literature ultimately stem from imperfect understanding

of the causes of a model’s behavior. In such cases, critics have rightly pointed out ways

in which a particular model fails to capture certain aspects of behavioral data—then con-

cluded that one or more of the core theoretical claims is at fault, without considering that

the failure might arise instead from model attributes adopted for simplicity or as arbitrary
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assumptions whose importance was not initially understood. As one example, Massaro

(1989) noted that predictions generated by the interactive activation model in a letter-

recognition task differed systematically from observed responses, and concluded that the

discrepancy arose because processing in the model was interactive—a core theoretical

claim. Subsequent research has shown, however, that the real problem was the lack of

intrinsic variability—another core property that was omitted from the original model (see

McClelland et al., this issue). Other well-known examples include the observation of

empirical shortcomings in Rumelhart and McClelland’s (1986) past tense model (Pinker

& Prince, 1988) and in Seidenberg and McClelland’s (1989) model of single word read-

ing (Besner, Twilley, McCann, & Seergobin, 1990). In both cases critics claimed the

fundamental problem was the use of a single mechanism to process both regular and

exceptional items, but subsequent research showed that many of the shortcomings

depended on the models’ particular input and output representations—better choices over-

came the empirical shortcomings in both models (MacWhinney & Leinbach, 1991; Plaut

et al., 1996), leaving the fundamental principles intact.

We believe that these and other controversies stem at least partly from a lack of trans-

parency in the models, and thus we certainly understand the appeal of approaches in

which the underlying causes of behavior seem less opaque. One approach has been to

show directly how models that adhere to many of the principles of PDP can implement

or underlie representations of items and structures posited at a more abstract (symboli-

cally structured) level (Smolensky & Legendre, 2005; Smolensky et al., this issue). We

also believe, however, that transparency may not be among the forces that shape the neu-

ral mechanisms underlying cognition, so that these mechanisms may not be fully penetra-

ble at the level of explicit computational theory (this may be a general problem for

science, see Morowitz, 2002). This possibility accords with the previously stated view

that symbolic representations will only ever approximately characterize human cognitive

abilities. For this reason, we seek alternatives to this approach.

One productive way of overcoming the challenges posed by lack of transparency may

be to work toward a deeper analytic understanding of why networks behave the way that

they do and how this behavior can arise from an interaction between network characteris-

tics and the environment. To that end, we have collaborated with others to develop math-

ematical analyses of certain specific types of models (McClelland, 2013a,b and Movellan

& McClelland, 2001 address the interactivity issue; Saxe et al., 2013 address the time

course and outcome of learning in feed-forward networks like those in Fig. 1A). Further

work of this kind is essential.

5.3. PDP models cannot capture abstract relational structure

In recent years, a widespread view seems to have arisen that PDP networks are unable

to learn or express the abstract relational knowledge that appears to characterize human

behavior in many domains (Griffiths et al., 2010; Marcus, 2001; responses to Rogers &

McClelland, 2008a,b). To get a sense of the concern, consider the Farah and McClelland

(1991) model discussed earlier, in which semantic representations are cast as patterns of
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activity across sets of semantic features—has eyes, can move, is yellow, and so on—so

that properties true of the item being represented are active in its representation. Such a

representation may seem insufficient because it does not express the relationship between

a given property and the item with which it is associated. The relationship between cars

and wheels is very different than that existing between cars and drivers. Representing

both kinds of information in exactly the same way, say by activating a unit for “wheels”

and another for “driver” in the semantic representation of a car, seems to miss this impor-

tant distinction. Moreover, different kinds of relations support different kinds of infer-

ences: Knowing that a Corvette is a car and that all cars have wheels supports the

inference that a Corvette has wheels. In contrast, knowing that Corvettes have wheels and

that all wheels are round does not support the conclusion that Corvettes are round. The

“has” relation that exists between Corvettes and wheels does not support the same kind

of inferences as the class-inclusion (“is a”) relationship that exists between Corvettes and

cars. To explain such phenomena, a theory must stipulate how knowledge of the relations

between items and their properties is represented and used.

We certainly agree that relational knowledge is important for many cognitive domains

and ought to be an important focus of research. The view that PDP models are constitu-

tionally incapable of shedding light on such abilities is more puzzling. The distributed

representation of relational structure has been a strong focus of research in PDP networks

from quite early on. Both Hinton (1989) and Rumelhart (1990) described models of con-

ceptual knowledge that emphasized how internal representations can be jointly shaped by

knowledge of the item and the relation of interest and a recent model of analogical rea-

soning shows the ongoing usefulness of these ideas (Kollias & McClelland, 2013).

Rumelhart’s model represents different similarity structure among the same items depend-

ing upon the relation of interest, activates different sets of attributes for the same item

depending upon the relation, learns similarity structure among different relation types,

and can use this information productively—inferring, for instance, that items with the

same basic-level name should also share similar parts but will not necessarily share simi-

lar colors (Rogers & McClelland, 2004). Several investigators have shown how knowl-

edge of abstract grammatical relations, both in natural language and in laboratory

learning studies with infants and adults, can emerge through learning in PDP networks,

as a consequence of principles similar to those uncovered by Elman (Altmann & Dienes,

1999; Chang et al., 2006; McClelland, 1989; Rohde & Plaut, 1999). Likewise, the coding

of abstract temporal structure in learned action sequences has been extensively investi-

gated (see Cleeremans, this issue), and recent work with tensor-product representations

has suggested one way in which abstract structural representations can be bound to partic-

ular content in fully distributed representations (Rasmussen & Eliasmith, 2011; Smolen-

sky et al., this issue). Models that learn to form such bindings and can do so for an

open-ended set of relations have also been explored extensively by several different

authors (Miikkulainen, 1996; Pollack, 1990; Rohde, 2002; St. John & McClelland, 1990;

St. John, 1992). Recently, many of the approaches explored in these models have been

refined and integrated in machine learning models of language processing (Socher, Bauer,

et al., 2013; Socher, Perelygyn, et al., 2013). While some of this work relies on more
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traditional methods to provide a parse tree within which neural network representations

are embedded (Socher, Perelygyn, et al., 2013), another paper from this group shows that

neural network learning methods can actually improve on the adequacy of the parse pro-

duced by standard methods (Socher, Bauer, et al., 2013). Given the rapid pace of current

development and ongoing efforts to avoid built-in structure, it is hard to predict the extent

to which pre-specified structure will ultimately be necessary.

5.4. PDP models are too flexible

The last source of controversy we will consider is the flexibility of the PDP frame-

work. Practitioners appear to be at liberty to choose any network architecture, environ-

ment, training parameters, learning algorithm, or performance criterion they wish. There

is flexibility in how inputs and outputs are represented, or in the number of units included

in each layer, or in how the patterns in the environment are sampled. Different models

make different choices, and it is not always clear which decisions are central to the net-

work behavior and which peripheral. There appears to be a danger, given the array of

options, that one can get these models to do anything if one just fiddles around with

options until a successful combination is found. If it is possible to construct a network

that will show literally any pattern of behavior, the framework may seem to be nondis-

confirmable.

While we acknowledge that the framework has considerable flexibility, there are also

robust and general characteristics of networks behavior that cannot so easily be over-

come. The gradual nature of learning in PDP models is one such example. Here, where

others have criticized the models for failure to show radical transformations they claim

can occur suddenly during development (Marcus et al., 1992; Van Rijn, Van Someren, &

Van Der Maas, 2003), PDP researchers have responded, not by tweaking their models to

exhibit these phenomena, but by carefully re-examining the evidence and pointing out

that the sudden transitions are generally not so sudden after all (McClelland & Patterson,

2002b; Schapiro & McClelland, 2009).

Humans can, however, retain the content of specific episodes far better than the types

of neural network models we believe underlie experience-driven acquisition of structure-

sensitive cognitive abilities. If such networks are forced to learn such information by

repeated exposure without interleaving with other experiences, and if the newly learned

information is structured quite differently from prior learning experiences, the new learn-

ing can catastrophically interfere with the prior knowledge, contrary to what is seen in

human learners. Again, rather than tweaking the models to try to overcome such limita-

tions, our approach has been to use such limitations to inform our understanding of the

functional architecture of human memory systems. The resulting complementary learning

systems theory (McClelland et al., 1995; O’Reilly et al., this issue) built on the insights

of others (Marr, 1971) to address how the brain solves this problem, and is consistent

with the specialized and time-limited role of the medial temporal lobes in many forms of

learning and memory. Thus, the response was not simply to alter existing models to avoid

catastrophic interference; instead, it lay in proposing how the computational advantages
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of the types of networks that gradually acquire structure sensitive cognitive abilities may

be retained while simultaneously solving the catastrophic interference problem and link-

ing these solutions to long-standing observations about the nature of different forms of

long-term memory and their reliance on different brain structures.

A skeptic might reply that this example simply illustrates the problem with flexibility

—the original theory and model can be altered to provide a solution to the catastrophic

interference problem that maintains consistency with the core commitments of the frame-

work. Acknowledging this, we suggest that this approach has been fruitful in providing

ideas that guide experimental research as well as ongoing theory development.

6. The current theoretical landscape and the future of PDP

The current theoretical landscape differs radically from that of 1986, and we believe

that, controversies and limitations notwithstanding, many shifts in the field at large reflect

increasingly widespread acceptance of ideas central to the PDP framework. In retrospect

one can view the PDP volumes as a distillation of several currents of thought that, in the

intervening years, have shaped the discipline in pervasive ways. We here consider some

of these field-wide trends, then evaluate the role of PDP as a modeling and theoretical

framework in this context.

6.1. Probabilistic models of cognition

The PDP approach was partly motivated by cases in which cognition depends on graded

or probabilistic constraints, and the emergence of explicitly probabilistic models of cogni-

tion in the last several years is certainly consistent with this motivation. Indeed, Rumelhart

cast his initial ideas about interactive processing in perception and comprehension in

explicitly probabilistic terms before adopting the less explicitly probabilistic PDP frame-

work. Pearl’s (1982) ideas about optimal Bayesian combination of both bottom-up and top–
down constraints drew directly on Rumelhart’s work, and Hinton and Sejnowski’s (1986)

Boltzmann machine presaged other explicit links between PDP models and probabilistic

models of processing and learning. To a considerable degree, then, one can see PDP models

as precursors of contemporary probabilistic models of cognition. Yet today, many research-

ers ground their research in explicitly probabilistic terms, often formulating their models as

rational or computational-level models, and employing probabilistic computational methods

without regard to their possible biological implementation. Often, such models address sim-

ilar topics as PDP models. For example, Feldman, Griffiths, and Morgan (2009) address

category effects in speech perception, a topic also addressed by the TRACE model of

speech perception, and Kemp and Tenenbaum (2009) have applied Bayesian methods to

the problem of learning domain structure from examples, a topic addressed by the Rumel-

hart model of semantic cognition (Rogers & McClelland, 2004, 2008a).

Nevertheless, PDP models differ from explicit probabilistic models in important

respects noted earlier. In particular, some probabilistic models set as their goal the
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selection or construction of an explicit symbolic representation or other explicit structure

type (Kemp & Tenenbaum, 2008, 2009), while researchers pursuing the PDP approach

treat such representations as approximate characterizations of the emergent consequences

of interactions between simple processing units (McClelland et al., 2010). While some

may see probabilistic models as replacing or subsuming PDP models, another perspective

is that the probabilistic framework and the PDP approach have overlapping but diverging

aspirations. We expect both approaches to continue to evolve and to challenge each other,

and possibly to benefit from a degree of competition between then.

6.2. Role of “statistical learning” widely appreciated in development

While probabilistic models have been emerging, the idea that cognitive development is

strongly driven by learning about the statistical structure of the environment has also blos-

somed in the past 20 years. Perhaps most notable was the study by Saffran, Aslin, and

Newport (1996) demonstrating that preverbal infants can rapidly learn to exploit the

sequential structure of an artificial language in order to parse a continuous speech stream.

This work, remarkably consistent with Elman’s proposals in the early 1990s, shifted the

focus of empirical research in infant development away from efforts to measure infant

competencies at increasingly younger ages, and toward understanding experience-depen-

dent mechanisms that guide cognitive change. For many researchers both within and out-

side the PDP tradition, the empirical mission is now to understand the nature of the

information available to the infant, and the ability of the developing mind to exploit that

information over time—a program that has proven extremely fruitful in advancing our

understanding of language acquisition (Saffran, 2003), visuo-spatial cognition (Johnson &

Johnson, 2000), causal reasoning (Cohen, Rundell, Spellman, & Cashon, 1999), and con-

ceptual development (Sloutsky, 2010). Indeed, Clark (2013) recently argued that, across

many cognitive domains, it is useful to think of the mind as an implicit prediction engine, a

proposal that accords well with the PDP view of learning, representation, and processing.

6.3. Acceptance of sensitivity to both specific and general information

Another general trend has been an increasing acceptance of the view, especially within

linguistics, that knowledge of language structure must reflect simultaneous sensitivity to

both general and specific information. We have seen that SAID and PINT exhibit some

degree of idiosyncrasy together with partial conformity to regular inflectional or spelling

sound patterns, and that these idiosyncrasies tend to be shared among similar examples

(c.f. KEPT, WEPT, SWEPT; BOOK, COOK, TOOK). Similar quasiregular phenomena

can be found in derivational morphology (Bybee, 1985) as well as larger clausal or phra-

sal patterns called collocations or constructions (Goldberg, 2003). Examples like “John

saw a lawyer” or “She felt the baby kick” are thought to reflect both general information

about typical relationships between syntactic and semantic roles as well as more specific

information captured by the particular constellation of elements; saw (but not observed or

heard) a lawyer or other professional conveys “consulted,” for example. There appears to
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be an emerging consensus that models of language knowledge must capture general and

specific structure in all these different cases, and recent reliance on exemplar models

(Goldinger, 1998; Pierrehumbert, 2003), similarity-based interactions between lexical

items (Bybee, 1995), and construction grammars (Goldberg, 2003) all reflect attempts to

capture some of these phenomena using approaches that we see as sharing similarity with

(if not inspiration from) PDP approaches.

6.4. Resurgence of neural networks in machine learning

Earlier, we alluded to the recent resurgence of neural networks in machine learning.

Indeed, as of this writing, the speech recognition system that allows Android phones to

search the Web is a multi-layered neural network (Mohamed, Dahl, & Hinton, 2009),

contemporary object classification systems for machine vision using neural networks have

achieved remarkable successes (e.g. Le, 2013), and neural network models of language

processing are beginning to capture the human ability to, for example, correctly interpret

the sentiment expressed in complex sentences like “There are slow and repetitive parts

but it has just enough spice to keep it interesting” (Socher, Perelygyn, et al., 2013). Cur-

rently, there is considerable uncertainty surrounding the question of the key factors

responsible for these successes. Some important developments can be identified: (1) dis-

covery of ways to rapidly train “deep networks”—those with at least two layers of modi-

fiable connection weights before a classification stage—by using unlabeled data and

training only one layer at a time; (2) relying on constraints on representational complexity

(usually by including a pressure to allow only a few units to be active in each layer at a

time, Olshausen & Field, 1996), (3) replicating learned filters and pooling outputs of

neighboring filters (LeCun, Kavukcuoglu, & Farabet, 2010), (4) the use of a restricted

tensor product representation to capture interactions among constituents (Socher, Bauer et

al., 2013; Socher, Perelygyn, et al., 2013) and (5) integration of PDP-style learning and

distributed representations within explicitly structured syntactic representations (also used

in Socher, Bauer et al., 2013; Socher, Perelygyn, et al., 2013). Hinton’s paper in this spe-

cial issue describes several of these developments. Another perspective, however, points

to the fact that all of these key ideas were first introduced in some form in the 1980s or

very soon thereafter (Ackley et al., 1985 introduced unsupervised learning; Pollack, 1990

integrated learned distributed representations into structured syntactic representations; the

article on backpropagation in the PDP volumes by Rumelhart et al., 1986 introduced the

replication of learned filters; Smolensky, 1990 initiated the exploration of tensor product

representations; and Weigand, Rumelhart, & Huberman, 1991 explored constraints on

computational complexity). The most important developments since that time may be the

availability of very large corpora of training materials and very large computational

engines on which the networks can be implemented. The idea has arisen that as the scale

of experience and computation begins to approach the scale of experience and computa-

tion available to a young child—who sees millions of images and hears millions of words

per year, and whose brain contains 10–100 billion neuron-like processing units each

updating their state on a time scale of milliseconds—the full power and utility of neural
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networks to capture natural computation is finally beginning to become a reality, allowing

artificially intelligent systems to capture more fully the capabilities of the natural intelli-

gence present in real biological networks in the brain.

6.5. The advent of computational cognitive neuroscience

One major development in the last 25 years has been the explosive growth of compu-

tational cognitive neuroscience. The idea that computer simulations of neural mechanisms

might yield insight into cognitive phenomena no longer requires, at least in most quarters,

vigorous defense—there now exist whole fields, journals, and conferences dedicated to

this pursuit. One consequence is the elaboration of a variety of different computationally

rigorous approaches to neuroscience and cognition that capture neural information pro-

cessing mechanisms at varying degrees of abstraction and complexity. These include the

dynamic field theory, in which the core representational elements are fields of neurons

whose activity and interactions can be expressed as a series of coupled equations (John-

son, Spencer, & Sch€oner, 2008); the neural engineering framework, which seeks to under-

stand how spiking neurons might implement tensor-product approaches to symbolic

representations (Eliasmith & Anderson, 2003; Rasmussen & Eliasmith, 2011); and

approaches to neural representation based on ideal-observer models and probabilistic

inference (Deneve, Latham, & Pouget, 1999; Knill & Pouget, 2004). Though these per-

spectives differ from PDP in many respects, all of these efforts share the idea that cogni-

tion emerges from interactions among populations of neurons whose function can be

studied in simplified, abstract form.

6.6. Distributed representations are being taken seriously by cognitive neuroscience

Early functional brain-imaging methods were based on pre-PDP-era conceptions of

mind and brain. For instance, the standard method of subtraction—in which the theorist

searches for sets of anatomically contiguous voxels that are significantly more active in

an experimental than a control condition—assumes that cognitive functions are localiz-

able to anatomically discrete regions of the brain, that voxel activations can be interpreted

independent of the states of other voxels, and that neighboring voxels are likely to encode

the same information in the same way. Though these methods have undoubtedly shed

light on the neural bases of many interesting cognitive phenomena, their widespread

adoption in the 1980s and 90s led to a highly localized view of brain function in the

neuro-imaging community that was very difficult to relate to the distributed, graded, and

interactive view of cognition adopted by PDP.

Recently, this has begun to change, thanks to the advent of new methods for investi-

gating distributed representations in the brain, including methods for multi-voxel pattern

analysis (MVPA), where the theorist attempts to “decode” patterns of activation across

large sets of voxels (Pereira, Mitchell, & Botvinick, 2009), and methods for uncovering

functional and anatomical connectivity in the brain (Bullmore & Sporns, 2009). These

still-recent and developing advances provide, for the first time, methodological tools that
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align well with the theoretical commitments of PDP. In some cases they are also revising

common views of neural representation and processing in ways that are highly consistent

with PDP. For instance, MVPA analyses of object representations in the ventral posterior

temporal lobes have shown that voxels in the putative “fusiform face area” (FFA) can

differentiate objects from houses, while voxels outside this area can differentiate faces

from other kinds of objects (Haxby et al., 2001). In other words, the representation of

objects, houses, and faces seem to involve a distributed code across ventral-posterior fusi-

form in which the FFA and neighboring regions all participate, in contrast to the alterna-

tive view that each of these stimulus categories is processed by its own dedicated and

anatomically segregated cortical area.

These developments may allow the framework to realize more fully its early promise

of drawing a tighter connection between cognition and neuroscience. The original PDP

volumes expressed considerable optimism toward this goal, and in a few cases it is clear

that the framework has helped to shape, and has been shaped by, observations from neu-

roscience. For instance, our current understanding of the function of the hippocampus,

and how this arises from both large and small-scale aspects of its anatomy, owes much to

the complementary learning systems hypothesis (O’Reilly et al., this issue). Many theo-

ries of disordered behavior following brain injury rely heavily on aspects of the PDP

framework, especially in language and memory (Shallice & Cooper, 2011); and current

approaches to the neuroscience of cognitive control and its disorders likewise have

evolved from accounts based on PDP models (Botvinick and Cohen, this issue).

Nevertheless, in many cases, PDP models have been advanced primarily at a cognitive

level, without any intended connection to underlying neural mechanisms beyond the

adherence to general principles inspired by neuroscience described earlier. At the same

time, cognitive neuroscience, driven largely by technological advances in brain imaging,

has advanced rapidly and often without connection to the basic tenets of PDP. With the

new multivariate methods and technologies for better estimating both structural and effec-

tive connectivity in the brain, this is beginning to change. In some cases, the new analysis

methods capture insights derived from PDP models. For instance, representational similar-

ity analysis—the approach in which patterns of evoked BOLD responses are interpreted

by searching within cortical “spotlights” for local regions that express a stipulated

similarity structure (Kriegeskorte, Mur, & Bandettini, 2008)—accords well with the

observation that information in the hidden layers of PDP networks is often carried by the

similarity structure of distributed representations, rather than by the mean level of activa-

tion of individual units. In other cases, observations from neuroscience are now being

used to constrain the architecture of simulated neural network models, allowing theorists

to develop explicit hypotheses about the functional consequences that arise from the

observed anatomy. For instance, Ueno et al. (2011) described a model of single-word

processing (comprehension, production, and repetition) in which the architecture of the

model was constructed to conform as closely as possible to what is known about the

gross anatomy and connectivity of the perisylvian language network. Within this architec-

ture, all of the classical forms of aphasia arise from simulated damage to model analogs

of the cortical regions known to produce the corresponding syndromes. Moreover,
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diagnostic simulations showed that performance on all three tasks suffered when the

model adopted alternative internal architectures, thus providing a hypothesis about why

the anatomy of the language system is structured in a particular way.

Many other examples of PDP models bridging the divide between cognitive theory and

neuroscience have emerged in recent years. The well-known proposal that the anterior

temporal lobes constitute a cross-modal and domain-general “hub” for semantic knowl-

edge stemmed in part from the observation that PDP networks conforming to this archi-

tecture exhibit properties that help to resolve several puzzles in studies of concept

acquisition in development (Rogers & McClelland, 2004). Our developing understanding

of how functional specialization emerges within the posterior fusiform cortex—especially

the putative “fusiform face area” and “visual word-form area,” which reside in homolo-

gous cortex across the hemispheres—is being shaped by PDP models of learning that are

tied more directly to hypotheses about the anatomy and connectivity of the early visual

system (Plaut & Behrmann, 2011). The “triangle” model of word-reading, long used to

understand patterns of disordered behavior, is now guiding analyses of fMRI data in par-

ticipants as they read regular, irregular, and pseudo-words (Graves, Desai, Humphries,

Seidenberg, & Binder, 2010). The fine-grained anatomy of the prefrontal cortex and its

connectivity to the basal ganglia are being interpreted with reference to hypotheses about

how PDP-like networks can possibly implement the special functions supported by these

systems, that is, sustaining task-relevant information and updating it at different temporal

scales as tasks are carried out (Frank, Loughry, & O’Reilly, 2001). Hypotheses about

how neural systems might exploit temporal structure in learning about objects, inherited

largely from Elman’s work described earlier, are motivating analyses of fMRI data to

uncover the brain regions where such learning has occurred (Schapiro, Rogers, Cordova,

Turk-Browne, & Botvinick, 2013). Thus, we are seeing widespread efforts to employ

PDP networks as tools, not only for cognitive scientists to understand healthy and disor-

dered behaviors, but for cognitive neuroscientists to understand and interpret patterns of

functional activation, and to derive hypotheses about how neuro-anatomy contributes to

cognitive function.

6.7. The future role of PDP models

Given these various developments, it is probably fair to say that many of the cam-

paigns mounted in the original PDP books, if not victorious, have at least staked out per-

manent settlements in the theoretical landscape. The core proposals—that cognitive

structure is quasiregular, that behavior is sensitive to multiple graded constraints, that

processing is graded and continuous, that representations are distributed, that cognitive

development is largely driven by learning, and that it is useful to consider how cognitive

functions arise from neural mechanisms—are now standard starting assumptions in many

domains of research. Even if an expressed commitment to the PDP framework is avowed

only by a subset of cognitive scientists and neuroscientists, many if not all of the tenets

of the framework have spread very widely in the community indeed.
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One might ask, then, whether the PDP framework itself remains useful for the future

development of the field. For the computational cognitive neuroscientist there are now

several alternative architectures to choose from, many of which adhere more concretely

to detailed aspects of neural processing. For researchers in artificial intelligence, there are

powerful contemporary machine learning methods that build on PDP ideas but are less

tied to concerns about the details of human cognition or the possibility of implementation

in the biological brain. For theoretical cognitive scientists who frame their effort at

Marr’s computational level, the reliance on probabilistic modeling methods (Kemp &

Tenenbaum, 2008; Tenenbaum, Kemp, Griffiths, & Goodman, 2011) provides a frame-

work for understanding cognition directly in terms of probabilistically optimal representa-

tions that satisfy many simultaneous, graded constraints without regard to their biological

implementation. For the practicing experimentalist, it is even possible to conduct research

that embraces many of the insights yielded by PDP without deploying the models them-

selves. Why then would we still need to rely on PDP models at all?

We certainly accept and celebrate the diversity of modeling approaches now in use in

cognitive science and related disciplines. Models are important, not as expressions of

belief, but as vehicles for exploring the implications of ideas (McClelland, 2010), and

some form of modeling, whether based on PDP or otherwise, is necessary because the

implications of contemporary ideas cannot always be discovered without instantiating

these ideas in some form of model system. As such, as we have argued, adopting the

right simplifications is essential to success in modeling, and different frameworks appro-

priately adopt different simplifications just as do maps made for different purposes. Each

of the approaches is adapted to specific issues and applications, many of which overlap

with the issues and applications addressed by the PDP framework.

Surveying the landscape of alternative approaches, we still see two very particular roles

for ongoing exploration within the PDP framework. First, although many of the core PDP

ideas are widely accepted in some domains, there still remain many cognitive domains

where their application is seen as controversial. Even if neural network models can capture

automatic processes in perception, single word reading, and even aspects of morphology,

there still remains considerable skepticism about the application of such models to aspects

of semantic cognition and many forms of reasoning including analogical, causal, mathemati-

cal, and syllogistic reasoning tasks. In all of these domains, we see an ongoing role for PDP

models in exploring to what extent it is really necessary to make prior commitments to the

use of structured representations as most existing models of these topics do.

The second role lies in connecting cognitive science to other disciplines. PDP models

inhabit a kind of theoretical nexus where machine learning, cognitive and systems neuro-

science, and cognitive psychology can meet and mutually constrain one another. Other

neuro-computational approaches may more faithfully capture some aspects of neural pro-

cessing but are generally framed at too detailed a neuro-mechanistic level, obscuring the

essential properties necessary to account for the emergent cognitive phenomena. Other

cognitive and machine-learning formalisms, though undoubtedly useful in many respects,

either ignore or explicitly disavow any connection to neuroscience, and so remain

unconstrained by any facts about the actual system that supports cognition. For theorists
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interested in understanding, not just how the mind works, but also how the mind arises

from the brain, PDP models provide a uniquely useful tool for exploring an integrated

answer to these questions.

7. Conclusion

In sum, we see an important and interesting future role for the core traditions of the PDP

framework, both in extending the domain of application of the approach to higher level

cognition and in continuing to serve as a bridge between disciplines and levels of analysis.

We see this future work as drawing heavily on insights that have come from other

approaches and other levels of analysis, and on the ever-increasing scale of computational

resources and corpora of training data made available by the machine learning community.

Only the future can tell just how useful ongoing explorations within the PDP framework

will be. Our hope is that others will continue to participate in these explorations and to pro-

vide insights that will help guide them by pursuing complementary approaches.

Note

1. While Pinker and Prince rightly challenged the training regime that produced

U-shaped performance (correct, then over-regular, then correct inflection of excep-

tions) in Rumelhart and McClelland’s original past-tense model, Plunkett and

Marchman found that the pattern of performance could be observed with a more

realistic training regime. Rogers et al. observed U-shaped trends in other domains—

this can often occur even if the statistics of the training environment remain

stationary across all stages of development.
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