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Abstract

A Moyal deformation of a Clifford Cl(3, 1) Gauge Theory of (Confor-
mal) Gravity is performed for canonical noncommutativity (constant Θµν

parameters). In the very special case when one imposes certain constraints
on the fields, there are no first order contributions in the Θµν parameters
to the Moyal deformations of Clifford gauge theories of gravity. However,
when one does not impose constraints on the fields, there are first or-
der contributions in Θµν to the Moyal deformations in variance with the
previous results obtained by other authors and based on different gauge
groups. Despite that the generators of U(2, 2), SO(4, 2), SO(2, 3) can be
expressed in terms of the Clifford algebra generators this does not imply
that these algebras are isomorphic to the Clifford algebra. Therefore one
should not expect identical results to those obtained by other authors. In
particular, there are Moyal deformations of the Einstein-Hilbert gravita-
tional action with a cosmological constant to first order in Θµν . Finally,
we provide a mechanism which furnishes a plausible cancellation of the
huge vacuum energy density.

Keywords: C-space Gravity, Clifford Algebras, Gauge Theories of Gravity,
Moyal deformations.

1 Introduction

Many approaches have been taken towards the quantization of gravity. Within
the framework of the gauge theory formulations of gravity, a Moyal deformation
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of gravity has been very popular. Its construction is based, in particular, on
the U(2, 2), SO(1, 4) SO(2, 3), SL(2, C) groups. Clifford, Division, Exceptional
and Jordan algebras are deeply related and essential tools in many aspects in
Physics [1], [2], [3], [5]. The aim of this work is to provide a Moyal Deformation
of Clifford Gauge Theories of Gravity advanced in [12].

Gravitational theories on canonical noncommutative spacetimes (associated
to constant noncommutative parameters Θµν) was developed earlier [15, 16] in
terms of a twisted diffeomorphism algebra. A Noncommutative gravity asso-
ciated to coordinate-dependent noncommutative parameters Θµν(X) has also
been studied by many authors. For instance, on noncommutative spacetimes
endowed with a Lie algebraic structure, [Xµ, Xν ] = iΘµν(X) = ifµνρ Xρ. An
principal example of such noncommutative spacetimes is the κ-Minkowski space
associated with DSR (Doubly/Deformed Special Relativity) [17].

An internal gauge theory using a covariant star product between two arbi-
trary Lie algebra valued differential forms on a symplectic manifold endowed
only with torsion but no curvature was recently developed by [20] . In this case
[Xµ, Xν ] = iΘµν(X) where Θµν(X) is now a Poisson bivector. If the bivector
Θµν(X) has an inverse ωµν(X) that is nondegenerate det ωµν 6= 0 and closed
dω = 0 (so the Jacobi identity is obeyed [20]], then ω is the symplectic two-form
of a symplectic manifold M.

The construction of a fully gauge invariant action to all orders in Θµν ,
and the corresponding QFT associated with gauge theories in noncommuta-
tive spacetimes based on a Lie-algebraic noncommutativity structure for the
Θµν(X) = ifµνρ Xρ, remains a challenging problem due to the fact that the
cyclicity property of the integrals is valid up to second order in powers of Θµν

[28].
We shall focus on the case when Θµν are constant parameters. The results

in this work differ from the results of other authors in several aspects. Mainly
in the construction of the generalized action prior to its Moyal deformation. No
constraints are imposed by hand on the gauge fields like in [23] and on the scalar
fields like in [22].

The outline of this work goes as follows. In section 2 we review the con-
struction of a Cl(3, 1) Gauge Theory of (Conformal) Gravity and provide the
most generalized gravitational action. In section 3 we perform the Moyal defor-
mation following the Seiberg-Witten map procedure relating the non-Abelian
noncommutative gauge fields based on noncommutative coordinates and the
non-Abelian gauge fields based on commutative coordinates.

We find in section 3 that there are no first order contributions in the Θµν

(constants) parameters to the Moyal deformations of Clifford gauge theories of
gravity in the very special case when one truncates all the components of the
Clifford-valued scalar field Φ = ΦAΓA to zero except Φmnpq 6= 0, and all the
components of the Clifford gauge field AAµΓA to zero except Aabµ 6= 0. However,
when one does not impose such constraints on the fields, there are first order
contributions in the Θµν (constants) parameters to the Moyal deformations
in variance with the previous results obtained by other authors and based on
different gauge groups.
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Despite that the generators of U(2, 2), SO(4, 2), SO(2, 3) can be expressed in
terms of the Clifford algebra generators this does not imply that these algebras
are isomorphic to the Clifford algebra. Therefore one should not expect identical
results. In particular, there are Moyal deformations of the Einstein-Hilbert
gravitational action with a cosmological constant to first order in Θµν . Finally,
we provide a mechanism which furnishes a plausible cancellation of the huge
vacuum energy density.

2 Cl(3, 1) Gauge Theory of Conformal Gravity

Let ηab = (−,+,+,+), ε0123 = −ε0123 = 1, the real Clifford Cl(3, 1, R) al-
gebra associated with the tangent space of a 4D spacetime M is defined by
{Γa,Γb} = 2ηab such that

[Γa,Γb] = 2Γab, Γ5 = − i Γ0 Γ1 Γ2 Γ3, (Γ5)2 = 1; {Γ5,Γa} = 0; (2.1)

Γabcd = εabcd Γ5; Γab =
1

2
(ΓaΓb − ΓbΓa) . (2.2a)

Γabc = εabcd Γ5 Γd; Γabcd = εabcd Γ5. (2.2b)

Γa Γb = Γab + ηab, Γab Γ5 =
1

2
εabcd Γcd, (2.2c)

Γab Γc = ηbc Γa − ηac Γb + εabcd Γ5 Γd (2.2d)

Γc Γab = ηac Γb − ηbc Γa + εabcd Γ5 Γd (2.2e)

Γa Γb Γc = ηab Γc + ηbc Γa − ηacΓb + εabcd Γ5 Γd (2.2f)

Γab Γcd = εabcd Γ5 − 4δ
[a
[c Γ

b]
d] − 2δabcd . (2.2g)

δabcd =
1

2
(δac δ

b
d − δad δ

b
c ). (2.2.h)

the generators Γab,Γabc,Γabcd are defined as usual by a signed-permutation sum
of the anti-symmetrizated products of the gammas. A representation of the
Cl(3, 1) algebra exists where the generators

1; Γa = Γ1, Γ2, Γ3, Γ4 = −iΓ0; Γ5; a = 1, 2, 3, 4 (2.3)

are Hermitian; while the generators ΓaΓ5; Γab for a, b = 1, 2, 3, 4 are anti-
Hermitian. Hence, iΓaΓ5; iΓab are Hermitian. Using eqs-(2.1-2.3) allows to
write the Cl(3, 1) algebra-valued (Hermitian) one-form as

A =

(
aµ 1 + bµ Γ5 + eaµ Γa + i faµ Γa Γ5 +

i

4
ωabµ Γab

)
dxµ. (2.4)

The Clifford-valued gauge fieldAµ transforms according toA′µ = U−1 Aµ U+
U−1∂µU under Clifford-valued gauge transformations. The Clifford-valued field
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strength is F = dA − i[A,A] so that F transforms covariantly F ′ = U−1 F U .
Decomposing the field strength in terms of the Clifford algebra generators gives

Fµν = F 1
µν 1 + F 5

µν Γ5 + F aµν Γa + i F a5µν Γa Γ5 +
i

4
F abµν Γab. (2.5)

where F = 1
2 Fµν dx

µ ∧ dxν . The field-strength (real-valued) components are
given by

F 1
µν = ∂µaν − ∂νaµ (2.6a)

F 5
µν = ∂µbν − ∂νbµ + 2eaµfνa − 2eaνfµa (2.6b)

F aµν = ∂µe
a
ν − ∂νeaµ + ωabµ eνb − ωabν eµb + 2faµbν − 2faν bµ (2.6c)

F a5µν = ∂µf
a
ν − ∂νfaµ + ωabµ fνb − ωabν fµb + 2eaµbν − 2eaνbµ (2.6d)

F abµν = ∂µω
ab
ν + ωacµ ω

b
νc + 4

(
eaµe

b
ν − faµf bν

)
− µ←→ ν. (2.6e)

At this stage we may provide the relation among the Cl(3, 1) algebra gener-
ators and the the conformal algebra so(4, 2) ∼ su(2, 2) in 4D . The operators of
the Conformal algebra can be written in terms of the Clifford algebra generators
as [4]

Pa =
1

2
Γa (1 − Γ5); Ka =

1

2
Γa (1 + Γ5); D = − 1

2
Γ5, Lab =

1

2
Γab.

(2.7)
Pa ( a = 1, 2, 3, 4) are the translation generators; Ka are the conformal boosts; D
is the dilation generator and Lab are the Lorentz generators. The total number
of generators is respectively 4+4+1+6 = 15. From the above realization of the
conformal algebra generators (2.7), the explicit evaluation of the commutators
yields

[Pa, D] = Pa; [Ka, D] = −Ka; [Pa, Kb] = − 2gab D + 2 Lab

[Pa, Pb] = 0; [Ka,Kb] = 0; ....... (2.8)

which is consistent with the su(2, 2) ∼ so(4, 2) commutation relations. We
should notice that the Ka, Pa generators in (2.7) are both comprised of Her-
mitian Γa and anti-Hermitian ±ΓaΓ5 generators, respectively. The dilation D
operator is Hermitian, while the Lorentz generator Lab is anti-Hermitian. The
fact that Hermitian and anti-Hermitian generators are required is consistent
with the fact that U(2, 2) is a pseudo-unitary group.

Having established this one can infer that the real-valued tetrad V aµ field

(associated with translations) and its real-valued partner Ṽ aµ (associated with
conformal boosts) can be defined in terms of the real-valued gauge fields eaµ, f

a
µ

as follows
eaµ Γa + faµ ΓaΓ5 = V aµ Pa + Ṽ aµ Ka (2.9)
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From eq-(2.7) one learns that eq-(2.9) leads to

eaµ − faµ = V aµ ; eaµ + faµ = Ṽ aµ ⇒

eaµ =
1

2
(V aµ + Ṽ aµ ), faµ =

1

2
(Ṽ aµ − V aµ ). (2.10)

The components of the torsion and conformal-boost curvature of conformal
gravity are given respectively by the linear combinations of eqs-(2.6c, 2.6d)

F aµν − F a5µν = F̃ aµν [P ]; F aµν + F a5µν = F̃ aµν [K] ⇒

F aµν Γa + F a5µν Γa Γ5 = F̃ aµν [P ] Pa + F̃ aµν [K] Ka. (2.11a)

Inserting the expressions for eaµ, f
a
µ in terms of the vielbein V aµ and Ṽ aµ given

by (2.10), yields the standard expressions for the Torsion and conformal-boost
curvature, respectively

F̃ aµν [P ] = ∂[µ V
a
ν] + ωab[µ Vν]b − V a[µ bν], (2.11b)

F̃ aµν [K] = ∂[µ Ṽ
a
ν] + ωab[µ Ṽν]b + 2 Ṽ a[µ bν], (2.11c)

The Lorentz curvature in eq-(2.6e) can be recast in the standard form as

F abµν = Rabµν = ∂[µ ω
ab
ν] + ωac[µ ωbν]c + 2( V a[µ Ṽ

b
ν] + Ṽ a[µ V

b
ν] ). (2.11d)

The components of the curvature corresponding to the Weyl dilation generator
given by F 5

µν in eq-(2.6b) can be rewritten as

F 5
µν = ∂[µ bν] +

1

2
( V a[µ Ṽν]a − Ṽ a[µ Vν]a ). (2.11e)

and the Maxwell curvature is given by F 1
µν in eq-(2.6a). A re-scaling of the

vielbein V aµ /l and Ṽ aµ /l by a length scale parameter l is necessary in order to
endow the curvatures and torsion in eqs-(2.11) with the proper dimensions of
length−2, length−1, respectively.

To sum up, the real-valued tetrad gauge field V aµ (that gauges the transla-

tions Pa ) and the real-valued conformal boosts gauge field Ṽ aµ (that gauges the
conformal boosts Ka) of conformal gravity are given, respectively, by the linear
combination of the gauge fields eaµ ∓ faµ associated with the Γa, Γa Γ5 genera-
tors of the Clifford algebra Cl(3, 1) of the tangent space of spacetime M4 after
performing a Wick rotation −i Γ0 = Γ4. A conformal Gravity-Maxwell case is
based on the pseudo-unitary algebra u(2, 2) = u(1)⊕ su(2, 2) ∼ u(1)⊕ so(4, 2).

Gauge invariant actions involving Yang-Mills terms of the form
∫
Tr(F ∧∗F )

and theta terms of the form
∫
Tr(F ∧F ) are straightforwardly constructed. For

example, a SO(4, 2) gauge-invariant action for conformal gravity is [8]

S =

∫
d4x εabcd ε

µνρσ Rabµν Rcdρσ (2.12)
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where the components of the Lorentz curvature 2-form Rabµνdxµ ∧ dxν are given

by eq-(2.11d) after re-scaling the vielbein V aµ /l and Ṽ aµ /l by a length scale
parameter l in order to endow the curvature with the proper dimensions of
length−2.

The conformal boost symmetry can be fixed by choosing the gauge bµ = 0
because under infinitesimal conformal boosts transformations the field bµ trans-
forms as δbµ = −2 ξa eaµ = −2 ξµ; i.e the parameter ξµ has the same number
of degrees of feedom as bµ. After fixing the dilational symmetry and setting
the torsion to zero which constrains the spin connection ωabµ (V aµ ) to be of the

Levi-Civita form given by a function of the vielbein V aµ , and eliminating the Ṽ aµ
field algebraically via its (non-propagating) equations of motion leads to the de
Sitter group SO(4, 1) invariant Macdowell-Mansouri-Chamseddine-West action
[7] (suppressing spacetime indices for convenience)

S =

∫
d4x ( Rab(ω) +

1

l2
V a∧V b ) ∧ ( Rcd(ω) +

1

l2
V c∧V d ) εabcd. (2.13)

the action (2.20) is comprised of the topological invariant Gauss-Bonnet term
Rab(ω) ∧ Rcd(ω)εabcd; the standard Einstein-Hilbert gravitational action term
1
l2R

ab(ω)∧ V c ∧ V dεabcd, and the cosmological constant term 1
l4V

a ∧ V b ∧ V c ∧
V dεabcd. l is the de Sitter throat size; i.e. l2 is proportional to the square of the
Planck scale (the Newtonian coupling constant).

The familiar Einstein-Hilbert gravitational action can also be obtained from
a coupling of gravity to a scalar field like it occurs in a Brans-Dicke-Jordan
theory of gravity

S =
1

2

∫
d4x
√
g φ

(
1
√
g
∂ν(
√
g gµν Dc

µφ) + bµ (Dc
µφ) +

1

6
R φ

)
.

(2.14a)
where the conformally covariant derivative acting on a scalar field φ of Weyl
weight one is

Dc
µφ = (∂µ − bµ) φ (2.14b)

Upon fixing the conformal boosts symmetry by setting bµ = 0 and the dilational
symmetry by setting φ = constant leads to the Einstein-Hilbert action for
ordinary gravity.

We proceed next with the introducion of the Clifford-valued scalar field (a
hyper-complex valued scalar) defined as

Φ = ΦA ΓA = φ 1 + φa γa +
1

2!
φab γab +

1

3!
φabc γabc +

1

4!
φabcd γabcd (2.15)

One should mention that the φ field appearing in (2.15) must not be confused
with the scalar field appearing in eqs-(2.14). Now we can propose the most
general action as an extension of the MMCW action displayed in eq-(2.13 ) and
given by
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S =

∫
d4x εµνρσ < Fµν Fρσ Φ > =

∫
d4x εµνρσ < FAµν F

B
ρσ ΦC ΓA ΓB ΓC >

(2.16)
The bracket operation < ..... > denotes extracting the Clifford scalar part of
the geometric product of Clifford-valued quantities. It is the analog of taking
the trace of a matrix product. The most general action can be decomposed into
several pieces S = S1 +S2 +S3 +S4 +S5. Defining φabcd = εabcd φ5 = εabcd ϕ
we have

S5 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

abcd ΓA ΓB γabcd > =∫
d4x εabcd ε

µνρσ ϕ
(
a51F

ab
µν F

cd
ρσ + a52 F

a
µν F

bcd
ρσ + a53 Fµν F

abcd
ρσ

)
+∫

d4x εabcd ε
µνρσ ϕ

(
a54F

ab
µνe F

ecd
ρσ + a55F

a
µνe F

ebcd
ρσ + a56F

ab
µνef F

efcd
ρσ

)
(2.17)

One can rewrite (2.17) in differential form notation as

S5 =

∫
εabcd ϕ

(
a51 F

ab ∧ F cd + a52 F
a ∧ F bcd + a53 F ∧ F abcd

)
+

∫
εabcd ϕ

(
a54 F

ab
e ∧ F ecd + a55 F

a
e ∧ F ebcd + a56 F

ab
ef ∧ F efcd

)
(2.18)

One can recognize that the MMCW action (2.13) is contained in one piece
of S5 and given by

SMMCW ⊂
∫

d4x εabcd ε
µνρσ ϕ

(
F abµν F

cd
ρσ

)
(2.19)

when ϕ = 1 as described by eqs-(2.6e, 2.11). One should notice that when the
scalar field ϕ is not constant the expression∫

d4x
√
g ϕ ( Rµνρσ Rµνρσ − 4 Rµν R

µν + R2 ) (2.20)

is no longer equal to the Gauss-Bonnet topological invariant due to the key ϕ(x)
factor and such terms will now contribute to the equations of motion.

The term εabcdF
a ∧ F bcd in (2.18) can be rewritten as F a ∧ F̃a , while the

term εabcdF ∧ F abcd = F ∧ F̃ , etc.... The components F bcd = F bcdµν dx
µ ∧ dxν ,

F abcd = F abcdµν dxµ∧dxν , etc. ... are all given by eqs-(2.4,2.5,2.6) after taking into
account the relations among the Clifford algebra generators (gamma matrices)
in eqs-(2.1, 2.2). The other terms in the action are

S1 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ ΓA ΓB 1 > =
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∫
d4x εµνρσ φ

(
a11 Fµν Fρσ + a12 F

a
µν Fa ρσ + a13 F

ab
µν Fab ρσ

)
+∫

d4x εµνρσ φ
(
a14 F

abc
µν Fabc ρσ + a15 F

abcd
µν Fabcd ρσ

)
(2.21)

One can rewrite (2.21) in differential form notation as

S1 =

∫
φ
(
a11 F ∧ F + a12 F

a ∧ Fa + a13 F
ab ∧ Fab

)
+∫

φ
(
a14 F

abc ∧ Fabc + a15 F
abcd ∧ Fabcd

)
(2.22)

S3 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

ab ΓA ΓB γab > =∫
φab

(
a31 F

a ∧ F b + a32 F
ab ∧ F + a33 F

a
c ∧ F cb

)
+∫

φab
(
a34 F

a
cd ∧ F cdb + a35 F

a
cde ∧ F cdeb

)
(2.23)

S2 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

a ΓA ΓB γa > =∫
φa
(
a21 F

a ∧ F + a22 F
a
b ∧ F b + a23 F

a
bc ∧ F bc + a24 F

a
bcd ∧ F bcd

)
(2.24)

S4 =

∫
d4x εµνρσ < FAµν F

B
ρσ φ

abc ΓA ΓB γabc > =∫
φabc

(
a41 F

abc ∧ F + a42 F
ab ∧ F c + a43 F

abc
d ∧ F d

)
+∫

φabc
(
a44 F

ab
d ∧ F dc + a45 F

ab
de ∧ F dec

)
(2.25)

the way to obtain the numerical coefficients aij is explained in the Appendix.
One may introduce dynamics for the dimensionless Clifford-valued scalar

field Φ otherwise a variation of the action (2.16) with respect to the Φ field
will trivially constrain the action to zero since in this case Φ will act as a
Lagrange multiplier. The scalar field contribution to the action for the signature
(−,+,+,+) is

S[Φ] =

∫
d4x
√
g < − 1

2l2
(Dµ Φ†) (Dµ Φ) − 1

l4
V (Φ) > (2.26a)

The dagger operation Φ† denotes the reversal operation and is obtained by
reversing the order of the Clifford generators. For example, (γa∧γb)† = γb∧γa,
(γa ∧ γb ∧ γc)† = γc ∧ γb ∧ γa, etc ..... so that
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< (Dµ Φ†) (Dµ Φ) > = (Dµφ) (Dµφ) + (Dµφa) (Dµφa) + (Dµφab) (Dµφab) +

(Dµφabc) (Dµφabc) + (Dµφabcd) (Dµφabcd) (2.26b)

where we have omitted combinatorial numerical factors for convenience.
The potential, for example, may be given by a polynomial V (Φ) =

∑
n=0 an Φn

or a more complicated function. Upon taking the Clifford scalar part of the po-
tential one has < V (Φ) >= V(φ, φa, φab, φabc, φabcd) which is a complicated
(polynomial, for example) expression given in terms of the 16 scalars. For sim-
plicity we shall choose the analog of a quartic Higgs-like potential given by

V =
1

l4
λ ( |ΦA ΦA| − v2)2

ΦA ΦA = φ2 + φaφa +
1

2!
φabφab +

1

3!
φabcφabc +

1

4!
φabcdφabcd (2.27)

the reason one must take the absolute value in |ΦAΦA| is because the Clifford
scalar norm ΦAΦA is not positive definite since the 16-dimensional quadratic
form has a split (8, 8) signature [?] when the tangent space metric ηab is Minkowskian
diag(−1,+1,+1,+1).

The gauge covariant derivative acting on the Clifford-valued scalar Φ is
defined as

(DµΦA) ΓA = (∂µ ΦA) ΓA − i [ ABµ ΓB , ΦC ΓC ] ⇒

DµΦA = (∂µ ΦA) −i ABµ ΦC < [ ΓB , ΓC ] ΓA > = (∂µ ΦA) −i ABµ ΦC f A
BC

(2.28a)
where we have written the commutator Clifford algebra as [ΓB ,ΓC ] = f A

BC ΓA
and whose structure constants are displayed in the Appendix. Under infinitesi-
mal Cl(3, 1) gauge transformations the Clifford-valued scalar Φ field transforms
as

δΦC = − i fCAB ξA ΦB , ξ = ξA ΓA = ξ̃ 1 + ξa γa +
1

2
ξab γab +

1

3!
ξabc γabc +

1

4!
ξabcd γabcd (2.28b)

and the gauge covariant derivative transforms as well δ(DµΦC) = −ifCAB ξA DµΦB .
To sum up, the action S + S[Φ] given by eqs-(2.16-2.26) is comprised of

(i) ϕ times the MMCW Lagrangian (2.13) that contains the Einstein-Hilbert
and cosmological constant terms. (ii) Extra terms quadratic in the curvature
and torsion. (iii) A coupling of curvature and torsion terms. (iv) kinetic and
potential terms for a multiplet of 16 spacetime scalar fields φ, φa, φab, φabc, φabcd

that from the tangent space point of view behave as a scalar, vector, antisym-
metric tensors of rank two and three and a pseudo-scalar field, respectively.
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(v) Non-minimal couplings of the scalars and curvature and torsion terms. (vi)
terms involving the field strengths associated with conformal boosts, a dilational
(Weyl gauge field) and a U(1) Maxwell-like generator as displayed by eqs-(2.6,
2.11). A review of conformal (super) gravity can be found in [8].

The action displayed by eqs-(2.16-2.26) is a more complex generalization
of the f(R, T ) modified gravity models involving powers of curvature and tor-
sion [9]. It is also a more general extension of the cosmological models based on
Brans-Dicke-Jordan gravity [11] and non-minimally coupled Einstein-Electroweak
theory [10]. It contains many more terms than a U(2, 2) = SU(2, 2) × U(1)
gauge theory (conformal gravity and Maxwell theory). In addition it includes
the kinetic and potential terms of a multiplet of 16 scalar fields (corresponding
to a 4 × 4 matrix-valued scalar in the 16-dimensional adjoint representation of
U(2, 2)).

3 Moyal Star Product Deformations

The associative and noncommutative Moyal star product when the (inverse)
symplectic form Ωµν = −Ωµν does not have an X-dependence is defined as

( A1 ∗ A2 )(Z) = exp

(
1

2
Ωµν ∂Xµ ∂Y ν

)
A1(X) A2(Y )|X=Y=Z =

∞∑
n=0

( 1
2 )n

n!
Ωµ1ν1 Ωµ2ν2 .......... Ωµnνn (∂nµ1µ2......µn A1) (∂nν1ν2......νn A2) (3.1)

∂nµ1µ2......µn A1(Z) ≡ ∂µ1
∂µ2

...... ∂µn A1(Z). (3.2a)

∂nν1ν2......νn A2(Z) ≡ ∂ν1 ∂ν2 ...... ∂νn A2(Z). (3.2b)

For simplicity we shall take the very special case of canonical noncommuta-
tivity [Xµ, Xν ]∗ = iΘµν = Ωµν = constants, such that the star product is the
standard Moyal one. If the fields and their derivatives vanishing fast enough at
infinity, one has the cyclicity property of the integral

∫
A ∗B =

∫
A B + total derivative =

∫
A B =

∫
B ∗ A (3.3)

∫
A ∗ B ∗ C =

∫
A (B ∗ C) + total derivative =

∫
A (B ∗ C) =∫

(B ∗ C) A =

∫
(B ∗ C) ∗ A + total derivative =

∫
B ∗C ∗ A (3.4)

10



therefore, when the star product is associative and the fields and their derivatives
vanishing fast enough at infinity (or there are no boundaries) one has∫

A ∗ B ∗ C =

∫
B ∗ C ∗ A =

∫
C ∗A ∗ B . (3.5)

The relations (3.3-3.5) are essential in order to construct invariant actions under
star gauge transformations of the form δFµν = i[ξ, Fµν ]∗. The invariance of the
actions is due to the associativity property of the star products and the cyclicity
property of the integrals and of the Clifford scalar part of the geometric product
of the Clifford generators. Taking the scalar part is the analog of the trace of a
matrix product.

One should notice, for example, that when one has a Lie-algebraic type
of noncommutativity, the Θ′s are now X-dependent [Xµ, Xν ]∗ = iΘµν(X) =
ifµνρ Xρ so that the cyclicity property no longer holds since the star product is
X-dependent. For a detailed study of how to remedy this problem see [25].

Due to the noncommutativity of the spacetime coordinates, the components
of the Clifford-algebra valued field strength are now modified as follows

Fµν = FCµν ΓC = ( ∂µ ACν − ∂ν ACµ ) ΓC −

i

2
( AAµ ∗ABν − ABν ∗AAµ ) { ΓA, ΓB } −

i

2
( AAµ ∗ABν + ABν ∗AAµ ) [ ΓA, ΓB ].

(3.6)
The commutators [ ΓA, ΓB ] and anti-commutators { ΓA, ΓB } in eq-(3.6),

where A,B are polyvector-valued indices, can be obtained from all the rela-
tions provided in the Appendix. Notice that both the standard commutators
and anticommutators of the gammas appear in eq-(3.6) and which now define
the Clifford-algebra valued field strength in noncommutative spacetimes; i.e. if
the products of fields were to commute one would have had only the Lie alge-
bra commutator AAMAJB [ΓA,ΓB ] pieces without the anti-commutator {ΓA,ΓB}
contributions in the r.h.s of eq-(3.6).

We should remark that one is not deforming the Clifford algebra involving
[ ΓA, ΓB ] and { ΓA, ΓB } in eq-(3.6) but it is the ”point” product algebra
AAM ∗ ABN of the fields which is being deformed. (Quantum) q-Clifford algebras
have been studied extensively by [29].

The symmetrized star product in terms of Θµν = constants is

AAµ ∗s ABν ≡
1

2

(
AAµ ∗ ABν +ABν ∗ AAµ

)
= AAµ ABν +

i2

2!
Θαβ Θκλ (∂α ∂κ AAµ ) (∂β ∂λ ABν ) + ...... (3.7)

the antisymmetrized (Moyal bracket) star product is

AAµ ∗aABν ≡
1

2

(
AAµ ∗ ABν −ABν ∗ AAµ

)
= i Θαβ (∂α AAµ ) (∂β ABν ) + ..... (3.8)
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Early works on Moyal deformations of gravity can be found in [21],[18],[15].
Examples of an X-dependent Θµν(x) occurs in κ-deformed Minkowski space-
times [17]. An extension of the Seiberg – Witten (SW) map for X-dependent
Θµν(x) was provided by [25], [19], [20], [26], [27], among others, relating the
non-Abelian noncommutative gauge fields based on noncommutative coordi-
nates and the non-Abelian gauge fields based on commutative coordinates. It
is then when one may construct the proper expressions for the deformed field
strengths, associated with the noncommutative coordinates, in terms of the un-
deformed field strengths. Since the former involve the universal enveloping alge-
bra that is infinite dimensional one must find a criteria to reduce the number
of the degrees of freedom to a finite one; this is attained via the Seiberg-Witten
map.

The main advantage of recurring to a Clifford algebraic formulation described
in this work, is that both the commutator and anticommutator algebra in eq-
(3.6) closes and this will simplify the laborious and cumbersome Seiberg-Witten
procedure, involving the universal enveloping algebra. One may now proceed
to perform the Moyal deformations of the field strengths and the action in a
straightforward fashion.

The Moyal deformation of the terms S5 encoding the MMCW gravitational
action with a cosmological constant is given by

S(5)∗ =

∫
d4x εµνρσ < FAµν ∗ FBρσ ∗ φabcd ΓA ΓB γabcd > =∫

d4x εabcd ε
µνρσ ϕ ∗

(
a51Fabµν ∗ Fcdρσ + a52 Faµν ∗ Fbcdρσ + a53 Fµν ∗ Fabcdρσ

)
+∫

d4x εabcd ε
µνρσ ϕ ∗

(
a54Fabµνe ∗ Fecdρσ + a55Faµνe ∗ Febcdρσ + a56Fabµνef ∗ Fefcdρσ

)
(3.9)

Before studying the Moyal deformations given by the action (3.9) one needs
to establish the dictionary among the different Clifford Cl(3, 1) gauge field com-
ponents and the fields of conformal gravity. From eqs-(2.2,2.4) one can infer the
following correspondence

Aabµ ↔ ωabµ , Aaµ ↔ eaµ, Aabcµ ↔ faµ , Aabcdµ ↔ bµ, Aµ ↔ aµ (3.10)

Let us look at the first order Θ-corrections to the components of F abµν given by
eq-(2.6e) upon using eq-(3.6) and the equations in the Appendix

(1)Fabµν = Fabµν + Θαβ ∂αAabeµ ∂βAνe − Θαβ ∂αAabefµ ∂βAνef (3.11)

Repeating this procedure with the other field strength components in eqs-
(2.6a-2.6d) yields the first order Θ-corrections

(1)Fµν = Fµν + 2 Θαβ ∂αAeµ ∂βAνe −

12



2 Θαβ ∂αAefµ ∂βAνef − 2 Θαβ ∂αAefgµ ∂βAνefg +

2 Θαβ ∂αAefghµ ∂βAνefgh (3.12)

(1)Faµν = Faµν − 2 Θαβ ∂αAaefµ ∂βAνef (3.13)

(1)Fabcµν = Fabcµν + 2 Θαβ ∂αAabµ ∂βAcν −
1

2
Θαβ ∂αAabefµ ∂βAcνef (3.14)

(1)Fabcdµν = Fabcdµν + 2 Θαβ ∂αAabµ ∂βAcdν +
1

2
Θαβ ∂αAabeµ ∂βAcdνe −

1

4
Θαβ ∂αAabefµ ∂βAcdνef (3.15)

We have indicated in the previous equations (3.11-3.15) that one has a first
order correction by attaching explicitly a superscript (1) to the field strength
expressions in the left hand side. The expressions for the components of FAµν
in the right hand side are obtained explicitly from eqs-(2.6a-2.6e ) by replacing
the commutative gauge fields AAµ for the noncommutative ones AAµ .

Having written the above expressions (3.11-3.15) for the noncommutative
field strengths in terms of the noncommutative gauge fields AAµ it remains to

write the latter noncommutative fields in terms of the commutative fields AAµ via
the Seiberg-Witten map procedure. A lengthy procedure (see [22], [23]) yields
the following expression for the noncommutative field strengths Fµν in terms of
the commutative fields, after ommiting the Clifford-valued internal indices for
simplicity since Fµν ≡ FAµνΓA, Fµν ≡ FAµνΓA, Aµ ≡ AAµΓA,

Fµν = Fµν +
1

2
Θαβ{Fµα, Fνβ} −

1

4
Θαβ{Aα, (∂β +Dβ)Fµν}+ · · · (3.16)

where the covariant derivative is defined in the adjoint representation

DσFµν = ∂σFµν − i [Aσ, Fµν ]. (3.17)

Similarily, the Seiberg-Witten map allows to express the noncommutative
scalar fields components present in the Clifford-valued field Φ̂ in terms of the
commutative scalar fields components present in the Clifford-valued field Φ

Φ̂ = Φ − 1

4
Θαβ {Aα, (∂β +Dβ)Φ} + . . . (3.18)

see [22] for the case of a SO(2, 3)-valued scalar field.
All that rests now is to evaluate the individual components of Fµν ≡ FAµνΓA

in the left hand side of (3.16) after performing the geometric products of the
Clifford algebra generators appearing in the right hand side of (3.16) due to the
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decomposition of Fµν ≡ FAµνΓA, Aµ ≡ AAµΓA. A similar procedure is performed
in eq-(3.18).

We shall focus for now on the contribution up to first order in the Θ-terms
to the Clifford bivector components Fabµνγab

(1)Fabµν = F abµν +
1

2
Θαβ

(
F abcµα Fνβc − F abcdµα Fνβcd

)
+

1

2
Θαβ

(
Fµαc F

cab
νβ − Fµαcd F

cdab
νβ

)
+ . . . (3.19)

The extra terms in (3.19) are of the form Θ(A∂F +AAF ). For example

−1

4
Θαβ

(
Aabcα ∂βFµνc − Aabcdα ∂βFµνcd

)
− 1

4
Θαβ Aabcα Aβcd F

d
µν (3.20)

A similar procedure yields the expression for the noncommutative scalar field
φ̂abcd = εabcdϕ̂ in terms of the commutative scalar and gauge fields.

The higher order corrections in Θ are obtained from the higher order terms
in the definition of the Moyal star products and in those terms generated by the
Seiberg-Witten map. Comparing our results, based on the Moyal deformations
provided by eq-(3.9), with the results of others we should emphasize that the
authors [23] had for their starting U(2, 2) invariant Lagrangian only the two
terms (omitting numerical factors)

L = εabcd
(
F ab ∧ F cd + F ∧ F abcd

)
(3.21)

instead of the six terms present in eq-(2.18). Secondly, they imposed by hand
several constraints on the fields such that Fµν = F aµν = F abcµν = F abcdµν = 0. And
thirdly, they set ϕ = constant.

Whereas the authors [22] used the Seiberg-Witten map procedure to con-
struct a model of noncommutative gravity based on the gauge theory of SO(2, 3)
defined over a noncommutative spacetime characterized by Θµν = constants.
The starting Lagrangian in [22] was chosen to be

L = εabcd ϕ F ab ∧ F cd (3.22)

They found a cancellation of the Θ-terms to first order and which agrees with
the results obtained by the authors [23] (for the group U(2, 2)) when one has a
canonical noncommutativity. It appears that the cancellation of the first order
terms in Θµν might be model-independent.

Let us examine carefully the Moyal deformation of the eq-(2.16) after one
inserts the explicit expressions for the noncommutative fields inside the integral∫

d4x εµνρσ < Φ̂ ∗ Fµν ∗ Fρσ > (3.23)

the Θ-terms up to first order in the integrand will be

Φ (Fµν ∗ Fρσ)(1) + Φ̂(1) (Fµν Fρσ) +
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i

2
Θαβ ∂αΦ ∂β(Fµν Fρσ) (3.24)

The last term is a total derivative after an integration by parts due to the
condition Θαβ∂α∂β(...) = 0. Hence the last term decouples (it can be dropped
if the fields vanish fast enough at infinity or there are no boundaries). This is
to be expected if one does not wish to introduce imaginary terms to the Moyal
deformed action. The hats represent the noncommuative scalars and Φ̂(1) is
the first order contribution in Θ to the noncommutative scalar field. Φ is the
Clifford-valued scalar field with commutative components.

The first two terms of eq-(3.24) gives

−Θαβ

4
< {Aα, (∂β +Dβ) Fµν} Fρσ Φ > εµνρσ −

−Θαβ

4
< Fµν Fρσ {Aα, (∂β +Dβ) } Φ > εµνρσ +

Θαβ

2
< {Fαµ, Fβν} Fρσ Φ > εµνρσ + . . . (3.25)

The terms that one must extract the Clifford scalar part < ... > are of the form

Θαβ < {Fαµ, Fβν} Fρσ Φ > εµνρσ (3.26)

Θαβ < Fµν { Fαρ, Fβσ } Φ > εµνρσ (3.27)

Θαβ < Fµν Fρσ { Fαβ , Φ } > εµνρσ (3.28)

Θαβ < Fµν Fρσ { Aα, (∂β +Dβ) Φ } > εµνρσ (3.29)

Θαβ < Fµν {Aα, (∂β +Dβ) Fρσ} Φ > εµνρσ +

Θαβ < {Aα, (∂β +Dβ) Fµν} Fρσ Φ > εµνρσ (3.30)

i

2
Θαβ < (∂αFµν) (∂βFρσ) Φ > (3.31)

To simplify the calculations let us truncate all the components of the field
Φ = ΦAΓA to zero except Φmnpq 6= 0, and all the components of AAµΓA to zero

except Aabµ 6= 0. In this case one will have in explicit components form for the
term in eq-(3.28) the following

Θαβ < F abµν γab F
cd
ρσ γcd {F rsαβ γrs, φmnpq γmnpq} > εµνρσ (3.32)

Recurring to the expressions displayed in the Appendix allow us to extract
the Clifford scalar part < ... > of the geometric products of the Clifford Cl(3, 1)
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algebra generators in eq-(3.32). After some straightforward but lengthy algebra
it yields (up to a numerical factor)

Θαβ ηac F
ap
µν F

cq
ρσ F

mn
αβ φmnpq ε

µνρσ = 0 (3.33)

The reason this last expression eq-(3.33) is vanishing is due to the contrac-
tion structure of the tangent space indices and the antisymmetry of all the
terms of eq-(3.33) under the exchange of indices with the exception of the (flat)
tangent space metric ηac = ηca.

Following the same procedure with eq-(3.27) and using the same symmetry
(antisymmetry) argument in the contraction of indices gives for the Clifford
scalar part

Θαβ ηac F
ap
αρ F

cq
βσ F

mn
µν φmnpq ε

µνρσ = 0 (3.34)

identical vanishing results occur with eq-(3.29)

Θαβ ηac F
ap
µν F

cq
ρσ A

mn
α (∂β +Dβ)φmnpq ε

µνρσ = 0 (3.35)

and with eq-(3.26).
The explicitly gauge noncovariant eq-(3.30) yields

Θαβ ηac φmnpq F
am
µν Acnα (∂β +Dβ)F pqρσ ε

µνρσ −

Θαβ ηca φmnpq F
cq
ρσ A

an
α (∂β +Dβ)Fmpµν εµνρσ = 0 (3.36)

A way to see why eq-(3.36) is zero can be obtained by relabeling the indices
µν ↔ ρσ, q ↔ m, a ↔ c in the second line of eq-(3.36) so that it becomes
identical to the first line and leading to an exact cancellation due to the key
minus sign in eq-(3.36) and antisymmetry F pqρσ = −F qpρσ .

Finally we examine eq-(3.31) giving

i

2
Θαβ (∂αF

mn
µν ) (∂βF

pq
ρσ) φmnpq ε

µνρσ = 0 (3.37)

The reason eq-(3.37) is zero is due to an overall antisymmetry. Relabeling
the indices in eq-(3.37) µν ↔ ρσ, α↔ β,mn↔ pq and due to the antisymmetry
of Θαβ = −Θβα it leads to

i

2
Θαβ (∂αF

mn
µν ) (∂βF

pq
ρσ) φmnpq ε

µνρσ = − i

2
Θαβ (∂βF

pq
ρσ) (∂αF

mn
µν ) φpqmn ε

ρσµν =

− i

2
Θαβ (∂αF

mn
µν ) (∂βF

pq
ρσ) φmnpq ε

µνρσ (3.38)

therefore, if X = −X ⇒ X = 0.
Therefore, the Clifford scalar part of the first order contributions in the

Θαβ terms of the Moyal-deformed action is vanishing when one truncates all
the components of Φ = ΦAΓA to zero except Φmnpq 6= 0, and all the components
of AAµΓA to zero except Aabµ 6= 0. If one does not impose such truncation, one
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will have to consider the Moyal deformations of all other expressions in eqs-
(2.21-2.25). It is unlikely that there is a cancellation of the Θ-terms up to first
order in this most general case.

For example, let us examine the first order contribution in Θαβ of∫
<
(
Fµν ∗ F abcdρσ ∗ φabcd

)(1)
> εµνρσ (3.39)

One of the terms is

i

2
Θαβ (∂αFµν) (∂βF

abcd
ρσ ) φabcd ε

µνρσ 6= 0 (3.40)

which is clearly nonvanishing and furnishes an imaginary contribution to the
Moyal deformed action. The other imaginary contribution can be dropped be-
cause it yields a total derivative term∫

i

2
Θαβ ∂α(Fµν F

abcd
ρσ ) ∂βφabcd ε

µνρσ =∫
i

2
Θαβ ∂α

(
Fµν F

abcd
ρσ ∂βφabcd

)
εµνρσ (3.41)

after an integration by parts.
One may cancel the contribution in eq-(3.40) by adding to eq-(3.39) the term∫

<
(
F abcdρσ ∗ Fµν ∗ φabcd

)(1)
> εµνρσ (3.42)

which amounts to a trivial symmetrization of the ordering in the products of
the field strengths. Not surprisingly, due to this trivial symmetrization, there
is cancellation due to the antisymmetry of Θαβ .

Eq-(3.40) is gauge covariant because ∂αFµν = DαFµν and ∂βF
abcd
ρσ = DβF

abcd
ρσ

after writing F abcdρσ = εabcdGρσ. Because there are a lot of gauge noncovariant
terms in the expansion in powers of Θ, the authors [24] used the method of
composite fields which enables to write the final results in a manifestly gauge
covariant way. Therefore, the final results are manifestly gauge covariant as
they should be.

There are many other terms in eq-(3.39) whose contribution is nonvanishing
and real to first order in Θ, for example

Θαβ F rsαρ Fβσrs F
abcd
µν φabcd ε

µνρσ 6= 0 (3.43)

Θαβ Fµν F
ab
αρ F

cd
βσ φabcd ε

µνρσ 6= 0 (3.44)

due to the fact that now Fµν and F abcdµν are no longer zero. In particular, the
terms of eq-(3.44) clearly form part of the deformed action S(5)∗ in eq-(3.9)
and encoding the Moyal deformations of the MMCW gravitational action with
a cosmological constant given by eq-(2.13) to first order in Θµν . By setting
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φabcd = εabcdϕ and recurring to the decomposition of F abαρ, F
cd
βσ provided in eqs-

(2.11d, 2.13) one will have that eq-(3.44) yields the following Θ corrections to
the vacuum energy density (in the modified action)

ϕ

l4
Θαβ Fµν V

a
α V bρ V cβ V dσ εabcd ε

µνρσ (3.45)

where V aα is the vielbein field. If one identifies ϕ
l2 ∼

1
G = 1

L2
P

and ϕ
l4 = ρvacuum

one can cancel the enormous ρvacuum energy density (when ϕ = 1) if the terms
in eq-(3.45) are of the same order of magnitude, which implies that

ϕ

l4
(
V aµ V bν V cρ V dσ + Θαβ Fµν V

a
α V bρ V cβ V dσ

)
εabcd ε

µνρσ = 0 (3.46)

Setting the magnitude of the constant Θαβ parameters to be of the order of
the Planck scale squared L2

P will fix the values of Fµν in eq-(3-46) that furnish
a cancellation of the huge vacuum energy density. Hence, the second terms in
eq-(3.46) provide in general the x-dependent corrections to the vacuum energy
density (cosmological constant). This result should be contrasted with those in
[22].

One should notice that despite the generators of U(2, 2), SO(4, 2), SO(2, 3)
can be expressed in terms of the Clifford algebra generators this does not imply
that these algebras are isomorphic to the Clifford algebra. Hence one should
not expect identical results as those obtained by other authors.

To sum up, when one does not impose constraints on the fields, there are
first order contributions in the Θµν (constants) parameters in the Moyal defor-
mations of a Clifford gauge theory formulation of gravity in variance with the
previous results obtained by other authors and based on different gauge groups.
This could provide a plausible cancellation mechanism of the huge vacuum en-
ergy density 1/L4

P . The first order contributions in the Θαβ terms of the
Moyal-deformed action is vanishing in the special case when one truncates all
the components of Φ = ΦAΓA to zero except Φmnpq 6= 0, and all the components
of AAµΓA to zero except Aabµ 6= 0.

Similarily, one obtains the Moyal deformations of the action S[Φ] corre-
sponding to the Clifford-valued scalar field Φ. Firstly, there is a modification
of the gauge covariant derivative term (2.28a) due to the noncommutativity of
the pointwise product of fields. Both commutators and anticommutators will
appear in the Moyal deformations of eq-(2.28a) as they did in eq-(3.6). This
will lead to corrections in powers of Θ of the gauge covariant derivative terms.
Secondly, one performs the Moyal star products among all the terms present in
the Clifford-valued scalar field action as it was done in eq-(3.9) after recurring
to eq-(3.18).

APPENDIX

In this Appendix we shall write the (anti) commutator relations for the
Clifford algebra generators and explain how to obtain the numerical coefficients
aij in eqs-(2.16-2.25).
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1

2
{ γa, γb } = gab 1;

1

2
[ γa, γb ] = γab = − γba, a, b = 1, 2, 3, · · · ,m (A.1)

[ γa, γbc ] = 2 gab γc − 2 gac γb, { γa, γbc } = 2 γabc (A.2)

[ γab, γcd ] = − 2 gac γbd + 2 gad γbc − 2 gbd γac + 2 gbc γad (A.3)

In general one has [30]

pq = odd, [γm1m2....mp , γ
n1n2....nq ] = 2 γn1n2....nq

m1m2....mp −
2p!q!

2!(p− 2)!(q − 2)!
δ
[n1n2

[m1m2
γ
n3....nq ]

m3......mp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[n1....n4

[m1....m4
γ
n5....nq ]

m5......mp]
− ............ (A.4)

pq = even, { γm1m2....mp , γ
n1n2....nq } = 2 γn1n2....nq

m1m2....mp −
2p!q!

2!(p− 2)!(q − 2)!
δ
[n1n2

[m1m2
γ
n3....nq ]

m3......mp]
+

2p!q!

4!(p− 4)!(q − 4)!
δ
[n1....n4

[m1....m4
γ
n5....nq ]

m5......mp]
− ............ (A.5)

pq = even, [γm1m2....mp , γ
n1n2....nq ] =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[n1

[m1
γ
n2....nq ]

m2....mp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[n1n2n3

[m1m2m3
γ
n4....nq ]

m4......mp]
+ ....... (A.6)

pq = odd, { γm1m2....mp , γ
n1n2....nq } =

(−1)p−12p!q!

1!(p− 1)!(q − 1)!
δ
[n1

[m1
γ
n2....nq ]

m2....mp]
−

(−1)p−12p!q!

3!(p− 3)!(q − 3)!
δ
[n1n2n3

[m1m2m3
γ
n4....nq ]

m4......mp]
+ ....... (A.7)

The generalized Kronecker delta is defined as the determinant

δa1a2.....akb1b2.....bk
≡ det


δa1b1 . . . . . . δa1bk
δa2b1 . . . . . . δa2bk

−−−−−−−−−−− −−−−−−−−−−−−−−
δakb1 . . . . . . δakbk


(A.8)
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These equations are all that is need to evaluate the numerical coefficients of
the action provided by eqs-(2.16-2.26). For instance if one wishes to extract the
scalar part of the Clifford geometric product of < γmnpγrstγuv >, all one needs
is to extract the bivector part of the product

γmnp γ
rst =

1

2
[γmnp, γ

rst] +
1

2
{γmnp, γrst} =

1

2
( 2 γ rst

mnp − 36 δ
[rs

[mn γ t]
p ) +

1

2
( 18 δ

[r
[m γ

st]
np] − 12 δ rst[mnp] ) (A.9)

From eq-(A.9) one learns that its bivector piece is

− 1

2
36 δ

[rs
[mn γ t]

p (A.10)

and whose contraction with γuv will bring up the scalar part as follows

< γpt γuv > = − 4 δ pt[uv] (A.11)

In this fashion one extracts the scalar part of the Clifford triple geometric prod-
uct of generators and obtains the numerical coefficients aij in the action dis-
played by eqs-(2.16-2.26).
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