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Math 20
Chapter 5 Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors

. Definition: A scalar A is called an eigenvalue of the n X n matrix A is there is a nontrivial solution

x of Ax = Ax. Such an x is called an eigenvector corresponding to the eigenvalue .

What does this mean geometrically? Suppose that A is the standard matrix for a linear transformation
T :R"™ — R". Then if Ax = \x, it follows that T'(x) = Ax. This means that if x is an eigenvector of
A, then the image of x under the transformation T is a scalar multiple of x — and the scalar involved
is the corresponding eigenvalue A. In other words, the image of x is parallel to x.

Note that an eigenvector cannot be 0, but an eigenvalue can be 0.

Suppose that 0 is an eigenvalue of A. What does that say about A? There must be some nontrivial
vector x for which
Ax=0x=0

which implies that A is not invertible which implies a whole lot of things given our Invertible Matrix
Theorem.

Invertible Matrix Theorem Again: The n x n matrix A is invertible if and only if 0 is not an
eigenvalue of A.

Definition: The eigenspace of the n x n matrix A corresponding to the eigenvalue \ of A is the set of
all eigenvectors of A corresponding to A.

We’re not used to analyzing equations like Ax = Ax where the unknown vector x appears on both
sides of the equation. Let’s find an equivalent equation in standard form.

Ax = \x
Ax—Xx =0
Ax —AIx=0
(A=X)x=0

Thus x is an eigenvector of A corresponding to the eigenvalue A if and only if x and A satisfy (A—\I)x =
0.

It follows that the eigenspace of A is the null space of the matrix A — Al and hence is a subspace of
R™.

Later in Chapter 5, we will find out that it is useful to find a set of linearly independent eigenvectors
for a given matrix. The following theorem provides one way of doing so. See page 307 for a proof of
this theorem.

Theorem 2: If vy, ..., v, are eigenvectors that correspond to distinct eigenvalues A1, ..., A, of an
n X n matrix A, then the set {vy,...,v,} is linearly independent.



Determinants

. Recall that if A is an eigenvalue of the n x n matrix A, then there is a nontrivial solution x to the
equation
Ax = \x

or, equivalently, to the equation
(A= X)x=0.

(We call this nontrivial solution x an eigenvector corresponding to A.)

. Note that this second equation has a nontrivial solution if and only if the matrix A— Al is not invertible.
Why? If the matrix is not invertible, then it does not have a pivot position in each column (by the
Invertible Matrix Theorem) which implies that the homogeneous system has at least one free variable
which implies that the homogeneous system has a nontrivial solution. Conversely, if the matrix is
invertible, then the only solution is the trivial solution.

. To find the eigenvalues of A we need a condition on A that is equivalent to the equation (A—Al)x =0
having a nontrivial solution. This is where determinants come in.

. We skipped Chapter 3, which is all about determinants, so here’s a recap of just what we need to know
about them.

. Formula: The determinant of the 2 x 2 matrix A = Z Z is
detA = ad — be.

a1l a2 a13
. Formula: The determinant of the 3 x 3 matrix A =|as1 a22 as3| is

azip asz ass

detA = ai1a92a33 + a12a23a31 + G13a21a32

— (31022013 — 32023011 — 433021012
See page 191 for a useful way of remembering this formula.
. Theorem: The determinant of an n x n matrix A is 0 if and only if the matrix A is not invertible.

. That’s usefull We're looking for values of A for which the equation (A — AI)x = 0 has a nontrivial
solution. This happens if and only if the matrix A — Al is not invertible. This happens if and only if
the determinant of A — Al is 0. This leads us to the characteristic equation of A.

The Characteristic Equation

. Theorem: A scalar )\ is an eigenvalue of an n x n matrix A if and only if X satisfies the characteristic
equation
det(A — M) =0.

. It can be shown that if A is an n x n matrix, then det(A — AI) is a polynomial in the variable A of
degree n. We call this polynomial the characteristic polynomial of A.



3 6 -8

. Example: Consider the matrix A =|{0 0 6 |. To find the eigenvalues of A, we must compute
0 0 2

det(A — M), set this expression equal to 0, and solve for A. Note that

3 6 -8 A0 0 3—X 6 -8
A-X[=10 0 6| —|0 X 0= 0 -A 6
0 0 2 0 0 A 0 0 2—-2A

Since this is a 3 X 3 matrix, we can use the formula given above to find its determinant.

det(A —AI) = (3= A)(=A)(2 = A) + (6)(6)(0) + (—8)(0)(0)
= (0)(=A)(=8) = (0)(6)(3 = A) — (=A)(0)(6)
= AB-N2-N)

Setting this equal to 0 and solving for A\, we get that A = 0, 2, or 3. These are the three eigenvalues of
A.

. Note that A is a triangular matrix. (A triangular matrix has the property that either all of its entries
below the main diagonal are 0 or all of its entries above the main diagonal are 0.) It turned out that
the eigenvalues of A were the entries on the main diagonal of A. This is true for any triangular matriz,
but is generally not true for matrices that are not triangular.

. Theorem 1: The eigenvalues of a triangular matrix are the entries on its main diagonal.

. In the above example, the characteristic polynomial turned out to be —A(A — 3)(\ — 2). Each of the
factors A\, A — 3, and A — 2 appeared precisely once in this factorization. Suppose the characteristic
function had turned out to be —A(\ —3)2. In this case, the factor A — 3 would appear twice and so we
would say that the corresponding eigenvalue, 3, has multiplicity 2.

. Definition: In general, the multiplicity of an eigenvalue ¢ is the number of times the factor A — £
appears in the characteristic polynomial.

Finding Eigenvectors

3 6 -8

. Example (Continued): Let us now find the eigenvectors of the matrix A ={0 0 6 |. We have
0 0 2

to take each of its three eigenvalues 0, 2, and 3 in turn.

. To find the eigenvectors corresponding to the eigenvalue 0, we need to solve the equation (A—AI)x =0
where A = 0. That is, we need to solve

(A-X)x=0
(A-0)x=0
Ax =0

3 6 =8
0 0 6|x=0

0 0 2

Row reducing the augmented matrix, we find that
X1 -2
X= |22 =22 | 1

I3 0



This tells us that the eigenvectors corresponding to the eigenvalue 0 are precisely the set of scalar

-2
multiples of the vector | 1 |. In other words, the eigenspace corresponding to the eigenvalue 0 is
0
-2
Span 1
0

. To find the eigenvectors corresponding to the eigenvalue 2, we need to solve the equation (A—AI)x =0
where A = 2. That is, we need to solve

(A-—X)x=0
(A-2D)x=0
3 6 =8 2 0 0
00 6|—-1]0 2 0f]x=0
0 0 2 0 0 2
1 6 -8
0 -2 6 |x=0
0o 0 O
Row reducing the augmented matrix, we find that
X1 —10
X= |z =23 | 3
I3 1

This tells us that the eigenvectors corresponding to the eigenvalue 2 are precisely the set of scalar

-10
multiples of the vector | 3 |. In other words, the eigenspace corresponding to the eigenvalue 2 is
1
-10
Span 3
1

. I'll let you find the eigenvectors corresponding to the eigenvalue 3.

Similar Matrices

. Definition: The n x n matrices A and B are said to be similar if there is an invertible n x n matrix
P such that A = PBP!.

. Similar matrices have at least one useful property, as seen in the following theorem. See page 315 for
a proof of this theorem.

. Theorem 4: If n X n matrices are similar, then they have the same characteristic polynomial and
hence the same eigenvalues (with the same multiplicities).

. Note that if the n x n matrices A and B are row equivalent, then they are not necessarily similar. For a

simple counterexample, consider the row equivalent matrices A = {(2) ﬂ and B = Ll) (1)] . If these two

matrices were similar, then there would exist an invertible matrix P such that A = PBP~!. Since B
is the identity matrix, this means that A = PIP~* = PP~ = I. Since A is not the identity matrix,
we have a contradiction, and so A and B cannot be similar.



5. We can also use Theorem 4 to show that row equivalent matrices are not necessarily similar: Similar
matrices have the same eigenvalues but row equivalent matrices often do not have the same eigenvalues.
(Imagine scaling a row of a triangular matrix. This would change one of the matrix’s diagonal entries
which changes its eigenvalues. Thus we would get a row equivalent matrix with different eigenvalues,
so the two matrices could not be similar by Theorem 4.)

Diagonalization

1. Definition: A square matrix A is said to be diagonalizable if it is similar to a diagonal matrix. In
other words, a diagonal matrix A has the property that there exists an invertible matrix P and a
diagonal matrix D such that A = PDP~.

2. Why is this useful? Suppose you wanted to find A%, If A is diagonalizable, then
A% = (PDP1)? = (PDP Y (PDP ') (PDP™ 1)
= pPpP'PDP-'PDP!
= PD(PP YYDPP HDP!
= PDDDP™!
=pPD3P~L.
In general, if A = PDP~!, then A* = PD*FpP~1.

3. Why is this useful? Because powers of diagonal matrices are relatively easy to compute. For example,

7 0 0
if D=0 -2 O0f, then
0 0 3
73 0 0
D*=10 (=2 0
0 o 3

This means that finding A* involves only two matrix multiplications instead of the k matrix multipli-
cations that would be necessary to multiply A by itself k£ times.

4. Tt turns out that an n X n matrix is diagonalizable if and only it has n linearly independent eigenvectors.
That’s what the following theorem says. See page 321 for a proof of this theorem.

5. Theorem 5 (The Diagonalization Theorem):

(a) An n x n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

(b) If v, va, ..., v, are linearly independent eigenvectors of A and A1, Ag, ..., A\, are their corre-
sponding eigenvalues, then A = PDP~!, where

P = [vl vn}
and
A O 0
0 Ao 0
D =
0 0 An

(c) If A= PDP~! and D is a diagonal matrix, then the columns of P must be linearly independent
eigenvectors of A and the diagonal entries of D must be their corresponding eigenvalues.



6. What can we make of this theorem? If we can find n linearly independent eigenvectors for an n x n
matrix A, then we know the matrix is diagonalizable. Furthermore, we can use those eigenvectors and
their corresponding eigenvalues to find the invertible matrix P and diagonal matrix D necessary to
show that A is diagonalizable.

7. Theorem 4 told us that similar matrices have the same eigenvalues (with the same multiplicities). So
if A is similar to a diagonal matrix D (that is, if A is diagonalizable), then the eigenvalues of D must
be the eigenvalues of A. Since D is a diagonal matrix (and hence triangular), the eigenvalues of D
must lie on its main diagonal. Since these are the eigenvalues of A as well, the eigenvalues of A must
be the entries on the main diagonal of D. This confirms that the choice of D given in the theorem
makes sense.

8. See your class notes or Example 3 on page 321 for examples of the Diagonalization Theorem in action.



