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A Fast TVL1-L2 Minimization Algorithm for
Signal Reconstruction from Partial Fourier Data

Junfeng Yang, Yin Zhang, and Wotao Yin

Abstract—Recent compressive sensing results show that it is
possible to accurately reconstruct certain compressible signals
from relatively few linear measurements via solving nonsmooth
convex optimization problems. In this paper, we propose a
simple and fast algorithm for signal reconstruction from partial
Fourier data. The algorithm minimizes the sum of three terms
corresponding to total variation, `1-norm regularization and least
squares data fitting. It uses an alternating minimization scheme in
which the main computation involves shrinkage and fast Fourier
transforms (FFTs), or alternatively discrete cosine transforms
(DCTs) when available data are in the DCT domain. We analyze
the convergence properties of this algorithm, and compare its
numerical performance with two recently proposed algorithms.
Our numerical simulations on recovering magnetic resonance
images (MRI) indicate that the proposed algorithm is highly
efficient, stable and robust.

Index Terms—compressive sensing, compressed sensing, MRI,
MRI reconstruction, fast Fourier transform, discrete cosine
transform.

I. INTRODUCTION

LEt ū ∈ RN be an unknown signal. Following the standard
treatment, we will vectorize two-dimensional images or

higher dimensional data into one-dimensional vectors. In most
cases, the number of salient features hidden in a signal
is much less than its resolution, which means that ū is
usually sparse or compressible under a suitable basis. Let
Ψ = [ψ1, ψ2, . . . , ψN ] ∈ CN×N be an orthogonal basis of
CN . Then there exists an unique x̄ ∈ CN such that

ū =
N∑

i=1

ψix̄i = Ψx̄. (1)

We say that ū is K-sparse under Ψ if ‖x̄‖0, the number of
nonzeros in x̄, is K, and that ū is compressible if x̄ has only
a few large (in magnitude) components. The case of interest
is when K ¿ N or ū is highly compressible.

Traditional data acquisition and reconstruction from fre-
quency data follow the basic principle of the Nyquist den-
sity sampling theory, which states that the sample rate for
faithful reconstruction is at least two times of the frequency
bandwidth. In many applications, such as digital images and
video cameras, the Nyquist sampling rate is so high that
signal compression becomes necessary prior to storage and
transmission. For example, in transform coding only the K
(usually K ¿ N ) dominant components of x̄ determined by
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(1) are saved while the rest are computed and then thrown
away. The idea of compressive sensing (CS) goes against
conventional wisdoms in data acquisition. In CS, a sparse or
compressible signal is reconstructed from a small number of its
projections onto certain subspace. Let M be an integer satisfies
K < M ¿ N and Φ ∈ CM×N be a general nonadaptive
sensing matrix. Instead of acquiring ū, CS first obtains

b = Φū = Ax̄ ∈ CM , A = ΦΨ, (2)

and then reconstructs x̄ (and thus ū by (1)) from the much
shorter projection vector b via some reconstruction algorithms.
Here nonadaptiveness means that Φ is fixed and does not
depend on ū. Basic CS theory justifies that it is extremely
probable to reconstruct x̄ accurately or even exactly from
b as long as x̄ is sparse or compressible and A possesses
certain nice attributes. To make CS practical, one needs to
design a good sensing matrix A (encoder), which ensures that
b contains enough information as x̄ does, and an efficient
reconstruction algorithm (decoder), which recovers x̄ from b.

A. Encoders and decoders

For encoders, recent results indicate that stable recon-
struction for both K-sparse and compressible signals can
be ensured by restricted isometry property (RIP) [7], [6]. It
has become clear that for a sparse or compressible x̄ to be
reconstructed from b, it is sufficient if A satisfies the RIP of
certain degrees. While verifying the RIP is a difficult task,
authors of [6], [12] showed that this property holds with high
probability for random matrices, e.g., matrix with independent
and identical distributed (iid) Gaussian entries. For orthogonal
Ψ, moreover, A = ΦΨ will have the desired RIP attribute if
Φ is iid Gaussian matrix. For other distributions which lead
to RIP, see e.g., [1]. It is pointed out in [23] that for “almost
all” random sensing matrices the recoverability of getting x̄
from b is asymptotically identical. Aside from random sensing
matrices, exact reconstruction is also attainable when A is
a random partial Fourier matrix [6], which has important
applications in magnetic resonance imaging (MRI) and will
be the focus of this paper.

Being underdetermined, equation (2) usually has infinitely
many solutions. If we know in advance that b is acquired from
a highly sparse signal, a reasonable approach would be seeking
the sparsest one among all solutions of (2), i.e.,

min
x
{‖x‖0 : Ax = b}. (3)

Decoder (3) is able to recover a K-sparse signal exactly with
overwhelming probability using only K + 1 iid Gaussian
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measurements [2]. Unfortunately, this `0 decoder is generally
NP-hard and impractical in computation for almost all real
problems. A common substitute for (3) is the well known basis
pursuit problem [10]:

min
x
{‖x‖1 : Ax = b}, (4)

It has been shown that, under some desirable conditions, with
high probability problems (3) and (4) share common solutions
(see, for example, [13]). For `1 decoder (4), the number of
measurements sufficient for exact reconstruction of a K-sparse
signal is O(K log(N/K)) when A is iid Gaussian matrix [8]
and O(K log N) when A is random partial Fourier matrix
(as in MRI) [6], both of which are, though larger than K,
much smaller than N . Moreover, (4) is easily transformed to
a linear program and thus can be solved efficiently at least in
theory. Therefore, decoder (4) is both sparsity promoting and
computationally tractable, establishing the theoretical sound-
ness of decoding model (4). When x̄ is compressible but not
sparse, or when measurements are contaminated with noise, an
appropriate relaxation to Ax = b is desirable. For example, an
appropriate relaxation under Gaussian noise is given by

min
x
{‖x‖1 : ‖Ax− b‖2 ≤ σ}, (5)

where σ > 0 is related to the noise level. There exist stability
results saying that the `2 distance between x̄ and the solution
of (5) is no more than O(σ + K−1/2‖x̄ − x̄(K)‖1), where
x̄(K) keeps the K dominant components in x̄ and zero filling
the rest, see [5] for example. A related problem to (5) is

min
x
‖x‖1 + λ‖Ax− b‖22, (6)

where λ > 0. From optimization theory, problems (5) and
(6) are equivalent in the sense that solving one of the two
will determine the parameter in the other such that both give
the same solution. Aside from `1 related decoders, there exist
other reconstruction techniques including the class of greedy
algorithms; see [19] for example.

B. Compressible image reconstruction via a TVL1-L2 model

Hereafter, we assume that ū is a two-dimensional grayscale
digital image with N pixels, and its partial frequency obser-
vation is given by

fp = PT ū + ω, (7)

where T ∈ CN×N represents a specific transform matrix,
P ∈ Rp×N is a selection matrix containing p rows of the iden-
tity matrix of order N , and ω ∈ Cp represents random noise. In
CS, PT serves as a sensing matrix. Model (7) characterizes
the nature of a number of data acquisition systems. In the
application of MRI reconstruction, data collected by an MR
scanner are, roughly speaking, in the frequency domain (called
k-space) rather than the spatial domain. Traditionally, MRI
acquisition includes two key stages: k-space data acquisition
and analysis. During the first stage, energy from a radio
frequency pulse is directed to a small section of the targeted
anatomy at a time. As a result, the protons within that area
are forced to spin in a certain frequency and get aligned to the

direction of the magnet. Upon stopping the radio frequency,
the physical system gets back to its normal state and releases
energy that is then recorded for analysis. This recorded data
consists of one or more entries of PT ū. This process is
repeated until enough data is collected for reconstructing a
high quality image in the second stage. For more details
about how MRI system works as related to CS, see [16] and
references therein. Unfortunately, this data acquisition process
is quite time consuming due to physiological and hardware
constraints. Meanwhile, patients have to endure long scanning
sessions while their bodies are restrained in order to reduce
motion artifacts. All these facts hint at the importance of
reducing scan time, which means collecting less data, without
sacrificing image quality.

In the rest of this paper, we will concentrate on the case of
partial Fourier data, i.e., in (7) T = F is a two-dimensional
discrete Fourier transform matrix. We will propose and study
a new algorithm for reconstructing an image ū from a subset
of of its Fourier coefficients, though our results will equally
apply to other partial spectral data, such as DCT, under proper
boundary conditions.

We consider reconstructing ū from fp via the CS method-
ology. Let Fp = PF and

θ(u, fp) = (1/2) · ‖Fpu− fp‖22.
In our approach, ū is reconstructed as the solution of the
following TVL1-L2 model

min
u

∑

i

‖Diu‖2 + τ
∑

i

|ψ>i u|+ λθ(u, fp), (8)

where
∑

i is taken over all pixels,
∑

i ‖Diu‖2 is a discretiza-
tion of the total variation (TV) of u,

∑
i |ψ>i u| is the `1 norm

of the representation of u under Ψ, and τ, λ > 0 are scalars
to balance regularization and data fidelity.

Since MR images commonly possess a blocky structure,
the use of TV in regularization exploits image sparsity and
preserves edges. In addition, it is known that MR images
usually have sparse representations under certain wavelet bases
[16]. Therefore, we will choose the sparsity promoting basis
Ψ as a wavelet basis.

Model (8) was studied in [4], [15], [16], [17] and reported
to reconstruct high quality MR images from a small number of
Fourier coefficients [17]. Our main contribution in this paper
is a very simple and fast algorithm for solving model (8).

C. Notation

Let the superscript > denote the transpose (conjugate trans-
pose) operator for real (complex) matrices or vectors. For vec-
tors vi and matrices Ai, i = 1, 2, we let (v1; v2) = (v>1 , v>2 )>

and (A1;A2) = (A>1 , A>2 )>. For any i, Di in (8) is a 2-
by-N matrix such that the two entries in Diu represent the
horizontal and vertical local finite differences of u at pixel i
whereas Di near the boundary are defined to be compatible
with T (more information will be given in Section II). The
horizontal and vertical global finite difference operators are
denoted by D(1), D(2) ∈ RN×N so that the ith row of D(j)

is identical to the jth row of Di, j = 1, 2. In the rest of this
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paper, we let ‖ · ‖ = ‖ · ‖2 and let ρ(·) be the spectral radius
of its argument.

D. Organization

The paper is organized as follows. In Section II, the main
algorithm is presented followed by a study of optimality
conditions of (8). Section III focuses on the algorithm’s con-
vergence. Numerical results are given in Section IV, where our
algorithm is compared to TwIST [3] and an operator splitting
based algorithm [17]. Finally, some conclusion remarks are
given in Section V.

II. BASIC ALGORITHM AND OPTIMALITY

The main difficulty in solving (8) is caused by the non-
differentiability of its first and second terms. Our approach
is to approximate them by using the classic quadratic penalty
technique in optimization, which dates back to Courant’s work
[11] in 1943. This approach can also be viewed as applying the
half-quadratic technique [14] to an appropriate approximation
of (8); see [21].

A. An alternating algorithm

We introduce auxiliary variables w = [w1; . . . ;wN ], where
each wi ∈ R2, and z ∈ RN . Clearly, (8) is equivalent to

min
w,z,u

∑

i

‖wi‖+ τ
∑

i

|zi|+ λθ(u, fp) (9)

s.t. wi = Diu, zi = ψ>i u, ∀i.
To relax the equality constraints and penalize their violations
by quadratic functions, we further introduce

φ1(s, t) = |s|+ (β/2) · |s− t|2, s, t ∈ R
and

φ2(s, t) = ‖s‖+ (β/2) · ‖s− t‖2, s, t ∈ R2

for given β > 0. Problem (9) can then be approximated by

min
∑

i

φ2(wi, Diu) + τ
∑

i

φ1(zi, ψ
>
i u) + λθ(u, fp). (10)

For simplicity, we use the same penalty parameter β for both
‖wi − Diu‖2 and |zi − ψ>i u|2 though in practice different
penalty parameters can be used for these terms. In spite of
more decision variables compared to (8), problem (10) is easier
to minimize with respect to w, z, and u each. For a fixed
u, the minimization with respect to w and z can be carried
out in parallel because all wi and zi are separated from one
another in (10). Based on these observations, it is easy to
apply alternating minimization to (10) as follows. First, for a
fixed u, the minimizer zi is obtained by the one-dimensional
shrinkage:

zi = s1(ψ>i u), ∀i, (11)

where s1(t) minimizes φ1(s, t) for a fixed t, given by

s1(t) , max {|t| − 1/β, 0} · sgn(t), t ∈ R, (12)

and the minimizer wi is given by the two-dimensional shrink-
age [20]:

wi = s2(Diu), ∀i, (13)

where s2(t) minimizes φ2(s, t) for a fixed t, given by

s2 (t) , max {‖t‖ − 1/β, 0} · t/‖t‖, t ∈ R2, (14)

where 0 · (0/0) = 0 is assumed. The computational costs for
(11) and (13) are linear in terms of N . Secondly, for fixed w
and z, the minimization of (10) with respect to u becomes the
least squares problem

min
u

∑

i

(‖wi −Diu‖2 + τ |zi − ψ>i u|2) + 2ηθ(u, fp), (15)

where η = λ/β. Let wj , (w1(j); . . . ;wN (j)), j = 1, 2.
From the definitions of D(1) and D(2), it follows∑

i

‖wi −Diu‖2 = ‖w1 −D(1)u‖2 + ‖w2 −D(2)u‖2.

Because of the orthogonality of Ψ, the normal equations of
(15) can be written as

Lu = r, (16)

where

L = (D(1))>D(1) + (D(2))>D(2) + τI + ηF>p Fp

and

r = (D(1))>w1 + (D(2))>w2 + τΨz + ηF>p fp.

Since D(1) and D(2) are finite difference operators, under the
periodic boundary conditions for u, they are circulant matrices
and can be diagonalized by the Fourier transform F . It is worth
pointing out that if T is a discrete cosine transform, the same
result holds under the symmetric boundary conditions. Let
D̂(j) = FD(j)F>, which is diagonal, j = 1, 2. Multiplying
F on both sides of (16), we obtain

L̂F(u) = r̂, (17)

where

L̂ = (D̂(1))>D̂(1) + (D̂(2))>D̂(2) + τI + ηP>P

is a diagonal matrix noting that P>P is diagonal, and

r̂ = (D̂(1))>F(w1) + (D̂(2))>F(w2) + τF(Ψz) + ηP>fp.

Therefore, solving (17) is straightforward, which means that
(16) can be easily solved for given w1, w2, and z as follows.
First, apply FFTs to w1, w2 and Ψz. Second, solve (17) to get
F(u) where it is assumed that the constants D̂(1) and D̂(2)

are precalculated. Finally, apply the inverse FFT to F(u) to
obtain the solution u to (16).

Since minimizing the objective function in (10) with respect
to each variable is computationally inexpensive, we propose
the following alternating minimization algorithm:

Algorithm 1: Input P, fp; τ, λ, β > 0. Initialize u = u0.
While “not converged”, Do

1) Given u, compute z and w by (11) and (13).
2) Given z and w, compute u by solving (16).

End Do
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B. Optimality conditions and practical implementation

In order to specify a stopping criterion for Algorithm 1, we
derive optimality conditions for (8) and (10). Let sgn(t) be the
signum function of t ∈ R, and the signum set-valued function
be defined as

SGN(t) =
{ {sgn(t)} t 6= 0,

[-1,1] t = 0,

which is the subdifferential of |t|. For v ∈ RN , we let

SGN(v) =
{
ξ ∈ RN : ξi ∈ SGN(vi),∀i

}
,

which is the subdifferential of ‖v‖1. We need the following
propositions, the proofs of which are elementary and can be
found in [20], [22], for example.

Proposition 1: For any A ∈ Rp×n, it holds that

∂x‖Ax‖ =
{ {A>Ax/‖Ax‖} if Ax 6= 0;{

A>h : ‖h‖ ≤ 1, h ∈ Rp
}

otherwise.

Proposition 2: For any B ∈ Rm×n, it holds that

∂x‖Bx‖1 =
{
B>g : g ∈ SGN(Bx)

}
.

Since the objective function is convex, a triplet (z,w, u)
is a solution of (10) if and only if the subdifferential of
the objective at (z,w, u) contains the origin. In light of
propositions 1 and 2 with A and B being identity matrices
of appropriate sizes, (z,w, u) solves (10) if and only if





wi

‖wi‖ + β(wi −Diu) = 0, i ∈ I1 , {i : wi 6= 0},
‖Diu‖ ≤ 1/β, i ∈ I2 , {i : wi = 0},
sgn(zi) + β(zi − ψ>i u) = 0, i ∈ I3 , {i : zi 6= 0},
|ψ>i u| ≤ 1/β, i ∈ I4 , {i : zi = 0},

D>(Du− w) + τ(u−Ψz) + η∇θ(u, fp) = 0,

where ∇θ(u, fp) , F>p (Fpu − fp), D = (D(1);D(2)), and
w = (w1;w2). Eliminating w and z from the above equations,
we get

∑

i∈I1

D>
i

Diu

‖Diu‖ +
∑

i∈I2

D>
i hi + τ

∑

i∈I3

sgn(ψ>i u)ψi

+ τ
∑

i∈I4

giψi + λ∇θ(u, fp) = 0, (18)

where hi , βDiu satisfies ‖hi‖ ≤ 1 and gi , βψ>i u satisfies
|gi| ≤ 1. Now, we show that (18) is an approximation of the
optimality of (8). Let u∗ be any solution of (8) and define

I∗1 , {i : Diu
∗ 6= 0}, I∗2 , {i : Diu

∗ = 0},

I∗3 , {i : ψ>i u 6= 0}, I∗4 , {i : ψ>i u = 0}.
In light of propositions 1 and 2, there exist {h∗i ∈ R2 : ‖h∗i ‖ ≤
1, i ∈ I∗2} and {g∗i ∈ R : |g∗i | ≤ 1, i ∈ I∗4} such that

∑

i∈I∗1

D>
i

Diu
∗

‖Diu∗‖ +
∑

i∈I∗2

D>
i h∗i + τ

∑

i∈I3

sgn(ψ>i u∗)ψi

+ τ
∑

i∈I4

g∗i ψi + λ∇θ(u∗, fp) = 0. (19)

Equation (18) differs from (19) only in the index sets involved.
As β increases, I1 and I3 will converge to I∗1 and I∗3 ,
respectively.

The stopping criterion of Algorithm 1 is based on the
optimality conditions of (10). Let





r1(i) = (wi/‖wi‖)/β + wi −Diu i ∈ I1,
r2(i) = ‖Diu‖ − 1/β i ∈ I2,
r3(i) = sgn(zi)/β + zi − ψ>i u i ∈ I3,
r4(i) = |ψ>i u| − 1/β i ∈ I4,

and

r5 = D>(Du− w) + τ(u−Ψz) + η∇θ(u, fp).

Define

res1 , max{‖r1(i)‖, i ∈ I1; r2(j), j ∈ I2}
and

res2 , max{|r3(i)|, i ∈ I3; r4(j), j ∈ I4}.
We terminate Algorithm 1 once

Res , max{res1, res2, ‖r5‖∞} ≤ ε (20)

is met, where ε > 0 is a prescribed tolerance.
In a practical implementation of Algorithm 1, we assign β

a small value at the beginning and increase it gradually. For
a fixed β, we apply Algorithm 1 to (10) until condition (20)
with a prescribed accuracy is satisfied. The obtained solution
is then used to warm-start Algorithm 1 corresponding to the
next β. Such a continuation or “path-following” technique is
widely used in the class of penalty methods and also well-
justified by our convergence results in Section III.

We now formally present the default algorithm of this paper
that will be used in our numerical experiments.

Algorithm 2: Input data P, fp, model parameters τ, λ > 0,
and tolerance ε > 0. Initialize β = 25 and u = u0.

While β <= 210, Do
1) Starting from u, solve (10) by Algorithm 1

until (20) is met, and return solution uβ .
2) Update u ← uβ , β ← 2 ∗ β.

End Do

It is certainly possible to both increase β and stop the
inner iterations in a more adaptive way for better performance.
However, we keep our implementation as simple as Algorithm
2 throughout our experiments in this paper. The final value 210

for β is so chosen because, based on empirical evidence, it is
sufficiently large to make (10) a close approximation of (8) in
the sense that a larger β value would not notably increase
the accuracy of solution. The remaining free parameter in
Algorithm 2 is the error tolerance ε used in (20), which will
be specified in Section IV.

III. CONVERGENCE ANALYSIS

It is well-known that the quadratic penalty method applied
to a problem like (9) converges to its solution as the penalty
parameter goes to infinity. In this section, we study the
convergence of Algorithm 1, as well as its rate, for a fixed β.
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We establish global convergence, finite convergence for some
auxiliary variables and q-linear convergence results, which are
stronger than the classic results of penalty methods.

For u, v ∈ RN , we let, for s1, s2 defined in (12) and (14),

S1(u) =




s1(u1)
...

s1(uN )


 and S2(u; v) =




s2(u1; v1)
...

s2(uN ; vN )


 .

Recall that w = (w1;w2). Given uk, z and w are iterated as

zk+1 = S1(Ψ>uk) (21)

and

wk+1 = S2

(
D(1)uk;D(2)uk

)
, (22)

respectively. Let v = (z;w), ξ = ηF>p f ,

H =
(
Ψ>;D(1);D(2)

)
, and M = H>H + ηF>p Fp.

Then the new iterate uk+1 satisfies

Muk+1 = H>vk+1 + ξ. (23)

Let

h(v) =




h(1)(v)
h(2)(v)
h(3)(v)


 =




Ψ>

D(1)

D(2)


 M−1

(
H>v + ξ

)

and

S ◦ h =
(

S1 ◦ h(1)

S2 ◦ (h(2);h(3))

)
.

Then the iteration of Algorithm 1 can be expressed as

vk+1 = S ◦ h(vk) (24)

and

uk+1 = M−1
(
H>vk+1 + ξ

)
. (25)

Since the objective function of (10) is coercive (it goes to
infinity whenever ‖(z;w;u)‖ does), there exists (v∗;u∗) such
that

v∗ = S ◦ h(v∗) (26)

and

u∗ = M−1
(
H>v∗ + ξ

)
. (27)

Lemma 3.1: For any u 6= v, it holds that

‖h(u)− h(v)‖ ≤ ‖u− v‖
with the equality holding if and only if h(u)− h(v) = u− v.

Lemma 3.2: Let v∗ be any fixed point of S ◦ h. For any v,
we have ‖S ◦h(v)−S ◦h(v∗)‖ < ‖v−v∗‖ unless v is a fixed
point of S ◦ h.

Theorem 3.3: The sequence {(zk, wk, uk)} generated by
Algorithm 1 from any starting point (z0, w0, u0) converges
to a solution (z∗, w∗, u∗) of (10).

The proofs of Lemmas 3.1 and 3.2, and Theorem 3.3 are
similar to those in [20] for a slightly different problem and
thus are omitted.

Next we develop a finite convergence property for parts of
the auxiliary variables z and w. Let

gi(v) =

(
h

(2)
i (v)

h
(3)
i (v)

)
∈ R2, ∀i,

where h
(j)
i (v) is the ith component of h(j)(v), j = 2, 3. We

will make use of the following index sets:

L1 =
{

i : |ψ>i u∗| ≡ |h(1)
i (v∗)| < 1/β

}
,

L2 = {i : ‖Diu
∗‖ ≡ ‖gi(v∗)‖ < 1/β} ,

and their complements Ej = {1, . . . , N} \ Lj , j = 1, 2.
Theorem 3.4: The sequence {(zk, wk, uk)} generated by

Algorithm 1 from any starting point (v0, u0) = (z0, w0, u0)
satisfies zk

i = z∗i = 0, ∀ i ∈ L1, and wk
i = w∗

i = 0, ∀ i ∈ L2

for all but finite numbers of iterations that do not exceed
‖v0 − v∗‖2/ω2

1 and ‖v0 − v∗‖2/ω2
2 , respectively, where

ω1 , min
i∈L1

{
1/β − |h(1)

i (v∗)|
}

> 0 (28)

and

ω2 , min
i∈L2

{1/β − ‖gi(v∗)‖} > 0. (29)

Next we present the q-linear convergence of uk and the
remaining components in vk, i.e., those which can remain
nonzero infinitely many iterations. For convenience, we let

L = L1 ∪ (N + L2) ∪ (2N + L2)

and E = {1, . . . , 3N} \ L be the complement of L. Let vL

be the subvector of v with components in L and similarly for
vE . Furthermore, let T = HM−1H> and TEE = [Ti,j ]i,j∈E .

Theorem 3.5: There exists K such that the sequence
{(vk, uk)} generated by Algorithm 1 satisfies

1) ‖vk+1
E − v∗E‖ ≤

√
ρ((T 2)EE)‖vk

E − v∗E‖;
2) ‖uk+1 − u∗‖H>H ≤

√
ρ((T 2)EE)‖uk − u∗‖H>H ;

for all k > K.
The proofs of Theorems 3.4 and 3.5 are given in Appendices

A and B, respectively. Theorem 3.5 states that Algorithm 1
generates a sequence of points that converge q-linearly with
a convergence rate depending on the spectral radius of the
submatrix (T 2)EE rather than that of T 2. From the previous
definitions about the index sets, it is not difficult to argue that
smaller β tends to yield a set E with a smaller cardinality
and thus gives a faster convergence rate according to Theorem
3.5, which justifies the advantages of continuation on β. Since
(T 2)EE is a minor of T 2, from the definition of T , it is obvious
that ρ((T 2)EE) ≤ ρ(T 2) ≤ 1 and ρ(T 2) < 1 whenever τ > 0.

IV. EXPERIMENTAL RESULTS

A. General description

For simplicity, we give Algorithm 2 the name RecPF (recon-
struction form partial Fourier data). In this section, we present
simulation results of MR image reconstruction obtained by
RecPF and two other recently proposed algorithms: a two-step
iterative shrinkage/thresholding algorithm (TwIST) [3] and an
operator splitting based algorithm that we call OS [17], both of
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which have been regarded fast for solving (8). All experiments
were performed under Windows Vista Premium and MATLAB
v7.6 (R2008a) running on a Lenovo laptop with an Intel Core
2 Duo CPU at 1.8 GHz and 2 GB of memory.

We generated our test sets using three images, the Shepp-
Logan phantom image and two brain MR images, with dif-
ferent sampling ratios. In each test, we generated the data
fp in (7) by first rescaling the intensity values of the tested
image to [0, 1] followed by applying a partial FFT and adding
Gaussian noise. To apply a partial FFT, we sampled the Fourier
domain along a number of radial lines (RLs) spread out from
the center; for example, Figure 1 shows 22 radial lines in a
Fourier domain.

Fig. 1. Fourier domain sampling positions with 22 radial lines for test 1.

In all tests, the additive Gaussian noise had a mean zero and
standard deviation 0.01. We tried different starting points for
the three algorithms and found that all of them are insensitive
towards starting points. Therefore, we simply initialized the
starting image u by zero. Table I summarizes the test data, as
well as the values of the parameters λ and τ used in (8).

TABLE I
TEST IMAGES INFORMATION AND MODEL PARAMETER VALUES

Test Image Size RLs Sample Ratio (λ, τ )
1 phantom 256 × 256 22 9.36% (1e2∼1e5, 0)
2 brain-1 256 × 256 44 18.76% (2e3, 1)
3 brain-2 512 × 512 44 9.64% (2e3, 1)

It is important to note that both TwIST and OS can be
applied to problem (8) with Fp being replaced by a general
linear operator A as long as Au and A>u are computable,
but RecPF is limited to the cases where T in (7) must corre-
spond to an orthogonal matrix that can diagonalize the finite
difference operators D(1) and D(2) under suitable boundary
conditions (e.g., T can be a FFT (or DCT) matrix together
with the periodic (or symmetric) boundary conditions imposed
on u).

In addition, both TwIST and OS solve a scaled version of
(8) where the objective function in (8) is scaled by 1/λ. To
keep compatibility, we multiply the objective function by 1/λ
for RecPF. Hence, the objective values presented below for
(λ, τ) were scaled by 1/λ.

B. Comparison with TwIST

In test 1, we compare RecPF with TwIST, which in general
solves

min
u

λ−1Φreg(u) +
1
2
‖Au− b‖2,

where Φreg(·) can be either TV or `1 regularization and A is
a linear operator. The iteration framework of TwIST is

uk+1 = (1− α)uk−1 + (α− δ)uk + δΨλ(ξk),

where α, δ > 0 are parameters, ξk = uk + A>(b−Auk), and

Ψλ(ξk) = arg min
u

λ−1Φreg(u) + (1/2) · ‖u− ξk‖2. (30)

Its latest version, TwIST v1, cannot solve problem (8) with
both the TV and `1 regularization terms. Hence, in order to
compare RecPF with TwIST on the same model, we drop
the `1-term in (8) by setting τ = 0 for RecPF and letting
Φreg =

∑
i ‖Diu‖2 and A = Fp for TwIST. In TwIST v1,

the subproblem (30) is solved iteratively by Chambolle’s algo-
rithm [9]. In comparison, RecPF with the `1 term dropped has
a per-iteration cost of 3 FFTs (including 1 inverse FFT), which
is much lower than solving (30) by Chambolle’s algorithm.
This is one of the main reasons that RecPF runs faster.

We set the stopping parameter ε = 10−3 in (20) for RecPF,
and used the monotonic variant of TwIST in TwIST v1, which
was stopped when the relative change in the objective function
falled below tol = 10−3. In TwIST v1, the parameters α and
δ are determined carefully based on the spectral distribution of
A>A. Under the circumstance, the minimum and maximum
eigenvalues of A>A are obviously 0 and 1, respectively.
Therefore, we assigned a relatively small value 10−3 to the
TwIST parameter lam1 (which determines α and δ), as
recommended by the TwIST v1 documentation.

Table II gives the performance results of RecPF and TwIST
for different values of λ. We also tested TwIST with lam1=
10−4, but do not include the obtained results since they are
similar to those for lam1= 10−3. Table II lists the following
quantities: the error in the reconstructed image relative to the
original image (Err), the final objective function value (Obj),
the number of iterations (Iter), and the CPU time in seconds
(CPU).

TABLE II
RESULTS ON TEST 1.

TwIST RecPF
λ Err Obj Iter CPU Err Obj Iter CPU

1e+2 5.4% 15.15 25 25 8.6% 14.79 180 15
1e+3 4.4% 1.919 106 66 4.5% 1.838 195 16
1e+4 43.4% .4452 10 11 4.8% .2998 187 15
1e+5 43.5% .1368 10 9 4.9% .1359 186 15

We point out that upon termination RecPF returned smaller
objective values than TwIST for both λ = 102 and λ = 103,
though the solutions from TwIST have slightly smaller relative
errors. For λ = 104, TwIST failed to converge with tol =
10−3 and obtained an image with relative error 43.4%. In this
case, if tol is decreased from 10−3 to 10−4 without other
changes, TwIST obtained a solution with relative error 7.1%
but in much longer CPU time (about 280 seconds). For λ =
105, similar phenomena happened except TwIST also failed
with tol = 10−4.

From Table II, it can be seen that RecPF is faster than
TwIST to attain a comparable accuracy. This is primarily be-
cause of the difference in per-iteration costs of the two: TwIST
solves the TV problem (30) using Chambolle’s algorithm (that
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requires its own iteration loop), while RecPF solves (16) at an
approximate cost of 3 FFTs. In terms of the iteration numbers
and CPU time consumed, RecPF is relatively stable as λ varies
while TwIST appears to be sensitive.

The reconstructed images corresponding to λ = 103 appear
to have the best quality, and are given in Figure 2.

Fig. 2. Reconstructed images in test 1. Top left: original image. Top right:
reconstruction by TwIST with λ=1e+3 (Err = 4.42%). Bottom left: recon-
struction by RecPF with λ=1e+3 (Err = 4.48%). Bottom right: reconstructed
by RecPF with λ=1e+10 (Err = 4.89%).

We also tested the two algorithms on data containing less
or no noise and observed similar relative performances. For
example, on noiseless data, both algorithms were able to
converge to solutions with relative errors less than 1% for
λ = 103, but RecPF was faster than TwIST.

In these experiments, we found that TwIST v1 seems to
require careful selections of parameters such as α, δ, λ and
error tolerance tol in order to obtain results comparable to
those of RecPF. This behavior is exemplified by the fact
that TwIST failed for (λ, tol) = (104, 10−3) or (105, 10−4)
by returning solutions with relative errors over 40% (similar
behavior happened for lam1= 10−4 as well), while it did
return a good solution with (λ, tol) = (104, 10−4) at a cost
of more iterations and a longer CPU time. We tested different
stopping criteria provided by TwIST v1 and found that the
above cases apparently were not isolated cases.

In comparison, RecPF is simple and requires little tuning.
As mentioned, the default setting given in Algorithm 2 was
used throughout our tests where only the error tolerance ε
in (20) was varied. Interestingly, the performance of RecPF
appears to be totally insensitive to the values of λ, and it
converges well even with huge λ values. For example, we
tested RecPF with λ = 1010 and obtained an image with
relative error 4.89%, which is depicted at the bottom right
corner in Figure 2. We tested even larger λ and obtained
equally good images. This behavior can be explained by
closely examining the linear system in (17).

Recall that η = λ/β and P is a selection matrix. From the
formulations of L̂ and r̂ below (17) it becomes clear that (i)
the value of λ only affects those Fourier coefficients in F(u)

corresponding to the positions where samples have been taken;
and (ii) as λ gets larger, the entries of F(u) corresponding to
the sampled positions gets closer to fp. In the limit as λ →∞,
solving (17) simply fills F(u) with fp at the sampled positions,
and updates the remaining entries of F(u) independent of λ.
This separation makes RecPF very stable with large λ and
allows it to faithfully retain the effect of TV regularization.

C. Comparison with OS

In tests 2 and 3, we compare RecPF with OS [17] on solving
problem (8) with both TV and `1 terms. OS iterates the fix-
point equations (31) below, in which s ∈ RN , wi, ti ∈ R2, i =
1, . . . , N , are auxiliary variables and δ1, δ2 > 0 are constants:




s = Ψ>u− (δ1/λ) ·Ψ> (∑
i D>

i wi + λ∇θ(u, fp)
)
,

ti = wi + δ2Diu, ∀i,
u = Ψ {max (|s| − δ1τ/λ, 0) ◦ sgn(s)} ,

wi = min (1/δ2, ‖ti‖) · ti/‖ti‖, ∀i.

(31)

The authors showed that for any fixed δ1, δ2 > 0, u is a
solution of (8) if and only if it satisfies (31). Given uk and
{wk

i , ∀i}, sk and {tk
i , ∀i} can be computed by the first two

equations, and then be used to compute uk+1 and {wk+1
i , ∀i}

in the last two equations in (31). For δ1 and δ2 in certain range,
such iterations converge. Similar to RecPF, every iteration of
OS involves shrinkages, FFTs and discrete wavelet transforms
(DWTs), and OS also has continuation, decreasing τ and 1/λ
from larger values to prescribed small ones. For a fixed pair
of (τ, λ), the fixed-point iterations of OS terminate if one of
the following two conditions are met:

fk − fk+1 < ε2

√
τc/τt max{1, fk}, (32)

‖uk+1 − uk‖ < ε1 max{1, ‖uk‖}, (33)

where fk is the objective value at uk, τc and τt are the current
and the target values of τ , respectively, and ε1, ε2 > 0 are
stopping tolerances.

In both tests, we set δ1 = δ2 = 0.8, ε1 = 10−4 and ε2 =
5 × 10−4 for OS. For RecPF, we set the stopping tolerance
ε = 2.5× 10−2 in (20) which, although much looser than the
previous tolerance used in test 1, is sufficient to obtain better
results than OS.

Since the two algorithms use different stopping criteria
and OS has multiple tuning parameters such as δ1 and δ2

that influence the convergence speed, it is rather difficult to
compare them at their best performance. Since OS implements
the fixed-point iterations based on (31) that do not directly
aim at decreasing the objective function, its objective values
do not decrease monotonically for certain choices of δ. We
tried different δ values and observed the following. For smaller
δ’s, OS tends to yield monotonically decreasing objectives but
converges slowly. For larger δ’s and looser stopping criteria,
OS becomes faster but loses objective monotonicity and re-
turns solutions with larger relative errors. After having tried
different combinations of ε’s and δ’s for OS, we determined to
use the above parameter values in the results presented below
as a best compromise between convergence speed and image
quality.
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In both tests 2 and 3, the sparsity promoting basis Ψ
was set to be the Haar wavelet transform using the Rice
Wavelet Toolbox in its default setting [18]. The per-iteration
computational cost of RecPF is 4 FFTs (including 1 inverse
FFT) and 2 DWTs (including 1 inverse DWT). It is not difficult
to check from (31) that the per-iteration cost of OS is 2 FFTs
less than that of RecPF. Considering this difference, we present
our numerical results in plots of objective value and relative
error versus CPU time in Figures 3 and 4, respectively. The
reconstructed images are give in Figure 5.
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Fig. 3. Comparing RecPF with OS: objective value versus CPU time.
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Fig. 4. Comparing RecPF with OS: relative error versus CPU time.

As can be seen from Figures 3 and 4, both algorithms
converged faster in test 2 where relatively more data were
collected, and RecPF converged faster than OS in terms of
both objective functions and relative errors. Moreover, images
reconstructed by RecPF have higher qualities than those by
OS as is evidenced by Figure 5. In addition, in both tests
RecPF achieved and maintained both lower objective values
and relative errors throughout the entire iteration process. This
is most evident in test 3, in which RecPF took much less CPU
time than OS to attain the same level of relative error.

Fig. 5. Results of tests 2 (top row, 256×256) and 3 (bottom row, 512×512).
Left column: original brain images. Middle column: reconstructed by OS, Err:
15.02% (upper) and 14.73% (lower). Right column: reconstructed by RecPF,
Err: 10.97% (upper) and 11.58% (lower).

Our other experiments yielded consistent results. In gen-
eral, when stricter tolerances are used, better results can be
obtained from both algorithms at a cost of longer CPU times.
Independent of tolerances used, their performance difference
stay with a similar ratio.

V. CONCLUSION

Based on the classic penalty function approach in opti-
mization, a highly efficient alternating minimization algorithm,
called RecPF, was proposed for reconstructing large-scale
signals or images from a subset of their frequency data (DFT
or DCT coefficients). The algorithm minimizes a potential
function with one or both of TV and `1-norm regularization
terms. At each iteration, the main computation of RecPF only
involves fast and stable operations consisting of shrinkages and
FFTs (or DCTs). RecPF enjoys strong convergence properties
and its practical convergence is accelerated by continuation on
penalty parameters.

RecPF is compared to two efficient algorithms TwIST [3]
and OS [17], which can solve problems with broader data
types than RecPF. On image reconstruction problems with
frequency data, the strong numerical evidence presented in this
paper shows that RecPF is able to take the advantage of the
frequency date type and achieves much higher performance in
terms of both reconstruction speed and quality than TwIST and
OS. It is hoped that RecPF can be useful in relevant areas of
compressive sensing such as sparsity-based, rapid MR image
reconstruction.

APPENDIX A
PROOF OF THEOREM 3.4

From (13), for any i ∈ {1, . . . , N}, it holds that

‖wk+1
i −w∗

i ‖2 =
∥∥s2 ◦ gi(vk)− s2 ◦ gi(v∗)

∥∥2

≤ ∥∥gi(vk)− gi(v∗)
∥∥2

. (34)
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Suppose wk+1
i 6= 0 for some i ∈ L2, then

‖wk+1
i −w∗

i ‖2
=

∥∥s2 ◦ gi(vk)− s2 ◦ gi(v∗)
∥∥2

=
(‖gi(vk)‖ − 1/β

)2

≤ {‖gi(vk)− gi(v∗)‖ − (1/β − ‖gi(v∗)‖)
}2

≤ ‖gi(vk)− gi(v∗)‖2 − (1/β − ‖gi(v∗)‖)2
≤ ‖gi(vk)− gi(v∗)‖2 − ω2

2 , (35)

where the first equality comes from the iteration of wi in
(13) and the definition of gi(v); the second equality holds
because of ‖gi(v∗)‖ < 1/β, wk+1

i 6= 0 and the definition
of s2; the first inequality is triangular inequality; the second
inequality follows from the fact that ‖gi(vk)−gi(v∗)‖ ≥ 1/β−
‖gi(v∗)‖ > 0; and the last one uses the definition of ω2 in (29).
Furthermore,

‖zk+1 − z∗‖2 = ‖S1 ◦ h(1)(vk)− S1 ◦ h(1)(v∗)‖2
≤ ‖h(1)(vk)− h(1)(v∗)‖2. (36)

Combining (34), (35) and (36), we get

‖vk+1 − v∗‖2 = ‖zk+1 − z∗‖2 + ‖wk+1 − w∗‖2
= ‖zk+1 − z∗‖2 +

∑

i

‖wk+1
i −w∗

i ‖2

≤ ‖h(1)(vk)− h(1)(v∗)‖2
+

∑

i

‖gi(vk)− gi(v∗)‖2 − ω2
2

= ‖h(vk)− h(v∗)‖2 − ω2
2

≤ ‖vk − v∗‖2 − ω2
2 . (37)

Therefore, for i ∈ L2, it holds that wk
i = w∗

i = 0 in no more
than ‖v0 − v∗‖2/ω2

2 iterations.
Similarly, for any i ∈ {1, . . . , N}, from (11) we have

(
zk+1
i − z∗i

)2
=

(
s1 ◦ h

(1)
i (vk)− s1 ◦ h

(1)
i (v∗)

)2

≤
∣∣∣h(1)

i (vk)− h
(1)
i (v∗)

∣∣∣
2

. (38)

Suppose zk+1
i 6= 0 for some i ∈ L1, similar discussion as in

(35) gives

(
zk+1
i − z∗i

)2 ≤
∣∣∣h(1)

i (vk)− h
(1)
i (v∗)

∣∣∣
2

− ω2
1 , (39)

where ω1 is defined in (28). Combining (34), (38) and (39),
similar arguments as in (37) gives

‖vk+1 − v∗‖2 ≤ ‖vk − v∗‖2 − ω2
1 . (40)

Therefore, zk
i = z∗i = 0 in no more than ‖v0 − v∗‖2/ω2

1

iterations for i ∈ L1.

APPENDIX B
PROOF OF THEOREM 3.5

From (24)–(27), there hold

uk+1 − u∗ = M−1H>(vk+1 − v∗) (41)

and

‖vk+1 − v∗‖2
= ‖zk+1 − z∗‖2 + ‖wk+1 − w∗‖2
= ‖S1(Ψ>uk)− S1(Ψ>u∗)‖2
+ ‖S2(D(1)uk;D(2)uk)− S2(D(1)u∗;D(2)u∗)‖2
≤ ‖Ψ>(uk − u∗)‖2 + ‖D(uk − u∗)‖2
= ‖H(uk − u∗)‖2. (42)

Combining the recursion (41), (42) and the definition of T , it
holds

‖vk+1 − v∗‖2 ≤ ‖HM−1H>(vk − v∗)‖2 = ‖T (vk − v∗)‖2.
Since we are only interested in the asymptotic behavior of
Algorithm 1, without loss of generality, we assume that vk

L =
v∗L = 0. The above inequality becomes

‖vk+1
E − v∗E‖2 ≤ (vk

E − v∗E)>(T 2)EE(vk
E − v∗E)

≤ ρ((T 2)EE)‖vk
E − v∗E‖2,

which implies assertion 1 of this theorem. Multiplying H on
both sides of (41), from vk

L = 0 and (42), we get

‖H(uk+1 − u∗)‖2 ≤ (vk+1
E − v∗E)>(T 2)EE(vk+1

E − v∗E)
≤ ρ((T 2)EE)‖H(uk − u∗)‖2,

which completes the proof of Theorem 3.5.
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