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ABSTRACT
We are inevitably moving into a realm where small and inexpen-
sive wireless devices would be seamlessly embedded in the physi-
cal world and form a wireless sensor network in order to perform
complex monitoring and computational tasks. Such networks pose
new challenges in data processing and dissemination because of the
limited resources (processing, bandwidth, energy) that such devices
possess. In this paper we propose a new technique for compress-
ing multiple streams containing historical data from each sensor.
Our method exploits correlation and redundancy among multiple
measurements on the same sensor and achieves high degree of data
reduction while managing to capture even the smallest details of
the recorded measurements. The key to our technique is thebase
signal, a series of values extracted from the real measurements,
used for encoding piece-wise linear correlations among the col-
lected data values. We provide efficient algorithms for extracting
the base signal features from the data and for encoding the mea-
surements using these features. Our experiments demonstrate that
our method by far outperforms standard approximation techniques
like Wavelets, Histograms and the Discrete Cosine Transform, on
a variety of error metrics and for real datasets from different do-
mains.

1. INTRODUCTION
Technological advances in the development of low-power em-

bedded communication devices have made possible scenarios in
which thousands of sensor nodes are seamlessly embedded in the
physical world and form a wireless sensor network. These sensors
monitor various quantities such as temperature, pressure, humid-
ity, movement, noise levels, chemicals, etc. that are periodically
transmitted to abase-stationfor further processing and analysis. A
base-station may represent any node of the network with increased
storage, battery and processing capabilities. Applications of such
networks span a large variety of domains from collaborative envi-
ronments to military command and control systems.
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Large-scale sensor networks require tight data handling and data
dissemination techniques. Transmitting afull-resolutiondata feed
from each sensor back to the base-station is often prohibitive due
to (i) limited bandwidth that may not be sufficient to sustain a con-
tinuous feed from all sensors and (ii) increased power consump-
tion due to wireless multi-hop communication. In order to mini-
mize the volume of the transmitted data, we can apply two well
known ideas:aggregationandapproximation. Aggregation works
by summarizing the measurements in the form of simple statistics
like average, maximum, minimum etc. that are then transmitted to
the base-station over regular intervals. Aggregation is an effective
mean to reduce the volume of data, but is rather crude for applica-
tions that need detailed historical information (like military surveil-
lance). When data feeds exhibit a large degree of redundancy, ap-
proximation is a less intrusive form of data reduction in which the
underlying data feed is replaced by an approximate signal tailored
to the application needs. The trade-off is then between the size of
the approximate signal and its precision compared to the real-time
information monitored by the sensor.

In this paper we present a data reduction algorithm for the dis-
semination of historical measurements in constraint environments,
such as sensor networks. Our techniques build on the observation
that the values of the collected measurements exhibit similar pat-
terns over time, or that different measurements are naturally cor-
related, as is the case between pressure and humidity in weather
monitoring applications. At the core of our approximation lies the
notion of abase signal, a set of values from the collected mea-
surements that capture prominent features of the data. Following
the construction of thebase signal, the collected data is partitioned
into intervals that can be efficiently approximated as linear projec-
tions of some part of thebase signal. As we will show in this paper,
our techniques provide:

• Increased accuracy and robustness when compared to other
approximation techniques:Our algorithm feeds from intrin-
sic redundancy among multiple values (like many data re-
duction techniques), but has full control over the data model
used to exploit these redundancies (which values to insert
into the base signal), the amount of space allocated for this
data model and the number of coefficients that describe the
projections of the data values on this data model. Due to
this fact, our algorithm produced up to 27 and 1000 times
smaller errors than the next best competitive method for the
sum squared and the sum squared relative error metrics, re-
spectively, Moreover, due to its fall-back mechanism to lin-
ear regression, as we will later explain, it performs at least
as good as linear regression, but in practice is significantly
more accurate, for the same data reduction factor.

• Adaptability to different error metrics:Our algorithms can



be adapted with only minor modifications,which do not al-
ter their time complexity, to minimize different error metrics,
such as the sum squared error, sum squared relative error, and
maximum error of the approximation. We further discuss ex-
tensions when the application requires strict error bounds or
a combination of error and space bounds.

Our contributions are summarized as follows:

1. We introduce a new approximation scheme that encodes piece-
wise correlations among the values of multiple data streams.
Such correlations are often linear in nature and can be easily
captured by standard techniques like linear regression. We
exploit correlations both within the values of a single mea-
surement (ex: periodicity, self-similarity) as well as among
values of different quantities (ex: pressure and humidity).

2. We introduce the concept of thebase signalthat is analo-
gous to acarrier-wavein radio-frequency transmissions and
is used for encoding the measurements. We explore the tech-
nical challenges of (i) constructing the base signal, (ii) ap-
proximating the recorded measurements by exploring piece-
wise correlations amongst them and the base signal, and (iii)
dynamically updating the base signal to capture new data
trends in subsequent transmissions.

3. We provide an efficient algorithm (Self-Based Regression or
SBR) that answers all questions above, while balancing the
cost of transmitting new (or updated) base signal values with
the gains of using them for approximating the data values.
For a dataset containingn measurements to approximate,
SBR takesO(n1.5) time and requires linear space, while its
running time scales linearly to the size of both the transmit-
ted data and the base signal. The SBR algorithm is invoked
periodically, when enough historical data has being collected
on the sensor. Thus, its processing cost is amortized over the
input size. In experiments on a low-end 300MHz CPU, SBR
was processing up to 1,000 data items per second. More im-
portantly, as our results demonstrate, few initial invocations
of the SBR algorithm are crucial for the population of the
base signal, after which the base signal is either rarely up-
dated, or in very small parts, since it is already of good qual-
ity. This permits us to shortcut some parts of the algorithm
in constrained environments, as is the case in sensor network
applications, and perform their execution only periodically
(i.e., when we notice a degradation in the quality of the ap-
proximation). These shortcuts significantly reduce the com-
plexity of the algorithm, resulting in a linear dependency to
the size of the processed data. Thus, our framework is not
only suitable for sensor networks (where the data sampling
rates are significantly slower than the rates that SBR pro-
cesses data) but may have applications in other areas where
historical information is being collected in a distributed fash-
ion, like network measurements.

4. We provide an extensive experimental study of our frame-
work using real datasets from different domains and make
direct comparisons against previously studied approximation
techniques like the Wavelet and Discrete Cosine Transforms
and Histograms. In all datasets our method achieves substan-
tially lower approximation errors for the same data reduction
factor. Even in the case of datasets containing values from
entirely different applications with no apparent correlations
amongst them, the SBR algorithm managed to identify piece-
wise correlations between parts of these signals and signifi-
cantly outperform all the other competitive methods.

5. We have adapted ideas from the Singular Value Decomposi-
tion and the Discrete Cosine Transform for constructing al-
ternative base signals. Our experiments demonstrate that the
base signal features selected by SBR outperform these tech-
niques, by a factor of ten in some datasets. Furthermore, we
show that SBR makes near-optimal choices when balancing
the number of features to include in the base signal over the
number of coefficients used to compress the data values us-
ing these features.

While our techniques are motivated by applications of sensor
networks, the same algorithms can also be used in other domains
for the lossy compression of multiple time series. In addition to
weather data that is common in sensor network applications, we
also provide experimental evidence using phone-call and stock data-
sets. In these domains where significantly more powerful proces-
sors can be used than in sensor network applications, some of the
optimizations proposed in this paper may be relaxed in order to
achieve even better approximation; for example, a larger number
of candidate intervals for inclusion in the base signal may be con-
sidered.

The rest of the paper is organized as follows. Section 2 presents
related work. In Section 3 we state our problem and sketch the
basics of our techniques, while in Section 4 we describe our frame-
work in more detail. Section 5 contains our experiments. Section 6
presents concluding remarks and future directions.

2. RELATED WORK
In recent years there has been a flurry of research in the area of

sensor networks. Some of the most important issues addressed in-
clude network self-configuration [2] and data discovery [10, 13].
In-network data aggregation is investigated in [8, 11, 15, 18, 30].
The main idea is to build an aggregation tree, which partial re-
sults will follow. Non-leaf nodes of the tree aggregate the values
of their children before transmitting the aggregate result to their
parents, thus reducing substantially the number of messages in the
network.

Sensor nodes are small devices that “measure” their environment
and communicate streams of low-level values to a base station for
further processing and archiving. These streams are then used to
construct a higher-level model of the environment. This process
makes historical data equally important to current values [7]. In this
paper we propose approximation as a less intrusive data reduction
method that is more suited for applications in which a long-term
historical record of measurements from each sensor is required.

Recently, there has been increasing interest in studying the gen-
eral principles over continuous queries in data streams [4, 14, 21,
28, 31]. The work of [23] studies the trade-off between precision
and performance when querying replicated, cached data. In [22] the
users register continuous queries with strict precision constraints at
a centralstream processor, which, in turn installs filters at the re-
mote data sources. These filters adapt to changes in the streams
to minimize update rates. The work in [8] investigates the optimal
assignment of error filters in order to minimize the bandwidth con-
sumption of continuous aggregate queries in sensor networks. An
online algorithm for minimizing the update cost while the query
can be answered within an error bound is presented in [16]. The
authors of [6] study a probabilistic query evaluation method that
places appropriate confidence in the query answer to quantify the
uncertaintyof the recorded data values.

Approximate processing techniques have been widely studied.
Histograms ([24, 26]) have been extensively used by query opti-
mizers to estimate the selectivity of queries, and recently in tools



for providing fast approximate answers to queries. Wavelets are a
mathematical tool for the hierarchical decomposition of functions,
with applications in image and signal processing. More recently,
Wavelets have been applied successfully in answering range-sum
aggregate queries over data cubes [29], in selectivity estimation [20]
and in approximate query processing [3]. The Discrete Cosine
Transform (DCT) [1] constitutes the basis of thempegencoding
algorithm and has also been used to construct compressed multi-
dimensional histograms [17]. Linear regression has been recently
used in [5] for on-line multidimensional analysis of data streams.

The use of a dictionary is a standard technique in data com-
pression algorithms (for example in gzip). As an abstraction, the
base signal is a dynamic data dictionary that is used to compress
present and future values. A fundamental difference with compres-
sion techniques such as gzip is that our compression is lossy, which
allows us to achieve significantly higher compression ratios. Fur-
thermore, the details of our approximation (construction of the base
signal, approximation using regression etc.) differ at a fundamental
level from standard compression techniques. Many popular trans-
forms also use some form of basis that is either fixed (ex: Wavelets,
DCT) or data dependent (ex: SVD). We also explore the use of such
bases in our framework and present the necessary modifications.
However, the base signal constructed by our algorithms seems to
always outperform these bases, for the specific encoding we use in
our approximation.

3. PRELIMINARIES
In this section we first present a description of the characteris-

tics of sensor networks and their applications. We then describe
the operation of sensor nodes in our data reduction framework and
present the optimization problems that we tackle in this paper.

3.1 Characteristics of Sensor Networks
Recent technological advances have made possible the develop-

ment of low-cost sensor nodes with heavily integrated sensing, pro-
cessing and communication capabilities. Information about the en-
vironment is gathered using a series of sensing elements connected
to an analog-to-digital converter. Examples include microphones
for acoustic sensing, accelerometers and temperature sensors. Once
enough data is collected, it is processed locally and periodically for-
warded to a base station, using a multi-hop routing protocol [27].

The processing subsystem on the nodes depends on the nature
of the application. Applications such as military reconnaissance
that require significant processing to be performed at the nodes use
sensor nodes with significant processing power. As an example, an
improved model of the commonly used StrongARM 1100 proces-
sor (µAMPS [27] and HiDRA nodes) reaches a frequency of 400
MHz and can support up to 64 MB of memory.

As the processing and storage capabilities of sensor nodes tend
to follow Moore’s Law their communication and power subsystems
become the major bottleneck of their design. For example, over the
last years, the energy capacity of the batteries used in such nodes
has exhibited a mere 2-3% annual growth.1 The main source of en-
ergy consumption in a node is the data transmission process. There
are several reasons for this:

1. The energy drain during transmission is much larger than
the consumption during processing [10]. As an example,
on a Berkeley MICA Mote sending one bit of data costs as
much energy as 1,000 CPU instructions [19]. Faster proces-
sors typically achieve lower power consumptions per CPU
instruction, making the above ratio even larger.

1http://nesl.ee.ucla.edu/courses/ee202a/2002f/lectures/L07.ppt

2. Transmission ranges between nodes are fairly short. The
transmitted data may thus require to traverse multiple hops
to reach the base station. This retransmission process at each
intermediate node is very costly. Furthermore, because nodes
often use broadcast protocols over radio frequencies [18],
transmitted messages are not only received by the intended
node, but by all nodes in the vicinity of the sender, thus in-
creasing the overall power consumption.

Even on applications where battery lifetime is not a concern
(ex: military surveillance sensing nodes attached to moving vehi-
cles with practically infinite power supply), the available bandwidth
may not sustain a continuous feed of measurements for all sensors
deployed in the terrain. The design of data reduction protocols that
effectively reduce the amount of data transmitted in the network is
thus essential when the goal is to meet the application’s bandwidth
constraints or to increase the network’s lifetime.

3.2 Data Model and Processing
In order not to deplete their power supply (and to conserve band-

width), the sensors do not continuously transmit every new mea-
surement they obtain but rather wait till enough data is collected
and then forward it to the base station [27]. This form of batch
processing allows them to power-down their radio transmitter and
prolong their lifetime in a way analogous to [18].

Within a sensor, the recorded data is depicted in a two dimen-
sional array where each rowi stores sampled values of a distinct
quantity. Informally, each rowi is a time series~Yi of samples from
quantity i collected by the sensor. The array hasN rows, N be-
ing the number of recorded quantities andM columns, whereM
depends on the available memory.2

As more measurements are obtained, the sensor’s memory buffers
become full. At this point the latestNxM values are processed and
each rowi (of lengthM ) is approximated by a much smaller set of
Bi values, i.e.Bi � M . The resulting “compressed” represen-
tation, of total size equal toB =

∑N
i=1 Bi, is then transmitted to

the base station. The base station maintains the data in this com-
pact representation by appending the latest “chunk” to a log file. A
separate file exists for each sensor that is in contact with the base
station. The entire process is illustrated in Figure 1.

Each sensor allocates a small amount of memory of sizeMbase

for what we call thebase signal. This is a compact ordered col-
lection of values of prominent features that we extract from the
recorded values and are used as a base reference in the approximate
representation that is transmitted to the base station (details will be
given in the next section). The data values that the sensor transmits
to the base station are encoded using the in-memory values of the
base signal at the time of the transmission. The base signal may be
updated at each transmission to ensure that it will be able to capture
newly observed data features and that the obtained approximation
will be of good quality. When such updates occur, they are trans-
mitted along with the data values and appended in a special log
file that is unique for each sensor. This allows the base station to
reconstruct (approximately) the series~Yi at any given point in the
past.

3.3 Our Optimization Problem
We can think of the base signal as a dictionary of features used

to describe the data values. The richer the pool of features we store
in the base signal the better the approximation. On the other hand,

2We here assume that all quantities are sampled with the same fre-
quency. This simplifies notation, however, our framework also ap-
plies when each quantity is recorded on a different schedule.
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Figure 1: Transfer of approximate data values and of the base signal from each sensor to the base station

Configuration Parameters
N Number of input signals
M Measurements per input signal

Input Parameters
TotalBand Total bandwidth per transmission
Mbase Buffer size for base signal values

Derived/Calculated Parameters
n = N ×M Size of in-memory data
W =

√
n Size of each base interval

B Compressed Data Size
maxIns Maximum number of base intervals inserted

in current transmission
Ins Number of base intervals actually inserted

in the current transmission

Table 1: Configuration, input and derived parameters of our
algorithms

these features have to be (i) kept in the memory of the sensor to
be used as a reference by the reduction algorithm and (ii) sent to
the base station in order for it to be able to reconstruct the values.
Thus, for a target bandwidth constraint (number of values that can
be transmitted) the more insert and update operations on the base
signal that we perform, the less bandwidth is left available for ap-
proximating the data values. Moreover, the time to perform the
data approximation increases, in our algorithms, linearly with the
size of the base signal.

In the next section we present an efficient algorithm that decides
(i) how large the base signal needs to be at each transmission (ii)
what new features to be included in it (iii) which older features are
not relevant any more and (iv) how to best approximate the data
measurements using these features. The only user input needed by
the algorithm is the target bandwidth constraint and the maximum
buffer size of the base signal values.

4. THE SBR FRAMEWORK
We now describe our framework in more detail. We start with

a motivational example that demonstrates the intuition behind our
techniques. Subsection 4.2 presents the primitive operations re-
quired by our framework while theSBRalgorithm is presented in
subsection 4.3. Table 1 contains a brief description of the parame-
ters used in our algorithms.

4.1 Motivational Example
Many real signals are correlated. We expect this to be partic-

ularly true for measurements taken by a sensor, especially if they
are physical quantities like temperature, dew-point, pressure etc.
The same is often true in other domains. For example, in Fig-
ure 2 we plot the average Industrial and Insurance indexes from the
New York stock market for 128 consecutive days.3 Both signals
show similar trends, i.e. they go up and down together. Figure 3
depicts a XY scatter plot of the same values. This is created by
pairing values of the Industrial (X-coordinate) and Insurance (Y-
coordinate) indexes of the same day and plotting these points in a
two-dimensional plane. The strong correlation among these values
makes most points lie on a straight line. This observation motivates
our work. Assuming that the Industrial index (call it~X) is given
to us in a time-series of 128 values, we can approximate the other
time-series (Insurance:~Y ) as:

~Y ′ = a ∗ ~X + b

The coefficientsa andb are determined by the condition that the
sum of the square residuals, or equivalently theL2 error norm
|| ~Y ′−~Y ||2, is minimized. This is nothing more than standard linear
regression. However, unlike previous methods, we will not attempt
to approximate each time-series independently using regression. In
Figure 2 we see that the series themselves are not linear, i.e. they
would be poorly approximated with a linear model. Instead, we
will use regression to approximate piece-wise correlations of each
series to a base signal that we will choose accordingly. In the ex-
ample of Figure 3 the base signal can be the Industrial index (~X)
and the approximation of the Insurance index will be just two val-
ues (a, b). In practice the base signal may be much smaller than the
complete time series, since it only needs to contain the “important”
trends of the target signal~Y . For instance, in case~Y is periodic,
a sample of the period would suffice. Our algorithm breaks the
latest measurements obtained by the sensor into small intervals (of
varying sizes) and looks for intervals of the same length in the base
signal that are linearly correlated. At the same time, the base signal
values are evaluated and may get updated with features from the
newly collected measurements when necessary.

4.2 Primitives of our Implementation

3Data at http://www.marketdata.nasdaq.com/mr4b.html
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Piece-wise Approximation of Measurements

We here assume that the base signal~X is given to us. We will
approximate the latestN ×M measurements in~Y1, . . . , ~YN using
B ≥ 4 ×N values (i.e. using at least four values per time series).
We later describe how to construct the base signal.

To simplify notation, we model the collected data as a single se-
ries ~Y that is simply the concatenation of theN series~Yi. Our
technique relies on breaking~Y into B/4 intervals and “mapping”
each one to an interval of the base signal of equal length.4 The algo-
rithm works recursively. It starts with a single interval for each row
of the collected data. In each iteration, the interval with the largest
error in the approximation is selected and divided in two halves,
until the “budget” ofB/4 intervals is exhausted. An intervalI is a
data structure with six entries:

• start, length: these define the scope of the interval; i.e.I
represents values ofY [i], with i in [start, start + length).

• shift: it defines the part of the base signal that is used to
approximate the values ofI; the intervalI is mapped to seg-
ment[shift, shift + length) in ~X.

• a, b, err: the first two are the regression parameters, while
err is the sum squared error (sse) of the approximation.

SubroutineRegression() shown in Algorithm 1 is at the
core of our method. This function pairs a segment of the base
signal between values[start x, start x + length) with values of
~Y between[start y, start y +length), as in Figure 3, and com-
putes the regression parametersa, b as well as the (sse) error of
the approximation~Y ′ = a ~X + b in this range. Each valueY [i]
with index i in [start y, start y + length) is approximated as
aX[start x + i− start y] + b.

It should be noted that theRegression() subroutine calcu-
lates the optimala, b values that minimize the sum squared er-
ror of the approximation. If the desired error metric is different,
then the formulas need to be appropriately modified. In [9] we
present the necessary modifications for two interesting optimiza-
tion problems: minimizing the sum squared relative error, and min-
imizing the maximum absolute error of the approximation. The

4This mapping requires four values per interval, thus the division
by 4.

Algorithm 1 Regression Subroutine

Require: ~X, ~Y , start x, start y, length
1: {Compute Regression Parameters}
2: sum x =

∑
0≤i<length X[i + start x]

3: sum y =
∑

0≤i<length Y [i + start y]

4: sum xy =
∑

0≤i<length X[i + start x]Y [i + start y]

5: sum x2 =
∑

0≤i<length X[i + start x]2

6: a = length×sum x y−sum x×sum y
length×sum x2−sum x×sum x

7: b = sum y−a×sum x
length

{Compute sse of approximate signal~Y ′ = a ~X + b in range
[start y, start y + length)}

8: err =
∑length−1

i=0 (Y [i+ start y]− (aX[i+ start x] + b))2

9: return (a,b,err)

modified algorithms run inO(length) time and requireO(1) and
O(length) space, respectively.

SubroutineBestMap() of Algorithm 2 looks for the best way
to approximate an intervalI. It shifts I over ~X and calculates the
regression parameters and the approximation error for theshift
parameter that produces the smallest error. This algorithm contains
two deviations from our previous discussion. First, it also considers
approximating each intervalI using standard linear regression, and
uses a negative value for theI.shift parameter to denote this. Sec-
ond, it performs the shifting process over the base signal only for
intervals with a maximum length of2 ×W , whereW is a param-
eter that denotes the length of the intervals that constitute the base
signal.5 The last modification is performed both to reduce the time
complexity of the algorithm to O(I.length + W × Mbase), and
because of the reduced likelihood that large intervals will be accu-
rately mapped to multiple consecutive intervals of the base signal.

The core approximation algorithmGetIntervals() is given
in Algorithm 3. The approximation obtained is returned as a list
of B/4 intervals ini list. This list is maintained sorted (priority
queue) based on the sse of each interval.~X is the current base
signal. The complete algorithm runs inO(NMlog( B

N
) + B ×

Mbase × W ) time. The logarithmic factor in the above formula
is produced because the size of the intervals in the algorithm is
repeatedly halved.

5This will become more clear later in our discussion.



Algorithm 2 BestMap Subroutine

Require: ~X, ~Y , IntervalI, W
1: I.shift = −1
2: Perform standard linear regression onI and set the values of

I.a, I.b andI.err
3: if I.length ≤ 2×W then
4: {Shift I over ~X and find the segment for which the regression

error is minimized}
5: for shift in 0..length( ~X)− I.length− 1 do
6: (a,b,err) = Regression(~X, ~Y , shift, I.start, I.length)
7: if err is minimum error so farthen
8: Update values ofI.a, I.b, I.err andI.shift
9: end if

10: end for
11: end if

Algorithm 3 GetIntervals Algorithm

Require: ~X, ~Y1,. . . , ~YN , B, W
1: i list = ()
2: ~Y = concat( ~Y1, . . . , ~YN ) {Virtual assignment}
3: {Create an interval for each row~Yi (M values each)}
4: for i in 1..N do
5: (I.start, I.length) = ((i-1)× M , M )
6: BestMap(~X, ~Y , I, W )
7: i list.push(I);
8: end for
9: num intervals = N

10: while num intervals++ < B / 4 do
11: {i list is sorted on decreasing order ofI.err}
12: I = i list.pop()
13: {Break I in 2 pieces}
14: (Ileft.start, Ileft.length) = (I.start, I.length/2)
15: BestMap(~X, ~Y , Ileft, W )
16: (Iright.start, Iright.length) =

(I.start+I.length/2, I.length/2)
17: BestMap(~X, ~Y , Iright, W )
18: i list.push(Ileft)
19: i list.push(Iright)
20: end while
21: returni list

For each interval ini list a record with four values (I.start,
I.shift, I.a, I.b) is transmitted to the base station. The base sta-
tion will sort the intervals based onI.start and, thus, there is no
need to transmit their length. It is interesting to note that theGet-
Intervals() algorithm decides dynamically how many inter-
vals it will use to approximate each of theN rows of the collected
data, allocating more intervals to signals that are harder to approx-
imate accurately.

Selecting Data Features for Inclusion in the Base Signal
We focus on the time when the sensor’s memory is filled with
NxM values, as depicted in Figure 1. We assume that the buffer al-
located to the base signal is of sizeMbase. This buffer is organized
as a list of intervals (calledbase intervals) of the same lengthW .
For simplicity, we assume that bothM andMbase are multiples of
W . We note here that in Algorithm 3 the base signal is presented
as a series ofMbase values, which is simply the concatenation of
the base intervals in the buffers.

The GetBase() algorithm (Algorithm 4) is called during the

Algorithm 4 GetBase() Algorithm

Require: ~Y1, . . . , ~YN , W , M , maxIns
1: CreateK = N×M

W
CBIs of widthW

2: For each CBICandi, set its benefit to 0
3: Maintain unsorted listQ with CBIs
4: Maintain list baselist with selected stored intervals
5: LinearErr(Candj) is the error of approximatingCandj us-

ing standard linear regression
6: for i in 1..K do
7: for j in 1..K do
8: {Calculate error of approximating the j-th CBI by using

as base the i-th CBI}
9: error=Regression(Candi,Candj ,0,0,W )

10: if error ≤ LinearErr(Candj) then
11: Candi.benefit+=LinearErr(Candj)-error
12: end if
13: end for
14: Q.insert(Candi)
15: end for
16: for i in 1..maxIns do
17: C = Q.popBestInterval()
18: baselist.insert(C)
19: for j in 1..|Q| do
20: adjust(Q[j].benefit,C)
21: end for
22: end for
23: return baselist

initialization and update procedure of the base signal. The algo-
rithm receives as inputs theN signals, each of sizeM , the size
W of each base interval, and the maximum number of intervals
maxIns that can be inserted in our base signal, where

maxIns =
min{Mbase, T otalBand}

W

Each input signal~Yi is broken intoM
W

non-overlapping intervals
of sizeW . This provides a “dictionary” ofN∗M

W
candidate base

intervals(CBIs). The algorithm will choosemaxIns CBIs out of
this dictionary to be inserted into acandidate update base signal.
We will describe in subsection 4.3 how to determine how many of
these CBIs will ultimately be inserted into the base signal.

Each CBICandi can be used to approximate any other CBI
Candj , which is in-fact part of some~Yk, using regression. We
consider such an approximation to be beneficial, only if the error
of the approximation is smaller than the error of approximating
Candj using standard linear regression. In Algorithm 4 we de-
note the latter error asLinearErr(Candj). The benefit of using
Candi to approximateCandj is simply the reduction in error that
we get compared toLinearErr(Candj).

The CBIs are stored in an unordered listQ. At each step of the
algorithm, the CBI inQ with the largest benefit is selected for in-
clusion in the candidate update base signal stored in baselist. After
each selection, the benefits of the remaining CBIs inQ have to be
properly updated. As we mentioned, the benefit of usingCandi

to approximateCandj is originally equal to the reduction in er-
ror that we get compared toLinearErr(Candj). However, at an
intermediate step of the algorithm, some CBIs have already been
selected for inclusion in the candidate update base signal. By using
these stored CBIs, many of the remaining CBIs can now be better
approximated than by using standard linear regression. Thus, the
benefit of usingCandi to approximateCandj has to be adjusted to



depict the reduction in error that we get when compared to the best
approximation forCandj that we have so far, by using the current
candidate update base signal. Intuitively, this adjustment prohibits
the inclusion in the base signal of CBIs that help approximate well
similar parts of the data.

An example is presented in Figure 4. In this small example we
consider just 3 CBIs, out of which we need to pick which two to
select. In the left part of the figure, we present the benefits of each
of the 3 CBIs. The first CBI has the largest total benefit, and is
thus selected. In the right part of the figure, the adjusted benefits of
the remaining CBIs are presented. Notice that now, the third CBI
will be selected, even though initially it had a lower benefit than the
second CBI.

In the GetBase() algorithm, for each of theK = N×M
W

CBIs, we first estimate its benefit for approximating all the other
CBIs. Each such approximation requiresO(W ) time, thus result-

ing in a total complexity ofO(N2M2

W
). Then, for each of the

maxIns selected CBIs, detecting the one with the largest bene-
fit requiresO(K) time (we do not sort the CBIs). After each se-
lection, adjusting the benefits of the remaining CBIs requires time
O(K2). Thus, the overall running time complexity of the algorithm

is O(N2M2

W
+ maxIns× N2M2

W2 ), while its space requirements is

O(N2M2

W2 ).
Forn = N ×M being the size of the data, a value ofW =

√
n

used by the SBR algorithm (described in the next subsection) re-
sults in a running time of O(n1.5) for GetBase() and space of O(n),
sincemaxIns×W ≤ TotalBand ≤ n. In case of severe mem-
ory constraints, we can easily modify theGetBase() algorithm
to only store for each CBI the smallest error of approximating it
using at each step the current base signal. The only modification
will be to replace Lines 19-21 of theGetBase() algorithm with
a double for-loop similar to the one of Lines 6-15, and alter the cal-
culation of each CBI’s benefit to take into account the error of the
best approximation that we have for each CBI so far. This mod-
ified algorithm requiresO(

√
n) space and has a running time of

O(maxIns× n1.5).

4.3 The SBR Algorithm
We now present theSelf-Based Regression(SBR) algorithm that

performs the approximation of the data values. The algorithm re-
ceives as input the latestn = N×M data values, a bandwidth con-
straintTotalBand (number of values to transmit,including any
base signal values), the maximum size of the base signalMbase

and the current base signal~X of size | ~X| ≤Mbase.6 From these
parameters the user/application has to provide onlyTotalBand
andMbase. The SBR algorithm must then make the following de-
cisions:

1. Decide how many, and which base intervals to insert into
the base signal. Recall that any such base interval has to be
transmitted to the base station.

2. If the above procedure causes the size of the base signal to
exceedMbase, then some base intervals need to be evicted
from the base signal, in order to keep its maximum size at
Mbase.

3. Decide how to best approximate the data values given the
updated base signal.

We here have to emphasize that it is not always desirable to in-
sert a large number of base intervals into the base signal. Since any

6At the first transmission the current base signal will be empty.

Algorithm 5 SBRAlgorithm

Require: ~X, ~Y1, . . . , ~YN , M , TotalBand, Mbase

1: maxIns = min{Mbase,TotalBand}
W

2: W =
√

N ×M
3: base list = GetBase( ~Y1, . . . , ~YN , W, M, maxIns)
4: {Errors[i] is the approximation error after inserting the firsti

CBIs of baselist in the base signal}
5: InitializeErrors[i] = UNDEFINED∀i ∈ [0..maxIns)

6: Ins = Search(~X, ~Y1, . . . , ~YN , W, M, TotalBand, base list,
Errors, 0, maxIns)

7: Form ~Xnew by appending theIns first intervals of the baselist
to ~X

8: B = TotalBand− Ins× (W + 1)

9: GetIntervals( ~Xnew, ~Y1, . . . , ~YN , B, W )

10: if | ~Xnew| > Mbase then

11: Evict Repl = | ~Xnew|−Mbase
W

intervals of ~Xnew that also

belonged to~X using a LFU replacement policy
12: Replace evicted intervals with the lastRepl intervals of

~Xnew

13: end if
14: ~X = ~Xnew

15: Transmit the inserted base intervals, their offsets in the base
signal and the regression intervals

Algorithm 6 CalculateError SubRoutine

Require: ~X, ~Y1, . . . , ~YN , B, W, Errors, pos
1: if Errors[pos] == UNDEFINEDthen
2: list’ = GetIntervals( ~X, ~Y1, . . . , ~YN , B − pos×W, W )
3: Errors[pos] = sum of errors in list’
4: end if

inserted base interval needs to be communicated to the base sta-
tion, the larger the number of such intervals, the smaller the number
of intervals that can be used to approximate theN signals by the
GetIntervals() algorithm, since the overall bandwidth con-
sumption is upper-bounded by theTotalBand parameter.

The SBR algorithm is presented in Algorithm 5. It initially calls
theGetBase() subroutine to select a set ofmaxIns CBIs, where
maxIns = min{Mbase,TotalBand}

W
. It then performs a binary

search on this list, to determine the number of CBIs that will ul-
timately be inserted into the base signal. This search terminates
when the algorithm determines a number of intervalsIns, such
that the error of the approximation when inserting the firstIns in-
tervals of the aforementioned list in the base signal is lower than
inserting either the firstIns − 1 intervals, or the firstIns + 1 in-
tervals into the base signal. This is achieved through the call to
functionSearch() at Line 7, which is presented in Algorithm 7.
The approximation of theN signals is then performed by using the
concatenation of the previous base signal with theseIns intervals.
After this step, if the size of the base signal now exceedsMbase,
then enough base intervals of the old base signal are evicted from
the base signal using a Least Frequently Used (LFU) replacement
policy. Any newly inserted base interval will thus either occupy an
empty position of the base signal, or replace another base interval.
Each transmission includes exactlyTotalBand values:

1. TheIns newly inserted base intervals, and their position in
the base signal in which they were ultimately inserted (Ins×
(W + 1) values in total).



Approximated CBI Total
CBI 1 2 3 Benefit

1 1 0.95 0.50 2.45
2 0.8 1 0.55 2.35
3 0.6 0.65 1 2.25

Approximated CBI Total
CBI 2 3 Benefit

2 0.05 0.05 0.10
3 0 0.5 0.50

Initial Benefits of CBIs Adjusted Benefits of Non-Stored CBIs

Figure 4: Example of the GetBase() Algorithm

Algorithm 7 Search SubRoutine

Require: ~X, ~Y1, . . . , ~YN , W, B, base list, Errors, start, end
1: if end == startthen
2: return start
3: end if
4: middle = (start + end) / 2
5: CalculateError( ~X, ~Y1, . . . , ~YN , B, W, middle)

6: CalculateError( ~X, ~Y1, . . . , ~YN , B, W, start)
7: if Errors[middle] > Errors[start] then
8: CalculateError( ~X, ~Y1, . . . , ~YN , B, W, end)
9: if Errors[end] > Errors[start] then

10: return Search(~X, ~Y1, . . . , ~YN , W, M, B, base list,
Errors, start, middle)

11: else
12: return Search(~X, ~Y1, . . . , ~YN , W, M, B, base list,

Errors, middle, end)
13: end if
14: else
15: CalculateError( ~X, ~Y1, . . . , ~YN , B, W, middle + 1)
16: if Errors[middle + 1] < Errors[middle] then
17: return Search(~X, ~Y1, . . . , ~YN , W, M, B, base list,

Errors, middle + 1, end)
18: else
19: return Search(~X, ~Y1, . . . , ~YN , W, M, B, base list,

Errors, start, middle)
20: end if
21: end if

2. TotalBand−Ins×(W+1)
4

intervals of four values each (start,
shift plus the two regression parameters).

The running time complexity of the SBR algorithm isO(n1.5 +
(nlog(TotalBand

N
)+TotalBand×

√
n×Mbase)×log(maxIns)),

wheremaxIns = min{Mbase,TotalBand}√
n

. Thus, the entire algo-

rithm has a modestO(n1.5) dependency on the data size, while its
running time scales linearly with the size of the transmitted data
TotalBand and the (maximum) size of the base signalMbase.

4.4 Understanding the Complexity of SBR
We note that the SBR algorithm is only executed periodically,

thus, its running-time complexity has to be evaluated with respect
to the size of the data and the frequency that the algorithm is be-
ing executed in a real application. Using our implementation of
the algorithm on a 300MHz processor, it takes about 30 seconds to
processn=20,480 data values (10 time series of 2048 values each)
for an 10% compression ratio (see Section 5). Even if one mea-
surement is being taken every second, the above running time cor-
responds to measurements collected over 34 minutes. This means
that the time required by the SBR algorithm for approximating the
data is just the 1/68 of the time it took the sensor to collect it, thus

making it easy for the SBR algorithm to run in parallel with the
collection process. If a shorter running time of SBR is desired, one
can simply either execute the algorithm with a smaller value ofn,7

or decide not to update the base signal, which is by far the most ex-
pensive part of the SBR algorithm, in each transmission. The latter
method is not expected to affect the quality of the approximation
significantly, since our experiments have demonstrated that after
the first transmissions few base intervals are inserted in the base
signal, because the current base signal is already of good quality at
that point. Notice that if the base signal is not updated, then only the
GetIntervals() algorithm is invoked, resulting in an overall
running time complexity of:O(nlog(TotalBand

N
)+TotalBand×√

n×Mbase). Notice that in this case the algorithm exhibits a lin-
ear dependency on the size of the processed datan.

4.5 Providing Strict Error Bounds
The SBR algorithm, as presented above, seeks to minimize a

user-defined error metric (ex: sum squared error) given a target
bandwidth constraint. An interesting extension is when the appli-
cation requires strict error bounds. The typical goal in such cases
is to minimize the maximum error of the approximation and pro-
vide this maximum error along with the approximate signal. In this
case, aRegression() subroutine for minimizing the maximum
error of the approximation (see [9]) should be used.

Another interesting case occurs when the application provides
a target sizeTargetBand and an error target with which it will
be satisfied. In this case, the application will be satisfied with any
approximation of size less or equal toTargetBand that satisfies
the error target (if such an approximation exists). In this case the
recursive procedure of theGetIntervals() algorithm may be
stopped if the error target is achieved before the size of the trans-
mitted data reachesTargetBand.

5. EXPERIMENTS
In this section, we provide a thorough analysis of our techniques.

In subsection 5.1 we compare the SBR algorithm against standard
approximation techniques (Wavelets, DCT, Histograms). In sub-
section 5.2 we compare theGetBase() algorithm against alter-
native base-signal constructions, while in subsection 5.3 we present
an analysis of the SBR algorithm. For these experiments we used
the following real datasets:

1. Phone Call Data: Includes the number of long dis-
tance calls originating from 15 states (AZ, CA, CO, CT, FL,
GA, IL, IN, MD, MN, MO, NJ, NY, TX, WA). For each state
we provide the number of calls per minute for a period of 19
days (data provided by AT&T Labs).

2. Weather Data: Includes the air temperature, dewpoint
temperature, wind speed, wind peak, solar irradiance and rel-
ative humidity weather measurements for the station in the

7For example, when reducing the value ofn to 10,240 data values,
the corresponding running time of SBR is just 14.4 seconds.



university of Washington, and for year 2002 (http://www-
k12.atmos.washington.edu/k12/grayskies).

3. Stock Data: Includes information on all trades performed
in a minute basis over April 3 and April 4 of year 2000. The
approximated measure in our experiments is the trade value
of the stock.

5.1 Comparison to Alternative Techniques
For this experiment we used all three datasets described above.

From theStockdata, we extracted the trade values of the following
ten (N=10) stocks: Microsoft, Oracle, Intel, Dell, Yahoo, Nokia,
Cisco, WorldCom, Ariba and Legato Systems. For each stock we
created a random sample of 20,480 of its trade values, and then
split each sample in ten files of 2,048 values each. The first of
these ten files of each stock was used for the initial creation of our
base signal, while the remaining files were used to simulate nine
update operations. For theWeatherdataset, we selected the first
40,960 records and then split the data measurements of each signal
into ten files of 4,096 values each. For thePhone Calldataset,
the aggregates for each state (N=15) were broken into ten files of
2,560 values each.

In our experiments we compared the accuracy of SBR against the
approximations obtained by using theWaveletdecomposition [3,
29], equi-depth Histograms [25] and the DCT. The Fourier trans-
form was also considered, but produced consistently larger errors
than DCT and is thus omitted. For a fair comparison we set the
space used by all methods to the exact same amount.

For all methods we considered both treating each bunch of up-
dates as a group ofN series~Yi each of lengthM and, alternatively,
concatenating the signals into a single seriesY of lengthN ×M .
For Wavelets, we found out that this produced in most cases sig-
nificantly more accurate results than by dividing the space equally
among theN signals (by a factor of 5 in many cases) because some
signals needed more wavelet coefficients than others to be approx-
imated well. For Wavelets, we also considered a 2-dimensional
decomposition of theN × M values, which produced worse re-
sults than the 1-dimensional decomposition. We here present the
best results achieved by each method.

5.1.1 Varying the Compression Ratio
We varied the compression ratio (size of the transmitted data

TotalBand over the data sizen) from 5% to 30%. In this ex-
periment we setMbase to 2,048 values for thePhone Calland the
Stocksdatasets and to 3,456 values for theWeatherdataset. In Ta-
bles 2 and 3 we present the results.

In all datasets SBR produces significantly more accurate results
than the other approximations. The difference is larger for the
Phone Calldataset which contained the largest values. As the size
of transmitted data increases, the error in our method decreases
more sharply, and is up to 4.4 times smaller than the error of Wavelets.
The DCT and the Histogram approximations produced much larger
errors is most cases.

We repeated the experiment for thePhone Calldataset, comput-
ing this time the sum-squared relative error. The results are also
shown in Table 3. The modifiedRegression() algorithm is
presented in [9]. Depending on the compression ratio, our method
was up to 49 times better than Wavelets, 9.8 times better than DCT
and 258 times better than Histograms. We note here that for this
comparison we used Haar Wavelets that are optimal only under the
sum-squared-error. The work of [12] describes algorithms for min-
imizing, among other metrics, the relative error of a Wavelet-based

approximation. Except for cases of very skewed datasets, these al-
gorithms reduce the mean relative error up to 3 times over regular
Wavelets. These improvements were seen for very coarse approx-
imations (i.e. for a compression ratio of 5% or less) where our
method already has an advantage of 42-1 over regular Wavelets.
For more space, these techniques are a lot closer to regular Wavelets.

5.1.2 Mixing The Datasets
The SBR algorithms exploits intrinsic correlations between the

signals. We now explore its behavior when these correlations are
reduced. At this experiment we tried mixing data from the three
datasets. We created a dataset that contains phone call data from
three states (AZ, CA and FL), three types of meteorological mea-
surements (air temperature, pressure and solar irradiance), and data
from three stocks (Microsoft, Intel and Oracle). For each of these
data series we created ten files of 2,048 values each. We then var-
ied the compression ratio of all algorithms from 5% to 30% and
setMbase to 2,048 values. In Table 4 we present the average sum
squared and total sum squared relative errors for all methods. The
improvements of the SBR algorithm were even larger in this case.
The SBR algorithm produced up to 27 times smaller average sum
squared errors than the closest competitor, while the improvement
reached up to 1,034 times for the total sum squared relative error.

While the results may seem surprising because the correlation
between the datasets was decreased, they are not counter-intuitive.
All the approximation methods exploit some form of correlation
or redundancy to reduce the footprint of the data. Table 4 sim-
ply shows that SBR is more robust, than Wavelets and Histograms
for example, when such correlations are reduced. The design of
the algorithm allows it to find correlations even in such cases, be-
tween intervals from different signals and different time periods.
The algorithm also has a fall-back plan of using plain regression
when such correlations are not strong. In such cases, fewer space
is allocated for the base-signal and most of the transmitted values
are used for approximating more, smaller intervals. In the next
set of experiments we will demonstrate that SBR, because of the
judicious allocation of space between the base signal and the ap-
proximated intervals, outperforms linear regression even when we
do not use its fall-back plan to (potentially use) linear regression
for the approximation of some intervals.

5.2 Alternative Base Signal Constructions
In the Appendix we present two alternative algorithms toGetBa-

se() . The first, denoted asGetBaseSVD() , is based on the
Singular Value Decomposition. The second algorithm, denoted as
GetBaseDCT() , uses the basis of the Discrete Cosine Transform
(DCT), which is a collection of cosine functions. Finally, a third al-
ternative for SBR is to do standard linear regression without using
a specially constructed base signal. For the later case, no band-
width is lost for sending base signal values and we do not need the
I.shift pointer. Thus, we can send exactlyTotalBand/3 inter-
vals for a bandwidth limitTotalBand. Similarly, the DCT base
consists of cosine functions and its values are constructed on the
fly and are thus neither stored in memory, nor are they transmitted
to the base station.

In Table 5 we compare the approximations obtained by using the
base signals computed in algorithmGetBase() with the base sig-
nal from the alternative constructions. We need to emphasize here
that for this experiment we modified theBestMap() function not
to use linear regression as an alternative to using the base signal
(so that the differences amongGetBase() , GetBaseSVD() ,
GetBaseDCT() and linear regression are not diffused). Using
the BestMap() function as presented in Section 4.2 would further



Compression Weather Data Stock Data
Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5% 1.160 2.187 35.835 27.692 0.089 0.123 0.232 0.283
10% 0.403 0.824 20.169 11.294 0.033 0.056 0.208 0.233
15% 0.209 0.514 14.328 5.432 0.017 0.034 0.192 0.214
20% 0.118 0.356 10.774 3.009 0.009 0.022 0.179 0.199
25% 0.069 0.258 8.975 1.507 0.006 0.015 0.166 0.182
30% 0.043 0.191 6.526 0.995 0.003 0.011 0.153 0.169

Table 2: Average SSE Error Varying the Compression Ratio for Weather and Stock Datasets

Compression Average SSE Error Total Sum Squared Relative Error
Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5% 9,631 29,938 15,714 165,241 922 38,477 9,019 139,528
10% 5,071 12,349 10,173 45,610 503 19,186 3,002 62,337
15% 3,192 7,998 6,767 23,311 325 12,885 1,400 36,812
20% 2,170 5,821 5,661 15,581 222 10,954 1,192 34,820
25% 1,527 4,468 4,791 11,340 158 6,915 823 33,237
30% 1,091 3,537 4,157 8,689 116 3,865 721 30,010

Table 3: Errors Varying the Compression Ratio for Phone Call Dataset

Error over GetBase()
Dataset GetBaseSVD() Linear Regression GetBaseDCT()

Weather 10.55 4.47 6.44
Phone 1.13 1.32 1.19
Stock 2.08 2.77 2.99

Table 5: Comparison to Alternative Base Signals

improve the results of our method. The compression ratio was
set to 10%. We notice thatGetBase() performs a lot better in
theWeatherdataset, up to 10 times better than the alternative algo-
rithms. For thePhone Calland theStockdata the differences are
smaller but still significant.

5.3 Analysis of SBR
We now analyze several characteristics of the SBR algorithm,

including its running time, the number of base intervals it selects
for inclusion in the base signal and the quality of its decisions.

In Figure 5 we plot the average time of each transmission oper-
ation for the Stock dataset, when the size of the transmitted data is
varied from 5% to 30% of the data size, the size ofn varies from
5,120 to 20,480,8 and the size of the base signal is 1,024. Since we
have not yet ported our code to the StrongARM platform, we exe-
cuted this experiment on a Irix machine using a 300MHz processor.
As expected (see Section 4.3) the running time scales linearly with
the size of the transmitted data. Notice that SBR is significantly
faster when greater reduction is obtained. For many practical ap-
plications, we expect to use a compression ratio of 10% (or even
less), where running time varies from 5.6 to 30 seconds depending
on the value ofn.

The SBR algorithm dynamically decides the number of base sig-
nal values to use for an upper boundMbase. We now compare
SBR against a straight-forward implementation that populates all
the available space for the base signal. In Figure 6 we plot the er-
ror of only the initial transmission as the size of the base signal is
8By varying the value of M. We always used data from 10 stocks.

Transmission
Dataset 1 2 3 4 5 6 7 8 9 10

Weather 6 6 1 0 3 0 2 3 0 1
Phone 3 6 0 1 0 0 2 0 0 1
Stock 3 0 0 2 1 0 0 0 2 0

Table 6: Number of Inserted Base Intervals per Transmission

varied, manually, from 1 to 30 intervals for thePhone, Stockand
Weatherdatasets. For this initial transmission we populated the
entire space of the base signal using theGetBase() algorithm.
For each dataset we also show the selection that the SBR algorithm
made, when deciding how many base intervals to populate. For
presentation purposes the errors for each dataset have been divided
by the error of the approximation when using just one interval. We
set the size of each stock, phone and weather data file to 3072,
2048 and 5120 values respectively, in order for all datasets to have
exactly the same size, and theTotalBand value to 5012, which
results to a compression ratio (TotalBand/n) of about 16%.

The fixed value of the compression ratio implies that an increase
in the size of the base signal results in a decrease in the number of
intervals used to approximate the data values in order to keep the
total space constant. After some point, the benefit of storing more
intervals for the base signal is outweighted by the increase in the
error that we get due to the reduced number of intervals used for the
approximation. It is interesting to see that the optimal case occurs
for a base size of between 7 (for theWeatherdataset) and 9 base
intervals (for theStockdataset), which correspond to just 2.9% to
3.75% of the data size at the first transmission. The SBR algorithm
made the optimal choice for thePhoneandWeatherdatasets and
produced a near-optimal solution for theStockdataset (it selected
to insert 6 base intervals, instead of 9). We remind that theMbase

base signal values need to be kept in the memory of the sensor in
order to perform the approximation. Our results suggest that a very
small fraction of memory needs to be sacrificed for these values.

For the same data setup, we report in Table 6 the number of in-



Compression Average SSE Error Total Sum Squared Relative Error
Ratio SBR Wavelets DCT Histograms SBR Wavelets DCT Histograms

5% 2,900 8,094 12,677 199,150 113 20,974 29,625 182,027
10% 918 3,020 7,146 46,805 37 11,054 8,653 43,701
15% 364 1,582 4,757 23,711 17 5,481 4,825 26,068
20% 139 894 3,814 14,157 9 5,310 3,339 14,780
25% 46 516 3,120 10,486 5 5,172 6,115 11,118
30% 11 297 2,680 6,894 3 5,109 1,579 9,591

Table 4: Errors Varying the Compression Ratio for the Mixed Dataset
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Figure 6: SSE error vs base signal size

serted base intervals during the 10 transmissions. As we can see,
most base intervals are inserted during the first two transmissions.
We notice that there are many transmissions during which no new
base intervals are inserted, and that the different datasets seem to
contain a widely different number of features, with the Weather
dataset containing the most features, and the Stock dataset contain-
ing the fewest.

The small number of intervals inserted in the base signal after the
initial transmissions allows us to consider executing the SBR algo-
rithm only periodically, or when the quality of the approximation
degrades, in the case of constrained environments. For the other
transmissions, the approximation may be performed by simply us-
ing the significantly fasterGetIntervals() algorithm.

6. CONCLUSIONS
We presented a new data compression technique, designed for

historical data collected in sensor networks, which however can
also be applied in compressing multiple time series in general. Our
method splits the recorded series into intervals of variable length
and encodes each of them using an artificially constructedbase
signal. The values of the base signal are extracted from the real
measurements and maintained dynamically as data changes. Our
method easily adapts to different error metrics by simply changing
the Regression subroutine used. It can also be modified to provide
strict error bounds or a combination of error and space bounds.

In our experiments we used real datasets from a variety of fields
(weather, stock and phone call data). Using the sum-squared er-
ror and the sum-squared relative error of the approximation, our
method significantly outperformed in accuracy approximations ob-
tained by using Wavelets, DCT and Histograms.

A key to our method is the use of the base signal for encoding

piece-wise linear correlations among the data values. We empha-
size here that our method does not only apply to linear datasets;
in fact none of the data we used are linear in nature. Linearity is
exploited when encoding the correlations of the data values and the
base signal. An interesting question is to what extent non-linear
encodings over the base signal values would benefit the approxi-
mations obtained without sacrificing complexity. We plan to inves-
tigate this path in the future.
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Appendix
Construction Using SVD
It can be proven that any realN ×n matrix can be written as:R =
U×Λ×V t, whereU is a column-orthonormalN×r matrix,r is the
rankof matrixR, Λ is a diagonalr×r matrix of the eigenvaluesλi

of R andV is a column-orthonormaln×r matrix. The columns of
V are the eigenvectors of matrixRt×R. Similarly, the eigenvalues
of Rt ×R are the squares ofλis: Rt ×R = V × Λ2 × V t

For R=A (our collected measurements),Rt × R captures the
similarities among the columns ofA (each collected sample). SVD
can be used for approximatingRt × R by keeping the first few
eigenvectors (columns of matrixV ). Informally, each eigenvector
captures linear trends among the rows ofA (the ~Yis). We here
propose the use of SVD as a competitor to theGetBase() algo-
rithm for generating a base signal from the data. We sketch the new
algorithm (GetBaseSVD() ) below.
1. For each row ofA, list all non-overlapping intervals of length
W . This gives usM

W
intervals per row andK = N×M

W
intervals

overall.

2. Build aK × W matrix R whose rows are the intervals of the
previous step.

3. Compute the SVD ofR = U ×Λ× V t. Return the firstStore
columns ofV .

By definition,V is anr ×W matrix (r=rank(R)) of the eigen-
vectors ofRt × R. The eigenvectors are ordered from left to right
in V . The first column ofV contains the eigenvector (of lengthW )
that corresponds to the largest eigenvalue ofRt×R. The algorithm
returns the top-maxIns eigenvectors of total sizemaxIns ×W .
These constitute the base signal fromGetBaseSVD() .

Construction Using DCT
Assuming that we are to use base intervals of lengthW , we enu-
merate all frequenciesf such that0 ≤ f ≤ W . For each fre-
quencyf , we define a base interval with valuescos( (2i+1)π

2W
f),

where0 ≤ i < W . We call this algorithmGetBaseDCT() . We
notice that we do not need to store these intervals implicitly, as they
can be computed on the fly.




