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Abstract. The locomotive motion in animals is pro- 
duced in some central neural units, and basically no 
sensory signal from peripheral receptors is necessary to 
induce it. The rhythm generators do not only produce 
rhythms but also alter their frequencies and patterns. 
This paper presents some methematical models of the 
neural rhythm generators and discusses various as- 
pects of the frequency and pattern control in them. 

1 Introduction 

Rhythm patterns in the locomotive motion of animals 
(such as locomotion of quadruped animals, flying of 
birds, and swimming of fish) are generated in some 
central neural units, and basically any sensory signal is 
unnecessary to produce them. Moreover, animals do 
not only generate the locomotive rhythms but also can 
alter their speed over a broad range. Some animals 
even change the rhythm pattern itself; the transition 
from walking to galloping in the quadruped loco- 
motion is a typical example of such a pattern change. 
Although the mechanism of the rhythm generation 
itself is now well understood (B/issler 1986), that of the 
frequency and pattern alteration is not yet clarified. 

Friesen and Stent (1977) showed that a network 
consisting of three electronic neurons with cyclic 
inhibition augmented the rhythm frequency along with 
an increase of tonic excitation to the neurons. The ratio 
of minimum to maximum duration of cycle period was 
over 1 : 5. Miller and Scott (1977) also showed that an 
electronic circuit model of the spinal locomotor gen- 
erator produced at least four-fold shifts of frequency 
according to the stimulus intensity. On the other hand, 
Tsutsumi and Matsumoto (1984) described that a 
network consisting of five neuron pairs only produced 
a frequency shift of about twenty percent by computer 
simulation. These authors, however, gave no or few 

explanations of why the rhythm frequency varied (or 
did not vary) with the intensity of the tonic inputs. 

Some animals do not only alter the rhythm fre- 
quency but also change the rhythm pattern itself. In 
quadruped mammals, at least four gaits can be seen: 
the walk, the trot, the pace, and the gallop. The order of 
the stance and swing phases in the four legs are 
completely different between these gaits. Also in in- 
sects, two different gaits are observed: the slow walk 
and the run (the tripod gait) (Pearson 1976). An 
interesting discovery relating to the pattern change is 
that the pattern can be switched artificially by altering 
the intensity of the electric stimulus to the rhythm 
generator. Shik et al. (1965) showed that an increase of 
electrical stimulation to the midbrain region of the 
decerebrate cat did not only induce an increase in 
locomotion rate but also a gait shift. 

In this paper we discuss some possible mechanisms 
in the frequency and pattern control in the neural 
rhythm generators. We first present a mathematical 
model representing a general class of neural rhythm 
generators, called mutual inhibition networks. Next, 
we investigate some specific networks consisting of a 
few neurons, which include some interesting networks 
suggesting the locomotion in quadruped and six- 
legged animals. Finally a general description is given 
on the rhythm control in the mutual inhibition net- 
works consisting of more neurons. 

Throughout the paper, no proof is given to math- 
ematical propositions. One can prove them in a similar 
way to Matsuoka (1985). 

2 Mutual Inhibition Networks 

Although various models have been proposed to 
demonstrate neural rhythms, the essential feature 
common in every model is mutual inhibition between 
neurons (or neuron units). In this paper, therefore, we 
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Fig. la-e. Step responses of the single neuron to step inputs with 
different magnitudes, a The basic model; T~= 1, Ta= 12, b=2.5, 
s(t) = 0 for t < 0 and = 1, 3 or 5 for t > 0. b A modified model (7); 
q = 2. e Another modified model; xm~x = 2. In b and c, the values of 
other parameters are the same as those in a 

only consider a class of networks in which the constitu- 
ent neurons (or neuron units) inhibit each other 
neuron's activity, and call them mutual inhibition 
networks. 

As a model of individual neurons, we adopt  the 
following continuous-time, continuous-variable neu- 
ron model, since the mathematical treatment is easy 
compared with other neuron models. 

T~dx/dt + x = s -  bf , (1) 

y=g(x--O) (g(x)-  max{0, x}), (2) 

where x is a membrane potential of the neuron body, s 
an impulse "rate" of the tonic or slowly varying input, y 
a firing "rate" or output  of the neuron, 0 a threshold, T~ 
a time constant (we refer to it as a rise time constant 
since it specifies the rise time when given a step input). 
The threshold 0 can be omitted (or 0=0)  without 
losing generality by replacing x -  0 and s -  0 with new 
variables x and s, respectively, f is the variable that 
represents the degree of fatigue or adaptation in the 
neuron, and b is the parameter that determines the 
steady-state firing rate for a constant input. If the 
second term of the right-hand side in (1) is omitted, this 
model becomes the same as the continuous neuron 
model adopted by many authors [-for example, Mor-  
ishita and Yajima (1972)]. 

The adaptation variable f obeys the following 
equation: 

T.df/dt + f =  y, (3) 

where T, is the time constant that specifies the time lag 
of the adaptation effect (we refer to it as an adaptation 
time constant). Responses of the single neuron to step 
inputs are shown in Fig. 1 a. Due to the adaptation the 
neuron has a kind Of high-pass-filter characteristic, 
which is a common property more or less observed in 
every real neuron. 

A mutual inhibition network consisting of n 
neurons is represented by: 

T~dxjdt + xi = - ~ auy j + s i -  bfi, (4) 
j = l  

yi=g(xi), (5) 

T~dfjdt + f~= yi, (6) 

where aij (> 0 for i=t=j and = 0 for i=j) is a weight of 
inhibitory synaptic connection from thej- th  neuron to 
the i-th neuron. (We consider neither excitatory con- 
nection nor  self-inhibition.) The adaptation effect or 
the high-pass-filter characteristic of the single neuron 
plays a very important  role in the rhythm generation; if 
each neuron has a strong adaptation effect, mutual 
inhibition networks of almost every structure generate 
stable rhythms if only they include a loop (Matsuoka 
1985). 

If si is replaced by Ks~ for all i, the solution of the 
differential equations only becomes K times as large as 
the original solution. Therefore, the uniform increase 
or decrease of the stimulus intensity induces no change 
in rhythm frequency or pattern. Thus, if a network has 
a property such that the rhythm frequency changes 
with the input intensity, the constituent neuron must 
have such a mechanism that the time constants or the 
other parameters virtually alter according to the 
stimulus intensity. 

3 Rhythm Control in Mutual Inhibition Networks 
Consisting of a Few Neurons 

In this section we discuss the rhythm control in several 
networks consisting of two to six neurons. They all 
have simple structures, but exhibit various aspects in 
the rhythm control. 

3.1 Two-Neuron Network 

There is only one mutual inhibition network that 
consists of two neurons (reciprocal inhibition 
network). 

Network I. This network is the most simple mutual 
inhibition network, in which two neurons suppress 
each other neuron's activity (Fig. 2a). It can be con- 
sidered a basic model of the stepping of one leg, 
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Fig. 2a-g. Network I. a Structure. b Output or firing rate of each 
neuron; T,=I, T,=12, b=2.5, a12=a21=l.5, st=s2=5, e T~=2. 
d T~=6. e b=l. f a12=azl=2.5, g Outputs of the modified 
neurons; q = 2; inputs are slowly increasing as sl(t)= sz(t)= 1 for 
t<0 and =0.02t+l for t>0. In e to g, the values of the other 
parameters are the same as in b. In e to f, the output of neuron N1 
is only shown 
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fluttering of bird wings, chewing and other simple 
rhythms, and was first investigated by Reiss (1962) by 
computer simulation. As for our continuous neuron 
model we can obtain the mathematical condition for 
the network to produce a stable rhythm; ( i )  al 2/(1 -k- b) 

<(sl/s2), azl/(l+b)<(Sz/Sl) and (2) (V~12a21) 
> 1 + T,/Ta. This condition claims that b or the adap- 
tation must be large to evoke the rhythm; one can 
easily prove that if there is no adaptation or b = 0, 
then any values ofaa2 and a21 do not satisfy the above 
condition. This network is a kind of relaxation oscil- 
lator; only one neuron can fire at a time due to the 
mutual inhibition, and the alternation of the firing 
neuron is caused by the adaptation in the firing 
neuron and the recovery of the activity in the resting 
neuron. 

The rhythm frequency depends upon the values 
of the parameters included in the model. Figure 2b-f 
shows the rhythms generated for different parameters 
(with aa2=a21 and sl=sz). It can be seen that the 
rhythm frequency is positively correlated to the pa- 
rameter b, and is negatively correlated to the rise time 
constant T~, the adaptation time constant Ta, and the 
synaptic weights of the mutual inhibition, al2 and a21. 

Meanwhile, the change of either or both stimuli 
yield little or no change in the rhythm frequency. 
However, if the neuron has a property such that its 
"virtual" time constants vary according to the input 
level, the rhythm frequency will depend on the intensity 
of the inputs. For  example, we consider the following 
equation instead of (6): 

T~df]dt +f~ = y~, (7) 

where q is an exponent greater than one. It implies that 
the adaptation effect increases in proportion of a 
power of the firing rate. Responses of the single neuron 
to step inputs of various magnitudes are shown in 
Fig. lb (q=2). As the magnitudes of the input in- 
creases, the transient burst in the beginning is pro- 
nounced; i.e., the "virtual" adaptation time constant 
increases, although Ta is fixed. A rhythm generated by 
the network consisting of this modified neurons is 
shown in Fig. 2g, where the inputs (sa = s2) are slowly 
increased. One can see that the rhythm frequency 
increases with the increase of the input. Although we 
shall not deal with this modified neuron model hence- 
forth, the same characteristic can apply to every 
network in which the alternation of the firing neuron is 
caused by the adaptation. 

3.2 Three-Neuron Networks 

There are five mutual inhibition networks consisting 
of three neurons. Four networks are only discussed, 
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Fig. 4a and b. Network III. a Structure. b Output; alj= 1.5 for 
every i and j; sl(t) = 0 for 40 < t < 50, otherwise sl(t ) = 5; sl = s2 = 5 
at every t; the other parameters are the same as in Fig. 2b 

since the other one has almost the same property as 
one of the network presented. 

Network II. We connect another  neuron N 3 to N ,  in 
Network I with a reciprocal connection (Fig. 3a). If the 
mutual inhibition is symmetric or au=  aji for every i 
and j, a sufficient condition for a stable rhythm can be 
obtained as: (1)  a 21/(l q- b) < $2/s1, a 31/(1 -{- b) < s3/sl, 
alzs2 +a13s3 <(] +b)s 1 and (2)  a12 or a13>1 + T~/T~. 

Now we suppose that the inputs, sa and sz, are 
nearly equal and fixed, while s3 is variable with time. 
For  small s3, the network is substantially the same as 
Network I, since the signal from N3 to N1 diminishes. 
If s3 becomes comparable with sl or s2, the behavior of 
the network turns to a reciprocal inhibition between 
Nx vs. a pair of N2 and N3. This case is also equivalent 
to Network I with large synaptic weights of a2~ and 
2a~2, leading to a decrease in the rhythm frequency. 
Figure 3b shows the decrease of the rhythm frequency 
when the magnitude of s 3 is slowly increased. 

Network III.  If we further assume a reciprocal inhi- 
bition between N 2 and N 3 in Network II and give all 
synaptic weights equal values (a u = a for every i and j), 
we obtain a completely symmetric structure in terms of 
graph theory (Fig. 4a). The condition for the network 

to produce a stable oscillation is: (1) a/(1 + b)<=s2/s 1 
and (2) a>l+T~/Ta, where we assume s l>s2>s3 
without losing generality. This network is also a kind 
of relaxation oscillator, requiring the adaptation for 
the rhythm generation. 

An interesting feature of this network is that it 
can generate five different rhythm patterns: 

N1 > N 2 > N 3 > N 1  >N 2  >N 3  .. . ,  

N I > N 3 > N 2 > N a > N 3 > N  2. . . ,  

N1 >N 2  >N1 >N 2  .. . ,  

N I > N 3 > N I > N 3 >  .. . .  

N 2 > N 3 > N z > N 3 >  ... 

(>  indicates the time order of firing neurons). In the 
last three cases one neuron 's  activity is always 
suppressed by the other neurons' firing. 

Due to the multimode characteristic of this net- 
work, a rhythm pattern can be switched to another 
pattern by temporarily changing the stimulus pattern. 
An example is shown in Fig. 4b. 

Network IV. Now we consider a network including a 
cyclic inhibition (Fig. 5a). If the synaptic weights are all 
the same (a12=aza=a3~=a), a condition for the 
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Fig. 5a-c. Network IV. a Structure. b Output; a12=a23=a31 
=2.5, sl-=Sz=S3=5, c The modified neuron model with a 
saturation; a12=a2a=a31=4; Xm,x=2; sl(t)=s2(t)=S3(t) 
= 0.06t + 2; the output of one neuron is only shown. The values of 
the other parameters are the same as in Fig. 2b 

network to sustain a rhythm is: (1) a/(1 +b)~S1/$2, 
Sz/S> sJsl ,  and (2) a > 1 + TJTa. 

The mechanism, of the rhythm generation in this 
network is completely different from that in the last 
three ones. If N1 is firing, N3's activity will be 
suppressed. So Nz will become firing, N1 will be 
suppressed, and so on. Thus, the alternation of the 
firing neuron is caused by the negative feedback loop of 
this network, not by the adaptation or fatigue of the 
individual neurons. This network, therefore, does not 
necessitate adaptation but only strong cyclic inhibition 
for the rhythm generation (one can see that, large "a" 
satisfies the above condition for b---0). 

Due to this behavior, the rhythm frequency is 
mainly determined by the rise time constant T, not by 
the adaptation time constant T~. If T~ is much smaller 
than Ta, the rhythm frequency will become considera- 
bly higher than that in the last three networks (Fig. 5b). 
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Fig. 6a and b. Network V. a Structure. b Output; au=2.5; 
sl=sz=5; s3(t)=0 for t<0 and =0.04t for t>0; the other 
parameters are the same as in Fig. 2b 

The frequency is independent of the stimulus 
strength even for the modified model (7), since the rise 
time constant does not depend upon the stimulus 
strength. Here, we consider another modification of 
the original model; the membrane potential of the 
neuron body has a maximum or saturation value Xmax, 
leading to a saturation of the firing rate. Step responses 
of the single neuron of this model are given in Fig. lc. 
One can see that the "virtual" rise time constant varies 
with the magnitude of the step input. If this type of 
neurons are incorporated into Network IV, the 
rhythm frequency will alter according to the stimulus 
intensity (Fig. 5c). 

Incidentally, Friesen and Stent (1977) showed that 
a three-neuron network of the same structure in- 
creased the rhythm frequency with an increase of tonic 

inputs.  Their neuron model must have had a similar 
property to the present model. 

Network V. This network (Fig. 6a) can be considered a 
combination of Network I and Network IV. For small 
s3 it is nothing but Network I (generating a low- 
frequency rhythm), and for s3 as large as s 1 and s 2 it 
behaves as Network IV (generating a high-frequency 
rhythm). Thus the rhythm frequency can be regulated 
by altering the magnitude of s 3. Figure 6b shows an 
increase of the rhythm frequency when input s 3 is 
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slowly augmented. The frequency seems to be changed 
discontinuously in the midpoint. 

3.3 Four-Neuron Networks 

Although there are more than a hundred four-neuron 
networks, we only discuss a few networks which are 

interesting from a biological point of view. 

Network VI. This network (Fig. 7) is a relative of 
Network I. If the weights of mutual inhibition are 
given symmetric values, or au=aji for all i and j, a 
sufficient condition for the rhythm generation is ob- 

Fig. 7. Structure of Ne twork  VI 
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tained as: for some i and k (i 4: k), (1)  si > ~ aus/(1 + b) 
J 

and Sk > Y, ak ~Sj/(1 + b ), and (2)  aik > 1 + T/T~ or b. If a u 
J 

all have the same value, the behavior of this network 
becomes essentially equivalent to the reciprocal inhi- 
bition between two pairs, N 1 - N  4 and N 2 - N 3 ,  in 
each of which two neurons fire in phase. This rhythm 
pattern might suggest the trot in the quadruped 
locomotion. 

Network VII. This network (Fig. 8a) has a completely 
symmetric structure as Network III does. Ifa u all have 
the same value, the condition for the rhythm gener- 
ation is just the same as that in Network III. Again it 
can produce many rhythm patterns (at least 18 pat- 
terns). However, if some synaptic weights are given 
large values relative to other ones, one rhythm pattern 
will become more stable than other patterns. One 
example is given in Fig. 8b, in which four synaptic 
weights are somewhat decreased so that the network 
will behave in a similar manner to the following 
Network VIII. One might see that it resembles the 
walk gait in the quadruped locomotion. 

Network VIII.  This network is a relative of 
Network IV and also produces a rhythm of high 
frequency (Fig. 9a). The condition for the rhythm 
generation becomes a similar one to that in 
Network IV. 

Here, we suppose that the values of sl and s2 are 
equal and fixed, while s3 and s4 are equal and 
changeable. When the magnitude of s3 or s4 is small, 
the network is equivalent to Network I, producing a 
low-frequency rhythm. For large s3 and s4, on the other 
hand, it produces a high-frequency rhythm. Thus, the 
frequency can be changed over a broad range by 
regulating the intensity of sa and s4 (Fig. 9b). 

Miller and Scott (1977) showed that a network 
model for the spinal locomotor generator changed the 
rhythm frequency according to the magnitude of a pair 
of inputs. The essential structure of their network and 
the mechanism of rhythm generation are just the same 
as those of the present model, although their model 
was composed of six neurons. 

3.4 Six-Neuron Models 

Finally we present a network consisting of six neurons, 
suggesting the six-legged locomotion in insects. 

Network IX.  This network is also a relative of 
Network I (Fig. 10); reciprocal inhibition between two 
triplets, N a - - N ~ -  Ns and N 2 - - N  3 - - N  6. Two triplets 
fire with a phase difference of 180 deg to each other 
while in each triplet three neurons fire just in phase. It 
might suggest the running gait (the tripod gait) in 
insects. 
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Network X.  This network can be obtained by adding a 
cyclic inhibition into each triplet in Network IX 
(Fig. 11 a). Between the two triplets, N 1 - N 4  - -  N5 and 
N 2 - - N  3 - - N  6, a low frequency rhythm occurs, while in 
each triplet a high-speed cyclic rhythm appears. Thus, 
the entire network generates a rhythm as N1 > N 4 > N 5 

> N 2 > N 3 > N 6 > N 1 . . .  (Fig. l lb) .  This pattern re- 
sembles the slow walk in the locomotion of insects. 
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4 General Discussion on Rhythm Control 

In the last section we investigated rhythm control in 
some networks consisting of a few neurons. Although 
they were all simple, they included various aspects in 
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rhythm generation and control. In this section we 
discuss the rhythm control in mutual inhibition net- 
works in a general manner. Since the control strategy is 
very different between the types of the networks, we 
first investigate three typical types of mutual 
inhibition networks. 

4.1 Three Typical Types of Networks 

Bfissler (1986) pointed out that neural networks gen- 
erating rhythms can be divided into three types 
(excepting endogenously oscillating neurons); negative 
feedback type, positive feedback type, and their com- 
bination. Here we discuss this categorization some- 
what mathematically. So as to avoid too complicated 
description we assume that the weights of the synaptic 
weights and inputs are all equal; aij = a or 0, and si = s 
for all i and j. Since it is obvious that a network 
including no loop generate no rhythm, we assume that 
a network includes at least one loop. 

We first define a structurally unstable network as 
follows. Let D be a subset of neurons in a network. IfD 
satisfies the following property, it is referred to as a 
D-subset: 

(1) there is no synaptic connection within D; 
(2) every neuron other than D receives at least one 

inhibitory signal from neurons in D. 
If there is no D-subset in a network, we call the 

network a structurally unstable network. In the last 
section, Networks IV and VIII are structurally un- 
stable networks. A sufficient condition for a structur- 
ally unstable network to produce a rhythm is given by: 

Proposition 1. A structurally unstable network gener- 
ates stable oscillation (not necessarily periodic), if the 
synaptic weight, a, is large enough. 

Here the term "stable" means that the network 
continue oscillating for any large disturbance; strictly 
speaking, the system of the differential equations, (4), 
(5), and (6), has no stable equilibrium state on the above 
condition. It does not demand any adaptation but only 
strong mutual inhibition. 

Next, we define a bilaterally symmetric network. 
Suppose that a network can be divided into two 
D-subsets, 

DI={N1,N2,. . . ,N,,} and Dz={N'~,N'z,...,N'~,}, 

and has a symmetric structure; i.e., if there is a 
connection from Ni to N), there is also a connection 
from N'i to Nj and vice versa. We call such a network a 
bilaterally symmetric network. Networks II, III, VI, 
and IX are of this type. A necessary condition for the 
network to generate an oscillation is: 

Proposition 2. For a bilaterally symmetric network to 
generate a stable oscillation, large adaptation or b is 

necessary. (Of course the synaptic weight, a, must be 
large for the rhythm generation, but must be small 
compared with b ). 

The mechanism of rhythm generation is completely 
different between these two types. In a structurally 
unstable network, the alternation of firing neurons is 
caused by the negative feedback loop in the network. 
It, therefore, necessitate no adaptation of the single 
neurons. In a bilaterally symmetric network, on the 
other hand, the adaptation is necessary for the gener- 
ation of stable rhythms, because the alternation of the 
firing neurons is caused by the adaptation of individual 
neurons. In most cases, the rhythm patterns will 
become the alternation between D~ and Dz, in each of 
which all neurons fire in phase. 

The last extreme case is a completely symmetric 
network. It is defined as a network in which there is a 
connection from any neuron to any neuron. The 
condition for a completely symmetric network to 
produce a sustained oscillation is: 

Proposition 3. I f  a/(1 + b) <_ 1 and a > 1 + TJT~, then the 
network produces a stable oscillation. 

Due to the symmetry of the network this type of 
networks have many rhythm patterns, which depends 
on the initial state. Also in this case, the alternation of 
the firing neuron is attributed to the adaptation in the 
individual neurons. 

4.2 Four Strategies in Rhythm Control 

Uniform Change in Intensity of the Whole Inputs. It was 
shown that, in Network I and IV, t h e  rhythm fre- 
quency varies with a uniform change of the tonic 
inputs, if the neuron model has a property such that 
the virtual time constants (rise or adaptation) change 
with the intensity of the inputs. Since the mechanism 
of rhythm generation is different between the structur- 
ally unstable networks and the (bilaterally and com- 
pletely) symmetric ones, the dependence to the two 
time constants of the rhythm frequency is completely 
different; in the former type, the frequency is deter- 
mined mainly by the rise time constant, while in the 
latter type by the adaptation time constant. 

Temporal Change of the Stimulus Pattern in Multimode 
Rhythm Generators. As the connection between 
neurons becomes complicated, the network could have 
more than one rhythm patterns. The extreme case 
occurs in completely symmetric networks. In such a 
network, the rhythm pattern can be switched by 
temporarily changing the input patterns. 

Alteration of Part of Inputs. In some networks, the 
rhythm frequency can be regulated by altering the 
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Fig. 12a and b. Two mechanisms for alteration of synaptic 
weights, a Interneuron. b Presynaptic inhibition 

strength of some inputs. The regulation of the stimuli 
functions as a kind of gating of some paths in the 
network. In Network V, for example, putting the 
stimulus s3 to null is equivalent to cutting the path 
N I ~ N 3 ~ N 2 .  For slowly varying inputs, the tran- 
sition from a low-frequency rhythm to a high- 
frequency rhythm, or its inverse, can occur con- 
tinuously or discontinuously, depending upon the 
network structure and the parameters. 

Alteration of Synaptic Weights. The alteration of the 
synaptic weights also causes the change in rhythm 
frequency and pattern. This control of synaptic weight 
could be realized by some interneuron receiving other 
control signals or presynaptic inhibition (Fig. 12). The 
weight control also functions as a gate. 

Using this mechanism, we can build a (speculative) 
model of the pattern change in the quadruped loco- 
motion. First we consider Network VII in Fig. 8a. If 
the mutual inhibition is all large, the network will 
produce a slow rhythm resembling the walk gait as 
shown in Fig. 8b; N 1 > N 4 > N 2 > N 3 > N 1  . . . .  If the 
reciprocal inhibition A in Fig. 8a is not allowed to 
work, the rhythm pattern will turn to a reciprocal 
inhibition between two pairs, N~--N 4 and N z - - N 3 ,  
giving the trot. If the reciprocal inhibition B is removed 
instead, it becomes the reciprocal inhibition between 
N 1 - N  3 and N2-N4 ,  giving the pace. Finally if the 
reciprocal inhibition C is eliminated, it will induce an 
alternation between N 1 --N z and N 3 - -N4 ,  leading to 
the gallop. This strategy can also apply to the switch- 
ing between the slow walk and the run in the six-legged 
locomotion; transition between Networks IX and X. 

(I)  the regulation of the stimulus intensity of the 
whole inputs; 

(2) the temporary change ofinput in the networks 
potentially producing more than one rhythm; 

(3) the alteration of part of stimuli; 
(4) the change of synaptic weights. 
Our mutual inhibition network model is imperfect 

in two respects: 
(I)  the model includes no excitatory synapse, 

which might have some important functions; 
(2) it does not take into account the role of 

sensory signals from peripheral nerve receptors. 
However, our model will be suggestive also when 

one constructs a more complicated model including 
these functions. 
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5 Concluding Remarks 

We have seen four control mechanisms in the rhythm 
control. They are: 
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