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Abstract

We investigate the effectiveness of policies in favor of innovation in renew-
able energy under different levels of competition. Using information regarding
renewable energy policies, product market regulation and high-quality green
patents for OECD countries since the late 1970s, we develop a pre-sample mean
count-data econometric specification that also accounts for the endogeneity of
policies. We find that renewable energy policies are significantly more effective
in fostering green innovation in countries with deregulated energy markets. We
also find that public support for renewable energy is crucial only in the genera-
tion of high-quality green patents, whereas competition enhances the generation
of green patents irrespective of their quality.
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1 Introduction

Innovation is commonly regarded as the most effective response to sustaining current
standards of living while overcoming serious environmental concerns. In the case of
energy, increasing resource scarcity calls for the rapid development of new energy
sources and, in particular, of renewable energy. As of today, renewable energy cannot
compete with fossil fuel in terms of production costs but impressive technological
progress has paved the way for promising alternatives, such as biomass, solar and
wind energy sources '. Nations, too, have developed areas of specialization in specific
types of renewable energy sources, such as Denmark in wind technologies, Sweden
and Germany in bioenergy, Germany and Spain in solar energy, and Norway and
Austria in hydropower.

In addressing the issue of how to foster environmental innovation, the theoretical
literature stresses the importance of policy interventions targeted at both knowledge
and environmental externalities (Fischer & Newell 2008, Acemoglu et al. 2012, Popp
et al. 2009). Along these lines, a vast empirical literature has assessed the extent to
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which environmental policies and/or energy prices are able to spur environmental
innovations (Popp 2002, Johnstone et al. 2010). Another line of research in the field
of energy economics investigates the effect of market liberalization on the propen-
sity to innovate of electric utilities and specialized suppliers of electrical equipment
(Jamasb & Pollitt 2008, Sanyal & Ghosh 2012). While both competition and poli-
cies in support of innovation are key drivers of energy technologies (Newell 2011),
the interplay of these two factors has yet to be assessed in a rigorous empirical
framework.

Our aim is to fill this gap by investigating the effectiveness of policies that en-
courage innovation in renewable energy under different levels of competition. Our
theoretical background is the recent reappraisal of the debate about the relationship
between innovation and competition in Schumpeterian growth models (Aghion et al.
2001, 2005). These models have questioned the standard argument that oligopolis-
tic markets enhance innovation via two arguments: first, lowering barriers to entry
yields greater incentives for incumbents to invest in innovation to escape new entrant
competition; second, fostering entry is tantamount to supporting the introduction
of new inventions into the market. This should be particularly so for renewable
energy technologies that involve decentralized energy generation and a smaller scale
of production.

More generally, the positive effect of lowering barriers of entry for innovation is
likely to prevail in those sectors in which innovation may be radical and competence
destroying, as in the case of centralized energy production. Several studies document
the political opposition of large utilities to renewable energy policies and to the key
role of new players for renewable energy innovation?. The internal resistance of the
electricity sector against radical innovation also depends on the cognitive “lock-in”
of incumbents that lack the appropriate skills to develop these technologies. In this
context, the external stimulus of market liberalization, particularly in the form of
free access to the grid for independent power producers, might be essential to foster
renewable energy innovation (Makard & Truffer 2006).

Our paper is the first to carry out a cross-country analysis that empirically as-
sesses the complementarity between targeted industrial policies and competition in
energy production®. We developed a unique dataset that contains cross-country in-
formation on renewable energy policies (REPs), product market regulation (PMR)
and high-quality renewable energy patents, i.e., where priority is claimed in several
countries. In fact, one should expect such complementarities to arise because pro-
duction of energy is generally more expensive with green technologies; thus, public
subsidies are essential to spur demand for renewable energy and to make market
entry attractive for new players. It follows that a combination of public policies and
product market deregulation is likely to bring about a positive effect on innovation.
In particular, one should expect policies to be significantly more effective in liber-
alized markets because public subsidies attract private R&D investments and may

2See, e.g., Neuhoff (2005), Jacobsson & Bergek (2004), Hadjilambrinos (2000), Nilsson et al.
(2004) and Lauber & Mez (2004). For cross-country econometric analyses on the effect of the
energy lobby on energy intensity, see Fredriksson et al. (2004) and, on renewable energy policies,
see Nicolli & Vona (2012).

3The contribution of Aghion et al. (2012), addressing similar matters, is both more general in
that it pertains to all sectors and more specific because it concentrates on manufacturing firms in
China.



trigger a race for leadership in the emerging market for clean energy.

Another distinct feature of our contribution is the econometric specification,
which, to our knowledge, is the first to combine three econometric issues into a
count-data setting. First, we make use of a dynamic empirical setup that accounts
explicitly for the fact that innovation tends to occur in technological domains in
which firms have previously developed skills and competencies. Second, we account
for unobserved country heterogeneity by means of the pre-sample mean Poisson
model with linear feedback suggested by Blundell et al. (2002). The initial con-
ditions, built upon pre-sample information about the dependent variable, are the
most convenient way to account for unobserved individual effects, particularly when
variables of interest are highly persistent. We choose this model because we have a
long string of pre-sample observations for our dependent variable, a key requirement
to reduce the bias in the estimated coefficients. Finally, we use the GMM estimator
because it provides a flexible mechanism to address the issue of endogeneity for both
environmental policies and the index of market competition.

Our main findings are the following. First and foremost, we find that REPs are
significantly more effective in fostering green innovation in countries with deregu-
lated energy markets. The effect is sizeable; REPs are twice as effective in dereg-
ulated energy markets with respect to the average level of regulation in developed
countries. Second, energy market deregulation has a positive effect on innovation.
This effect is primarily driven by the entry barrier component of the PMR index
and becomes weaker when the main variables of interest are instrumented. Third,
both public policies and their interaction with PMR have a much larger effect on
high-quality triadic patents than on generic ones. Finally, our analysis allows us to
reassess the role of other determinants of renewable energy technologies that have
been the focus of the existing empirical literature (see e.g. Popp 2002, Johnstone
et al. 2010). We conclude that public R&D expenditures play a key role only for
high-quality triadic patents, whereas energy prices are not as important as previously
thought when controlling for REPs and PMR.

The remainder of the paper is organized as follows. Section 2 discusses the
theoretical underpinnings on which our empirical strategy is based in detail. The
first part of Section 3 provides details on the methodology used to build our dataset
and our main policy indicators, while the second part describes the econometric
matters at hand. Section 4 presents the baseline results. Sections 5 and 6 are all
robustness checks, the former controlling for the endogeneity of the policy variables,
and the latter accounting for patent quality. Section 7 quantifies the marginal effect
of the policy variables. Section 8 concludes.

2 Factors affecting renewable energy innovations

The relationship between innovation and competition has been recently reconsid-
ered in Schumpeterian growth models (see e.g. Aghion et al. 2001, 2005). This
new class of models incorporates both the classical Schumpeterian effect, in which
competition reduces innovative rents and therefore R&D investments, and an es-
caping competition effect. The latter effect holds that the threat of entry of new
firms induces incumbents to increase R&D investments to preserve or enhance their
market shares. The theory suggests that the effect of competition on innovation is



crucially mediated by initial sectoral characteristics. In particular, a positive effect
of competition on innovation prevails in sectors initially characterized by low levels
of competition. In the case of energy industries, both the electricity and the gas
sector are naturally characterized by a low level of competition at the onset of the
liberalization process; therefore, the escaping competition effect is expected to pre-
vail. Nonetheless, country-level studies, mostly limited to the US and the UK, found
that R&D expenditures and patent activities declined after market reforms?*. It is
worth noting, however, that this evidence neither applies directly to cross-country
comparisons nor seems robust for patent-based analyses, particularly for renewable
energy patents(Jamasb & Pollitt 2011).

The literature on innovation regimes provides a slightly different rationale to
support the positive effect of competition on radical innovations. Winter (1984)
distinguishes between an entrepreneurial innovation regime, in which entry spurs
innovation, and a routinized regime, characterized by R&D investments of large
firms aimed at improving existing technologies®. In a similar vein, Klepper (1996)
explains an industry’s life cycle in terms of returns on R&D investments, where
product innovation is more beneficial to smaller and younger firms, while process
innovation yields greater returns for large firms. As a result, during their life cycle,
firms modify the type of innovative activities undertaken, gradually shifting towards
routinized process R&D activities. As a whole, the positive effect of competition on
innovation is expected to strongly dominate in the context of radically innovative
technologies and emergent markets.

Renewable energy innovation seems to fit the conditions highlighted in the liter-
ature on innovation regimes well. Such innovation is in fact radical and competence
destroying for the centralized paradigm of energy production (David & Wright 2006,
Lehtonen & Nye 2009). While production of energy from more promising renew-
able sources is mainly decentralized in small and medium sized units, the skills of
incumbents are tied to large scale plants using coal, nuclear materials or gas as pri-
mary energy inputs. Thus, there is substantial evidence showing the sustained entry
of new firms producing clean energy or with new electric equipment, such as wind
turbines, even before the liberalization process began®. These new firms are consid-
ered key players for innovation in the electricity sector (Jacobsson & Bergek 2004,
Sanyal & Cohen 2009). Thus, we expect the effect of deregulation to be positive on
innovation in renewable energy (Makard & Truffer 2006).

From an empirical viewpoint, past contributions have previously assessed the
effect of liberalization on innovation. Sanyal & Ghosh (2012) show that greater com-
petition in wholesale markets can increase the fraction of innovative rents that are
obtained by specialized upstream suppliers, as long as many non-utility generation
actors enter the wholesale market. These new actors (such as farmers, small com-

4See for the US Dooley (1998), Sanyal (2007), Nemet & Kammen (2007), Sanyal & Cohen (2009),
Sanyal & Ghosh (2012) and for the UK Jamasb & Pollitt (2008). Similarly, the negative effects
of deregulation on energy R&D were found for electric utilities worldwide by Sterlacchini (2012),
Salies (2010).

SEmpirical evidence that small firms tend to undertake more radical innovation or in general
respond to different innovative inputs can be found in Akcigit & Kerr (2010), Scherer (1984), Acs
& Audretsch (1988), among others. In particular, Acs & Audretsch (1988) found that lower market
concentration increases innovation by small firms by a factor of 2

6See, e.g., Jacobsson & Johnson (2000), Jacobsson & Bergek (2004), Nilsson et al. (2004), Lauber
& Mez (2004), Hadjilambrinos (2000), Makard & Truffer (2006).



munities, municipalities and households) are generally specialized in decentralized
energy production, such as combined generation, local heating systems and renew-
able sources. In Denmark, for instance, most wind turbines are owned by house-
holds, municipalities and small communities, whereas utility-owned wind capacity
accounted for only 15% of the total installed wind capacity in 1990 (Hadjilambrinos
2000).

Deregulation of the energy markets has often been designed to favor these small
producers. In the US for example, the approval of the Public Utility Regulatory
Policies Act (PURPA) mandates that public utilities purchase energy from small-
scale power producers, essentially non-utility generators producing from renewable
sources (Loiter & Norberg-Bohm 1999). The entry of non-utility generators with
their associated positive effect on innovation is therefore expected to be significantly
stronger for renewable energy technologies.

With the exception of R&D subsidies, the primary goal of renewable energy
policy is to generate a certain volume of demand for clean energy (Popp et al.
2009). The positive demand shock is expected to stimulate innovation, particularly
when the entry of new players is facilitated. Aghion et al. (2012) address the issue
of complementarity between market competition and industrial policies along the
lines of Schumpeterian growth models. Policies targeted at sectors with higher
technological potential have a larger effect on firm innovative efforts, provided that
there is a low degree of collusion in the sector. Similarly, electric utilities in a
monopolistic position are likely to respond to targeted REPs with relatively low
innovative efforts because profit levels for these firms are marginally affected by
renewable energy innovation. Public policies will be successful when new players
developing new technologies enter the market, instead of incumbents complying
with regulations using existing solutions. In other words, success in public support
also depends on low entry barriers to the market.

Our paper is also related to a vast empirical literature on environmental innova-
tion that analyzes the inducement effect of policy and energy prices (Jaffe & Palmer
1997, Newell et al. 1999, Popp 2002). Although past studies have tested the effect of
policy on innovation using patent data’, only a few studies have incorporated some
form of path dependency into their empirical specification. Popp (2002) investigates
the effect of technology-specific knowledge stocks, energy prices and public R&D on
renewable and energy-efficient USPTO patents. Aghion et al. (2011) also include
technology-specific knowledge stocks to test the directed technical change hypothesis
of Acemoglu et al. (2012) for the auto industry by using firm-level data. Differently
from these works, we account for path dependency by including linear feedback on
the dependent variable to disentangle the short- and long-run effects of our variables
of interest.

Finally, our paper is complementary to Johnstone et al. (2010), who shows
that targeted policies in OECD countries have had a positive and significant effect
on patent applications for renewable technologies. In particular, guaranteed price
schemes and investment incentives have played a major role in the early phase of
the technology life cycle, whereas, for relatively more mature technologies, quantity-
based instruments seem more suitable. However, their emphasis is on the heteroge-

"See, e.g.,Lanjouw & Mody (1996), Brunnermeier & Cohen (2003), Popp (2002, 20064), John-
stone et al. (2010), Verdolini & Galeotti (2011).



neous effects of different policies, while our paper tests the policy complementarity
hypothesis, including dynamic feedbacks and accounting for endogeneity in policies.

3 Empirical Protocol

3.1 Data

Our database combines several sources, gathering patent data to measure innovation
using policy and regulatory variables found in various data sources. The set of
explanatory variables used in this paper is almost identical to the one used by the
closely related paper of Johnstone et al. (2010); we add the PMR index and build
an aggregate policy index that may be instrumented.

Dependent Variable. We measure innovation by means of patent statistics.
Patent counts provide readily accessible and exhaustive information on both the
nature of the invention and the applicant. We use the PATSTAT database, which
accounts for more than 70 million patents worldwide, covers 84 different patent of-
fices, and spans over a long time period. PATSTAT provides codified information
on the legal authorities issuing the patent document to the name of the inventor,
its nationality, the priority dates and the assignee being granted ownership of the
invention.

The availability of the technological content of patents by means of the so-called
International Patent Classification (IPC) system is of the utmost importance for
our study. The IPC allows us to distinguish an invention in renewable energy from
other innovations. Following Johnstone et al. (2010) and Popp et al. (2011), we use
patents registered in the sub-fields of wind, marine, solar thermal, solar photovoltaic,
biofuels, hydroelectric, fuels from waste, geothermal and tidal to construct a single
indicator of innovative activity in the field of renewable energy. Table 3.1 provides
the definition of these subfields and displays the list of IPC classes used to identify
them as belonging to the realm of renewable energy.

[Table 1 about here.]

As suggested in Griliches (1990), patent data are a good indicator of innova-
tive activity, given their high correlation with R&D spending. However, the use of
patents as a proxy for technological innovation also has important drawbacks be-
cause not all innovations are patented, the propensity to apply for a patent grant
may vary a great deal across countries, differences in patent legislation can compli-
cate cross-country comparisons, and patents may grant protection to innovations of
substantially heterogeneous economic value (Pavitt 1988). In our empirical work,
we rely on quality-weighted patent counts, as opposed to simple patents count, to
calculate the economic value of patents.

We account for the economic value of patents using patent family size. Patent
family size refers to the number of patent offices to which an application for a patent
has been filed (Dernis & Khan 2004). Because of the pecuniary and time costs of
filing abroad, only patent applications for the most valuable inventions are filed in
other jurisdictions or countries. Filing a patent application is a signal that the in-
ventor expects the invention to be profitable in the given country. Therefore, the



patent family provides a quality threshold that eliminates low-value applications
(Popp et al. 2011). Another important implication of using the patent family is
that it also corrects for the so-called home-country bias. Because domestic appli-
cants tend to file for more patents in their home country than foreign applicants, all
patent statistics suffer from home bias. Patent family size is therefore an important
component of our cross-country analysis. A particular patent family is the so-called
Triadic Patent Family (TPF), which includes patent applications filed to the Eu-
ropean, Japanese and US patent offices (EPO, JPO, USPTO). Often, families of
invention incorporate offices that reflect either small foreign markets or countries of
a lower technological intensity. Accordingly , our results are also extended to triadic
patents, the use of which setting an even higher threshold on the expected patent
quality®. For all patents, including green patents, figure 1 shows the flow of patent
applications for our three innovation measures of generic patents, patent families
consisting of at least 2 applications and triadic patents. Until the 1990s, both green
and generic patents grow more or less at a similar pace, except for the small boom
in green innovation following the oil shocks of the 1970s, when the trends began to
diverge substantially, and green innovations began to increase at a much faster rate
than generic ones.

[Figure 1 about here.]

Renewable Energy Policy. The main goal of this paper is to study the comple-
mentarity between targeted industrial policies and competition in energy production.
The limited cross-sectional variation in environmental policies and PMR makes it
difficult to identify of each interaction between a specific REP, such as tax credits,
and the degree of competition. In particular, each country diversifies its energy
strategy by adopting different REPs, and estimating the effect of a specific policy
conditioned to the regime of competition is therefore exceedingly difficult. For these
reasons, we build a renewable energy policy index combining information about sev-
eral types of renewable energy policies. Stacking all variables within a single index
implies a loss of information because the effect of individual policies on renewable
energy is no longer able to be detected, as reported in the closely related paper
of Johnstone et al. (2010). Yet an aggregate policy index allows us to address the
rather unexplored issue of endogeneity in the estimation of the effect of REPs on
innovation.

The REP index is based on the exploitation of a comprehensive dataset made
available by the International Energy Agency (IEA 2004), which contains detailed
country fact sheets and provides information on the year of adoption of selected
REPs for most OECD countries (Johnstone et al. 2010), see Table 2 for a detailed
description. We then build a single policy index that varies across years and countries
as described below.

8A valid alternative to the patent family is considering only patents filed at the EPO, as in
Johnstone et al. (2010) or patents filed under the PCT. Nevertheless, EPO data suffer from a
strong home bias. Patent citations are also used as a proxy for patent quality, on the basis that
patents citations embody prior arts that are often referred to by subsequent inventions. Although
generally correct, there is a good deal of noise with patent citations, as they are also advocated for
by patent offices themselves (Harhoff et al. 1999). Furthermore, PATSTAT is a work in progress,
and the exhaustive retrieval of patent citations has not been completed as of today, prohibiting us
from using such citations as an alternative measure of patent quality



[Table 2 about here.]

First, we create a series of dummy variables reflecting the adoption of a set of
the following legal supports for renewable energy: (i) the introduction of investment
incentives; (ii)economic instruments used to encourage production or discourage
consumption (usually called tax measures); (iii) the adoption of incentive tariff sys-
tems, such as feed-in tariffs or bidding schemes; (iv) the establishment of voluntary
programs or agreements among the actors involved in the energy sector; (v) legis-
lation that makes it compulsory for producers to produce a share of their energy
supply from renewable energy (which is not covered by a tradable certificate); (vi)
the presence of tradable Renewable Energy Certificates (REC) systems; and (vii)
the implementation of a publically financed R&D program. The policy index is the
sum of all implemented policies expressed as dummies. Similar examples of envi-
ronmental policy indices based on a synthesis of diverse policy performances can be
found in Dasgupta et al. (2001) and Esty & Porter (2005). An indicator based on
adoption dummies appears to reflect the overall scope of the government’s support
of renewable energy closely.

Our policy index screens out information held in continuous policy variables,
such as public renewable R&D expenditures, feed-in tariff schemes and RECs?. To
recover information on the intensity of public commitment to renewable energy, we
consider the variables. For public R&D expenditures, we insert its per capita value
in all regressions separately. For the latter two policies (feed-in tariff schemes and
RECs), we analyze their individual effects in particular econometric specifications
instead. However, looking at the intensity of these two policies remains somewhat
misleading. On the one hand, RECs have been implemented since the early 2000s,
and they have hardly been changed since then. On the other hand, the intensity of
feed-in tariff schemes have been subject to downward adjustments, particularly in
early adopting countries, such as Denmark and Germany.

Product Market Regulation. We characterize product market regulation (PMR)
using the time-varying sector specific index developed at the OECD!. For each
sector, the index combines information on barriers to entrepreneurship and admin-
istrative regulation (such as licenses and permits, administrative burdens, and legal
barriers), state control (such as price control and ownership), and barriers to trade
and foreign direct investment (such as tariffs and ownership barriers)!!.

Information on the former is available in the joint IEA-OECD dataset, and the main references
for feed-in tariffs are two reports drawn up by the IEA (2004), Cerveny & Resch (1998) and several
country-specific sources. The variable constructed by Johnstone et al. (2010) measures the strin-
gency of REC targets, which reflects the share of electricity that must be generated by renewables
or covered with an REC. Using aggregation methods that allow the exploitation of both continuous
and 0-1 policy signals, such as Principal Component Analysis, do not change the presented results.
For details on the possible methodologies that can be used to aggregate this heterogeneous set of
policies and on the common determinants of indices derived from different aggregation methods,
see Nicolli & Vona (2012).

19The data sources include the privatization Barometer of the Fondazione Enrico Mattei, the In-
tegrated Data Base of the World Trade Organization and interviews with civil servants in particular
areas. With regard to the building of the indicator, low-level indicators are aggregated in high level
indicators, using principal components analysis. For details on the construction of the index and
the weighting scheme, see Conway et al. (2005).

H1iberalization has generally implied the establishment of authority to regulate abuse of mar-



The sectors of interest in the field of renewable energy are electricity (ISIC 4010)
and gas (ISIC 4020). The PMR index for electricity and gas essentially combines
different sub-indices ranging from 0 to 6, where high values indicate a high level
of regulation and therefore a low level of competition. The first is ownership that
assumes five values: private (0), mostly private (1.5), mixed (3), mostly public (4.5)
and public (6). The second is an index of entry barriers that combine information on
third party access to the grid (regulated (0), negotiated (3), no access (6)) and the
power of minimum consumers size to freely choose their supplier (from no threshold
(0) to no choice (6)). The third component is vertical integration ranging from
unbundling (0) to full integration (6). In the main analysis, we used a single index,
weighting the electricity and gas indices by 0.75 and 0.25, respectively. Using the
simple PMR index for electricity does not alter the results.

[Figure 2 about here.]

Figure 2 displays the evolution of green family patent production, of the renew-
able energy policy index and of product market regulation between 1976 and 2007
for a set of large and small countries. The tendency toward convergence in the PMR
index and, to a lesser extent, in REPs, contrasts with the divergent pattern observed
in the flow of patent applications. This descriptive evidence suggests that the timing
of policy adoption and of liberalization matters in the establishment of technolog-
ical advantages, as if the time of policy adoption yields a first mover advantage.
By way of example, Anglo-Saxon and Scandinavian countries that outperform most
countries in terms of green innovation liberalized their electricity sector in the late
1980s and the early 1990s, significantly before the bulk of other OECD countries
(Glachant & Finon 2003, IEA 2004).

Control variables. We augment the econometric specification with a series a
standard control variables that may affect green innovation above and beyond the
presumably lead roles of REPs and PMR (Johnstone et al. 2010). Following the
literature on induced innovation (Popp 2002, Newell et al. 1999), we should expect
that an increase in the price of electricity would amplify the incentives for innovation
in renewable energies. We assume the price of electricity to be exogenous, considering
that renewables account for only a small share of overall electricity production. We
also include electricity consumption by households and industry sectors to control
for the possible dimension of the potential market for renewable energies. We also
included a dummy variable set to unity for years after the Kyoto Protocol in 1997
to capture changes in expectation about the context for future policy and carbon
prices (Popp et al. 2011).

As additional control variables, we include the overall number of patent families
generated in a particular year. This variable accounts for the overall propensity
of the country to patent, ensuring that the presumably significant effect of REPs
and PMR prevails even after controlling for the overall ability of the country to
generate innovations. Including the total number of patents in the controls-instead

ket power, privatization and ownership fragmentation, permitting customers to freely choose their
favorite supplier, and the promotion of a progressive unbundling of distribution, generation and
transmission activities. In particular, transparent approval of procedures for building new plants
and easing access to the electricity grid has been important in stimulating the entry of new players.



of the (log-transform of the) ratio of green over total patents as the dependent
variable-generalizes the econometric strategy followed by Popp (2002) and Aghion
et al. (2011) because we do not constrain the model to unit proportionality between
green and generic patents. We also introduce a time trend. Our expectation is that
of a negative time trend, suggesting that early innovation in a given technological
domain is based on the most immediate applications. As time goes by, however,
invention draws on more complex models and ideas, making future innovation more
difficult to generate. Finally, we augment our model by including the lagged depen-
dent variable, which is tantamount to controlling for past successes in innovation,
therefore controlling for persistence in inventive activities (Blundell et al. 1995).

[Table 3 about here.]

[Table 4 about here.]

Tables 3 and 4 provide summary statistics by country and for the overall panel.
In particular, Table 3 also shows figures for green patent intensity, confirming the
leadership of the Scandinavian countries (such as Norway and Denmark) and the
remarkable positions of Spain, Greece, Portugal, the Czech Republic and Poland. In
turn, Germany is the only large and wealthy country with a green intensity above
the mean.

3.2 Econometric Issues

Research activities are inherently uncertain, so countries do not systematically come
up with promising discoveries; therefore, zero and low values represent a common
outcome of the family-weighted number of patents. The consequent positive skew-
ness suggests that conventional uses of ordinary least squares yields biased and
inconsistent estimates. The discreteness of the dependent variables and the number
of family-weighted patents argues for the use of count-data models that have proved
more appropriate in dealing with non-negative integers. Thus, we assume that the
dependent variable follows a Poisson distribution, which means that discovery is the
outcome of a large number of trials with a small probability of success.

Let y;; be the number of family-weighted patents assigned to country ¢, where
i1=1,...,N,at time ¢, where t = 1,...,T. Asis well known, the dependent variable
y has a Poisson distribution with the parameter \;;. We condition parameter \;; on
the host of factors Xt and the associated set of parameters 8 that are in this case
the estimated effects of the set of factors affecting innovation in renewable energy.
The expected family-weighted patent count of country ¢ is given by Equation 1, the
exponential forms guaranteeing the non-negativity of the expected patent count:

B (3 | Xiv) = cap (Xiy8) M

The major feature of the Poisson model lies in the assumption of the equality of
the mean and the variance of parameters, although the empirical mean and variance
reveals the presence of overdispersion. The choice of family as opposed to triadic
patents to account for quality is motivated by the presence of the many zeros in the
triadic patent count, rendering the overdispersion problem more severe than in the
case of family patents. This choice allows us to simply use cluster-robust standard

10



errors to account for mild cases of overdispersion, as stipulated by Cameron &
Trivedi (2005).

Apart from the count- data nature of the dependent variable, the economet-
ric specification must address three important matters in the estimation procedure.
First, as in panel data settings, persistent differences across countries in renew-
able energy invention are likely to be present. The first option is to specify the
traditional fixed effect count-data estimator developed by Hausman et al. (1984).
However, this estimator is inconsistent for the parameters of interest if the regres-
sors are not strictly exogenous, as is the case with our policy variables (see Section
5 below)!2. An alternative is to use the (quasi-) differenced estimator as proposed
by Chamberlain (1992) and Wooldridge (1997). Instead, we account for unobserved
heterogeneity using Blundell et al. (2002)’s pre-sample mean (PSM) estimator. We
prefer the PSM estimator to the (quasi-) differenced estimator because of the lack of
consistency of the latter, particularly when series are highly persistent. Information
on the dependent variable prior to the initial year of investigation (1977) captures
unobserved heterogeneity. This PSM estimator is shown to be consistent when the
number of pre-sample periods is large (as is the case with patent data) and to have
better finite sample properties than the quasi-differenced GMM estimator (Blundell
et al. 2002).

In the presence of pre-sample information, a useful alternative to mean differ-
encing is the inclusion of the pre-sample mean value of the dependent variable as
follows:

yir = exp(XiB +vIngip) + it (2)

where g;, = (1/TP) foo_l Y;,0—r Tepresent the pre-sample mean which grasps per-
sistent differences across panels of the database (countries); TP is the number of
pre-sample observations.

Second, we introduce dynamics by inserting a linear feedback as in Blundell et al.
(2002):

Yit = pYit—1 + exp(Xif + vIngip) + €it (3)

The purpose of imposing a linear feedback, as opposed to an exponential feed-
back, is that it eliminates the possibility of an explosive series. Thus, imposing a
linear feedback model is akin to imposing a lower bound to the expected patent
count set to pyi—1, because exp(X;S + vInysy) is always positive. Note that the
inclusion of the lagged dependent variable allows us to account for lags between the
set of covariates and the dependent variable without imposing a lag structure.

The last issue concerns the well-known endogeneity of policies for three reasons.
The first reason is the mutual reinforcement effect initially recognized by Downing
and White (1986), who posited that, if innovation in environmental technologies
follows the implementation of an effective policy support, progress in the generation
of renewable energy will, in turn, provide support for that policy. Second, the effect
of a given policy is likely to be heterogeneous, implying that unobservable factors
affect both the policy and the propensity to patents; thus, an omitted variable

12The results presented hereafter are robust to the use of a within estimator to account for the
individual effects.
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bias plagues the estimated policy-innovation relationship. Third, renewable energy
policies are measured with a substantial error. For most policies, particularly the
ones in place since the 1970s and 1980s, the lack of detailed information allows only
for policy dummies, which at best are only rough proxies.

We will therefore estimate Model 3 using the generalized method of moments.
Relying on a GMM estimator allows for use of instruments as follows:

N T

> Zae (yir — pyic—1 — exp(XigB + ¥ Ingip)) = 0 (4)
i=1 1=1

1
N
where we define exclusion restrictions in the case of endogeneity of the regressors
as Zy = (1, Xit, Yip» Pit—r IVit_T>, Xt is the adapted set of variables, which are
considered exogenous, Py, are our various measures of policy indices (REP and

PMR), and IV are instruments that serve as additional moment restrictions, which
are typically out-of-sample instruments that will be discussed in later parts of the

paper.

4 Baseline Results

Table 5 displays the results of regressions in which we sequentially introduce our
variables of interest in the specification. In Model 1, the linear feedback and the
family weighted number of patents capture a significant share of the variance of the
dependent variable. The country-specific initial conditions (Pre-Sample Mean) and
energy prices have the expected sign and are near significance. In turn, public R&D
in renewable energy has no particular effect on the dependent variable. Model 2
introduces the Kyoto dummy with our Renewable Energy Policy index. Both are
positive and significant, validating the idea that public authorities are essential to
guide the direction of invention. Innovation in renewable energy is greater in coun-
tries in which there is substantial public support for it. Not surprisingly, estimated
elasticities decrease in Model 2; the effects of the linear feedback and of the number
of generic patents decline well below unity, while the time trend becomes negative'>.
These results suggest the presence of a technological frontier that becomes more
difficult to move forward as the knowledge stock increases.

From the above, we can conclude that policies fostering demand for clean energy
matter more than mere public R&D expenditures, which highlights the leading role
of demand and learning effects, as opposed to a pure technology push (Fischer &
Newell 2008). These results are consistent with those of Popp (2002), who found
that public R&D expenditures have an unstable and often insignificant effect on
green patents. Section 6 below addresses this issue in more detail.

[Table 5 about here.]

Model 3 shows that PMR, the index for product market competition, has a
negative and significant effect on the generation of green patents, implying that

13This latter result is consistent with the idea that invention becomes harder as time goes by.
For example, renewable energies are characterized by decreasing returns associated with the limited
number of appropriate geographical locations (Fischer & Newell 2008).
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invention in renewable energy occurs in more competitive markets'4. Past literature
has produced results that are both consistent and at odds with our findings. On
the one hand, Jamasb & Pollitt (2008) (resp., Sanyal & Ghosh 2012) find that
liberalization in the energy market in the UK (resp., in the US) has had a negative
effect on overall energy patents. On the other hand, Blundell et al. (1995) (resp.,
Griffith et al. 2010) estimate a positive effect on generic innovation in the UK (resp.,
for a group of EU countries), particularly in sectors characterized by low initial
levels of competition. These discrepancies may reveal systematic differences in the
way liberalization has been implemented in these countries, or they may show the
results of differences in measurements and econometric specification. Importantly,
the inclusion of PMR leaves the parameter estimate of the Policy Index unaffected.
This result suggests that regulations in product markets and policies in support of
renewable energy are significantly distinct instruments that are available to policy
makers.

Model 4 displays the key specification where we include an interaction term
between PMR and the Policy Index. The negative sign and statistical significance of
the interaction term is expected theoretically. These findings reveal that renewable
energy policies are more effective in more competitive markets, validating the policy
complementarity hypothesis. Table 3 shows that the policy mix displayed by the
US seems the most appropriate, scoring highest in the REP index and achieving the
lowest score in PMR, implying a policy mix of substantial support for renewable
energy innovation in a broadly deregulated market. More mitigated policy mixes
can be found in France and, to a lesser extent, Denmark, where substantial public
support in favor of renewable energy may be made less efficient by the lack of
competition in their respective energy markets. These remarks should not conceal
within-country variations that would exhibit an increase in public support with an
increase in competition in energy markets for both countries.

Model 5 offers an alternative way of testing our policy complementarity hypoth-
esis that allows for nonlinearity in the interaction effect. In particular, we allow the
policy index REP to interact with each tercile of the PMR index to see whether
increments in policy effectiveness are best achieved with mild or full liberalization.
The results show that extensive liberalization of the energy market allows for the
entire benefit of REPs to be reaped. In systems with mildly deregulated energy mar-
kets, the REP index is almost significant. Conversely, REPs show no inducement
effects in heavily regulated energy systems. This result has important implications
for evaluating the welfare effect of REPs. In heavily regulated energy sectors, more
ambitious REPs produce welfare gains only if the positive effect of installed clean
energy and of the associated reduction of greenhouse gas emissions more than offset
the null effect in term of innovation.

In theory, the above results may stem from the particular way of measuring the
policy and the PMR indicators. With regards to the REP indicator, an element of
concern is the use of dummies for all policies with the exception of public R&D per
capita. Because we have reliable cross-country information on a continuous scale
for feed-in tariffs and RECs, we include these policies in Model 6 and display the
results in Table 6. This exercise does not affect our main results on policy comple-
mentarity and on the effect of PMR. In turn, the new policies, particularly RECs,

The inclusion of PMR squared does not provide evidence in favor of a non-linear effect of PMR.
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do not display statistically significant effects. This result may stem from the lack
of variance in these variables. In most countries, RECs were adopted in 2000 as
a national policy that complied with the Kyoto Protocol. In the same vein, the
effect of feed-in tariffs is most likely weakened because they have been gradually ad-
justed downward in countries experiencing substantial technological improvements.
Overall, policy signals appear more appropriate than policy intensities in capturing
country commitments toward renewable energy over the long time span considered.

[Table 6 about here.]

The PMR index is the combination of entry barriers, vertical integration and
public ownership. Understanding which of these three components has the greater ef-
fect on innovation has relevant implications for the design of energy markets. Model
7 presents a specification with the PMR split into its three components. The main
observation is that the aggregate effect of PMR seems largely driven by barriers
to entry and, to a lesser extent, by the percentage of public ownership in energy
utilities. The lack of significant effect for vertical integration implies that easing
barriers to entry is enough to stimulate clean innovations even in markets with
large, vertically integrated firms. This result is also explained by the fact that local
distribution networks are owned by small companies in countries such as Denmark,
and municipalities have favored the transition to clean energy (Ropenus & Skytte
2005). Finally, we check the robustness of these results by adding the PMR-REP
interaction in a model with PMR split into its components. This specification is
presented in Model 8 and confirms the policy complementarity hypothesis. No-
tably, entry barriers remain the only component of the PMR index that maintains
a statistically significant effect.

In Model 9 of Table 6, we jointly consider the interactions between PMR, the
REP index and R&D subsidies. The estimate of the interaction term between public
R &D and the PMR is of the expected sign and highly significant. In particular,
public R&D positively influences green innovation when its capacity to attract pri-
vate investment is magnified by the increase in market competition. Note that the
inclusion of this interaction term drives the effect of the REP index to insignificance.
Although significant, the interaction of deregulation with public R&D is not robust
across alternative specifications. In the remainder of the paper, we therefore empha-
size the complementarity between REPs and PMR rather than with public R&D in
renewable energy.

5 Endogeneity

Endogeneity is a key issue in the estimation of the effects of the REP and PMR
indices because both reverse causality and omitted variables can induce a bias in
the estimated coeflicients. Further complicating the estimation of their joint effect is
a mutual reinforcement effect between them, which amplifies the sources of reverse
causality, as discussed by Downing & White (1986). Historic successful innovations
in clean energy reinforce the lobbying power of innovating firms toward policy mak-

ers. In turn, current policies may have a positive influence on future innovation®®.

15Note that the positive feedback mechanism may become negative because existing lobbies in the
energy sector and large utility generators are likely to exacerbate failures in given policies and/or
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In general, the recent liberalization of energy markets should have reduced the
incumbents’ lobbying capacity, favoring the adoption of ambitious policies and fa-
cilitating the emergence of new players in renewable energy innovation. The close
interplay between competition and innovation policies points to the existence of a
latent factor affecting both the liberalization process and the adoption of REPs.
Moreover, because of the strong persistence of our two policy indicators, the timing
of reforms is of paramount importance in establishing comparative advantages in
renewable energy technologies. Accordingly, we chose an instrument that jointly
influences the two policy indicators and, in particular, their time of adoption.

Our strategy is to use both within-sample and out-of-sample instruments. First,
our time-series cross-country database fits perfectly with the use of lags in the policy
variables. We therefore use one- and two-year lags as instruments for future levels in
the REP index, in the PMR and in their interaction. Second, we included a series of
out-of-sample instruments, which serve as predictors of policy implementation. In
the vector of out-of-sample instruments, we include a proxy (TENSYS) accounting
for the time length for which a country has had consolidated and durable demo-
cratic institutions. This information is provided by the 2010 version of the World
Bank Database on Political Institutions (for details see, Beck et al. 2001). In fact,
a growing literature shows that democratic countries tend to approve stricter en-
vironmental policies and to foster product market liberalizations (Congleton 1992,
Murdoch & Sandler 1997, Fredriksson et al. 2005, Neumayer 2002, Pitlik 2007, Pit-
liks & Wirth 2003, Chang & Berdief 2011). With respect to younger democracies,
our conjecture is that durable democracies ensure a longer time horizon for decision
making and should be more responsive to citizens’ preferences as a result of environ-
mental activists and NGOs exerting a positive influence on environmental policies
(Fredriksson et al. 2005, List & Sturm 2006).

To capture complementary aspects that may affect agents’ expectations about
political decisions, we use two additional variables provided by the World Bank that
measure the length of time the government has been in office (YRSOFF), and the
time the government will remain in office before the next election (YRCURNT). In
democracies, the duration of the chief executive may advocate a government that
is successful in meeting citizens’ interests or may be an index of political strength
and perpetuation of existing elites, e.g., Chang & Berdief (2011), Levy-Yeyati et al.
(2010), Grossman & Noh (1990). For the energy sector in OECD countries, where
there is a certain degree of policy homogeneity, a long-term democracy, along with
the presence of a more stable governments, may influence the speed of both liberal-
ization and environmental policy adoption. Lastly, the robustness of our choice of
instruments is tested by using a different set of out-of-sample instruments: per capita
income and a proxy for a ‘pre-sample’ share of energy from distributed generation.
The use of the first variable is motivated by the robust evidence that ambitious envi-
ronmental policies tend to be adopted in more developed countries (Dasgupta et al.
2001, Esty & Porter 2005, Nicolli & Vona 2012). The second instrument is a proxy
for initial know-how in decentralized energy production'®. Appendix A displays the

green innovation output by postulating a reduction in the support for renewable energy (Jacobsson
& Johnson 2000, Nilsson et al. 2004, Lauber & Mez 2004, Nicolli & Vona 2012).

16T the late 1980s, energy generation was essentially centralized when liberalization started.
However, Nordic and central European countries were previously committed to dispersed ownership
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results of the regression between the policy variables and the set of instruments.
Table 7 shows estimates of the pre-sample mean estimator with endogenous
regressors using alternative vectors of instruments. First, all sets of exclusion re-
strictions pass the Hansen test on exogeneity of the instruments, particularly for
the set of political instruments (Models 12 and 13). Second, as in Popp (2002), the
effect of R&D per capita is greatly underestimated without properly accounting for
endogeneity. Depending on the specification, the effect of public R&D per capita is
inflated by a factor of 2. In turn, the effects of all remaining variables are of similar
size of those obtained in the model with exogenous (or pre-determined) regressors.

[Table 7 about here.]

Regarding the main variables of interest, both the effects of PMR and of the
REP index maintain the identical sign, but their effects decrease. The decrease in
the estimated coefficient is particularly impressive for PMR, making it insignificant
in most specifications. In turn, the magnitude of the estimation bias for the REP
index is negligible across specifications, ranging from 6% to 15% of the original effect.
The synergetic effect is amplified by 20 to 37%. A final point must be stressed in the
comparison with the case of exogenous regressors. Accounting for endogeneity leads
to a slight but relevant change in the interpretation of the results. While in Models
4 and 5, REPs seem effective only in liberalized markets, liberalization of the energy
market here appears to have a positive effect on clean innovation, particularly when
combined with ambitious policies.

6 Quality of Inventions

The use of patent families, as opposed to patent counts, aims to address the quality
of invention when simply calculating numbers of patents. The intuition is that
an economically valuable invention should benefit from intellectual property rights
across several legal authorities, whereas a local, small-scale invention should focus
on the local market only. However, the use of patent families does not control for
the quality of patent offices. Imagine an invention being granted by, for example,
10 legal authorities, none of which cover a large market. How would that compare
with an invention being granted in the three largest markets worldwide, which are
the US, the European and the Japanese markets? Therefore, an even more stringent
proxy for high-quality inventions may be obtained by filtering families of inventions
with the quality of the patent offices, keeping only the ones associated with the three
abovementioned markets.

In this section, we use triadic patents, that is, all patents jointly registered
at the Japanese, US and European patent offices, as the best approximation for
top quality innovations. The only drawback associated with using triadic patents
is time-truncation, because the European Patent Offices was first established in
1978. We overcome this problem by using the pre-sample mean information with
patent families!”. It is worth noting again that we do not use triadic as our favorite

structures with a significant share of energy produced in local heating systems or as a by-product
of farm and industry activities (Glachant & Finon (2003)).

"Between 1978 and 1985, both triadic patents and patent families are highly correlated, with a
Pearson correlation coefficient reaching .97.
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measure of innovation because green triadic patents contain many more zeros than
green families. The problem with zero-inflated count variables is that the issue of
overdispersion may not be successfully resolved using cluster-robust standard errors,
as we do with the pre-sample mean GMM estimator (Cameron & Trivedi 2005).
Finally, in addition to triadic patents, we also use simple patent count in renewable
energy as our dependent variable to compare results with respect to low-quality
innovations.

Using Model (4) as our baseline specification, Table 8 shows the results for green
patent counts (Columns 14 and 15) and for the number of triadic patents (Columns
16 and 17). Columns 14 and 16 show the PSM estimator with exogenous regressors,
whereas Columns 15 and 17 show the PSM estimator when the policy variables are
considered endogenous. Our comments focus on Columns 15 and 17.

[Table 8 about here.]

First and foremost, the complementarity hypothesis seems to hold for high-
quality patents. To produce frontier innovations in the realm of renewable energy,
countries with substantial public support will perform better if their energy mar-
ket has liberalized. Although the PMR has the correct sign, its individual effect is
non-significant, suggesting that it is the commitment of public authorities into sup-
porting green innovation-not market deregulation-which is a first order condition to
yield high-quality innovation. Deregulation thus remains a second order condition
that renders REPs more effective in frontier research. The sequence of reforms in
successful countries follows this priority order. Denmark and Germany, for instance,
adopted ambitious policies first and then fully liberalized the energy market.

A similar pattern holds for public R&D in renewable energy, which becomes sta-
tistically significant for triadic counts; a 1% increase in R&D intensity yields a .24%
increase in high-quality inventions. Therefore, public policies and particularly public
R&D seem to be important for top quality inventions, reconciling our results with
the ones of Norberg-Bohm (2000), Jamasb & Pollitt (2008) and Popp (2006b), all of
which show that public research has a significant effect on fundamental innovations.
In essence, public support is crucial to inventive activities that are located near or
at the technology frontier.

The pattern for green patent counts, irrespective of patent quality, is remark-
ably different (Model 15). We observe no significant relationship of patent counts to
either public R&D or the REP index. Instead, product market regulation displays
larger effects for low-quality generic patents. This result may stem from the strate-
gic behavior of existing companies because knowledge appropriation by incumbents
may deter innovation by potential rivals, thereby deterring entry. In the same vein,
the Kyoto Protocol has had a remarkably positive effect on low-quality green inno-
vations. Its lack of significance with high-quality inventions may reveal the presence
of a resource mis-allocation problem, implying that the Kyoto Protocol had no par-
ticular effect on the technology frontier, although it provided incentive for countries
to strengthen their property rights in the knowledge space.

¥However, the results are robust to the use of a negative binomial model.
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7 Quantifying the Effect of Policies

The difficulty for policy makers is to grasp whether a given policy instrument will
eventually deliver a significant improvement in the desired output. Statistical sig-
nificance in the policy-innovation relationship may conceal insufficient economic re-
turns, and low levels of critical probability values may not equate with substantial
economic effects.

This section examines the actual magnitude of the effect of policy variables on
inventive activities in renewable energy. To do so, we rely on the specifications
that properly account for the endogeneity of policy variables for all three types of
output: patent family (Model 12), number of patents (Model 15) and number of
triadic patents (Model 17). We compute the short-run marginal effects of policy j
as the discrete change in the expected output, holding all variables at their mean
with the exception of the policy of interest (X_j). For the policy of interest j, we
use variations of z; from the 1% quartile (z,41) to the 3" quartile (z;,3). More
precisely, the short-run marginal effect is computed as follows:

BB | Xie) = exp(X_;8 + zj38) — exp(X_;8 + i1 B)- (5)
Tj.q3 — Tjql
Specification 3 also allows the computation of the long-run marginal effects.
Arguably, policy makers establish a given policy mix to reach a desired level of
green innovation y;, that represents the long-term objective of stakeholders. In any
given period, the observed level of innovation may only partially adjust to the desired
level so that yir — yit—1 = ¢(y}; — yit—1), where 0 < ¢ < 1. This partial adjustment
allows us to recover the long-run multiplier for each of the short-run policy effects.
Setting ¢ = 1 — p, the long-run multiplier LRM is simply the sum of an infinite
series, such that LRM = flp. The long-run effect then reads:
AE(th ’ Xit) % 1 (6)
Tjgs — Tjq  L—p
Table 9 shows for each policy variable the short-term variations in the expected
number of patents in absolute terms (1% row) and relative to the median (3"¢ row)!.
Our discussion focuses primarily on the marginal effects derived from significant
parameter estimates.

[Table 9 about here.]

In the case of patent families, the expected increase is mostly accounted for by
the Policy Index and the interaction term with PMR. Holding all variables at the
mean, an increase from the first to the third quartile of the REP Index yields an
increase in patent families by one unit (1.236), representing almost a 3% increase
with respect to the mean. A similar policy change in more deregulated markets
would (holding PMR at its first quartile) make this policy change twice as effective;
an increase from the first to the third quartile of the Policy Index would then yield
an increase in patent families by 2.6, representing more than 6% of patent family
production.

YFor triadic patents, we choose to express this relative to the mean, the median of triadic patents
being 1.
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Note that the effectiveness of renewable energy policies vanishes for green patent
production irrespective of quality. By contrast, the effectiveness of such policy
changes becomes remarkably high for triadic patents; in deregulated markets, an
increase by two quartiles of the policy index yields 1.5 more triadic patents, which
is nearly 20% of the mean of triadic patents. Therefore, such policies matter for
research located near or at the frontier but not for innovation in general.

Market deregulation also has a sizeable effect on invention: a two-quartile in-
crease in PMR, holding the REP index at the mean, yields an increase by 15%
in patent counts and by 12.5% in patent family counts. The effect on frontier
innovation-triadic patent counts-is somewhat less significant but still of substantial
magnitude. This result suggests that the effect of PMR on quality innovation has a
larger variance, with a high significance for most countries and little or no signifi-
cance for others. Although of a second order, market liberalization as a policy tool
cannot be ruled out as a means to achieve quality innovation.

The last row of Table 9 also displays the marginal effects of a policy change com-
bining increased policy support with more deregulated markets. The combination
of both policies is impressively large, amounting to 15% of the median of patent
family counts and 25% of the mean of triadic patents. Success in green innovation
is fostered by policy changes which combine increased public support and market
liberalization. The example of country leaders in renewable technologies such as
Denmark, Germany and the US suggests that the adoption of ambitious policies
should precede market liberalization, creating a critical mass of innovative firms,
particularly in the sub-sector of specialized suppliers of electrical equipment?C.

Table 9 also reveals the positive association of public R&D in renewable energy
and quality research. This policy instrument becomes gradually more effective with
our control for patent quality. Being null for patent counts, public R&D invest-
ments become significant for triadic patents, with a marginal effect reaching 7.5%.
Ultimately, ground-breaking innovation requires public research funds. Without
substantial scientific stimulus, policy makers should not hope to reach the techno-
logical frontier, at least not in the realm of renewable energy. For generic green
patents, neither R&D nor the Policy Index displays any sizeable effect, either alone
or in interaction with PMR. The singular, marginal effect of PMR is large, reaching
15% of the median of patent counts. This effect remains of the identical magni-
tude irrespective of the level of the REP Index. The effect of the Kyoto dummy is
also substantial, implying a 10.5 percentage increase in patent counts. Despite be-
ing highly statistically significant, the increase in patents because of a standardized
two-quartile increase in energy prices remains of a smaller magnitude.

Why would policy makers bother about stimulating green patent generation, re-
gardless of quality? Our answer is based on the distance-to-frontier analogy. Coun-
tries willing to reach the frontier should not aim at top innovation all at once.
Building the critical mass of competencies is of importance at the outset, which is
accomplished by inflating generic patent production. In this regard, it is important
to note that the value of the linear feedback for patent counts exceeds .8, imply-

20The important role of small suppliers is documented for wind and solar energy by Jacobsson &
Bergek (2004). In particular, the expansion of wind energy was implemented by German suppliers
of machinery and electrical equipment, particularly through the entry of 14 new firms. The identical
dynamics of entry of local wind turbines firms has been observed in Netherlands and Germany.
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ing a high level of persistence in patent generation. Such persistence also renders
the long-run multiplier remarkably high, inflating all marginal effects by a factor
of 5. However, once competencies gradually accumulate, policy makers seeking to
encourage innovation at the technological frontier should adapt their policy mix ac-
cordingly. Note however that past successes in quality patents do not guarantee
production in the future. The decrease in persistence (p = .536) entails a corre-
sponding decrease in the long-run multiplier, inflating short-term marginal effects
only by a factor of 2. Therefore, as countries draw near the technological frontier,
the effectiveness of policies will gradually decrease, consistently with the rising costs
of path-breaking invention.

8 Conclusions

Innovation in renewable energy is now widely regarded as the key to sustaining
and improving the quality of life for current and future generations. In addition
to standard differences in overall technological levels and life standards, targeted
national-level policies alone appear important but not sufficient to explain cross-
country differences in innovation. Our empirical analysis shows that the extent to
which these policies are effective largely depends on complementary regulatory fea-
tures. In particular, the combination of public policies and market deregulation is
the most effective method of inducing innovation in renewable energy, particularly
near the technological frontier. This finding corroborates the complementarity hy-
pothesis that public support to innovation is more effective in competitive markets.

Our results are in line with previous studies showing that the effect of public
policies increases with the quality of inventions. This effect is particularly evident
for public R&D that proves to be a key ingredient for quality innovation. Although
our results are inconclusive in shedding light on the demand-pull versus supply-push
debate, they do suggest that both scientific input and demand factors are crucial for
frontier innovation.

Our results partially contrast with previous country-level studies pointing to a
negative effect of energy market deregulation on innovation. In fact, we show that
the effect of deregulation is mainly driven by the barriers to entry component of the
PMR index and is larger on lower quality patents. In addition, the effect of PMR
seems substantially overestimated without properly accounting for endogeneity. Our
conclusion is that part of the effect of deregulation should be to encourage strate-
gic decision making by large incumbents because incumbents tend to accumulate
industrial property rights to deter potential entrants.

Our research agenda addresses three important issues. First, this research has
identified the effect of liberalization and policy on innovation as a whole. However,
this effect is driven by heterogeneous firm responses, and a better understanding
of the response function would allow us to unravel the channels by which policy
changes translate into overall country performance. Second, our dynamic specifica-
tion can be enriched to test the directed technical change hypothesis put forward
by Acemoglu et al. (2012). In particular, we could empirically test whether the
effect of energy market deregulation and public policy adoption will be able to re-
vert previous patterns of green versus conventional patent production. Third, the
EU integration of energy markets may have had unintended consequences on green
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innovation insofar as integration may select out small players, reinforcing the power
of incumbents. EU incumbents are more likely to lobby for policies that are less con-
ductive to innovation, i.e., RECs rather than feed-in tariffs (Jacobsson et al. 2009).
These concerns could be rigorously tested using firm-level data for EU countries
within the appropriate time frame.
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Appendix A. On the Quality of Instruments

Table I reports the results of the first-stage estimates using alternative vectors of

instruments.

Table I: Common determinants of REP Index and PMR

Renewable Energy Policy Index

Time dem. 0.040*%**  (0.038***
[0.003] [0.003]
Years gov. off. -0.046%**
[0.015]
Years gov. left -0.019
[0.048]
GDP pc 0.000%**  0.000%**
[0.000] [0.000]
DG bef. lib. 0.242%**
[0.074]
Constant 0.812%F**  1.124***  _0.437*** _(0.573%**
[0.122] [0.176] [0.143] [0.148]
Obs. 864 846 850 850
R square 0.23 0.22 0.37 0.38
Product Market Regulation Index
Time dem. -0.026%**  -0.025%**
[0.002] [0.002]
Years gov. office 0.013
[0.011]
Years gov. left 0.044
[0.035]
GDP pc -0.000***  -0.000***
[0.000] [0.000]
DG bef. lib. -0.155%%*
[0.058]
Constant 5.405%**  5.225%**  §.105%**  6.193***
[0.090] [0.130] [0.110] [0.115]
Obs. 864 846 850 850
R square 0.18 0.17 0.27 0.28

Pooled OLS Regressions. (***), (**) and (*) denote statistical significance
at 99%, 95% and 90% respectively. Estimation time span: 1976-2007.
DG bef. lib.: share of distributed generation before liberalization starts

Time dem.: length of democracy

Years gov. off.: years in office of the government.
Years gov. left: years remaining in the government.
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The results corroborate our expectations showing that the consolidation of democ-
racy, i.e., variable timedem., is an excellent predictor of both policy variables, ex-
plaining 23% and 18% of the variance of the REP and PMR indexes, respectively.

Income per capita and the DG share are good explanatory variables for both
PMR and REP index. Therefore, although less convincingly exogenous than the
duration of the political system, they represent appropriate alternative instruments
to test the robustness of our main results. Lastly, contrary to our expectations, the
time the government has been in office and the time that it will remain in office
have both the identical negative effect on environmental policies and the identical
positive effect on PMR.
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Figure 1: Evolution of Patent Generation Between 1976 and 2007 (1990 = 100,
patent count in black, patent family in grey, triadic patent family in red. Dashed
lines denote green patents.)
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Table 1: Description of technologies in Renewable Energy
Sources (RES) and their corresponding International Patent

Classes (IPC)

RES

Description

IPC Classes

Biomass

Bioenergy generally refers to energy pro-
duced from biomass, that is, organic mat-
ter, including dedicated energy crops and
trees, agricultural food and feed crops,
agricultural crop wastes and residues,
wood wastes and residues, aquatic plants,
animal wastes, municipal wastes, and other
waste materials.

F02B43/08;
C10L5/42; C

C10L5/44; B01J41/16;
10L5,/43;C10L1/14

Geo-
Thermal

Thermal energy derived from magma heat
and stored in soil, underground water, or
surface water can be used for heating or
cooling buildings by means of a ground
coupled heat pump system. Such systems
operate with a heat exchange embedded in
a borehole to supply the energy for the
evaporation and condensation of a refrig-
erant. Geothermal liquid can also be used
to drive turbines to generate electricity.

F24J3/02;
F24J3/01;
F03G4/02;
F03G4/01;
H02N10/00;
F03G4/05; F

F24J3/06; F03G4/06;
F24J3/04; F03G4/03;
F24J3/08;  F24J3/07;
F03G4/04; F24J3/03;
F24J3/05; F03G4,/00;
24J3/00

Hydro

The energy from incoming and outgo-
ing tides can be harnessed to gener-
ate electricity-using turbines, for instance.
Electricity can be generated through the
conversion of the potential energy of wa-
ter contained in a reservoir using a turbine
and a generator.

FO03B17/06;
F03D9/00;
F03D9/02;
F03B13,00;

F03B13/08; F02C6/14;
E02B3/02; F01D1/00;
B62D5/06; F03B13/10;

F03B3/00; F03B3,/04;

E02B3/00; HO2K7/18; B62D5/093

Ocean

Energy from waves, excluding tidal.

F03B13/15;
F03B13/12;
F03B13/18;
F03B13/16;
F03B13/17;
F03B13/14

F03G7/04; F03B13/22;
F03B13/21; F03B13,20;
F03B13/13; F03G7/05;
F03B7/00; F03B13/24;
F03B13/19; F03B13/23;
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RES Description IPC Classes

Solar Heat captured from the sun may be used F24J2/49; F24J2/15;  F24J2/26;
for residential heating, industrial processes ~HO01L31/042; F03G6/04; F24J2/00;
or thermal power generation. Technolo- F24J2/13;  F24J2/02;  F24J2/03;

ies involved in solar thermal ener TO- F24J2/05;  F24J2/17;  F24J2/23;
gles mvo I8y b F24J2/38;  F24J2/09;  F24J2/10;
duction include solar heat collection, heat F24J2/37; F24J2/51;  F24J2/33;
storage, systems control, and system de- F24J2/50; F24J2/16; F24J2/11;
sign technologies. Specially adapted semi- F24J2/14; F24J2/21;  F24J2/20;
conductor devices are used to convert solar  F24J2/06;  F24J2/22;  F24J2/28;
radiation into electrical current. Related Egijg; (1)27 522?26/2 0583 ;})234(‘;]2; gg»
technologu.as include solar cell deS{gm stor- F03G6/0%;  F24)2/39:  F03G6/00:
age batteries, and power conversion tech- F25B27/00; F24J2/40; F24J2/24:
nologies. F03G6/03; F03G6/05; E04D13/18;
F24J2/43;  F24J2/41;  F24J2/04;
F24J2/27; F03G6/07; F24J2/31;
F24J2/53;  F24J2/45; F24J2/54;
F03G6/01; F24J2/34; HO2N6/00;
F26B3/28; F24J2/12; F24J2/19;
F24J2/07; B60L8/00; F24J2/42;
F24J2/36; F24J2/48; F24J2/46;
F24J2/52;  F24J2/35;  F24J2/47;
F24J2/32; F24J2/44; F24J2/29;

F24J2/01

Waste Household and other waste can be pro- F02G5/04; F02G5/02; F23G7/10;
cessed into fuels (liquid or solid) or burned =~ F02G5/03;  F23G5/46;  C10L5/48;
directly to produce heat that can then be C10L5/47;  F25B27/02;  F02G5/00;

. C10L5/46; F02G5/01; C10J3/86;

used for power generation (mass burn). F12K25/14; HO1MS /06
Refuse derived fuel (RDF) is a solid fuel ’

product. It has high energy content and

can be used as fuel for power generation or

for boilers and is obtained by shredding or

treating municipal waste in an autoclave,

removing non-combustible elements, dry-

ing the product, and finally shaping it. It

has high energy content and can be used

as fuel for power generation or for boilers.

Wind Wind currents can be used to generate F03D11/00; F03D7/05; F03D5/02;
electricity by using wing-shaped rotors to F03D11/04; F03D5/00; B63H13/00;
convert kinetic energy from the wind into F03D5/03;  F03D3/06;  B6OL8/00;
mechanical energy and a generator to con- F03D3/04;  FO3D7/00;  FO3D3/03;

. . . F03D7/01; F03D1/02; F03D5/06;
vert the resulting mechanical energy into F03D5/05; F03D7/02; F03D1,/00;
electricity. F03D5/04; F03D9/02; F03D1/05;

F03D5/01; F03D1/01; F03D3/01;
F03D11/02; F03D7/04; F03D3/00;
F03D11/03; F03D7/03; F03D1/04;
F03D1/06; F03D3/05; F03D9/01;
F03D1/03; F03D11/01; F03D9,/00;
F03D7/06; F03D3/02
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Table 3: Country Characteristics in Green Patenting and Policy Indices

Country PF GPF TRY GTRY GFINT GTINT REP PMR DG
All countries 19,083 2242 1,499 7.942 11.75 5.300 2483 4.332 0.556
Australia 4,429  85.63 308.8 3.438 19.33 11.13 2313 3.395 0.000
Austria 5,996  89.97 338.1 1.781 15.00 4974 2969 4.418 1.000
Belgium 5,683  35.78  468.6 1.188 6.409 2,534  3.000 3.792 0.000
Canada 10,464 151.3 6239  4.594 14.46 7.363  2.594 3.540 0.000
Czech Republic 694.5 2697 2334  0.125 38.83 5.355 1.375 5.035 1.500
Denmark 4,136  146.2  220.9 2.688 35.34 12.17  3.719 4.404 2.000
Finland 5,939  58.31 276.8 1.594 9.819 5.759  3.063 3.973 0.000
France 35,043  325.3 2,360 9.875 9.282 4.184  3.125 5.346 0.000
Germany 87,129 1402 5,313 35.19 16.10 6.623  3.531 3.170 2.000
Greece 251.1 7.813 24.22 0.125 31.11 5.161 1.406 5.428 0.000
Hungary 1,158 1691 45.03  0.188 14.60 4.164 1.094 4.820 0.000
Ireland 1,281 16.75  97.22 0.625 13.07 6.429 2406 5.309 0.000
Italy 14,119 114.2 6748 2.969 8.085 4.400 3.406 4.812 0.000
Japan 84,244 7357 9,655 53 8.733 5.489  3.813 3.309 0.500
Luxembourg 798.7  10.53 62.34  0.375 13.19 6.015 1.875 4.878 0.000
Mexico 364.3  5.438 23.06  0.094 14.93 4.065  0.250 5.720 0.000
Netherlands 15,108 1424 1,659 5.594 9.424 3.372  3.031 4.615 2.000
New Zealand 666.0 8.938 44.53  0.281 13.42 6.316 1.625 3.842 1.000
Norway 2,230  65.19 97.16 1.594 29.24 16.40  2.281 3.592 0.000
Poland 475.8  14.69 22,53  0.031 30.87 1.387  0.469 5.265 1.000
Portugal 2146 8375 1716  0.125 39.02 7.286  2.156 4.702 1.000
Spain 3,533 1029 164.1 1.656 29.12 10.10 2,563 3.404 1.000
Sweden 14,015 1374 810.3 3.438 9.802 4.242 2563 4.164 2.000
Switzerland 17,195 1379 1,402 5.219 8.018 3.721 3.094 4.964 0.000
Turkey 244.0  3.250 19.69  0.031 13.32 1.587 1.844 5.315 0.000

United Kingdom 27,577 338.2 2,109 12.91 12.26 6.120  2.531 3.032 0.000
United States 172,358 1,865 13,582  65.72 10.82 4.839 4938 2.710 0.000

Considered time span: 1976-2007; PF: Family weighted overall number of patents ; GPF: Family weighted overall
number of green patents; TRY: Triadic filtered overall number of patents; GTRY: Triadic filtered overall num-
ber of green patents; GFINT: Green Intensity (PF/GPF, per thousand); GTINT: Green Intensity using triadic
(GTRY/TRY, per thousand); REP: Renewable Energy Policy Index; PMR: Product Market Regulation aggregate
index; DG: Distributed Generation before Liberalization (O=none, 1=average, 2=high). Source: Our elaboration
on information in Glachant & Finon (2003), IEA (2004) and country reports of the International Energy Agency.
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Table 4: Descriptive Statistics.

Variable Mean Median St. dev. Min. Max.
Green Patents (Family weighted) 224.2 42 557.9 0 4,468
Green Patents (Triadic weighted) 7.942 1 23.24 0 193
Number of Patents (Family weighted) 19,083 3,338 44,480 3 336,096
Number of Patents (Family weighted, log)  8.009 8.113 2.182 1.386  12.730
Pre-Sample Mean (Green Patents) 10.350 1.133  23.660 0.000 114.300
Electricity Consumption (log) 11.030  10.990 1.332 7.920 14.660
Energy Price Index (log) 0.105 0.102 0.044 0.015 0.234
Public R&D in renewable Energy (log) 0.615 0.567 0.538 0.000 2.442
Kyoto (dummy) 0.344 0.000 0.475 0.000 1.000
REP index 2.483 2.000 2.062 0.000 8.000
Product Market Regulation 4.332 4.720 1.472 0.254 6.000

N = 843. Time span: 1976-2007.
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Table 5: Sequential Pre-Sample Mean Poisson Model with Linear Feedback. GMM
Estimator with Exogenous Regressors. Dependent Variable: Family Weighted Num-
ber of Green Patents.

Model 1 Model 2 Model 3 Model 4 Model 5

Linear p 0.827%** 0.783***  (.740*** 0.675%** 0.730%**
[0.037] [0.058] [0.068] [0.075] [0.071]
Families (log) 0.810%**  (0.762*%**  (0.793***  (0.792*%**  (.803***
[0.146] 0.152]  [0.121] [0.113] [0.119]
Time trend 0.023***  _0.011**  -0.029%**  _0.027*%F*  _0.027***
[0.006] [0.005] [0.002] [0.002] [0.005]
Pre-Sample Mean 0.003 0.003 0.004* 0.004** 0.004**
[0.002] [0.002] [0.002] [0.002] [0.002]
Electricity Consumption (log) 0.011 0.003 -0.117 -0.102 -0.147
[0.156] 0.151]  [0.114] [0.107] [0.122]
Energy Price Index (log) 3.74 4.152%* 2.849 2.701 3.082
[2.336] 2.422]  [1.934] [1.781] [1.898]
Public R&D in Renew. (log) 0.058 0.029 -0.001 0.054 -0.038
[0.174] 0.161]  [0.129] [0.113] [0.147]
Kyoto 0.272%* 0.13 0.153 0.153
0.146]  [0.154] [0.150] [0.149]
REP Index 0.090*%**  0.090***  (0.143*** -0.05
[0.029] [0.035] [0.040] [0.082]
Aggregate PMR -0.234%F*  _0.135** -0.164**
[0.048] [0.064] [0.064]
REP Index x PMR -0.024*
[0.012]
REP Index x medium PMR 0.078
[0.058]
REP Index x low PMR 0.148**
[0.073]
Constant -50.638***  18.354*  55.024*F*  51.004***  51.639***
[11.756] [11.152] [3.897] [3.393] [10.547]
Observations 843 843 843 843 843
Moments 8 10 11 12 13
REP Index x low PMR 0.102%**
REP Index x medium PMR 0.029
REP Index x high PMR -0.049

Pre-Sample Mean information computed for the first 15 years available. Estimation time span: 1976-2007.
Standard errors are cluster-robust by countries. Statistical significance at 99%, 95% and 90% is denoted by
(***), (**) and (*), respectively.
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Table 6: Specific Policies. PSM Poisson Model with Linear Feedback. GMM Esti-
mator with Exogenous Regressors. Dep. Var.: Family Weighted Number of Green
Patents.

Model 6 Model 7 Model 8 Model 9

Linear p 0.668%** 0.708%** 0.637*F**  (0.698***
[0.078] [0.059] [0.057] [0.063]
Families (log) 0.792%%KF . 772%**  Q.778%kk () .828%**
[0.105] [0.110] (0.103]  [0.120]
Time trend -0.027FF%  _0.034%FF  _0.031**F  -0.026**
[0.002] [0.001] [0.001] [0.012]
Kyoto 0.146 0.074 0.106 0.132
[0.146] [0.192] 0.175]  [0.168]
Public R&D in Renew. (log) 0.056 0.051 0.093 0.526*
0.103] 0.113)] (0.107]  [0.310]
REP Index 0.149%** 0.069%* 0.130%** 0.105*
[0.044] [0.040] [0.039] [0.060]
Aggregate PMR -0.122* -0.095*
[0.067] [0.054]
REP Index x PMR -0.025%* -0.025%* -0.014
[0.013] [0.010] [0.014]
REC new 0.001
[0.028]
Average Feedin 1.817
[1.804]
PMR: barriers to entry -0.166%**  -0.110**
[0.062] [0.047]
PMR: public ownership -0.065* -0.031
[0.038] [0.043]
PMR: vertical integration 0.01 0.018
[0.047] [0.040]
R&D in Renew. x PMR -0.142%*
[0.072]
Constant 51.224%*%*  65.622*%**  59.134***  49.618**
[4.290] [2.232] [2.651]  [23.732]
Observations 843 843 843 843
Hansen J 0 0 0 0

Estimation time span: 1976-2007. Independent variables 15y Pre-Sample Mean, Electricity
Consumption (log), and Energy Price Index (log) are not reported for convenience only, al-
though they are always included. Standard errors are cluster-robust by countries. Statistical
significance at 99%, 95% and 90% is denoted by (***), (**) and (*), respectively.
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Table 7: Pre-Sample Mean Poisson Model with Linear Feedback. GMM Estimator
with Endogenous Regressors. Dependent Variable: Family Weighted Number of
Green_Patents.

Model 10 Model 11  Model 12 Model 13

Linear p 0.668***  0.731*F**  0.706***  (.648%**
[0.091] [0.089] [0.084] [0.079]
Families (log) 0.745%%%  0.842%**  (.879*FFK (. 764***
(0.102)  [0.115]  [0.121]  [0.103]
Time trend -0.016 -0.012 -0.018 -0.017*
[0.013] [0.016] [0.015] [0.009]
Pre-Sample Mean 0.003**  0.004***  0.004*** 0.003*
[0.002] [0.002] [0.001] [0.002]
Electricity Consumption (log) -0.019 -0.155 -0.209%* -0.037
(0.110)  [0.122]  [0.124]  [0.110]
Energy Price Index (log) 2.252 2.289 1.778 1.777
[1.590] [1.999] [2.052] [1.915]
Public R&D in Renew. (log) 0.121 0.187 0.138 0.078
[0.145] [0.134] 0.134)  [0.071]
Kyoto 0.169 0.102 0.115 0.177*
[0.134] [0.130] [0.120] [0.106]
REP Index 0.121%** 0.121%* 0.134%**  (0.130%**
[0.052] [0.054] [0.047) [0.038]
Aggregate PMR -0.129 -0.095 -0.114 -0.116%*
(0.08)  [0.076]  [0.077]  [0.058]
REP Index x PMR -0.021 -0.033** -0.029* -0.023*
[0.017] [0.016] [0.015] [0.013]
Constant 29.919 22.13 34.798 32.073*
[26.987] [31.962] [29.538] [19.383]
Observations 819 811 819 814
Moments 15 17 17 18
Hansen’s J 4.461 8.324 8.598 5.082
Hansen d.f. 3 5 5 6
Hansen critical probability 0.216 0.139 0.126 0.533

Pre-Sample Mean information computed for the first 15 years available. Estimation time
span: 1976-2007. Standard errors are cluster-robust by countries. Statistical significance at
99%, 95% and 90% is denoted by (***), (**) and (*), respectively.

List of endogenous regressors: R&D in renewable energy; Policy Index; Aggregate PMR;
Policy Index x PMR.

List of instruments: Model 10: R&D in renewable energy lagged one year, Policy Index,
Aggregate PMR, Policy Index x PMR lagged one and two years; 2. Model 11: instru-
ments from Model 10 augmented with DG before liberalization and with GDP per capita;
Model 12: instruments from Model 10 augmented with DG before liberalization and democ-
racy longevity (Tensys); Model 13: instruments from Model 10 augmented with democratic
longevity (TENSYS), the number of years in office (YRSOFF) of the government and re-
maining to the government (YRCURNT).
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Table 8: Robustness Checks Using Number of Green patents (Models 14 and 15)
and Triadic Filtered Number of Green Patents (Models 16 and 17) as Alternative
Measures of Innovation. PSM estimators with exogenous (Models 14 and 16) and
endogenous regressors (Models 15 and 17).

Model 14  Model 15 Model 16 Model 17
Linear p 0.793*** 0.807***  (0.480***  (0.536***
[0.059] [0.045] 0.151]  [0.096]
Number of patents (log) 0.798*** Q.78 0. 773***  0.768***
Number of triadic patents (log) [0.122] [0.071] [0.057] [0.059]
Time trend -0.048%*F*  _0.044***  -0.025** -0.024*
0003  [0.012]  [0.012]  [0.014]
Pre-Sample Mean 0.009** 0.010%*  -0.003*%**  _0.004***
[0.004] [0.004] 0.001]  [0.001]
Electricity Consumption (log) -0.128 -0.122 0.112 0.152%**
0.112] 0.091] 0.070]  [0.055]
Energy Price Index 3.877** 3.505%* -0.897 -1.314
[1.789] [1.749] [1.448] [1.348]
Public R&D in Renew. (log) 0.086 -0.055 0.177%* 0.240**
[0.117] 0.162)  [0.082]  [0.108]
Kyoto 0.492%** 0.577*** 0.255%* 0.124
[0.136] 0.126)  [0.148]  [0.170]
REP Index 0.085** -0.016 0.232%**  (.233***
[0.038] [0.047] 0.052]  [0.042]
Aggregate PMR -0.174%%  -0.337*** -0.076 -0.103
[0.079] [0.091] 0.047]  [0.069]
REP Index x PMR -0.021 0.006 -0.027** -0.023%*
[0.017] [0.024] 0.014  [0.011]
Constant 91.550***  85.433*** 43.595* 41.924
5.049]  [23.629]  [23.607]  [27.858]
Observations 843 819 843 814
Moments 12 17 12 18
Hansen’s J 0 5.431 0 6.894
Hansen d.f. 0 5 0 6
Hansen prob. 0.366 0.331

Standard errors are cluster-robust by countries. Statistical significance at 99%, 95% and 90%
is denoted by (***), (**) and (*), respectively. Models 15 and 17. List of endogenous regres-
sors: R&D in renewable energy, Policy Index; Aggregate PMR; Policy Index x PMR. List of
instruments: (Model 15) R&D in renewable energy lagged one year, Policy Index, Aggregate
PMR, Policy Index x PMR lagged one and two years; (Model 17) Model 15 augmented with
tensys (length of democracy), yrsoffc (years in office of the government) and yrcurnt (years

remaining to the government).
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Table 9: Marginal Effects of Policies
mental Energy

on Various Forms of Innovation in Environ-

Variable Patent Family Patent Number Triadic Patents
Model (13) Model (15) Model (17)
Unconditional median and mean 42 25 7.942
Long Run Multiplier 3.4 5.2 2.2
Energy Price 1.577 0.910 -0.256
3.76 3.64 -3.23
Public R&D in Renew. (log) 0.900 -0.030 0.595
2.14 -0.12 7.50
Kyoto 2.510 2.629 0.381
5.98 10.51 4.79
PMR varies, REP Index at the mean 5.233 3.757 1.065
12.46 15.00 15.41
PMR varies, REP Index at the 25" per. 3.524 3.828 0.559
8.39 15.31 7.04
PMR varies, REP Index at the 75" per. 6.107 3.723 1.384
14.54 14.89 1748
REP Index varies, PMR at the mean 1.236 0.063 1.070
2.94 0.25 13.47
REP Index varies, PMR at the 25" per. 2.631 -0.012 1.501
6.26 -0.05 18.90
REP Index varies, PMR at the 75" per. 0.047 0.094 0.677
0.11 0.37 8.52
REP Index x PMR (Both vary) 6.154 3.816 2.061
14.65 15.27 25.95

Italics denote marginal effects derived from non-significant parameters at the 10% level.

Each cell displays the variations in the expected number of patents and the change in the expected number of
patents relative to the median or mean for triadic patents.

All marginal effects have been computed as discrete changes in the expected number of patents. The expected
number of patents has been computed using the mean values of all explanatory variables, while fixing the
variable of interest x; at the 15t and 379 quartiles.
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