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Abstract: Let P1 and P2 be graphical properties. A Smarandachely (P1,P2)-

decomposition of a graph G is a decomposition of G into subgraphs G1, G2, · · · , Gl ∈ P

such that Gi ∈ P1 or Gi 6∈ P2 for integers 1 ≤ i ≤ l. Particularly, if P2 = ∅, i.e., a usual

decomposition of a graph, is a collection of its subgraphs whose union equals the edge set

of the graph. In this paper we introduce and initiate a study of a new variation of decom-

position namely equiparity induced path decomposition of a graph which is defined to be a

decomposition in which all the members are induced paths having same parity.
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§1. Introduction

By a graph G = (V,E) we mean a non-trivial, finite, connected and undirected graph without

loops or multiple edges. For terms not defined here, we refer to [3]. Throughout the paper the

order and size of G are denoted by n and m respectively.

The origin of the study of graph decomposition and factorization can be seen in various

combinatorial problems most of which emerged in the 19th century. Among them the best

known are Kirkman’s problem of 15 strolling school girls, Dudney’s problem of handcuffed

prisoners, Euler’s problem of 36 army officers , Kirkman’s problem of knights and Lucas dancing

round problem. However, the earliest works in this direction are not explicitly related to graph

decompositions. The first papers (due to J.Peterson, A.B.Kempe, P.G.Tait, P.J.Heawood,

D.Konig and others) appeared soon afterwards at the turn of the 19th century. Since that

time the interest in graph decompositions has been on increase and real upsurge is witnessed

after 1950. Nowadays, graph decomposition problems rank among the most prominent areas of

research in graph theory and combinatorics.

As we know a decomposition of G is a collection ψ = {H1, H2, H3, . . . , Hk} of subgraphs of

G such that every edge of G belongs to exactly oneHi. If each Hi is a path in G, then ψ is called
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a path decomposition of G. The minimum cardinality of a path decomposition of G is called

the path decomposition number and is denoted by πa(G). The concept of path decomposition

was introduced by Harary [4] in the year 1970 and was further studied by Schwenk, Peroche,

Stanton, Cowan and James ([5], [7], [9]). Following Harary several variations of decomposition

have been introduced and extensively studied by imposing conditions on the members of the

decomposition. For instance, unrestricted path cover [5], geodesic path partition [10], simple

path cover [2], induced path decomposition [8], equiparity path decomposition [6], graphoidal

cover [1] are some variations of decomposition. In this direction we introduce the concept of

equiparity induced path decomposition and initiate a study of this new decomposition.

§2. Equiparity Induced Path Decomposition

In this section we define the equiparity induced path decomposition and the parameter equipar-

ity induced path decomposition number of a graph G and determine this parameter for some

standard graphs such as complete multipartite graphs, wheels, fans, double fans and general-

ized Petersen graphs. Further we explore the relation between this parameter and some of the

existing path decomposition parameters of a given graph G.

Definition 2.1 An Equiparity induced path decomposition (ED) of a graph G is a path decom-

position ψ of G such that the elements of ψ are induced paths having same parity. That is, an

ED is an equiparity as well as induced path decomposition of G. The minimum cardinality of

an ED for a graph G is called the equiparity induced path decomposition number and is denoted

by πpi(G). Any ED of G such that |ψ| = πpi(G) is called a minimum equiparity induced path

decomposition of G.

An equiparity induced path decomposition ψ of a graph is said to be an even parity induced

path decomposition (EED) or an odd parity induced path decomposition (OED) according as all

the paths in ψ are of even length or odd length.

Remark 2.2 Obviously, for any graph G, the edge set E(G) itself is an ED so that every graph

G admits an ED and hence the parameter πpi is well defined for all graphs.
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Example 2.3 (i) Consider the graph G given in Fig.1. Let

ψ1 = {(v1, v3, v6, v7), (v2, v3, v4, v5), (v1, v4), (v4, v6)}
ψ2 = {(v2, v3, v1), (v3, v6, v7), (v1, v4, v6), (v3, v4, v5)}
ψ3 = {(v2, v3, v4, v6), (v7, v6, v3, v1, v4, v5)}
ψ4 = {(v1, v3, v6, v7), (v1, v4, v6), (v2, v3, v4, v5)}.

Then ψ1 and ψ2 are EDs of G. Also, all the paths in ψ1 are of odd length, where as in ψ2 they

are even. But ψ3 and ψ4 are not EDs for G, because the former is not induced and the latter is

not equiparity. We also note that the minimum cardinality of an ED for G is 4 and thus both

ψ1 and ψ2 are minimum EDs of G.

(ii) For paths, the value of πpi is always 1.

(iii) If Cn denotes the cycle on n vertices, then

πpi(Cn) =





2 if n is even

3 if n is odd

(iv) Since the edges are the only induced paths in the complete graph Kn on n vertices,

we have

πpi(Kn) =
n(n− 1)

2
.

Remark 2.4 If G is a graph of odd size, then it admits only an OED and so the value of πpi

must be odd. However it is possible for a graph of even size to have both OED and EED; in

fact it can permit an OED and an EED of minimum cardinality as in Example 2.3(i). Also,

the value of πpi for a graph with even size can be both even or odd (for example see Theorem

2.9).

To determine the value of πpi for a given graph, the following theorem is useful. If P =

(v1, v2, v3, . . . , vn) is a path in a graph G = (V,E), the vertices v2, v3, . . . , vn−1 are called

internal vertices of P while v1 and vn are called external vertices of P .

Theorem 2.5 For an ED ψ of a graph G, let tψ =
∑

p∈ψ t(P ) where t(P ) denotes the number

of internal vertices of the path P and let t = max tψ, where the maximum is taken over all

ED, ψ of G. Then πpi(G) = m− t.

Proof Let ψ be any ED of G. Then

m =
∑

p∈ψ

|E(P )| =
∑

p∈ψ

[t(P ) + 1]

= {
∑

p∈ψ

t(P )} + |ψ| = tψ + |ψ|

Hence |ψ| = m− tψ so that πpi = m− t. �

The following corollaries are the immediate consequences of the above theorem.

Corollary 2.6 If G is a graph with k vertices of odd degree, then

πpi(G) =
k

2
+

∑

v∈V (G)

⌊deg v

2
⌋ − t.
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Corollary 2.7 For any graph G, πpi(G) >
k

2
. Further, equality holds if and only if there exists

an equiparity induced path decomposition ψ of G such that every vertex v of G is an internal

vertex of ⌊deg v

2
⌋ paths in ψ.

In the following results, we determine the value of πpi for wheels, complete multipartite

graphs, fans, double fans and the generalized Petersen graph.

Theorem 2.8 If Wn denotes the wheel on n vertices, then

πpi(Wn) =






(n+ 3)

2
when n is odd

(n+ 2) when n is even

Proof If n = 4, then W4 = K4 so that πpi(W4) = 6. Now let us assume that n > 5.

Let V (Wn) = {v1, v2, v3, . . . , vn} and E(Wn) = {vnvi : 1 6 i 6 n − 1} ∪ {vivi+1 : 1 6 i 6

n− 2} ∪ {vn−1, v1}.

Case 1 n is odd.

Let

Pi = (vi, vn, vi+ n−1
2

) for all i = 1, 2, 3, . . . ,
n− 1

2
,

Q1 = (v1, v2, v3) and

Q2 = (v3, v4, v5, . . . , vn−1, v1).

Then, ψ = {P1, P2, P3, . . . , Pn−1
2
, Q1, Q2} is an ED of Wn so that πpi(Wn) 6 |ψ| =

n− 1

2
+

2 =
n+ 3

2
. Further, any induced path containing the vertex vn is of length at most two

and so the minimum number of induced paths required to decompose the spokes (the edges

v1vn, v2vn, . . . , vn−1vn) of the wheel is
n− 1

2
. Also, since the outer cycle is of even length, we

need at least two induced paths to decompose it and hence πpi(Wn) ≥ n− 1

2
+ 2 =

n+ 3

2
so

that πpi(Wn) =
n+ 3

2
when n is odd.

Case 2 n is even.

Let

Pi = (vi, vn) for all i = 1, 2, 3, . . . , n− 1,

Q1 = (v1, v2, v3, . . . , vn−2),

Q2 = (vn−2, vn−1) and

Q3 = (vn−1, v1)

Then ψ = {P1, P2, P3, . . . , Pn−1, Q1, Q2, Q3} is an ED so that πpi(Wn) 6 |ψ| = n+2. Moreover,

an induced path of Wn cannot contain both an edge of the outer cycle and a spoke. Now, the

outer cycle can be decomposed into induced paths of odd length only, because the outer cycle
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is odd. Therefore, we can have only an OED and obviously that will consist of all the n − 1

spokes together with at least three induced paths of odd length which decompose the outer

cycle so that |ψ| > n+ 2 and this completes the proof of the theorem. �

Theorem 2.9 If G is a complete k-partite graph Km1,m2,m3,...,mk
, with m edges, then

πpi(G) =






m

2
if mi is odd for at most one i

m otherwise

Proof Let (V1, V2, . . . , Vk) be the partition of V (G). Obviously the induced paths in G are

of length at most two and hence any ED of G consists of either single edges alone or induced

paths of length 2. Moreover the end vertices of the induced paths of length two lie in the same

partition. Therefore, when there exist two parts Vi and Vj having odd number of vertices, the

edges between Vi and Vj can be decomposed into only single edges and so the edge set E(G)

is the only ED of G in this case. Thus πpi(G) = m when there are at least two parts of odd

order. On the other hand, when at most one part in (V1, V2, . . . , Vk) is of odd order, the edges

between every pair of parts Vi and Vj can be decomposed into induced paths of length two so

that πpi(G) 6
m

2
. Further, since the length of an induced path in G is at most two we need

at least
m

2
induced paths to decompose G and hence πpi(G) >

m

2
. Thus πpi(G) =

m

2
when at

most one part is of odd order. �

Corollary 2.10 For the complete bipartite graph Kr,s we have

πpi(Kr,s) =





rs if rs is odd
rs

2
if rs is even

Proof When at most one of the values of r and s is odd, rs is even and it is odd when

both r and s are odd. Therefore the result follows by Theorem 2.9. �

For integers s and k with s ≥ 3 and 0 < k <
s

2
, the generalized Petersen graph P (s, k) is

the simple graph with vertices {ui, vi : 1 ≤ i ≤ s} and edges {uiui+1, uivi, vivi+k} where the

addition is modulo s.

Theorem 2.11 For the generalized Petersen graph P (s, k), the value of πpi(P (s, k)) is
n

2
.

Proof Obviously the generalized Petersen Graph P (s, k) is a three regular graph of order

2s and size 3s. Therefore by Corollary 2.7 we have πpi(P (s, k) > s. Let Pi = (ui, ui+1, vi+1,

vi+1+k); 1 ≤ i ≤ s, where addition is modulo s. Then Pi is an induced path of length 3 and

ψ = {P1, P2, P3, . . . , Ps} is an ED for P (s, k) so that πpi(P (s, k)) 6 |ψ| = s =
m

3
=

n

2
and

hence we obtain the desired result. �

Theorem 2.12 For the fan Fn = Pn−1 +K1 with n > 2,

πpi(Fn) =





n when n is odd

n+ 1 when n is even
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Proof Let V (Fn) = {v1, v2, v3, . . . , vn−1, vn} where the vertex vn correspond to K1 and

E(Fn) = {vivi+1 : 1 6 i 6 n− 2} ∪ {vivn : i = 1, 2, 3, . . . , n− 1}. Since the size of Fn is always

odd, any ED of Fn is an OED. Now, let

Qi = (vi, vn), for all i = 1, 2, 3, . . . , n− 1,

Qn = (v1, v2, v3, . . . , vn−2) and

Qn+1 = (vn−2, vn−1).

Suppose n is odd. Then ψ1 = {Q1, Q2, Q3, . . . , Qn−1, Pn−1} is an OED of Fn so that πpi(Fn) 6

|ψ1| = n. Moreover, the induced paths containing vn are of length at most two and hence any

OED of Fn includes all the n− 1 edges incident at vn. In addition, we need at least one more

path to cover the remaining edges which lie on the path Pn−1 and hence πpi(Fn) > n−1+1 = n.

Thus we get πpi(Fn) = n. If n is even, then ψ2 = {Q1, Q2, Q3, . . . , Qn−1, Qn, Qn+1} is an OED
of Fn. So that πpi(Fn) 6 |ψ2| = n+ 1. A similar argument shows that πpi(Fn) = n+ 1. �

Theorem 2.13 For the double fan G = Pn + (K2) with n > 2,

πpi(G) =





n+ 1 if n is odd

2n+ 1 if n is even

Proof Let V (G) = {u1, u2, v1, v2, v3, . . . , vn−1, vn} and E(G) = {vivi+1 : 1 6 i 6 n− 1} ∪
{u1vi : i = 1, 2, 3, . . . , n} ∪ {u2vi : i = 1, 2, 3, . . . , n}.

Assume that n is odd. Let Qi = (u1, vi, u2) for all i = 1, 2, 3, . . . , n and ψ1 = {Q1, Q2, Q3,

. . . , Qn, Pn}. Then ψ1 is an EED of G with cardinality n+ 1 so that πpi(G) 6 n+ 1. Further,

the induced paths of G other than Pn are of length at most two and hence at least n paths of

length two are necessary to cover the edges u1vi(i = 1, 2, 3, . . . , n) and u2vi(i = 1, 2, 3, . . . , n).

Therefore if ψ is any ED of G then |ψ| > n+1 and hence we get πpi(G) = n+1 when n is odd.

Now, suppose that n is even. Then size of G is odd which implies that any ED of G will be an

OED. Since Pn is an odd path in G, Pn along with the remaining edges of G forms an OED
with cardinality 2n+ 1 so that πpi(G) 6 1 + 2n. Moreover, Pn is the only odd path in G with

length greater than one and hence if ψ is an OED, it will contain all the edges lying outside

Pn. So |ψ| > 2n+ 1. Thus πpi(G) = 2n+ 1 when n is even. �

§3. Bounds for πpi

In this section we obtain some bounds for πpi of a graph in terms of some known graph theoretic

parameters. Also we discuss the relation of πpi with some existing decomposition parameters.

First we present bounds of πpi in terms of the diameter and the girth of a graph.

Theorem 3.1 For any graph G with diameter d,

πpi(G) 6





m− d+ 1 if d is odd

m− d+ 2 if d is even
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Proof Let P be a diameter path(a path whose length is the diameter of the graph) in

G. Then P is an induced path of length d. If d is odd, then, the path P together with the

remaining edges of G form an OED of G so that πpi(G) 6 m− d+ 1. When d is even, the path

P
′

of length d− 1 obtained by deleting an edge from P is an odd path and hence G will have

an OED ψ consisting of P
′

and the remaining edges of G with |ψ| = 1+m− (d−1) = m−d+2

which gives the desired bound. �

Theorem 3.2 If G is a graph with girth g, then

πpi(G) ≤





m− g + 3 if g is odd

m− g + 4 if g is even

Proof Let C be the shortest cycle in G of length g. Let P be the path obtained from C

by deleting a path of length two. Then P is an induced path. By a similar argument followed

in Theorem 3.1 the desired result follows. �

Remark 3.3 The bounds given in Theorem 3.1 and Theorem 3.2 are attained for several

classes of graphs. For example, it can be easily verified that the complete graphs and complete

multipartite graphs in which at most one partition is consisting of an odd number of vertices

are such classes of graphs.

As observed in Remark 3.3, one can list several classes of graphs attaining the bounds

given in the above theorems; which means the class of those graphs is relatively larger and so

the following problems are worth trying.

Problem 3.4 Characterize the graphs for which

(i) πpi = m− d+ 1 when d is odd;

(ii) πpi = m− d+ 2 when d is even;

(iii) πpi = m− g + 3 when g is odd;

(iv) πpi = m− g + 4 when g is even.

Now, it is obvious that the value of πpi of a graph G is ranging from 1 to m where m is

the size of G and the lower bound is attained only for paths. On the other hand there are

infinitely many graphs attaining the upper bound m. A simple example is a class of complete

multipartite graphs as in Theorem 2.9 and the following is another such an infinite family.

Example 3.5 Let G be the graph obtained by pasting two complete graphs at an edge. For

example pasting two triangles we get K4 minus an edge. Now, if e = (u, v) is the edge at which

the complete graphs Kr and Ks are pasted, then u and v are adjacent to all the vertices of G.

Since the induced paths in G are of length at most two and the edge e does not belong to any

induced path of length two the only ED possible for G is that of the edge set of G and hence

we have πpi(G) = m.

Also it follows from Theorem 3.1 that the diameter necessarily be at most 2 for such graphs.

That is, the graphs with πpi = m are either complete or of diameter 2. However, the problem
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of determining these graphs seems to be a little challenging to settle. As a first step we solve

the problem in the case of block graphs.

Theorem 3.6 If G is a block graph which is not a star of odd order, then πpi(G) = m if and

only if G contains exactly one cut vertex.

Proof Suppose G is a block graph which is not a star of odd order with πpi(G) = m having

more than one cut vertex. Let u and v be two cut vertices of G that are adjacent. Then both

u and v belong to the same block, say Bk of G. Let eu = w1u and ev = vw2 be two edges

of G belonging to two different blocks other than Bk. Then the path P = (w1, u, v, w2) is an

induced path of length three so that P together with the remaining edges form an OED of G

with cardinality less than m contradicting the assumption that πpi(G) = m. Hence G contains

exactly one cut vertex.

Conversely, suppose G contains exactly one cut vertex, say v. If all the blocks of G are of

order 2, then G = K1,s where s is odd and so by Theorem 2.9 we have πpi(G) = m. If not, let

Br be a block of order greater than 2. Let e be an edge of Br that is not incident at the cut

vertex v. Then e does not belong to any induced path of length greater than one. Moreover,

the maximum length of any induced path in G is 2. Hence E(G) is the only ED for G so that

πpi(G) = m and this completes the proof. �

Corollary 3.7 If T is a tree, then πpi(T ) = m if and only if T is a star of even order.

Proof Notice that πpi =
m

2
for a star of odd order. Therefore the result follows from

Theorem 3.6. �

In the following we establish some interesting relations between πpi and some existing path

decomposition parameters such as the induced acyclic path decomposition number πia and

equiparity path decomposition number πp. A decomposition of a graph into induced paths is

called an induced path decomposition and a decomposition into paths of same parity is called

equiparity path decomposition. The minimum cardinality of such decompositions are denoted

by πia and πp respectively.

Theorem 3.8 For any graph G, we have πia(G) 6 πpi(G) 6 2πia(G) − 1. Further if a and b

are two positive integers with a 6 b 6 2a− 1, then there exists a graph G such that πia(G) = a

and πpi(G) = b.

Proof The first inequality is immediate because every equiparity induced path decompo-

sition will be an induced acyclic path decomposition. Now, let ψ be an induced acyclic path

decomposition of G with r paths of even length and s paths of odd length. If either r or s is

zero, then πia(G) = πpi(G). Assume that both r and s are positive. Now, split each path of

even length in ψ into two paths of odd length and obtain a path decomposition ψ
′

consisting

of these paths of odd length along with all the paths of odd length in ψ. Then ψ
′

will be an

OED with cardinality 2r + s which is obviously at most 2πia(G) − 1.

Now, let a and b be given integers with a 6 b 6 2a − 1. We construct a graph G for

which πia(G) = a and πpi(G) = b as follows. If a = 1, then b = 1 and so G must be a path.
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If a = 2 and b = 2, let G = K1,4 and if a = 2 and b = 3, let G = K1,3. Assume a > 3.

Take b = 2a − 1 − r where 0 6 r 6 a − 1. Let G be the graph obtained from the triangle

(v1, v2, v3, v1) by attaching r paths of length 2 along with 2a− 4− r pendant edges at a vertex

of the triangle, say v1. We now prove that πia(G) = a and πpi(G) = b. Let x′1, x
′
2, x

′
3, . . . , x

′
r

be the vertices of degree 2 lying outside the triangle and let x1, x2, x3, . . . , xr be the pendant

vertices adjacent to x′1, x
′
2, x

′
3, . . . , x

′
r respectively. Let us denote the remaining pendant vertices

of G by y1, y2, y3, . . . yr−2, z1, z2, z3, . . . , z2a−2r−2 as in Fig.2.
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Now let

P1 = (x1, x
′

1, v1, v2), P2 = (x2, x
′

2, v1, v3),

Pi = (xi, x
′

i, v1, yi−2) for all i = 3, 4, 5, . . . , r

Qi = (zi, v1) for all i = 1, 2, 3, . . . , 2a− 2r − 2 and

Ri = (z2i−1, v1, z2i) for all i = 1, 2, 3, . . . , a− r − 1.

Then ψ1 = {P1, P2, . . . , Pr, R1, R2, . . . Ra−r−1, (v2, v3)} is an induced acyclic path decomposi-

tion of G with |ψ1| = a so that πia(G) 6 a. Further, any induced acyclic path decomposition

must contain at least
(2a− 2)

2
= a− 1 induced paths in order to cover all the 2a− 2 edges of

G incident at the vertex v1 and also none of these induced paths paths cover the edge v2v3 as

these paths are induced so that πia(G) > a and thus πia(G) = a.

Next we observe that ψ2 = {P1, P2, . . . , Pr, Q1, Q2, . . . Q2a−2r−2, (v2, v3)} is an OED of G

with |ψ2| = 2a− 1 − r = b so that πpi(G) 6 b. Further let ψ be any ED. Since the edge v2v3

cannot be a part of any induced path of length greater than one, it itself must be a member

of ψ so that ψ is an OED. Hence among the 2a − 2 edges incident at v1, only the edges

x
′

iv1, (i = 1, 2, 3, . . . , r) can be a part of an induced path of of length greater than one and each

of the remaining 2a − 2 − r edges must be a member of ψ so that |ψ2| > 2a − 2 − r + 1 = b.

Thus πpi(G) = b and this completes the proof of the theorem. �

Remark 3.9 Since an equiparity induced path decomposition is an equiparity path de-

composition and an equiparity path decomposition is a path decomposition, it follows that
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πa(G) 6 πp(G) 6 πpi(G) for any graph G. Further these inequalities can be strict. That is,

all the three parameters can be either distinct or all are equal. For example, these parameters

coincide in the case of paths, cycles of even length and Petersen graph and if H = G − v4v5,

where G is the graph given in Figure 1, then πa(H) = 2, πp(H) = 3 and πpi(H) = 5. The the

following interpolation problem naturally arises.

Problem 3.10 If a, b and c are positive integers with a 6 b 6 c does there exist a graph G such

that πa(G) = a, πp(G) = b and πpi(G) = c?

§4. Conclusion and Scope

The theory of decomposition is one of the fastest growing areas of research in graph theory. We

have come across varieties of decompositions in the literature and most of them are defined by

demanding the members of the decomposition to posses some interesting properties. We have

introduced the concept of the equiparity induced path decomposition wherein the concepts of

equiparity and induceness have been combined. This study is just a first step in this direction.

However, there is wide scope for further research on this parameter and here we list some of

them.

(1) Determine the value of πpi for more classes of graphs like trees, unicyclic graphs and

bicyclic graphs.

(2) Characterize the graphs for which πpi = m
2 , m, πia, 2πia − 1 or πp = πa.
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