RUBY ON RAILS
TUTORIAL

LEARN WEB DEVELOPMENT WITH RAILS

MICHAEL HARTL

A

Ruby on Rails Tutorial

Learn Web Development with Rails

Michael Hartl

i

Contents

1 From zero to deploy 1
I.1 Introduction, 4
1.1.1 Prerequisites 5

1.1.2 Conventions used in thisbook 8

12 Upandrunning 11
1.2.1 Development environment 11

1.22 InstallingRails 18

1.3 The firstapplication 18
131 Bundler, 22

132 rails servero... 28

1.3.3 Model-View-Controller MVC) 29

134 Hello,world! 35

1.4 VersioncontrolwithGit. 40
1.4.1 Installationandsetup 42

1.42 What good does Gitdoyou? 44

143 Bitbucket 46

1.44 Branch, edit,commit, merge 51

1.5 Deploying e 57
1.5.1 Herokusetup, 59

1.5.2 Heroku deployment,stepone 62

1.5.3 Heroku deployment, steptwo 63

1.54 Herokucommands 63

1.6 Conclusion, 66
1.6.1 What we learned in this chapter 66

11

v
2 A toy app
2.1 Planning the application
2.1.1 Atoymodel forusers.
2.1.2 A toy model for microposts
2.2 TheUsersresource
221 Awsertour,
222 MVCinaction
2.2.3 Weaknesses of this Users resource
2.3 The Microposts resource
2.3.1 A micropost microtour
2.3.2 Putting the micro in microposts
2.3.3 Auser has many microposts
234 Inheritance hierarchies
23.5 Deployingthetoyapp
24 Conclusion L.

2.4.1 What we learned in this chapter

3 Mostly static pages

3.1
32

33

34

35

Sample appsetup
Staticpageso
3.2.1 Generated static pages
3.2.2 Custom staticpages
Getting started with testing
33.1 Ourfirsttest

332 Red
333 Green
334 Refactor.
Slightly dynamic pages

34.1 Testingtitles(Red)
342 Adding page titles (Green)

34.3 Layouts and embedded Ruby (Refactor)

344 Setting therootroute
Conclusion
3.5.1 What we learned in this chapter

CONTENTS

CONTENTS v

3.6 Advancedtestingsetup 163
3.6.1 minitestreporters 164

3.6.2 Automated tests withGuard 164

4 Rails-flavored Ruby 175
41 Motivation e e e 175
41.1 Built-inhelpers, 176

412 Customhelpers 177

42 Stringsandmethods L oL, 180
42.1 Comments, 182

4272 Strings e e e e e e 182

423 Objects and message passing 186

424 Method definitions 190

425 Backtothetitlehelper 192

4.3 Otherdatastructures 193
43.1 Arraysandranges 194

432 Blocks 198

433 Hashesandsymbols 202

434 CSSrevisited L Lo o 207

44 Rubyclasses. e 209
44.1 Constructors oo 210

442 Classinheritance 211

443 Modifying built-inclasses 216

444 Acontrollerclass 218

445 Awuserclass oo s 221

45 Conclusion e 224
45.1 What we learned in this chapter 225

S Filling in the layout 227
5.1 Adding some structure 228
5.1.1 Sitenavigation 228

5.1.2 Bootstrap and custom CSS 237

513 Partials L 249

5.2 Sassandtheassetpipeline 255

vi

6

CONTENTS

52.1 Theassetpipeline. 256
5.2.2 Syntactically awesome stylesheets 259
53 Layoutlinks 266
53.1 Contactpage 267
532 Railsroutes L oL 269
533 Usingnamedroutes. 273
534 Layoutlinktests 276
54 Usersignup: Afirststep 280
541 Userscontroller 280
542 SignupURL 282
55 Conclusion e 286
5.5.1 What we learned in this chapter 286
Modeling users 289
6.1 Usermodel 290
6.1.1 Database migrations 292
6.1.2 Themodelfile 299
6.1.3 Creatinguserobjects 300
6.14 Findinguserobjects 304
6.1.5 Updatinguserobjects 306
6.2 Uservalidations, 308
62.1 Awvalditytest. oL 309
6.2.2 Validatingpresence 311
6.2.3 Lengthvalidation 315
6.24 Formatvalidation 317
6.2.5 Uniqueness validation 324
6.3 Adding a secure password Lo 333
6.3.1 Ahashedpassword 333
6.3.2 User has secure password 336
6.3.3 Minimum password standards 338
6.34 Creating and authenticatingauser 340
64 Conclusion L o 344

6.4.1 What we learned in this chapter 345

CONTENTS

7 Sign up
7.1 Showingusers e
7.1.1 Debug and Rails environments
712 AUsersresource
7.13 Debugger
7.14 A Gravatar image and a sidebar
72 Signupform
72.1 Using form for
722 Signup formHTML
7.3 Unsuccessful signups,
73.1 Aworkingform.
7.3.2 Strong parameters
7.3.3 Signup error messages e e e . .
734 Atestforinvalid submission L.
7.4 Successful signups
74.1 The finished signup form
742 Theflash
743 Thefirstsignup,
744 Atestfor valid submission
7.5 Professional-grade deployment
75.1 SSLinproduction
7.5.2 Production webserver
7.5.3 Production database configuration
754 Production deployment
7.6 Conclusion
7.6.1 What we learned in this chapter
8 Basic login
8.1 Sessions
8.1.1 Sessionscontroller
812 Loginform
8.1.3 Finding and authenticatingauser
8.14 Rendering with a flash message

8.1.5

Aflashtest

Vil

viil

10

8.2

8.3
8.4

Loggingin.
8.2.1 The 1log in method
8.2.2 Current user
8.2.3 Changing the layout links
8.2.4 Testing layout changes
8.2.5 Login upon signup

Logging out
Conclusion

8.4.1 What we learned in this chapter

Advanced login

9.1

92
93

94

Updating, showing, and deleting users
10.1 Updating users

10.1.1 Edit form
10.1.2 Unsuccessful edits
10.1.3 Testing unsuccessful edits
10.1.4 Successful edits (with TDD)
10.2 Authorization
10.2.1 Requiring logged-in users
10.2.2 Requiring the right user

10.2.3 Friendly forwarding
10.3 Showing all users

Remember me
9.1.1 Remember token and digest
9.1.2 Login with remembering
9.1.3 Forgetting users
9.14 Two subtle bugs
“Remember me” checkbox
Remember tests
9.3.1 Testing the “remember me” box
9.3.2 Testing the remember branch

Conclusion

9.4.1 What we learned in this chapter

CONTENTS

CONTENTS X

10.3.1 Usersindex, 555
10.3.2 Sampleusers 560
1033 Pagination, 565
1034 Usersindextest 570
10.3.5 Partial refactoring 572

104 Deletingusers i e e e 574
104.1 Administrative users 574
1042 Thedestroyaction. 580
1043 Userdestroytests 583

105 Conclusion e 587
10.5.1 What we learned in this chapter 588

11 Account activation 591
11.1 Account activations resource« v o v o . . . 593
11.1.1 Account activations controller 593
11.1.2 Account activation datamodel 595

11.2 Account activationemails 602
11.2.1 Mailertemplates 602
1122 Email previews 608
1123 Emailtests 610
11.24 Updating the Users createaction 615

11.3 Activating theaccount 618
11.3.1 Generalizing the authenticated? method 620
11.3.2 Activationeditaction 625
11.3.3 Activation test and refactoring 630

114 Email in production 636
11.5 Conclusion 641
11.5.1 What we learned in this chapter 641

12 Password reset 643
12.1 Password resetsresource 647
12.1.1 Passwordresets controller 648
12.1.2 New passwordresets 651

12.1.3 Password reset createaction 654

X CONTENTS
12.2 Passwordresetemails, 659
12.2.1 Password reset mailer and templates 659
1222 Emailtests, 666

12.3 Resetting the password 667
12.3.1 Reseteditaction 667
12.3.2 Updatingthereset 670
1233 Passwordresettest 678

124 Email in production (take two) 683
12,5 Conclusion L 687
12.5.1 What we learned in this chapter 687

12.6 Proof of expiration comparison 688
13 User microposts 691
13.1 A Micropostmodel 691
13.1.1 Thebasicmodel 692
13.1.2 Micropost validations 695
13.1.3 User/Micropost associations 699
13.1.4 Micropost refinements 703

13.2 Showing microposts 708
13.2.1 Rendering microposts 710
13.2.2 Sample microposts 715
13.2.3 Profile microposttests 722

13.3 Manipulating microposts 726
13.3.1 Micropost accesscontrol 727
13.3.2 Creating microposts 730
1333 Aproto-feed 740
13.3.4 Destroying microposts v . o o 747
13.3.5 Microposttests 752

134 Micropost Images v v v v v v e e e e e 756
134.1 Basicimageupload 756
1342 Image validation 764
1343 Imageresizing, 768
134.4 Image upload in production 772

135 Conclusion o 777

CONTENTS

13.5.1 What we learned in this chapter

14 Following users

14.1 The Relationshipmodel
14.1.1 A problem with the data model (and a solution)
14.1.2 User/relationship associations
14.1.3 Relationship validations
14.14 Followedusers
14.15 Followers,

14.2 A web interface for followingusers
14.2.1 Sample followingdata
1422 Statsand a followform
14.2.3 Following and followers pages
14.2.4 A working follow button the standard way
14.2.5 A working follow button with Ajax
142.6 Followingtests

143 Thestatusfeed
14.3.1 Motivation and strategy
14.3.2 A first feed implementation
1433 Subselects oo

144 Conclusion e
144.1 Guide to further resources
14.4.2 What we learned in this chapter

X1

xii CONTENTS

Foreword

My former company (CD Baby) was one of the first to loudly switch to Ruby
on Rails, and then even more loudly switch back to PHP (Google me to read
about the drama). This book by Michael Hartl came so highly recommended
that I had to try it, and the Ruby on Rails Tutorial is what I used to switch back
to Rails again.

Though I’ve worked my way through many Rails books, this is the one that
finally made me “get” it. Everything is done very much “the Rails way”—a
way that felt very unnatural to me before, but now after doing this book finally
feels natural. This is also the only Rails book that does test-driven development
the entire time, an approach highly recommended by the experts but which has
never been so clearly demonstrated before. Finally, by including Git, GitHub,
and Heroku in the demo examples, the author really gives you a feel for what it’s
like to do a real-world project. The tutorial’s code examples are not in isolation.

The linear narrative is such a great format. Personally, I powered through
the Rails Tutorial in three long days,! doing all the examples and challenges at
the end of each chapter. Do it from start to finish, without jumping around, and
you’ll get the ultimate benefit.

Enjoy!

Derek Sivers (sivers.org)
Founder, CD Baby

IThis is not typical! Getting through the entire book usually takes much longer than three days.

xiil

http://sivers.org/
http://sivers.org/

Xiv CONTENTS

Acknowledgments

The Ruby on Rails Tutorial owes a lot to my previous Rails book, RailsSpace,
and hence to my coauthor Aurelius Prochazka. I'd like to thank Aure both for
the work he did on that book and for his support of this one. I’d also like to thank
Debra Williams Cauley, my editor on both RailsSpace and the Ruby on Rails
Tutorial; as long as she keeps taking me to baseball games, I’'ll keep writing
books for her.

I’d like to acknowledge a long list of Rubyists who have taught and inspired
me over the years: David Heinemeier Hansson, Yehuda Katz, Carl Lerche,
Jeremy Kemper, Xavier Noria, Ryan Bates, Geoffrey Grosenbach, Peter Cooper,
Matt Aimonetti, Mark Bates, Gregg Pollack, Wayne E. Seguin, Amy Hoy, Dave
Chelimsky, Pat Maddox, Tom Preston-Werner, Chris Wanstrath, Chad Fowler,
Josh Susser, Obie Fernandez, Ian McFarland, Steven Bristol, Pratik Naik, Sarah
Mei, Sarah Allen, Wolfram Arnold, Alex Chaffee, Giles Bowkett, Evan Dorn,
Long Nguyen, James Lindenbaum, Adam Wiggins,
Tikhon Bernstam, Ron Evans, Wyatt Greene, Miles Forrest, Sandi Metz, Ryan
Davis, Aaron Patterson, the good people at Pivotal Labs, the Heroku gang, the
thoughtbot guys, and the GitHub crew.

I’d like to thank technical reviewer Andrew Thai for his careful reading
of the manuscript and for his helpful suggestions. I'd also like to thank my
cofounders at Learn Enough, Nick Merwin and Lee Donahoe, for all their help
in preparing this tutorial.

Finally, many, many readers —far too many to list—have contributed a huge
number of bug reports and suggestions during the writing of this book, and I
gratefully acknowledge their help in making it as good as it can be.

XV

http://aure.com/
https://www.learnenough.com/

XVi CONTENTS

About the author

Michael Hartl is the creator of the Ruby on Rails Tutorial, one of the lead-
ing introductions to web development, and is cofounder and principal author
at LearnEnough.com. Previously, he was a physics instructor at the California
Institute of Technology (Caltech), where he received a Lifetime Achievement
Award for Excellence in Teaching. He is a graduate of Harvard College, has
a Ph.D. in Physics from Caltech, and is an alumnus of the Y Combinator en-
trepreneur program.

XVil

https://www.michaelhartl.com/
https://www.railstutorial.org/
https://www.learnenough.com/
https://www.caltech.edu/
https://www.caltech.edu/
https://www.michaelhartl.com/ascit/awards2000.html
https://www.michaelhartl.com/ascit/awards2000.html
https://college.harvard.edu/
https://thesis.library.caltech.edu/1940/
https://www.caltech.edu/
https://www.ycombinator.com/

XViii CONTENTS

Copyright and license

Ruby on Rails Tutorial: Learn Web Development with Rails. Copyright © 2016
by Michael Hartl. Last updated 2019/08/10 21:07 PT.

All source code in the Ruby on Rails Tutorial 1s available jointly under the
MIT License and the Beerware License.

The MIT License
Copyright (c) 2016 Michael Hartl

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. 1IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

THE BEERWARE LICENSE (Revision 42)

Michael Hartl wrote this code. As long as you retain this notice you can do
whatever you want with this stuff. If we meet some day, and you think this
stuff is worth it, you can buy me a beer in return.

X1X

http://opensource.org/licenses/MIT
http://people.freebsd.org/~phk/

XX

CONTENTS

Chapter 1

From zero to deploy

Welcome to Ruby on Rails Tutorial: Learn Web Development with Rails. The
purpose of this book is to teach you how to develop custom web applications,
and our tool of choice is the popular Ruby on Rails web framework. In addi-
tion to focusing on general principles of web development (rather than on Rails
specifically), the Ruby on Rails Tutorial teaches the broader skill of technical
sophistication (Box 1.1), which is a principal theme developed by the Learn
Enough to Be Dangerous tutorials.! In particular, the Learn Enough introduc-
tory sequence consists of a series of tutorials that are suitable as prerequisites to
the Ruby on Rails Tutorial, starting with Learn Enough Command Line to Be
Dangerous,” which (unlike the present tutorial) is aimed at complete beginners.

Box 1.1. Technical sophistication

The Ruby on Rails Tutorial is part of the Learn Enough to Be Dangerous family
of tutorials, which develop the theme of technical sophistication: the combination
of hard and soft skills that make it seem like you can magically solve any technical
problem (as illustrated in “Tech Support Cheat Sheet” from xkcd). Web develop-
ment, and computer programming in general, are essential components of technical

llearnenough.com/story
%learnenough.com/command-line

https://www.railstutorial.org/book
http://rubyonrails.org
https://www.railstutorial.org/
https://www.learnenough.com/story
https://www.learnenough.com/story
https://www.railstutorial.org/
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line
https://www.railstutorial.org/
https://www.learnenough.com/story
https://m.xkcd.com/627/
https://xkcd.com/

2 CHAPTER I. FROM ZERO TO DEPLOY

sophistication, but there’s more to it than that— you also have to know how to click
around menu items to learn the capabilities of a particular application, how to clar-
ify a confusing error message by Googling it, or when to give up and just reboot
the darn thing.

Because web applications have so many moving parts, they offer ample op-
portunities to develop your technical sophistication. In the context of Rails web
development, some specific examples of technical sophistication include making
sure you’'re using the right Ruby gem versions, running bundle install or
bundle update, and restarting the local webserver if something doesn’t work.
(Don’t worry if all this sounds like gibberish; we’ll cover everything mentioned
here in the course of completing this tutorial.)

As you proceed through this tutorial, in all likelihood you will occasionally be
tripped up by things not immediately working as expected. Although some partic-
ularly tricky steps are explicitly highlighted in the text, it is impossible to anticipate
all the things that can go wrong. I recommend you embrace these inevitable stum-
bling blocks as opportunities to work on improving your technical sophistication.
Or, as we say in geek speak: It’s not a bug, it’s a feature!

The Ruby on Rails Tutorial is designed to give you a thorough introduction
to web application development, including a basic grounding in Ruby, Rails,
HTML & CSS, databases, version control, testing, and deployment — sufficient
to launch you on a career as a web developer or technology entrepreneur. If
you already know web development, this book will quickly teach you the es-
sentials of the Rails framework, including MVC and REST, generators, migra-
tions, routing, and embedded Ruby. In any case, when you finish the Ruby
on Rails Tutorial you will be in a position to benefit from the many more ad-
vanced books, blogs, and screencasts that are part of the thriving programming
educational ecosystem.’

The Ruby on Rails Tutorial takes an integrated approach to web develop-

3The most up-to-date version of the Ruby on Rails Tutorial can be found on the book’s website at
https://www railstutorial.org/. If you are reading this book offline, be sure to check the online version of the
Rails Tutorial book at https://www.railstutorial.org/book for the latest updates.

https://www.google.com/
https://www.learnenough.com/r/learn_enough_command_line/manipulating_files#aside-speak_geek
https://www.railstutorial.org/
https://www.railstutorial.org/book
https://www.railstutorial.org/book
https://www.railstutorial.org/book

ment by building three example applications of increasing sophistication, start-
ing with a minimal hello app (Section 1.3), a slightly more capable roy app
(Chapter 2), and a real sample app (Chapter 3 through Chapter 14). As implied
by their generic names, the applications developed in the Ruby on Rails Tutorial
are not specific to any particular kind of website. The final sample application
bears more than a passing resemblance to Twitter (which, coincidentally, was
also originally written in Rails), but the emphasis throughout the tutorial is on
general principles, so you will have a solid foundation no matter what kinds of
web applications you want to build.

In this first chapter, we’ll get started with Ruby on Rails by installing all
the necessary software and by setting up our development environment (Sec-
tion 1.2). We’ll then create our first Rails application, called hello app. The
Rails Tutorial emphasizes good software development practices, so immedi-
ately after creating our fresh new Rails project we’ll put it under version control
with Git (Section 1.4). And, believe it or not, in this chapter we’ll even put our
first app on the wider web by deploying it to production (Section 1.5).

In Chapter 2, we’ll make a second project, whose purpose is to demonstrate
the basic workings of a Rails application. To get up and running quickly, we’ll
build this foy app (called toy_app) using scaffolding (Box 1.2) to generate
code; because this code is both ugly and complex, Chapter 2 will focus on
interacting with the toy app through its URIs (often called URLs)* using a web
browser.

The rest of the tutorial focuses on developing a single large real sample
application (called sample app), writing all the code from scratch. We’ll de-
velop the sample app using a combination of mockups, test-driven develop-
ment (TDD), and integration tests. We’ll get started in Chapter 3 by creating
static pages and then add a little dynamic content. We’ll take a quick detour
in Chapter 4 to learn a little about the Ruby language underlying Rails. Then,
in Chapter 5 through Chapter 12, we’ll complete the foundation for the sample
application by making a site layout, a user data model, and a full registration
and authentication system (including account activation and password resets).
Finally, in Chapter 13 and Chapter 14 we’ll add microblogging and social fea-

4URI stands for Uniform Resource Identifier, while the slightly less general URL stands for Uniform Resource
Locator. In practice, the URL is usually equivalent to “the thing you see in the address bar of your browser”.

http://twitter.com/

4 CHAPTER I. FROM ZERO TO DEPLOY

tures to make a working example site.

Box 1.2. Scaffolding: Quicker, easier, more seductive

From the beginning, Rails has benefited from a palpable sense of excitement,
starting with the famous 15-minute weblog video by Rails creator David Heine-
meier Hansson. That video and its successors are a great way to get a taste of
Rails’ power, and I recommend watching them. But be warned: they accomplish
their amazing fifteen-minute feat using a feature called scaffolding, which relies
heavily on generated code, magically created by the Rails generate scaffold
command.

When writing a Ruby on Rails tutorial, it is tempting to rely on the scaffold-
ing approach—it’s quicker, easier, more seductive. But the complexity and sheer
amount of code in the scaffolding can be utterly overwhelming to a beginning Rails
developer; you may be able to use it, but you probably won’t understand it. Fol-
lowing the scaffolding approach risks turning you into a virtuoso script generator
with little (and brittle) actual knowledge of Rails.

In the Ruby on Rails Tutorial, we’ll take the (nearly) polar opposite approach:
although Chapter 2 will develop a small toy app using scaffolding, the core of the
Rails Tutorial is the sample app, which we’ll start writing in Chapter 3. At each
stage of developing the sample application, we will write small, bite-sized pieces
of code—simple enough to understand, yet novel enough to be challenging. The
cumulative effect will be a deeper, more flexible knowledge of Rails, giving you a
good background for writing nearly any type of web application.

1.1 Introduction

Ruby on Rails (or just “Rails” for short) is a web development framework writ-
ten in the Ruby programming language. Since its debut in 2004, Ruby on Rails
has rapidly become one of the most powerful and popular tools for building
dynamic web applications. Rails is used by companies as varied as Airbnb,

http://www.youtube.com/watch?v=Gzj723LkRJY
https://en.wikipedia.org/wiki/Dark_side_(Star_Wars)
http://airbnb.com/

1.1. INTRODUCTION 5

Basecamp, Disney, GitHub, Hulu, Kickstarter, Shopify, Twitter, and the Yel-
low Pages. There are also many web development shops that specialize in Rails,
such as ENTP, thoughtbot, Pivotal Labs, Hashrocket, and HappyFunCorp, plus
innumerable independent consultants, trainers, and contractors.

What makes Rails so great? First of all, Ruby on Rails is 100% open-source,
available under the generous MIT License, and as a result it also costs nothing to
download or use. Rails also owes much of its success to its elegant and compact
design; by exploiting the malleability of the underlying Ruby language, Rails
effectively creates a domain-specific language for writing web applications. As
a result, many common web programming tasks—such as generating HTML,
making data models, and routing URLs—are easy with Rails, and the resulting
application code is concise and readable.

Rails also adapts rapidly to new developments in web technology and
framework design. For example, Rails was one of the first frameworks to fully
digest and implement the REST architectural style for structuring web applica-
tions (which we’ll be learning about throughout this tutorial). And when other
frameworks develop successful new techniques, Rails creator David Heine-
meier Hansson and the Rails core team don’t hesitate to incorporate their ideas.
Perhaps the most dramatic example is the merger of Rails and Merb, a rival
Ruby web framework, so that Rails now benefits from Merb’s modular design,
stable API, and improved performance.

Finally, Rails benefits from an unusually enthusiastic and supportive com-
munity. The results include thousands of open-source contributors, fun and
informative conferences, a huge number of gems (self-contained solutions to
specific problems such as pagination and image upload), a rich variety of infor-
mative blogs, and a cornucopia of discussion forums and IRC channels. The
large number of Rails programmers also makes it easier to handle the inevitable
application errors: the “Google the error message” algorithm nearly always pro-
duces a relevant blog post or discussion-forum thread.

1.1.1 Prerequisites

There are no formal prerequisites to this book, and the Ruby on Rails Tutorial
contains integrated tutorials not only for Rails, but also for the underlying Ruby

http://basecamp.com/
http://disney.com/
http://github.com/
http://hulu.com/
http://kickstarter.com/
http://shopify.com/
http://twitter.com/
http://yellowpages.com/
http://yellowpages.com/
http://entp.com/
http://thoughtbot.com/
http://pivotallabs.com/
http://hashrocket.com/
http://www.happyfuncorp.com/
http://www.opensource.org/licenses/mit-license.php
http://ruby-lang.org/
https://en.wikipedia.org/wiki/Domain_Specific_Language
http://loudthinking.com/
http://loudthinking.com/
http://rubyonrails.org/core
https://en.wikipedia.org/wiki/Application_programming_interface
http://contributors.rubyonrails.org/
http://railsconf.com/
https://rubygems.org/

6 CHAPTER I. FROM ZERO TO DEPLOY

language, the default Rails testing framework (minitest), the Unix command
line, HTML, CSS, a small amount of JavaScript, and even a little SQL. That’s
a lot of material to absorb, though, and I generally recommend having some
HTML and programming background before starting this tutorial. If you’re
new to software development, I recommend starting with the tutorials at Learn
Enough instead:

1. Developer Fundamentals

(a) Learn Enough Command Line to Be Dangerous
(b) Learn Enough Text Editor to Be Dangerous
(¢) Learn Enough Git to Be Dangerous

2. Web Basics

(a) Learn Enough HTML to Be Dangerous
(b) Learn Enough CSS & Layout to Be Dangerous

3. Beginning Development

(a) Learn Enough JavaScript to Be Dangerous
(b) Learn Enough Ruby to Be Dangerous

4. Application Development

e The Ruby on Rails Tutorial

One common question when learning Rails is whether to learn Ruby first.
The answer depends on your personal learning style and how much program-
ming experience you already have. If you prefer to learn everything systemati-
cally from the ground up, or if you have never programmed before, then learning
Ruby first might work well for you, and in this case I recommend following the
full Learn Enough sequence listed above. On the other hand, many beginning
Rails developers are excited about making web applications, and would rather
not wait to finish a whole book on Ruby before ever writing a single web page.

https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/CSS
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/SQL
https://www.learnenough.com/
https://www.learnenough.com/
https://www.learnenough.com/command-line
https://www.learnenough.com/text-editor
https://www.learnenough.com/git
https://www.learnenough.com/html
https://www.learnenough.com/css-and-layout
https://www.learnenough.com/javascript
https://www.learnenough.com/ruby
https://www.railstutorial.org/

1.1. INTRODUCTION 7

In this case, I recommend giving this tutorial a go and switching to the Learn
Enough sequence if it proves too challenging.

At the end of this tutorial, no matter where you started, you should be ready
for the many more intermediate-to-advanced Rails resources out there. Here
are some I particularly recommend:

e The Learn Enough Society: Premium subscription service that includes
a special enhanced version of the Ruby on Rails Tutorial book and 15+
hours of streaming screencast lessons filled with the kind of tips, tricks,
and live demos that you can’t get from reading a book. Also includes text
and videos for the other Learn Enough tutorials. Scholarship discounts
are available.

e The Turing School of Software & Design: A full-time, 27-week training
program in Denver, Colorado

* Bloc: An online bootcamp with a structured curriculum, personalized
mentorship, and a focus on learning through concrete projects. Use the

coupon code BLOCLOVESHARTL to get $500 off the enrollment fee.

e Launch School: A good online Rails development bootcamp (includes
advanced material)

e Thinkful: An online class that pairs you with a professional engineer as
you work through a project-based curriculum

e Pragmatic Studio: Online Ruby and Rails courses from Mike and Nicole
Clark. Along with Programming Ruby author Dave Thomas, Mike taught
the first Rails course I took, way back in 2006.

* RailsApps: A large variety of detailed topic-specific Rails projects and
tutorials

 Rails Guides: Topical and up-to-date Rails references

https://www.learnenough.com/story
https://www.learnenough.com/
https://turing.io/
https://www.bloc.io/
https://launchschool.com/railstutorial
https://www.thinkful.com/a/railstutorial
https://pragmaticstudio.com/refs/railstutorial
https://tutorials.railsapps.org/hartl
https://guides.rubyonrails.org/

8 CHAPTER I. FROM ZERO TO DEPLOY

Exercises

The Ruby on Rails Tutorial contains a large number of exercises. Solving them
as you proceed through the tutorial is strongly recommended.

In order to keep the main discussion independent of the exercises, the so-
lutions are not generally incorporated into subsequent code listings. (In the
rare circumstance that an exercise solution is used subsequently, it is explic-
itly solved in the main text.) This means that over time your code may diverge
from the code shown in the tutorial due to differences introduced in the ex-
ercises. Learning how to resolve such discrepancies is a valuable exercise in
technical sophistication (Box 1.1).

To record your answers and see solutions, you can join the Learn Enough
Society, a subscription service from Learn Enough to Be Dangerous that in-
cludes a special enhanced version of the Ruby on Rails Tutorial.

Many of the exercises are challenging, but we’ll start out with some easy
ones just to get warmed up:

1. Which website hosts the Ruby gem for Ruby on Rails? Hint: When in
doubt, Google it.

2. What is the current version number of Rails?

3. As of this moment, how many total times has Ruby on Rails been down-
loaded?

1.1.2 Conventions used in this book

The conventions used in this book are mostly self-explanatory. In this section,
we’ll go over some that may not be.

Many examples in this book use command-line commands. For simplicity,
all command line examples use a Unix-style command line prompt (a dollar
sign), as follows:

https://www.railstutorial.org/
https://www.learnenough.com/story
https://www.learnenough.com/story
https://www.learnenough.com/story
https://www.railstutorial.org/
https://www.google.com/search?q=ruby+gem

1.1. INTRODUCTION 9

$ echo "hello, world"
hello, world

Rails comes with many commands that can be run at the command line. For
example, in Section 1.3.2 we’ll run a local development webserver with the
rails server command:

$ rails server

As with the command-line prompt, the Rails Tutorial uses the Unix conven-
tion for directory separators (i.e., a forward slash /). For example, the sample
application production. rb configuration file appears as follows:

config/environments/production.rb

This file path should be understood as being relative to the application’s root
directory, which will vary by system; on the cloud IDE (Section 1.2.1), it looks
like this:

/home/ec2-user/environment/sample app/

Thus, the full path to production.rb is

/home/ec2-user/environment/sample_app/config/environments/production.rb

I will typically omit the application path and write just config/environ-
ments/production.rb for short.

The Rails Tutorial often shows output from various programs. Because of
the innumerable small differences between different computer systems, the out-
put you see may not always agree exactly with what is shown in the text, but this
1s not cause for concern. In addition, some commands may produce errors de-
pending on your system; rather than attempt the Sisyphean task of documenting

https://en.wikipedia.org/wiki/Sisyphus

10 CHAPTER I. FROM ZERO TO DEPLOY

all such errors in this tutorial, I will delegate to the “Google the error message”
algorithm, which among other things is good practice for real-life software de-
velopment (Box 1.1). If you run into any problems while following the tutorial,
I suggest consulting the resources listed in the Rails Tutorial help page.’

Because the Rails Tutorial covers testing of Rails applications, it is often
helpful to know if a particular piece of code causes the test suite to fail (indicated
by the color red) or pass (indicated by the color green). For convenience, code
resulting in a failing test is thus indicated with rep, while code resulting in a
passing test is indicated with crEEN.

Finally, for convenience the Ruby on Rails Tutorial adopts two conventions
designed to make the many code samples easier to understand. First, some code
listings include one or more highlighted lines, as seen below:

class User < ApplicationRecord
validates :name, presence: true
validates :email, presence: true
end

Such highlighted lines typically indicate the most important new code in the
given sample, and often (though not always) represent the difference between
the present code listing and previous listings. Second, for brevity and simplicity
many of the book’s code listings include vertical dots, as follows:

class User < ApplicationRecord

has_secure_password
end

These dots represent omitted code and should not be copied literally.

Srailstutorial .org/help

https://www.railstutorial.org/help

1.2. UP AND RUNNING 11

1.2 Up and running

Even for experienced Rails developers, installing Ruby, Rails, and all the as-
sociated supporting software can be an exercise in frustration. Compounding
the problem is the multiplicity of environments: different operating systems,
version numbers, preferences in text editor and integrated development envi-
ronment (IDE), etc. The Ruby on Rails Tutorial offers two recommended solu-
tions to this problem. One possibility is to follow the full Learn Enough intro
sequence mentioned in Section 1.1.1, which will automatically lead to a system
configured for this tutorial.

The other possibility, recommended for newer users, is to sidestep such
installation and configuration issues by using a cloud integrated development
environment, or cloud IDE. The cloud IDE used in this tutorial runs inside an
ordinary web browser, and hence works the same across different platforms,
which is especially useful for operating systems (such as Windows) on which
Rails development has historically been difficult. It also maintains the current
state of your work, so you can take a break from the tutorial and come back to
the system just as you left it.

1.2.1 Development environment

Considering various idiosyncratic customizations, there are probably as many
development environments as there are Rails programmers. To avoid this com-
plexity, the Ruby on Rails Tutorial standardizes on the excellent cloud develop-
ment environment Cloud9, part of Amazon Web Services (AWS). The result-
ing workspace environment comes pre-configured with most of the software
needed for professional-grade Rails development, including Ruby, RubyGems,
Git. (Indeed, the only big piece of software we’ll install separately is Rails
itself, and this is intentional (Section 1.2.2).)

Although you are welcome to develop your application locally, setting up a
Rails development environment can be challenging, so I recommend the cloud
IDE for most readers. For those who want to go the local route, try the steps
from Learn Enough Dev Environment to Be Dangerous, and be prepared for a
challenging exercise in technical sophistication (Box 1.1).

https://www.railstutorial.org/
https://www.learnenough.com/
https://aws.amazon.com/cloud9/
https://www.learnenough.com/dev-environment

12

&«

Commands Mavigate Environment

CHAPTER I. FROM ZERO TO DEPLOY

® @ rails-tutorial - AWS Cloud® % A Michael
C () | 8 Secure | https://us-east-2.console.aws.amazon.com/cloudd fide/179b57a0abe14idcO5f8d5c060bi3256 +f | i@
AWS Cloud9 File Edit Find View Golo Run Tools Window Support Preview Run Share -a
v rails-tutorial LF- h= users_controller,| * sessions_control * g
o
i sample_app 1 [klass UsersController < ApplicationController g
v apo 2 before_action :logged_in_user, only: [:index, :edit, :update, :destroy, E
= T 3 :following, :followers] 2
4 before_action :correct_user, only: [:edit, :update] o
¥ channels 5 before_action :admin_user, only: :destroy g
b controllers 6 E
£ def index
L o 3 @users = User.where(activated: true).paginate(page: params[:page]) =
#| account_activatio g end =
i text edit 2
» li s o)
application_contrs o S ex e I or %
¥| microposts_contr 12 euser = User.find(params[:id]) D
¥ password_resets 13 redirect_to root_url ond return unless 8user.activated? §
&y = B i X ms[=
#| relatinships_con i; er‘amlcﬂoposts Buser.microposts.paginate(page: params[:pagel}
#| sessions_controlle 16 =
o
¥| static_pages_coni 17 def new &
18 Buser = User new %
#| users_controllerr| 19 end =
> helpers 28
g~ T 21 def create
fllesystem 2z Buser = User.new(user_params) 1:1 Ruby Spaces:2
LA LA - .-
b Fu oncis ruby - "ip-172-31. % F A
na\ngator i T e e
- =) . B6/6@: [1 9% Time: 80:00:01, ETA
¥ views . 66/62: [] 93% Time: @@:90:01, ETA: @
» bin . 66/63: [1 95% Time: @@:00:01, ETA: ©0:00:0
. B6/65: [] 98% Time: @@:80:02, ETA: 00:00:
L3 config . 66/66: [1 100% Time: 00:09:02, Time: 90:080:0
2 = .
» db
s S command-line terminal
i Finished in 2.@6081s
» log 66 tests, 372 assertions, @ failures, @ errors, @ skips
> public
» test Finished in 2.8596@3s, 32.845@ runs/s, 18@8.6173 assertions/s.
. - 66 runs, 372 assertions, @ failures, @ errors, skips
mp

ec2-user:~/environment/sample_app (master) % I

Figure 1.1: The anatomy of the cloud IDE.

The cloud IDE includes the three essential components needed to develop

web applications: a text editor, a filesystem navigator, and a command-line
terminal (Figure 1.1). Among other features, the cloud IDE text editor supports
the “Find in Files” global search that I consider essential to navigating any large

Ruby or Rails project. Finally, even if you decide not to use the cloud IDE

exclusively in real life (and I certainly recommend learning other tools as well),
it provides an excellent introduction to the general capabilities of text editors
and other development tools.

Here are the steps for getting started with the cloud development environ-

®For example, to find the definition of a function called foo, you can do a global search for “def foo”.

1.2. UP AND RUNNING 13

ment:’

1. Because Cloud9 is part of Amazon Web Services (AWS), if you already
have an AWS account you can just sign in.® To create a new Cloud9
workspace environment, go to the AWS console and type “Cloud9” in
the search box.

2. If you don’t already have an AWS account, you should sign up for a free
account at AWS Cloud9.” In order to prevent abuse, AWS requires a valid
credit card for signup, but the workspace is 100% free (for a year as of
this writing), and your card will not be charged. You might have to wait
up to 24 hours for the account to be activated, but in my case it was ready
in about ten minutes.

3. Once you’ve successfully gotten to the Cloud9 administrative page (Fig-
ure 1.2), keep clicking on “Create environment” until you find yourself
on a page that looks like Figure 1.3. Enter the information as shown there,
then keep clicking the confirmation buttons until Cloud9 starts provision-
ing the IDE (Figure 1.4). You may run into a warning message about be-
ing a “root” user, which you can safely ignore at this early stage. (We’ll
discuss the preferred but more complicated practice, called an Identity
and Access Management (IAM) user, in Section 13.4.4.)

Because using two spaces for indentation is a near-universal convention in
Ruby, I also recommend changing the editor to use two spaces instead of the
default four. As shown in Figure 1.5, you can do this by clicking the gear icon
in the upper right and then changing the “Soft Tabs” setting to 2. (Note that this
takes effect immediately; you don’t need to click a “Save” button.)

Cloud IDE users will also want to take care to follow the Bitbucket (Sec-
tion 1.4.3) and Heroku installation instructions (Section 1.5.1), which have
changed since the time when Cloud9 was a standalone service.

"Due to the constantly evolving nature of sites like AWS, details may vary; use your technical sophistication
(Box 1.1) to resolve any discrepancies.

8https://aws.amazon.com/

“https://www.railstutorial .org/cloud9-signup

https://aws.amazon.com/
https://console.aws.amazon.com/
https://www.railstutorial.org/cloud9-signup
https://www.railstutorial.org/cloud9-signup

CHAPTER I. FROM ZERO TO DEPLOY

® © ® /g vour environments * 5 Michael

“ C () | 8 Secure | https://us-east-2.console.aws.amazon.com/cloudd/home?region=us-east-24 | &

[\ railstutorial-aws ~ Ohlo ~ Support ~

AWS Cloud9 X @
AWS root account login detected X
‘We do not recommend using your AWS root account to create or work with

Your environments environments. Use an IAM user instead. This is an AWS security best practice. For

more information, see Setting Up to Use AWS Cloud9 [2.
Shared with you

Account environments
AWS Cloud9 Your environments

How-to guide 2
d Your environments (1)

‘ Open IDE [A H View details H Edit H Delete

——

rails-tutorial o

Type Permissions
EC2 Owner
Description

A cloud IDE for the Ruby on Rails Tutorial

@ Feedback (@ English (US) Privacy Policy Terms of Use

Figure 1.2: The administrative page for Cloud9.

1.2. UP AND RUNNING

® ® 8 Create a new environment * U Michael
- C () | 8 Secure | https://us-east-2.console.aws.amazon.com/cloud/home/create ov Y| &
aw?—_, Services v Resource Groups ~ * [\ railstutorial-aws ~ Ohlo ~ Support ~
= Step 1 @
Name environment
Step
Step 3

Name environment

Environment name and description

Name

The name

rails-tutorial b— rai |§:tﬁt6_ri§|

You can update it at any time in your environment settings.

vironment’s card In your board. You can update |t at any time in your ervironment settings.

A cloud IDE for the Ruby on Rails Tutorial

Privacy Policy Terms of Use

@ Feedback (@ English (US)

Figure 1.3: Creating a new work environment at AWS Cloud9.

15

CHAPTER I. FROM ZERO TO DEPLOY

® 0 ® /@ reils-tutorial - AWS Cloud x) Michael
&« C {Y | & Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e141dc95f9d5c060bf3256 | 8 v

4 AWSClouds File Edt Find View Goto Run Tools Window Support Preview share L}
T v [rails-tutorisl FER- \icicome g
E README.md &
: g
5 Developer Tools @
g 2
2 =
AWS Cloud9 :
. =

2 @
e Welcom r development environment ;
g i
£ g
8 AWS Cloud9 allows you to write, run, and debug your code with just a browser. You 3
can , write code for ; @

with others in real time, and much more. o

g
7 &
Getting started &

Create File
AWS Cloud9 for AWS Lambda
Open File..
AWS Lambda is a compute service that lets you run code without Upload Files...
provisioning or managing servers. AWS Lambda executes your code
only when needed and scales automatically, from a few requests per Clone Git Repository

day to thousands per second.

Create Lambda Function...
Configure AWS Cloud9

Import Lambda Function...
Main Theme: AWS Clouds Flat Light Theme ~

Editor Theme: Cloudd Day v

Support

Keyboard Mode: Defauit v
If you have any questions or experience issues, refer to our

bash - "ip-172-31 Immediate =

ec2-user:~/environment $ []

Figure 1.4: The default cloud IDE.

1.2. UP AND RUNNING

® 0 ® /@ rsils-tutorial - AWS Cloud X L Michael
£ C Y & Secure | https://us-east-2.console.aws.amazon. 179b57a0ate 5 @ e v
4 AWSCloud9 File Edit Find View Golo Run Tools Window Support Preview ° Ru
T v rails-tutorisl L B Welcome % Preferences % g
E README.md B
g o " 2
. prOsECT These settings are specific 1o this project. They are saved at: <project>/.co/project settings. o
8 EC2 Instance Hint: Add the .c8 folder to your repository to share these settings with your callaborators. %
3 Code Editor (Ace)
Find in Files : 2
o Stop my environment After 30 minutes, 3
E Hints & Wamings 2
£ JavaSeript Support 2 g
g
8 Busd | Son Tabs: - EI g
Run & Debug
RAun Configurations Autodetect Tab Size on Load o
Code Formatters =
2 . 8
PHP Support New File Line Endings: Unix (LF))
b Foppo On Save, Strip Whitespace: C))
Go Support o
/NAER SETTHNGS Ignore these files: *packup-*
cravisions
* AWS SETTINGS 9
At
» KEYBINDINGS e
DS_Store
¥ THEMES hor
Maximum number of fles to search (in 1000): - 0
Warning Level Info E

Mark Undeclared Variables:

Mark Missing Optional Semicolons: ()

o
x

Immediate x

ec2-user:~/environment $ []

Figure 1.5: Setting Cloud9 to use two spaces for indentation.

17

18 CHAPTER I. FROM ZERO TO DEPLOY

Finally, advanced users who elect to follow the testing setup in Section 3.6
should also note that additional configuration may be necessary on the cloud
IDE. See Section 3.6.2 for details.

1.2.2 Installing Rails

The development environment from Section 1.2.1 includes all the software we
need to get started except for Rails itself. First, we’ll do a little preparation by
adding configuration settings to prevent the time-consuming installation of local
Ruby documentation, which needs to be done only once per system (definitely
don’t worry about trying to understand this command):'°

$ printf "install: --no-rdoc --no-ri\nupdate: --no-rdoc --no-ri\n" >> ~/.gemrc

To install Rails, we’ll use the gem command provided by the RubyGems pack-
age manager, which involves typing the command shown in Listing 1.1 into
your command-line terminal. (If developing on your local system, this means
using a regular terminal window; if using the cloud IDE, this means using the
command-line area shown in Figure 1.1.)

Listing 1.1: Installing Rails with a specific version number.

$ gem install rails -v 5.1.6

Here the -v flag ensures that the specified version of Rails gets installed, which
is important for getting results consistent with this tutorial.

1.3 The first application

Following a long tradition in computer programming, our goal for the first appli-
cation is to write a “hello, world” program. In particular, we will create a simple

19Tf you’re curious, you can learn about more printf using man printf, as described in Learn Enough
Command Line to Be Dangerous.

http://www.catb.org/jargon/html/H/hello-world.html
https://www.learnenough.com/command-line
https://www.learnenough.com/command-line

1.3. THE FIRST APPLICATION 19

application that displays the string “hello, world!” on a web page, both on our
development environment (Section 1.3.4) and on the live web (Section 1.5).

Virtually all Rails applications start the same way, by running the rails
new command. This handy command creates a skeleton Rails application in a
directory of your choice. To get started, users not using the Cloud9 IDE rec-
ommended in Section 1.2.1 should make a environment directory for your
Rails projects if it doesn’t already exist (Listing 1.2) and then change into the
directory. (Listing 1.2 uses the Unix commands c¢d and mkdir; see Box 1.3 if
you are not already familiar with these commands.)

Listing 1.2: Making a environment directory for Rails projects (unneces-
sary in the cloud).

$ cd # Change to the home directory.
$ mkdir environment # Make a environment directory.
$ cd environment/ # Change into the environment directory.

Box 1.3. A crash course on the Unix command line

For readers coming from Windows or (to a lesser but still significant extent)
macOS, the Unix command line may be unfamiliar. Luckily, if you are using the
recommended cloud environment, you automatically have access to a Unix (Linux)
command line running a standard shell command-line interface known as Bash.

The basic idea of the command line is simple: by issuing short commands, users
can perform a large number of operations, such as creating directories (mkdir),
moving and copying files (mv and cp), and navigating the filesystem by chang-
ing directories (cd). Although the command line may seem primitive to users
mainly familiar with graphical user interfaces (GUIs), appearances are deceiving:
the command line is one of the most powerful tools in the developer’s toolbox. In-
deed, you will rarely see the desktop of an experienced developer without several
open terminal windows running command-line shells.

The general subject is deep, but for the purposes of this tutorial we will need
only a few of the most common Unix command-line commands, as summarized in

https://en.wikipedia.org/wiki/Shell_(computing)
https://en.wikipedia.org/wiki/Bash_(Unix_shell)

20 CHAPTER I. FROM ZERO TO DEPLOY

Description Command Example

list contents 1s $1s -1

make directory mkdir <dirname> $ mkdir environment
change directory cd <dirname> $ cd environment/

cd one directory up $ cd ..

cd to home directory $ cd ~orjust$ cd

cd to path incl. home dir $ cd ~/environment/
move file (rename) mv <source> <target> $ mv foo bar

copy file cp <source> <target> §$ cp foo bar

remove file rm <file> $ rm foo

remove empty directory rmdir <directory> $ rmdir environment/
remove nonempty directory rm -rf <directory> $ rm -rf tmp/
concatenate & display file contents cat <file> $ cat ~/.ssh/id_rsa.pub

Table 1.1: Some common Unix commands.

Table 1.1. For a more thorough introduction to the Unix command line, see the first
of the Learn Enough tutorials, Learn Enough Command Line to Be Dangerous."!

The next step on both local systems and the cloud IDE is to create the first
application using the command in Listing 1.3. Note that Listing 1.3 explicitly
includes the Rails version number as part of the command. This ensures that
the same version of Rails we installed in Listing 1.1 1s used to create the first
application’s file structure. (If the command in Listing 1.3 returns an error like
“Could not find 'railties'”,it means you don’t have the right version
of Rails installed, and you should double-check that you followed the command
in Listing 1.1 exactly as written.)

Listing 1.3: Running rails new (with a specific version number).

$ cd ~/environment

$ rails 5.1.6_ new hello app
create
create README.md
create Rakefile
create config.ru
create .gitignore
create Gemfile

https://www.learnenough.com/
https://www.learnenough.com/command-line

1.3. THE FIRST APPLICATION 21

create app

create app/assets/config/manifest.js

create app/assets/javascripts/application.js

create app/assets/javascripts/cable.]s

create app/assets/stylesheets/application.css
create app/channels/application cable/channel.rb
create app/channels/application cable/connection.rb
create app/controllers/application controller.rb

create tmp/cache/assets

create vendor/assets/javascripts

create vendor/assets/Jjavascripts/.keep

create vendor/assets/stylesheets

create vendor/assets/stylesheets/.keep

remove config/initializers/cors.rb

run bundle install

Fetching gem metadata from https://rubygems.org/..........
Fetching additional metadata from https://rubygems.org/..
Resolving dependencies...
Installing rake 11.1.2
Using concurrent-ruby 1.0.2

Your bundle is complete!

Use ~“bundle show [gemname] to see where a bundled gem is installed.
run bundle exec spring binstub --all

* bin/rake: spring inserted

* bin/rails: spring inserted

As seen at the end of Listing 1.3, running rails new automatically runs the
bundle install command after the file creation is done. We’ll discuss what
this means in more detail starting in Section 1.3.1.

Notice how many files and directories the rails command creates. This
standard directory and file structure (Figure 1.6) is one of the many advantages
of Rails: it immediately gets you from zero to a functional (if minimal) ap-
plication. Moreover, since the structure is common to all Rails apps, you can
immediately get your bearings when looking at someone else’s code.

A summary of the default Rails files appears in Table 1.2. We’ll learn about
most of these files and directories throughout the rest of this book. In particular,
starting in Section 5.2.1 we’ll discuss the app/assets directory, part of the
asset pipeline that makes it easy to organize and deploy assets such as cascading

22 CHAPTER I. FROM ZERO TO DEPLOY

[NN [hello_app
g2 E 0o hof| BE e~ %~ F Q, Sear
Name -~ Date Modified Size Kind
¥ 8 app Today, 10:22 AM -- Folder
¥ | | assets Today, 10:21 AM -- Folder
» 9 config Today, 10:27 AM i Folder
» [images Today, 10:21 AM -- Folder
» | javascripts Today, 10:27 AM -- Folder
» | stylesheets Today, 10:27 AM == Folder
» [V channels Today, 10:217 AM -- Folder
¥ | | controllers Today, 10:271 AM -- Folder
Er_j- application_controller.rb Today, 10:27 AM 97 bytes Ruby Source
» [concerns Today, 10:21 AM -- Folder
» |] helpers Today, 10:27 AM -- Folder
r B jobs Today, 10:27 AM == Folder
b [mailers Today, 10:27 AM -= Folder
> [models Today, 10:21 AM - Foldar
P | views Today, 10:27 AM -- Folder
» [bin Today, 10:27 AM - Folder
» 9 config Today, 10:21 AM iz Folder
config.ru Today, 10:21 AM 130 byies Document
b [db Today, 10:21 AM -- Folder
Gemfile Today, 10:27 AM 2 KB TextEd...ument
» B lib Today, 10:27 AM = Folder
b [log Today, 10:21 AM -- Folder

&4 Macintosh HD » [Users » <& mhartl » [workspace » [hello_app

Figure 1.6: The directory structure for a newly created Rails app.

style sheets and JavaScript files.

1.3.1 Bundler

After creating a new Rails application, the next step is to use Bundler to in-
stall and include the gems needed by the app. As noted briefly in Section 1.3,
Bundler is run automatically (via bundle install) by the rails command,
but in this section we’ll make some changes to the default application gems and
run Bundler again. This involves opening the Gemf i 1le with a text editor. (With
the cloud IDE, this involves clicking the arrow in the file navigator to open the
sample app directory and double-clicking the Gemfile icon.) Although the

1.3. THE FIRST APPLICATION

File/Directory Purpose

app/ Core application (app) code, including models, views, controllers, and helpers
app/assets Applications assets such as cascading style sheets (CSS), JavaScript files, and images
bin/ Binary executable files

config/ Application configuration

db/ Database files

doc/ Documentation for the application

lib/ Library modules

lib/assets Library assets such as cascading style sheets (CSS), JavaScript files, and images
log/ Application log files

public/ Data accessible to the public (e.g., via web browsers), such as error pages
bin/rails A program for generating code, opening console sessions, or starting a local server
test/ Application tests

tmp/ Temporary files

vendor/ Third-party code such as plugins and gems

vendor/assets Third-party assets such as cascading style sheets (CSS), JavaScript files, and images
README .md A brief description of the application

Rakefile Utility tasks available via the rake command

Gemfile Gem requirements for this app

Gemfile.lock A list of gems used to ensure that all copies of the app use the same gem versions
config.ru A configuration file for Rack middleware

.gitignore Patterns for files that should be ignored by Git

Table 1.2: A summary of the default Rails directory structure.

23

https://rack.github.io/

24 CHAPTER I. FROM ZERO TO DEPLOY

® & 0 rails-tutorial - AWS Cloud9 x Michael

C () | & Secure | https://us-east-2.console.aws.amazon.com/cloudd/ide/179b57a0a6e14idc85f9d5c060bf3256 +r | g

~ AWSCloud9 File Edit Find View Goio Run Tools Window Support Preview Run Share ﬂ
¥ (77 mils-tutorial - B Gemfile
L first_app seurce ‘https://rubygems.org’
README.md

git_source(:github) do Irepo_namel
repo_name = "#{repo_name}/#{repo_name}" unless repo_name.include?("/")
"https://github.com/#{repo_name}.git"

end

- I, B S PTR N

Bundle edge Rails instead: gem 'rails', github: 'rails/rails’
18 gem 'rails', '~ 5.1.2'

11 # Use sqlite3 as the database for Active Record

12 gem ‘sqlite3’

13 # Use Puma as the app server

14 gem 'puma', '~> 3.7'

15 # Use 5CS5 for stylesheets

16 gem 'sass-rails', '~> 5.0'

17 # Use Uglifier as compressor for JavaScript assets

18 gem 'uglifier', '>= 1.3.8'

19 # See https://github.com/rails/execjs#readme for more supported runtimes
20 # gem 'therubyracer', platforms: :ruby

Commands Mavigate Environment

ebBngeg SBwNOseH SMY BUIAND BIEIOGE|0]

22 # Use CoffeeScript for .coffee assets and views

23 gem 'coffee-rails', '-> 4.2° 1:23 Ruby Spaces:2 ﬁ

24 # Turbolinks makes navisatina wvour web application faster. Read more: htte ... «ceeimmn ool
2

bash - "ip-172-31% puma - "ip-172-3 % o %

ecZz-user:~/environment S cd first_app/ .

ec2-user:~/environment/first_app (master) $ _]

Figure 1.7: The default Gemfile open in a text editor.

exact version numbers and details may differ slightly, the results should look
something like Figure 1.7 and Listing 1.4. (The code in this file is Ruby, but
don’t worry at this point about the syntax; Chapter 4 will cover Ruby in more
depth.) If the files and directories don’t appear as shown in Figure 1.7, click
on the file navigator’s gear icon and select “Refresh File Tree”. (As a general
rule, you should refresh the file tree any time files or directories don’t appear as
expected.)!?

12This is a typical example of technical sophistication (Box 1.1).

1.3. THE FIRST APPLICATION 25

Listing 1.4: The default Gemfile in the hello app directory.

source 'https://rubygems.org'

git_source(:github) do |repo name|
repo_name = "#{repo name}/#{repo name}" unless repo name.include?("/")
"https://github.com/#{repo_name}.git"

end

Bundle edge Rails instead: gem 'rails', github: 'rails/rails'
gem 'rails', '~> 5.1.6'

Use sglite3 as the database for Active Record

gem 'sqglite3’

Use Puma as the app server

gem 'puma’, '~> 3.7'
Use SCSS for stylesheets
gem 'sass-rails', '~> 5.0'

Use Uglifier as compressor for JavaScript assets

gem 'uglifier', '>= 1.3.0'

See https://github.com/rails/execjs#readme for more supported runtimes
gem 'therubyracer', platforms: :ruby

Use CoffeeScript for .coffee assets and views

gem 'coffee-rails', '~> 4.2'

Turbolinks makes navigating your web application faster.
Read more: https://github.com/turbolinks/turbolinks

gem 'turbolinks', '~> 5'

Build JSON APIs with ease. Read more: https://github.com/rails/jbuilder
gem 'jbuilder', '~> 2.5

Use Redis adapter to run Action Cable in production

gem 'redis', '~> 3.0'

Use ActiveModel has_secure_ password

gem 'bcrypt', '~> 3.1.7'

Use Capistrano for deployment
gem 'capistrano-rails', group: :development

H* %

group :development, :test do
Call 'byebug' anywhere in the code to stop execution and get a debugger consol
gem 'byebug', platforms: [:mri, :mingw, :x64 mingw]
Adds support for Capybara system testing and selenium driver
gem 'capybara', '~> 2.13'
gem 'selenium-webdriver'

end

group :development do
Access an IRB console on exception pages or by using <%= console %>
anywhere in the code.
gem 'web-console', '>= 3.3.0'
gem 'listen', '>= 3.0.5', '< 3.2'

26 CHAPTER I. FROM ZERO TO DEPLOY

Spring speeds up development by keeping your application running
in the background. Read more: https://github.com/rails/spring
gem 'spring'
gem 'spring-watcher-listen', '~> 2.0.0'

end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64 mingw, :jruby]

Many of these lines are commented out with the hash symbol # (Section 4.2.1);
they are there to show you some commonly needed gems and to give examples
of the Bundler syntax. For now, we won’t need any gems other than the defaults.

Unless you specify a version number to the gem command, Bundler will
automatically install the latest requested version of the gem. This is the case,
for example, in the code

gem 'sqglite3’

There are also two common ways to specify a gem version range, which allows
us to exert some control over the version used by Rails. The first looks like this:

gem 'uglifier', '>= 1.3.0'

This installs the latest version of the uglifier gem (which handles file com-
pression for the asset pipeline) as long as it’s greater than or equal to ver-
sion 1.3.0—even if it’s, say, version 7 . 2. The second method looks like this:

gem 'coffee-rails', '~> 4.0.0'

This installs the gem coffee-rails as long as it’s version 4.0.0 or newer
but not 4.1 or newer. In other words, the >= notation always installs the latest
gem, whereas the ~> 4.0.0 notation will install 4.0. 1 (if available) but not
4.1.0."% Unfortunately, experience shows that even minor point releases can

3Similarly, ~> 4.0 would install version 4.9 of a gem but not 5. 0. This is especially useful if the project in
question uses semantic versioning (also called “semver”), which is a convention for numbering releases designed
to minimize the chances of breaking software dependencies.

https://semver.org/

1.3. THE FIRST APPLICATION 27

break the application, so for the Ruby on Rails Tutorial we’ll err on the side of
caution by including exact version numbers for all gems. You are welcome to
use the most up-to-date version of any gem, including using the ~> construction
in the Gemfile (which I generally recommend for more advanced users), but
be warned that this may cause the tutorial to act unpredictably.

Converting the Gemfile in Listing 1.4 to use exact gem versions results
in the code shown in Listing 1.5. (You can determine the exact version num-
ber for each gem by running gem list <gem name> at the command line,
but Listing 1.5 saves you the trouble.) Note that we’ve also taken this oppor-
tunity to arrange for the sgqlite3 gem to be included only in a development
or test environment (Section 7.1.1), which prevents potential conflicts with the
database used by Heroku (Section 1.5). Important note: For all the Gemfiles
in this book, you should use the version numbers listed at gemfiles-4th-
ed.railstutorial.org instead of the ones listed below (although they should
be identical if you are reading this online).

Listing 1.5: A Gemfile with an explicit version for each Ruby gem.
source 'https://rubygems.org'

gem 'rails’,

gem 'puma’,

gem 'sass-rails',
gem 'uglifier',

gem 'coffee-rails',
gem 'jquery-rails', '
gem 'turbolinks',
gem 'jbuilder',

N O W Ooww,m
e e o o o s e o«
O HEFNOORFO

~N O W NN O VW
e e e e e e e e

group :development, :test do

gem 'sqglite3', '1.3.13'
gem 'byebug', '9.0.6', platform: :mri
end

group :development do
gem 'web-console', 3
gem 'listen', "8
gem 'spring', '2
gem 'spring-watcher-listen', '2
end

o« e .
o o= WU
e e e o

=N O

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64 mingw, :jruby]

https://gemfiles-4th-ed.railstutorial.org/
https://gemfiles-4th-ed.railstutorial.org/

28 CHAPTER I. FROM ZERO TO DEPLOY

Once you’ve placed the contents of Listing 1.5 into the application’s Gem-
file, install the gems using bundle install:'*

$ cd hello app/
$ bundle install
Fetching source index for https://rubygems.org/

The bundle install command might take a few moments, but when it’s
done our application will be ready to run.

By the way, when you run bundle install it’s possible that you’ll get
a message saying you need to run bundle update first. In this case you
should... run bundle update first. (Learning not to panic when things don’t
go exactly as planned is a key part of technical sophistication, and you’ll be
amazed at how often the “error” message contains the exact instructions you
need to fix the problem at hand.)

1.3.2 rails server

Thanks to running rails new in Section 1.3 and bundle install in Sec-
tion 1.3.1, we already have an application we can run—but how? Happily, Rails
comes with a command-line program, or script, that runs a local webserver to
assist us in developing our application: rails server (Listing 1.6).

Listing 1.6: Running the Rails server.

$ cd ~/environment/hello_app/

$ rails server

=> Booting Puma

=> Rails application starting on http://localhost:3000
=> Run rails server -h~ for more startup options

=> Ctrl-C to shutdown server

%As noted in Table 3.1, you can even leave off install, as the bundle command by itself is an alias for
bundle install.

1.3. THE FIRST APPLICATION 29

If your system complains about the lack of a JavaScript runtime, visit the
execjs page at GitHub for a list of possibilities. I particularly recommend in-
stalling Node js.

I recommend running the rails server command in a second terminal
tab so that you can still issue commands in the first tab, as shown in Figure 1.8
and Figure 1.9. (If you already started a server in your first tab, press Ctrl-C
to shut it down.)!> On a local server, paste the URL http://localhost:3000 into
the address bar of your browser; on the cloud IDE, go to Preview and click on
Preview Running Application (Figure 1.10), and then open it in a full browser
window or tab (Figure 1.11). In either case, the result should look something
like Figure 1.12.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase.
To see other people’s answers and to record your own, join the Learn Enough
Society at learnenough.com/society.

1. According to the default Rails page, what is the version of Ruby on your
system? Confirm by running ruby -v at the command line.

2. What is the version of Rails? Confirm that it matches the version installed
in Listing 1.1.

1.3.3 Model-View-Controller (MVC)

Even at this early stage, it’s helpful to get a high-level overview of how Rails
applications work, as illustrated in Figure 1.13. You might have noticed that
the standard Rails application structure (Figure 1.6) has an application directory
called app/, which includes subdirectories called models, views, and con-
trollers (among others). This is a hint that Rails follows the model-view-
controller (MVC) architectural pattern, which enforces a separation between the

SHere “C” refers to the character on the keyboard, not the capital letter, so there’s no need to hold down the
Shift key to get a capital “C”.

https://github.com/sstephenson/execjs
https://nodejs.org/
http://localhost:3000
https://www.railstutorial.org/
http://learnenough.com/society
http://learnenough.com/society
http://learnenough.com/society
https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller

CHAPTER I. FROM ZERO TO DEPLOY

® 0 ® /g ralis-tutorial - AWS Clouds % Michael
c O \ 8 Secure | https://us-east-2.console.aws.amazon.com/cloudd fide/179b57a0a6e141dc95f9d5c060bf3256 1}‘ @ & v H

~ AWSCloud® File Edit Find View Goio Run Tools Window Support Preview o Rur Share a
E; 7rai|s—tutnria\ o B B g
E ¥ [first_app g
z (0 app
i » (7 bin °
a * (23 config E
= » 0 db g
§ » (00 lib

== =
= * [log Mew File ~N g
5 * (23 public New Terminal xT o
E » (00 test New Run Configuration g
8 P g pen Preferences ®, E

» (7 vendor w Immediate Window

Z. Eonflry Recently C g‘

‘f‘ Cepte Gemile 8

=] ere ok 18] hitps2#17 1 Obf3256. 115, CloudS.US-2aS1-2, AMAZORAWS, oM/ &

S| Rakeflle sessions_controlierrb

=| README.md usars_controller.rb

=] README.md bash - "lp-172-31-12-198"
ﬂ e g5 x
Using actionvidl 5.1.2 -
ec2-user:~/environment/first_app $ I

Figure 1.8: Opening a new terminal tab.

1.3. THE FIRST APPLICATION

® 0 ® /g rails-tutorial - AWS Clouds x|\ Michas!
C {} | 8 Secure | https://us-east-2.console.aws.amazon.com/cloud9/ide/179b57a0a6e14idc9519d5c060bi3256 ¥r | & (v
. AWSCloudd File Edt Find View Golo Run Tools Window Support Preview () P Share ¥
E (7 rails-tutorial & B g
g =
:]
H)
5 T
2 £
S <5
E o
z
p-3
= 5
3 I
E 2
E g
c
S g
= 1
® [] vendor
®| config.ru E
% o
|=| Gemfile e
= =1
= Gemfile.Jock 2
~ Rakefile
=| README.md
=| README.md
bash - "ip-172-31% ruby - "ip-172-31 % =
ecz-user:~/environment $ cd first_app
ec2-user:~/environment/first_app $ rails server
== Booting Puma
=> Rails 5.1.2 application starting in development on http://localhost:B8eE@
=> Run “rails server -h" for more startup options
Puma starting in single mode...
* Version 3.9.1 (ruby 2.4.1-pl11), codename: Private Caller
* Min threads: 5, max threads: 5
Environment: development
Listening on tep://localhost:B@B8
Use Ctrl-C to stop
1

Figure 1.9: Running the Rails server in a separate tab.

32

CHAPTER I. FROM ZERO TO DEPLOY

® 0 ® /@ rails-tutorial - AWS Clouds x \T\ Mches!

C {} 8 Secure | https://us-east-2.console.aws.amazon.com/cloudd/ide/179b57a0a6e1416c95f9d5c060b13256 | 4@ ¢~

. AWSCloudd File Edit Find View Golo Run Tools Window Support Proview | () P Share -ﬂ-
E (0 riktutorial B B O Previ e g
PR Mopenon :
2 > 08 e Configure Preview URL... i
* |__\ bin Show Active Servers... o
) * (23 config £
E‘ » [0 db 3
§ » (00 lib
= =
E’ * |__\ log g
» (5] public 2
& = 2
(= » 00 test 2
& P g E
» (77 vendor
®| config.ru E
’ &
5| Gemfile a
= w
1= Gemfile.ock 5
= Rakefile
= README.md
=| README.md

bash - "ip-172-31 % puma - "ip-172-3 ¥
ec2-user:~/environment/first_app $ D

Figure 1.10: Sharing the local server running on the cloud workspace.

1.3. THE FIRST APPLICATION

® 0 ® /g rails-tutorial - AWS Clouds x|\ L

C {} 8 Secure | https://us-east-2.console.aws.amazon.com/cloudd/ide/179b57a0a6e1416c95f9d5c060b13256 | 4@ ¢~

. AWSCloudd File Edit Find View Golo Run Tools Window Support Preview () P Share -ﬂ-
T v milstutorial o B g
£ - &
5 w [| first_app 5
z (0 app B
w -
* [bin
g, » (T3 config E
g > E\ b E
=z » (0 lib
=3 >
a > |_7\ log g
5 » (5] public b
E = i)
£ » (00 test 2
& P g E
» (77 vendor
®| config.ru E
£ &
|=| Gemfile &
= 8
= Gemfilelock 2
= Rakefile
*| README.md
=| README.md
bash - "ip-172-31% puma - "ip-17% [B] https:/179b5 * o x
ecz-user:~/environment/first_app $ I O / BomeTT

Figure 1.11: Opening the running app in a full browser window or tab.

34

CHAPTER I. FROM ZERO TO DEPLOY

® @ i ral-tutorial - AWS Ciouds X /[Ruby on Rails x \ER Michas!

ey \ @ Secure | https://179b57a0a6e14fdc95f9d5c060bf3256.vis.cloud9.us-east-2.amazonaws.com ﬁ‘ @ ¢ v

‘E\HILS

Yay! You're on Rails!

Rails version: 5.1.2

Ruby version: 2.4.1 (x86_64-linux)

Figure 1.12: The default Rails page served by rails server.

1.3. THE FIRST APPLICATION 35

data in the application (such as user information) and the code used to display
it, which is a common way of structuring a graphical user interface (GUI).

When interacting with a Rails application, a browser sends a request, which
is received by a webserver and passed on to a Rails controller, which is in charge
of what to do next. In some cases, the controller will immediately render a view,
which is a template that gets converted to HTML and sent back to the browser.
More commonly for dynamic sites, the controller interacts with a model, which
is a Ruby object that represents an element of the site (such as a user) and is in
charge of communicating with the database. After invoking the model, the con-
troller then renders the view and returns the complete web page to the browser
as HTML.

If this discussion seems a bit abstract right now, don’t worry; we’ll cover
these ideas in more detail later in this book. In particular, Section 1.3.4 shows a
first tentative application of MVC, while Section 2.2.2 includes a more detailed
discussion of MVC in the context of the toy app. Finally, the full sample app
will use all aspects of MVC: we’ll cover controllers and views starting in Sec-
tion 3.2, models starting in Section 6.1, and we’ll see all three working together
in Section 7.1.2.

1.3.4 Hello, world!

As a first application of the MVC framework, we’ll make a wafer-thin change
to the first app by adding a controller action to render the string “hello, world!”
to replace the default Rails page from Figure 1.12. (We’ll learn more about
controller actions starting in Section 2.2.2.)

As implied by their name, controller actions are defined inside controllers.
We’ll call our action hello and place it in the Application controller. Indeed,
at this point the Application controller is the only controller we have, which
you can verify by running

$ 1ls app/controllers/* controller.rb

to view the current controllers. (We’ll start creating our own controllers in
Chapter 2.) Listing 1.7 shows the resulting definition of hello, which uses the

https://en.wikipedia.org/wiki/Mr_Creosote

36 CHAPTER I. FROM ZERO TO DEPLOY

View

Controller ¢ >

Figure 1.13: A schematic representation of the model-view-controller (MVC)
architecture.

1.3. THE FIRST APPLICATION 37

render function to return the HTML text “hello, world!”. (Don’t worry about
the Ruby syntax right now; it will be covered in more depth in Chapter 4.)

Listing 1.7: Adding a hello action to the Application controller.
app/controllers/application controller.rb

class ApplicationController < ActionController: :Base
protect from forgery with: :exception

def hello
render html: "hello, world!"
end
end

Having defined an action that returns the desired string, we need to tell Rails
to use that action instead of the default page in Figure 1.12. To do this, we’ll edit
the Rails router, which sits in front of the controller in Figure 1.13 and deter-
mines where to send requests that come in from the browser. (I'’ve omitted the
router from Figure 1.13 for simplicity, but we’ll discuss it in more detail start-
ing in Section 2.2.2.) In particular, we want to change the default page, the root
route, which determines the page that is served on the root URL. Because it’s
the URL for an address like http://www.example.com/ (where nothing comes
after the final forward slash), the root URL is often referred to as / (“slash™) for
short.

As seen in Listing 1.8, the Rails routes file (config/routes.rb) includes
a comment directing us to the Rails Guide on Routing, which includes instruc-
tions on how to define the root route. The syntax looks like this:

root 'controller name#action_name'

In the present case, the controller name is application and the action name
is hello, which results in the code shown in Listing 1.9.

Listing 1.8: The default routing file (formatted to fit).

config/routes.rb

https://guides.rubyonrails.org/routing.html

38 CHAPTER I. FROM ZERO TO DEPLOY

Rails.application.routes.draw do
For details on the DSL available within this file,
see http://guides.rubyonrails.org/routing.html

end

Listing 1.9: Setting the root route.
config/routes.rb
Rails.application.routes.draw do

root 'application#hello'
end

With the code from Listing 1.7 and Listing 1.9, the root route returns “hello,
world!” as required (Figure 1.14).'S Hello, world!

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase.
To see other people’s answers and to record your own, join the Learn Enough
Society at learnenough.com/society.

1. Change the content of the hello action in Listing 1.7 to read “hola,
mundo!” instead of “hello, world!”.

2. Show that Rails supports non-ASCII characters by including an inverted
exclamation point, as in “;Hola, mundo!” (Figure 1.15).!7 To get a j char-
acter on a Mac, you can use Option-1; otherwise, you can always copy-
and-paste the character into your editor.

3. By following the example of the hello action in Listing 1.7, add a second
action called goodbye that renders the text “goodbye, world!”. Edit the

19The base URL for the Rails Tutorial Cloud9 shared URLs has changed from rails-tutorial-c9-mhartl.c9.io to
one on Amazon Web Services, but in many cases the screenshots are identical, so the browser address bar will
show old-style URLs in some figures (such as Figure 1.14). This is the sort of minor discrepancy you can resolve
using your technical sophistication (Box 1.1).

"Your editor may display a message like “invalid multibyte character”, but this is not a cause for concern. You
can Google the error message if you want to learn how to make it go away.

https://www.railstutorial.org/
http://learnenough.com/society
http://learnenough.com/society
http://learnenough.com/society
https://en.wikipedia.org/wiki/ASCII
https://www.google.com/search?q=invalid+multibyte+character

1.3. THE FIRST APPLICATION

(s s otorialogn

BRI & v tials-tikadid-c-aikanles o

helia, world!

Figure 1.14: Viewing “hello, world!” in the browser.

39

40 CHAPTER I. FROM ZERO TO DEPLOY

ann Fitps f frats- tutorial -8
= cCH hitps | /rails-tutorial-c9-mhartl.c9.lo & ,r" o

Hola, munda!

Figure 1.15: Changing the root route to return “;Hola, mundo!”.

routes file from Listing 1.9 so that the root route goes to goodbye instead
of to hello (Figure 1.16).

1.4 Version control with Git

Now that we have a working “hello, world” application, we’ll take a moment for
a step that, while technically optional, would be viewed by experienced soft-
ware developers as practically essential: placing our application source code
under version control. Version control systems allow us to track changes to

14. VERSION CONTROL WITH GIT

€ 0 C A 8 bips lrals-turoriah-cd-muanl .o

goodbye, world!

Figure 1.16: Changing the root route to return “goodbye, world!”.

41

42 CHAPTER I. FROM ZERO TO DEPLOY

our project’s code, collaborate more easily, and roll back any inadvertent er-
rors (such as accidentally deleting files). Knowing how to use a version control
system is a required skill for every professional-grade software developer.

There are many options for version control, but the Rails community has
largely standardized on Git, a distributed version control system originally de-
veloped by Linus Torvalds to host the Linux kernel. Git is a large subject, and
we’ll only be scratching the surface in this book; for a more thorough introduc-
tion, see Learn Enough Git to Be Dangerous."8

Putting your source code under version control with Git is strongly recom-
mended, not only because it’s nearly a universal practice in the Rails world,
but also because it will allow you to back up and share your code more eas-
ily (Section 1.4.3) and deploy your application right here in the first chapter
(Section 1.5).

14.1 Installation and setup

The cloud IDE recommended in Section 1.2.1 includes Git by default, so no
installation is necessary in this case. Otherwise, Learn Enough Git to Be Dan-
gerous includes instructions for installing Git on your system.

First-time system setup

Before using Git, you should perform a couple of one-time setup steps. These
are system setups, meaning you only have to do them once per computer:

$ git config --global user.name "Your Name"
$ git config --global user.email your.email@example.com

Note that the name and email address you use in your Git configuration will be
available in any repositories you make public.

18]earnenough.com/git

https://git-scm.com/
https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/git
https://www.learnenough.com/r/learn_enough_git/getting_started/installation_and_setup#sec-installation_and_setup

14. VERSION CONTROL WITH GIT 43

First-time repository setup

Now we come to some steps that are necessary each time you create a new
repository (sometimes called a repo for short). The first step is to navigate to
the root directory of the first app and initialize a new repository:

$ git init
Initialized empty Git repository in
/home/ec2-user/environment/environment/hello app/.git/

The next step is to add all the project files to the repository using git add
-A:

$ git add -A

This command adds all the files in the current directory apart from those that
match the patterns in a special file called .gitignore. The rails new com-
mand automatically generates a . gitignore file appropriate to a Rails project,
but you can add additional patterns as well.!”

The added files are initially placed in a staging area, which contains pending
changes to our project. We can see which files are in the staging area using the
status command:

$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>...

n

to unstage)

new file: .gitignore
new file: Gemfile

new file: Gemfile.lock
new file: README .md
new file: Rakefile

19 Although we’ll never need to edit it in the main tutorial, an example of adding a rule to the .gitignore file
appears in Section 3.6.2, which is part of the optional advanced testing setup in Section 3.6.

44 CHAPTER I. FROM ZERO TO DEPLOY

To tell Git we want to keep the changes, we use the commit command:

$ git commit -m "Initialize repository"
[master (root-commit) df0a62f] Initialize repository

The -m flag lets us add a message for the commit; if we omit -m, Git will open
the system’s default editor and have us enter the message there. (All the exam-
ples in this book will use the -m flag.)

It is important to note that Git commits are local, recorded only on the ma-
chine on which the commits occur. We’ll see how to push the changes up to a
remote repository (using git push) in Section 1.4.4.

By the way, we can see a list of the commit messages using the 1og com-
mand:

$ git log

commit af72946fbebcl15903b2770£92fae9081243ddlal
Author: Michael Hartl <michael@michaelhartl.com>
Date: Thu May 12 19:25:07 2016 +0000

Initialize repository

Depending on the length of the repository’s log history, you may have to type
g to quit. (As explained in Learn Enough Git to Be Dangerous, git log uses
the 1less interface covered in Learn Enough Command Line to Be Dangerous.)

14.2 What good does Git do you?

If you’ve never used version control before, it may not be entirely clear at
this point what good it does you, so let me give just one example. Suppose
you’ve made some accidental changes, such as (D’oh!) deleting the critical
app/controllers/ directory.

https://www.learnenough.com/git
https://www.learnenough.com/r/learn_enough_command_line/inspecting_files/less_is_more#sec-less_is_more
https://www.learnenough.com/command-line

14. VERSION CONTROL WITH GIT 45

$ 1ls app/controllers/

application_controller.rb concerns/

$ rm -rf app/controllers/

$ 1ls app/controllers/

ls: app/controllers/: No such file or directory

Here we’re using the Unix 1s command to list the contents of the app/con-
trollers/ directory and the rm command to remove it (Table 1.1). As noted
in Learn Enough Command Line to Be Dangerous, the —r £ flag means “recur-
sive force”, which recursively removes all files, directories, subdirectories, and
so on, without asking for explicit confirmation of each deletion.

Let’s check the status to see what changed:

$ git status
On branch master
Changed but not updated:
(use "git add/rm <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

deleted: app/controllers/application controller.rb

no changes added to commit (use "git add" and/or "git commit -a")

We see here that a file has been deleted, but the changes are only on the “work-
ing tree”’; they haven’t been committed yet. This means we can still undo the
changes using the checkout command with the - £ flag to force overwriting
the current changes:

$ git checkout -f

$ git status

On branch master

nothing to commit (working directory clean)
$ 1ls app/controllers/

application controller.rb concerns/

The missing files and directories are back. That’s a relief!

https://www.learnenough.com/r/learn_enough_command_line/directories/removing_directories#sec-removing_directories
https://www.learnenough.com/command-line

46 CHAPTER I. FROM ZERO TO DEPLOY

1.4.3 Bitbucket

Now that we’ve put our project under version control with Git, it’s time to push
our code up to Bitbucket, a site optimized for hosting and sharing Git reposito-
ries. (Learn Enough Git to Be Dangerous uses GitHub, but see Box 1.4 to learn
the reasons why this tutorial uses Bitbucket instead.) Putting a copy of your
Git repository at Bitbucket serves two purposes: it’s a full backup of your code
(including the full history of commits), and it makes any future collaboration
much easier.

Box 1.4. GitHub and Bitbucket

By far the two most popular sites for hosting Git repositories are GitHub and
Bitbucket. The two services share many similarities: both sites allow for Git repos-
itory hosting and collaboration, as well as offering convenient ways to browse and
search repositories. The important differences (from the perspective of this tu-
torial) are that GitHub offers unlimited free repositories (with collaboration) for
open-source repositories while charging for private repos, whereas Bitbucket al-
lows unlimited free private repos while charging for more than a certain number
of collaborators. Which service you use for a particular repo thus depends on your
specific needs.

Learn Enough Git to Be Dangerous (and some previous editions of this tu-
torial) use GitHub because of its emphasis on supporting open-source code, but
growing concerns about security have led me to recommend that a/l web applica-
tion repositories be private by default. The issue is that such repositories might
contain potentially sensitive information such as cryptographic keys or passwords,
which could be used to compromise the security of a site running the code. It
is possible, of course, to arrange for this information to be handled securely (by
having Git ignore it, for example), but this is error-prone and requires significant
expertise.

As it happens, the sample application created in this tutorial is safe for exposure
on the web, but it is dangerous to rely on this fact in general. Thus, to be as secure as
possible, we will err on the side of caution and use private repositories by default.

https://bitbucket.org/
https://www.learnenough.com/git
https://github.com/
https://www.learnenough.com/git

14. VERSION CONTROL WITH GIT 47

Since GitHub charges for private repositories while Bitbucket offers an unlimited
number for free, for our present purposes Bitbucket is a better fit than GitHub.

(By the way, recently a third major Git hosting company has emerged, called
GitLab. Originally designed principally as an open-source Git tool you hosted
yourself, GitLab now offers a hosted version as well, and in fact allows for unlim-
ited public and private repositories. This makes GitLab an excellent alternative to
GitHub or Bitbucket for future projects.)

UPDATE: GitHub announced in early 2019 that it will be offering unlimited
free private repositories (with a limit only on the number of collaborators). Future
editions of this tutorial may switch back to GitHub as a result.

Getting started with Bitbucket is straightforward, though it may take a little
technical sophistication (Box 1.1) to get everything to work just right:

1. Sign up for a Bitbucket account if you don’t already have one.

2. Copy your public key to your clipboard. As indicated in Listing 1.10,
users of the cloud IDE might be able to view their public key using the
cat command, which can then be selected and copied. If you see no
output or get an error on this step, follow the instructions on how to install
a public key on your Bitbucket account, and then re-run the command in
Listing 1.10.

3. Add your public key to Bitbucket by clicking on the avatar image in the
upper right and selecting “Bitbucket settings” and then “SSH keys” (Fig-
ure 1.17).

Listing 1.10: Printing the public key using cat.

$ cat ~/.ssh/id_rsa.pub

Once you’ve added your public key, click on “Create” to create a new repos-
itory, as shown in Figure 1.18. When filling in the information for the project,

https://gitlab.com/
https://blog.github.com/2019-01-07-new-year-new-github/
https://bitbucket.org/account/signup/
https://en.wikipedia.org/wiki/Public-key_cryptography
https://confluence.atlassian.com/bitbucket/set-up-an-ssh-key-728138079.html
https://confluence.atlassian.com/bitbucket/set-up-an-ssh-key-728138079.html
https://bitbucket.org/repo/create
https://bitbucket.org/repo/create

48 CHAPTER I. FROM ZERO TO DEPLOY

anon ﬁM|;smm—ab. = % L
P — —— S — —

€ = C f B Attassian, Inc. [US] https:// bitbucket.erg/account | user/mhartl ssh-keys/

Already have a key?
Copy your key o your clipboard with . poeopy

Problems adding a key?
Read pur knowlsdga base for common ssees

Figure 1.17: Adding the SSH public key.

14. VERSION CONTROL WITH GIT

® ® ¥ Create a repository — Bitbuc x —+

& C 0 & Atlassian, Inc. [US] | https://bitbucket.org/repo/create T @

Create a new repository Import repository

Repository name hello_app

el This is a private repository

IE? No

Version control @ Git

Systam Mercurial

» Advanced settings

Create repository [sElled]

Figure 1.18: Creating the first app repository at Bitbucket.

49

take care to leave the box next to “This is a private repository.” checked. (If
there’s an option to create a README file, select “No”.) After clicking “Create
repository”, follow the instructions for connecting your existing repository to
Bitbucket (Figure 1.19), which has code like that shown in Listing 1.11. (If
it doesn’t look like Listing 1.11, it might be because the public key didn’t get
added correctly, in which case I suggest trying that step again.) When pushing
up the repository, answer yes if you see the question “Are you sure you want to

continue connecting (yes/no)?”

50

® ® O Bitbucket

6

Q
—+

o O

c O

(I) hello_app

<«

Source

Commits

Branches

Pull requests

Pipelines

Deployments

Downloads

Boards

Settings

CHAPTER I. FROM ZERO TO DEPLOY

@ Atlassian, Inc. [US] | https://bitbucket.org/mhart|/hello_app/src @ v

Let's put some bits in your bucket

SSH v git clone git@bitbucket.org:mhartl/hello_app.gi |_|:|

Get started quickly

Creating a README or a .gitignore is a quick and easy way to get something into your
repository.

Create a README Create a .gitignore

Get your local Git repository on Bitbucket

Step 1: Switch to your repository’s directory
1 ed /path/to/your/repo
Step 2: Connect your existing repository to Bitbucket

1 git remote add origin gitfbitbucket.org:mhartl/hello_app.git

2 git push =-u origin master

Need more information? Learn how te set up your repository

Figure 1.19:

Code for adding an existing repository.

14. VERSION CONTROL WITH GIT 51

Listing 1.11: Adding Bitbucket and pushing up the repository.

$ git remote add origin git@bitbucket.org:<username>/hello app.git
$ git push -u origin master

The commands in Listing 1.11 first tell Git that you want to add Bitbucket
as the origin for your repository, and then push your repository up to the remote
origin. (Don’t worry about what the —u flag does; if you’re curious, do a web
search for “git set upstream”.) Of course, you should replace <username>
with your actual username. For example, the command I ran was

$ git remote add origin git@bitbucket.org:railstutorial/hello app.git

The result is a page at Bitbucket for the hello_app repository, with file browsing,
full commit history, and lots of other goodies (Figure 1.20).2°

144 Branch, edit, commit, merge

If you’ve followed the steps in Section 1.4.3, you might notice that Bitbucket
automatically rendered the repository’s README file, as shown in Figure 1.20.
This file, called README .md, was generated automatically by the command in
Listing 1.3. As indicated by the filename extension .md, it is written in Mark-
down,*' a human-readable markup language designed to be easy to convert to
HTML —which is exactly what Bitbucket has done.

This automatic rendering of the README is convenient, but of course it
would be better if we tailored the contents of the file to the project at hand.
In this section, we’ll customize the README by adding some Rails Tutorial—
specific content. In the process, we’ll see a first example of the branch, edit,
commit, merge workflow that I recommend using with Git.??

20Because of how my public keys are set up on Cloud9, I created the repository as railstutorial and then added
my main account, mhartl, as a collaborator. As a result, I can make commits under either account name.

21See Learn Enough Text Editor to Be Dangerous and Learn Enough Git to Be Dangerous for more information
about Markdown.

22For a convenient way to visualize Git repositories, take a look at Atlassian’s SourceTree app.

https://www.learnenough.com/text-editor
https://www.learnenough.com/git
https://www.sourcetreeapp.com/

52

CHAPTER I. FROM ZERO TO DEPLOY

e0e | '@ railstutorial | hello._app — | x ‘ Michael ‘

€& — C & G nttps://bitbucket.org/railstutorial/hello_app e B

YU Bitbucket Teams~ Projects ~ Repositories ~ Snippets ~

e Rails Tutorial / hello_app

an OVeNieW & SSH~ gitgbitbucket.org:railstutorial/hell = [Share @ =
7 i X
ul Last updated 2 minutes ago 1 0 Invite users to this repo
E] Language — Branch Tags
& Access level Admin (revoke) I Send Invitation
I} Forks Waicher
Recent activity
& ’ © 1 commit
(= ¢ EdEREADNE Pushed to railstutorial/hello_app
README af72946 Initialize repository

Ralls Tutorial - 2 minuies ago

e

This README would normally document whatever steps are necessary to get the
application up and running. e railstutorial/hello_app

Things you may want to cover: Repository created
Rails Tutorial - 2 minutes ago

Ruby version

System dependencies

Configuration

Database creation

Database initialization

How to run the test suite

Figure 1.20: A Bitbucket repository page.

14. VERSION CONTROL WITH GIT

README

This README would normally document whatever steps are necessary to get the
application up and running.

Things you may want to cover:
« Ruby version
« System dependencies
« Configuration
« Database creation
« [Database initialization
« How to run the test suite
« Services (job queues, cache servers, search engines, etc.)

« Deployment instructions

Figure 1.21: Bitbucket’s rendering of the default Rails README.

53

54 CHAPTER I. FROM ZERO TO DEPLOY

Branch

Git is incredibly good at making branches, which are effectively copies of a
repository where we can make (possibly experimental) changes without modi-
fying the parent files. In most cases, the parent repository is the master branch,
and we can create a new topic branch by using checkout with the -b flag:

$ git checkout -b modify-README
Switched to a new branch 'modify-README'
$ git branch

master
* modify-README

Here the second command, git branch, just lists all the local branches, and
the asterisk * identifies which branch we’re currently on. Note thatgit check-
out -b modify-README both creates a new branch and switches to it, as in-
dicated by the asterisk in front of the modi fy-README branch.

The full value of branching only becomes clear when working on a project
with multiple developers,>® but branches are helpful even for a single-developer
tutorial such as this one. In particular, because the master branch is insulated
from any changes we make to the topic branch, even if we really mess things
up we can always abandon the changes by checking out the master branch and
deleting the topic branch. We’ll see how to do this at the end of the section.

By the way, for a change as small as this one I wouldn’t normally bother
with a new branch (opting instead to work directly on the master branch), but
in the present context it’s a prime opportunity to start practicing good habits.

Edit

After creating the topic branch, we’ll edit the README to add custom content,
as shown in Listing 1.12.

2See, for example, the section on Collaborating in Learn Enough Git to Be Dangerous.

https://www.learnenough.com/r/learn_enough_git/collaborating
https://www.learnenough.com/git

14. VERSION CONTROL WITH GIT 55

Listing 1.12: The new README file.
README . md

Ruby on Rails Tutorial

"hello, world!"

This is the first application for the

[*Ruby on Rails Tutorial*](https://www.railstutorial.org/)
by [Michael Hartl] (https://www.michaelhartl.com/). Hello, world!

Commit

With the changes made, we can take a look at the status of our branch:

$ git status
On branch modify-README
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes in working directory)

modified: README . md

no changes added to commit (use "git add" and/or "git commit -a")

At this point, we could use git add -A asin Section 1.4.1,butgit commit
provides the -a flag as a shortcut for the (very common) case of committing all
modifications to existing files:

$ git commit -a -m "Improve the README file"
[modify-README 9dc4f64] Improve the README file
1 file changed, 5 insertions(+), 22 deletions(-)

Be careful about using the -a flag improperly; if you have added any new files
to the project since the last commit, you still have to tell Git about them using
git add -A first.

Note that we write the commit message in the present tense (and, technically
speaking, the imperative mood). Git models commits as a series of patches,

https://en.wikipedia.org/wiki/Imperative_mood

56 CHAPTER I. FROM ZERO TO DEPLOY

and in this context it makes sense to describe what each commit does, rather
than what it did. Moreover, this usage matches up with the commit messages
generated by Git commands themselves. See Committing to Git from Learn
Enough Git to Be Dangerous for more information.

Merge

Now that we’ve finished making our changes, we’re ready to merge the results
back into our master branch:

$ git checkout master
Switched to branch 'master'
$ git merge modify-README
Updating af72946..9dc4f64
Fast-forward
README.md | 27 +4+++——— oo
1 file changed, 5 insertions(+), 22 deletions(-)

Note that the Git output frequently includes things like 34£06b7, which are
related to Git’s internal representation of repositories. Your exact results will
differ in these details, but otherwise should essentially match the output shown
above.

After you’ve merged in the changes, you can tidy up your branches by delet-
ing the topic branch using git branch -d if you’re done with it:

$ git branch -d modify-README
Deleted branch modify-README (was 9dc4f64).

This step is optional, and in fact it’s quite common to leave the topic branch
intact. This way you can switch back and forth between the topic and master
branches, merging in changes every time you reach a natural stopping point.

As mentioned above, it’s also possible to abandon your topic branch
changes, in this case with git branch -D:

https://www.learnenough.com/r/learn_enough_git/getting_started/our_first_commit#aside-commit_messages
https://www.learnenough.com/git
https://www.learnenough.com/git

1.5. DEPLOYING 57

For illustration only; don't do this unless you mess up a branch
git checkout -b topic-branch

<really mess up the branch>

git add -A

git commit -a -m "Make major mistake"

git checkout master

git branch -D topic-branch

v n S

Unlike the -d flag, the -D flag will delete the branch even though we haven’t
merged in the changes.

Push

Now that we’ve updated the README, we can push the changes up to Bitbucket
to see the result. Since we have already done one push (Section 1.4.3), on most
systems we can omit origin master, and simply run git push:

$ git push

As with the default README, Bitbucket nicely converts the Markdown in our
updated README to HTML (Figure 1.22).

1.5 Deploying

Even though this is only the first chapter, we’re already going to deploy our
(nearly empty) Rails application to production. This step is optional, but de-
ploying early and often allows us to catch any deployment problems early in
our development cycle. The alternative—deploying only after laborious effort
sealed away in a development environment— often leads to terrible integration
headaches when launch time comes.?*

Deploying Rails applications used to be a pain, but the Rails deployment
ecosystem has matured rapidly in the past few years, and now there are several

24Though it shouldn’t matter for the example applications in the Rails Tutorial, if you’re worried about acci-
dentally making your app public too soon there are several options; see Section 1.5.4 for one.

58

CHAPTER I. FROM ZERO TO DEPLOY

e0e /B railstutorial { hello_app — | % | Y

Michael

€« — C fi @ hitps://bitbucket.org/railstutorial/hello_app

pitg
&
n

T

- 0 .
Forks Watcher

Edit README

Ruby on Rails Tutorial

"hello, world!"

This is the first application for the Ruby on Rails Tutorial by Michael Hartl. Hello, world!

DB STomE

=]

Blog - Support - Plans &pricing - Documentation - APl - Site status

JIRA - Confluence - Bamboo

N WhAtlassian

- Version info

* SourceTree

Recent activity
© 1 commit
Pushed to railstutorial/hello_app
4d4c737 Update Gemfile for Heroku

Rails Tutorial - 2 minutes ago

© 1 commit

Pushed to railstutorial/hello_app
9dcd 784 Improve the README file

Rails Tutorial + 3 hours ago

© 1 commit

Pushed to railstutorial/hello_app
af72946 Initialize repository

Rails Tutorial - 3 hours ago
© railstutorialihello_app

Repository created
Rails Tutorial - 3 hours ago

- Terms of service - Privacy policy

* HipChat

Figure 1.22: The improved README file at Bitbucket.

1.5. DEPLOYING 59

great options. These include shared hosts or virtual private servers running
Phusion Passenger (a module for the Apache and Nginx? webservers), full-
service deployment companies such as Engine Yard and Rails Machine, and
cloud deployment services such as Engine Yard Cloud and Heroku.

My favorite Rails deployment option is Heroku, which is a hosted platform
built specifically for deploying Rails and other web applications. Heroku makes
deploying Rails applications ridiculously easy—as long as your source code
is under version control with Git. (This is yet another reason to follow the
Git setup steps in Section 1.4 if you haven’t already.) In addition, for many
purposes, including for this tutorial, Heroku’s free tier is more than sufficient.

The rest of this section is dedicated to deploying our first application to
Heroku. Some of the ideas are fairly advanced, so don’t worry about under-
standing all the details; what’s important is that by the end of the process we’ll
have deployed our application to the live web.

1.5.1 Heroku setup

Heroku uses the PostgreSQL database (pronounced “post-gres-cue-ell”, and of-
ten called “Postgres” for short), which means that we need to add the pg gem
in the production environment to allow Rails to talk to Postgres:

group :production do
gem 'pg', '0.20.0'
end

Also be sure to incorporate the changes made in Listing 1.5 preventing the
sglite3 gem from being included in a production environment, since the
SQLite database isn’t supported at Heroku:2°

ZPronounced “Engine X”.

26SQLite is widely used as an embedded database—for instance, it’s ubiquitous in mobile phones—and Rails
uses it locally by default because it’s so easy to set up, but it’s not designed for database-backed web applications,
so we’ll be using PostgreSQL in production instead. See Section 3.1 for more information.

https://www.phusionpassenger.com/
https://www.engineyard.com/
https://railsmachine.com/
https://www.engineyard.com/features
https://www.heroku.com/
https://www.postgresql.org/
https://en.wikipedia.org/wiki/SQLite

60 CHAPTER I. FROM ZERO TO DEPLOY

group :development, :test do

gem 'sqglite3', '1.3.13'

gem 'byebug', '9.0.6', platform: :mri
end

The resulting Gemfile appears as in Listing 1.13.

Listing 1.13: A Gemfile with added and rearranged gems.

source 'https://rubygems.org'

gem 'rails’', '5.1.6"'
gem 'puma', ‘3.9.1'
gem 'sass-rails', '5.0.6"'
gem 'uglifier', "802,0°
gem 'coffee-rails', '4.2.2'
gem 'jquery-rails', '4.3.1'
gem 'turbolinks', "Bo@od”
gem 'jbuilder', '2.7.0'

group :development, :test do

gem 'sqlite3', '1.3.13'

gem 'byebug', '9.0.6', platform: :mri
end

group :development do

gem 'web-console', "BoBoll”

gem 'listen’, '3.1.5"

gem 'spring', '2.0.2"'

gem 'spring-watcher-listen', '2.0.1'
end

group :production do
gem 'pg', '0.20.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64 mingw, :jruby]

To prepare the system for deployment to production, we run bundle install
with a special flag to prevent the local installation of any production gems
(which in this case consists of the pg gem), as shown in Listing 1.14.

1.5. DEPLOYING 61

Listing 1.14: Bundling without production gems.

$ bundle install --without production

Because the only gem added in Listing 1.13 is restricted to a production envi-
ronment, right now the command in Listing 1.14 doesn’t actually install any ad-
ditional local gems, but it’s needed to update Gemfile.lock with the pg gem.
We can commit the resulting change as follows:

$ git commit -a -m "Update Gemfile for Heroku"

Next we have to create and configure a new Heroku account. The first step is
to sign up for Heroku. Then check to see if your system already has the Heroku
command-line client installed:

$ heroku --version

This will display the current version number if the heroku command-line in-
terface (CLI) is available, but on most systems it will be necessary to install the
Heroku CLI by hand.?’ In particular, if you’re working on the cloud IDE, you
can install Heroku using the command shown in Listing 1.15. (This command
is rather advanced, so don’t worry about the details.)

Listing 1.15: The command to install Heroku on the cloud IDE.

$ source <(curl -sL https://cdn.learnenough.com/heroku_install)

After running the command in Listing 1.15, you should now be able to verify
the installation by displaying the current version number (details may vary):

2Ttoolbelt.heroku.com

https://signup.heroku.com/
https://toolbelt.heroku.com/

62 CHAPTER I. FROM ZERO TO DEPLOY

$ heroku --version
heroku-cli/6.15.5 (linux-x64) node-v9.2.1

Once you’ve verified that the Heroku command-line interface is installed,
use the heroku command to log in and add your SSH key:

$ heroku login
$ heroku keys:add

Finally, use the heroku create command to create a place on the Heroku
servers for the sample app to live (Listing 1.16).

Listing 1.16: Creating a new application at Heroku.

$ heroku create

Creating app... done, fathomless-beyond-39164
https://damp-fortress-5769.herokuapp.com/ |
https://git.heroku.com/damp-fortress-5769.git

The heroku command creates a new subdomain just for our application, avail-
able for immediate viewing. There’s nothing there yet, though, so let’s get busy
deploying.

1.5.2 Heroku deployment, step one

To deploy the application, the first step is to use Git to push the master branch
up to Heroku:

$ git push -u heroku master

(You may see some warning messages, which you should ignore for now. We’ll
discuss them further in Section 7.5.)

Note: There have been reports of issues with Bundler version 2.0.1, so if
you run into problems with deployment you might try this:

1.5. DEPLOYING 63

$ gem install bundler -v 2.0.2

Then install and redeploy:

$ bundle install
$ git commit -am "Update Bundler"
$ git push -u heroku master

1.5.3 Heroku deployment, step two

There is no step two! We’re already done. To see your newly deployed ap-
plication, visit the address that you saw when you ran heroku create (i.e.,
Listing 1.16). (If you’re working on your local machine instead of the cloud
IDE, you can also use heroku open.) The result appears in Figure 1.23. The
page is identical to Figure 1.14, but now it’s running in a production environ-
ment on the live web.

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase.
To see other people’s answers and to record your own, join the Learn Enough
Society at learnenough.com/society.

1. By making the same change as in Section 1.3.4, arrange for your produc-
tion app to display “hola, mundo!”.

2. Asin Section 1.3.4, arrange for the root route to display the result of the
goodbye action. When deploying, confirm that you can omit master in
the Git push, as in git push heroku.

1.54 Heroku commands

There are many Heroku commands, and we’ll barely scratch the surface in this
book. Let’s take a minute to show just one of them by renaming the application
as follows:

https://www.railstutorial.org/
http://learnenough.com/society
http://learnenough.com/society
http://learnenough.com/society
https://devcenter.heroku.com/articles/heroku-cli

64

CHAPTER I. FROM ZERO TO DEPLOY

Figure 1.23: The first Rails Tutorial application running on Heroku.

1.5. DEPLOYING 65

$ heroku rename rails-tutorial-hello

Don’t use this name yourself; it’s already taken by me! In fact, you probably
shouldn’t bother with this step right now; using the default address supplied by
Heroku is fine. But if you do want to rename your application, you can arrange
for it to be reasonably secure by using a random or obscure subdomain, such as
the following:

hwpcbmze.herokuapp.com
seyjhflo.herokuapp.com
jhyicevg.herokuapp.com

With a random subdomain like this, someone could visit your site only if you
gave them the address.”® (By the way, as a preview of Ruby’s compact awe-
someness, here’s the code I used to generate the random subdomains:

('a'..'z'").to_a.shuffle[0..7].join

Pretty sweet.)*

In addition to supporting subdomains, Heroku also supports custom do-
mains. (In fact, the Ruby on Rails Tutorial site lives at Heroku; if you’re read-
ing this book online, you’re looking at a Heroku-hosted site right now!) See the
Heroku documentation for more information about custom domains and other
Heroku topics.

2 This solution, known as “security through obscurity”, is fine for hobby projects, but for sites that require
greater initial security I recommend using Rails HTTP basic authentication. This is a much more advanced tech-
nique, though, and requires significantly more technical sophistication (Box 1.1) to implement. (Thanks to Alfie
Pates for raising this issue.)

2 As is often the case, this code can be made even more compact using a built-in part of Ruby, in this case
something called sample: (‘a'..'z"').to_a.sample(8).join. Thanks to alert reader Stefan Pochmann for
pointing this out—I didn’t even know about sample until he told me!

https://www.railstutorial.org
https://devcenter.heroku.com/
https://www.google.com/search?q=HTTP+basic+authentication

66 CHAPTER I. FROM ZERO TO DEPLOY

Exercises

Solutions to exercises are available for free with any Rails Tutorial purchase.
To see other people’s answers and to record your own, join the Learn Enough
Society at learnenough.com/society.

1. Run heroku help to see a list of Heroku commands. What is the com-
mand to display logs for an app?

2. Use the command identified in the previous exercise to inspect the activity
on your application. What was the most recent event? (This command is
often useful when debugging production apps.)

1.6 Conclusion

We’ve come a long way in this chapter: installation, development environment
setup, version control, and deployment. In the next chapter, we’ll build on the
foundation from Chapter 1 to make a database-backed roy app, which will give
us our first real taste of what Rails can do.

If you’d like to share your progress at this point, feel free to send a tweet or
Facebook status update with something like this:

I’m learning Ruby on Rails with the @railstutorial!
https://www.railstutorial .org/

I also recommend signing up for the Rails Tutorial email list*®, which will en-
sure that you receive priority updates (and exclusive coupon codes) regarding
the Ruby on Rails Tutorial.

1.6.1 What we learned in this chapter

* Ruby on Rails is a web development framework written in the Ruby pro-
gramming language.

FOrailstutorial .org/email

https://www.railstutorial.org/
http://learnenough.com/society
http://learnenough.com/society
http://learnenough.com/society
https://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20https://www.railstutorial.org/
https://twitter.com/?status=I'm%20learning%20Ruby%20on%20Rails%20with%20the%20@railstutorial!%20https://www.railstutorial.org/
https://www.railstutorial.org/#email

1.6. CONCLUSION 67

e Installing Rails, generating an application, and editing the resulting files
1s easy using a pre-configured cloud environment.

* Rails comes with a command-line command called rails that can gen-
erate new applications (rails new) and run local servers (rails ser-
ver).

e We added a controller action and modified the root route to create a “hello,
world” application.

* We protected against data loss while enabling collaboration by placing
our application source code under version control with Git and pushing
the resulting code to a private repository at Bitbucket.

* We deployed our application to a production environment using Heroku.

68

CHAPTER I. FROM ZERO TO DEPLOY

Chapter 2
A toy app

In this chapter, we’ll develop a toy demo application to show off some of the
power of Rails. The purpose is to get a high-level overview of Ruby on Rails
programming (and web development in general) by rapidly generating an appli-
cation using scaffold generators, which create a large amount of functionality
automatically. As discussed in Box 1.2, the rest of the book will take the oppo-
site approach, developing a full sample application incrementally and explain-
ing each new concept as it arises, but for a quick overview (and some instant
gratification) there is no substitute for scaffolding. The resulting toy app will
allow us to interact with it through its URLs, giving us insight into the struc-
ture of a Rails application, including a first example of the REST architecture
favored by Rails.

As with the forthcoming sample application, the toy app will consist of
users and their associated microposts (thus constituting a minimalist Twitter-
style app). The functionality will be utterly under-developed, and many of the
steps will seem like magic, but worry not: the full sample app will develop a
similar application from the ground up starting in Chapter 3, and I will provide
plentiful forward-references to later material. In the meantime, have patience
and a little faith—the whole point of this tutorial is to take you beyond this su-
perficial, scaffold-driven approach to achieve a deeper understanding of Rails.

69

70 CHAPTER 2. ATOY APP

2.1 Planning the application

In this section, we’ll outline our plans for the toy application. As in Section 1.3,
we’ll start by generating the application skeleton using the rails new com-
mand with a specific Rails version number:

$ cd ~/environment
$ rails _5.1.6_ new toy_app
$ cd toy_app/

If you’re using the cloud IDE as recommended in Section 1.2.1, note that this
second app can be created in the same workspace as the first. It is not necessary
to create a new workspace. In order to get the files to appear, you may need to
click the gear icon in the file navigator area and select “Refresh File Tree”.

Next, we’ll use a text editor to update the Gemfile needed by Bundler
with the contents of Listing 2.1. Important note: For all the Gemfiles in this
book, you should use the version numbers listed at gemfiles-4th-ed.rails-
tutorial.org instead of the ones listed below (although they should be iden-
tical if you are reading this online).

Listing 2.1: A Gemfile for the toy app.

source 'https://rubygems.org'

gem 'rails’', '5.1.6
gem 'puma’, 8091
gem 'sass-rails', '5.0.6
gem 'uglifier’', '3.2.0
gem 'coffee-rails', '4.2.2
gem 'jquery-rails', '4.3.1
gem 'turbolinks', "Bo@odl
gem 'jbuilder', '2.7.0

group :development, :test do

gem 'sqlite3', '1.3.13'
gem 'byebug', '9.0.6', platform: :mri
end

group :development do
gem 'web-console',
gem 'listen’',

w w
P
= O,
o e

(G2

https://gemfiles-4th-ed.railstutorial.org/
https://gemfiles-4th-ed.railstutorial.org/

2.1. PLANNING THE APPLICATION 71

gem 'spring', "D
gem 'spring-watcher-listen', '2.
end

0.2'
0.1
group :production do

gem 'pg', '0.20.0'
end

Windows does not include zoneinfo files, so bundle the tzinfo-data gem
gem 'tzinfo-data', platforms: [:mingw, :mswin, :x64 mingw, :jruby]

Note that Listing 2.1 is identical to Listing 1.13.
As in Section 1.5.1, we’ll install the local gems while suppressing the in-
stallation of production gems using the --without production option:

$ bundle install --without production

Asnoted in Section 1.3.1, you may need to run bundle update aswell (Box 1.1).
Finally, we’ll put the toy app under version control with Git:

$ git init
$ git add -A
$ git commit -m "Initialize repository"

You should also create a new repository by clicking on the “Create” button at
Bitbucket (Figure 2.1), and then push up to the remote repository:

$ git remote add origin git@bitbucket.org:<username>/toy app.git
$ git push -u origin --all

Finally, it’s never too early to deploy, which I suggest doing by following
the same “hello, world!” steps from Section 1.3.4, as shown in Listing 2.2 and
Listing 2.3.

https://bitbucket.org/repo/create

72

—

CHAPTER 2. ATOY APP

.. 3] n ¥ '_l.'run.-“ullnﬂl—l-l' L
C N & Attassian, Inc I,I.ﬁ]- httpa:/ /bitbucket.org/repojcreate

® Oitbucket Omshboard - Teams - RAeposiories = Creste

Create a new repository

Poame” foy_mpp

Descrgtion | A toy dema app for the Ruby on Rails Tuloral

Aconn el This is 6 privithe rpostony

Foritng Al onty privae farks x
Reposiory fype & Gd
| Mercusial
Project Issum fracking
managsmant |y
Language @ Saiect language... -

Create repository [eheE]

g [B i, o g b mming

You can also import 8 repositony

New to Bltbucket?

Loam tha tauics of using
G and Marcurial by
oxploring the Bibuckel
101

Working in a team?

Creata s feam sccount o
consolidais your rapos snd
orgRne your taam's wark

Figure 2.1: Creating the toy app repository at Bitbucket.

2.1. PLANNING THE APPLICATION 73

Listing 2.2: Adding a hello action to the Application controller.
app/controllers/application controller.rb

class ApplicationController < ActionController::Base
protect from forgery with: :exception

def hello
render html: "hello, world!"
end
end

Listing 2.3: Setting the root route.
config/routes.rb
Rails.application.routes.draw do

root 'application#hello'
end

Then commit the changes and push up to Heroku:

$ git commit -am "Add hello"
$ heroku create
$ git push heroku master

(As in Section 1.5, you may see some warning messages, which you should
ignore for now. We’ll deal with them in Section 7.5.) Apart from the URL of
the Heroku app, the result should be the same as in Figure 1.23.

Now we’re ready to start making the app itself. The typical first step when
making a web application is to create a data model, which is a representation
of the structures needed by our application. In our case, the toy app will be a
Twitter-style microblog, with only users and short (micro)posts. Thus, we’ll
begin with a model for users of the app (Section 2.1.1), and then we’ll add a
model for microposts (Section 2.1.2).

2.1.1 A toy model for users

There are as many choices for a user data model as there are different regis-
tration forms on the web; for simplicity, we’ll go with a distinctly minimalist

74 CHAPTER 2. ATOY APP

users
id integer
name |string
email |string

Figure 2.2: The data model for users.

approach. Users of our toy app will have a unique identifier called id (of type
integer), a publicly viewable name (of type string), and an email address
(also of type string) that will double as a unique username. A summary of
the data model for users appears in Figure 2.2.

As we’ll see starting in Section 6.1.1, the label users in Figure 2.2 cor-
responds to a table in a database, and the id, name, and email attributes are
columns in that table.

2.1.2 A toy model for microposts

The core of the micropost data model is even simpler than the one for users:
a micropost has only an id and a content field for the micropost’s text (of
type text).! There’s an additional complication, though: we want to associate
each micropost with a particular user. We’ll accomplish this by recording the
user_id of the owner of the post. The results are shown in Figure 2.3.

We’ll see in Section 2.3.3 (and more fully in Chapter 13) how this user_id
attribute allows us to succinctly express the notion that a user potentially has
many associated microposts.

'Because microposts are short by design, the string type is actually big enough to contain them, but using
text better expresses our intent, while also giving us greater flexibility should we ever wish to relax the length
constraint.

2.2. THE USERS RESOURCE 75

microposts
id integer
content [text
user_id |integer

Figure 2.3: The data model for microposts.

2.2 The Users resource

In this section, we’ll implement the users data model in Section 2.1.1, along
with a web interface to that model. The combination will constitute a Users
resource, which will allow us to think of users as objects that can be created,
read, updated, and deleted through the web via the HTTP protocol. As promised
in the introduction, our Users resource will be created by a scaffold generator
program, which comes standard with each Rails project. I urge you not to look
too closely at the generated code; at this stage, it will only serve to confuse you.

Rails scaffolding is generated by passing the scaffold command to the
rails generate script. The argument of the scaffold command is the sin-
gular version of the resource name (in this case, User), together with optional
parameters for the data model’s attributes:?

$ rails generate scaffold User name:string email:string
invoke active record
create db/migrate/20160515001017_create_users.rb
create app/models/user.rb
invoke test unit
create test/models/user test.rb
create test/fixtures/users.yml
invoke resource route
route resources :users
invoke scaffold controller
create app/controllers/users_controller.rb

2The name of the scaffold follows the convention of models, which are singular, rather than resources and
controllers, which are plural. Thus, we have User instead of Users.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

76 CHAPTER 2. ATOY APP

invoke erb

create app/views/users

create app/views/users/index.html.erb
create app/views/users/edit.html.erb
create app/views/users/show.html.erb
create app/views/users/new.html.erb

create app/views/users/ form.html.erb
invoke test_unit

create test/controllers/users controller test.rb
invoke helper

create app/helpers/users helper.rb

invoke test unit

invoke jbuilder

create app/views/users/index.json. jbuilder
create app/views/users/show.json.jbuilder
invoke assets

invoke coffee

create app/assets/Jjavascripts/users.coffee
invoke scss

create app/assets/stylesheets/users.scss
invoke scss

create app/assets/stylesheets/scaffolds.scss

By including name:string and email:string, we have arranged for the
User model to have the form shown in Figure 2.2. (Note that there is no need
to include a parameter for id; it is created automatically by Rails for use as the
primary key in the database.)

To proceed with the toy application, we first need to migrate the database
using rails db:migrate, as shown in Listing 2.4.

Listing 2.4: Migrating the database.

$ rails db:migrate
== CreateUsers: migrating
-- create_table(:users)
-> 0.0017s
== CreateUsers: migrated (0.0018s)

The effect of Listing 2.4 is to update the database with our new users data
model. (We’ll learn more about database migrations starting in Section 6.1.1.)
By the way, it is important to note that in every version of Rails before
Rails 5, the db:migrate command used rake in place of rails, so for the
sake of legacy applications it’s important to know how to use Rake (Box 2.1)

2.2. THE USERS RESOURCE 77

Box 2.1. Rake

In the Unix tradition, the Make utility has played an important role in building
executable programs from source code. Rake is Ruby make, a Make-like language
written in Ruby.

Before Rails 5, Ruby on Rails used Rake extensively, so for the sake of legacy
Rails applications it’s important to know how to use it. Probably the two most
common Rake commands in a Rails context are rake db:migrate (to update
the database with a data model) and rake test (torun the automated test suite).
In these and other uses of rake, it’s important to ensure that the command uses
the version of Rake corresponding to the Rails application’s Gemfile, which is
accomplished using the Bundler command bundle exec. Thus, the migration
command

$ rake db:migrate
would be written as

$ bundle exec rake db:migrate

Having run the migration in Listing 2.4, we can run the local webserver in
a separate tab (Figure 1.9) as follows:

$ rails server

Now the toy application should be available on the local server as described
in Section 1.3.2. (If you’re using the cloud IDE, be sure to open the resulting
development server in a new browser tab, not inside the IDE itself.)

https://en.wikipedia.org/wiki/Make_(software)

78 CHAPTER 2. ATOY APP

URL Action Purpose

/users index page to list all users
/users/1 show page to show user with id 1
/users/new new page to make a new user

/users/l/edit edit page to edit user with id 1

Table 2.1: The correspondence between pages and URLSs for the Users resource.

2.2.1 A user tour

If we visit the root URL at / (read “slash”, as noted in Section 1.3.4), we get the
same ‘“hello, world!” page shown in Figure 1.14, but in generating the Users
resource scaffolding we have also created a large number of pages for manipu-
lating users. For example, the page for listing all users is at /users, and the page
for making a new user is at /users/new. The rest of this section is dedicated to
taking a whirlwind tour through these user pages. As we proceed, it may help to
refer to Table 2.1, which shows the correspondence between pages and URLs.

We start with the page to show all the users in our application, called index
and located at /users. As you might expect, initially there are no users at all
(Figure 2.4).

To make a new user, we visit the new page at /users/new, as shown in Fig-

ure 2.5. In Chapter 7, this will become the user signup page.
We can create a user by entering name and email values in the text fields and then
clicking the Create User button. The result is the user show page at /users/1,
as seen in Figure 2.6. (The green welcome message is accomplished using the
flash, which we’ll learn about in Section 7.4.2.) Note that the URL is /users/1;
as you might suspect, the number 1 is simply the user’s id attribute from Fig-
ure 2.2. In Section 7.1, this page will become the user’s profile page.

To change a user’s information, we visit the edit page at /users/1/edit (Fig-
ure 2.7). By modifying the user information and clicking the Update User but-
ton, we arrange to change the information for the user in the toy application
(Figure 2.8). (As we’ll see in detail starting in Chapter 6, this user data is stored
in a database back-end.) We’ll add user edit/update functionality to the sample
application in Section 10.1.

Now we’ll create a second user by revisiting the new page at /users/new and

	From zero to deploy
	Introduction
	Prerequisites
	Conventions used in this book

	Up and running
	Development environment
	Installing Rails

	The first application
	Bundler
	rails server
	Model-View-Controller (MVC)
	Hello, world!

	Version control with Git
	Installation and setup
	What good does Git do you?
	Bitbucket
	Branch, edit, commit, merge

	Deploying
	Heroku setup
	Heroku deployment, step one
	Heroku deployment, step two
	Heroku commands

	Conclusion
	What we learned in this chapter

	A toy app
	Planning the application
	A toy model for users
	A toy model for microposts

	The Users resource
	A user tour

