REVISED PRINTING

COMPUTER
ORGANIZATION
AND DESIGN

THE HARDWARE / SOFTWARE INTERFACE

~ DAVID A PATTERSON
_ JOHNL HENNESSY |

1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

MIPS Reference Data Card (“Green Card”)

I
I
I
I
I
|
I
[
I
|
I
I
I
I
I
I
I
I
I
[
I
|
I
[
I
I
I
I
I
I
I
[
I
|
I
[
I
I
I
[
l

@

M I P s Reference Data

CORE INSTRUCTION SET OPCODE
FOR- /FUNCT
NAME, MNEMONIC ~ MAT OPERATION (in Verilog) (Hex)
Add add R R[rd] = R[rs] + R[rt] (1) 07200
Add Immediate addi I R[rt] = R[rs] + SignExtImm (1,2) Bhex
Add Imm. Unsigned addiu I R[rt] = R[rs] + SignExtImm (2) hex
Add Unsigned addu R R[rd] = R[rs] + R[rt] 0/ 21 pex
And and R R[rd] = R[rs] & R[rt] 0/ 244
And Immediate andi I R[rt] = R[rs] & ZeroExtImm (3) Chex
Branch On Equal beq 1 IfI(’IéI:r;’IC:zII{IgIrImchAddr @ e
Branch On Not Equal bne 1 If;}ézi}éﬁﬁkg;nch Addr @ Shex
Jump 3] PC=JumpAddr (5) Znex
Jump And Link jal J R[31]=PC+8;PC=JumpAddr (5) 3hex
Jump Register jr R PC=R[rs] 0/ 08¢
Load Byte Unsigned 1bu 1 RInI:Ii‘;I;?]‘EI\:I(EiEr;I](%O); o 24hex
Load Ha.lfword Thu I R[rt]={ 16’.b0,M[R[rs] 2510
Unsigned +SignExtImm](15:0)} 2)
Load Linked 11 I R[rt] = M[R[rs]+SignExtimm] (2,7) 30hex
Load Upper Imm. 1lui T R[rt] = {imm, 16’b0} fhex
Load Word 1w 1 R[rt] = M[R[rs]+SignExtImm] (2) 23pex
Nor nor R R[rd] =~ (R[rs] | R[rt]) 0/27pex
or or R R[rd] = R[rs] | R[rt] 0/25p
Or Immediate ori I R[rt] = R[rs] | ZeroExtImm (3) dhex
Set Less Than slt R R[rd] = (R[rs] <R[rt])? 1:0 0/ 2ayey
Set Less Than Imm. s1ti T R[rt]=(R[rs] <SignExtImm)? 1:0(2) apex
Set I{jes:i'é::g Imm. o I Rlrt] = (R[rer?T :S(i)gnExIImm) 06 Bhex
Set Less Than Unsig. s1tu R R[rd] = (R[rs] <R[rt])? 1: 0 (6) 0/2bpey
Shift Left Logical ~ s11 R R[rd] = R[rt] << shamt 0/00pex
Shift Right Logical ~sr1 R R[rd] = R[rt] >>> shamt 0/ 020
Soobye w1 MEREFSmEdIco= oy
Store Conditional sc 1 MIKISIRenbrEm SR) 38
Store Halfword ~ sh 1 MIR[“IIS‘g“EX“m;‘%StI]?i? o @ D
Store Word sw I MI[R[rs]+SignExtImm] = R[rt] (2) 2bpey
Subtract sub R R[rd] =R[rs] - R[rt] (1) 0/22pe¢
Subtract Unsigned ~ subu R R[rd] =R[rs] - R[rt] 0/23pex

(1) May cause overflow exception

(2) SignExtImm = { 16{immediate[15]}, immediate }

(3) ZeroExtImm = { 16{1b’0}, immediate }

(4) BranchAddr = { 14{immediate[15]}, immediate, 2°b0 }

(5) JumpAddr = { PC+4[31:28], address, 2°b0 }

(6) Operands considered unsigned numbers (vs. 2’s comp.)

(7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic

BASIC INSTRUCTION FORMATS

R I opcode I IS I 1t I rd I shamt I funct I
31 26 25 2120 16 15 11 10 65 0
I I opcode I TS I rt I immediate I
31 26 25 2120 16 15 0
J I opcode I address I
31 2625 0

ARITHMETIC CORE INSTRUCTION SET

FOR-

NAME, MNEMONIC =~ MAT

Branch On FP True bclt
Branch On FP False bclf

Divide div
Divide Unsigned divu
FP Add Single add.s
FP Add

Double add.a
FP Compare Single c.x.s*
FP Compare N
Double exd

OPERATION

FI if(FPcond)PC=PC+4+BranchAddr
FI if(!FPcond)PC=PC+4+BranchAddr
R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]

R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]
FR F[fd]= F[fs] + F[ft]

{F
R (FIRLFIA+1])
FR FPcond = (F[fs] op F[ft]) 2 1: 0
e FPeond = ((F[SLF[fs+1])} op
(FIRLFIf+111) 210

*(xiseq, 1t, or le) (opis==, <, or <=) (yis 32, 3¢, or 3e)

FP Divide Single div.s
FP Divide .
Double div.d
FP Multiply Single mul.s
FP Multiply

Double mul-d

FP Subtract Single sub.s
FP Subtract

Double sub-a
Load FP Single lwcl
Load FP Ldel
Double

Move From Hi mfhi
Move From Lo mflo

Move From Control mfco

Multiply mult
Multiply Unsigned multu
Shift Right Arith. sra
Store FP Single swel
Store FP

Double saet

FR F[fd] = F[fs] / F[ft]
FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} /
{F[ft]F[ft+1]}
FR F[fd] = F[fs] * F[ft]
FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} *
{F[ft].F[ft+1]}
FR F[fd]=F[fs] - F[ft]
FR {F[fd],F[fd+1]} = {F[fs]F[fs+1]} -
{F[ft]F[ft+1]}
I F[rt]=M[R[rs]+SignExtImm]
F[rt]=M[R[rs]+SignExtImm];
Flrt+1]=M[R[rs]+SignExtImm-+4]
R R[rd] =Hi
R R[rd]=Lo
R R[rd] = CR[rs]
R {Hi,Lo} =R[rs] * R[rt]
R {HiLo} =R[rs] * R[rt]
R R[rd] = R[rt] >> shamt
I M[R[rs]+SignExtImm] = F[rt]
M[R[rs]+SignExtImm] = F[rt];
MIR[rs]+SignExtImm+4] = F[rt+1]

FLOATING-POINT INSTRUCTION FORMATS

fd],F[fd+1]} = {F[fs],F[fs+1]} +

OPCODE
/FMT /FT
/FUNCT
(Hex)
11/8/1/--
11/8/0/--
0/--/--/1a
0/--/--/1b
11/10/--/0

11/11/--/0
11/10/--/y
/11y

)
“4)

(6)

11/10/--/3
11/11/--/3
11/10/--/2
11/11/--/2
11/10/--/1
11/11/--/1
31/-/--/--
35/--/--/--

0 /--/--/10

0 /--/--/12

10 /0/--/0

0/--/--/18

(6) 0/--/--/19
0, /

)
)

Q) 39)/-rfovlme
@ g

FR I opcode I fmt ft fs fd funct
31 26 25 2120 16 15 11 10 65
FI I opcode I fmt I ft I immediate
31 26 25 2120 16 15
PSEUDOINSTRUCTION SET
NAME MNEMONIC OPERATION
Branch Less Than blt if(R[rs]<R[rt]) PC = Label
Branch Greater Than bgt if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal ble if(R[rs]<=R[rt]) PC = Label
Branch Greater Than or Equal bge if(R[rs]>=R[rt]) PC = Label
Load Immediate 1i R[rd] = immediate
Move move R[rd] = R[rs]
REGISTER NAME, NUMBER, USE, CALL CONVENTION
PRESERVEDACROSS
NAME NUMBER USE A CALL?
$zero 0 The Constant Value 0 NA.
Sat 1 Assembler Temporary No
$v0-Sv1 23 Values for F!,mction Res_ults No
and Expression Evaluation
$a0-$a3 4-7 Arguments No
$t0-$t7 8-15 Temporaries No
$50-Ss7 1623 Saved Temporaries Yes
$t8-$t9 24-25 Temporaries No
$k0-Sk1 26-27 Reserved for OS Kernel No
Sgp 28 Global Pointer Yes
$sp 29 Stack Pointer Yes
$tp 30 Frame Pointer Yes
Sra 31 Return Address Yes

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

®

OPCODES, BASE CONVERSION, ASCII SYMBOLS

MIPS (1) MIPS (2) MIPS Hexa- ASCIT[- "Fexa- ASCIT

IEEE 754 FLOATING-POINT
STANDARD
(-1)S x (1 + Fraction) x 2(Exponent- Bias

where Single Precision Bias = 127,
Double Precision Bias = 1023.

IEEE Single Precision and
Double Precision Formats:

IEEE 754 Symbols

Exponent | Fraction Object
) 0 0 0
0 #0 + Denorm
1to MAX - 1 |anything [+ F1. Pt. Num,|
MAX 0 +oo
MAX #0 NaN

S.P. MAX =255, D.P. MAX = 2047

‘ N ‘ Exponent ‘ Fraction ‘
3130 232 0
‘ S ‘ Exponent ‘ Fraction %% ‘
63 62 52 51 0
MEMORY ALLOCATION STACK FRAME
Higher
Stack g
$sp THEE fffopey Atmiment 6 Memory
—g%A Addresses
rgument 5
Stp —p
Saved Registers
Dynamic Data Stack
$gp 1000 8000y Grows
Static Data i
1000 0000, Local Variables L
Text Ssp—
ex
pe 0040 0000, Lower
Memory
Oper Reserved Addresses
DATA ALIGNMENT
Double Word
Word Word
Halfword Halfword Halfword Halfword
Byte ‘ Byte | Byte ‘ Byte | Byte ‘ Byte | Byte ‘ Byte

T 2 3 7 5 3 7
Value of three least significant bits of byte address (Big Endian)
EXCEPTION CONTROL REGISTERS: CAUSE AND STATUS

Interrupt
Mask

Exception
Code

8 6

U
M

2

15 3) T 0
BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

opcode funct funct Binary Deul deci- Char- De 1 deci- Char-
(31:26) (5:0) (5:0) M mal acter | ™ mal acter
[)) s11 add,f 000000 0 0 NUL|[64 40 @
sub.f 00 0001 1 1 SOH | 65 41 A
j srl mul,f 000010 2 2 STX 66 42 B
jal sra divf 000011 3 3 ETX | 67 43 C
beq s1lv sqrt,f 00 0100 4 4 EOT | 68 4 D
bne abs/ 000101 5 5 ENQ| 69 45 E
blez srlv mov.f 000110 6 6 ACK | 70 46 F
bgtz srav neg,f 000111 7 7 BEL | 71 47 G
addi Jr 00 1000 8 8§ BS 72 48 H
addiu jalr 00 1001 9 9 HT 73 49 1
slti movz 001010 10 a LF 74 4a 1
sltiu movn 001011 11 b VT 75 4b K
andi syscall round.wf|001100 12 ¢ FF | 76 4c L
ori break trunc.w/|00 1101 13 d CR 77 44 M
xori ceil.wf (001110 14 e SO | 78 4e N
lui sync floor.w/f|00 1111 15 f SI 79 4 O
mfhi 010000 16 10 DLE | 80 50 P
2) mthi 010001 17 11 DCI1 81 51 Q
mflo movz,f 010010 18 12 DC2 82 52 R
mtlo movn,f 010011 19 13 DC3 83 53 S
010100 20 14 DC4 | 84 54 T
010101 21 15 NAK | 85 55 U
010110 22 16 SYN | 86 56 V
010111 23 17 ETB 87 57 W
mult 01 1000 24 I8 CAN| 88 58 X
multu 011001 25 19 EM 89 59 Y
div 011010 26 la SUB | 90 Sa Z
divu 011011 27 1b ESC 91 5b [
011100 28 Ic FS 92 Sc \
011101 29 1d GS 93 5d 1
011110 30 le RS 94 Se ”
011111 31 If US 95 5
1b add cvt.s/ [100000 32 20 Space| 96 60 °©
1h addu cvt.df (100001 33 21 ! 97 61 a
1wl sub 100010 34 22 " 98 62 b
1w subu 100011 35 23 # 99 63 c
1bu and cvt.w/ [100100 36 24 S 100 64 d
lhu or 100101 37 25 % 101 65 e
lwr xor 100110 38 26 & 102 66 f
nor 100111 39 27 i} 103 67 g
sb 101000 40 28 (104 68 h
sh 10 1001 41 29) 105 69 i
swl slt 101010 42 2a % 106 6a j
sw sltu 101011 43 2b + 107 6b k
10 1100 44 2c s 108 6c I
10 1101 45 2d - 109 6d m
swr 10 1110 46 2e . 110 [n
cache 10 1111 47 2f / 111 6f o
11 tge c.£f 110000 48 30 0 m 70 p
lwcl tgeu c.unf 110001 49 31 1 113 71 q
lwec2 tlt c.eqf 110010 50 32 2 114 72 T
pref tltu c.ueqf |[110011 51 33 3 115 73 s
teq c.olt,/ [ITOI00 52 34 4 116 74 t
ldel coultf [110101 53 35 5 |117 75 u
ldc2 tne c.olef |110110 54 36 6 118 76 v
c.ule/ |110111 55 37 7 19 77 w
sc c.stf 111000 56 38 8 120 78 X
swcl c.nglef 111001 57 39 9 121 79 y
swc2 c.seqf [111010 58 3a : 122 Ta z
c.nglf [111011 59 3b ; |123 7b |
c.lt.f 11 1100 60 3¢ < 124 Tc |
sdcl c.ngef |111101 61 3d = 125 7d }
sdc2 c.lef [111110 62 3e > [126 Te ~
c.ngt,/ |111111 63 3f 2 127 7f DEL

(1) opcode(31:26) ==

(2) 0peode(31:26) == 17, (1jyey); if fnt(25:21)==16,ep (10450 /= (single);
if fnt(25:21)==17,¢, (116,) = d (double)

EXCEPTION CODES
Number Name Cause of Exception |Number Name Cause of Exception
0 Int Interrupt (hardware) 9 Bp Breakpoint Exception
Address Error Exception Reserved Instruction
4 AdEL (load or instruction fetch) 10 RI Exception
Address Error Exception Coprocessor
3 AdES (store) 1 CpU Unimplemented
Bus Error on Arithmetic Overflow
6 IBE Instruction Fetch 12 Ov Exception
Bus Error on
7 DBE Load or Store 13 Tr Trap
8 Sys Syscall Exception 15 FPE Floating Point Exception
SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)
PRE- PRE- PRE- PRE-
SIZE FIX SIZE FIX |SIZE FIX |SIZE FIX
103,219 Kilo- [10'5,250 Peta- | 107 milli- | 10" femto-
10°,220 Mega- |10'%,2° Exa- | 10 micro- | 108 atto-
10°, 230 Giga- 1021270 Zetta- | 10° nano- | 102! zepto-
1012, 240 Tera- 1024, 280 Yotta- | 10712 pico- 1024 yocto-

The symbol for each prefix is just its first letter, except [t 1s used for micro.

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

1. Pull along perforation to separate card 2. Fold bottom side (columns 3 and 4) together

MIPS Reference Data Card (“Green Card”)

In Praise of Computer Organization and Design: The Hardware/
Software Interface, Revised Fourth Edition

“Patterson and Hennessy not only improve the pedagogy of the traditional mate-
rial on pipelined processors and memory hierarchies, but also greatly expand the
multiprocessor coverage to include emerging multicore processors and GPUs. The
fourth edition of Computer Organization and Design sets a new benchmark against
which all other architecture books must be compared.”

—David A. Wood, University of Wisconsin-Madison

“Patterson and Hennessy have greatly improved what was already the gold stan-
dard of textbooks. In the rapidly evolving field of computer architecture, they have
woven an impressive number of recent case studies and contemporary issues into
a framework of time-tested fundamentals.”

—Fred Chong, University of California at Santa Barbara

“Since the publication of the first edition in 1994, Computer Organization and
Design has introduced a generation of computer science and engineering students
to computer architecture. Now, many of those students have become leaders in the
field. In academia, the tradition continues as faculty use the latest edition of the
book that inspired them to engage the next generation. With the fourth edition,
readers are prepared for the next era of computing.”

—David I. August, Princeton University

“The new coverage of multiprocessors and parallelism lives up to the standards
of this well-written classic. It provides well-motivated, gentle introductions to the
new topics, as well as many details and examples drawn from current hardware.”

—]John Greiner, Rice University

“As computer hardware architecture moves from uniprocessor to multicores, the
parallel programming environments used to take advantage of these cores will be
a defining challenge to the success of these new systems. In the multicore systems,
the interface between the hardware and software is of particular importance. This
new edition of Computer Organization and Design is mandatory for any student
who wishes to understand multicore architecture including the interface between
programming it and its architecture.”

—Jesse Fang, Director of Programming System Lab at Intel

“The fourth edition of Computer Organization and Design continues to improve
the high standards set by the previous editions. The new content, on trends that
are reshaping computer systems including multicores, Flash memory, GPUs, etc.,
makes this edition a must read—even for all of those who grew up on previous
editions of the book.”

—Parthasarathy Ranganathan, Principal Research Scientist, HP Labs

This page intentionally left blank

R EVISETD F OURTH EDITI1ON

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERFACE

ACKNOWLEDGMENTS

Figures 1.7, 1.8 Courtesy of Other World Computing (www.macsales.com).

Figures 1.9, 1.19, 5.37 Courtesy of AMD.
Figure 1.10 Courtesy of Storage Technology Corp.

Figures 1.10.1, 1.10.2, 4.15.2 Courtesy of the Charles Babbage
Institute, University of Minnesota Libraries, Minneapolis.

Figures 1.10.3, 4.15.1, 4.15.3, 5.12.3, 6.14.2 Courtesy of IBM.
Figure 1.10.4 Courtesy of Cray Inc.

Figure 1.10.5 Courtesy of Apple Computer, Inc.

Figure 1.10.6 Courtesy of the Computer History Museum.
Figures 5.12.1, 5.12.2 Courtesy of Museum of Science, Boston.
Figure 5.12.4 Courtesy of MIPS Technologies, Inc.

Figures 6.15, 6.16, 6.17 Courtesy of Sun Microsystems, Inc.
Figure 6.4 © Peg Skorpinski.

Figure 6.14.1 Courtesy of the Computer Museum of America.
Figure 6.14.3 Courtesy of the Commercial Computing Museum.

Figures 7.13.1 Courtesy of NASA Ames Research Center.

http://www.macsales.com

R EVISETD F OURTH EDI1ITI1ON

Computer Organization and Design

THE HARDWARE/SOFTWARE INTERFACE

David A. Patterson
University of California, Berkeley

John L. Hennessy
Stanford University

With contributions by
Perry Alexander
The University of Kansas

Peter J. Ashenden
Ashenden Designs Pty Ltd

Javier Bruguera
Universidade de Santiago de Compostela

Jichuan Chang
Hewlett-Packard

Matthew Farrens
University of California, Davis

ELSEVIER

David Kaeli
Northeastern University

Nicole Kaiyan
University of Adelaide

David Kirk
NVIDIA

James R. Larus
Microsoft Research

Jacob Leverich
Hewlett-Packard

AMSTERDAM « BOSTON « HEIDELBERG * LONDON
NEW YORK +« OXFORD - PARIS * SAN DIEGO
SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO
Morgan Kaufmann is an imprint of Elsevier

Kevin Lim
Hewlett-Packard

John Nickolls
NVIDIA

John Oliver
Cal Poly, San Luis Obispo

Milos Prvulovic
Georgia Tech

Partha Ranganathan
Hewlett-Packard

MK

MORGAN KAUFMANN

Acquiring Editor: Todd Green
Development Editor: Nate McFadden
Project Manager: Jessica Vaughan
Designer: Eric DeCicco

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on
how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such
as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes
in research methods or professional practices, may become necessary. Practitioners and researchers must always rely on their own
experience and knowledge in evaluating and using any information or methods described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury
and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Patterson, David A.

Computer organization and design: the hardware/software interface / David A. Patterson, John L. Hennessy. — 4th ed.

p. cm. — (The Morgan Kaufmann series in computer architecture and design)

Rev. ed. of: Computer organization and design / John L. Hennessy, David A. Patterson. 1998.

Summary: “Presents the fundamentals of hardware technologies, assembly language, computer arithmetic, pipelining,
memory hierarchies and I/O”— Provided by publisher.

ISBN 978-0-12-374750-1 (pbk.)

1. Computer organization. 2. Computer engineering. 3. Computer interfaces. I. Hennessy, John L. II. Hennessy, John L.
Computer organization and design. III. Title.

QA76.9.C643H46 2011

004.22—dc23

2011029199

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374750-1

For information on all MK publications
visit our website at www.mkp.com

Printed in the United States of America

12 13 14 15 16 10 9 8 7 6 5 4 3 2

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID Sapbre Foundation

http://www.elsevier.com/permissions
http://www.mkp.com

To Linda,
who has been, is, and always will be the love of my life

This page intentionally left blank

Contents

Preface xv
CHAPTERS

n Computer Abstractions and Technology 2

1.1 Introduction 3

1.2 Below Your Program 10

1.3 Under the Covers 13

1.4 Performance 26

1.5 The Power Wall 39

1.6 The Sea Change: The Switch from Uniprocessors to
Multiprocessors 41

1.7 Real Stuff: Manufacturing and Benchmarking the AMD
Opteron X4 44

1.8 Fallacies and Pitfalls 51

1.9 Concluding Remarks 54

© 1.10 Historical Perspective and Further Reading 55
1.11 Exercises 56

E Instructions: Language of the Computer 74

2.1 Introduction 76

2.2 Operations of the Computer Hardware 77

2.3 Operands of the Computer Hardware 80

2.4 Signed and Unsigned Numbers 87

2.5 Representing Instructions in the Computer 94

2.6 Logical Operations 102

2.7 Instructions for Making Decisions 105

2.8 Supporting Procedures in Computer Hardware 112
2.9 Communicating with People 122

2.10 MIPS Addressing for 32-Bit Immediates and Addresses 128
2.11 Parallelism and Instructions: Synchronization 137
2.12 Translating and Starting a Program 139

2.13 A C Sort Example to Put It All Together 149

Contents

2.14 Arrays versus Pointers 157
© 2.15 Advanced Material: Compiling C and Interpreting Java 161
2.16 Real Stuff: ARM Instructions 161
2.17 Real Stuff: x86 Instructions 165
2.18 Fallacies and Pitfalls 174
2.19 Concluding Remarks 176
© 2.20 Historical Perspective and Further Reading 179
2.21 Exercises 179

B Arithmetic for Computers 222

3.1 Introduction 224
3.2 Addition and Subtraction 224
3.3 Multiplication 230
3.4 Division 236
3.5 Floating Point 242
3.6 Parallelism and Computer Arithmetic: Associativity 270
3.7 Real Stuff: Floating Point in the x86 272
3.8 Fallacies and Pitfalls 275
3.9 Concluding Remarks 280
© 3.10 Historical Perspective and Further Reading 283
3.11 Exercises 283

n The Processor 298

4.1 Introduction 300
4.2 Logic Design Conventions 303
4.3 Buildinga Datapath 307
4.4 A Simple Implementation Scheme 316
4.5 An Overview of Pipelining 330
4.6 Pipelined Datapath and Control 344
4.7 Data Hazards: Forwarding versus Stalling 363
4.8 Control Hazards 375
4.9 Exceptions 384
4.10 Parallelism and Advanced Instruction-Level Parallelism 391
4.11 Real Stuff: the AMD Opteron X4 (Barcelona) Pipeline 404
) 4.12 Advanced Topic: an Introduction to Digital Design
Using a Hardware Design Language to Describe and
Model a Pipeline and More Pipelining [llustrations 406
4.13 Fallacies and Pitfalls 407
4.14 Concluding Remarks 408
o) 4.15 Historical Perspective and Further Reading 409
4.16 Exercises 409

Contents

xi

Large and Fast: Exploiting Memory Hierarchy 450

5.1 Introduction 452

5.2 The Basics of Caches 457

5.3 Measuring and Improving Cache Performance 475

5.4 Virtual Memory 492

5.5 A Common Framework for Memory Hierarchies 518

5.6 Virtual Machines 525

5.7 Using a Finite-State Machine to Control a Simple Cache 529

5.8 Parallelism and Memory Hierarchies: Cache Coherence 534

5.9 Advanced Material: Implementing Cache Controllers 538

5.10 Real Stuff: the AMD Opteron X4 (Barcelona) and Intel Nehalem
Memory Hierarchies 539

5.11 Fallacies and Pitfalls 543

5.12 Concluding Remarks 547

5.13 Historical Perspective and Further Reading 548

5.14 Exercises 548

Storage and Other 1/0 Topics 568

6.1 Introduction 570
6.2 Dependability, Reliability, and Availability 573
6.3 Disk Storage 575
6.4 Flash Storage 580
6.5 Connecting Processors, Memory, and I/O Devices 582
6.6 Interfacing I/O Devices to the Processor, Memory, and
Operating System 586
6.7 1/O Performance Measures: Examples from Disk and File Systems 596
6.8 Designing an I/O System 598
6.9 Parallelism and I/O: Redundant Arrays of Inexpensive Disks 599
6.10 Real Stuff: Sun Fire x4150 Server 606
6.11 Advanced Topics: Networks 612
6.12 Fallacies and Pitfalls 613
6.13 Concluding Remarks 617
6.14 Historical Perspective and Further Reading 618
6.15 Exercises 619

Multicores, Multiprocessors, and Clusters 630

7.1 Introduction 632
7.2 The Difficulty of Creating Parallel Processing Programs 634
7.3 Shared Memory Multiprocessors 638

xii

Contents

7.4 Clusters and Other Message-Passing Multiprocessors
7.5 Hardware Multithreading 645
7.6 SISD, MIMD, SIMD, SPMD, and Vector 648
7.7 Introduction to Graphics Processing Units 654
7.8 Introduction to Multiprocessor Network Topologies
7.9 Multiprocessor Benchmarks 664
7.10 Roofline: A Simple Performance Model 667
7.11 Real Stuff: Benchmarking Four Multicores Using the
Roofline Model 675
7.12 Fallacies and Pitfalls 684
7.13 Concluding Remarks 686
© 7.14 Historical Perspective and Further Reading 688
7.15 Exercises 688

APPENDICES

u Graphics and Computing GPUs A-2

A.l1 Introduction A-3
A2 GPU System Architectures A-7
A3 Programming GPUs A-12
A.4 Multithreaded Multiprocessor Architecture A-25
A.5 Parallel Memory System A-36
A.6 Floating Point Arithmetic = A-41
A.7 Real Stuff: The NVIDIA GeForce 8800 A-46
A.8 Real Stuff: Mapping Applications to GPUs ~ A-55
A9 Fallacies and Pitfalls A-72
A.10 Concluding Remarks A-76
© A.11 Historical Perspective and Further Reading A-77

B Assemblers, Linkers, and the SPIM Simulator

B.1 Introduction B-3

B.2 Assemblers B-10

B.3 Linkers B-18

B4 Loading B-19

B.5 Memory Usage B-20

B.6 Procedure Call Convention B-22
B.7 Exceptions and Interrupts B-33
B.8 Inputand Output B-38

B9 SPIM B-40

Contents

xiii

B.10 MIPS R2000 Assembly Language B-45
B.11 Concluding Remarks B-81
B.12 Exercises B-82

Index 1I-1

CD-ROM CONTENT

©

The Basics of Logic Design C-2

C.1 Introduction C-3

C.2 Gates, Truth Tables, and Logic Equations C-4
C.3 Combinational Logic C-9

C.4 Using a Hardware Description Language C-20
C.5 Constructing a Basic Arithmetic Logic Unit C-26
C.6 Faster Addition: Carry Lookahead C-38

C.7 Clocks C-48

C.8 Memory Elements: Flip-Flops, Latches, and Registers C-50
C.9 Memory Elements: SRAMs and DRAMs C-58
C.10 Finite-State Machines C-67

C.11 Timing Methodologies C-72

C.12 Field Programmable Devices C-78

C.13 Concluding Remarks C-79

C.14 Exercises C-80

Mapping Control to Hardware D-2

D.l1 Introduction D-3

D.2 Implementing Combinational Control Units D-4

D.3 Implementing Finite-State Machine Control D-8

D.4 Implementing the Next-State Function with a Sequencer D-22
D.5 Translating a Microprogram to Hardware D-28

D.6 Concluding Remarks D-32

D.7 Exercises D-33

A Survey of RISC Architectures for Desktop,
Server, and Embedded Computers E-2

E.l1 Introduction E-3
E.2 Addressing Modes and Instruction Formats E-5
E.3 Instructions: The MIPS Core Subset E-9

xiv

Contents

E.4
E5

E.6
E7
E.8
E9
E.10
E.11
E.12
E.13
E.14
E.15
E.16
E.17

© Glossary G-1

Instructions: Multimedia Extensions of the
Desktop/Server RISCs E-16

Instructions: Digital Signal-Processing Extensions of the
Embedded RISCs E-19

Instructions: Common Extensions to MIPS Core E-20
Instructions Unique to MIPS-64 E-25

Instructions Unique to Alpha E-27

Instructions Unique to SPARCv.9 E-29

Instructions Unique to PowerPC ~ E-32

Instructions Unique to PA-RISC 2.0 E-34

Instructions Unique to ARM E-36

Instructions Unique to Thumb E-38

Instructions Unique to SuperH E-39

Instructions Unique to M32R E-40

Instructions Unique to MIPS-16 E-40

Concluding Remarks E-43

Further Reading FR-1

For the convenience of readers who have purchased an ebook edition, all
CD-ROM content is available as a download from the book’s companion page.
Visit http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747501
to download your CD-ROM files.

http://www.elsevierdirect.com/companion.jsp?ISBN=9780123747501

Preface

The most beautiful thing we can experience is the mysterious.
It is the source of all true art and science.

Albert Einstein, What I Believe, 1930

About This Book

We believe that learning in computer science and engineering should reflect the
current state of the field, as well as introduce the principles that are shaping com-
puting. We also feel that readers in every specialty of computing need to appreciate
the organizational paradigms that determine the capabilities, performance, and,
ultimately, the success of computer systems.

Modern computer technology requires professionals of every computing spe-
cialty to understand both hardware and software. The interaction between hard-
ware and software at a variety of levels also offers a framework for understanding
the fundamentals of computing. Whether your primary interest is hardware or
software, computer science or electrical engineering, the central ideas in computer
organization and design are the same. Thus, our emphasis in this book is to show
the relationship between hardware and software and to focus on the concepts that
are the basis for current computers.

The recent switch from uniprocessor to multicore microprocessors confirmed
the soundness of this perspective, given since the first edition. While programmers
could ignore the advice and rely on computer architects, compiler writers, and
silicon engineers to make their programs run faster without change, that era is over.
For programs to run faster, they must become parallel. While the goal of many
researchers is to make it possible for programmers to be unaware of the underlying
parallel nature of the hardware they are programming, it will take many years to
realize this vision. Our view is that for at least the next decade, most programmers
are going to have to understand the hardware/software interface if they want
programs to run efficiently on parallel computers.

The audience for this book includes those with little experience in assembly
language or logic design who need to understand basic computer organization as
well as readers with backgrounds in assembly language and/or logic design who
want to learn how to design a computer or understand how a system works and
why it performs as it does.

xvi

Preface

About the Other Book

Some readers may be familiar with Computer Architecture: A Quantitative Approach,
popularly known as Hennessy and Patterson. (This book in turn is often called
Patterson and Hennessy.) Our motivation in writing the earlier book was to describe
the principles of computer architecture using solid engineering fundamentals and
quantitative cost/performance tradeoffs. We used an approach that combined exam-
ples and measurements, based on commercial systems, to create realistic design
experiences. Our goal was to demonstrate that computer architecture could be
learned using quantitative methodologies instead of a descriptive approach. It was
intended for the serious computing professional who wanted a detailed under-
standing of computers.

A majority of the readers for this book do not plan to become computer archi-
tects. The performance and energy efficiency of future software systems will be
dramatically affected, however, by how well software designers understand the basic
hardware techniques at work in a system. Thus, compiler writers, operating system
designers, database programmers, and most other software engineers need a firm
grounding in the principles presented in this book. Similarly, hardware designers
must understand clearly the effects of their work on software applications.

Thus, we knew that this book had to be much more than a subset of the material
in Computer Architecture, and the material was extensively revised to match the
different audience. We were so happy with the result that the subsequent editions
of Computer Architecture were revised to remove most of the introductory mate-
rial; hence, there is much less overlap today than with the first editions of both
books.

Changes for the Fourth Edition

We had five major goals for the fourth edition of Computer Organization and
Design: given the multicore revolution in microprocessors, highlight parallel
hardware and software topics throughout the book; streamline the existing mate-
rial to make room for topics on parallelism; enhance pedagogy in general; update
the technical content to reflect changes in the industry since the publication of the
third edition in 2004; and restore the usefulness of exercises in this Internet age.
Before discussing the goals in detail, let’s look at the table on the next page. It
shows the hardware and software paths through the material. Chapters 1, 4, 5, and
7 are found on both paths, no matter what the experience or the focus. Chapter 1
is a new introduction that includes a discussion on the importance of power and
how it motivates the switch from single core to multicore microprocessors. It also
includes performance and benchmarking material that was a separate chapter in
the third edition. Chapter 2 is likely to be review material for the hardware-oriented,
but it is essential reading for the software-oriented, especially for those readers
interested in learning more about compilers and object-oriented programming

Preface

Chapter or appendix Sections Software focus Hardware focus
1. Computer Abstractions 111019 o=
and Technology 1.10 (History) o=
21t02.14 o
2. Instructions: Language 2.15 (Compilers & Java) o
of the Computer 2.16102.19 o
2.20 (History) o@
E. RISC Instruction-Set Architectures E.1to E.19 o=
3. Arithmetic for C t 511039
. Arithmetic for Computers

P 3.10 (History) o

C. The Basics of Logic Design C.1t0 C.13
o

4. The Processor

4.1 (Overview)

4.2 (Logic Conventions)

4.3 to 4.4 (Simple Implementation) @™

4.5 (Pipelining Overview)

4.6 (Pipelined Datapath)

/4

4.7 to 4.9 (Hazards, Exceptions)

4.10 to 4.11 (Parallel, Real Stuff) s@rex

4.12 (Verilog Pipeline Control)

34484389380 8ddaddadaddadad o a4

4.13 to 4.14 (Fallacies) o
4.15 (History) o=
D. Mapping Control to Hardware D.1to D.6
5.1t05.8 o
5. Large and Fast: Exploiting 5.9 (Verilog Cache Controller)
Memory Hierarchy 5.10to 5.12 o
5.13 (History) o
6.1106.10 o
6. Storage and 6.11 (Networks) m
Other I/O Topics 6.12106.13 ow
6.14 (History) o=@
7. Multicores, Multiprocessors, 7110713 o=
and Clusters 7.14 (History) o
A. Graphics Processor Units A1to A12 o=
B. Assemblers, Linkers, and B.1t0oB.12 e
the SPIM Simulator
Read carefuly @™ Read if have time O™ X Reference o=

Review orread @

o=@

Read for culture

Xviii

Preface

languages. It includes material from Chapter 3 in the third edition so that the
complete MIPS architecture is now in a single chapter, minus the floating-point
instructions. Chapter 3 is for readers interested in constructing a datapath or in
learning more about floating-point arithmetic. Some will skip Chapter 3, either
because they don’t need it or because it is a review. Chapter 4 combines two chap-
ters from the third edition to explain pipelined processors. Sections 4.1, 4.5, and
4.10 give overviews for those with a software focus. Those with a hardware focus,
however, will find that this chapter presents core material; they may also, depend-
ing on their background, want to read Appendix C on logic design first. Chapter 6
on storage is critical to readers with a software focus, and should be read by others
if time permits. The last chapter on multicores, multiprocessors, and clusters is
mostly new content and should be read by everyone.

The first goal was to make parallelism a first class citizen in this edition, as it
was a separate chapter on the CD in the last edition. The most obvious example is
Chapter 7. In particular, this chapter introduces the Roofline performance model,
and shows its value by evaluating four recent multicore architectures on two
kernels. This model could prove to be as insightful for multicore microprocessors
as the 3Cs model is for caches.

Given the importance of parallelism, it wasn’t wise to wait until the last chapter
to talk about, so there is a section on parallelism in each of the preceding six
chapters:

B Chapter 1: Parallelism and Power. It shows how power limits have forced the
industry to switch to parallelism, and why parallelism helps.

B Chapter 2: Parallelism and Instructions: Synchronization. This section dis-
cusses locks for shared variables, specifically the MIPS instructions Load
Linked and Store Conditional.

B Chapter 3: Parallelism and Computer Arithmetic: Floating-Point Associativity.
This section discusses the challenges of numerical precision and floating-
point calculations.

B Chapter 4: Parallelism and Advanced Instruction-Level Parallelism. It
covers advanced ILP—superscalar, speculation, VLIW, loop-unrolling, and
O00O—as well as the relationship between pipeline depth and power
consumption.

B Chapter 5: Parallelism and Memory Hierarchies: Cache Coherence. Itintroduces
coherency, consistency, and snooping cache protocols.

B Chapter 6: Parallelism and 1/O: Redundant Arrays of Inexpensive Disks. It
describes RAID as a parallel I/O system as well as a highly available ICO
system.

Preface

Xix

Chapter 7 concludes with reasons for optimism why this foray into parallelism
should be more successful than those of the past.

I am particularly excited about the addition of an appendix on Graphical
Processing Units written by NVIDIA’s chief scientist, David Kirk, and chief archi-
tect, John Nickolls. Appendix A is the first in-depth description of GPUs, which
is a new and interesting thrust in computer architecture. The appendix builds
upon the parallel themes of this edition to present a style of computing that allows
the programmer to think MIMD vyet the hardware tries to execute in SIMD-style
whenever possible. As GPUs are both inexpensive and widely available—they are
even found in many laptops—and their programming environments are freely
available, they provide a parallel hardware platform that many could experiment
with.

The second goal was to streamline the book to make room for new material in
parallelism. The first step was simply going through all the paragraphs accumulated
over three editions with a fine-toothed comb to see if they were still necessary. The
coarse-grained changes were the merging of chapters and dropping of topics. Mark
Hill suggested dropping the multicycle processor implementation and instead
adding a multicycle cache controller to the memory hierarchy chapter. This allowed
the processor to be presented in a single chapter instead of two, enhancing the
processor material by omission. The performance material from a separate chapter
in the third edition is now blended into the first chapter.

The third goal was to improve the pedagogy of the book. Chapter 1 is now
meatier, including performance, integrated circuits, and power, and it sets the stage
for the rest of the book. Chapters 2 and 3 were originally written in an evolutionary
style, starting with a “single celled” architecture and ending up with the full MIPS
architecture by the end of Chapter 3. This leisurely style is not a good match to the
modern reader. This edition merges all of the instruction set material for the integer
instructions into Chapter 2—making Chapter 3 optional for many readers—and
each section now stands on its own. The reader no longer needs to read all of the
preceding sections. Hence, Chapter 2 is now even better as a reference than it was in
prior editions. Chapter 4 works better since the processor is now a single chapter, as
the multicycle implementation is a distraction today. Chapter 5 has a new section
on building cache controllers, along with a new CD section containing the Verilog
code for that cache.

The accompanying CD-ROM introduced in the third edition allowed us to
reduce the cost of the book by saving pages as well as to go into greater depth on
topics that were of interest to some but not all readers. Alas, in our enthusiasm
to save pages, readers sometimes found themselves going back and forth between
the CD and book more often than they liked. This should not be the case in this
edition. Each chapter now has the Historical Perspectives section on the CD and
four chapters also have one advanced material section on the CD. Additionally, all

Preface

exercises are in the printed book, so flipping between book and CD should be rare
in this edition.

For those of you who wonder why we include a CD-ROM with the book,
the answer is simple: the CD contains content that we feel should be easily and
immediately accessible to the reader no matter where they are. If you are interested
in the advanced content, or would like to review a VHDL tutorial (for example), it
is on the CD, ready for you to use. The CD-ROM also includes a feature that should
greatly enhance your study of the material: a search engine is included that allows
you to search for any string of text, in the printed book or on the CD itself. If you
are hunting for content that may not be included in the book’s printed index, you
can simply enter the text you're searching for and the page number it appears on
will be displayed in the search results. This is a very useful feature that we hope you
make frequent use of as you read and review the book.

This is a fast-moving field, and as is always the case for our new editions, an
important goal is to update the technical content. The AMD Opteron X4 model
2356 (code named “Barcelona”) serves as a running example throughout the book,
and is found in Chapters 1, 4, 5, and 7. Chapters 1 and 6 add results from the new
power benchmark from SPEC. Chapter 2 adds a section on the ARM architec-
ture, which is currently the world’s most popular 32-bit ISA. Chapter 5 adds a new
section on Virtual Machines, which are resurging in importance. Chapter 5 has
detailed cache performance measurements on the Opteron X4 multicore and a
few details on its rival, the Intel Nehalem, which will not be announced until after
this edition is published. Chapter 6 describes Flash Memory for the first time as
well as a remarkably compact server from Sun, which crams 8 cores, 16 DIMMs,
and 8 disks into a single 1U bit. It also includes the recent results on long-term
disk failures. Chapter 7 covers a wealth of topics regarding parallelism—including
multithreading, SIMD, vector, GPUs, performance models, benchmarks, multipro-
cessor networks—and describes three multicores plus the Opteron X4: Intel Xeon
model 5345 (Clovertown), IBM Cell model QS20, and the Sun Microsystems T2
model 5120 (Niagara 2).

The final goal was to try to make the exercises useful to instructors in this Internet
age, for homework assignments have long been an important way to learn material.
Alas, answers are posted today almost as soon as the book appears. We have a two-
part approach. First, expert contributors have worked to develop entirely new
exercises for each chapter in the book. Second, most exercises have a qualitative
description supported by a table that provides several alternative quantitative
parameters needed to answer this question. The sheer number plus flexibility in
terms of how the instructor can choose to assign variations of exercises will make
it hard for students to find the matching solutions online. Instructors will also be
able to change these quantitative parameters as they wish, again frustrating those
students who have come to rely on the Internet to provide solutions for a static and
unchanging set of exercises. We feel this new approach is a valuable new addition
to the book—please let us know how well it works for you, either as a student or
instructor!

Preface

We have preserved useful book elements from prior editions. To make the book
work better as a reference, we still place definitions of new terms in the margins
at their first occurrence. The book element called “Understanding Program Per-
formance” sections helps readers understand the performance of their programs
and how to improve it, just as the “Hardware/Software Interface” book element
helped readers understand the tradeoffs at this interface. “The Big Picture” section
remains so that the reader sees the forest even despite all the trees. “Check Yourself”
sections help readers to confirm their comprehension of the material on the first
time through with answers provided at the end of each chapter. This edition also
includes the green MIPS reference card, which was inspired by the “Green Card” of
the IBM System/360. The removable card has been updated and should be a handy
reference when writing MIPS assembly language programs.

Instructor Support

We have collected a great deal of material to help instructors teach courses using this
book. Solutions to exercises, chapter quizzes, figures from the book, lecture notes,
lecture slides, and other materials are available to adopters from the publisher.
Check the publisher’s Web site for more information:

textbooks.elsevier.com/9780123747501

Concluding Remarks

If you read the following acknowledgments section, you will see that we went to
great lengths to correct mistakes. Since a book goes through many printings, we
have the opportunity to make even more corrections. If you uncover any remaining,
resilient bugs, please contact the publisher by electronic mail at cod4bugs@mkp.
com or by low-tech mail using the address found on the copyright page.

This edition marks a break in the long-standing collaboration between Hennessy
and Patterson, which started in 1989. The demands of running one of the world’s
great universities meant that President Hennessy could no longer make the sub-
stantial commitment to create a new edition. The remaining author felt like a jug-
gler who had always performed with a partner who suddenly is thrust on the stage
as a solo act. Hence, the people in the acknowledgments and Berkeley colleagues
played an even larger role in shaping the contents of this book. Nevertheless, this
time around there is only one author to blame for the new material in what you
are about to read.

Acknowledgments for the Fourth Edition

I’d like to thank David Kirk, John Nickolls, and their colleagues at NVIDIA (Michael
Garland, John Montrym, Doug Voorhies, Lars Nyland, Erik Lindholm, Paulius
Micikevicius, Massimiliano Fatica, Stuart Oberman, and Vasily Volkov) for writing

mailto:cod4bugs@mkp.com
mailto:cod4bugs@mkp.com
http://textbooks.elsevier.com/9780123744937
http://textbooks.elsevier.com/9780123744937

Preface

the first in-depth appendix on GPUs. I’d like to express again my appreciation to
Jim Larus of Microsoft Research for his willingness in contributing his expertise on
assembly language programming, as well as for welcoming readers of this book to
use the simulator he developed and maintains.

Iam also very grateful for the contributions of the many experts who developed
the new exercises for this new edition. Writing good exercises is not an easy task,
and each contributor worked long and hard to develop problems that are both
challenging and engaging:

B Chapter 1: Javier Bruguera (Universidade de Santiago de Compostela)

B Chapter 2: John Oliver (Cal Poly, San Luis Obispo), with contributions from
Nicole Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

m Chapter 3: Matthew Farrens (University of California, Davis)
B Chapter 4: Milos Prvulovic (Georgia Tech)

B Chapter 5: Jichuan Chang, Jacob Leverich, Kevin Lim, and Partha
Ranganathan (all from Hewlett-Packard), with contributions from Nicole
Kaiyan (University of Adelaide)

B Chapter 6: Perry Alexander (The University of Kansas)
B Chapter 7: David Kaeli (Northeastern University)

Peter Ashenden took on the Herculean task of editing and evaluating all of the
new exercises. Moreover, he even added the substantial burden of developing the
companion CD and new lecture slides.

Thanks to David August and Prakash Prabhu of Princeton University for their
work on the chapter quizzes that are available for instructors on the publisher’s
Web site.

I relied on my Silicon Valley colleagues for much of the technical material that
this book relies upon:

B AMD—for the details and measurements of the Opteron X4 (Barcelona):

William Brantley, Vasileios Liaskovitis, Chuck Moore, and Brian
Waldecker.

B Intel—for the prereleased information on the Intel Nehalem: Faye Briggs.
B Micron—for background on Flash Memory in Chapter 6: Dean Klein.

B Sun Microsystems—for the measurements of the instruction mixes for the
SPEC CPU2006 benchmarks in Chapter 2 and details and measurements of
the Sun Server x4150 in Chapter 6: Yan Fisher, John Fowler, Darryl Gove,
Paul Joyce, Shenik Mehta, Pierre Reynes, Dimitry Stuve, Durgam Vahia,
and David Weaver.

m U.C. Berkeley—Krste Asanovic (who supplied the idea for software
concurrency versus hardware parallelism in Chapter 7), James Demmel

Preface

xXxiii

and Velvel Kahan (who commented on parallelism and floating-point
calculations), Zhangxi Tan (who designed the cache controller and wrote the
Verilog for it in Chapter 5), Sam Williams (who supplied the roofline model
and the multicore measurements in Chapter 7), and the rest of my colleagues
in the Par Lab who gave extensive suggestions and feedback on parallelism
topics found throughout the book.

I am grateful to the many instructors who answered the publisher’s surveys,
reviewed our proposals, and attended focus groups to analyze and respond to our
plans for this edition. They include the following individuals: Focus Group: Mark
Hill (University of Wisconsin, Madison), E.J. Kim (Texas A&M University), Jihong
Kim (Seoul National University), Lu Peng (Louisiana State University), Dean Tullsen
(UC San Diego), Ken Vollmar (Missouri State University), David Wood (University
of Wisconsin, Madison), Ki Hwan Yum (University of Texas, San Antonio); Surveys
and Reviews: Mahmoud Abou-Nasr (Wayne State University), Perry Alexander (The
University of Kansas), Hakan Aydin (George Mason University), Hussein Badr (State
University of New York at Stony Brook), Mac Baker (Virginia Military Institute),
Ron Barnes (George Mason University), Douglas Blough (Georgia Institute of
Technology), Kevin Bolding (Seattle Pacific University), Miodrag Bolic (University
of Ottawa), John Bonomo (Westminster College), Jeff Braun (Montana Tech), Tom
Briggs (Shippensburg University), Scott Burgess (Humboldt State University), Fazli
Can (Bilkent University), Warren R. Carithers (Rochester Institute of Technology),
Bruce Carlton (Mesa Community College), Nicholas Carter (University of Illinois
at Urbana-Champaign), Anthony Cocchi (The City University of New York), Don
Cooley (Utah State University), Robert D. Cupper (Allegheny College), Edward W.
Davis (North Carolina State University), Nathaniel J. Davis (Air Force Institute of
Technology), Molisa Derk (Oklahoma City University), Derek Eager (University of
Saskatchewan), Ernest Ferguson (Northwest Missouri State University), Rhonda
Kay Gaede (The University of Alabama), Etienne M. Gagnon (UQAM), Costa
Gerousis (Christopher Newport University), Paul Gillard (Memorial University of
Newfoundland), Michael Goldweber (Xavier University), Georgia Grant (College
of San Mateo), Merrill Hall (The Master’s College), Tyson Hall (Southern Adventist
University), Ed Harcourt (Lawrence University), Justin E. Harlow (University of
South Florida), Paul E Hemler (Hampden-Sydney College), Martin Herbordt
(Boston University), Steve J. Hodges (Cabrillo College), Kenneth Hopkinson
(Cornell University), Dalton Hunkins (St. Bonaventure University), Baback
Izadi (State University of New York—New Paltz), Reza Jafari, Robert W. Johnson
(Colorado Technical University), Bharat Joshi (University of North Carolina,
Charlotte), Nagarajan Kandasamy (Drexel University), Rajiv Kapadia, Ryan
Kastner (University of California, Santa Barbara), Jim Kirk (Union University),
Geoffrey S. Knauth (Lycoming College), Manish M. Kochhal (Wayne State), Suzan
Koknar-Tezel (Saint Joseph’s University), Angkul Kongmunvattana (Columbus
State University), April Kontostathis (Ursinus College), Christos Kozyrakis
(Stanford University), Danny Krizanc (Wesleyan University), Ashok Kumar,
S. Kumar (The University of Texas), Robert N. Lea (University of Houston),

XXiv

Preface

Baoxin Li (Arizona State University), Li Liao (University of Delaware), Gary
Livingston (University of Massachusetts), Michael Lyle, Douglas W. Lynn (Oregon
Institute of Technology), Yashwant K Malaiya (Colorado State University), Bill
Mark (University of Texas at Austin), Ananda Mondal (Claflin University), Alvin
Moser (Seattle University), Walid Najjar (University of California, Riverside),
Danial J. Neebel (Loras College), John Nestor (Lafayette College), Joe Oldham
(Centre College), Timour Paltashev, James Parkerson (University of Arkansas),
Shaunak Pawagi (SUNY at Stony Brook), Steve Pearce, Ted Pedersen (University
of Minnesota), Gregory D Peterson (The University of Tennessee), Dejan Raskovic
(University of Alaska, Fairbanks) Brad Richards (University of Puget Sound),
Roman Rozanov, Louis Rubinfield (Villanova University), Md Abdus Salam
(Southern University), Augustine Samba (Kent State University), Robert Schaefer
(Daniel Webster College), Carolyn J. C. Schauble (Colorado State University),
Keith Schubert (CSU San Bernardino), William L. Schultz, Kelly Shaw (University
of Richmond), Shahram Shirani (McMaster University), Scott Sigman (Drury
University), Bruce Smith, David Smith, Jeff W. Smith (University of Georgia,
Athens), Philip Snyder (Johns Hopkins University), Alex Sprintson (Texas A&M),
Timothy D. Stanley (Brigham Young University), Dean Stevens (Morningside
College), Nozar Tabrizi (Kettering University), Yuval Tamir (UCLA), Alexander
Taubin (Boston University), Will Thacker (Winthrop University), Mithuna
Thottethodi (Purdue University), Manghui Tu (Southern Utah University), Rama
Viswanathan (Beloit College), Guoping Wang (Indiana-Purdue University),
Patricia Wenner (Bucknell University), Kent Wilken (University of California,
Davis), David Wolfe (Gustavus Adolphus College), David Wood (University of
Wisconsin, Madison), Mohamed Zahran (City College of New York), Gerald D.
Zarnett (Ryerson University), Nian Zhang (South Dakota School of Mines &
Technology), Jiling Zhong (Troy University), Huiyang Zhou (The University of
Central Florida), Weiyu Zhu (Illinois Wesleyan University).

I would especially like to thank the Berkeley people who gave key feedback for
Chapter 7 and Appendix A, which were the most challenging pieces to write for this
edition: Krste Asanovic, Christopher Batten, Rastilav Bodik, Bryan Catanzaro,
Jike Chong, Kaushik Data, Greg Giebling, Anik Jain, Jae Lee, Vasily Volkov, and
Samuel Williams.

A special thanks also goes to Mark Smotherman for making multiple passes to
find technical and writing glitches that significantly improved the quality of this
edition. He played an even more important role this time given that this edition
was done as a solo act.

We wish to thank the extended Morgan Kaufmann family for agreeing to publish
this book again under the able leadership of Denise Penrose. Nathaniel McFadden
was the developmental editor for this edition and worked with me weekly on the
contents of the book. Kimberlee Honjo coordinated the surveying of users and
their responses.

Preface

Dawnmarie Simpson managed the book production process. We thank also the
many freelance vendors who contributed to this volume, especially Alan Rose of
Multiscience Press and diacriTech, our compositor.

The contributions of the nearly 200 people we mentioned here have helped
make this fourth edition what I hope will be our best book yet. Enjoy!

David A. Patterson

Civilization advances
by extending the
number of important
operations which we
can perform without
thinking about them.

Alfred North Whitehead
An Introduction to Mathematics, 1911

Computer
Abstractions
and Technology

11
1.2
13
14
15
1.6

Computer Organization and Design. DOI: 10.1016/B978-0-12-374750-1.00001-3

© 2012 Elsevier, Inc. All rights reserved.

Introduction 3

Below Your Program 10

Under the Covers 13

Performance 26

The Power Wall 39

The Sea Change: The Switch from
Uniprocessors to Multiprocessors 41

http://dx.doi.org/10.1016/B978-0-12-374750-1.00001-3

1.7 Real Stuff: Manufacturing and Benchmarking the AMD
Opteron X4 44
1.8 Fallacies and Pitfalls 51
1.9 Concluding Remarks 54
1.10 Historical Perspective and Further Reading 55
1.11 Exercises 56

Introduction

Welcome to this book! We're delighted to have this opportunity to convey the
excitement of the world of computer systems. This is not a dry and dreary field,
where progress is glacial and where new ideas atrophy from neglect. No! Comput-
ers are the product of the incredibly vibrant information technology industry, all
aspects of which are responsible for almost 10% of the gross national product of
the United States, and whose economy has become dependent in part on the rapid
improvements in information technology promised by Moore’s law. This unusual
industry embraces innovation at a breathtaking rate. In the last 25 years, there have
been a number of new computers whose introduction appeared to revolutionize
the computing industry; these revolutions were cut short only because someone
else built an even better computer.

This race to innovate has led to unprecedented progress since the inception of
electronic computing in the late 1940s. Had the transportation industry kept pace
with the computer industry, for example, today we could travel from New York
to London in about a second for roughly a few cents. Take just a moment to
contemplate how such an improvement would change society—living in Tahiti
while working in San Francisco, going to Moscow for an evening at the Bolshoi
Ballet—and you can appreciate the implications of such a change.

Chapter 1 Computer Abstractions and Technology

Computers have led to a third revolution for civilization, with the information
revolution taking its place alongside the agricultural and the industrial revolu-
tions. The resulting multiplication of humankind’s intellectual strength and reach
naturally has affected our everyday lives profoundly and changed the ways in which
the search for new knowledge is carried out. There is now a new vein of scientific
investigation, with computational scientists joining theoretical and experimental
scientists in the exploration of new frontiers in astronomy, biology, chemistry, and
physics, among others.

The computer revolution continues. Each time the cost of computing improves
by another factor of 10, the opportunities for computers multiply. Applications
that were economically infeasible suddenly become practical. In the recent past, the
following applications were “computer science fiction.”

m Computers in automobiles: Until microprocessors improved dramatically in
price and performance in the early 1980s, computer control of cars was ludi-
crous. Today, computers reduce pollution, improve fuel efficiency via engine
controls, and increase safety through the prevention of dangerous skids and
through the inflation of air bags to protect occupants in a crash.

m Cell phones: Who would have dreamed that advances in computer systems
would lead to mobile phones, allowing person-to-person communication
almost anywhere in the world?

B Human genome project: The cost of computer equipment to map and ana-
lyze human DNA sequences is hundreds of millions of dollars. It’s unlikely
that anyone would have considered this project had the computer costs been
10 to 100 times higher, as they would have been 10 to 20 years ago. More-
over, costs continue to drop; you may be able to acquire your own genome,
allowing medical care to be tailored to you.

m World Wide Web: Not in existence at the time of the first edition of this book,
the World Wide Web has transformed our society. For many, the WWW has
replaced libraries.

B Search engines: As the content of the WWW grew in size and in value, find-
ing relevant information became increasingly important. Today, many peo-
ple rely on search engines for such a large part of their lives that it would be a
hardship to go without them.

Clearly, advances in this technology now affect almost every aspect of our soci-
ety. Hardware advances have allowed programmers to create wonderfully useful
software, which explains why computers are omnipresent. Today’s science fiction
suggests tomorrow’s killer applications: already on their way are virtual worlds,
practical speech recognition, and personalized health care.

1.1 Introduction

Classes of Computing Applications and Their Characteristics

Although a common set of hardware technologies (see Sections 1.3 and 1.7) is used
in computers ranging from smart home appliances to cell phones to the largest
supercomputers, these different applications have different design requirements
and employ the core hardware technologies in different ways. Broadly speaking,
computers are used in three different classes of applications.

Desktop computers are possibly the best-known form of computing and are
characterized by the personal computer, which readers of this book have likely used
extensively. Desktop computers emphasize delivery of good performance to single
users at low cost and usually execute third-party software. The evolution of many
computing technologies is driven by this class of computing, which is only about
30 years old!

Servers are the modern form of what were once mainframes, minicomputers,
and supercomputers, and are usually accessed only via a network. Servers are ori-
ented to carrying large workloads, which may consist of either single complex
applications—usually a scientific or engineering application—or handling many
small jobs, such as would occur in building a large Web server. These applications
are usually based on software from another source (such as a database or simula-
tion system), but are often modified or customized for a particular function. Serv-
ers are built from the same basic technology as desktop computers, but provide for
greater expandability of both computing and input/output capacity. In general,
servers also place a greater emphasis on dependability, since a crash is usually more
costly than it would be on a single-user desktop computer.

Servers span the widest range in cost and capability. At the low end, a server
may be little more than a desktop computer without a screen or keyboard and
cost a thousand dollars. These low-end servers are typically used for file storage,
small business applications, or simple Web serving (see Section 6.10). At the other
extreme are supercomputers, which at the present consist of hundreds to thou-
sands of processors and usually terabytes of memory and petabytes of storage, and
cost millions to hundreds of millions of dollars. Supercomputers are usually used
for high-end scientific and engineering calculations, such as weather forecasting,
oil exploration, protein structure determination, and other large-scale problems.
Although such supercomputers represent the peak of computing capability, they
represent a relatively small fraction of the servers and a relatively small fraction of
the overall computer market in terms of total revenue.

Although not called supercomputers, Internet datacenters used by companies
like eBay and Google also contain thousands of processors, terabytes of memory,
and petabytes of storage. These are usually considered as large clusters of comput-
ers (see Chapter 7).

Embedded computers are the largest class of computers and span the wid-
est range of applications and performance. Embedded computers include the

desktop computer

A computer designed
for use by an individual,
usually incorporating a
graphics display, a key-
board, and a mouse.

server A computer

used for running larger
programs for multiple
users, often simultaneously,
and typically accessed only
via a network.

supercomputer A class
of computers with the
highest performance and
cost; they are configured
as servers and typically
cost millions of dollars.

terabyte Originally
1,099,511,627,776 (2*°)
bytes, although some
communications and
secondary storage systems
have redefined it to mean
1,000,000,000,000 (10'2)
bytes.

petabyte Depending
on the situation, either
1000 or 1024 terabytes.

datacenter A room or
building designed to
handle the power, cooling,
and networking needs of
a large number of servers.

embedded computer

A computer inside
another device used

for running one
predetermined application
or collection of software.

Chapter 1 Computer Abstractions and Technology

microprocessors found in your car, the computers in a cell phone, the computers
in a video game or television, and the networks of processors that control a mod-
ern airplane or cargo ship. Embedded computing systems are designed to run one
application or one set of related applications, that are normally integrated with
the hardware and delivered as a single system; thus, despite the large number of
embedded computers, most users never really see that they are using a computer!

Figure 1.1 shows that during the last several years, the growth in cell phones that
rely on embedded computers has been much faster than the growth rate of desktop
computers. Note that the embedded computers are also found in digital TVs and
set-top boxes, automobiles, digital cameras, music players, video games, and a
variety of other such consumer devices, which further increases the gap between
the number of embedded computers and desktop computers.

| O Cell Phones B PCs O TVs

1200
1100 —
1000 1 |
900]
800]
700]
600]
500]
400]
300 —

200
o0y i
0 .

I W S N A R I
P LSS TS
SR S S S S S SIS

Millions

FIGURE1.1 The number of cell phones, personal computers, and televisions manufactured
per year between 1997 and 2007. (We have television data only from 2004.) More than a billion new
cell phones were shipped in 2006. Cell phones sales exceeded PCs by only a factor of 1.4 in 1997, but the
ratio grew to 4.5 in 2007. The total number in use in 2004 is estimated to be about 2.0B televisions, 1.8B cell
phones, and 0.8B PCs. As the world population was about 6.4B in 2004, there were approximately one PC,
2.2 cell phones, and 2.5 televisions for every eight people on the planet. A 2006 survey of U.S. families found
that they owned on average 12 gadgets, including three TVs, 2 PCs, and other devices such as game consoles,
MP3 players, and cell phones.

1.1 Introduction

Embedded applications often have unique application requirements that
combine a minimum performance with stringent limitations on cost or power. For
example, consider a music player: the processor need only be as fast as necessary to
handle its limited function, and beyond that, minimizing cost and power are the
most important objectives. Despite their low cost, embedded computers often have
lower tolerance for failure, since the results can vary from upsetting (when your
new television crashes) to devastating (such as might occur when the computer in
a plane or cargo ship crashes). In consumer-oriented embedded applications, such
as a digital home appliance, dependability is achieved primarily through simplic-
ity—the emphasis is on doing one function as perfectly as possible. In large embed-
ded systems, techniques of redundancy from the server world are often employed
(see Section 6.9). Although this book focuses on general-purpose computers, most
concepts apply directly, or with slight modifications, to embedded computers.

Elaboration: Elaborations are short sections used throughout the text to provide more
detail on a particular subject that may be of interest. Disinterested readers may skip
over an elaboration, since the subsequent material will never depend on the contents
of the elaboration.

Many embedded processors are designed using processor cores, a version of a proces-
sor written in a hardware description language, such as Verilog or VHDL (see Chapter 4).
The core allows a designer to integrate other application-specific hardware with the pro-
cessor core for fabrication on a single chip.

What You Can Learn in This Book

Successful programmers have always been concerned about the performance of
their programs, because getting results to the user quickly is critical in creating
successful software. In the 1960s and 1970s, a primary constraint on computer
performance was the size of the computer’s memory. Thus, programmers often
followed a simple credo: minimize memory space to make programs fast. In the
last decade, advances in computer design and memory technology have greatly
reduced the importance of small memory size in most applications other than
those in embedded computing systems.

Programmers interested in performance now need to understand the issues
that have replaced the simple memory model of the 1960s: the parallel nature of
processors and the hierarchical nature of memories. Programmers who seek to build
competitive versions of compilers, operating systems, databases,and even applications
will therefore need to increase their knowledge of computer organization.

We are honored to have the opportunity to explain what’s inside this revolution-
ary machine, unraveling the software below your program and the hardware under
the covers of your computer. By the time you complete this book, we believe you
will be able to answer the following questions:

Chapter 1 Computer Abstractions and Technology

multicore
microprocessor A
microprocessor containing
multiple processors
(“cores”) in a single
integrated circuit.

acronym A word
constructed by taking the
initial letters of a string of
words. For example:
RAM is an acronym for
Random Access Memory,
and CPU is an acronym
for Central Processing
Unit.

m How are programs written in a high-level language, such as C or Java, trans-
lated into the language of the hardware, and how does the hardware execute
the resulting program? Comprehending these concepts forms the basis of
understanding the aspects of both the hardware and software that affect
program performance.

B What is the interface between the software and the hardware, and how does
software instruct the hardware to perform needed functions? These concepts
are vital to understanding how to write many kinds of software.

® What determines the performance of a program, and how can a program-
mer improve the performance? As we will see, this depends on the original
program, the software translation of that program into the computer’s
language, and the effectiveness of the hardware in executing the program.

B What techniques can be used by hardware designers to improve performance?
This book will introduce the basic concepts of modern computer design. The
interested reader will find much more material on this topic in our advanced
book, Computer Architecture: A Quantitative Approach.

B What are the reasons for and the consequences of the recent switch from
sequential processing to parallel processing? This book gives the motivation,
describes the current hardware mechanisms to support parallelism, and
surveys the new generation of “multicore” microprocessors (see Chapter 7).

Without understanding the answers to these questions, improving the perfor-
mance of your program on a modern computer, or evaluating what features might
make one computer better than another for a particular application, will be a
complex process of trial and error, rather than a scientific procedure driven by
insight and analysis.

This first chapter lays the foundation for the rest of the book. It introduces the
basic ideas and definitions, places the major components of software and hardware
in perspective, shows how to evaluate performance and power, introduces inte-
grated circuits (the technology that fuels the computer revolution), and explains
the shift to multicores.

In this chapter and later ones, you will likely see many new words, or words
that you may have heard but are not sure what they mean. Don’t panic! Yes, there
is a lot of special terminology used in describing modern computers, but the ter-
minology actually helps, since it enables us to describe precisely a function or
capability. In addition, computer designers (including your authors) love using
acronyms, which are easy to understand once you know what the letters stand for!
To help you remember and locate terms, we have included a highlighted defini-
tion of every term in the margins the first time it appears in the text. After a short
time of working with the terminology, you will be fluent, and your friends will
be impressed as you correctly use acronyms such as BIOS, CPU, DIMM, DRAM,
PCIE, SATA, and many others.

1.1 Introduction 9

To reinforce how the software and hardware systems used to run a program will
affect performance, we use a special section, Understanding Program Performance,
throughout the book to summarize important insights into program performance.
The first one appears below.

The performance of a program depends on a combination of the effectiveness of Unders’tanding
the algorithms used in the program, the software systems used to create and trans-

. .o . : Program
late the program into machine instructions, and the effectiveness of the computer
in executing those instructions, which may include input/output (I/O) operations. Performance
This table summarizes how the hardware and software affect performance.

Hardware or software How this component affects Where is this
component performance topic covered?

Algorithm Determines both the number of source-level | Other books!
statements and the number of I/0 operations
executed

Programming language, Determines the number of computer Chapters 2 and 3

compiler, and architecture instructions for each source-level statement

Processor and memory system | Determines how fast instructions can be Chapters 4, 5, and 7
executed

I/0 system (hardware and Determines how fast I/0 operations may be | Chapter 6

operating system) executed

Check Yourself sections are designed to help readers assess whether they compre- Check
hend the major concepts introduced in a chapter and understand the implications Yourself
of those concepts. Some Check Yourself questions have simple answers; others are

for discussion among a group. Answers to the specific questions can be found at

the end of the chapter. Check Yourself questions appear only at the end of a section,

making it easy to skip them if you are sure you understand the material.

1. Section 1.1 showed that the number of embedded processors sold every year
greatly outnumbers the number of desktop processors. Can you confirm or
deny this insight based on your own experience? Try to count the number of
embedded processors in your home. How does it compare with the number
of desktop computers in your home?

2. Asmentioned earlier, both the software and hardware affect the performance
of a program. Can you think of examples where each of the following is the
right place to look for a performance bottleneck?

B The algorithm chosen

The programming language or compiler

|
B The operating system
m The processor

|

The I/O system and devices

10

Chapter 1 Computer Abstractions and Technology

In Paris they simply
stared when I spoke to
them in French; I never
did succeed in making
those idiots understand
their own language.

Mark Twain, The
Innocents Abroad, 1869

systems software
Software that provides
services that are
commonly useful,
including operating
systems, compilers,
loaders, and assemblers.

operating system
Supervising program that
manages the resources of
a computer for the benefit
of the programs that run
on that computer.

Below Your Program

A typical application, such as a word processor or a large database system, may
consist of millions of lines of code and rely on sophisticated software libraries that
implement complex functions in support of the application. As we will see, the
hardware in a computer can only execute extremely simple low-level instructions.
To go from a complex application to the simple instructions involves several layers
of software that interpret or translate high-level operations into simple computer
instructions.

Figure 1.2 shows that these layers of software are organized primarily in a hier-
archical fashion, with applications being the outermost ring and a variety of
systems software sitting between the hardware and applications software.

There are many types of systems software, but two types of systems software are
central to every computer system today: an operating system and a compiler. An
operating system interfaces between a user’s program and the hardware and pro-
vides a variety of services and supervisory functions. Among the most important
functions are

B Handling basic input and output operations
m Allocating storage and memory

B Providing for protected sharing of the computer among multiple applications
using it simultaneously.

Examples of operating systems in use today are Linux, MacOS, and Windows.

FIGURE 1.2 A simplified view of hardware and software as hierarchical layers, shown as
concentric circles with hardware in the center and applications software outermost. In
complex applications, there are often multiple layers of application software as well. For example, a database
system may run on top of the systems software hosting an application, which in turn runs on top of the
database.

1.2 Below Your Program

11

Compilers perform another vital function: the translation of a program written
in a high-level language, such as C, C++, Java, or Visual Basic into instructions
that the hardware can execute. Given the sophistication of modern programming
languages and the simplicity of the instructions executed by the hardware, the
translation from a high-level language program to hardware instructions is
complex. We give a brief overview of the process here and then go into more depth
in Chapter 2 and Appendix B.

From a High-Level Language to the Language of Hardware

To actually speak to electronic hardware, you need to send electrical signals. The
easiest signals for computers to understand are on and off, and so the computer
alphabet is just two letters. Just as the 26 letters of the English alphabet do not limit
how much can be written, the two letters of the computer alphabet do not limit
what computers can do. The two symbols for these two letters are the numbers 0
and 1, and we commonly think of the computer language as numbers in base 2, or
binary numbers. We refer to each “letter” as a binary digit or bit. Computers are
slaves to our commands, which are called instructions. Instructions, which are just
collections of bits that the computer understands and obeys, can be thought of as
numbers. For example, the bits

1000110010100000

tell one computer to add two numbers. Chapter 2 explains why we use numbers
for instructions and data; we don’t want to steal that chapter’s thunder, but using
numbers for both instructions and data is a foundation of computing.

The first programmers communicated to computers in binary numbers, but this
was so tedious that they quickly invented new notations that were closer to the way
humans think. At first, these notations were translated to binary by hand, but this
process was still tiresome. Using the computer to help program the computer, the
pioneers invented programs to translate from symbolic notation to binary. The first
of these programs was named an assembler. This program translates a symbolic
version of an instruction into the binary version. For example, the programmer
would write

add A,B

and the assembler would translate this notation into

1000110010100000

This instruction tells the computer to add the two numbers A and B. The name
coined for this symbolic language, still used today, is assembly language. In con-
trast, the binary language that the machine understands is the machine language.

Although a tremendous improvement, assembly language is still far from the
notations a scientist might like to use to simulate fluid flow or that an accountant
might use to balance the books. Assembly language requires the programmer

compiler A program
that translates high-level
language statements
into assembly language
statements.

binary digit Also called
a bit. One of the two
numbers in base 2 (0 or 1)
that are the components
of information.

instruction A command
that computer hardware
understands and obeys.

assembler A program
that translates a symbolic
version of instructions
into the binary version.

assembly language
A symbolic representation
of machine instructions.

machine language
A binary representation of
machine instructions.

12

Chapter 1 Computer Abstractions and Technology

high-level
programming
language A portable
language such as C, C++,
Java, or Visual Basic that
is composed of words
and algebraic notation
that can be translated by
a compiler into assembly
language.

to write one line for every instruction that the computer will follow, forcing the

programmer to think like the computer.

The recognition that a program could be written to translate a more powerful
language into computer instructions was one of the great breakthroughs in the
early days of computing. Programmers today owe their productivity—and their
sanity—to the creation of high-level programming languages and compilers that
translate programs in such languages into instructions. Figure 1.3 shows the rela-

tionships among these programs and languages.

High-level
language
program
(in C)

Assembly
language
program

(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[1, int k)
{int temp;
temp = v[k];
vlk] = v[k+17;
vlk+1] = temp;

swap:

multi $2, $5.,4
add $2, $4,%2
Tw $15, 0($2)
Tw $16, 4($2)
Sw $16, 0($2)
Sw $15, 4($2)
jr $31

Assembler

00000000101000100000000100011000
0000000010000010000100000100001

10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

FIGURE 1.3 C program compiled into assembly language and then assembled into binary
machine language. Although the translation from high-level language to binary machine language is
shown in two steps, some compilers cut out the middleman and produce binary machine language directly.

These languages and this program are examined in more detail in Chapter 2.

1.3 Under the Covers

13

A compiler enables a programmer to write this high-level language expression:
A+ B
The compiler would compile it into this assembly language statement:

add A,B

As shown above, the assembler would translate this statement into the binary
instructions that tell the computer to add the two numbers A and B.

High-level programming languages offer several important benefits. First, they
allow the programmer to think in a more natural language, using English words
and algebraic notation, resulting in programs that look much more like text than
like tables of cryptic symbols (see Figure 1.3). Moreover, they allow languages to be
designed according to their intended use. Hence, Fortran was designed for scientific
computation, Cobol for business data processing, Lisp for symbol manipulation,
and so on. There are also domain-specific languages for even narrower groups of
users, such as those interested in simulation of fluids, for example.

The second advantage of programming languages is improved programmer
productivity. One of the few areas of widespread agreement in software develop-
ment is that it takes less time to develop programs when they are written in
languages that require fewer lines to express an idea. Conciseness is a clear
advantage of high-level languages over assembly language.

The final advantage is that programming languages allow programs to be inde-
pendent of the computer on which they were developed, since compilers and
assemblers can translate high-level language programs to the binary instructions
of any computer. These three advantages are so strong that today little program-
ming is done in assembly language.

Under the Covers

Now that we have looked below your program to uncover the underlying software,
let’s open the covers of your computer to learn about the underlying hardware. The
underlying hardware in any computer performs the same basic functions: inputting
data, outputting data, processing data, and storing data. How these functions are
performed is the primary topic of this book, and subsequent chapters deal with
different parts of these four tasks.

When we come to an important point in this book, a point so important
that we hope you will remember it forever, we emphasize it by identifying it as a
Big Picture item. We have about a dozen Big Pictures in this book, the first being

14

Chapter 1 Computer Abstractions and Technology

the BIG

Picture

the five components of a computer that perform the tasks of inputting, outputting,
processing, and storing data.

The five classic components of a computer are input, output, memory,
datapath, and control, with the last two sometimes combined and called
the processor. Figure 1.4 shows the standard organization of a computer.
This organization is independent of hardware technology: you can place
every piece of every computer, past and present, into one of these five cat-
egories. To help you keep all this in perspective, the five components of a
computer are shown on the front page of each of the following chapters,
with the portion of interest to that chapter highlighted.

Datapath
-
&

Evaluating
performance

Output

Processor Memory

FIGURE 1.4 The organization of a computer, showing the five classic components. The
processor gets instructions and data from memory. Input writes data to memory, and output reads data
from memory. Control sends the signals that determine the operations of the datapath, memory, input, and
output.

1.3 Under the Covers

15

FIGURE 1.5 A desktop computer. The liquid crystal display (LCD) screen is the primary output
device, and the keyboard and mouse are the primary input devices. On the right side is an Ethernet
cable that connected the laptop to the network and the Web. The laptop contains the processor, memory,
and additional I/O devices. This system is a Macbook Pro 15" laptop connected to an external display.

Figure 1.5 shows a computer with keyboard, wireless mouse, and screen. This
photograph reveals two of the key components of computers: input devices, such
as the keyboard and mouse, and output devices, such as the screen. As the names
suggest, input feeds the computer, and output is the result of computation sent to
the user. Some devices, such as networks and disks, provide both input and output
to the computer.

Chapter 6 describes input/output (I/O) devices in more detail, but let’s take an
introductory tour through the computer hardware, starting with the external I/O
devices.

input device

A mechanism through
which the computer is fed
information, such as the
keyboard or mouse.

output device

A mechanism that
conveys the result of a
computation to a user or
another computer.

16

Chapter 1 Computer Abstractions and Technology

I got the idea for the
mouse while attending
a talk at a computer
conference. The speaker
was so boring that I
started daydreaming
and hit upon the idea.

Doug Engelbart

Through computer
displays I have landed
an airplane on the deck
of a moving carrier,
observed a nuclear
particle hit a potential
well, flown in a rocket
at nearly the speed of
light and watched a
computer reveal its
innermost workings.

Ivan Sutherland, the
“father” of computer
graphics, Scientific
American, 1984

liquid crystal display

A display technology
using a thin layer of liquid
polymers that can be used
to transmit or block light
according to whether a
charge is applied.

active matrix display

A liquid crystal display
using a transistor to
control the transmission
of light at each individual
pixel.

pixel The smallest
individual picture element.
Screens are composed of
hundreds of thousands

to millions of pixels,
organized in a matrix.

Anatomy of a Mouse

Although many users now take mice for granted, the idea of a pointing device such
as a mouse was first shown by Doug Engelbart using a research prototype in 1967.
The Alto, which was the inspiration for all workstations as well as for the Macintosh
and Windows OS, included a mouse as its pointing device in 1973. By the 1990s, all
desktop computers included this device, and new user interfaces based on graphics
displays and mice became the norm.

The original mouse was electromechanical and used a large ball that when rolled
across a surface would cause an x and y counter to be incremented. The amount of
increase in each counter told how far the mouse had been moved.

The electromechanical mouse has largely been replaced by the newer all-optical
mouse. The optical mouse is actually a miniature optical processor including an
LED to provide lighting, a tiny black-and-white camera, and a simple optical pro-
cessor. The LED illuminates the surface underneath the mouse; the camera takes
1500 sample pictures a second under the illumination. Successive pictures are sent
to a simple optical processor that compares the images and determines whether
the mouse has moved and how far. The replacement of the electromechanical
mouse by the electro-optical mouse is an illustration of a common phenomenon
where the decreasing costs and higher reliability of electronics cause an electronic
solution to replace the older electromechanical technology. On page 22 we’ll see
another example: flash memory.

Through the Looking Glass

The most fascinating I/O device is probably the graphics display. All laptop and
handheld computers, calculators, cellular phones, and almost all desktop comput-
ers now use liquid crystal displays (LCDs) to get a thin, low-power display.
The LCD is not the source of light; instead, it controls the transmission of light.
A typical LCD includes rod-shaped molecules in a liquid that form a twisting
helix that bends light entering the display, from either a light source behind the
display or less often from reflected light. The rods straighten out when a current is
applied and no longer bend the light. Since the liquid crystal material is between
two screens polarized at 90 degrees, the light cannot pass through unless it is bent.
Today, most LCD displays use an active matrix that has a tiny transistor switch at
each pixel to precisely control current and make sharper images. A red-green-blue
mask associated with each dot on the display determines the intensity of the three
color components in the final image; in a color active matrix LCD, there are three
transistor switches at each point.

The image is composed of a matrix of picture elements, or pixels, which can be
represented as a matrix of bits, called a bit map. Depending on the size of the screen
and the resolution, the display matrix ranges in size from 640 X 480 to 2560 X 1600
pixels in 2008. A color display might use 8 bits for each of the three colors (red,
blue, and green), for 24 bits per pixel, permitting millions of different colors to be
displayed.

1.3 Under the Covers

17

The computer hardware support for graphics consists mainly of a raster refresh
buffer, or frame buffer, to store the bit map. The image to be represented onscreen is
stored in the frame buffer, and the bit pattern per pixel is read out to the graphics
display at the refresh rate. Figure 1.6 shows a frame buffer with a simplified design
of just 4 bits per pixel.

Frame buffer

Raster scan CRT display

|
Y, ! 1 s Y,

1 1
Xo X4 Xo X

FIGURE 1.6 Each coordinate in the frame buffer on the left determines the shade of
the corresponding coordinate for the raster scan CRT display on the right. Pixel (XO, YO)
contains the bit pattern 0011, which is a lighter shade on the screen than the bit pattern 1101 in pixel (X, Y).

The goal of the bit map is to faithfully represent what is on the screen. The
challenges in graphics systems arise because the human eye is very good at detecting
even subtle changes on the screen.

Opening the Box

If we open the box containing the computer, we see a fascinating board of thin
plastic, covered with dozens of small gray or black rectangles. Figure 1.7 shows the
contents of the laptop computer in Figure 1.5. The motherboard is shown in the
upper part of the photo. Two disk drives are in front—the hard drive on the left and
a DVD drive on the right. The hole in the middle is for the laptop battery.

The small rectangles on the motherboard contain the devices that drive our
advancing technology, called integrated circuits and nicknamed chips. The board
is composed of three pieces: the piece connecting to the I/O devices mentioned
earlier, the memory, and the processor.

The memory is where the programs are kept when they are running; it also
contains the data needed by the running programs. Figure 1.8 shows that memory
is found on the two small boards, and each small memory board contains eight
integrated circuits. The memory in Figure 1.8 is built from DRAM chips. DRAM

motherboard

A plastic board containing
packages of integrated
circuits or chips, including
processor, cache, memory,
and connectors for I/O
devices such as networks
and disks.

integrated circuit Also
called a chip. A device
combining dozens to
millions of transistors.

memory The storage
area in which programs
are kept when they are
running and that contains
the data needed by the
running programs.

18 Chapter 1 Computer Abstractions and Technology

s I J
#sssssssassaiee sesessie

D)

Hard drive Processor Fan with Spot for Spot for Motherboard Fan with DVD drive
cover memory battery cover

DIMMs

FIGURE 1.7 Inside the laptop computer of Figure 1.5. The shiny box with the white label on the lower left is a 100 GB SATA
hard disk drive, and the shiny metal box on the lower right side is the DVD drive. The hole between them is where the laptop battery would
be located. The small hole above the battery hole is for memory DIMMs. Figure 1.8 is a close-up of the DIMMs, which are inserted from the
bottom in this laptop. Above the battery hole and DVD drive is a printed circuit board (PC board), called the motherboard, which contains
most of the electronics of the computer. The two shiny circles in the upper half of the picture are two fans with covers. The processor is the
large raised rectangle just below the left fan. Photo courtesy of OtherWorldComputing.com.

1.3 Under the Covers

19

stands for dynamic random access memory. Several DRAMs are used together
to contain the instructions and data of a program. In contrast to sequential access
memories, such as magnetic tapes, the RAM portion of the term DRAM means that
memory accesses take basically the same amount of time no matter what portion
of the memory is read.

i
2
%:s

FIGURE 1.8 Close-up of the bottom of the laptop reveals the memory. The main memory is
contained on one or more small boards shown on the left. The hole for the battery is to the right. The DRAM
chips are mounted on these boards (called DIMM:s, for dual inline memory modules) and then plugged into
the connectors. Photo courtesy of OtherWorldComputing.com.

The processor is the active part of the board, following the instructions of a pro-
gram to the letter. It adds numbers, tests numbers, signals I/O devices to activate,
and so on. The processor is under the fan and covered by a heat sink on the left
side of Figure 1.7. Occasionally, people call the processor the CPU, for the more
bureaucratic-sounding central processor unit.

Descending even lower into the hardware, Figure 1.9 reveals details of a micro-
processor. The processor logically comprises two main components: datapath and
control, the respective brawn and brain of the processor. The datapath performs
the arithmetic operations, and control tells the datapath, memory, and I/O devices
what to do according to the wishes of the instructions of the program. Chapter 4
explains the datapath and control for a higher-performance design.

dynamic random access
memory (DRAM)
Memory built as an
integrated circuit; it
provides random access to
any location.

dual inline memory
module (DIMM)

A small board that
contains DRAM chips on
both sides. (SIMMs have
DRAMs on only one side.)

central processor

unit (CPU) Also called
processor. The active part
of the computer, which
contains the datapath and
control and which adds
numbers, tests numbers,
signals I/O devices to
activate, and so on.

datapath The
component of the
processor that performs
arithmetic operations

control The component
of the processor that
commands the datapath,
memory, and I/O devices
according to the instruc-
tions of the program.

20

Chapter 1 Computer Abstractions and Technology

| HTPHY, link 1 |Slow I/O|Fuses|
128-bit FPU

o

< Load/ | L1 Data

= 512kB

Z|2MB | store | Cache |, Core 2

% | Shared -

| L3 Execution | L2 |Cache|

'f Cache | Fetch/ o

Decode/ |L1 Instr
Branch |Cache D

D

—| | Northbridge R
P
H
Y

(]

x

=

; Core 4 Core 3

o

=

T

HT PHY, link 4 [Slow /O|Fuses|

FIGURE 1.9

Inside the AMD Barcelona microprocessor. The left-hand side is a microphotograph of the AMD Barcelona processor

chip, and the right-hand side shows the major blocks in the processor. This chip has four processors or “cores”. The microprocessor in the
laptop in Figure 1.7 has two cores per chip, called an Intel Core 2 Duo.

cache memory A small,

fast memory that acts as a
buffer for a slower, larger

memory.

static random access
memory (SRAM) Also
memory built as an
integrated circuit, but
faster and less dense than
DRAM.

abstraction A model
that renders lower-level
details of computer
systems temporarily
invisible to facilitate
design of sophisticated
systems.

Descending into the depths of any component of the hardware reveals insights
into the computer. Inside the processor is another type of memory—cache mem-
ory. Cache memory consists of a small, fast memory that acts as a buffer for the
DRAM memory. (The nontechnical definition of cache is a safe place for hiding
things.) Cache is built using a different memory technology, static random access
memory (SRAM). SRAM is faster but less dense, and hence more expensive, than
DRAM (see Chapter 5).

You may have noticed a common theme in both the software and the hardware
descriptions: delving into the depths of hardware or software reveals more infor-
mation or, conversely, lower-level details are hidden to offer a simpler model at
higher levels. The use of such layers, or abstractions, is a principal technique for
designing very sophisticated computer systems.

One of the most important abstractions is the interface between the hard-
ware and the lowest-level software. Because of its importance, it is given a special

1.3 Under the Covers

21

name: the instruction set architecture, or simply architecture, of a computer.
The instruction set architecture includes anything programmers need to know
to make a binary machine language program work correctly, including instructions,
I/O devices, and so on. Typically, the operating system will encapsulate the details
of doing I/0, allocating memory, and other low-level system functions so that
application programmers do not need to worry about such details. The combina-
tion of the basic instruction set and the operating system interface provided for
application programmers is called the application binary interface (ABI).

An instruction set architecture allows computer designers to talk about func-
tions independently from the hardware that performs them. For example, we
can talk about the functions of a digital clock (keeping time, displaying the time,
setting the alarm) independently from the clock hardware (quartz crystal, LED
displays, plastic buttons). Computer designers distinguish architecture from an
implementation of an architecture along the same lines: an implementation is
hardware that obeys the architecture abstraction. These ideas bring us to another
Big Picture.

Both hardware and software consist of hierarchical layers, with each lower
layer hiding details from the level above. This principle of abstraction is
the way both hardware designers and software designers cope with the
complexity of computer systems. One key interface between the levels
of abstraction is the instruction set architecture—the interface between
the hardware and low-level software. This abstract interface enables
many implementations of varying cost and performance to run identical
software.

A Safe Place for Data

Thus far, we have seen how to input data, compute using the data, and display
data. If we were to lose power to the computer, however, everything would be lost
because the memory inside the computer is volatile—that is, when it loses power,
it forgets. In contrast,a DVD doesn’t forget the recorded film when you turn off the
power to the DVD player and is thus a nonvolatile memory technology.

To distinguish between the volatile memory used to hold data and programs
while they are running and this nonvolatile memory used to store data and pro-
grams between runs, the term main memory or primary memory is used for the

instruction set
architecture Also

called architecture. An
abstract interface between
the hardware and the
lowest-level software

that encompasses all the
information necessary to
write a machine language
program that will run
correctly, including
instructions, registers,
memory access, 1/0,

application binary
interface (ABI) The user
portion of the instruction
set plus the operating
system interfaces used by
application programmers.
Defines a standard for
binary portability across
computers.

implementation
Hardware that obeys the
architecture abstraction.

the BIG

Picture

volatile memory Stor-
age, such as DRAM, that
retains data only if it is
receiving power.

nonvolatile memory

A form of memory that
retains data even in

the absence of a power
source and that is used to
store programs between
runs. Magnetic disk is
nonvolatile.

main memory Also
called primary memory.
Memory used to hold
programs while they are
running; typically consists
of DRAM in today’s
computers.

22

Chapter 1 Computer Abstractions and Technology

secondary memory
Nonvolatile memory
used to store programs
and data between runs;
typically consists of mag-
netic disks in today’s
computers.

magnetic disk Also
called hard disk. A form
of nonvolatile secondary
memory composed of
rotating platters coated
with a magnetic recording
material.

flash memory

A nonvolatile semi-
conductor memory. It

is cheaper and slower
than DRAM but more
expensive and faster than
magnetic disks.

former, and secondary memory for the latter. DRAMs have dominated main
memory since 1975, but magnetic disks have dominated secondary memory
since 1965. The primary nonvolatile storage used in all server computers and
workstations is the magnetic hard disk. Flash memory, a nonvolatile semiconduc-
tor memory, is used instead of disks in mobile devices such as cell phones and is
increasingly replacing disks in music players and even laptops.

As Figure 1.10 shows, a magnetic hard disk consists of a collection of platters,
which rotate on a spindle at 5400 to 15,000 revolutions per minute. The metal
platters are covered with magnetic recording material on both sides, similar to the
material found on a cassette or videotape. To read and write information on a hard
disk, a movable arm containing a small electromagnetic coil called a read-write
head is located just above each surface. The entire drive is permanently sealed to
control the environment inside the drive, which, in turn, allows the disk heads to
be much closer to the drive surface.

@ @

FIGURE 1.10 A disk showing 10 disk platters and the read/write heads.

1.3 Under the Covers

23

Diameters of hard disks vary by more than a factor of 3 today, from 1 inch to
3.5 inches, and have been shrunk over the years to fit into new products; workstation
servers, personal computers, laptops, palmtops, and digital cameras have all inspired
new disk form factors. Traditionally, the widest disks have the highest performance
and the smallest disks have the lowest unit cost. The best cost per gigabyte varies.
Although most hard drives appear inside computers, as in Figure 1.7, hard drives
can also be attached using external interfaces such as universal serial bus (USB).

The use of mechanical components means that access times for magnetic disks
are much slower than for DRAMs: disks typically take 5-20 milliseconds, while
DRAMs take 50-70 nanoseconds—making DRAMSs about 100,000 times faster. Yet
disks have much lower costs than DRAM for the same storage capacity, because the
production costs for a given amount of disk storage are lower than for the same
amount of integrated circuit. In 2008, the cost per gigabyte of disk is 30 to 100
times less expensive than DRAM.

Thus, there are three primary differences between magnetic disks and main
memory: disks are nonvolatile because they are magnetic; they have a slower
access time because they are mechanical devices; and they are cheaper per gigabyte
because they have very high storage capacity at a modest cost.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fill that gap, but many have failed. Challengers have never had a product to
market at the right time. By the time a new product would ship, DRAMs and disks
had continued to make rapid advances, costs had dropped accordingly, and the
challenging product was immediately obsolete.

Flash memory, however, is a serious challenger. This semiconductor memory
is nonvolatile like disks and has about the same bandwidth, but latency is 100 to
1000 times faster than disk. Flash is popular in cameras and portable music players
because it comes in much smaller capacities, it is more rugged, and it is more
power efficient than disks, despite the cost per gigabyte in 2008 being about 6 to 10
times higher than disk. Unlike disks and DRAM, flash memory bits wear out after
100,000 to 1,000,000 writes. Thus, file systems must keep track of the number of
writes and have a strategy to avoid wearing out storage, such as by moving popular
data. Chapter 6 describes flash in more detail.

Although hard drives are not removable, there are several storage technologies
in use that include the following:

m Optical disks, including both compact disks (CDs) and digital video disks
(DVDs), constitute the most common form of removable storage. The Blu-
Ray (BD) optical disk standard is the heir-apparent to DVD.

m Flash-based removable memory cards typically attach to a USB connection
and are often used to transfer files.

B Magnetic tape provides only slow serial access and has been used to back up
disks, a role now often replaced by duplicate hard drives.

gigabyte Traditionally
1,073,741,824 (2°)

bytes, although some
communications and
secondary storage systems
have redefined it to mean
1,000,000,000 (10°) bytes.
Similarly, depending on
the context, megabyte is
either 2% or 10°bytes.

24

Chapter 1 Computer Abstractions and Technology

Optical disk technology works differently than magnetic disk technology. In
a CD, data is recorded in a spiral fashion, with individual bits being recorded by
burning small pits—approximately 1 micron (10~ meters) in diameter—into the
disk surface. The disk is read by shining a laser at the CD surface and determining
by examining the reflected light whether there is a pit or flat (reflective) surface.
DVDs use the same approach of bouncing a laser beam off a series of pits and flat
surfaces. In addition, there are multiple layers that the laser beam can focus on, and
the size of each bit is much smaller, which together increase capacity significantly.
Blu-Ray uses shorter wavelength lasers that shrink the size of the bits and thereby
increase capacity.

Optical disk writers in personal computers use a laser to make the pits in the
recording layer on the CD or DVD surface. This writing process is relatively slow,
taking from minutes (for a full CD) to tens of minutes (for a full DVD). Thus,
for large quantities a different technique called pressing is used, which costs only
pennies per optical disk.

Rewritable CDs and DVDs use a different recording surface that has a crystal-
line, reflective material; pits are formed that are not reflective in a manner similar
to that for a write-once CD or DVD. To erase the CD or DVD, the surface is heated
and cooled slowly, allowing an annealing process to restore the surface recording
layer to its crystalline structure. These rewritable disks are the most expensive, with
write-once being cheaper; for read-only disks—used to distribute software, music,
or movies—both the disk cost and recording cost are much lower.

Communicating with Other Computers

We’ve explained how we can input, compute, display, and save data, but there is
still one missing item found in today’s computers: computer networks. Just as the
processor shown in Figure 1.4 is connected to memory and I/O devices, networks
interconnect whole computers, allowing computer users to extend the power of
computing by including communication. Networks have become so popular that
they are the backbone of current computer systems; a new computer without an
optional network interface would be ridiculed. Networked computers have several
major advantages:

m Communication: Information is exchanged between computers at high speeds.

B Resource sharing: Rather than each computer having its own I/O devices,
devices can be shared by computers on the network.

B Nonlocal access: By connecting computers over long distances, users need not
be near the computer they are using.

Networks vary in length and performance, with the cost of communication
increasing according to both the speed of communication and the distance that
information travels. Perhaps the most popular type of network is Ethernet. It can
be up to a kilometer long and transfer at upto 10 gigabits per second. Its length and

1.3 Under the Covers

25

speed make Ethernet useful to connect computers on the same floor of a building;
hence, it is an example of what is generically called a local area network. Local area
networks are interconnected with switches that can also provide routing services
and security. Wide area networks cross continents and are the backbone of the
Internet, which supports the World Wide Web. They are typically based on optical
fibers and are leased from telecommunication companies.

Networks have changed the face of computing in the last 25 years, both by
becoming much more ubiquitous and by making dramatic increases in perfor-
mance. In the 1970s, very few individuals had access to electronic mail, the Internet
and Web did not exist, and physically mailing magnetic tapes was the primary way
to transfer large amounts of data between two locations. Local area networks were
almost nonexistent, and the few existing wide area networks had limited capacity
and restricted access.

As networking technology improved, it became much cheaper and had a much
higher capacity. For example, the first standardized local area network technology,
developed about 25 years ago, was a version of Ethernet that had a maximum
capacity (also called bandwidth) of 10 million bits per second, typically shared
by tens of, if not a hundred, computers. Today, local area network technology
offers a capacity of from 100 million bits per second to 10 gigabits per second,
usually shared by at most a few computers. Optical communications technology
has allowed similar growth in the capacity of wide area networks, from hundreds
of kilobits to gigabits and from hundreds of computers connected to a worldwide
network to millions of computers connected. This combination of dramatic rise in
deployment of networking combined with increases in capacity have made network
technology central to the information revolution of the last 25 years.

For the last decade another innovation in networking is reshaping the way com-
puters communicate. Wireless technology is widespread, and laptops now incorpo-
rate this technology. The ability to make a radio in the same low-cost semiconductor
technology (CMOS) used for memory and microprocessors enabled a significant
improvement in price, leading to an explosion in deployment. Currently available
wireless technologies, called by the IEEE standard name 802.11, allow for transmis-
sion rates from 1 to nearly 100 million bits per second. Wireless technology is quite
a bit different from wire-based networks, since all users in an immediate area share
the airwaves.

m Semiconductor DRAM and disk storage differ significantly. Describe the
fundamental difference for each of the following: volatility, access time,
and cost.

Technologies for Building Processors and Memory

Processors and memory have improved at an incredible rate, because computer
designers have long embraced the latest in electronic technology to try to win the
race to design a better computer. Figure 1.11 shows the technologies that have been

local area network
(LAN) A network
designed to carry data
within a geographically
confined area, typically
within a single building.

wide area network
(WAN) A network
extended over hundreds
of kilometers that can
span a continent.

Check
Yourself

26

Chapter 1 Computer Abstractions and Technology

vacuum tube An
electronic component,
predecessor of the
transistor, that consists of
a hollow glass tube about
5 to 10 cm long from
which as much air has
been removed as possible
and that uses an electron
beam to transfer data.

transistor An on/off
switch controlled by an
electric signal.

very large-scale
integrated (VLSI)
circuit A device con-
taining hundreds of
thousands to millions of
transistors.

used over time, with an estimate of the relative performance per unit cost for
each technology. Section 1.7 explores the technology that has fueled the computer
industry since 1975 and will continue to do so for the foreseeable future. Since this
technology shapes what computers will be able to do and how quickly they will
evolve, we believe all computer professionals should be familiar with the basics of
integrated circuits.

Technology used in computers Relative performance/unit cost

1951 | Vacuum tube 1
1965 | Transistor 35
1975 | Integrated circuit 900
1995 | Very large-scale integrated circuit 2,400,000
2005 Ultra large-scale integrated circuit 6,200,000,000

FIGURE 1.11 Relative performance per unit cost of technologies used in computers over
time. Source: Computer Museum, Boston, with 2005 extrapolated by the authors. See Section 1.10 on the CD.

A transistor is simply an on/oft switch controlled by electricity. The inte-
grated circuit (IC) combined dozens to hundreds of transistors into a single
chip. To describe the tremendous increase in the number of transistors from
hundreds to millions, the adjective very large scale is added to the term, creating the
abbreviation VLSI, for very large-scale integrated circuit.

This rate of increasing integration has been remarkably stable. Figure 1.12
shows the growth in DRAM capacity since 1977. For 20 years, the industry has
consistently quadrupled capacity every 3 years, resulting in an increase in excess
of 16,000 times! This increase in transistor count for an integrated circuit is popu-
larly known as Moore’s law, which states that transistor capacity doubles every
18-24 months. Moore’s law resulted from a prediction of such growth in IC
capacity made by Gordon Moore, one of the founders of Intel during the 1960s.

Sustaining this rate of progress for almost 40 years has required incredible
innovation in manufacturing techniques. In Section 1.7, we discuss how to manu-
facture integrated circuits.

Performance

Assessing the performance of computers can be quite challenging. The scale and
intricacy of modern software systems, together with the wide range of perfor-
mance improvement techniques employed by hardware designers, have made per-
formance assessment much more difficult.

When trying to choose among different computers, performance is an important
attribute. Accurately measuring and comparing different computers is critical to

1.4 Performance

27

1,000,000 -
1G
100,000 - 256M 512M
16M T28M
> 64M
S 10,000 M
Q
3 1M
5 1000 56K
100 | 64K
16K
10 T T T T T T T T T T T T T 1

T T
1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
Year of introduction

FIGURE 1.12 Growth of capacity per DRAM chip over time. The y-axis is measured in Kilobits,
where K= 1024 (2'°). The DRAM industry quadrupled capacity almost every three years, a 60% increase per
year, for 20 years. In recent years, the rate has slowed down and is somewhat closer to doubling every two
years to three years.

purchasers and therefore to designers. The people selling computers know this as
well. Often, salespeople would like you to see their computer in the best possible
light, whether or not this light accurately reflects the needs of the purchaser’s
application. Hence, understanding how best to measure performance and the
limitations of performance measurements is important in selecting a computer.

The rest of this section describes different ways in which performance can be
determined; then, we describe the metrics for measuring performance from the
viewpoint of both a computer user and a designer. We also look at how these metrics
are related and present the classical processor performance equation, which we will
use throughout the text.

Defining Performance

When we say one computer has better performance than another, what do we
mean? Although this question might seem simple, an analogy with passenger
airplanes shows how subtle the question of performance can be. Figure 1.13 shows
some typical passenger airplanes, together with their cruising speed, range, and
capacity. If we wanted to know which of the planes in this table had the best per-
formance, we would first need to define performance. For example, considering
different measures of performance, we see that the plane with the highest cruising
speed is the Concorde, the plane with the longest range is the DC-8, and the plane
with the largest capacity is the 747.

Let’s suppose we define performance in terms of speed. This still leaves two possi-
ble definitions. You could define the fastest plane as the one with the highest cruising
speed, taking a single passenger from one point to another in the least time. If you

28

Chapter 1 Computer Abstractions and Technology

response time Also
called execution time.
The total time required
for the computer to
complete a task, including
disk accesses, memory
accesses, I/0 activities,
operating system over-
head, CPU execution
time, and so on.

throughput Also called
bandwidth. Another
measure of performance,
it is the number of tasks
completed per unit time.

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capacity (miles) (m.p.h.) (passengers x m.p.h.)

Boeing 777 4630 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 544 79,424

FIGURE 1.13 The capacity, range, and speed for a number of commercial airplanes. The last
column shows the rate at which the airplane transports passengers, which is the capacity times the cruising
speed (ignoring range and takeoff and landing times).

were interested in transporting 450 passengers from one point to another, however,
the 747 would clearly be the fastest, as the last column of the figure shows. Similarly,
we can define computer performance in several different ways.

If you were running a program on two different desktop computers, you'd say that
the faster one is the desktop computer that gets the job done first. If you were running
a datacenter that had several servers running jobs submitted by many users, you'd say
that the faster computer was the one that completed the most jobs during a day.
As an individual computer user, you are interested in reducing response time—the
time between the start and completion of a task—also referred to as execution time.
Datacenter managers are often interested in increasing throughput or bandwidth—
the total amount of work done in a given time. Hence, in most cases, we will need
different performance metrics as well as different sets of applications to benchmark
embedded and desktop computers, which are more focused on response time, versus
servers, which are more focused on throughput.

Throughput and Response Time

Do the following changes to a computer system increase throughput, decrease
response time, or both?

1. Replacing the processor in a computer with a faster version

2. Adding additional processors to a system that uses multiple processors
for separate tasks—for example, searching the World Wide Web

Decreasing response time almost always improves throughput. Hence, in case 1,
both response time and throughput are improved. In case 2, no one task gets
work done faster, so only throughput increases.

If, however, the demand for processing in the second case was almost as large
as the throughput, the system might force requests to queue up. In this case,
increasing the throughput could also improve response time, since it would
reduce the waiting time in the queue. Thus, in many real computer systems,
changing either execution time or throughput often affects the other.

1.4 Performance

In discussing the performance of computers, we will be primarily concerned
with response time for the first few chapters. To maximize performance, we want
to minimize response time or execution time for some task. Thus, we can relate
performance and execution time for a computer X:

1
Performance, = =————————
X Execution time,

This means that for two computers X and Y, if the performance of X is greater
than the performance of Y, we have
Performance, > Performance,

1 1
Execution time, ~ Execution time,

Execution time, > Execution time,

That is, the execution time on Y is longer than that on X, if X is faster than Y.

In discussing a computer design, we often want to relate the performance of two
different computers quantitatively. We will use the phrase “X is n times faster than
Y”—or equivalently “X is # times as fast as Y”—to mean

Performance,

PerformanceY

If X is n times faster than Y, then the execution time on Y is # times longer than it is
on X:

PerformanceX Execution time,

PerformanceY Execution time,

Relative Performance

If computer A runs a program in 10 seconds and computer B runs the same
program in 15 seconds, how much faster is A than B?

We know that A is n times faster than B if

Performance . Execution time,

n

Performance, " Execution time N N

30

Chapter 1 Computer Abstractions and Technology

CPU execution time
Also called CPU time.
The actual time the CPU
spends computing for a
specific task.

user CPU time The
CPU time spent in a
program itself.

system CPU time
The CPU time spent in
the operating system
performing tasks on
behalf of the program.

Thus the performance ratio is

15 _

10 = 1.5

and A is therefore 1.5 times faster than B.

In the above example, we could also say that computer B is 1.5 times slower than
computer A, since

Performance N
— =15
PerformanceB
means that
Performance
— % — Performance
1.5 B

For simplicity, we will normally use the terminology faster than when we try to
compare computers quantitatively. Because performance and execution time are
reciprocals, increasing performance requires decreasing execution time. To avoid
the potential confusion between the terms increasing and decreasing, we usually
say “improve performance” or “improve execution time” when we mean “increase
performance” and “decrease execution time.”

Measuring Performance

Time is the measure of computer performance: the computer that performs the
same amount of work in the least time is the fastest. Program execution time is
measured in seconds per program. However, time can be defined in different ways,
depending on what we count. The most straightforward definition of time is called
wall clock time, response time, or elapsed time. These terms mean the total time
to complete a task, including disk accesses, memory accesses, input/output (I/O)
activities, operating system overhead—everything.

Computers are often shared, however, and a processor may work on several
programs simultaneously. In such cases, the system may try to optimize through-
put rather than attempt to minimize the elapsed time for one program. Hence,
we often want to distinguish between the elapsed time and the time that the
processor is working on our behalf. CPU execution time or simply CPU time,
which recognizes this distinction, is the time the CPU spends computing for this
task and does not include time spent waiting for I/O or running other programs.
(Remember, though, that the response time experienced by the user will be the
elapsed time of the program, not the CPU time.) CPU time can be further divided
into the CPU time spent in the program, called user CPU time, and the CPU time
spent in the operating system performing tasks on behalf of the program, called
system CPU time. Differentiating between system and user CPU time is difficult to

1.4 Performance 31

do accurately, because it is often hard to assign responsibility for operating system
activities to one user program rather than another and because of the functionality
differences among operating systems.

For consistency, we maintain a distinction between performance based on
elapsed time and that based on CPU execution time. We will use the term system
performance to refer to elapsed time on an unloaded system and CPU performance
to refer to user CPU time. We will focus on CPU performance in this chapter,
although our discussions of how to summarize performance can be applied to
either elapsed time or CPU time measurements.

Different applications are sensitive to different aspects of the performance of a Understanding
computer system. Many applications, especially those running on servers, depend Program

as much on I/O performance, which, in turn, relies on both hardware and software.
Total elapsed time measured by a wall clock is the measurement of interest. In Performance
some application environments, the user may care about throughput, response

time, or a complex combination of the two (e.g., maximum throughput with a

worst-case response time). To improve the performance of a program, one must

have a clear definition of what performance metric matters and then proceed to

look for performance bottlenecks by measuring program execution and looking

for the likely bottlenecks. In the following chapters, we will describe how to search

for bottlenecks and improve performance in various parts of the system.

Although as computer users we care about time, when we examine the details clock cycle Also called
of a computer it’s convenient to think about performance in other metrics. In par- tick, clock tick, clock
ticular, computer designers may want to think about a computer by using a mea- ~ Period, clock, cycle. The
sure that relates to how fast the hardware can perform basic functions. Almost all Umelfor ?n}el clock period,
computers are constructed using a clock that determines when events take place in 1;150113();v(;lictherf;;zc;s:or
the hardware. These discrete time intervals are called clock cycles (or ticks, clock (o oo
ticks, clock periods, clocks, cycles). Designers refer to the length of a clock period
both as the time for a complete clock cycle (e.g., 250 picoseconds, or 250 ps) and as
the clock rate (e.g., 4 gigahertz, or 4 GHz), which is the inverse of the clock period.
In the next subsection, we will formalize the relationship between the clock cycles
of the hardware designer and the seconds of the computer user.

clock period The length
of each clock cycle.

1. Suppose we know that an application that uses both a desktop client and a Check
remote server is limited by network performance. For the following changes, yourself
state whether only the throughput improves, both response time and
throughput improve, or neither improves.

a. An extra network channel is added between the client and the server,
increasing the total network throughput and reducing the delay to obtain
network access (since there are now two channels).

32

Chapter 1 Computer Abstractions and Technology

b. The networking software is improved, thereby reducing the network
communication delay, but not increasing throughput.

c. More memory is added to the computer.

2. Computer C’s performance is 4 times faster than the performance of com-
puter B, which runs a given application in 28 seconds. How long will computer
C take to run that application?

CPU Performance and Its Factors

Users and designers often examine performance using different metrics. If we could
relate these different metrics, we could determine the effect of a design change
on the performance as experienced by the user. Since we are confining ourselves
to CPU performance at this point, the bottom-line performance measure is CPU
execution time. A simple formula relates the most basic metrics (clock cycles and
clock cycle time) to CPU time:

CPU execution time _ CPU clock cycles

foraprogram ~ fora program x Clock cycle time

Alternatively, because clock rate and clock cycle time are inverses,

CPU execution time _ CPU clock cycles for a program

for a program Clock rate

This formula makes it clear that the hardware designer can improve performance
by reducing the number of clock cycles required for a program or the length of
the clock cycle. As we will see in later chapters, the designer often faces a trade-off
between the number of clock cycles needed for a program and the length of each
cycle. Many techniques that decrease the number of clock cycles may also increase
the clock cycle time.

Improving Performance

Our favorite program runs in 10 seconds on computer A, which has a 2 GHz
clock. We are trying to help a computer designer build a computer, B, which will
run this program in 6 seconds. The designer has determined that a substantial
increase in the clock rate is possible, but this increase will affect the rest of the
CPU design, causing computer B to require 1.2 times as many clock cycles as
computer A for this program. What clock rate should we tell the designer to
target?

1.4 Performance

33

Let’s first find the number of clock cycles required for the program on A:

CPU clock cycles,
Clock rate,

CPU time, =

CPU clock cycles,

, cycles

10 seconds =

2% 10
second

cycles

second

CPU time for B can be found using this equation:

CPU clock cycles, =10 seconds X 2 X 10° =20x%10° cycles

1.2 X CPU clock cycles,

PU ti =
CPU time, Clock rate,

1.2 20 % 10° cycles
Clock rate,

6 seconds =

1.2x20 % 10% cycles 0.2 x20 x10° cycles 4 x 10" cycles 4

GH
6 seconds second second g

Clock rate, =

To run the program in 6 seconds, B must have twice the clock rate of A.

Instruction Performance

The performance equations above did not include any reference to the number of
instructions needed for the program. (We’ll see what the instructions that make up
a program look like in the next chapter.) However, since the compiler clearly gener-
ated instructions to execute, and the computer had to execute the instructions to
run the program, the execution time must depend on the number of instructions
in a program. One way to think about execution time is that it equals the number
of instructions executed multiplied by the average time per instruction. Therefore,
the number of clock cycles required for a program can be written as

Average clock cycles

CPU clock cycles = Instructions for a program x))
per instruction

The term clock cycles per instruction, which is the average number of clock
cycles each instruction takes to execute, is often abbreviated as CPI. Since different

clock cycles per
instruction (CPI)
Average number of clock
cycles per instruction for
a program or program
fragment.

34

Chapter 1 Computer Abstractions and Technology

instructions may take different amounts of time depending on what they do,
CPI is an average of all the instructions executed in the program. CPI provides
one way of comparing two different implementations of the same instruction
set architecture, since the number of instructions executed for a program will, of
course, be the same.

Using the Performance Equation

Suppose we have two implementations of the same instruction set architec-
ture. Computer A has a clock cycle time of 250 ps and a CPI of 2.0 for some
program, and computer B has a clock cycle time of 500 ps and a CPI of 1.2
for the same program. Which computer is faster for this program and by how
much?

We know that each computer executes the same number of instructions for
the program; let’s call this number I. First, find the number of processor clock
cycles for each computer:

CPU clock cycles, = X 2.0
CPU clock cycles, = Ix 1.2

Now we can compute the CPU time for each computer:
CPU time, = CPU clock cycles, x Clock cycle time

= Ix2.0x250 ps=500X1ps
Likewise, for B:

CPU time, = I'X 1.2 X 500 ps = 600 X I ps

Clearly, computer A is faster. The amount faster is given by the ratio of the
execution times:

CPU performance, Execution time, 600 X I ps

CPU performance, ~ Execution time N T 500xIps

We can conclude that computer A is 1.2 times as fast as computer B for this
program.

1.4 Performance

35

The Classic CPU Performance Equation

We can now write this basic performance equation in terms of instruction count
(the number of instructions executed by the program), CPI, and clock cycle time:

CPU time = Instruction count X CPI x Clock cycle time

or, since the clock rate is the inverse of clock cycle time:

CPU time = Instruction count X CPI
Clock rate

These formulas are particularly useful because they separate the three key factors
that affect performance. We can use these formulas to compare two different
implementations or to evaluate a design alternative if we know its impact on these
three parameters.

Comparing Code Segments

A compiler designer is trying to decide between two code sequences for a par-
ticular computer. The hardware designers have supplied the following facts:

T e
| 1 | 2 | 3 |

\ cPl

For a particular high-level language statement, the compiler writer is consid-
ering two code sequences that require the following instruction counts:

Instruction counts for each instruction class
1 2 1 2

2 4 1 1

Which code sequence executes the most instructions? Which will be faster?
What is the CPI for each sequence?

instruction count The
number of instructions
executed by the program.

36

Chapter 1 Computer Abstractions and Technology

the BIG

Picture

Sequence 1 executes 2 + 1 +2 =5 instructions. Sequence 2 executes4 +1+1=6
instructions. Therefore, sequence 1 executes fewer instructions.

We can use the equation for CPU clock cycles based on instruction count
and CPI to find the total number of clock cycles for each sequence:

n

CPU clock cycles= " (CPI,x C)
i=1

This yields
CPU clock cycles, = (2x 1) + (1 X2) +(2X3) =2 +2+ 6 =10 cycles
CPU clock cycles, = (4 X 1) + (1 x2) + (1 x3) =4 +2+ 3 =9 cycles

So code sequence 2 is faster, even though it executes one extra instruction.
Since code sequence 2 takes fewer overall clock cycles but has more instruc-
tions, it must have a lower CPI. The CPI values can be computed by
CPU clock cycles

" Instruction count

CPI

CPU clock cycles, 1o
= ; =—=2.0
' Instruction count, 5

CPU clock cycles, ¢
= - ===1.5
? Instruction count, 6

Figure 1.14 shows the basic measurements at different levels in the
computer and what is being measured in each case. We can see how these
factors are combined to yield execution time measured in seconds per
program:

Instructions % Clock cycles Seconds

T' = d P =
ime = Seconds/Program Program Instruction Clock cycle

Always bear in mind that the only complete and reliable measure of
computer performance is time. For example, changing the instruction set
to lower the instruction count may lead to an organization with a slower
clock cycle time or higher CPI that offsets the improvement in instruction
count. Similarly, because CPI depends on type of instructions executed,
the code that executes the fewest number of instructions may not be the
fastest.

1.4 Performance

37

CPU execution time for a program Seconds for the program

Instruction count Instructions executed for the program

Clock cycles per instruction (CPI) Average number of clock cycles per instruction
Clock cycle time Seconds per clock cycle

FIGURE 1.14 The basic components of performance and how each is measured.

How can we determine the value of these factors in the performance equation?
We can measure the CPU execution time by running the program, and the clock
cycle time is usually published as part of the documentation for a computer. The
instruction count and CPI can be more difficult to obtain. Of course, if we know
the clock rate and CPU execution time, we need only one of the instruction count
or the CPI to determine the other.

We can measure the instruction count by using software tools that profile the
execution or by using a simulator of the architecture. Alternatively, we can use
hardware counters, which are included in most processors, to record a variety of
measurements, including the number of instructions executed, the average CPI, and
often, the sources of performance loss. Since the instruction count depends on the
architecture, but not on the exact implementation, we can measure the instruction
count without knowing all the details of the implementation. The CPI, however,
depends on a wide variety of design details in the computer, including both the
memory system and the processor structure (as we will see in Chapters 4 and 5), as
well as on the mix of instruction types executed in an application. Thus, CPI varies
by application, as well as among implementations with the same instruction set.

The above example shows the danger of using only one factor (instruction count)
to assess performance. When comparing two computers, you must look at all three
components, which combine to form execution time. If some of the factors are
identical, like the clock rate in the above example, performance can be determined
by comparing all the nonidentical factors. Since CPI varies by instruction mix,
both instruction count and CPI must be compared, even if clock rates are identical.
Several exercises at the end of this chapter ask you to evaluate a series of computer
and compiler enhancements that affect clock rate, CPI, and instruction count. In
Section 1.8, we’ll examine a common performance measurement that does not
incorporate all the terms and can thus be misleading.

instruction mix

A measure of the dynamic
frequency of instructions
across one or many
programs.

38 Chapter 1 Computer Abstractions and Technology

Understanding The performance of a program depends on the algorithm, the language, the

Program
Performance

Hardware

or software
component

Affects what?

compiler, the architecture, and the actual hardware. The following table summarizes
how these components affect the factors in the CPU performance equation.

Algorithm

Instruction count,
possibly CPI

The algorithm determines the number of source program
instructions executed and hence the number of processor
instructions executed. The algorithm may also affect the CPI, by
favoring slower or faster instructions. For example, if the
algorithm uses more floating-point operations, it will tend to have
a higher CPI.

Programming
language

Instruction count,
CPI

The programming language certainly affects the instruction count,
since statements in the language are translated to processor
instructions, which determine instruction count. The language
may also affect the CPI because of its features; for example,

a language with heavy support for data abstraction (e.g., Java)
will require indirect calls, which will use higher CPI instructions.

Compiler

Instruction count,
CPI

The efficiency of the compiler affects both the instruction count
and average cycles per instruction, since the compiler determines
the translation of the source language instructions into computer
instructions. The compiler’s role can be very complex and affect
the CPI in complex ways.

Instruction set
architecture

Instruction count,
clock rate,
CPI

The instruction set architecture affects all three aspects of CPU
performance, since it affects the instructions needed for a
function, the cost in cycles of each instruction, and the overall
clock rate of the processor.

Elaboration: Although you might expect that the minimum CPI is 1.0, as we’ll see in
Chapter 4, some processors fetch and execute multiple instructions per clock cycle. To
reflect that approach, some designers invert CPI to talk about IPC, or instructions per
clock cycle. If a processor executes on average 2 instructions per clock cycle, then it has
an IPC of 2 and hence a CPI of 0.5.

Check A given application written in Java runs 15 seconds on a desktop processor. A new
Yourself Java compiler is released that requires only 0.6 as many instructions as the old
compiler. Unfortunately, it increases the CPI by 1.1. How fast can we expect the

application to run using this new compiler? Pick the right answer from the three

choices below

a.

15X%0.6

11 = 8.2 sec

b. 15%x0.6x1.1=9.9 sec

C.

15x1.1

0.6 =27.5 sec

1.5 The Power Wall

39

The Power Wall

Figure 1.15 shows the increase in clock rate and power of eight generations of Intel
microprocessors over 25 years. Both clock rate and power increased rapidly for
decades, and then flattened off recently. The reason they grew together is that they
are correlated, and the reason for their recent slowing is that we have run into the
practical power limit for cooling commodity microprocessors.

10000 + 120
2000 3600 2667
-+ 100
~N 1000 + _
g Clock Rate 200 180 %
o =
g 100+ 66 leo E
< 25 5
El S
8 10 Power T40 o
o i
-+ 20
14 T T T T 1 - | 0
S Qi O E ~ ~ 9 < - o
88 83 $8 28 53 cfcefgSes
= = - co =2 3S3EQ 239 289
T ©oT ol S - €T £89 £89 0ES
o oo £=d 8 5§59
e OET O O =
a o< o ¥4

FIGURE 1.15 Clock rate and Power for Intel x86 microprocessors over eight generations
and 25 years. The Pentium 4 made a dramatic jump in clock rate and power but less so in performance.
The Prescott thermal problems led to the abandonment of the Pentium 4 line. The Core 2 line reverts to a
simpler pipeline with lower clock rates and multiple processors per chip.

The dominant technology for integrated circuits is called CMOS (complemen-
tary metal oxide semiconductor). For CMOS, the primary source of power dissi-
pation is so-called dynamic power—that is, power that is consumed during
switching. The dynamic power dissipation depends on the capacitive loading
of each transistor, the voltage applied, and the frequency that the transistor is
switched:

Power = Capacitive load X Voltage* X Frequency switched

40

Chapter 1 Computer Abstractions and Technology

Frequency switched is a function of the clock rate. The capacitive load per
transistor is a function of both the number of transistors connected to an output
(called the fanout) and the technology, which determines the capacitance of both
wires and transistors.

How could clock rates grow by a factor of 1000 while power grew by only a
factor of 30? Power can be reduced by lowering the voltage, which occurred with
each new generation of technology, and power is a function of the voltage squared.
Typically, the voltage was reduced about 15% per generation. In 20 years, voltages
have gone from 5V to 1V, which is why the increase in power is only 30 times.

Relative Power

Suppose we developed a new, simpler processor that has 85% of the capacitive
load of the more complex older processor. Further, assume that it has adjust-
able voltage so that it can reduce voltage 15% compared to processor B, which
results in a 15% shrink in frequency. What is the impact on dynamic power?

Power
ney

W

B (Capacitive load x 0.85) x (Voltage x 0.85)? x (Frequency switched x 0.85)
Power , Capacitive load x Voltage? X Frequency switched

Thus the power ratio is
0.85*=0.52

Hence, the new processor uses about half the power of the old processor.

The problem today is that further lowering of the voltage appears to make the
transistors too leaky, like water faucets that cannot be completely shut off. Even
today about 40% of the power consumption is due to leakage. If transistors started
leaking more, the whole process could become unwieldy.

To try to address the power problem, designers have already attached large
devices to increase cooling, and they turn off parts of the chip that are not used in a
given clock cycle. Although there are many more expensive ways to cool chips and
thereby raise their power to, say, 300 watts, these techniques are too expensive for
desktop computers.

Since computer designers slammed into a power wall, they needed a new way
forward. They chose a different way from the way they designed microprocessors
for their first 30 years.

Elaboration: Although dynamic power is the primary source of power dissipation in
CMOS, static power dissipation occurs because of leakage current that flows even when
a transistor is off. As mentioned above, leakage is typically responsible for 40% of
the power consumption in 2008. Thus, increasing the number of transistors increases
power dissipation, even if the transistors are always off. A variety of design techniques
and technology innovations are being deployed to control leakage, but it’s hard to lower
voltage further.

1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors 41

“Up to now, most

The Sea Change: The Switch from software has been like
- - music written for a
Uniprocessors to Multiprocessors solo performer; with

the current generation
of chips we’re getting a
little experience with
duets and quartets and
other small ensembles;
but scoring a work for
large orchestra and

The power limit has forced a dramatic change in the design of microprocessors.
Figure 1.16 shows the improvement in response time of programs for desktop
microprocessors over time. Since 2002, the rate has slowed from a factor of 1.5 per
year to less than a factor of 1.2 per year.

Rather than continuing to decrease the response time of a single program run-
ning on the single processor, as of 2006 all desktop and server companies are ship-
ping microprocessors with multiple processors per chip, where th.e benefit is often chorus is a different
more on throughput than on response time. To reduce confusion between the kind of challenge.”
words processor and microprocessor, companies refer to processors as “cores,” and 8¢
such microprocessors are generically called multicore microprocessors. Hence, a Brian Hayes, Computing
“quadcore” microprocessor is a chip that contains four processors or four cores. in a Parallel Universe,

Figure 1.17 shows the number of processors (cores), power, and clock rates 2007.
of recent microprocessors. The official plan of record for many companies is to
double the number of cores per microprocessor per semiconductor technology
generation, which is about every two years (see Chapter 7).

In the past, programmers could rely on innovations in hardware, architecture,
and compilers to double performance of their programs every 18 months without
having to change a line of code. Today, for programmers to get significant improve-
ment in response time, they need to rewrite their programs to take advantage of
multiple processors. Moreover, to get the historic benefit of running faster on new
microprocessors, programmers will have to continue to improve performance of
their code as the number of cores doubles.

To reinforce how the software and hardware systems work hand in hand, we use
a special section, Hardware/Software Interface, throughout the book, with the first
one appearing below. These elements summarize important insights at this critical
interface.

Parallelism has always been critical to performance in computing, but it was often ~ Hardware/
hidden. Chapter 4 will explain pipelining, an elegant technique that runs pro-

; . : . o Software
grams faster by overlapping the execution of instructions. This is one example of
instruction-level parallelism, where the parallel nature of the hardware is abstracted Interface
away so the programmer and compiler can think of the hardware as executing
instructions sequentially.

Forcing programmers to be aware of the parallel hardware and to explicitly
rewrite their programs to be parallel had been the “third rail” of computer architec-
ture, for companies in the past that depended on such a change in behavior failed
(see Section 7.14 on the CD). From this historical perspective, it’s startling that
the whole IT industry has bet its future that programmers will finally successfully
switch to explicitly parallel programming.

42 Chapter 1 Computer Abstractions and Technology

10,000

Intel Xeon, 3.6 GHz ___64-bit Intel Xeon, 3.6 GHz
6505

1000

100

Performance (vs.VAX-11/780)

IBM RS6000/540,

52%/year
MIPS M2000

10

VAX-11/780 _.-2"""
..-ntT 25%Iyear o4 5 \iax-11/785

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

0
1978 1980 1982 1984

FIGURE 1.16 Growth in processor performance since the mid-1980s. This chart plots performance relative to the VAX 11/780
as measured by the SPECint benchmarks (see Section 1.8). Prior to the mid-1980s, processor performance growth was largely technology-
driven and averaged about 25% per year. The increase in growth to about 52% since then is attributable to more advanced architectural and
organizational ideas. By 2002, this growth led to a difference in performance of about a factor of seven. Performance for floating-point-
oriented calculations has increased even faster. Since 2002, the limits of power, available instruction-level parallelism, and long memory latency
have slowed uniprocessor performance recently, to about 20% per year.

AMD Sun
Opteron X4 Ultra SPARC T2
(Barcelona) Intel Nehalem | IBM Power 6 (Niagara 2)
Cores per chip 4 4 2 8
Clock rate 2.5 GHz ~2.5GHz? 4.7 GHz 1.4 GHz
Microprocessor power 120 W ~100W? ~100W? 94 W

FIGURE 1.17 Number of cores per chip, clock rate, and power for 2008 multicore micro-
processors.

Why has it been so hard for programmers to write explicitly parallel programs?
The first reason is that parallel programming is by definition performance pro-
gramming, which increases the difficulty of programming. Not only does the
program need to be correct, solve an important problem, and provide a useful
interface to the people or other programs that invoke it, the program must also be
fast. Otherwise, if you don’t need performance, just write a sequential program.

The second reason is that fast for parallel hardware means that the programmer
must divide an application so that each processor has roughly the same amount to

1.6 The Sea Change: The Switch from Uniprocessors to Multiprocessors

43

do at the same time, and that the overhead of scheduling and coordination doesn’t
fritter away the potential performance benefits of parallelism.

As an analogy, suppose the task was to write a newspaper story. Eight reporters
working on the same story could potentially write a story eight times faster. To
achieve this increased speed, one would need to break up the task so that each
reporter had something to do at the same time. Thus, we must schedule the sub-
tasks. If anything went wrong and just one reporter took longer than the seven
others did, then the benefits of having eight writers would be diminished. Thus, we
must balance the load evenly to get the desired speedup. Another danger would be
if reporters had to spend a lot of time talking to each other to write their sections.
You would also fall short if one part of the story, such as the conclusion, couldn’t
be written until all of the other parts were completed. Thus, care must be taken
to reduce communication and synchronization overhead. For both this analogy and
parallel programming, the challenges include scheduling, load balancing, time for
synchronization, and overhead for communication between the parties. As you
might guess, the challenge is stiffer with more reporters for a newspaper story and
more processors for parallel programming.

To reflect this sea change in the industry, the next five chapters in this edition of
the book each have a section on the implications of the parallel revolution to that
chapter:

m Chapter 2, Section 2.11: Parallelism and Instructions: Synchronization. Usually
independent parallel tasks need to coordinate at times, such as to say when
they have completed their work. This chapter explains the instructions used
by multicore processors to synchronize tasks.

m Chapter 3, Section 3.6: Parallelism and Computer Arithmetic: Associativity.
Often parallel programmers start from a working sequential program.
A natural question to learn if their parallel version works is, “does it get the
same answer?” If not, a logical conclusion is that there are bugs in the new
version. This logic assumes that computer arithmetic is associative: you get
the same sum when adding a million numbers, no matter what the order.
This chapter explains that while this logic holds for integers, it doesn’t hold
for floating-point numbers.

m Chapter 4, Section 4.10: Parallelism and Advanced Instruction-Level Parallelism.
Given the difficulty of explicitly parallel programming, tremendous effort was
invested in the 1990s in having the hardware and the compiler uncover implicit
parallelism. This chapter describes some of these aggressive techniques, includ-
ing fetching and executing multiple instructions simultaneously and guessing
on the outcomes of decisions, and executing instructions speculatively.

44

Chapter 1 Computer Abstractions and Technology

I thought [computers]
would be a universally
applicable idea, like a
book is. But I didn’t
think it would develop
as fast as it did, because
I didn’t envision we'd
be able to get as many
parts on a chip as

we finally got. The
transistor came along
unexpectedly. It all
happened much faster
than we expected.

J. Presper Eckert,
coinventor of ENTIAC,
speaking in 1991

B Chapter 5, Section 5.8: Parallelism and Memory Hierarchies: Cache Coherence.
One way to lower the cost of communication is to have all processors use
the same address space, so that any processor can read or write any data.
Given that all processors today use caches to keep a temporary copy of the
data in faster memory near the processor, it’s easy to imagine that parallel
programming would be even more difficult if the caches associated with each
processor had inconsistent values of the shared data. This chapter describes
the mechanisms that keep the data in all caches consistent.

m Chapter 6, Section 6.9: Parallelism and 1/O: Redundant Arrays of Inexpensive
Disks. If you ignore input and output in this parallel revolution, the
unintended consequence of parallel programming may be to make your
parallel program spend most of its time waiting for I/O. This chapter
describes RAID, a technique to accelerate the performance of storage
accesses. RAID points out another potential benefit of parallelism: by having
many copies of resources, the system can continue to provide service despite
a failure of one resource. Hence, RAID can improve both I/O performance
and availability.

In addition to these sections, there is a full chapter on parallel processing.
Chapter 7 goes into more detail on the challenges of parallel programming;
presents the two contrasting approaches to communication of shared addressing
and explicit message passing; describes a restricted model of parallelism that is
easier to program; discusses the difficulty of benchmarking parallel processors;
introduces a new simple performance model for multicore microprocessors and
finally describes and evaluates four examples of multicore microprocessors using
this model.

Starting with this edition of the book, Appendix A describes an increasingly
popular hardware component that is included with desktop computers, the graph-
ics processing unit (GPU). Invented to accelerate graphics, GPUs are becoming
programming platforms in their own right. As you might expect, given these times,
GPUs are highly parallel. Appendix A describes the NVIDIA GPU and highlights
parts of its parallel programming environment.

Real Stuff: Manufacturing and
Benchmarking the AMD Opteron X4

Each chapter has a section entitled “Real Stuff” that ties the concepts in the book
with a computer you may use every day. These sections cover the technology
underlying modern computers. For this first “Real Stuff” section, we look at how
integrated circuits are manufactured and how performance and power are mea-
sured, with the AMD Opteron X4 as the example.

1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4

45

Let’s start at the beginning. The manufacture of a chip begins with silicon, a
substance found in sand. Because silicon does not conduct electricity well, it is
called a semiconductor. With a special chemical process, it is possible to add
materials to silicon that allow tiny areas to transform into one of three devices:

m Excellent conductors of electricity (using either microscopic copper or
aluminum wire)

m Excellent insulators from electricity (like plastic sheathing or glass)
B Areas that can conduct or insulate under special conditions (as a switch)

Transistors fall in the last category. A VLSI circuit, then, is just billions of combi-
nations of conductors, insulators, and switches manufactured in a single small
package.

The manufacturing process for integrated circuits is critical to the cost of the
chips and hence important to computer designers. Figure 1.18 shows that process.
The process starts with a silicon crystal ingot, which looks like a giant sausage.
Today, ingots are 8—12 inches in diameter and about 12-24 inches long. An ingot is
finely sliced into wafers no more than 0.1 inch thick. These wafers then go through
a series of processing steps, during which patterns of chemicals are placed on

Blank
Silicon ingot wafers
D[] — (O — s
processing steps
Tested dies Tested Patterned wafers
oo wafer TN
Bond die t D%EDDDED Waf (s
ond die to ; afer 1A
package O0OxO0O IEE tester))
Ooano ,/ /
l oo I\
N
Packaged dies Tested packaged dies
Part OO Ship to
tester customers

FIGURE 1.18 The chip manufacturing process. After being sliced from the silicon ingot, blank
wafers are put through 20 to 40 steps to create patterned wafers (see Figure 1.19). These patterned wafers
are then tested with a wafer tester, and a map of the good parts is made. Then, the wafers are diced into dies
(see Figure 1.9). In this figure, one wafer produced 20 dies, of which 17 passed testing. (X means the die is
bad.) The yield of good dies in this case was 17/20, or 85%. These good dies are then bonded into packages
and tested one more time before shipping the packaged parts to customers. One bad packaged part was
found in this final test.

silicon A natural element
that is a semiconductor.

semiconductor
A substance that does not
conduct electricity well.

silicon crystal ingot

A rod composed of a
silicon crystal that is
between 8 and 12 inches
in diameter and about 12
to 24 inches long.

wafer A slice from a
silicon ingot no more
than 0.1 inch thick, used
to create chips.

46

Chapter 1 Computer Abstractions and Technology

defect A microscopic
flaw in a wafer or in
patterning steps that can
result in the failure of the

die containing that defect.

die The individual
rectangular sections that
are cut from a wafer,
more informally known
as chips.

yield The percentage of
good dies from the total
number of dies on the
wafer.

each wafer, creating the transistors, conductors, and insulators discussed earlier.
Today’s integrated circuits contain only one layer of transistors but may have from
two to eight levels of metal conductor, separated by layers of insulators.

A single microscopic flaw in the wafer itself or in one of the dozens of pattern-
ing steps can result in that area of the wafer failing. These defects, as they are
called, make it virtually impossible to manufacture a perfect wafer. To cope with
imperfection, several strategies have been used, but the simplest is to place many
independent components on a single wafer. The patterned wafer is then chopped
up, or diced, into these components, called dies and more informally known as
chips. Figure 1.19 is a photograph of a wafer containing microprocessors before
they have been diced; earlier, Figure 1.9 on page 20 shows an individual micro-
processor die and its major components.

Dicing enables you to discard only those dies that were unlucky enough to con-
tain the flaws, rather than the whole wafer. This concept is quantified by the yield
of a process, which is defined as the percentage of good dies from the total number
of dies on the wafer.

The cost of an integrated circuit rises quickly as the die size increases, due both
to the lower yield and the smaller number of dies that fit on a wafer. To reduce
the cost, a large die is often “shrunk” by using the next generation process, which
incorporates smaller sizes for both transistors and wires. This improves the yield
and the die count per wafer.

Once you've found good dies, they are connected to the input/output pins
of a package, using a process called bonding. These packaged parts are tested a
final time, since mistakes can occur in packaging, and then they are shipped to
customers.

As mentioned above, an increasingly important design constraint is power.
Power is a challenge for two reasons. First, power must be brought in and distrib-
uted around the chip; modern microprocessors use hundreds of pins just for power
and ground! Similarly, multiple levels of interconnect are used solely for power and
ground distribution to portions of the chip. Second, power is dissipated as heat and
must be removed. An AMD Opteron X4 model 2356 2.0 GHz burns 120 watts in
2008, which must be removed from a chip whose surface area is just over 1 cm?!

Elaboration: The cost of an integrated circuit can be expressed in three simple

equations:
o Cost per wafer
Cost per die = Dies per wafer x yield
Dies per wafer = w
Die area

1
(1 + (Defects per area x Die area/2))?

Yield =

1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4

47

FIGURE 1.19 A 12-inch (300mm) wafer of AMD Opteron X2 chips, the predecessor of
Opteron X4 chips (Courtesy AMD). The number of dies per wafer at 100% yield is 117. The several
dozen partially rounded chips at the boundaries of the wafer are useless; they are included because it’s easier
to create the masks used to pattern the silicon. This die uses a 90-nanometer technology, which means that the
smallest transistors are approximately 90 nm in size, although they are typically somewhat smaller than the
actual feature size, which refers to the size of the transistors as “drawn” versus the final manufactured size.

The first equation is straightforward to derive. The second is an approximation,
since it does not subtract the area near the border of the round wafer that cannot
accommodate the rectangular dies (see Figure 1.19). The final equation is based on
empirical observations of yields at integrated circuit factories, with the exponent related
to the number of critical processing steps.

Hence, depending on the defect rate and the size of the die and wafer, costs are
generally not linear in die area.

48

Chapter 1 Computer Abstractions and Technology

workload A set of
programs run on a
computer that is either
the actual collection of
applications run by a user
or constructed from real
programs to approximate
such a mix. A typical
workload specifies both
the programs and the
relative frequencies.

benchmark A program
selected for use in
comparing computer
performance.

SPEC CPU Benchmark

A computer user who runs the same programs day in and day out would be the
perfect candidate to evaluate a new computer. The set of programs run would form
a workload. To evaluate two computer systems, a user would simply compare the
execution time of the workload on the two computers. Most users, however, are
not in this situation. Instead, they must rely on other methods that measure the
performance of a candidate computer, hoping that the methods will reflect how
well the computer will perform with the user’s workload. This alternative is usually
followed by evaluating the computer using a set of benchmarks—programs
specifically chosen to measure performance. The benchmarks form a workload
that the user hopes will predict the performance of the actual workload.

SPEC (System Performance Evaluation Cooperative) is an effort funded and
supported by a number of computer vendors to create standard sets of benchmarks
for modern computer systems. In 1989, SPEC originally created a benchmark
set focusing on processor performance (now called SPEC89), which has evolved
through five generations. The latest is SPEC CPU2006, which consists of a set of 12
integer benchmarks (CINT2006) and 17 floating-point benchmarks (CFP2006).
The integer benchmarks vary from part of a C compiler to a chess program to a
quantum computer simulation. The floating-point benchmarks include structured
grid codes for finite element modeling, particle method codes for molecular
dynamics, and sparse linear algebra codes for fluid dynamics.

Figure 1.20 describes the SPEC integer benchmarks and their execution time
on the Opteron X4 and shows the factors that explain execution time: instruction
count, CPI, and clock cycle time. Note that CPI varies by a factor of 13.

To simplify the marketing of computers, SPEC decided to report a single
number to summarize all 12 integer benchmarks. The execution time measure-
ments are first normalized by dividing the execution time on a reference processor
by the execution time on the measured computer; this normalization yields a
measure, called the SPECratio, which has the advantage that bigger numeric
results indicate faster performance (i.e., the SPECratio is the inverse of execution
time). A CINT2006 or CFP2006 summary measurement is obtained by taking the
geometric mean of the SPECratios.

Elaboration: When comparing two computers using SPECratios, use the geometric
mean so that it gives the same relative answer no matter what computer is used to
normalize the results. If we averaged the normalized execution time values with an
arithmetic mean, the results would vary depending on the computer we choose as the
reference.

1.7 Real Stuff: Manufacturing and Benchmarking the AMD Opteron X4 49

Execution | Reference
Clock cycle time Time Time
(seconds x 10°) | (seconds) | (seconds)

Instruction
Description Count x 10°

Interpreted string processing | perl 2,118 0.75 637 9,770 15.3
Block-sorting bzip2 2,389 0.85 817 9,650 11.8
compression

GNU C compiler gee 1,050 1.72 0.4 724 8,050 11.1
Combinatorial optimization | mcf 336 10.00 0.4 1,345 9,120 6.8
Go game (Al) go 1,658 1.09 0.4 721 10,490 14.6
Search gene sequence hmmer 2,783 0.80 0.4 890 9,330 10.5
Chess game (Al) sjeng 2,176 0.96 0.4 837 12,100 14.5
Quantum computer libquantum 1,623 1.61 0.4 1,047 20,720 19.8
simulation

Video compression h264avc 3,102 0.80 0.4 993 22,130 22.3
Discrete event omnetpp 587 2.94 0.4 690 6,250 9.1
simulation library

Games/path finding astar 1,082 1.79 0.4 773 7,020 9.1
XML parsing xalancbmk 1,058 2.70 0.4 1,143 6,900 6.0
Geometric Mean 11.7

FIGURE 1.20 SPECINTC2006 benchmarks running on AMD Opteron X4 model 2356 (Barcelona). As the equation on
page 35 explains, execution time is the product of the three factors in this table: instruction count in billions, clocks per instruction (CPI), and
clock cycle time in nanoseconds. SPECratio is simply the reference time, which is supplied by SPEC, divided by the measured execution time.
The single number quoted as SPECINTC2006 is the geometric mean of the SPECratios. Figure 5.40 on page 542 shows that mcf, libquantum,
omnetpp, and xalancbmk have relatively high CPIs because they have high cache miss rates.

The formula for the geometric mean is

n
n\/l_[Execution time ratio,
i=1

where Execution time ratio, is the execution time, normalized to the reference computer,
for the ith program of a total of n in the workload, and

n

Hai means the product a, xa, X ... xa,
i=1

SPEC Power Benchmark

Today, SPEC offers a dozen different benchmark sets designed to test a wide
variety of computing environments using real applications and strictly specified
execution rules and reporting requirements. The most recent is SPECpower. It
reports power consumption of servers at different workload levels, divided into
10% increments, over a period of time. Figure 1.21 shows the results for a server
using Barcelona.

SPECpower started with the SPEC benchmark for Java business applications
(SPECJBB2005), which exercises the processors, caches, and main memory as well
as the Java virtual machine, compiler, garbage collector, and pieces of the operating

50

Chapter 1 Computer Abstractions and Technology

Check
Yourself

Performance Average Power
Target Load % (ssj_ops) (Watts)

100% 231,867 295

90% 211,282 286

80% 185,803 275

70% 163,427 265

60% 140,160 256

50% 118,324 246

40% 92,035 233

30% 70,500 222

20% 47,126 206

10% 23,066 180

0% 0 141

Overall Sum 1,283,590 2,605
2ssj_ops / Zpower = 493

FIGURE 1.21 SPECpower_ssj2008 running on dual socket 2.3 GHz AMD Opteron X4 2356
(Barcelona) with 16 GB Of DDR2-667 DRAM and one 500 GB disk.

system. Performance is measured in throughput, and the units are business
operations per second. Once again, to simplify the marketing of computers, SPEC
boils these numbers down to a single number, called “overall ssj_ops per Watt.” The
formula for this single summarizing metric is

10
overall ssj_ops per Watt = (z $sj_ops.

i=0

10
/ (2 power,

i=0

where ssj_ops, is performance at each 10% increment and power, is power con-
sumed at each performance level.

A key factor in determining the cost of an integrated circuit is volume. Which of
the following are reasons why a chip made in high volume should cost less?

1. With high volumes, the manufacturing process can be tuned to a particular
design, increasing the yield.

2. TItisless work to design a high-volume part than a low-volume part.

3. The masks used to make the chip are expensive, so the cost per chip is lower
for higher volumes.

4. Engineering development costs are high and largely independent of volume;
thus, the development cost per die is lower with high-volume parts.

5. High-volume parts usually have smaller die sizes than low-volume parts and
therefore have higher yield per wafer.

1.8 Fallacies and Pitfalls

51

Fallacies and Pitfalls

The purpose of a section on fallacies and pitfalls, which will be found in every
chapter, is to explain some commonly held misconceptions that you might
encounter. We call such misbeliefs fallacies. When discussing a fallacy, we try to
give a counterexample. We also discuss pitfalls, or easily made mistakes. Often pit-
falls are generalizations of principles that are true in a limited context. The purpose
of these sections is to help you avoid making these mistakes in the computers you
may design or use. Cost/performance fallacies and pitfalls have ensnared many a
computer architect, including us. Accordingly, this section suffers no shortage of
relevant examples. We start with a pitfall that traps many designers and reveals an
important relationship in computer design.

Pitfall: Expecting the improvement of one aspect of a computer to increase overall
performance by an amount proportional to the size of the improvement.

This pitfall has visited designers of both hardware and software. A simple design prob-
lem illustrates it well. Suppose a program runs in 100 seconds on a computer, with
multiply operations responsible for 80 seconds of this time. How much do I have to
improve the speed of multiplication if I want my program to run five times faster?

The execution time of the program after making the improvement is given by
the following simple equation known as Amdahl’s law:

Execution time after improvement =

Execution time affected by improvement L
+ Execution time unaffected

Amount of improvement

For this problem:

80 seconds

. + (100 — 80 seconds)

Execution time after improvement =

Since we want the performance to be five times faster, the new execution time
should be 20 seconds, giving

20 seconds = SO%COHCB + 20 seconds
0= 80 seconds
- n

That is, there is no amount by which we can enhance-multiply to achieve a fivefold
increase in performance, if multiply accounts for only 80% of the workload.

Science must begin
with myths, and the
criticism of myths.

Sir Karl Popper, The
Philosophy of Science,
1957

Amdahl’s law A rule
stating that the
performance enhance-
ment possible with a
given improvement is
limited by the amount
that the improved feature
is used. It is a quantita-
tive version of the law of
diminishing returns.

52

Chapter 1 Computer Abstractions and Technology

Server
Manufacturer | processor | Sockets| Rate (ssj_ops) Power | Power | Power | Power | Power | Power

The performance enhancement possible with a given improvement is limited by
the amount that the improved feature is used. This concept also yields what we
call the law of diminishing returns in everyday life.

We can use Amdahl’s law to estimate performance improvements when we
know the time consumed for some function and its potential speedup. Amdahl’s
law, together with the CPU performance equation, is a handy tool for evaluating
potential enhancements. Amdahl’s law is explored in more detail in the exercises.

A common theme in hardware design is a corollary of Amdahl’s law: Make the
common case fast. This simple guideline reminds us that in many cases the frequency
with which one event occurs may be much higher than the frequency of another.
Amdahl’s law reminds us that the opportunity for improvement is affected by how
much time the event consumes. Thus, making the common case fast will tend to
enhance performance better than optimizing the rare case. Ironically, the common
case is often simpler than the rare case and hence is often easier to enhance.

Amdahl’s law is also used to argue for practical limits to the number of parallel
processors. We examine this argument in the Fallacies and Pitfalls section of
Chapter 7.

Fallacy: Computers at low utilization use little power.

Power efficiency matters at low utilizations because server workloads vary. CPU
utilization for servers at Google, for example, is between 10% and 50% most of the
time and at 100% less than 1% of the time. Figure 1.22 shows power for servers
with the best SPECpower results at 100% load, 50% load, 10% load, and idle. Even
servers that are only 10% utilized burn about two-thirds of their peak power.

Since servers’ workloads vary but use a large fraction of peak power, Luiz
Barroso and Urs Holzle [2007] argue that we should redesign hardware to achieve
“energy-proportional computing.” If future servers used, say, 10% of peak power at
10% workload, we could reduce the electricity bill of datacenters and become good
corporate citizens in an era of increasing concern about CO, emissions.

Peak
Cores/ | Clock |Performance

HP Xeon E5440 8/2 3.0 GHz 308,022 269 W | 227W | 84% | 174W | 65% | 160W | 59%
Dell Xeon E5440 8/2 2.8 GHz 305,413 276 W | 230W | 83% | 173W | 63% | 157W | 57%
Fujitsu Seimens | Xeon X3220 4/1 2.4 GHz 143,742 132 W | 110 W | 83% 85 W 65% 80 W 60%

FIGURE 1.22 SPECPower results for three servers with the best overall ssj_ops per watt in the fourth quarter of
2007. The overall ssj_ops per watt of the three servers are 698, 682, and 667, respectively. The memory of the top two servers is 16 GB and
the bottom is 8 GB.

Pitfall: Using a subset of the performance equation as a performance metric.

We have already shown the fallacy of predicting performance based on simply one
of clock rate, instruction count, or CPI. Another common mistake is to use only

1.8 Fallacies and Pitfalls

53

two of the three factors to compare performance. Although using two of the three
factors may be valid in a limited context, the concept is also easily misused. Indeed,
nearly all proposed alternatives to the use of time as the performance metric have
led eventually to misleading claims, distorted results, or incorrect interpretations.

One alternative to time is MIPS (million instructions per second). For a given
program, MIPS is simply

MIPS = Il‘lStI‘}lCth.n count y
Execution time X 10

Since MIPS is an instruction execution rate, MIPS specifies performance
inversely to execution time; faster computers have a higher MIPS rating. The good
news about MIPS is that it is easy to understand, and faster computers mean bigger
MIPS, which matches intuition.

There are three problems with using MIPS as a measure for comparing com-
puters. First, MIPS specifies the instruction execution rate but does not take into
account the capabilities of the instructions. We cannot compare computers with
different instruction sets using MIPS, since the instruction counts will certainly
differ. Second, MIPS varies between programs on the same computer; thus, a com-
puter cannot have a single MIPS rating. For example, by substituting for execution
time, we see the relationship between MIPS, clock rate, and CPI:

MIPS = Instruction count _ Clock rate
Instruction count X CPI p CPI x 10°
X 10
Clock rate

Recall that CPI varied by 13X for SPEC CPU2006 on Opteron X4, so MIPS does as
well. Finally, and most importantly, if a new program executes more instructions
but each instruction is faster, MIPS can vary independently from performance!

Consider the following performance measurements for a program:

Computer A Computer B

Instruction count 10 billion 8 billion
Clock rate 4 GHz 4 GHz
CPI 1.0 1.1

a. Which computer has the higher MIPS rating?

b. Which computer is faster?

million instructions
per second (MIPS)

A measurement of
program execution speed
based on the number of
millions of instructions.
MIPS is computed as the
instruction count divided
by the product of the

execution time and 10°.

Check
Yourself

54

Chapter 1 Computer Abstractions and Technology

Where . .. the ENIAC
is equipped with
18,000 vacuum tubes
and weighs 30 tons,
computers in the future
may have 1,000
vacuum tubes and
perhaps weigh just
175 tons.

Popular Mechanics,
March 1949

the BIG

Picture

Concluding Remarks

Although it is difficult to predict exactly what level of cost/performance comput-
ers will have in the future, it’s a safe bet that they will be much better than they
are today. To participate in these advances, computer designers and programmers
must understand a wider variety of issues.

Both hardware and software designers construct computer systems in hierar-
chical layers, with each lower layer hiding details from the level above. This princi-
ple of abstraction is fundamental to understanding today’s computer systems, but it
does not mean that designers can limit themselves to knowing a single abstraction.
Perhaps the most important example of abstraction is the interface between
hardware and low-level software, called the instruction set architecture. Maintain-
ing the instruction set architecture as a constant enables many implementations of
that architecture—presumably varying in cost and performance—to run identical
software. On the downside, the architecture may preclude introducing innovations
that require the interface to change.

There is a reliable method of determining and reporting performance by using
the execution time of real programs as the metric. This execution time is related to
other important measurements we can make by the following equation:

Seconds
Clock cycle

Clock cycles
Instruction

Seconds _ Instructions
Program Program

We will use this equation and its constituent factors many times. Remember,
though, that individually the factors do not determine performance: only the
product, which equals execution time, is a reliable measure of performance.

Execution time is the only valid and unimpeachable measure of perfor-
mance. Many other metrics have been proposed and found wanting.
Sometimes these metrics are flawed from the start by not reflecting exe-
cution time; other times a metric that is valid in a limited context is
extended and used beyond that context or without the additional clarifi-
cation needed to make it valid.

The key hardware technology for modern processors is silicon. Equal in impor-
tance to an understanding of integrated circuit technology is an understanding of
the expected rates of technological change. While silicon fuels the rapid advance
of hardware, new ideas in the organization of computers have improved price/
performance. Two of the key ideas are exploiting parallelism in the program,

1.10 Historical Perspective and Further Reading

55

typically today via multiple processors, and exploiting locality of accesses to a
memory hierarchy, typically via caches.

Power has replaced die area as the most critical resource of microprocessor
design. Conserving power while trying to increase performance has forced the
hardware industry to switch to multicore microprocessors, thereby forcing the
software industry to switch to programming parallel hardware.

Computer designs have always been measured by cost and performance, as well
as other important factors such as power, reliability, cost of ownership, and scal-
ability. Although this chapter has focused on cost, performance, and power, the
best designs will strike the appropriate balance for a given market among all the
factors.

Road Map for This Book

At the bottom of these abstractions are the five classic components of a computer:
datapath, control, memory, input, and output (refer to Figure 1.4). These five
components also serve as the framework for the rest of the chapters in this book:

Datapath: Chapters 3, 4, 7, and Appendix A
m Control: Chapters 4, 7, and Appendix A

m Memory: Chapter 5

m [nput: Chapter 6

m Output: Chapter 6

As mentioned above, Chapter 4 describes how processors exploit implicit par-
allelism, Chapter 7 describes the explicitly parallel multicore microprocessors that
are at the heart of the parallel revolution, and Appendix A describes the highly
parallel graphics processor chip. Chapter 5 describes how a memory hierarchy
exploits locality. Chapter 2 describes instruction sets—the interface between com-
pilers and the computer—and emphasizes the role of compilers and programming
languages in using the features of the instruction set. Appendix B provides a
reference for the instruction set of Chapter 2. Chapter 3 describes how computers
handle arithmetic data. @] Appendix C, on the CD, introduces logic design.

1.10

Historical Perspective and Further Reading

For each chapter in the text, a section devoted to a historical perspective can be
found on the CD that accompanies this book. We may trace the development of
an idea through a series of computers or describe some important projects, and we
provide references in case you are interested in probing further.

An active field of
science is like an
immense anthill; the
individual almost
vanishes into the mass
of minds tumbling
over each other, carry-
ing information from
place to place, passing
it around at the speed
of light.

Lewis Thomas, “Natural

Science,” in The Lives of
a Cell, 1974

Chapter 1 Computer Abstractions and Technology

The historical perspective for this chapter provides a background for some
of the key ideas presented in this opening chapter. Its purpose is to give you the
human story behind the technological advances and to place achievements in
their historical context. By understanding the past, you may be better able to
understand the forces that will shape computing in the future. Each historical per-
spectives section on the CD ends with suggestions for further reading, which are
also collected separately on the CD under the section “Further Reading.” The rest
of [@ Section 1.10 is found on the CD.

Exercises

Contributed by Javier Bruguera of Universidade de Santiago de Compostela

Most of the exercises in this edition are designed so that they feature a qualitative
description supported by a table that provides alternative quantitative parameters.
These parameters are needed to solve the questions that comprise the exercise.
Individual questions can be solved using any or all of the parameters—you decide
how many of the parameters should be considered for any given exercise question.
For example, it is possible to say “complete Question 4.1.1 using the parameters
given in row A of the table.” Alternately, instructors can customize these exercises
to create novel solutions by replacing the given parameters with your own unique
values.

The number of quantitative exercises varies from chapter to chapter and depends
largely on the topics covered. More conventional exercises are provided where the
quantitative approach does not fit.

The relative time ratings of exercises are shown in square brackets after each
exercise number. On average, an exercise rated [10] will take you twice as long as
one rated [5]. Sections of the text that should be read before attempting an exercise
will be given in angled brackets; for example, <1.3> means you should have read
Section 1.3, Under the Covers, to help you solve this exercise.

Exercise 1.1

Find the word or phrase from the list below that best matches the description in the
following questions. Use the numbers to the left of words in the answer. Each
answer should be used only once.

1.11 Exercises

57

1. virtual worlds 14. operating system
2. desktop computers 15. compiler

3. servers 16. bit

4. low-end servers 17. instruction

5. supercomputers 18. assembly language
6. terabyte 19. machine language
7. petabyte 20. C

8. data centers 21. assembler

9. embedded computers 22, high-level language
10. multicore processors 23. system software
11. VHDL 24. application software
12. RAM 25. Cobol

13. CPU 26. Fortran

1.1.1 [2] <1.1> Computer used to run large problems and usually accessed via a
network

1.1.2 [2] <1.1> 10" or 2*° bytes

1.1.3 [2] <1.1> A class of computers composed of hundred to thousand proces-
sors and terabytes of memory and having the highest performance and cost

1.1.4 [2] <1.1> Today’s science fiction application that probably will be available
in the near future

1.1.5 [2] <I1.1> A kind of memory called random access memory

1.1.6 [2] <I1.1> Part of a computer called central processor unit

1.1.7 [2] <1.1> Thousands of processors forming a large cluster

1.1.8 [2] <1.1> Microprocessors containing several processors in the same chip

1.1.9 [2] <1.1> Desktop computer without a screen or keyboard usually accessed
via a network

1.1.10 [2] <1.1> A computer used to running one predetermined application or
collection of software

1.1.11 [2] <1.1> Special language used to describe hardware components

Chapter 1 Computer Abstractions and Technology

1.1.12 (2] <1.1> Personal computer delivering good performance to single users
at low cost

1.1.13 [2] <1.2> Program that translates statements in high-level language to
assembly language

1.1.14 (2] <1.2> Program that translates symbolic instructions to binary
instructions

1.1.15 [2] <1.2> High-level language for business data processing
1.1.16 [2] <1.2> Binary language that the processor can understand
1.1.17 [2] <1.2> Commands that the processors understand
1.1.18 [2] <1.2> High-level language for scientific computation
1.1.19 [2] <1.2> Symbolic representation of machine instructions

1.1.20 [2] <1.2> Interface between user’s program and hardware providing a
variety of services and supervision functions

1.1.21 [2] <1.2> Software/programs developed by the users
1.1.22 (2] <1.2> Binary digit (value 0 or 1)

1.1.23 (2] <1.2> Software layer between the application software and the hard-
ware that includes the operating system and the compilers

1.1.24 [2] <1.2> High-level language used to write application and system
software

1.1.25 [2] <1.2> Portable language composed of words and algebraic expres-
sions that must be translated into assembly language before run in a computer

1.1.26 (2] <1.2> 10" or 2* bytes

Exercise 1.2

Consider the different configurations shown in the table

1 640 x 480 2 Gbytes 100 Mbit

2 1280 x 1024 4 Gbytes 1 Gbit
b. 1 1024 x 768 2 Gbytes 100 Mbit

2 2560 x 1600 4 Gbytes 1Gbit

1.11 Exercises

59

1.2.1 [10] <1.3> For a color display using 8 bits for each of the primary colors
(red, green, blue) per pixel, what should be the minimum size in bytes of the frame
buffer to store a frame?

1.2.2 [5] <1.3> How many frames could it store, assuming the memory contains
no other information?

1.2.3 [5] <1.3> If a 256 Kbytes file is sent through the Ethernet connection, how
long it would take?

For problems below, use the information about access time for every type of mem-
ory in the following table.

5ns 50 ns 5us 5ms
b. 7ns 70 ns 15 us 20 ms

1.2.4 [5] <1.3> Find how long it takes to read a file from a DRAM if it takes 2
microseconds from the cache memory.

1.2.5 [5] <1.3> Find how long it takes to read a file from a disk if it takes 2 micro-
seconds from the cache memory.

1.2.6 [5] <1.3> Find how long it takes to read a file from a flash memory if it

takes 2 microseconds from the cache memory.

Exercise 1.3

Consider three different processors P1, P2, and P3 executing the same instruction
set with the clock rates and CPIs given in the following table.

3 GHz
P2 2.5 GHz 1.0
P3 4 GHz 2.2
b. P1 2 GHz 1.2
P2 3 GHz 0.8
P3 4 GHz 2.0

1.3.1 [5] <1.4> Which processor has the highest performance expressed in
instructions per second?

1.3.2 [10] <1.4> If the processors each execute a program in 10 seconds, find the
number of cycles and the number of instructions.

60

Chapter 1 Computer Abstractions and Technology

1.3.3 [10] <1.4> We are trying to reduce the time by 30% but this leads to
an increase of 20% in the CPI. What clock rate should we have to get this time
reduction?

For problems below, use the information in the following table.

3 GHz 20.00E+09
P2 2.5 GHz 30.00E+09 10s
P3 4 GHz 90.00E+09 9s
b. P1 2 GHz 20.00E+09 5s
P2 3 GHz 30.00E+09 8s
P3 4 GHz 25.00E+09 7s

1.3.4 [10] <1.4> Find the IPC (instructions per cycle) for each processor.

1.3.5 [5] <1.4> Find the clock rate for P2 that reduces its execution time to
that of P1.

1.3.6 [5] <1.4> Find the number of instructions for P2 that reduces its execution
time to that of P3.

Exercise 1.4

Consider two different implementations of the same instruction set architecture.
There are four classes of instructions, A, B, C, and D. The clock rate and CPI of each
implementation are given in the following table.

2.5 GHz 1 3 3

P2 3 GHz 2 2 2

b. P1 2.5 GHz 2 1.5 2 1
P2 3 GHz 1 2 1 1

1.4.1 [10] <1.4> Given a program with 10° instructions divided into classes as
follows: 10% class A, 20% class B, 50% class C, and 20% class D, which implemen-
tation is faster?

1.4.2 [5] <1.4> What is the global CPI for each implementation?

1.4.3 [5] <1.4> Find the clock cycles required in both cases.

1.11 Exercises 61

The following table shows the number of instructions for a program.
a. 650 100 600 50 1400
b. 750 250 500 500 2000

1.4.4 [5] <1.4> Assuming that arith instructions take 1 cycle, load and store 5
cycles, and branches 2 cycles, what is the execution time of the program in a 2 GHz
processor?

1.4.5 [5] <1.4> Find the CPI for the program.

1.4.6 [10] <1.4> If the number of load instructions can be reduced by one half,
what is the speedup and the CPI?

Exercise 1.5

Consider two different implementations, P1 and P2, of the same instruction set.
There are five classes of instructions (A, B, C, D, and E) in the instruction set. The
clock rate and CPI of each class is given below.

a. P1

2.0 GHz 1 2 3 4 3

P2 4.0 GHz 2 2 2 4 4

b. P1 2.0 GHz 1 1 2 3 2
P2 3.0 GHz 1 2 3 4 3

1.5.1 [5] <1.4> Assume that peak performance is defined as the fastest rate that
a computer can execute any instruction sequence. What are the peak performances
of P1 and P2 expressed in instructions per second?

1.5.2 [10] <1.4> If the number of instructions executed in a certain program
is divided equally among the classes of instructions except for class A, which
occurs twice as often as each of the others, which computer is faster? How much
faster is it?

1.5.3 [10] <1.4> If the number of instructions executed in a certain program
is divided equally among the classes of instructions except for class E, which oc-
curs twice as often as each of the others, which computer is faster? How much
faster is it?

The table below shows instruction-type breakdown for different programs. Using
this data, you will be exploring the performance trade-offs for different changes
made to an MIPS processor.

62

Chapter 1 Computer Abstractions and Technology

No. Instructions

Program1 1450
Program 2 900 500 100 200 1700

1.5.4 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 10 cycles, and branches take 3 cycles, find the execution time on a 3 GHz MIPS
processor.

1.5.5 [5] <1.4> Assuming that computes take 1 cycle, loads and store instructions
take 2 cycles, and branches take 3 cycles, find the execution time on a 3 GHz MIPS
processor.

1.5.6 [5] <1.4> Assuming that computes take 1 cycle, loads and store instruc-
tions take 2 cycles, and branches take 3 cycles, what is the speedup if the number of
compute instruction can be reduced by one-half?

Exercise 1.6

Compilers can have a profound impact on the performance of an application on
given a processor. This problem will explore the impact compilers have on execu-
tion time.

- COmpiler A Compiler]

1.00E+09 1.8s 1.20E+09 1.8s
b. 1.00E+09 1.1s 1.20E+09 1.5s

1.6.1 [5] <1.4> For the same program, two different compilers are used. The table
above shows the execution time of the two different compiled programs. Find the
average CPI for each program given that the processor has a clock cycle time of 1 ns.

1.6.2 [5] <1.4> Assume the average CPIs found in 1.6.1, but that the compiled
programs run on two different processors. If the execution times on the two pro-
cessors are the same, how much faster is the clock of the processor running com-
piler A’s code versus the clock of the processor running compiler B’s code?

1.6.3 [5] <1.4> A new compiler is developed that uses only 600 million instruc-
tions and has an average CPI of 1.1. What is the speedup of using this new compiler
versus using Compiler A or B on the original processor of 1.6.1?

Consider two different implementations, P1 and P2, of the same instruction set.
There are five classes of instructions (A, B, C, D, and E) in the instruction set. P1
has a clock rate of 4 GHz, and P2 has a clock rate of 6 GHz. The average number
of cycles for each instruction class for P1 and P2 are listed in the following table.

1.11 Exercises

63

|_ | [cPiCiassA|CPICIassB | CPIClassC | CPIClassD | CPI ClassE |
a. P1

1 2 3 4 5

P2 3 3 3 5 5

b. P1 1 2 3 4 5
P2 2 2 2 2 6

1.6.4 [5] <1.4> Assume that peak performance is defined as the fastest rate that
a computer can execute any instruction sequence. What are the peak performances
of P1 and P2 expressed in instructions per second?

1.6.5 [5] <1.4> If the number of instructions executed in a certain program is di-
vided equally among the five classes of instructions except for class A, which occurs
twice as often as each of the others, how much faster is P2 than P1?

1.6.6 [5] <1.4> At what frequency does P1 have the same performance of P2 for
the instruction mix given in 1.6.5?

Exercise 1.7

The following table shows the increase in clock rate and power of eight generations
of Intel processors over 28 years.

80286 (1982) 12.5 MHz 3.3W
80386 (1985) 16 MHz 4.1 W
80486 (1989) 25 MHz 49 W
Pentium (1993) 66 MHz 10.1 W
Pentium Pro (1997) 200 MHz 29.1 W
Pentium 4 Willamette (2001) 2 GHz 75.3 W
Pentium 4 Prescott (2004) 3.6 GHz 103 W
Core 2 Ketsfield (2007) 2.667 GHz 95 W

1.7.1 [5] <1.5> What is the geometric mean of the ratios between consecutive
generations for both clock rate and power? (The geometric mean is described in
Section 1.7.)

1.7.2 [5] <1.5> What is the largest relative change in clock rate and power
between generations?

1.7.3 [5] <1.5> How much larger is the clock rate and power of the last genera-
tion with respect to the first generation?

64

Chapter 1 Computer Abstractions and Technology

Consider the following values for voltage in each generation.

80286 (1982) 5
80386 (1985) 5
80486 (1989) 5
Pentium (1993) 5
Pentium Pro (1997) 3.3
Pentium 4 Willamette (2001) 1.75
Pentium 4 Prescott (2004) 1.25
Core 2 Ketsfield (2007) 1.1

1.7.4 [5] <1.5> Find the average capacitive loads, assuming a negligible static
power consumption.

1.7.5 [5] <1.5> Find the largest relative change in voltage between generations.

1.7.6 [5] <1.5> Find the geometric mean of the voltage ratios in the generations
since the Pentium.

Exercise 1.8

Suppose we have developed new versions of a processor with the following char-
acteristics.

Version 1 1.75V 1.5 GHz

Version 2 1.2V 2 GHz
b. Version 1 1.1V 3 GHz

Version 2 0.8V 4 GHz

1.8.1 [5] <1.5> How much has the capacitive load varied between versions if the
dynamic power has been reduced by 10%?

1.8.2 [5] <1.5> How much has the dynamic power been reduced if the capacitive
load does not change?

1.8.3 [10] <1.5> Assuming that the capacitive load of version 2 is 80% the
capacitive load of version 1, find the voltage for version 2 if the dynamic power of
version 2 is reduced by 40% from version 1.

Suppose that the industry trends show that a new process generation varies as
follows.

1.11 Exercises

65

1/2v2 1.15 1/2%/2
b. 1 1/2v4 1.2 1/2v4

1.8.4 [5] <1.5> Find the scaling factor for the dynamic power.
1.8.5 [5] <1.5> Find the scaling of the capacitance per unit area unit.

1.8.6 [5] <1.5> Assuming a Core 2 processor with a clock rate of 2.667 GHz, a
power consumption of 95 W, and a voltage of 1.1V, find the voltage and clock rate
of this processor for the next process generation.

Exercise 1.9

Although the dynamic power is the primary source of power dissipation in CMOS,
leakage current produces a static power dissipation V X I_ . The smaller the on-
chip dimensions, the more significant is the static power. Assume the figures shown
in the following table for static and dynamic power dissipation for several genera-
tions of processors.

I e e T BT

180 nm
b. 70 nm 90 60 0.9

1.9.1 [5] <1.5> Find the percentage of the total dissipated power comprised by
static power.

1.9.2 [5] <1.5> If the total dissipated power is reduced by 10% while maintain-
ing the static to total power rate of problem 1.9.1, how much should the voltage be
reduced to maintain the same leakage current?

1.9.3 [5] <1.5> Determine the ratio of static power to dynamic power for each
technology.

Consider now the dynamic power dissipation of different versions of a given pro-
cessor for three different voltages given in the following table.

75 W 60 W 35W
b. 62 W 50 W 30w

Chapter 1 Computer Abstractions and Technology

1.9.4 [5] <1.5> Determine the static power at 0.8 V, assuming a static to dynamic
power ratio of 0.6.

1.9.5 [5] <1.5> Determine the static and dynamic power dissipation assuming
the rates obtained in problem 1.9.1.

1.9.6 [10] <1.5> Determine the geometric mean of the power variations between
versions.

Exercise 1.10

The table below shows the instruction type breakdown of a given application
executed on 1, 2,4, or 8 processors. Using this data, you will be exploring the speed-
up of applications on parallel processors.

1 2560 1280 256 1 2
2 1280 640 128 1 5 2
4 640 320 64 1 7 2
8 320 160 1 2

1 2560 1280 256 1 2
2 1280 640 128 1 6 2
4 640 320 64 1 8 2
8 320 160 32 1 10 2

1.10.1 [5] <1.4, 1.6> The table above shows the number of instructions required
per processor to complete a program on a multiprocessor with 1, 2, 4, or 8 proces-
sors. What is the total number of instructions executed per processor? What is the
aggregate number of instructions executed across all processors?

1.10.2 [5] <1.4, 1.6> Given the CPI values on the right of the table above, find
the total execution time for this program on 1, 2, 4, and 8 processors. Assume that
each processor has a 2 GHz clock frequency.

1.10.3 [10] <1.4, 1.6> If the CPI of the arithmetic instructions was doubled,
what would the impact be on the execution time of the program on 1, 2, 4, or 8
processors?

1.11 Exercises

67

The table below shows the number of instructions per processor core on a multicore
processor as well as the average CPI for executing the program on 1, 2, 4, or 8 cores.
Using this data, you will be exploring the speedup of applications on multicore
processors.

- Instructions per Core Average CPI
a. 1.2

1 1.00E+10

2 5.00E+09 1.4

4 2.50E+09 1.8

8 1.25E+09 2.6

- Instructions per Core Average CPI

b. 1 1.00E+10 1.0

2 5.00E+09 1.2

4 2.50E+09 1.4

8 1.25E+09 1.7

1.10.4 [10] <1.4, 1.6> Assuming a 3 GHz clock frequency, what is the execution
time of the program using 1, 2, 4, or 8 cores?

1.10.5 [10] <1.5, 1.6> Assume that the power consumption of a processor core
can be described by the following equation:

5.0mA
MHz

Power = Voltage?
where the operation voltage of the processor is described by the following equa-
tion:

Voltage = éFrequency +0.4

with the frequency measured in GHz. So, at 5 GHz, the voltage would be 1.4 V. Find
the power consumption of the program executing on 1, 2, 4, and 8 cores assuming
that each core is operating at a 3 GHz clock frequency. Likewise, find the power
consumption of the program executing on 1, 2, 4, or 8 cores assuming that each
core is operating at 500 MHz.

1.10.6 [10] <1.5, 1.6> If using a single core, find the required CPI for this core
to get an execution time equal to the time obtained by using the number of cores
in the table above (execution times in problem 1.10.4). Note that the number of
instructions should be the aggregate number of instructions executed across all
the cores.

Chapter 1 Computer Abstractions and Technology

Exercise 1.11

The following table shows manufacturing data for various processors.

- Wafer Diameter Dies per Wafer |Defects per Unit Area Cost per Wafer

15 cm 0.020 defects/cm?

b. 20 cm 100 0.031 defects/cm? 15

1.11.1 [10] <1.7> Find the yield.
1.11.2 [5] <1.7> Find the cost per die.

1.11.3 [10] <1.7> If the number of dies per wafer is increased by 10% and the
defects per area unit increases by 15%, find the die area and yield.

Suppose that, with the evolution of the electronic devices manufacturing tech-
nology, the yield varies as shown in the following table.

‘ Yield ‘

1.11.4 [10] <1.7> Find the defects per area unit for each technology given a die
area of 200 mm?.

1.11.5 [5] <1.7> Represent graphically the variation of the yield together with
the variation of defects per unit area.

Exercise 1.12

The following table shows results for SPEC CPU2006 benchmark programs
running on an AMD Barcelona.

-m Intr. Count x 10° | Execution Time (seconds) | Reference Time (seconds)

bzip2 2389 9650
b. go 1658 700 10,490

1.12.1 [5] <1.7> Find the CPT if the clock cycle time is 0.333 ns.
1.12.2 [5] <1.7> Find the SPECratio.

1.12.3 [5] <1.7> For these two benchmarks, find the geometric mean of the
SPECratio.

1.11 Exercises

69

The following table shows data for further benchmarks.

libquantum 1.61 4 GHz 19.8
b. astar 1.79 4 GHz 9.1

1.12.4 [5] <1.7> Find the increase in CPU time if the number of instructions of
the benchmark is increased by 10% without affecting the CPL

1.12.5 [5] <1.7> Find the increase in CPU time if the number of instructions of
the benchmark is increased by 10% and the CPI is increased by 5%.

1.12.6 [5] <1.7> Find the change in the SPECratio for the change described in
1.12.5.

Exercise 1.13

Suppose that we are developing a new version of the AMD Barcelona proces-
sor with a 4 GHz clock rate. We have added some additional instructions to the
instruction set in such a way that the number of instructions has been reduced by
15% from the values shown for each benchmark in Exercise 1.12. The execution
times obtained are shown in the following table.

-m Execution Time (seconds) Reference Time (seconds) m

bzip2 9650 13.7
b. go 620 10490 16.9

1.13.1 [10] <1.8> Find the new CPI.

1.13.2 [10] <1.8> In general, these CPI values are larger than those obtained in
previous exercises for the same benchmarks. This is due mainly to the clock rate
used in both cases, 3 GHz and 4 GHz. Determine whether the increase in the CPI
is similar to that of the clock rate. If they are dissimilar, why?

1.13.3 [5] <1.8> How much has the CPU time been reduced?

The following table shows data for further benchmarks.

-m Execution Time (seconds) “ Clock Rate

libquantum 1.61 3 GHz
b. astar 690 1.79 3 GHz

70

Chapter 1 Computer Abstractions and Technology

1.13.4 [10] <1.8> If the execution time is reduced by an additional 10% with-
out affecting to the CPI and with a clock rate of 4 GHz, determine the number of
instructions.

1.13.5 [10] <1.8> Determine the clock rate required to give a further 10% reduc-
tion in CPU time while maintaining the number of instructions and with the CPI
unchanged.

1.13.6 [10] <1.8> Determine the clock rate if the CPI is reduced by 15% and the
CPU time by 20% while the number of instructions is unchanged.

Exercise 1.14

Section 1.8 cites as a pitfall the utilization of a subset of the performance equa-
tion as a performance metric. To illustrate this, consider the following data for the
execution of a program in different processors.

a. P1

4 GHz 0.9 5.00E+06

P2 3 GHz 0.75 1.00E+06

b. P1 3 GHz 1.1 3.00E+06
P2 2.5 GHz 1.0 0.50E+06

1.14.1 (5] <1.8> One usual fallacy is to consider the computer with the largest
clock rate as having the largest performance. Check if this is true for P1 and P2.

1.14.2 [10] <1.8> Another fallacy is to consider that the processor executing the
largest number of instructions will need a larger CPU time. Considering that pro-
cessor P1 is executing a sequence of 10° instructions and that the CPI of proces-
sors P1 and P2 do not change, determine the number of instructions that P2 can
execute in the same time that P1 needs to execute 10° instructions.

1.14.3 [10] <1.8> A common fallacy is to use MIPS (millions of instructions per
second) to compare the performance of two different processors, and consider that
the processor with the largest MIPS has the largest performance. Check if this is
true for P1 and P2.

Another common performance figure is MFLOPS (million of floating-point
operations per second), defined as
MFLOPS = No. FP operations / (execution time X 10°)

but this figure has the same problems as MIPS. Consider the program in the fol-
lowing table, running on the two processors below.

1.11 Exercises 71

IMEmmm

1.00E+06 50% | 40% 10% 0.75 4 GHz

P2 5.00E+06 40% | 40% 20% 1.25| 0.8 | 1.25 3 GHz

b. P1 5.00E+06 30% | 30% 40% 1.5 | 1.0 2.0 4 GHz
P2 2.00E+06 40% | 30% 30% 1.25 | 1.0 2.5 3 GHz

1.14.4 [10] <1.8> Find the MFLOPS figures for the programs.
1.14.5 [10] <1.8> Find the MIPS figures for the programs.

1.14.6 [10] <1.8> Find the performance for the programs and compare it with
MIPS and MFLOPS.

Exercise 1.15

Another pitfall cited in Section 1.8 is expecting to improve the overall performance
of a computer by improving only one aspect of the computer. This might be true,
but not always. Consider a computer running programs with CPU times shown in
the following table.

70s 85s 55s 40 s 250 s
40 s 90 s 60 s 20s 210 s

1.15.1 [5] <1.8> How much is the total time reduced if the time for FP opera-
tions is reduced by 20%?

1.15.2 [5] <1.8> How much is the time for INT operations reduced if the total
time is reduced by 20%?

1.15.3 [5] <1.8> Can the total time can be reduced by 20% by reducing only the
time for branch instructions?

The following table shows the instruction type breakdown per processor of given
applications executed in different numbers of processors.

CPI
I I [y v I - A A A

280 x 10° 1000 x 16° 640 x 10° 128 x 10°
16 50 x 106 110 x 10° 80 x 10° 16 x 10° 1 1 4 2

72

Chapter 1 Computer Abstractions and Technology

Assume that each processor has a 2 GHz clock rate.

1.15.4 [10] <1.8> How much must we improve the CPI of FP instructions if we
want the program to run two times faster?

1.15.5 [10] <1.8> How much must we improve the CPI of L/S instructions if we
want the program to run two times faster?

1.15.6 (5] <1.8> How much is the execution time of the program improved if the
CPI of INT and FP instructions is reduced by 40% and the CPI of L/S and Branch
is reduced by 30%?

Exercise 1.16

Another pitfall, related to the execution of programs in multiprocessor systems, is
expecting improvement in performance by improving only the execution time of
part of the routines. The following table shows the execution time of five routines
of a program running on different numbers of processors.

No. Routine A Routine B Routine C Routine D Routine E
Processors (ms) ((LD)] (ms) ((LD)] (ms)
a. 4 12 45 6 36 3

32 2 7 1 6 2

1.16.1 [10] <1.8> Find the total execution time and by how much it is reduced if
the time of routines A, C, and E is improved by 15%.

1.16.2 [10] <1.8> How much is the total time reduced if routine B is improved
by 10%?

1.16.3 [10] <1.8> How much is the total time reduced if routine D is improved
by 10%?

Execution time in a multiprocessor system can be split into computing time for
the routines plus routing time spent sending data from one processor to another.
Consider the execution time and routing time given in the following table. In this
case, the routing time is an important component of the total time.

1.11 Exercises

73

No. Routine A | Routine B | Routine C | Routine D | Routine E Routing
Processors (ms) (ms) ((LD)) ((LD)) ((LD)] Time (ms)
2 40 78 70 11

9 4
4 29 60 4 36 2 13
8 15 45 3 19 3 17
16 7 35 1 11 2 22
32 4 23 1 6 1 23
64 2 12 0.5 3 1 26

1.16.4 [10] <1.8> For each doubling of the number of processors, determine the
ratio of new to old computing time and the ratio of new to old routing time.

1.16.5 (5] <1.8> Using the geometric means of the ratios, extrapolate to find the
computing time and routing time in a 128-processor system.

1.16.6 [10] <1.8> Find the computing time and routing time for a system with
one processor.

§1.1, page 9: Discussion questions: many answers are acceptable.

§1.3, page 25: Disk memory: nonvolatile, long access time (milliseconds), and cost
$0.20-$2.00/GB. Semiconductor memory: volatile, short access time (nanoseconds),
and cost $20-$75/GB.

§1.4, page 31: 1. a: both, b: latency, c: neither. 2. 7 seconds.

§1.4, page 38: b.

§1.7, page 50: 1, 3, and 4 are valid reasons. Answer 5 can be generally true because
high volume can make the extra investment to reduce die size by, say, 10% a good
economic decision, but it doesn’t have to be true.

§1.8, page 53: a. Computer A has the higher MIPS rating. b. Computer B is faster.

Answers to
Check Yourself

I speak Spanish

to God, Italian to
women, French to
men, and German to
my horse.

Charles V, Holy Roman Emperor
(1500-1558)

Instructions:
Language of
the Computer

2.1
2.2
2.3
2.4
2.5

2.6
2.7

Computer Organization and Design. DOI: 10.1016/B978-0-12-374750-1.00002-5

© 2012 Elsevier, Inc. All rights reserved.

Introduction 76

Operations of the Computer Hardware 77
Operands of the Computer Hardware 80
Signed and Unsigned Numbers 87
Representing Instructions in the
Computer 94

Logical Operations 102

Instructions for Making Decisions 105

http://dx.doi.org/10.1016/B978-0-12-374750-1.00002-5

2.8 Supporting Procedures in Computer Hardware 112
2.9 Communicating with People 122
2.10 MIPS Addressing for 32-Bit Immediates and Addresses 128
2.11 Parallelism and Instructions: Synchronization 137
2.12 Translating and Starting a Program 139
2.13 A C Sort Example to Put It All Together 149
2.14 Arrays versus Pointers 157
2.15 Advanced Material: Compiling C and Interpreting Java 161
2.16 Real Stuff: ARM Instructions 161
2.17 Real Stuff: x86 Instructions 165
2.18 Fallacies and Pitfalls 174
2.19 Concluding Remarks 176
2.20 Historical Perspective and Further Reading 179
2.21 Exercises 179

The Five Classic Components of a Computer

Compiler

Interface @

Computer

Evaluating
performance

Processor

76

Chapter 2 Instructions: Language of the Computer

instruction set The
vocabulary of commands
understood by a given
architecture.

Introduction

To command a computer’s hardware, you must speak its language. The words
of a computer’s language are called instructions, and its vocabulary is called an
instruction set. In this chapter, you will see the instruction set of a real computer,
both in the form written by people and in the form read by the computer. We
introduce instructions in a top-down fashion. Starting from a notation that looks
like a restricted programming language, we refine it step-by-step until you see
the real language of a real computer. Chapter 3 continues our downward descent,
unveiling the hardware for arithmetic and the representation of floating-point
numbers.

You might think that the languages of computers would be as diverse as those
of people, but in reality computer languages are quite similar, more like regional
dialects than like independent languages. Hence, once you learn one, it is easy to
pick up others. This similarity occurs because all computers are constructed from
hardware technologies based on similar underlying principles and because there
are a few basic operations that all computers must provide. Moreover, computer
designers have a common goal: to find a language that makes it easy to build the
hardware and the compiler while maximizing performance and minimizing cost
and power. This goal is time honored; the following quote was written before you
could buy a computer, and it is as true today as it was in 1947:

It is easy to see by formal-logical methods that there exist certain [instruction
sets] that are in abstract adequate to control and cause the execution of any
sequence of operations. . .. The really decisive considerations from the present
point of view, in selecting an [instruction set], are more of a practical nature:
simplicity of the equipment demanded by the [instruction set], and the clarity of
its application to the actually important problems together with the speed of its
handling of those problems.

Burks, Goldstine, and von Neumann, 1947

The “simplicity of the equipment” is as valuable a consideration for today’s
computers as it was for those of the 1950s. The goal of this chapter is to teach
an instruction set that follows this advice, showing both how it is represented
in hardware and the relationship between high-level programming languages
and this more primitive one. Our examples are in the C programming language;
Section 2.15 on the CD shows how these would change for an object-oriented
language like Java.

2.2 Operations of the Computer Hardware 77

By learning how to represent instructions, you will also discover the secret of
computing: the stored-program concept. Moreover, you will exercise your “foreign stored-program
language” skills by writing programs in the language of the computer and running concept The idea that
them on the simulator that comes with this book. You will also see the impact of ~ instructions and data of
programming languages and compiler optimization on performance. We conclude ﬁa;zggfs ::E:;:::d
with a look at the historical evolution of instruction sets and an overview of other | ding to};he stored-
computer dialects. program computer.
The chosen instruction set comes from MIPS Technologies, which is an elegant
example of the instruction sets designed since the 1980s. Later, we will take a quick
look at two other popular instruction sets. ARM is quite similar to MIPS, and more
than three billion ARM processors were shipped in embedded devices in 2008. The
other example, the Intel x86, is inside almost all of the 330 million PCs made in
2008.
We reveal the MIPS instruction set a piece at a time, giving the rationale along
with the computer structures. This top-down, step-by-step tutorial weaves the
components with their explanations, making the computer’s language more palat-
able. Figure 2.1 gives a sneak preview of the instruction set covered in this chapter.

There must certainly
be instructions
Operations of the Computer Hardware for performing
the fundamental
arithmetic operations.

Burks, Goldstine, and
von Neumann, 1947

Every computer must be able to perform arithmetic. The MIPS assembly language
notation

add a, b, ¢

instructs a computer to add the two variables b and ¢ and to put their sum in a.
This notation is rigid in that each MIPS arithmetic instruction performs only
one operation and must always have exactly three variables. For example, suppose
we want to place the sum of four variables b, ¢, d, and e into variable a. (In this
section we are being deliberately vague about what a “variable” is; in the next
section we’ll explain in detail.)
The following sequence of instructions adds the four variables:

add a, b, ¢ # The sum of b and ¢ is placed in a.
add a, a, d ## The sum of b, ¢, and d is now in a.
add a, a, e # The sum of b, ¢, d, and e is now in a.

Thus, it takes three instructions to sum the four variables.

The words to the right of the sharp symbol (#) on each line above are comments
for the human reader, and the computer ignores them. Note that unlike other pro-
gramming languages, each line of this language can contain at most one instruction.
Another difference from C is that comments always terminate at the end of a line.

78 Chapter 2 Instructions: Language of the Computer

MIPS operands
$s0-$s7, $t0-$t9, $zero, Fast locations for data. In MIPS, data must be in registers to perform arithmetic,
32 registers | $a0-%$a3, $v0-$vl, $gp, $fp, |register $zero always equals O, and register $at is reserved by the assembler to
$sp, $ra, $at handle large constants.
230 memory | Memory[0], Memory[4], . . . , Accessed only by data transfer instructions. MIPS uses byte addresses, so
words Memory[4294967292] sequential word addresses differ by 4. Memory holds data structures, arrays, and
spilled registers.

MIPS assembly language
cotoser |_nsncion |_pomie 1 womnog | commens _
add $s1,$s2,$s3 | $s1 =9$s2+ $s3 Three register operands
Arithmetic subtract sub $s1,$s52,$s3 | $s1l=$s2-$s3 Three register operands
add immediate addi $s1,%$s2,20 $s1 =%$s2 +20 Used to add constants
load word Tw $s51,20($s2) $s1 = Memory[$s2 + 20] Word from memory to register
store word sw o $s1,20(%$s2) Memory[$s2 + 20] = $s1 Word from register to memory
load half Th $s1,20($s2) $s1 = Memory[$s2 + 20] Halfword memory to register
load half unsigned | Thu $s1,20($s2) | $s1 = Memory[$s2 + 20] Halfword memory to register
store half sh $s1,20($s2) Memory[$s2 + 20] = $s1 Halfword register to memory
tDr:Easfer load byte b $s1,20($s2) | $s1=Memory[$s2 + 20] Byte from memory to register
load byte unsigned | Thu $s1,20($s2) | $s1 = Memory[$s2 + 20] Byte from memory to register
store byte sb $s1,20($s2) Memory[$s2 + 20] = §s1 Byte from register to memory
load linked word 11 $s1,20($s2) $s1 = Memory[$s2 + 20] Load word as 1st half of atomic swap
store condition. word | sc $s1,20($s2) Memory[$52+20]=$s1;$s1=0 or 1 | Store word as 2nd half of atomic swap
load upper immed. | Tui $s1,20 $s51 =20 * 21° Loads constant in upper 16 bits
and and $s1,$s2,$s3|$s1 =$s2& $s3 Three reg. operands; bit-by-bit AND
or or $51,$s52,$s3 | $s1 =6$s2]$s3 Three reg. operands; bit-by-bit OR
nor nor $s1,$s2,$s3|$sl=~($s2]|$s3) Three reg. operands; bit-by-bit NOR
Logical and immediate andi $s1,$s2,20 |$s1=9$s2&20 Bit-by-bit AND reg with constant
or immediate ori $s1,$s52,20 |$s1=9$s2]20 Bit-by-bit OR reg with constant
shift left logical s11 $s1,$s2,10 | $s1=9$s2<<10 Shift left by constant
shift right logical srl $s1,$s2,10 |$sl=$s2>>10 Shift right by constant
branch on equal beq $s1,$s2,25 Jif($sl==9$s2)goto Equal test; PC-relative branch
PC + 4 + 100
branch on notequal | bne $s1,$s2,25 |if($sll= $s2)goto Not equal test; PC-relative
PC + 4 + 100
set on less than sTt $s1,$s2,$s3 |if($s2 < $s3) $s1=1; Compare less than; for beq, bne
Conditional else $s1=0
branch set on less than sTtu $s1,$s52,$s3 |if($s2 < $s3) $s1=1; Compare less than unsigned
unsigned else $s1 =0
set less than slti $s1,$s2,20 |if($s2<20)$s1=1; Compare less than constant
immediate else $s1=0
set less than sltiu $s1,%$s2,20 |if($s2 <20) $s1=1; Compare less than constant
immediate unsigned else $s1=0 unsigned
. jump J 2500 go to 10000 Jump to target address
_U neonditional jump register jr $ra goto $ra For switch, procedure return
Jump jump and link jal 2500 $ra =PC + 4; go to 10000 For procedure call

FIGURE 2.1 MIPS assembly language revealed in this chapter. This information is also found in Column 1 of the MIPS Reference
Data Card at the front of this book.

2.2 Operations of the Computer Hardware

79

The natural number of operands for an operation like addition is three: the
two numbers being added together and a place to put the sum. Requiring every
instruction to have exactly three operands, no more and no less, conforms to the
philosophy of keeping the hardware simple: hardware for a variable number of
operands is more complicated than hardware for a fixed number. This situation
illustrates the first of four underlying principles of hardware design:

Design Principle 1: Simplicity favors regularity.

We can now show, in the two examples that follow, the relationship of programs
written in higher-level programming languages to programs in this more primitive
notation.

Compiling Two C Assignment Statements into MIPS

This segment of a C program contains the five variables a, b, ¢, d,and e. Since
Java evolved from C, this example and the next few work for either high-level
programming language:

a =b + c;
d=a - e;

The translation from C to MIPS assembly language instructions is performed
by the compiler. Show the MIPS code produced by a compiler.

A MIPS instruction operates on two source operands and places the result
in one destination operand. Hence, the two simple statements above compile
directly into these two MIPS assembly language instructions:

add a, b, ¢
sub d, a, e

Compiling a Complex C Assignment into MIPS

A somewhat complex statement contains the five variables f, g, h, 1, and j:

f=10+h) -0+ 7J);

What might a C compiler produce?

80

Chapter 2 Instructions: Language of the Computer

Check
Yourself

The compiler must break this statement into several assembly instructions,
since only one operation is performed per MIPS instruction. The first MIPS
instruction calculates the sum of g and h. We must place the result somewhere,
so the compiler creates a temporary variable, called t0:

add t0,g,h # temporary variable t0 contains g + h
Although the next operation is subtract, we need to calculate the sum of i and

J before we can subtract. Thus, the second instruction places the sum of i and
J in another temporary variable created by the compiler, called t1:

add t1,1,J # temporary variable tl contains i + j

Finally, the subtract instruction subtracts the second sum from the first and
places the difference in the variable f, completing the compiled code:

sub f,t0,tl # f gets t0 - t1, which is (g + h) - (i + J)

For a given function, which programming language likely takes the most lines of
code? Put the three representations below in order.

1. Java
2. C
3. MIPS assembly language

Elaboration: To increase portability, Java was originally envisioned as relying on a
software interpreter. The instruction set of this interpreter is called Java bytecodes (see
Section 2.15 on the CD), which is quite different from the MIPS instruction set. To
get performance close to the equivalent C program, Java systems today typically compile
Java bytecodes into the native instruction sets like MIPS. Because this compilation is
normally done much later than for C programs, such Java compilers are often called Just
In Time (JIT) compilers. Section 2.12 shows how JITs are used later than C compilers
in the start-up process, and Section 2.13 shows the performance consequences of
compiling versus interpreting Java programs.

Operands of the Computer Hardware

Unlike programs in high-level languages, the operands of arithmetic instructions
are restricted; they must be from a limited number of special locations built directly
in hardware called registers. Registers are primitives used in hardware design that

2.3 Operands of the Computer Hardware

81

are also visible to the programmer when the computer is completed, so you can
think of registers as the bricks of computer construction. The size of a register in
the MIPS architecture is 32 bits; groups of 32 bits occur so frequently that they are
given the name word in the MIPS architecture.

One major difference between the variables of a programming language and
registers is the limited number of registers, typically 32 on current computers,
like MIPS. (See Section 2.20 on the CD for the history of the number of reg-
isters.) Thus, continuing in our top-down, stepwise evolution of the symbolic
representation of the MIPS language, in this section we have added the restriction
that the three operands of MIPS arithmetic instructions must each be chosen from
one of the 32 32-bit registers.

The reason for the limit of 32 registers may be found in the second of our four
underlying design principles of hardware technology:

Design Principle 2: Smaller is faster.

A very large number of registers may increase the clock cycle time simply because
it takes electronic signals longer when they must travel farther.

Guidelines such as “smaller is faster” are not absolutes; 31 registers may not be
faster than 32. Yet, the truth behind such observations causes computer designers
to take them seriously. In this case, the designer must balance the craving of pro-
grams for more registers with the designer’s desire to keep the clock cycle fast.
Another reason for not using more than 32 is the number of bits it would take in
the instruction format, as Section 2.5 demonstrates.

Chapter 4 shows the central role that registers play in hardware construction;
as we shall see in this chapter, effective use of registers is critical to program
performance.

Although we could simply write instructions using numbers for registers, from
0 to 31, the MIPS convention is to use two-character names following a dollar sign
to represent a register. Section 2.8 will explain the reasons behind these names. For
now, we will use $s0, $s1,... for registers that correspond to variables in C and
Java programs and $t0, $t1, ... for temporary registers needed to compile the
program into MIPS instructions.

Compiling a C Assignment Using Registers

It is the compiler’s job to associate program variables with registers. Take, for
instance, the assignment statement from our earlier example:

f=(g+h - (+J);

The variables f, g, h, i,and J are assigned to the registers $s0, $s1, $52, $53,
and $s4, respectively. What is the compiled MIPS code?

word The natural unit
of access in a computer,
usually a group of 32 bits;
corresponds to the size
of a register in the MIPS
architecture.

82

Chapter 2 Instructions: Language of the Computer

data transfer instruction
A command that moves
data between memory
and registers.

address A value used to
delineate the location of
a specific data element
within a memory array.

The compiled program is very similar to the prior example, except we replace
the variables with the register names mentioned above plus two temporary
registers, $t0 and $t1, which correspond to the temporary variables above:

add $t0,$s1,$s2 # register $t0 contains g + h
add $t1,$s3,%$s4 # register $tl contains 1 + j
sub $s0,$t0,$t1 # f gets $t0 - $t1, which is (g + h)-(i + J)

Memory Operands

Programming languages have simple variables that contain single data elements, as
in these examples, but they also have more complex data structures—arrays and
structures. These complex data structures can contain many more data elements
than there are registers in a computer. How can a computer represent and access
such large structures?

Recall the five components of a computer introduced in Chapter 1 and repeated
on page 75. The processor can keep only a small amount of data in registers, but
computer memory contains billions of data elements. Hence, data structures
(arrays and structures) are kept in memory.

As explained above, arithmetic operations occur only on registers in MIPS
instructions; thus, MIPS must include instructions that transfer data between
memory and registers. Such instructions are called data transfer instructions.
To access a word in memory, the instruction must supply the memory address.
Memory is just a large, single-dimensional array, with the address acting as the
index to that array, starting at 0. For example, in Figure 2.2, the address of the third
data element is 2, and the value of Memory[2] is 10.

3 100
2 10
1 101
0 1
Address Data
Processor Memory

FIGURE 2.2 Memory addresses and contents of memory at those locations. If these elements
were words, these addresses would be incorrect, since MIPS actually uses byte addressing, with each word
representing four bytes. Figure 2.3 shows the memory addressing for sequential word addresses.

2.3 Operands of the Computer Hardware

83

The data transfer instruction that copies data from memory to a register is
traditionally called load. The format of the load instruction is the name of the
operation followed by the register to be loaded, then a constant and register used
to access memory. The sum of the constant portion of the instruction and the con-
tents of the second register forms the memory address. The actual MIPS name for
this instruction is 1w, standing for load word.

Compiling an Assignment When an Operand Is in Memory

Let’s assume that A is an array of 100 words and that the compiler has asso-
ciated the variables g and h with the registers $s1 and $s2 as before. Let’s
also assume that the starting address, or base address, of the array is in $s3.
Compile this C assignment statement:

g=nh+ A[8];

Although there is a single operation in this assignment statement, one of
the operands is in memory, so we must first transfer A[8] to a register. The
address of this array element is the sum of the base of the array A, found in
register $s3, plus the number to select element 8. The data should be placed
in a temporary register for use in the next instruction. Based on Figure 2.2, the
first compiled instruction is

Tw $t0,8($s3) # Temporary reg $t0 gets A[8]

(On the next page we’ll make a slight adjustment to this instruction, but we’ll
use this simplified version for now.) The following instruction can operate on
the value in $t0 (which equals A[81]) since it is in a register. The instruction
must add h (contained in $52) to A[8] ($t0) and put the sum in the register
corresponding to g (associated with $s1):

add $s1,$s2,$t0 # g = h + A[8]

The constant in a data transfer instruction (8) is called the offset, and the reg-
ister added to form the address ($s3) is called the base register.

84

Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

alignment restriction

A requirement that data
be aligned in memory on
natural boundaries.

In addition to associating variables with registers, the compiler allocates data
structures like arrays and structures to locations in memory. The compiler can then
place the proper starting address into the data transfer instructions.

Since 8-bit bytes are useful in many programs, most architectures address indi-
vidual bytes. Therefore, the address of a word matches the address of one of the
4 bytes within the word, and addresses of sequential words differ by 4. For example,
Figure 2.3 shows the actual MIPS addresses for the words in Figure 2.2; the byte
address of the third word is 8.

In MIPS, words must start at addresses that are multiples of 4. This require-
ment is called an alignment restriction, and many architectures have it. (Chapter 4
suggests why alignment leads to faster data transfers.)

Computers divide into those that use the address of the leftmost or “big end”
byte as the word address versus those that use the rightmost or “little end” byte.
MIPS is in the big-endian camp. (Appendix B, shows the two options to number
bytes in a word.)

Byte addressing also affects the array index. To get the proper byte address in
the code above, the offset to be added to the base register $s3 must be 4 X 8, or 32, so
that the load address will select AL8] and not A[8/4]. (See the related pitfall on
page 175 of Section 2.18.)

12 100
8 10
4 101
0 1

Byte Address Data

Processor Memory

FIGURE 2.3 Actual MIPS memory addresses and contents of memory for those words.
The changed addresses are highlighted to contrast with Figure 2.2. Since MIPS addresses each byte, word
addresses are multiples of 4: there are 4 bytes in a word.

2.3 Operands of the Computer Hardware

85

The instruction complementary to load is traditionally called store; it copies
data from a register to memory. The format of a store is similar to that of a load:
the name of the operation, followed by the register to be stored, then offset to select
the array element, and finally the base register. Once again, the MIPS address is
specified in part by a constant and in part by the contents of a register. The actual
MIPS name is sw, standing for store word.

Compiling Using Load and Store

Assume variable h is associated with register $s2 and the base address of the
array A is in $53. What is the MIPS assembly code for the C assignment state-
ment below?

A[12] = h + A[8];

Although there is a single operation in the C statement, now two of the oper-
ands are in memory, so we need even more MIPS instructions. The first two
instructions are the same as the prior example, except this time we use the
proper offset for byte addressing in the load word instruction to select AL8],
and the add instruction places the sum in $t0:

Tw $t0,32($s3) 4 Temporary reg $t0 gets A[8]
add $t0,$s2,$t0 4 Temporary reg $t0 gets h + A[8]

The final instruction stores the sum into A[12], using 48 (4 X 12) as the offset
and register $s3 as the base register.

Sw $t0,48($s3) 4 Stores h + A[8] back into A[12]

Load word and store word are the instructions that copy words between
memory and registers in the MIPS architecture. Other brands of computers use
other instructions along with load and store to transfer data. An architecture with
such alternatives is the Intel x86, described in Section 2.17.

Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

Many programs have more variables than computers have registers. Consequently,
the compiler tries to keep the most frequently used variables in registers and places
the rest in memory, using loads and stores to move variables between registers and
memory. The process of putting less commonly used variables (or those needed
later) into memory is called spilling registers.

The hardware principle relating size and speed suggests that memory must be
slower than registers, since there are fewer registers. This is indeed the case; data
accesses are faster if data is in registers instead of memory.

Moreover, data is more useful when in a register. A MIPS arithmetic instruc-
tion can read two registers, operate on them, and write the result. A MIPS data
transfer instruction only reads one operand or writes one operand, without oper-
ating on it.

Thus, registers take less time to access and have higher throughput than memory,
making data in registers both faster to access and simpler to use. Accessing registers
also uses less energy than accessing memory. To achieve highest performance and
conserve energy, compilers must use registers efficiently.

Constant or Immediate Operands

Many times a program will use a constant in an operation—for example, incre-
menting an index to point to the next element of an array. In fact, more than half
of the MIPS arithmetic instructions have a constant as an operand when running
the SPEC CPU2006 benchmarks.

Using only the instructions we have seen so far, we would have to load a constant
from memory to use one. (The constants would have been placed in memory when
the program was loaded.) For example, to add the constant 4 to register $s3, we
could use the code

Tw $t0, AddrConstant4($sl) # $t0
add $s3,$s3,%t0 # $s3

constant 4
$s3 + $t0 ($t0 == 4)

assuming that $s1 + AddrConstant4 is the memory address of the constant 4.

An alternative that avoids the load instruction is to offer versions of the arith-
metic instructions in which one operand is a constant. This quick add instruction
with one constant operand is called add immediate or addi. To add 4 to register
$53, we just write

addi $s3,$s3,4 J# $s3 = $s3 + 4

Immediate instructions illustrate the third hardware design principle, first
mentioned in the Fallacies and Pitfalls of Chapter 1:

Design Principle 3: Make the common case fast.

2.4 Signed and Unsigned Numbers

87

Constant operands occur frequently, and by including constants inside arithmetic
instructions, operations are much faster and use less energy than if constants were
loaded from memory.

The constant zero has another role, which is to simplify the instruction set by
offering useful variations. For example, the move operation is just an add instruc-
tion where one operand is zero. Hence, MIPS dedicates a register $zero to be hard-
wired to the value zero. (As you might expect, it is register number 0.)

Given the importance of registers, what is the rate of increase in the number of
registers in a chip over time?

1. Very fast: They increase as fast as Moore’s law, which predicts doubling the
number of transistors on a chip every 18 months.

2. Very slow: Since programs are usually distributed in the language of the
computer, there is inertia in instruction set architecture, and so the number
of registers increases only as fast as new instruction sets become viable.

Elaboration: Although the MIPS registers in this book are 32 bits wide, there is a
64-bit version of the MIPS instruction set with 32 64-bit registers. To keep them straight,
they are officially called MIPS-32 and MIPS-64. In this chapter, we use a subset of
MIPS-32. Appendix E shows the differences between MIPS-32 and MIPS-64.

The MIPS offset plus base register addressing is an excellent match to structures
as well as arrays, since the register can point to the beginning of the structure and the
offset can select the desired element. We’ll see such an example in Section 2.13.

The register in the data transfer instructions was originally invented to hold an index
of an array with the offset used for the starting address of an array. Thus, the base
register is also called the index register. Today’s memories are much larger and the
software model of data allocation is more sophisticated, so the base address of the
array is normally passed in a register since it won't fit in the offset, as we shall see.

Since MIPS supports negative constants, there is no need for subtract immediate in
MIPS.

Signed and Unsigned Numbers

First, let’s quickly review how a computer represents numbers. Humans are taught
to think in base 10, but numbers may be represented in any base. For example, 123
base 10 = 1111011 base 2.

Numbers are kept in computer hardware as a series of high and low electronic
signals, and so they are considered base 2 numbers. (Just as base 10 numbers are
called decimal numbers, base 2 numbers are called binary numbers.)

A single digit of a binary number is thus the “atom” of computing, since all
information is composed of binary digits or bifs. This fundamental building block

Check
Yourself

binary digit Also
called binary bit. One
of the two numbers

in base 2, 0 or 1, that
are the components of
information.

Chapter 2 Instructions: Language of the Computer

least significant bit
The rightmost bit in a
MIPS word.

most significant bit
The leftmost bit in a
MIPS word.

can be one of two values, which can be thought of as several alternatives: high or
low, on or off, true or false, or 1 or 0.
Generalizing the point, in any number base, the value of ith digit d is

d x Base'

where i starts at 0 and increases from right to left. This leads to an obvious
way to number the bits in the word: simply use the power of the base for that
bit. We subscript decimal numbers with ten and binary numbers with two. For
example,

101140
represents

(1x 2% +(0x2%) + (1 x2Y) + (1 x 2%,
= (1 x8) +(0x4) + (1 x2) + (I x 1)

= 8 + 0 + 2 + Tien
= 1l¢en
We number the bits 0, 1,2, 3, . . . from right to left in a word. The drawing below

shows the numbering of bits within a MIPS word and the placement of the number
1011

two*

31 30 29 28 27 26 25 24 232221201918 17 16 151413121110 9 8 7 6 5 4 3 2 1 O

‘OOOO‘OOOO‘OO00‘0000‘0000‘0000‘0000‘1011‘

(32 bits wide)

Since words are drawn vertically as well as horizontally, leftmost and rightmost
may be unclear. Hence, the phrase least significant bit is used to refer to the right-
most bit (bit 0 above) and most significant bit to the leftmost bit (bit 31).

The MIPS word is 32 bits long, so we can represent 2*2 different 32-bit patterns.
It is natural to let these combinations represent the numbers from 0 to 232 — 1
(4,294,967,295,,):

0000 0000 0000 0000 0000 0000 0000 0000,,, = Oep
0000 0000 0000 0000 0000 0000 0000 0001, = liey
0000 0000 0000 0000 0000 0000 0000 0010,,, = 2iey

1111 1111 1111 1111 1111 1111 1111 11014, = 4.294,967,293¢.,
1111 1111 1111 1111 1111 1111 1111 11104, = 4.294,967,294¢,,
1111 1111 1111 1111 1111 1111 1111 11114, = 4.294,967,295;,,

That is, 32-bit binary numbers can be represented in terms of the bit value times a
power of 2 (here xi means the ith bit of x):

2.4 Signed and Unsigned Numbers

(x31 x 2°1) + (230 x 2%9) + (x29 x 22%) + ...+ (x1 x 21) + (x0 x 2°)

Keep in mind that the binary bit patterns above are simply representatives of
numbers. Numbers really have an infinite number of digits, with almost all being
0 except for a few of the rightmost digits. We just don’t normally show leading Os.

Hardware can be designed to add, subtract, multiply, and divide these binary
bit patterns. If the number that is the proper result of such operations cannot be
represented by these rightmost hardware bits, overflow is said to have occurred.
It’s up to the programming language, the operating system, and the program to
determine what to do if overflow occurs.

Computer programs calculate both positive and negative numbers, so we need a
representation that distinguishes the positive from the negative. The most obvious
solution is to add a separate sign, which conveniently can be represented in a single
bit; the name for this representation is sign and magnitude.

Alas, sign and magnitude representation has several shortcomings. First, it’s
not obvious where to put the sign bit. To the right? To the left? Early computers
tried both. Second, adders for sign and magnitude may need an extra step to set
the sign because we can’t know in advance what the proper sign will be. Finally, a
separate sign bit means that sign and magnitude has both a positive and a negative
zero, which can lead to problems for inattentive programmers. As a result of these
shortcomings, sign and magnitude representation was soon abandoned.

In the search for a more attractive alternative, the question arose as to what
would be the result for unsigned numbers if we tried to subtract a large number
from a small one. The answer is that it would try to borrow from a string of leading
0s, so the result would have a string of leading 1s.

Given that there was no obvious better alternative, the final solution was to pick
the representation that made the hardware simple: leading Os mean positive, and
leading 1s mean negative. This convention for representing signed binary numbers
is called two’s complement representation:

0000 0000 0000 0000 0000 0000 0000 0000, = Oy
0000 0000 0000 0000 0000 0000 0000 00014, = 1ie,
0000 0000 0000 0000 0000 0000 0000 00104, = 24y

01111111111111111111111111111101,,, = 2.147,483,645,,,
01111111111111111111111111111110,,, = 2.147,483,646,,,
0111111111111111111111111111 11114, = 2,147,483,647,,,
1000 0000 0000 0000 0000 0000 0000 0000,,, = -2,147,483,648,,,
1000 0000 0000 0000 0000 0000 0000 0001,,, = -2,147,483,647,,,
1000 0000 0000 0000 0000 0000 0000 0010,,, = -2,147,483,646,.,

1111111111111111 111111111111 11014,y = ~31ey
1111111111111111 111111111111 11104,y = ~21ep
1111111111111111 111111111111 11104,y = -1t

20

Chapter 2 Instructions: Language of the Computer

The positive half of the numbers, from 0 to 2,147,483,647,., (2% — 1), use the
same representation as before. The following bit pattern (1000 ...0000,,,) rep-
resents the most negative number —2,147,483,648 (=231). 1t is followed by a

ten

declining set of negative numbers: —2,147,483,647,., (1000 ...0001,,,) down to
Loy (1111 ... 1111,,,).
Two’s complement does have one negative number, —2,147,483,648,,,, that has

no corresponding positive number. Such imbalance was also a worry to the inat-
tentive programmer, but sign and magnitude had problems for both the program-
mer and the hardware designer. Consequently, every computer today uses two’s
complement binary representations for signed numbers.

Two’s complement representation has the advantage that all negative numbers
have a 1 in the most significant bit. Consequently, hardware needs to test only this
bit to see if a number is positive or negative (with the number 0 considered posi-
tive). This bit is often called the sign bit. By recognizing the role of the sign bit, we
can represent positive and negative 32-bit numbers in terms of the bit value times
a power of 2:

(331 X =231) + (230 X 230) + (x29 X 22) + .. .+ (x1 X 21) + (x0 X 2°)

The sign bit is multiplied by —2°', and the rest of the bits are then multiplied by
positive versions of their respective base values.

Binary to Decimal Conversion

What is the decimal value of this 32-bit two’s complement number?

1111 1111 1111 1111 1111 1111 1111 11004,

Substituting the number’s bit values into the formula above:

(Ax=2D+(1x22)+(1x22)+...+(1x2%)+(0x2") +(0%x29
=-2% + 2% + 22 +...+ 22 4+ 0 + 0

=-2,147,483,648.. + 2,147,483,644
=—4

ten ten

ten

We'll see a shortcut to simplify conversion from negative to positive soon.

Just as an operation on unsigned numbers can overflow the capacity of hard-
ware to represent the result, so can an operation on two’s complement numbers.
Overflow occurs when the leftmost retained bit of the binary bit pattern is not the
same as the infinite number of digits to the left (the sign bit is incorrect): a 0 on
the left of the bit pattern when the number is negative or a 1 when the number is
positive.

2.4 Signed and Unsigned Numbers

Unlike the numbers discussed above, memory addresses naturally start at 0 and con-
tinue to the largest address. Put another way, negative addresses make no sense. Thus,
programs want to deal sometimes with numbers that can be positive or negative and
sometimes with numbers that can be only positive. Some programming languages
reflect this distinction. C, for example, names the former integers (declared as int in
the program) and the latter unsigned integers (unsigned int). Some C style guides
even recommend declaring the former as signed int to keep the distinction clear.

Let’s examine two useful shortcuts when working with two’s complement
numbers. The first shortcut is a quick way to negate a two’s complement binary
number. Simply invert every 0 to 1 and every 1 to 0, then add one to the result. This
shortcut is based on the observation that the sum of a number and its inverted
representation must be 111 ... 111,,,, which represents —1. Since x + X = —1,
thereforex+x +1=0o0rXx + 1=—x.

two

Negation Shortcut

Negate 2,.,,, and then check the result by negating —2

ten*

2n = 0000 0000 0000 0000 0000 0000 0000 0010

two

Negating this number by inverting the bits and adding one,

11111111 111111111111 1111111111014,

1 two

= I111 111111111111 1111 11111111 11104,
_Zten

Hardware/
Software
Interface

92

Chapter 2 Instructions: Language of the Computer

Going the other direction,
IT11111111111111 1111 1111111111104,
is first inverted and then incremented:

00000000 0000 0000 0000 0000000000014,
1two

= 00000000 000000000000 0000000000104y,
2ten

Our next shortcut tells us how to convert a binary number represented in # bits
to a number represented with more than # bits. For example, the immediate field
in the load, store, branch, add, and set on less than instructions contains a two’s
complement 16-bit number, representing —32,768,., (—2°) to 32,767, (2¥° = 1).
To add the immediate field to a 32-bit register, the computer must convert that
16-bit number to its 32-bit equivalent. The shortcut is to take the most significant
bit from the smaller quantity—the sign bit—and replicate it to fill the new bits of
the larger quantity. The old bits are simply copied into the right portion of the new
word. This shortcut is commonly called sign extension.

Sign Extension Shortcut

Convert 16-bit binary versions of 2, and -2, to 32-bit binary numbers.

ten ten

The 16-bit binary version of the number 2 is

0000 0000 0000 0010, = 2;en

It is converted to a 32-bit number by making 16 copies of the value in the most
significant bit (0) and placing that in the left-hand half of the word. The right
half gets the old value:

0000 0000 0000 0000 0000 0000 0000 00104ye = 2ien

2.4 Signed and Unsigned Numbers

93

Let’s negate the 16-bit version of 2 using the earlier shortcut. Thus,

0000 0000 0000 00104,

becomes

111111111111 11014,

+ ltwo

= 11111111 11111110y,,

Creating a 32-bit version of the negative number means copying the sign bit
16 times and placing it on the left:

1111111111111111111111111111 11101 = ~2yen

This trick works because positive two’s complement numbers really have an
infinite number of 0s on the left and negative two’s complement numbers have an
infinite number of 1s. The binary bit pattern representing a number hides leading
bits to fit the width of the hardware; sign extension simply restores some of them.

Summary

The main point of this section is that we need to represent both positive and neg-
ative integers within a computer word, and although there are pros and cons to any
option, the overwhelming choice since 1965 has been two’s complement.

What is the decimal value of this 64-bit two’s complement number?

111111111111 111111111111 1111 111111111111 11111111 111111111111 1000y,

1) -4,
2) 8.
3) ~16¢en

4) 18,446,744,073,709,551,609;,,

Elaboration: Two’s complement gets its name from the rule that the unsigned sum
of an nbit number and its negative is 2"; hence, the complement or negation of a two’s
complement number x is 2" — x.

Check
Yourself

924

Chapter 2 Instructions: Language of the Computer

one’s complement

A notation that represents
the most negative value
by 10... 000, and the
most positive value by
01...11,, leaving

an equal number of
negatives and positives
but ending up with

two zeros, one positive
(00...00,,) and one
negative (11 ... 11,)-
The term is also used to
mean the inversion of
every bit in a pattern: 0 to
land 1to 0.

biased notation

A notation that represents
the most negative value
by 00...000,,, and

the most positive value
by 11... 11, With 0
typically having the value
10.. .. 004, thereby
biasing the number such
that the number plus the
bias has a nonnegative
representation.

A third alternative representation to two’s complement and sign and magnitude is
called one’s complement. The negative of a one’s complement is found by inverting each
bit, from O to 1 and from 1 to O, which helps explain its name since the complement of
x is 2" — x - 1. It was also an attempt to be a better solution than sign and magnitude,
and several early scientific computers did use the notation. This representation is
similar to two’s complement except that it also has two Os: 00 ... 00,,, is positive
Oand11... 11, is negative 0. The most negative number, 10 . . . 000,,,, represents
-2,147,483,647,,, and so the positives and negatives are balanced. One’s complement
adders did need an extra step to subtract a number, and hence two’s complement
dominates today.

A final notation, which we will look at when we discuss floating point in Chapter 3,
is to represent the most negative value by 00 . . . 000,,, and the most positive value
by 11. .. 11,,,, With O typically having the value 10 . .. 00,,,. This is called a biased
notation, since it biases the number such that the number plus the bias has a nonneg-
ative representation.

Elaboration: For signed decimal numbers, we used “~” to represent negative because
there are no limits to the size of a decimal number. Given a fixed word size, binary and
hexadecimal (see Figure 2.4) bit strings can encode the sign; hence we do not normally
use “+” or “=” with binary or hexadecimal notation.

Representing Instructions in the Computer

We are now ready to explain the difference between the way humans instruct
computers and the way computers see instructions.

Instructions are kept in the computer as a series of high and low electronic
signals and may be represented as numbers. In fact, each piece of an instruction
can be considered as an individual number, and placing these numbers side by side
forms the instruction.

Since registers are referred to by almost all instructions, there must be a con-
vention to map register names into numbers. In MIPS assembly language, registers
$50 to $57 map onto registers 16 to 23, and registers $ t0 to $ t7 map onto registers
8 to 15. Hence, $50 means register 16, $s1 means register 17, $s2 means register
18,..., $t0 means register 8, $t1 means register 9, and so on. We’ll describe the
convention for the rest of the 32 registers in the following sections.

2.5 Representing Instructions in the Computer

95

Translating a MIPS Assembly Instruction into a Machine Instruction

Let’s do the next step in the refinement of the MIPS language as an example.
We'll show the real MIPS language version of the instruction represented
symbolically as

add $t0,$s1,$s2

first as a combination of decimal numbers and then of binary numbers.

The decimal representation is

\ 0 . 1r | 18] 8 \ 0 32|

Each of these segments of an instruction is called a field. The first and last fields
(containing 0 and 32 in this case) in combination tell the MIPS computer that
this instruction performs addition. The second field gives the number of the reg-
ister that is the first source operand of the addition operation (17 = $s1), and the
third field gives the other source operand for the addition (18 = $s2). The fourth
field contains the number of the register that is to receive the sum (8 = $t0). The
fifth field is unused in this instruction, so it is set to 0. Thus, this instruction adds
register $51 to register $s2 and places the sum in register $t0.

This instruction can also be represented as fields of binary numbers as
opposed to decimal:

| 000000 |
6 bits

10001 |
5 bits

10010
5 bits

01000
5 bits

00000 |
5 bits

100000 |
6 bits

This layout of the instruction is called the instruction format. As you can see
from counting the number of bits, this MIPS instruction takes exactly 32 bits—the
same size as a data word. In keeping with our design principle that simplicity favors
regularity, all MIPS instructions are 32 bits long.

To distinguish it from assembly language, we call the numeric version of instruc-
tions machine language and a sequence of such instructions machine code.

It would appear that you would now be reading and writing long, tedious strings
of binary numbers. We avoid that tedium by using a higher base than binary that
converts easily into binary. Since almost all computer data sizes are multiples of 4,
hexadecimal (base 16) numbers are popular. Since base 16 is a power of 2, we can
trivially convert by replacing each group of four binary digits by a single hexadeci-
mal digit, and vice versa. Figure 2.4 converts between hexadecimal and binary.

instruction format

A form of representation
of an instruction
composed of fields of
binary numbers.

machine language
Binary representation
used for communication
within a computer system.

hexadecimal
Numbers in base 16.

Chapter 2 Instructions: Language of the Computer

Hexadecimal m Hexadecimal m Hexadecimal m Hexadecimal m

Ohex 00004y, Anex 010040 8hex 1000two Chex 110040
Tpex 00040 Bhex 010140 Fex 100140 dhex 110240
Zhex 00104y Bhex 011040 8hex 1010two Chex 111040
3hex 001140 Thex 011140 Bhex 101140 frex 111140

FIGURE 2.4 The hexadecimal-binary conversion table. Just replace one hexadecimal digit by the corresponding four binary
digits, and vice versa. If the length of the binary number is not a multiple of 4, go from right to left.

Because we frequently deal with different number bases, to avoid confusion we
will subscript decimal numbers with fen, binary numbers with two, and hexadeci-
mal numbers with hex. (If there is no subscript, the default is base 10.) By the way,
C and Java use the notation Oxnnnn for hexadecimal numbers.

Binary to Hexadecimal and Back

m Convert the following hexadecimal and binary numbers into the other base:
eca8 6420,

0001 0011 0101 0111 1001 1011 1101 11114,

m Using Figure 2.4, the answer is just a table lookup one way:

eca8 642040y

TN

1110 1100 1010 1000 0110 0100 0010 00004,
And then the other direction:
0001 0011 0101 0111 1001 1011 1101 11114,

N\

1357 9bdf ey

MIPS Fields

MIPS fields are given names to make them easier to discuss:

‘ op ‘ rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

2.5 Representing Instructions in the Computer

97

Here is the meaning of each name of the fields in MIPS instructions:

B op: Basic operation of the instruction, traditionally called the opcode.
rs: The first register source operand.
rt: The second register source operand.

rd: The register destination operand. It gets the result of the operation.

shamt: Shift amount. (Section 2.6 explains shift instructions and this term; it
will not be used until then, and hence the field contains zero in this section.)

funct: Function. This field, often called the function code, selects the specific
variant of the operation in the op field.

A problem occurs when an instruction needs longer fields than those shown
above. For example, the load word instruction must specify two registers and a
constant. If the address were to use one of the 5-bit fields in the format above,
the constant within the load word instruction would be limited to only 2° or 32.
This constant is used to select elements from arrays or data structures, and it often
needs to be much larger than 32. This 5-bit field is too small to be useful.

Hence, we have a conflict between the desire to keep all instructions the same
length and the desire to have a single instruction format. This leads us to the final
hardware design principle:

Design Principle 4: Good design demands good compromises.

The compromise chosen by the MIPS designers is to keep all instructions the
same length, thereby requiring different kinds of instruction formats for different
kinds of instructions. For example, the format above is called R-type (for register)
or R-format. A second type of instruction format is called I-type (for immediate)
or I-format and is used by the immediate and data transfer instructions. The fields
of I-format are

‘ op ‘ rs ‘ rt ‘ constant or address ‘

6 bits 5 bits 5 bits 16 bits

The 16-bit address means a load word instruction can load any word within a

region of +21° or 32,768 bytes (£2"3 or 8192 words) of the address in the base

register rs. Similarly, add immediate is limited to constants no larger than +2'°. We

see that more than 32 registers would be difficult in this format, as the rs and rt

fields would each need another bit, making it harder to fit everything in one word.
Let’s look at the load word instruction from page 83:

Tw $t0,32($s3) # Temporary reg $t0 gets A[8]

opcode The field that
denotes the operation and
format of an instruction.

Chapter 2 Instructions: Language of the Computer

Here, 19 (for $s3) is placed in the rs field, 8 (for $t0) is placed in the rt field, and
32 is placed in the address field. Note that the meaning of the rt field has changed
for this instruction: in a load word instruction, the rt field specifies the destination
register, which receives the result of the load.

Although multiple formats complicate the hardware, we can reduce the complex-
ity by keeping the formats similar. For example, the first three fields of the R-type and
I-type formats are the same size and have the same names; the length of the fourth
field in I-type is equal to the sum of the lengths of the last three fields of R-type.

In case you were wondering, the formats are distinguished by the values in the
first field: each format is assigned a distinct set of values in the first field (op) so
that the hardware knows whether to treat the last half of the instruction as three
fields (R-type) or as a single field (I-type). Figure 2.5 shows the numbers used in
each field for the MIPS instructions covered here.

|__instruction | Format | op | rs | rt | rd | shamt | funct | address |
add 0 reg reg reg 0 n.a

R 32ten
sub (subtract) R 0 reg reg reg 0 34, n.a.
add immediate I 8ten reg reg n.a. n.a. n.a. constant
1w (load word) I 35, | reg reg n.a. n.a. n.a. address
Sw (store word) I 43y, | reg reg n.a. n.a. n.a. address

FIGURE 2.5 MIPS instruction encoding. In the table above, “reg” means a register number between
0 and 31, “address” means a 16-bit address, and “n.a.” (not applicable) means this field does not appear in this
format. Note that add and sub instructions have the same value in the op field; the hardware uses the funct
field to decide the variant of the operation: add (32) or subtract (34).

Translating MIPS Assembly Language into Machine Language

We can now take an example all the way from what the programmer writes to
what the computer executes. If $t1 has the base of the array A and $s2 corre-
sponds to h, the assignment statement

A[300] = h + A[3001;
is compiled into

Tw $t0,1200($t1)# Temporary reg $t0 gets A[300]
add $t0,$s2,$t0 4 Temporary reg $t0 gets h + A[300]
Sw $t0,1200($t1) # Stores h + A[300] back into A[300]

What is the MIPS machine language code for these three instructions?

2.5 Representing Instructions in the Computer

For convenience, let’s first represent the machine language instructions using
decimal numbers. From Figure 2.5, we can determine the three machine lan-
guage instructions:

address/
shamt
35 9 8

1200
0 18 8 8 \ 0 \ 32
43 9 8 1200

The 1w instruction is identified by 35 (see Figure 2.5) in the first field (op).
Thebase register 9 ($t1) is specified in the second field (rs), and the destination
register 8 ($t0) is specified in the third field (rt). The offset to select AL300]
(1200 =300 x 4) is found in the final field (address).

The add instruction that follows is specified with 0 in the first field (op) and
32 in the last field (funct). The three register operands (18, 8, and 8) are found
in the second, third, and fourth fields and correspond to $s2, $t0, and $t0.

The sw instruction is identified with 43 in the first field. The rest of this final
instruction is identical to the 1w instruction.

Since 1200,,, = 0000 0100 1011 0000y, the binary equivalent to the decimal

form is:
100011 01001 01000 0000 0100 1011 0000
000000 10010 01000 01000 00000 100000
101011 01001 01000 0000 0100 1011 0000

Note the similarity of the binary representations of the first and last instruc-
tions. The only difference is in the third bit from the left, which is highlighted here.

Figure 2.6 summarizes the portions of MIPS machine language described in this
section. As we shall see in Chapter 4, the similarity of the binary representations
of related instructions simplifies hardware design. These similarities are another
example of regularity in the MIPS architecture.

100

Chapter 2

Instructions: Language of the Computer

MIPS machine language

mm

R add $s1,$s2,9$s3
sub R 0 18 19 17 0 34 sub $s1,%$s52,$s3
addi | 8 18 17 100 addi $s1,$s2,100
Iw | 35 18 17 100 w $s1,100($s2)
sw | 43 18 17 100 sw $s51,100(%$s2)
Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits All MIPS instructions are 32 bits long
R-format R op rs rt rd shamt funct Arithmetic instruction format
I-format | op rs rt address Data transfer format

FIGURE 2.6 MIPS architecture revealed through Section 2.5. The two MIPS instruction formats so far are R and I. The first
16 bits are the same: both contain an op field, giving the base operation; an rs field, giving one of the sources; and the rt field, which specifies
the other source operand, except for load word, where it specifies the destination register. R-format divides the last 16 bits into an rd field,
specifying the destination register; the shamt field, which Section 2.6 explains; and the funct field, which specifies the specific operation of
R-format instructions. I-format combines the last 16 bits into a single address field.

the BIG

Picture

Today’s computers are built on two key principles:

1. Instructions are represented as numbers.

2. Programs are stored in memory to be read or written, just like numbers.

These principles lead to the stored-program concept; its invention let the
computing genie out of its bottle. Figure 2.7 shows the power of the concept;
specifically, memory can contain the source code for an editor program, the
corresponding compiled machine code, the text that the compiled program is
using, and even the compiler that generated the machine code.

One consequence of instructions as numbers is that programs are often
shipped as files of binary numbers. The commercial implication is that
computers can inherit ready-made software provided they are compatible
with an existing instruction set. Such “binary compatibility” often leads
industry to align around a small number of instruction set architectures.

2.5 Representing Instructions in the Computer

101

Accounting program
(machine code)

Editor program
(machine code)

C compiler
(machine code)

Processor

Source code in C
for editor program

FIGURE 2.7 The stored-program concept. Stored programs allow a computer that performs
accounting to become, in the blink of an eye, a computer that helps an author write a book. The switch hap-
pens simply by loading memory with programs and data and then telling the computer to begin executing at
a given location in memory. Treating instructions in the same way as data greatly simplifies both the memory
hardware and the software of computer systems. Specifically, the memory technology needed for data can
also be used for programs, and programs like compilers, for instance, can translate code written in a notation
far more convenient for humans into code that the computer can understand.

What MIPS instruction does this represent? Chose from one of the four options
below.

o | 8 \ 9 \ 10 \ 0 I

1. sub $t0, $t1, $t2
add $t2, $t0, $tl
sub $te2, $tl, $tO
sub $t2, $t0, $ti

i

Check
Yourself

102

Chapter 2 Instructions: Language of the Computer

“Contrariwise,”
continued Tweedledee,
“if it was so, it might
be; and if it were so,

it would be; but as it
isn’t, it ain’t. That’s
logic.”

Lewis Carroll, Alice’s

Adventures in
Wonderland, 1865

Logical Operations

Although the first computers operated on full words, it soon became clear that it
was useful to operate on fields of bits within a word or even on individual bits.
Examining characters within a word, each of which is stored as 8 bits, is one
example of such an operation (see Section 2.9). It follows that operations were added
to programming languages and instruction set architectures to simplify, among
other things, the packing and unpacking of bits into words. These instructions
are called logical operations. Figure 2.8 shows logical operations in C, Java, and
MIPS.

Logical operations MIPS instructions
<K <K

Shift left sl

Shift right >> >>> sri
Bit-by-bit AND & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

FIGURE 2.8 C and Java logical operators and their corresponding MIPS instructions. MIPS
implements NOT using a NOR with one operand being zero.

The first class of such operations is called shifts. They move all the bits in a word
to the left or right, filling the emptied bits with 0s. For example, if register $s0
contained

0000 0000 0000 0000 0000 0000 0000 1001 ;,0= 9yep

and the instruction to shift left by 4 was executed, the new value would be:

0000 0000 0000 0000 0000 0000 1001 0000;,,= 1444,

The dual of a shift left is a shift right. The actual name of the two MIPS shift
instructions are called shift left logical (s 11) and shift right logical (sr1). The following

2.6 Logical Operations

103

instruction performs the operation above, assuming that the original value was in
register $50 and the result should go in register $t2:

s11 $t2,$s0,4 4 reg $t2 = reg $s0 << 4 bits

We delayed explaining the shamt field in the R-format. Used in shift instructions,
it stands for shift amount. Hence, the machine language version of the instruction
above is

op rs rt rd shamt funct

The encoding of s11 is 0 in both the op and funct fields, rd contains 10 (register
$t2), rt contains 16 (register $s0), and shamt contains 4. The rs field is unused
and thus is set to 0.

Shift left logical provides a bonus benefit. Shifting left by i bits gives the
same result as multiplying by 2/, just as shifting a decimal number by i digits is
equivalent to multiplying by 10". For example, the above s11 shifts by 4, which
gives the same result as multiplying by 2* or 16. The first bit pattern above
represents 9, and 9 X 16 = 144, the value of the second bit pattern.

Another useful operation that isolates fields is AND. (We capitalize the word
to avoid confusion between the operation and the English conjunction.) AND is a
bit-by-bit operation that leaves a 1 in the result only if both bits of the operands are
1. For example, if register $t2 contains

0000 0000 0000 0000 000011011100 00004,,
and register $t1 contains
0000 0000 0000 00000011 1100 0000 00004,

then, after executing the MIPS instruction

and $t0,$t1,$t2 # reg $t0 = reg $t1 & reg $t2

the value of register $t0 would be

0000 0000 0000 0000 0000 1100 0000 00004,

AND A logical bit-by-
bit operation with two
operands that calculates
a1l onlyif thereisa 1 in
both operands.

104

Chapter 2 Instructions: Language of the Computer

OR A logical bit-by-

bit operation with two
operands that calculates
a 1 if thereisa 1 in either
operand.

NOT A logical bit-by-

bit operation with one
operand that inverts the
bits; that is, it replaces
every 1 with a 0, and every
Owithal.

NOR A logical bit-by-
bit operation with two
operands that calculates
the NOT of the OR of the
two operands. That is, it
calculates a 1 only if there
is a 0 in both operands.

As you can see, AND can apply a bit pattern to a set of bits to force Os where there
is a 0 in the bit pattern. Such a bit pattern in conjunction with AND is traditionally
called a mask, since the mask “conceals” some bits.

To place a value into one of these seas of 0s, there is the dual to AND, called OR.
It is a bit-by-bit operation that places a 1 in the result if either operand bitisa 1. To
elaborate, if the registers $t1 and $ t 2 are unchanged from the preceding example,
the result of the MIPS instruction

or $t0,$t1,$t2 # reg $t0 = reg $t1 | reg $t2

is this value in register $t0:

0000 0000 0000 000000111101 11000000+,

The final logical operation is a contrarian. NOT takes one operand and
places a 1 in the result if one operand bit is a 0, and vice versa. In keeping with the
three-operand format, the designers of MIPS decided to include the instruction
NOR (NOT OR) instead of NOT. If one operand is zero, then it is equivalent to
NOT: ANOR 0=NOT (A OR0) =NOT (A).

If the register $t1 is unchanged from the preceding example and register $t3
has the value 0, the result of the MIPS instruction

nor $t0,$t1,$t3 # reg $t0 = ~ (reg $t1 | reg $t3)

is this value in register $t0:

11111111 1111111111000011 1111 1111,,

Figure 2.8 above shows the relationship between the C and Java operators and
the MIPS instructions. Constants are useful in AND and OR logical operations
as well as in arithmetic operations, so MIPS also provides the instructions and
immediate (andi) and or immediate (or1i). Constants are rare for NOR, since its
main use is to invert the bits of a single operand; thus, the MIPS instruction set
architecture has no immediate version.

Elaboration: The full MIPS instruction set also includes exclusive or (XOR), which
sets the bit to 1 when two corresponding bits differ, and to O when they are the same.
C allows bit fields or fields to be defined within words, both allowing objects to be

2.7 Instructions for Making Decisions

105

packed within a word and to match an externally enforced interface such as an 1/0
device. All fields must fit within a single word. Fields are unsigned integers that can be
as short as 1 bit. C compilers insert and extract fields using logical instructions in MIPS:
and,or,sll,and srl.

Which operations can isolate a field in a word?
1. AND
2. A shift left followed by a shift right

Instructions for Making Decisions

What distinguishes a computer from a simple calculator is its ability to make deci-
sions. Based on the input data and the values created during computation, different
instructions execute. Decision making is commonly represented in programming
languages using the if statement, sometimes combined with go fo statements and
labels. MIPS assembly language includes two decision-making instructions, simi-
lar to an if statement with a go fo. The first instruction is

beq registerl, register2, L1

This instruction means go to the statement labeled L1 if the value in registerl
equals the value in register?2. The mnemonic beq stands for branch if equal. The
second instruction is

bne registerl, register?, L1

It means go to the statement labeled L1 if the value in registerl does not equal
the value in register2. The mnemonic bne stands for branch if not equal. These
two instructions are traditionally called conditional branches.

Check
Yourself

The utility of an
automatic computer

lies in the possibility of
using a given sequence of
instructions repeatedly,
the number of times it is
iterated being dependent
upon the results of the
computation. ... This
choice can be made

to depend upon the

sign of a number

(zero being reckoned

as plus for machine
purposes). Consequently,
we introduce an
[instruction] (the
conditional transfer
[instruction]) which will,
depending on the sign of
a given number, cause
the proper one of two
routines to be executed.

Burks, Goldstine, and
von Neumann, 1947

conditional branch

An instruction that
requires the comparison
of two values and that
allows for a subsequent
transfer of control to

a new address in the
program based on

the outcome of the
comparison.

106

Chapter 2 Instructions: Language of the Computer

Compiling if-then-else into Conditional Branches

In the following code segment, f, g, h, 1, and J are variables. If the five vari-
ables f through j correspond to the five registers $ s0 through $s4, what is the
compiled MIPS code for this C if statement?

if (i ==7J3) f=g+ h; else f =g - h;

Figure 2.9 is a flowchart of what the MIPS code should do. The first expres-
sion compares for equality, so it would seem that we would want the branch if
registers are equal instruction (beq). In general, the code will be more efficient
if we test for the opposite condition to branch over the code that performs the
subsequent then part of the if (the label E1se is defined below) and so we use
the branch if registers are not equal instruction (bne):

bne $s3,$s4,E1se # go to Else if i # j

The next assignment statement performs a single operation, and if all the
operands are allocated to registers, it is just one instruction:

add $s0,$s1,$s2 ## f =g+ h (skipped if i = j)

We now need to go to the end of the if statement. This example introduces
another kind of branch, often called an unconditional branch. This instruc-
tion says that the processor always follows the branch. To distinguish between
conditional and unconditional branches, the MIPS name for this type of
instruction is jump, abbreviated as j (the label Exit is defined below).

J Exit ## go to Exit

The assignment statement in the else portion of the if statement can again
be compiled into a single instruction. We just need to append the label E1se
to this instruction. We also show the label Exit that is after this instruction,
showing the end of the if-then-else compiled code:

Else:sub $s0,$s1,$s2 # f =g - h (skipped if i = j)
Exit:

2.7 Instructions for Making Decisions 107

Else:

f=g+h f=g-h

Exit:

FIGURE 2.9 lllustration of the options in the if statement above. The left box corresponds to
the then part of the if statement, and the right box corresponds to the else part.

Notice that the assembler relieves the compiler and the assembly language pro-
grammer from the tedium of calculating addresses for branches, just as it does for
calculating data addresses for loads and stores (see Section 2.12).

Compilers frequently create branches and labels where they do not appear in Hardware /
the programming language. Avoiding the burden of writing explicit labels and Software

branches is one benefit of writing in high-level programming languages and is a
reason coding is faster at that level. Interface

Loops

Decisions are important both for choosing between two alternatives—found in if
statements—and for iterating a computation—found in loops. The same assembly
instructions are the building blocks for both cases.

Compiling a while Loop in C
Here is a traditional loop in C: m
while (savel[i] == k)
i +=1;

Assume that i and k correspond to registers $s3 and $s5 and the base of the
array save is in $s6. What is the MIPS assembly code corresponding to this
C segment?

108

Chapter 2 Instructions: Language of the Computer

The first step is to load save[7] into a temporary register. Before we can load
save[1]into a temporary register, we need to have its address. Before we can
add 1 to the base of array save to form the address, we must multiply the
index 1 by 4 due to the byte addressing problem. Fortunately, we can use shift
left logical, since shifting left by 2 bits multiplies by 2 or 4 (see page 103 in the
prior section). We need to add the label Loop to it so that we can branch back
to that instruction at the end of the loop:

Loop: sl11 $t1,$s3,2 # Temp reg $t1 =1 * 4
To get the address of save[1], weneed toadd $t1 and the base of save in $s6:
add $t1,$tl1,$s6 # $t1 = address of savel[i]
Now we can use that address to load save[1] into a temporary register:
Tw $t0,0($t1) ## Temp reg $t0 = savel[i]
The next instruction performs the loop test, exiting if save[i] = k:
bne $t0,$s5, Exit # go to Exit if saveli] # k
The next instruction adds 1 to i:
addi $s3,$s3,1 #Fi=1+1

The end of the loop branches back to the while test at the top of the loop. We
just add the Exit label after it, and we’re done:

j Loop # go to Loop
Exit:

(See the exercises for an optimization of this sequence.)

Hardware/
Software
Interface

basic block A sequence
of instructions without
branches (except possibly
at the end) and without
branch targets or branch
labels (except possibly at
the beginning).

Such sequences of instructions that end in a branch are so fundamental to compiling
that they are given their own buzzword: a basic block is a sequence of instructions
without branches, except possibly at the end, and without branch targets or branch
labels, except possibly at the beginning. One of the first early phases of compilation is
breaking the program into basic blocks.

The test for equality or inequality is probably the most popular test, but some-
times it is useful to see if a variable is less than another variable. For example, a for
loop may want to test to see if the index variable is less than 0. Such comparisons are
accomplished in MIPS assembly language with an instruction that compares two

2.7 Instructions for Making Decisions

109

registers and sets a third register to 1 if the first is less than the second; otherwise, it is
set to 0. The MIPS instruction is called set on less than, or s1t. For example,

s1t $t0, $s3, $s4 f $t0 =1 if $s3 < $s4

means that register $t0 is set to 1 if the value in register $s3 is less than the value
in register $s4; otherwise, register $t0 is set to 0.

Constant operands are popular in comparisons, so there is an immediate ver-
sion of the set on less than instruction. To test if register $52 is less than the con-
stant 10, we can just write

slti $t0,%$s2,10 # $t0 =1 if $s2 < 10

MIPS compilers use the s1t, s1ti, beq, bne, and the fixed value of 0 (always
available by reading register $zero) to create all relative conditions: equal, not
equal, less than, less than or equal, greater than, greater than or equal.

Heeding von Neumann’s warning about the simplicity of the “equipment,” the
MIPS architecture doesn’t include branch on less than because it is too compli-
cated; either it would stretch the clock cycle time or it would take extra clock cycles
per instruction. Two faster instructions are more useful.

Hardware/
Software
Interface

Comparison instructions must deal with the dichotomy between signed and
unsigned numbers. Sometimes a bit pattern with a 1 in the most significant bit
represents a negative number and, of course, is less than any positive number,
which must have a 0 in the most significant bit. With unsigned integers, on the
other hand, a 1 in the most significant bit represents a number that is larger than
any that begins with a 0. (We’ll soon take advantage of this dual meaning of the
most significant bit to reduce the cost of the array bounds checking.)

MIPS offers two versions of the set on less than comparison to handle these
alternatives. Set on less than (s1t) and set on less than immediate (s1t1) work with
signed integers. Unsigned integers are compared using set on less than unsigned
(s1tu) and set on less than immediate unsigned (s1tiu).

Hardware/
Software
Interface

110 Chapter 2 Instructions: Language of the Computer

Signed versus Unsigned Comparison
m Suppose register $s0 has the binary number

1111 1111 1111 1111 1111 1111 1111 11114,
and that register $s1 has the binary number

0000 0000 0000 0000 0000 0000 0000 0001y,

What are the values of registers $£0 and $t1 after these two instructions?

slt $t0, $s0, $s1 # signed comparison
sltu $t1, $s0, $s1 # unsigned comparison

The value in register $s0 represents —1,,, if it is an integer and 4,294,967,295,.,
m if it is an unsigned integer. The value in register $s1 represents 1,., in either
case. Then register $t0 has the value 1, since —1,, < l,.,, and register $t1 has
the value 0, since 4,294,967,295,. > 1

ten

ten ten®

Treating signed numbers as if they were unsigned gives us a low cost way of
checking if 0 < x < y, which matches the index out-of-bounds check for arrays. The
key is that negative integers in two’s complement notation look like large numbers
in unsigned notation; that is, the most significant bit is a sign bit in the former
notation but a large part of the number in the latter. Thus, an unsigned comparison
of x < y also checks if x is negative as well as if x is less than y.

Bounds Check Shortcut
Use this shortcut to reduce an index-out-of-bounds check: jump to
IndexOutOfBounds if $s1 > $t2 orif $s1 is negative.
m The checking code just uses s1tu to do both checks:
sltu $t0,$s1,$t2 # $t0=0 if $sl>=length or $s1<0

beq $t0,$zero,Index0utOfBounds #if bad, goto Error

2.7 Instructions for Making Decisions

111

Case/Switch Statement

Most programming languages have a case or switch statement that allows the pro-
grammer to select one of many alternatives depending on a single value. The simplest
way to implement switch is via a sequence of conditional tests, turning the switch
statement into a chain of if-then-else statements.

Sometimes the alternatives may be more efficiently encoded as a table of
addresses of alternative instruction sequences, called a jump address table or jump
table, and the program needs only to index into the table and then jump to the
appropriate sequence. The jump table is then just an array of words containing
addresses that correspond to labels in the code. The program loads the appropriate
entry from the jump table into a register. It then needs to jump using the address
in the register. To support such situations, computers like MIPS include a jump
register instruction (jr), meaning an unconditional jump to the address specified
in a register. Then it jumps to the proper address using this instruction, which is
described in the next section.

jump address table
Also called jump table.
A table of addresses of
alternative instruction
sequences.

Although there are many statements for decisions and loops in programming
languages like C and Java, the bedrock statement that implements them at the
instruction set level is the conditional branch.

Elaboration: If you have heard about delayed branches, covered in Chapter 4, don't
worry: the MIPS assembler makes them invisible to the assembly language programmer.

I. C has many statements for decisions and loops, while MIPS has few. Which of
the following do or do not explain this imbalance? Why?

1. More decision statements make code easier to read and understand.

2. Fewer decision statements simplify the task of the underlying layer that is
responsible for execution.

3. More decision statements mean fewer lines of code, which generally reduces
coding time.

4. More decision statements mean fewer lines of code, which generally results
in the execution of fewer operations.

Hardware/
Software
Interface

Check
Yourself

112

Chapter 2 Instructions: Language of the Computer

procedure A stored
subroutine that performs
a specific task based on
the parameters with
which it is provided.

I1. Why does C provide two sets of operators for AND (& and &&) and two sets of
operators for OR (| and ||), while MIPS doesn’t?

1. Logical operations AND and OR implement & and |, while conditional
branches implement && and ||.

2. The previous statement has it backwards: && and || correspond to logical
operations, while & and | map to conditional branches.

3. They are redundant and mean the same thing: && and || are simply inherited
from the programming language B, the predecessor of C.

Supporting Procedures in Computer
Hardware

A procedure or function is one tool programmers use to structure programs, both
to make them easier to understand and to allow code to be reused. Procedures
allow the programmer to concentrate on just one portion of the task at a time;
parameters act as an interface between the procedure and the rest of the program
and data, since they can pass values and return results. We describe the equivalent
to procedures in Java in Section 2.15 on the CD, but Java needs everything from a
computer that C needs.

You can think of a procedure like a spy who leaves with a secret plan, acquires
resources, performs the task, covers his or her tracks, and then returns to the point
of origin with the desired result. Nothing else should be perturbed once the mission
is complete. Moreover, a spy operates on only a “need to know” basis, so the spy
can’t make assumptions about his employer.

Similarly, in the execution of a procedure, the program must follow these six
steps:

1. Put parameters in a place where the procedure can access them.
Transfer control to the procedure.
Acquire the storage resources needed for the procedure.

2

3

4. Perform the desired task.

5. Put the result value in a place where the calling program can access it.
6

Return control to the point of origin, since a procedure can be called from
several points in a program.

2.8 Supporting Procedures in Computer Hardware

113

As mentioned above, registers are the fastest place to hold data in a computer,
so we want to use them as much as possible. MIPS software follows the following
convention for procedure calling in allocating its 32 registers:

B $a0-%$a3: four argument registers in which to pass parameters
m $v0-$v1: two value registers in which to return values

B $ra: one return address register to return to the point of origin

In addition to allocating these registers, MIPS assembly language includes an
instruction just for the procedures: it jumps to an address and simultaneously
saves the address of the following instruction in register $ra. The jump-and-link
instruction (jal) is simply written

jal ProcedureAddress
The link portion of the name means that an address or link is formed that points to
the calling site to allow the procedure to return to the proper address. This “link,”
stored in register $ra (register 31), is called the return address. The return address
is needed because the same procedure could be called from several parts of the
program.

To support such situations, computers like MIPS use jump register instruction
(jr), introduced above to help with case statements, meaning an unconditional
jump to the address specified in a register:

jr $ra

Jump register instruction jumps to the address stored in register $ra—which is
just what we want. Thus, the calling program, or caller, puts the parameter values
in $a0—$a3 and uses jal X to jump to procedure X (sometimes named the callee).
The callee then performs the calculations, places the results in $v0 and $v1, and
returns control to the caller using jr $ra.

Implicit in the stored-program idea is the need to have a register to hold the
address of the current instruction being executed. For historical reasons, this reg-
ister is almost always called the program counter, abbreviated PC in the MIPS
architecture, although a more sensible name would have been instruction address
register. The jal instruction actually saves PC + 4 in register $ra to link to the
following instruction to set up the procedure return.

jump-and-link
instruction An
instruction that jumps
to an address and
simultaneously saves the
address of the following
instruction in a register
($ra in MIPS).

return address A link to
the calling site that allows
a procedure to return

to the proper address;

in MIPS it is stored in
register $ra.

caller The program that
instigates a procedure and
provides the necessary
parameter values.

callee A procedure that
executes a series of stored
instructions based on
parameters provided by
the caller and then returns
control to the caller.

program counter

(PC) The register
containing the address of
the instruction in the pro-
gram being executed.

114

Chapter 2 Instructions: Language of the Computer

stack A data structure
for spilling registers
organized as a last-in-
first-out queue.

stack pointer A value
denoting the most
recently allocated address
in a stack that shows
where registers should

be spilled or where old
register values can be
found. In MIPS, it is
register $sp.

push Add element to
stack.

pop Remove element
from stack.

Using More Registers

Suppose a compiler needs more registers for a procedure than the four argument
and two return value registers. Since we must cover our tracks after our mission
is complete, any registers needed by the caller must be restored to the values that
they contained before the procedure was invoked. This situation is an example in
which we need to spill registers to memory, as mentioned in the Hardware/Software
Interface section.

The ideal data structure for spilling registers is a stack—a last-in-first-out
queue. A stack needs a pointer to the most recently allocated address in the stack
to show where the next procedure should place the registers to be spilled or where
old register values are found. The stack pointer is adjusted by one word for each
register that is saved or restored. MIPS software reserves register 29 for the stack
pointer, giving it the obvious name $sp. Stacks are so popular that they have their
own buzzwords for transferring data to and from the stack: placing data onto the
stack is called a push, and removing data from the stack is called a pop.

By historical precedent, stacks “grow” from higher addresses to lower addresses.
This convention means that you push values onto the stack by subtracting from
the stack pointer. Adding to the stack pointer shrinks the stack, thereby popping
values off the stack.

Compiling a C Procedure That Doesn’t Call Another Procedure
Let’s turn the example on page 79 from Section 2.2 into a C procedure:

int lTeaf_example (int g, int h, int i, int j)
{
int f;

f =10+ h) -+ J);
return f;
}

What is the compiled MIPS assembly code?

The parameter variables g, h, 7, and j correspond to the argument registers
$a0, $al, $a2, and $a3, and f corresponds to $s0. The compiled program
starts with the label of the procedure:

leaf_example:

2.8 Supporting Procedures in Computer Hardware 115

The next step is to save the registers used by the procedure. The C assignment
statement in the procedure body is identical to the example on page 79, which
uses two temporary registers. Thus, we need to save three registers: $s0, $t0,
and $t1. We “push” the old values onto the stack by creating space for three
words (12 bytes) on the stack and then store them:

addi $sp, $sp, -12 ## adjust stack to make room for 3 items

sw o $tl, 8($sp) ## save register $tl1 for use afterwards
sw o $t0, 4($sp) ## save register $t0 for use afterwards
sw $s0, 0($sp) ## save register $s0 for use afterwards

Figure 2.10 shows the stack before, during, and after the procedure call.
The next three statements correspond to the body of the procedure, which
follows the example on page 79:

add $t0,%a0,%al # register $t0 contains g + h
add $t1,%a2,%a3 # register $tl contains i + j
sub $s0,$t0, $t1 # f = $t0 - $tl, which is (g + h)-(i + J)

To return the value of f, we copy it into a return value register:

add $v0,%$s0,%$zero # returns f ($v0 = $s0 + 0)

Before returning, we restore the three old values of the registers we saved by
“popping” them from the stack:

Tw $s0, 0($sp) 4 restore register $s0 for caller
Tw $t0, 4($sp) 4 restore register $t0 for caller
Tw $tl, 8($sp) # restore register $t1 for caller
addi $sp,$sp,12 # adjust stack to delete 3 items

The procedure ends with a jump register using the return address:

jr $ra # jump back to calling routine

In the previous example, we used temporary registers and assumed their old
values must be saved and restored. To avoid saving and restoring a register whose
value is never used, which might happen with a temporary register, MIPS software
separates 18 of the registers into two groups:

B $t0-$t9:ten temporary registers that are not preserved by the callee (called
procedure) on a procedure call

B $50-$s7:eight saved registers that must be preserved on a procedure call (if
used, the callee saves and restores them)

This simple convention reduces register spilling. In the example above, since the
caller does not expect registers $t0 and $t1 to be preserved across a procedure call,

116

Chapter 2 Instructions: Language of the Computer

we can drop two stores and two loads from the code. We still must save and restore
$50, since the callee must assume that the caller needs its value.

High address

$sp— $sp—

Contents of register $t1

Contents of register $t0

$sp— |Contents of register $s0

Low address
a. b. c.

FIGURE 2.10 The values of the stack pointer and the stack (a) before, (b) during, and (c)
after the procedure call. The stack pointer always points to the “top” of the stack, or the last word in
the stack in this drawing.

Nested Procedures

Procedures that do not call others are called leaf procedures. Life would be simple if
all procedures were leaf procedures, but they aren’t. Just as a spy might employ other
spies as part of a mission, who in turn might use even more spies, so do procedures
invoke other procedures. Moreover, recursive procedures even invoke “clones” of
themselves. Just as we need to be careful when using registers in procedures, more
care must also be taken when invoking nonleaf procedures.

For example, suppose that the main program calls procedure A with an argument
of 3, by placing the value 3 into register $a0 and then using jal A. Then suppose
that procedure A calls procedure B via jal B with an argument of 7, also placed in
$a0. Since A hasn’t finished its task yet, there is a conflict over the use of register
$a0. Similarly, there is a conflict over the return address in register $ra, since it
now has the return address for B. Unless we take steps to prevent the problem, this
conflict will eliminate procedure A’s ability to return to its caller.

One solution is to push all the other registers that must be preserved onto
the stack, just as we did with the saved registers. The caller pushes any argument
registers ($a0—%$a3) or temporary registers ($t0-$t9) that are needed after
the call. The callee pushes the return address register $ra and any saved registers
($50—$57) used by the callee. The stack pointer $sp is adjusted to account for the
number of registers placed on the stack. Upon the return, the registers are restored
from memory and the stack pointer is readjusted.

2.8 Supporting Procedures in Computer Hardware 117

Compiling a Recursive C Procedure, Showing Nested Procedure
Linking

Let’s tackle a recursive procedure that calculates factorial: m
int fact (int n)

{
if (n < 1) return (1);
else return (n * fact(n - 1));
}

What is the MIPS assembly code?

The parameter variable n corresponds to the argument register $a0. The
compiled program starts with the label of the procedure and then saves two

registers on the stack, the return address and $a0:

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
Sw $ra, 4($sp) # save the return address
sw $a0, 0($sp) # save the argument n

The first time fact is called, sw saves an address in the program that called
fact. The next two instructions test whether n is less than 1, going to L1 if
nz1.

s1ti $t0,%$a0,1 # test for n <1
beq $t0,$zero,Ll # if n>=1, go to L1

If n is less than 1, fact returns 1 by putting 1 into a value register: it adds 1 to
0 and places that sum in $vO0. It then pops the two saved values off the stack
and jumps to the return address:

addi $v0,%$zero,l # return 1
addi $sp,$sp,8 # pop 2 items off stack
jr $ra # return to caller

Before popping two items off the stack, we could have loaded $a0 and $ra. Since
$a0 and $ra don’t change when n is less than 1, we skip those instructions.

If n is not less than 1, the argument n is decremented and then fact is
called again with the decremented value:

L1: addi $a0,%$a0,-1 # n >= 1: argument gets (n - 1)
jal fact # call fact with (n - 1)

118

Chapter 2 Instructions: Language of the Computer

The next instruction is where fact returns. Now the old return address and
old argument are restored, along with the stack pointer:

Tw $a0, 0($sp) # return from jal: restore argument n
Tw $ra, 4($sp) {# restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

Next, the value register $v0 gets the product of old argument $a0 and the
current value of the value register. We assume a multiply instruction is avail-
able, even though it is not covered until Chapter 3:

mul $v0,%$a0,$v0 # return n * fact (n - 1)

Finally, fact jumps again to the return address:

jr $ra # return to the caller

Hardware/
Software
Interface

global pointer The
register that is reserved to
point to the static area.

A Cvariable s generally alocation in storage, and its interpretation depends both on
its type and storage class. Examples include integers and characters (see Section 2.9).
C has two storage classes: automatic and static. Automatic variables are local to a
procedure and are discarded when the procedure exits. Static variables exist across
exits from and entries to procedures. C variables declared outside all procedures
are considered static, as are any variables declared using the keyword static. The rest
are automatic. To simplify access to static data, MIPS software reserves another reg-
ister, called the global pointer, or $gp.

Figure 2.11 summarizes what is preserved across a procedure call. Note that sev-
eral schemes preserve the stack, guaranteeing that the caller will get the same data
back on a load from the stack as it stored onto the stack. The stack above $sp is
preserved simply by making sure the callee does not write above $sp; $sp is itself
preserved by the callee adding exactly the same amount that was subtracted from it;
and the other registers are preserved by saving them on the stack (if they are used)
and restoring them from there.

Not preserved

Saved registers: $s0-$s7 Temporary registers: $t0-$t9
Stack pointer register: $sp Argument registers: $a0-$a3
Return address register: $ra Return value registers: $v0-$v1
Stack above the stack pointer Stack below the stack pointer

FIGURE 2.11 What is and what is not preserved across a procedure call. If the software relies
on the frame pointer register or on the global pointer register, discussed in the following subsections, they
are also preserved.

2.8 Supporting Procedures in Computer Hardware

119

Allocating Space for New Data on the Stack

The final complexity is that the stack is also used to store variables that are local
to the procedure but do not fit in registers, such as local arrays or structures. The
segment of the stack containing a procedure’s saved registers and local variables is
called a procedure frame or activation record. Figure 2.12 shows the state of the
stack before, during, and after the procedure call.

Some MIPS software uses a frame pointer ($fp) to point to the first word of
the frame of a procedure. A stack pointer might change during the procedure, and
so references to a local variable in memory might have different offsets depending
on where they are in the procedure, making the procedure harder to understand.
Alternatively, a frame pointer offers a stable base register within a procedure for
local memory-references. Note that an activation record appears on the stack
whether or not an explicit frame pointer is used. We’ve been avoiding using $ f p by
avoiding changes to $sp within a procedure: in our examples, the stack is adjusted
only on entry and exit of the procedure.

High address

$fp— $fp—

$sp— $sp—

$Tp | saved argument

registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and

$sp— structures (if any)

Low address
a. b. c.

FIGURE 2.12 Illlustration of the stack allocation (a) before, (b) during, and (c) after the
procedure call. The frame pointer ($fp) points to the first word of the frame, often a saved argument
register, and the stack pointer ($sp) points to the top of the stack. The stack is adjusted to make room for
all the saved registers and any memory-resident local variables. Since the stack pointer may change during
program execution, it’s easier for programmers to reference variables via the stable frame pointer, although it
could be done just with the stack pointer and a little address arithmetic. If there are no local variables on the
stack within a procedure, the compiler will save time by not setting and restoring the frame pointer. When a
frame pointer is used, it is initialized using the address in $sp on a call, and $sp is restored using $ fp. This
information is also found in Column 4 of the MIPS Reference Data Card at the front of this book.

procedure frame Also
called activation record.
The segment of the stack
containing a procedure’s
saved registers and local
variables.

frame pointer A value
denoting the location of
the saved registers and
local variables for a given
procedure.

120

Chapter 2 Instructions: Language of the Computer

text segment The
segment of a UNIX object
file that contains the
machine language code
for routines in the source
file.

Allocating Space for New Data on the Heap

In addition to automatic variables that are local to procedures, C programmers need
space in memory for static variables and for dynamic data structures. Figure 2.13
shows the MIPS convention for allocation of memory. The stack starts in the
high end of memory and grows down. The first part of the low end of memory is
reserved, followed by the home of the MIPS machine code, traditionally called the
text segment. Above the code is the static data segment, which is the place for con-
stants and other static variables. Although arrays tend to be a fixed length and thus
are a good match to the static data segment, data structures like linked lists tend to
grow and shrink during their lifetimes. The segment for such data structures is tra-
ditionally called the heap, and it is placed next in memory. Note that this allocation
allows the stack and heap to grow toward each other, thereby allowing the efficient
use of memory as the two segments wax and wane.

$sp—= 7FFf FFfcpey E—

|
f

Dynamic data

$gp— 1000 80000, Static data
1000 0000j6y
Text
pc— 0040 0000y
Reserved

0

FIGURE 2.13 The MIPS memory allocation for program and data. These addresses are
only a software convention, and not part of the MIPS architecture. The stack pointer is initialized to
7fff fffcyey and grows down toward the data segment. At the other end, the program code (“text”) starts
at 0040 0000y,0y. The static data starts at 1000 0000},¢,. Dynamic data, allocated by malloc in C and
by new in Java, is next. It grows up toward the stack in an area called the heap. The global pointer, $gp, is
set to an address to make it easy to access data. It is initialized to 1000 8000}, so that it can access from
1000 00006y to 1000 ffffy,, using the positive and negative 16-bit offsets from $gp. This information
is also found in Column 4 of the MIPS Reference Data Card at the front of this book.

C allocates and frees space on the heap with explicit functions. malloc () allo-
cates space on the heap and returns a pointer to it, and free() releases space on
the heap to which the pointer points. Memory allocation is controlled by programs
in C, and it is the source of many common and difficult bugs. Forgetting to free space
leads to a “memory leak,” which eventually uses up so much memory that the oper-
ating system may crash. Freeing space too early leads to “dangling pointers,” which
can cause pointers to point to things that the program never intended. Java uses
automatic memory allocation and garbage collection just to avoid such bugs.

2.8 Supporting Procedures in Computer Hardware

121

Figure 2.14 summarizes the register conventions for the MIPS assembly language.

Preserved on
Register number Usage call?

$zero The constant value O

$v0-$v1 2-3 Values for results and expression evaluation no
$a0-$a3 4-7 Arguments no
$t0-$t7 8-15 Temporaries no
$s0-$s7 16-23 Saved yes
$t8-$t9 24-25 More temporaries no
$gp 28 Global pointer yes
$sp 29 Stack pointer yes
$fp 30 Frame pointer yes
$ra 31 Return address yes

FIGURE 2.14 MIPS register conventions. Register 1, called $at, is reserved for the assembler (see
Section 2.12), and registers 26—27, called $k0—$ k1, are reserved for the operating system. This information
is also found in Column 2 of the MIPS Reference Data Card at the front of this book.

Elaboration: What if there are more than four parameters? The MIPS convention is
to place the extra parameters on the stack just above the frame pointer. The procedure
then expects the first four parameters to be in registers $a0 through $a3 and the rest
in memory, addressable via the frame pointer.

As mentioned in the caption of Figure 2.12, the frame pointer is convenient because all
references to variables in the stack within a procedure will have the same offset. The frame
pointer is not necessary, however. The GNU MIPS C compiler uses a frame pointer, but the
C compiler from MIPS does not; it treats register 30 as another save register ($58).

Elaboration: Some recursive procedures can be implemented iteratively without using
recursion. Iteration can significantly improve performance by removing the overhead associ-
ated with procedure calls. For example, consider a procedure used to accumulate a sum:

int sum (int n, int acc) {
if (n>0)
return sum(n - 1, acc + n);
else
return acc;

}

Consider the procedure call sum(3,0). This will result in recursive calls to
sum(2,3),sum(1,5),and sum(0,6), and then the result 6 will be returned four
times. This recursive call of sum is referred to as a tail call, and this example use of tail
recursion can be implemented very efficiently (assume $a0 = nand $al = acc):

sum: slti $t0, $a0, 1 # test if n <=0
bne $t0, $zero, sum_exit # go to sum_exit if n <=0
add$al, $al, $a0 # add n to acc

122 Chapter 2 Instructions: Language of the Computer

addi$a0, $a0, -1 # subtract 1 from n

j sum # go to sum
sum_exit:

add$v0, $al, $zero # return value acc

jr $ra # return to caller

Check Which of the following statements about C and Java are generally true?
Yourself 1. C programmers manage data explicitly, while it's automatic in Java.

2. Cleads to more pointer bugs and memory leak bugs than does Java.

(@] => (wow open

tab atbb," isgreat) Communicating with People

Fourth line of the

keyboard poem “Hatless

Atlas,” 1991 (some Computers were invented to crunch numbers, but as soon as they became com-
give names to ASCII mercially viable they were used to process text. Most computers today offer 8-bit
characters: “” is “wow,” bytes to represent characters, with the American Standard Code for Informa-
“("is open,“[”isbar,and tjon Interchange (ASCII) being the representation that nearly everyone follows.

so on). Figure 2.15 summarizes ASCII.

32) 112 p

space 48 0 64 @ 80 P 96

33 ! 49 1 65 A 81 Q 97 a 113 q
34 " 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 c 115 s
36 $ 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 u 101 e 117 u
38 & 54 6 70 F 86 \Y 102 f 118 %
39 ! 55 7 71 G 87 W 103 g 119 w
40 (56 8 72 H 88 X 104 h 120 X
41) 57 9 73 | 89 Y 105 i 121 y
42 * 58 : 74 J 90 z 106 j 122 z
43 + 59 ; 75 K 91 [107 k 123 {
44 , 60 < 76 L 92 \ 108 | 124 |
45 - 61 = 77 M 93] 109 m 125 }
46 . 62 > 78 N 94 A 110 n 126 ~
47 / 63 ? 79 0 95 _ 111 o 127 DEL

FIGURE 2.15 ASCII representation of characters. Note that upper- and lowercase letters differ by exactly 32; this observation can lead
to shortcuts in checking or changing upper- and lowercase. Values not shown include formatting characters. For example, 8 represents a backspace,
9 represents a tab character, and 13 a carriage return. Another useful value is 0 for null, the value the programming language C uses to mark the
end of a string. This information is also found in Column 3 of the MIPS Reference Data Card at the front of this book.

2.9 Communicating with People

123

Base 2 is not natural to human beings; we have 10 fingers and so find base
10 natural. Why didn’t computers use decimal? In fact, the first commercial
computer did offer decimal arithmetic. The problem was that the computer still
used on and off signals, so a decimal digit was simply represented by several
binary digits. Decimal proved so inefficient that subsequent computers reverted
to all binary, converting to base 10 only for the relatively infrequent input/output
events.

ASCII versus Binary Numbers

We could represent numbers as strings of ASCII digits instead of as integers.
How much does storage increase if the number 1 billion is represented in
ASCII versus a 32-bit integer?

One billion is 1,000,000,000, so it would take 10 ASCII digits, each 8 bits long.
Thus the storage expansion would be (10 x 8)/32 or 2.5. In addition to the
expansion in storage, the hardware to add, subtract, multiply, and divide such
decimal numbers is difficult. Such difficulties explain why computing profes-
sionals are raised to believe that binary is natural and that the occasional dec-
imal computer is bizarre.

A series of instructions can extract a byte from a word, so load word and store
word are sufficient for transferring bytes as well as words. Because of the popularity
of text in some programs, however, MIPS provides instructions to move bytes. Load
byte (1b) loads a byte from memory, placing it in the rightmost 8 bits of a register.
Store byte (sb) takes a byte from the rightmost 8 bits of a register and writes it to
memory. Thus, we copy a byte with the sequence

b $t0,0($sp) # Read byte from source
sb $t0,0($gp) # Write byte to destination

Hardware/
Software
Interface

124

Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

Signed versus unsigned applies to loads as well as to arithmetic. The function of
a signed load is to copy the sign repeatedly to fill the rest of the register—called
sign extension—but its purpose is to place a correct representation of the number
within that register. Unsigned loads simply fill with Os to the left of the data, since
the number represented by the bit pattern is unsigned.

When loading a 32-bit word into a 32-bit register, the point is moot; signed and
unsigned loads are identical. MIPS does offer two flavors of byte loads: load byte
(1b) treats the byte as a signed number and thus sign-extends to fill the 24 left-
most bits of the register, while load byte unsigned (1bu) works with unsigned
integers. Since C programs almost always use bytes to represent characters rather
than consider bytes as very short signed integers, 1bu is used practically exclusively
for byte loads.

Characters are normally combined into strings, which have a variable number
of characters. There are three choices for representing a string: (1) the first position
of the string is reserved to give the length of a string, (2) an accompanying variable
has the length of the string (as in a structure), or (3) the last position of a string is
indicated by a character used to mark the end of a string. C uses the third choice,
terminating a string with a byte whose value is 0 (named null in ASCII). Thus,
the string “Cal” is represented in C by the following 4 bytes, shown as decimal
numbers: 67, 97, 108, 0. (As we shall see, Java uses the first option.)

Compiling a String Copy Procedure, Showing How to Use C Strings

The procedure strcpy copies string y to string x using the null byte
termination convention of C:

void strcpy (char x[1, char y[1)

{
int i;
i=20;
while ((x[i] = y[i]) != “\0") /* copy & test byte */
i+=1;

}

What is the MIPS assembly code?

2.9 Communicating with People

125

Below is the basic MIPS assembly code segment. Assume that base addresses
for arrays x and y are found in $a0 and $al, while i isin $s0. strcpy adjusts
the stack pointer and then saves the saved register $s0 on the stack:

strcpy:
addi $sp,$sp,-4 # adjust stack for 1 more item
sw $s0, 0($sp) # save $s0

To initialize 1 to 0, the next instruction sets $s0 to 0 by adding 0 to 0 and plac-
ing that sum in $s0:

add $s0,$zero,$zero # i =0 + 0
This is the beginning of the loop. The address of y [1] is first formed by add-
ingitoy[1:
L1: add $t1,$s0,%al 4 address of y[i] in $t1

Note that we don’t have to multiply i by 4 since y is an array of bytes and not
of words, as in prior examples.

To load the character in y[1], we use load byte unsigned, which puts the
character into $t2:

1bu $t2, 0($tl) 4 $t2 = y[i]

A similar address calculation puts the address of x[i] in $t3, and then the
character in $t2 is stored at that address.

add $t3,%$s50,%a0 4 address of x[i] in $t3
sh $t2, 0($t3) # x[i] = y[i]

Next, we exit the loop if the character was 0. That is, we exit if it is the last
character of the string:

beq $t2,%$zero,L2 4 if y[i]l == 0, go to L2
If not, we increment i and loop back:

addi $s0, $s0,1 #1i=1+1
j L1 # go to L1

126

Chapter 2 Instructions: Language of the Computer

If we don’t loop back, it was the last character of the string; we restore $s0 and
the stack pointer, and then return.

L2: Tw $s0, 0($sp) # y[i] == 0: end of string. Re-
store old $s0

addi $sp,$sp,4 # pop 1 word off stack
jr $ra # return

String copies usually use pointers instead of arrays in C to avoid the operations
on 1 in the code above. See Section 2.14 for an explanation of arrays versus
pointers.

Since the procedure strcpy above is a leaf procedure, the compiler could allo-
cate 1 to a temporary register and avoid saving and restoring $s0. Hence, instead
of thinking of the $t registers as being just for temporaries, we can think of them as
registers that the callee should use whenever convenient. When a compiler finds a leaf
procedure, it exhausts all temporary registers before using registers it must save.

Characters and Strings in Java

Unicode is a universal encoding of the alphabets of most human languages.
Figure 2.16 is a list of Unicode alphabets; there are almost as many alphabets in
Unicode as there are useful symbols in ASCII. To be more inclusive, Java uses
Unicode for characters. By default, it uses 16 bits to represent a character.

The MIPS instruction set has explicit instructions to load and store such 16-bit
quantities, called halfwords. Load half (1h) loads a halfword from memory, placing
it in the rightmost 16 bits of a register. Like load byte, load half (1h) treats the
halfword as a signed number and thus sign-extends to fill the 16 leftmost bits of the
register, while load halfword unsigned (1hu) works with unsigned integers. Thus,
Thu is the more popular of the two. Store half (sh) takes a halfword from the
rightmost 16 bits of a register and writes it to memory. We copy a halfword with
the sequence

Thu $t0,0($sp) # Read halfword (16 bits) from source
sh $t0,0($gp) 4 Write halfword (16 bits) to destination

Strings are a standard Java class with special built-in support and predefined
methods for concatenation, comparison, and conversion. Unlike C, Java includes a
word that gives the length of the string, similar to Java arrays.

Elaboration: MIPS software tries to keep the stack aligned to word addresses, allowing
the program to always use 1w and sw (which must be aligned) to access the stack. This
convention means that a char variable allocated on the stack occupies 4 bytes, even
though it needs less. However, a C string variable or an array of bytes will pack 4 bytes per
word, and a Java string variable or array of shorts packs 2 halfwords per word.

2.9 Communicating with People

127

Latin Malayalam Tagbanwa General Punctuation

Greek Sinhala Khmer Spacing Modifier Letters

Cyrillic Thai Mongolian Currency Symbols

Armenian Lao Limbu Combining Diacritical Marks

Hebrew Tibetan Tai Le Combining Marks for Symbols

Arabic Myanmar Kangxi Radicals Superscripts and Subscripts

Syriac Georgian Hiragana Number Forms

Thaana Hangul Jamo Katakana Mathematical Operators

Devanagari Ethiopic Bopomofo Mathematical Alphanumeric Symbols

Bengali Cherokee Kanbun Braille Patterns

Gurmukhi Unified Canadian Shavian Optical Character Recognition
Aboriginal Syllabic

Gujarati Ogham Osmanya Byzantine Musical Symbols

Oriya Runic Cypriot Syllabary Musical Symbols

Tamil Tagalog Tai Xuan Jing Symbols Arrows

Telugu Hanunoo Yijing Hexagram Symbols | Box Drawing

Kannada Buhid Aegean Numbers Geometric Shapes

FIGURE 2.16 Example alphabets in Unicode. Unicode version 4.0 has more than 160 “blocks,”
which is their name for a collection of symbols. Each block is a multiple of 16. For example, Greek starts at
0370}, and Cyrillic at 0400;,... The first three columns show 48 blocks that correspond to human languages
in roughly Unicode numerical order. The last column has 16 blocks that are multilingual and are not in order.
A 16-bit encoding, called UTF-16, is the default. A variable-length encoding, called UTF-8, keeps the ASCII
subset as eight bits and uses 16—32 bits for the other characters. UTF-32 uses 32 bits per character. To learn
more, see www.unicode.org.

I. Which of the following statements about characters and strings in C and Java

are true?

1. A string in C takes about half the memory as the same string in Java.

2. Strings are just an informal name for single-dimension arrays of characters
in C and Java.

3. Strings in C and Java use null (0) to mark the end of a string.

4. Operations on strings, like length, are faster in C than in Java.

I1. Which type of variable that can contain 1,000,000,000,.,, takes the most memory

space?

1. intinC

2. stringinC

3. stringinJava

Check
Yourself

http://www.unicode.org

128

Chapter 2 Instructions: Language of the Computer

MIPS Addressing for 32-Bit Immediates
and Addresses

Although keeping all MIPS instructions 32 bits long simplifies the hardware, there
are times where it would be convenient to have a 32-bit constant or 32-bit address.
This section starts with the general solution for large constants, and then shows the
optimizations for instruction addresses used in branches and jumps.

32-Bit Immediate Operands

Although constants are frequently short and fit into the 16-bit field, sometimes they
are bigger. The MIPS instruction set includes the instruction load upper immediate
(Tui) specifically to set the upper 16 bits of a constant in a register, allowing a
subsequent instruction to specify the lower 16 bits of the constant. Figure 2.17
shows the operation of Tui.

Loading a 32-Bit Constant
What is the MIPS assembly code to load this 32-bit constant into register $s0?

0000 0000 0011 1101 0000 1001 0000 0000

First, we would load the upper 16 bits, which is 61 in decimal, using Tui:

Tui $s0, 61 # 61 decimal = 0000 0000 0011 1101 binary

The value of register $s0 afterward is

0000 0000 0011 1101 0000 0000 0000 0000

The next step is to insert the lower 16 bits, whose decimal value is 2304:

ori $s0, $s0, 2304 # 2304 decimal = 0000 1001 0000 0000

The final value in register $s0 is the desired value:

0000 0000 0011 1101 0OOO 1001 0000 0000

2.10 MIPS Addressing for 32-Bit Inmediates and Addresses

129

The machine language version of Tui $t0, 255 # $t0 is register 8:

‘ 001111 00000 01000 ‘ 000000001111 1111 ‘
Contents of register $t0 after executing Tui $t0, 255: /

| 000000001111 1111 | 0000 0000 0000 0000 |

FIGURE 2.17 The effect of the 1ui instruction. The instruction Tui transfers the 16-bit immediate constant field value into the

leftmost 16 bits of the register, filling the lower 16 bits with 0s.

Either the compiler or the assembler must break large constants into pieces and
then reassemble them into a register. As you might expect, the immediate field’s
size restriction may be a problem for memory addresses in loads and stores as well
as for constants in immediate instructions. If this job falls to the assembler, as it
does for MIPS software, then the assembler must have a temporary register avail-
able in which to create the long values. This is a reason for the register $at, which
is reserved for the assembler.

Hence, the symbolic representation of the MIPS machine language is no longer
limited by the hardware, but by whatever the creator of an assembler chooses to include
(see Section 2.12). We stick close to the hardware to explain the architecture of the
computer, noting when we use the enhanced language of the assembler that is not
found in the processor.

Elaboration: Creating 32-bit constants needs care. The instruction addi copies the
leftmost bit of the 16-bit immediate field of the instruction into the upper 16 bits of a
word. Logical or immediate from Section 2.6 loads Os into the upper 16 bits and hence
is used by the assembler in conjunction with 1ui to create 32-bit constants.

Addressing in Branches and Jumps

The MIPS jump instructions have the simplest addressing. They use the final MIPS
instruction format, called the J-type, which consists of 6 bits for the operation field
and the rest of the bits for the address field. Thus,

J 10000 # go to Tlocation 10000

could be assembled into this format (it’s actually a bit more complicated, as we
will see):

Hardware/
Software
Interface

130

Chapter 2 Instructions: Language of the Computer

PC-relative addressing
An addressing regime

in which the address is
the sum of the program
counter (PC) and a con-
stant in the instruction.

2 10000 ‘

6 bits 26 bits

where the value of the jump opcode is 2 and the jump address is 10000.
Unlike the jump instruction, the conditional branch instruction must specify
two operands in addition to the branch address. Thus,

bne $s0,$s1,Exit # go to Exit if $s0 # $sl

is assembled into this instruction, leaving only 16 bits for the branch address:

5 16 ‘ 17 ‘ Exit

6 bits 5 bits 5 bits 16 bits

If addresses of the program had to fit in this 16-bit field, it would mean that
no program could be bigger than 2'¢, which is far too small to be a realistic option
today. An alternative would be to specify a register that would always be added to
the branch address, so that a branch instruction would calculate the following:

Program counter = Register + Branch address

This sum allows the program to be as large as 2** and still be able to use conditional
branches, solving the branch address size problem. Then the question is, which
register?

The answer comes from seeing how conditional branches are used. Conditional
branches are found in loops and in if statements, so they tend to branch to a
nearby instruction. For example, about half of all conditional branches in SPEC
benchmarks go to locations less than 16 instructions away. Since the program
counter (PC) contains the address of the current instruction, we can branch within
+2' words of the current instruction if we use the PC as the register to be added
to the address. Almost all loops and if statements are much smaller than 2'¢ words,
so the PC is the ideal choice.

This form of branch addressing is called PC-relative addressing. As we shall see
in Chapter 4, it is convenient for the hardware to increment the PC early to point to
the next instruction. Hence, the MIPS address is actually relative to the address of
the following instruction (PC + 4) as opposed to the current instruction (PC).

Like most recent computers, MIPS uses PC-relative addressing for all condi-
tional branches, because the destination of these instructions is likely to be close to
the branch. On the other hand, jump-and-link instructions invoke procedures that
have no reason to be near the call, so they normally use other forms of addressing.
Hence, the MIPS architecture offers long addresses for procedure calls by using the
J-type format for both jump and jump-and-link instructions.

Since all MIPS instructions are 4 bytes long, MIPS stretches the distance of the
branch by having PC-relative addressing refer to the number of words to the next
instruction instead of the number of bytes. Thus, the 16-bit field can branch four

2.10 MIPS Addressing for 32-Bit Inmediates and Addresses

131

times as far by interpreting the field as a relative word address rather than as a
relative byte address. Similarly, the 26-bit field in jump instructions is also a word
address, meaning that it represents a 28-bit byte address.

Elaboration: Since the PC is 32 bits, 4 bits must come from somewhere else for
jumps. The MIPS jump instruction replaces only the lower 28 bits of the PC, leaving
the upper 4 bits of the PC unchanged. The loader and linker (Section 2.12) must be
careful to avoid placing a program across an address boundary of 256 MB (64 million
instructions); otherwise, a jump must be replaced by a jump register instruction preceded
by other instructions to load the full 32-bit address into a register.

Showing Branch Offset in Machine Language

The while loop on page 107-108 was compiled into this MIPS assembler code:

Loop:sll $t1,$s3,2 4 Temp reg $tl =4 * i
add $t1,$tl1,$s6 # $t1 = address of savelil]

Tw $t0,0($t1) # Temp reg $t0 = savel[i]
bne $t0,$s5, Exit # go to Exit if saveli] = k
addi $s3,$s3,1 #i=1+1
j Loop # go to Loop

Exit:

If we assume we place the loop starting at location 80000 in memory, what is
the MIPS machine code for this loop?

The assembled instructions and their addresses are:

80000 0 0 19 9 2 0
80004 0 9 22 9 0 32
80008 35 9 8 0

80012 5 8 21 2

80016 8 19 19 1

80020 2 20000

80024

132

Chapter 2 Instructions: Language of the Computer

Remember that MIPS instructions have byte addresses, so addresses of
sequential words differ by 4, the number of bytes in a word. The bne instruc-
tion on the fourth line adds 2 words or 8 bytes to the address of the following
instruction (80016), specifying the branch destination relative to that following
instruction (8 + 80016) instead of relative to the branch instruction (12 + 80012)
or using the full destination address (80024). The jump instruction on the last
line does use the full address (20000 x 4 = 80000), corresponding to the label
Loop.

Hardware/
Software
Interface

addressing mode One of
several addressing regimes
delimited by their varied
use of operands and/or
addresses.

Most conditional branches are to a nearby location, but occasionally they branch
far away, farther than can be represented in the 16 bits of the conditional branch
instruction. The assembler comes to the rescue just as it did with large addresses
or constants: it inserts an unconditional jump to the branch target, and inverts the
condition so that the branch decides whether to skip the jump.

Branching Far Away

Given a branch on register $s0 being equal to register $s1,

beq $s0, $s1, L1

replace it by a pair of instructions that offers a much greater branching distance.

These instructions replace the short-address conditional branch:

bne $s0, $s1, L2
J L1

L2:

MIPS Addressing Mode Summary

Multiple forms of addressing are generically called addressing modes. Figure 2.18
shows how operands are identified for each addressing mode. The MIPS address-
ing modes are the following:

1. Immediate addressing, where the operand is a constant within the instruc-
tion itself

2. Register addressing, where the operand is a register

2.10 MIPS Addressing for 32-Bit Inmediates and Addresses

133

1. Immediate addressing

|op| rs | rt | Immediate |

2. Register addressing

| op | rs | rt | rd |...|funct| Registers

Register

3. Base addressing

|op| rs | rt | Address | Memory

| Register | [[Byte | Halfword Word

4. PC-relative addressing

|0p| rs | rt | Address | Memory

PC Word
| |

5. Pseudodirect addressing

| op | Address | Memory
I

| PC | Word

FIGURE 2.18 lllustration of the five MIPS addressing modes. The operands are shaded in color.
The operand of mode 3 is in memory, whereas the operand for mode 2 is a register. Note that versions of load
and store access bytes, halfwords, or words. For mode 1, the operand is 16 bits of the instruction itself. Modes
4 and 5 address instructions in memory, with mode 4 adding a 16-bit address shifted left 2 bits to the PC and
mode 5 concatenating a 26-bit address shifted left 2 bits with the 4 upper bits of the PC.

3. Base or displacement addressing, where the operand is at the memory loca-
tion whose address is the sum of a register and a constant in the instruction

4. PC-relative addressing, where the branch address is the sum of the PC and a
constant in the instruction

5. Pseudodirect addressing, where the jump address is the 26 bits of the instruc-
tion concatenated with the upper bits of the PC

134

Chapter 2 Instructions: Language of the Computer

Hardware/
Software
Interface

Although we show MIPS as having 32-bit addresses, nearly all microprocessors
(including MIPS) have 64-bit address extensions (see @ Appendix E). These exten-
sions were in response to the needs of software for larger programs. The process of
instruction set extension allows architectures to expand in such a way that is able to
move software compatibly upward to the next generation of architecture.

Note that a single operation can use more than one addressing mode. Add, for
example, uses both immediate (addi) and register (add) addressing.

Decoding Machine Language

Sometimes you are forced to reverse-engineer machine language to create the origi-
nal assembly language. One example is when looking at “core dump.” Figure 2.19
shows the MIPS encoding of the fields for the MIPS machine language. This figure
helps when translating by hand between assembly language and machine language.

Decoding Machine Code

What is the assembly language statement corresponding to this machine
instruction?

00af8020hex

The first step in converting hexadecimal to binary is to find the op fields:

(Bits:31 28 26 5 2 0)
0000 0000 1010 1111 1000 0000 0010 0000

We look at the op field to determine the operation. Referring to Figure 2.19,
when bits 31-29 are 000 and bits 28—26 are 000, it is an R-format instruction.
Let’s reformat the binary instruction into R-format fields, listed in Figure 2.20:

op rs rt rd shamt funct
000000 00101 01111 10000 00000 100000

The bottom portion of Figure 2.19 determines the operation of an R-format
instruction. In this case, bits 5—3 are 100 and bits 2—0 are 000, which means
this binary pattern represents an add instruction.

We decode the rest of the instruction by looking at the field values. The
decimal values are 5 for the rs field, 15 for rt, and 16 for rd (shamt is unused).
Figure 2.14 shows that these numbers represent registers $al, $t7, and $s0.
Now we can reveal the assembly instruction:

add $s0,%al,$t7

2.10 MIPS Addressing for 32-Bit Inmediates and Addresses

135

28-26 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
31-29
0(000) R-format Bltz/gez Jump Jump & Tink| branch eq | branch blez bgtz
ne

1(001) add addiu set less set less andi ori xori Toad upper

immediate than imm. than imm. immediate

unsigned
2(010) TLB F1Pt
3(011)
4(100) load byte load half Twl load word lToad byte | Toad Twr
unsigned |half
unsigned

5(101) store byte storehalf |swl store word SWr
6(110) load Tinked Twcl

word
7(111) store cond. swcl

word

op(31:26)=010000 (TLB), rs(25:21)

23-21 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
25-24
0(00) mfcO cfcO mtcO ctcO
1(01)
2(10)
3(11)

op(31:26)=000000 (R-format), funct(5:0)

2-0 0(000) 1(001) 2(010) 3(011) 4(100) 5(101) 6(110) 7(111)
5-3
0(000) shift Teft shift right|sra s1lv srlv srav
logical logical
1(001) jump register|jalr syscall break
2(010) mfhi mthi mflo mtlo
3(011) mult multu div divu
4(100) add addu subtract subu and or xor not or (nor)
5(101) set 1.t. set 1.t.
unsigned
6(110)
7(111)

FIGURE 2.19 MIPS instruction encoding. This notation gives the value of a field by row and by column. For example, the top portion
of the figure shows 1 0ad word in row number 4 (100, for bits 31-29 of the instruction) and column number 3 (011,,,,, for bits 28-26 of the

instruction), so the corresponding value of the op field (bits 31-26) is 100011

two*

Underscore means the field is used elsewhere. For example,

R-format in row 0 and column 0 (op = 000000,,,,,) is defined in the bottom part of the figure. Hence, subtract in row 4 and column 2
of the bottom section means that the funct field (bits 5-0) of the instruction is 100010, and the op field (bits 31-26) is 000000,,,. The
floating point value in row 2, column 1 is defined in Figure 3.18 in Chapter 3. B1tz/gez is the opcode for four instructions found in
Appendix B: b1tz,bgez,b1tzal,and bgezal. This chapter describes instructions given in full name using color, while Chapter 3 describes
instructions given in mnemonics using color. Appendix B covers all instructions.

136

Chapter 2 Instructions: Language of the Computer

Thame | mess | Commems

Field size 6 bits 5 bits 5 bits 5 bits 5 bits 6 bits | All MIPS instructions are 32 bits long
R-format op rs rt rd shamt funct Arithmetic instruction format

|-format op rs rt address/immediate Transfer, branch, imm. format
J-format op target address Jump instruction format

FIGURE 2.20 MIPS instruction formats.

Check
Yourself

Figure 2.20 shows all the MIPS instruction formats. Figure 2.1 on page 78 shows
the MIPS assembly language revealed in this chapter. The remaining hidden portion
of MIPS instructions deals mainly with arithmetic and real numbers, which are
covered in the next chapter.

I. What is the range of addresses for conditional branches in MIPS (K = 1024)?

1. Addresses between 0 and 64K — 1

2. Addresses between 0 and 256K — 1

3. Addresses up to about 32K before the branch to about 32K after

4. Addresses up to about 128K before the branch to about 128K after
I1. What is the range of addresses for jump and jump and link in MIPS (M = 1024K)?
Addresses between 0 and 64M — 1
Addresses between 0 and 256M — 1
Addresses up to about 32M before the branch to about 32M after
Addresses up to about 128M before the branch to about 128 M after

N

Anywhere within a block of 64M addresses where the PC supplies the upper
6 bits

6. Anywhere within a block of 256M addresses where the PC supplies the upper
4 bits

II1. What is the MIPS assembly language instruction corresponding to the machine
instruction with the value 0000 0000;.,?

L.]

2. R-format

3. addi

4. s11

5. mfcO

6. Undefined opcode: there is no legal instruction that corresponds to 0

2.11 Parallelism and Instructions: Synchronization

137

Parallelism and Instructions:
Synchronization

Parallel execution is easier when tasks are independent, but often they need to
cooperate. Cooperation usually means some tasks are writing new values that
others must read. To know when a task is finished writing so that it is safe for
another to read, the tasks need to synchronize. If they don’t synchronize, there is a
danger of a data race, where the results of the program can change depending on
how events happen to occur.

For example, recall the analogy of the eight reporters writing a story on page
43 of Chapter 1. Suppose one reporter needs to read all the prior sections before
writing a conclusion. Hence, he must know when the other reporters have finished
their sections, so that he or she need not worry about them being changed after-
wards. That is, they had better synchronize the writing and reading of each section
so that the conclusion will be consistent with what is printed in the prior sections.

In computing, synchronization mechanisms are typically built with user-level
software routines that rely on hardware-supplied synchronization instructions. In
this section, we focus on the implementation of lock and unlock synchronization
operations. Lock and unlock can be used straightforwardly to create regions where
only a single processor can operate, called mutual exclusion, as well as to implement
more complex synchronization mechanisms.

The critical ability we require to implement synchronization in a multiproces-
sor is a set of hardware primitives with the ability to atomically read and modify a
memory location. That is, nothing else can interpose itself between the read and
the write of the memory location. Without such a capability, the cost of building
basic synchronization primitives will be too high and will increase as the processor
count increases.

There are a number of alternative formulations of the basic hardware primi-
tives, all of which provide the ability to atomically read and modify a location,
together with some way to tell if the read and write were performed atomically. In
general, architects do not expect users to employ the basic hardware primitives, but
instead expect that the primitives will be used by system programmers to build a
synchronization library, a process that is often complex and tricky.

Let’s start with one such hardware primitive and show how it can be used to
build a basic synchronization primitive. One typical operation for building syn-
chronization operations is the atomic exchange or atomic swap, which interchanges
a value in a register for a value in memory.

To see how to use this to build a basic synchronization primitive, assume that
we want to build a simple lock where the value 0 is used to indicate that the lock
is free and 1 is used to indicate that the lock is unavailable. A processor tries to set
the lock by doing an exchange of 1, which is in a register, with the memory address
corresponding to the lock. The value returned from the exchange instruction is 1 if

data race Two memory
accesses form a data race
if they are from different
threads to same location,
at least one is a write,
and they occur one after
another.

138

Chapter 2 Instructions: Language of the Computer

some other processor had already claimed access and 0 otherwise. In the latter
case, the value is also changed to 1, preventing any competing exchange in another
processor from also retrieving a 0.

For example, consider two processors that each try to do the exchange simulta-
neously: this race is broken, since exactly one of the processors will perform the
exchange first, returning 0, and the second processor will return 1 when it does the
exchange. The key to using the exchange primitive to implement synchronization
is that the operation is atomic: the exchange is indivisible, and two simultaneous
exchanges will be ordered by the hardware. It is impossible for two processors
trying to set the synchronization variable in this manner to both think they have
simultaneously set the variable.

Implementing a single atomic memory operation introduces some challenges in
the design of the processor, since it requires both a memory read and a write in a
single, uninterruptible instruction.

An alternative is to have a pair of instructions in which the second instruction
returns a value showing whether the pair of instructions was executed as if the pair
were atomic. The pair of instructions is effectively atomic if it appears as if all other
operations executed by any processor occurred before or after the pair. Thus, when
an instruction pair is effectively atomic, no other processor can change the value
between the instruction pair.

In MIPS this pair of instructions includes a special load called a load linked and
a special store called a store conditional. These instructions are used in sequence:
if the contents of the memory location specified by the load linked are changed
before the store conditional to the same address occurs, then the store conditional
fails. The store conditional is defined to both store the value of a register in mem-
ory and to change the value of that register to a 1 if it succeeds and to a 0 if it fails.
Since the load linked returns the initial value, and the store conditional returns 1
only if it succeeds, the following sequence implements an atomic exchange on the
memory location specified by the contents of $s1:

try: add $t0,%$zero,$s4 ;copy exchange value
11 $t1,0(%$s1) ;:load Tinked
sC $t0,0($s1) ;store conditional
beq $t0,$zero,try ;branch store fails
add $s4,%$zero,$tl ;put load value in $s4

At the end of this sequence the contents of $s4 and the memory location speci-
fied by $s1 have been atomically exchanged. Any time a processor intervenes and
modifies the value in memory between the 11 and sc instructions, the sc returns
01in $t0, causing the code sequence to try again.

Elaboration: Although it was presented for multiprocessor synchronization, atomic
exchange is also useful for the operating system in dealing with multiple processes
in a single processor. To make sure nothing interferes in a single processor, the store

2.12 Translating and Starting a Program

139

conditional also fails if the processor does a context switch between the two instructions
(see Chapter 5).

Since the store conditional will fail after either another attempted store to the load
linked address or any exception, care must be taken in choosing which instructions are
inserted between the two instructions. In particular, only register-register instructions
can safely be permitted; otherwise, it is possible to create deadlock situations where
the processor can never complete the sc because of repeated page faults. In addition,
the number of instructions between the load linked and the store conditional should be
small to minimize the probability that either an unrelated event or a competing processor
causes the store conditional to fail frequently.

An advantage of the load linked/store conditional mechanism is that it can be used
to build other synchronization primitives, such as atomic compare and swap or atomic
fetch-and-increment, which are used in some parallel programming models. These involve
more instructions between the 11 and the sc.

When do you use primitives like load linked and store conditional?

1. When cooperating threads of a parallel program need to synchronize to get
proper behavior for reading and writing shared data

2. When cooperating processes on a uniprocessor need to synchronize for
reading and writing shared data

Translating and Starting a Program

This section describes the four steps in transforming a C program in a file on disk
into a program running on a computer. Figure 2.21 shows the translation hierar-
chy. Some systems combine these steps to reduce translation time, but these are the
logical four phases that programs go through. This section follows this translation
hierarchy.

Compiler

The compiler transforms the C program into an assembly language program, a
symbolic form of what the machine understands. High-level language programs
take many fewer lines of code than assembly language, so programmer productiv-
ity is much higher.

In 1975, many operating systems and assemblers were written in assembly lan-
guage because memories were small and compilers were inefficient. The 500,000-
fold increase in memory capacity per single DRAM chip has reduced program size
concerns, and optimizing compilers today can produce assembly language pro-
grams nearly as good as an assembly language expert, and sometimes even better
for large programs.

Check
Yourself

assembly language

A symbolic language that
can be translated into
binary machine language.

140

Chapter 2 Instructions: Language of the Computer

pseudoinstruction

A common variation

of assembly language
instructions often treated
as if it were an instruction
in its own right.

| Assembly language program |

Assembler

| Object: Machine language module | | Object: Library routine (machine language)

| Executable: Machine language program |

FIGURE 2.21 A translation hierarchy for C. A high-level language program is first compiled into
an assembly language program and then assembled into an object module in machine language. The linker
combines multiple modules with library routines to resolve all references. The loader then places the machine
code into the proper memory locations for execution by the processor. To speed up the translation process,
some steps are skipped or combined. Some compilers produce object modules directly, and some systems use
linking loaders that perform the last two steps. To identify the type of file, UNIX follows a suffix convention
for files: C source files are named X . ¢, assembly files are x . S, object files are named x . 0, statically linked
library routines are x . a, dynamically linked library routes are X . S0, and executable files by default are called
a.out.MS-DOS uses the suffixes .C, .ASM, .0BJ, . LIB, .DLL, and . EXE to the same effect.

Assembler

Since assembly language is an interface to higher-level software, the assembler can also
treat common variations of machine language instructions as if they were instructions
in their own right. The hardware need not implement these instructions; however,
their appearance in assembly language simplifies translation and programming. Such
instructions are called pseudoinstructions.

As mentioned above, the MIPS hardware makes sure that register $zero always
has the value 0. That is, whenever register $zero is used, it supplies a 0, and the
programmer cannot change the value of register $zero. Register $zero is used

2.12 Translating and Starting a Program

141

to create the assembly language instruction move that copies the contents of one
register to another. Thus the MIPS assembler accepts this instruction even though
it is not found in the MIPS architecture:

move $t0,$tl # register $t0 gets register $tl

The assembler converts this assembly language instruction into the machine lan-
guage equivalent of the following instruction:

add $t0,$zero,$tl 4 register $t0 gets 0 + register $tl

The MIPS assembler also converts b1t (branch on less than) into the two
instructions s1t and bne mentioned in the example on page 128. Other examples
include bgt, bge, and ble. It also converts branches to faraway locations into a
branch and jump. As mentioned above, the MIPS assembler allows 32-bit constants
to be loaded into a register despite the 16-bit limit of the immediate instructions.

In summary, pseudoinstructions give MIPS a richer set of assembly language
instructions than those implemented by the hardware. The only cost is reserving
one register, $at, for use by the assembler. If you are going to write assembly pro-
grams, use pseudoinstructions to simplify your task. To understand the MIPS
architecture and be sure to get best performance, however, study the real MIPS
instructions found in Figures 2.1 and 2.19.

Assemblers will also accept numbers in a variety of bases. In addition to binary
and decimal, they usually accept a base that is more succinct than binary yet con-
verts easily to a bit pattern. MIPS assemblers use hexadecimal.

Such features are convenient, but the primary task of an assembler is assembly
into machine code. The assembler turns the assembly language program into an
object file, which is a combination of machine language instructions, data, and
information needed to place instructions properly in memory.

To produce the binary version of each instruction in the assembly language
program, the assembler must determine the addresses corresponding to all labels.
Assemblers keep track of labels used in branches and data transfer instructions
in a symbol table. As you might expect, the table contains pairs of symbols and
addresses.

The object file for UNIX systems typically contains six distinct pieces:

B The object file header describes the size and position of the other pieces of the
object file.

B The text segment contains the machine language code.

m The static data segment contains data allocated for the life of the program.
(UNIX allows programs to use both static data, which is allocated throughout
the program, and dynamic data, which can grow or shrink as needed by the
program. See Figure 2.13.)

m The relocation information identifies instructions and data words that depend
on absolute addresses when the program is loaded into memory.

symbol table A table
that matches names of
labels to the addresses of
the memory words that
instructions occupy.

142

Chapter 2 Instructions: Language of the Computer

linker Also called link
editor. A systems
program that combines
independently assembled
machine language
programs and resolves all
undefined labels into an
executable file.

executable file A
functional program in
the format of an object
file that contains no unre-
solved references. It can
contain symbol tables and
debugging information.
A “stripped executable”
does not contain that
information. Relocation
information may be
included for the loader.

B The symbol table contains the remaining labels that are not defined, such as
external references.

B The debugging information contains a concise description of how the mod-
ules were compiled so that a debugger can associate machine instructions
with C source files and make data structures readable.

The next subsection shows how to attach such routines that have already been
assembled, such as library routines.

Linker

What we have presented so far suggests that a single change to one line of one proce-
dure requires compiling and assembling the whole program. Complete retransla-
tion is a terrible waste of computing resources. This repetition is particularly
wasteful for standard library routines, because programmers would be compiling
and assembling routines that by definition almost never change. An alternative is
to compile and assemble each procedure independently, so that a change to one
line would require compiling and assembling only one procedure. This alternative
requires a new systems program, called a link editor or linker, which takes all
the independently assembled machine language programs and “stitches” them
together.
There are three steps for the linker:

1. Place code and data modules symbolically in memory.
2. Determine the addresses of data and instruction labels.
3. Patch both the internal and external references.

The linker uses the relocation information and symbol table in each object
module to resolve all undefined labels. Such references occur in branch instruc-
tions, jump instructions, and data addresses, so the job of this program is much
like that of an editor: it finds the old addresses and replaces them with the new
addresses. Editing is the origin of the name “link editor,” or linker for short. The
reason a linker is useful is that it is much faster to patch code than it is to recompile
and reassemble.

If all external references are resolved, the linker next determines the memory
locations each module will occupy. Recall that Figure 2.13 on page 120 shows
the MIPS convention for allocation of program and data to memory. Since the
files were assembled in isolation, the assembler could not know where a module’s
instructions and data would be placed relative to other modules. When the linker
places a module in memory, all absolute references, that is, memory addresses that
are not relative to a register, must be relocated to reflect its true location.

The linker produces an executable file that can be run on a computer. Typically,
this file has the same format as an object file, except that it contains no unresolved
references. It is possible to have partially linked files, such as library routines, that
still have unresolved addresses and hence result in object files.

2.12 Translating and Starting a Program 143

Linking Object Files

Link the two object files below. Show updated addresses of the first few
instructions of the completed executable file. We show the instructions in m
assembly language just to make the example understandable; in reality, the
instructions would be numbers.
Note that in the object files we have highlighted the addresses and symbols
that must be updated in the link process: the instructions that refer to the
addresses of procedures A and B and the instructions that refer to the addresses

of data words X and Y.

Object file header
Name Procedure A
Text size 100pex
Data size 20phex
Text segment Address Instruction
0 Tw $a0, 0($gp)
4 jalo
Data segment 0 (X)
Relocation information Address Instruction type Dependency
0 Tw X
4 jal B
Symbol table Label Address
>< _
B —_
Object file header
Name Procedure B
Text size 20064
Data size 30pex
Text segment Address Instruction
0 sw$al, 0($gp)
4 jal o0
Data segment 0 Y)
Relocation information Address Instruction type Dependency
(] sw Y
4 jal A
Symbol table Label Address
\(_
A —_

144

Chapter 2 Instructions: Language of the Computer

Procedure A needs to find the address for the variable labeled X to put in the
load instruction and to find the address of procedure B to place in the jal
instruction. Procedure B needs the address of the variable labeled Y for the
store instruction and the address of procedure A for its jal instruction.

From Figure 2.13 on page 120, we know that the text segment starts at
address 40 0000, and the data segment at 1000 0000,,,. The text of proce-
dure A is placed at the first address and its data at the second. The object file
header for procedure A says that its text is 100, ., bytes and its data is 20, ., bytes,
so the starting address for procedure B text is 40 0100,,,,, and its data starts
at 1000 0020y¢-

Executable file header
Text size 300pex
Data size 50pex
Text segment Address Instruction
0040 0000nex Tw$a0, 8000,.,($gp)
0040 0004pey jal 40 0100,.,
0040 01004 sw$al, 8020,.,($gp)
0040 0104y6x Jjal 40 0000y,
Data segment Address
1000 0000pex (X)
1000 0020pex (Y)

Figure 2.13 also shows that the text segment starts at address 40 0000y,
and the data segmentat 1000 0000,,.,. The text of procedure A is placed at the
first address and its data at the second. The object file header for procedure A
says that its text is 100, bytes and its data is 20, ., bytes, so the starting address
for procedure B text is 40 0100},,, and its data starts at 1000 0020,,,,.

Now the linker updates the address fields of the instructions. It uses the
instruction type field to know the format of the address to be edited. We have
two types here:

2.12 Translating and Starting a Program

145

1. The jals are easy because they use pseudodirect addressing. The jal at
address 40 00040, gets 40 0100, (the address of procedure B) in its
address field, and the jal at 40 0104, gets 40 0000, (the address of
procedure A) in its address field.

2. The load and store addresses are harder because they are relative to a
base register. This example uses the global pointer as the base register.
Figure 2.13 shows that $gp is initialized to 1000 8000,.,. To get the
address 1000 0000y, (the address of word X), we place -8000,., in the
address field of Tw at address 40 0000y,.,. Similarly, we place - 7980,
in the address field of sw at address 40 0100,,, to get the address
1000 0020y, (the address of word Y).

Elaboration: Recall that MIPS instructions are word aligned, so jal drops the
right two bits to increase the instruction’s address range. Thus, it use 26 bits to
create a 28-bit byte address. Hence, the actual address in the lower 26 bits of the
Jal instruction in this example is 10 0040y, rather than 40 0100.y.

Loader

Now that the executable file is on disk, the operating system reads it to memory and
starts it. The loader follows these steps in UNIX systems:

1. Reads the executable file header to determine size of the text and data segments.
2. Creates an address space large enough for the text and data.

3. Copies the instructions and data from the executable file into memory.

4. Copies the parameters (if any) to the main program onto the stack.
5

. Initializes the machine registers and sets the stack pointer to the first free
location.

6. Jumps to a start-up routine that copies the parameters into the argument
registers and calls the main routine of the program. When the main routine
returns, the start-up routine terminates the program with an exit system call.

Sections B.3 and B.4 in Appendix B describe linkers and loaders in more detail.

Dynamically Linked Libraries

The first part of this section describes the traditional approach to linking libraries
before the program is run. Although this static approach is the fastest way to call
library routines, it has a few disadvantages:

loader A systems
program that places an
object program in main
memory so that it is ready
to execute.

146

Chapter 2 Instructions: Language of the Computer

dynamically linked
libraries (DLLs) Library
routines that are linked
to a program during
execution.

B The library routines become part of the executable code. If a new version of
the library is released that fixes bugs or supports new hardware devices, the
statically linked program keeps using the old version.

m It loads all routines in the library that are called anywhere in the executable,
even if those calls are not executed. The library can be large relative to the
program; for example, the standard C library is 2.5 MB.

These disadvantages lead to dynamically linked libraries (DLLs), where the
library routines are not linked and loaded until the program is run. Both the pro-
gram and library routines keep extra information on the location of nonlocal pro-
cedures and their names. In the initial version of DLLs, the loader ran a dynamic
linker, using the extra information in the file to find the appropriate libraries and
to update all external references.

The downside of the initial version of DLLs was that it still linked all routines
of the library that might be called, versus only those that are called during the
running of the program. This observation led to the lazy procedure linkage version
of DLLs, where each routine is linked only after it is called.

Like many innovations in our field, this trick relies on a level of indirection.
Figure 2.22 shows the technique. It starts with the nonlocal routines calling a set of
dummy routines at the end of the program, with one entry per nonlocal routine.
These dummy entries each contain an indirect jump.

The first time the library routine is called, the program calls the dummy entry
and follows the indirect jump. It points to code that puts a number in a register to
identify the desired library routine and then jumps to the dynamic linker/loader.
The linker/loader finds the desired routine, remaps it, and changes the address in
the indirect jump location to point to that routine. It then jumps to it. When the
routine completes, it returns to the original calling site. Thereafter, the call to the
library routine jumps indirectly to the routine without the extra hops.

In summary, DLLs require extra space for the information needed for dynamic
linking, but do not require that whole libraries be copied or linked. They pay a good
deal of overhead the first time a routine is called, but only a single indirect jump
thereafter. Note that the return from the library pays no extra overhead. Microsoft’s
Windows relies extensively on dynamically linked libraries, and it is also the default
when executing programs on UNIX systems today.

Starting a Java Program

The discussion above captures the traditional model of executing a program,
where the emphasis is on fast execution time for a program targeted to a specific
instruction set architecture, or even a specific implementation of that architecture.
Indeed, it is possible to execute Java programs just like C. Java was invented with
a different set of goals, however. One was to run safely on any computer, even if it
might slow execution time.

2.12 Translating and Starting a Program

147

Text Text
jal jal g“
Tw

LS
Data

l
bL

i

Data

I

Text

i

Text

B[
=

~-{ Dynamic linker/loader
Remap DLL routine
J

L Data/Text Text
DLL routine]

o

DLL routine

Lo

]

ir

o

a. First call to DLL routine b. Subsequent calls to DLL routine

FIGURE 2.22 Dynamically linked library via lazy procedure linkage. (a) Steps for the first
time a call is made to the DLL routine. (b) The steps to find the routine, remap it, and link it are skipped on
subsequent calls. As we will see in Chapter 5, the operating system may avoid copying the desired routine by
remapping it using virtual memory management.

Figure 2.23 shows the typical translation and execution steps for Java. Rather
than compile to the assembly language of a target computer, Java is compiled first
to instructions that are easy to interpret: the Java bytecode instruction set (see
Section 2.15 on the CD). This instruction set is designed to be close to the
Java language so that this compilation step is trivial. Virtually no optimizations
are performed. Like the C compiler, the Java compiler checks the types of data
and produces the proper operation for each type. Java programs are distributed
in the binary version of these bytecodes.

A software interpreter, called a Java Virtual Machine (JVM), can execute Java
bytecodes. An interpreter is a program that simulates an instruction set architec-
ture. For example, the MIPS simulator used with this book is an interpreter. There
is no need for a separate assembly step since either the translation is so simple that
the compiler fills in the addresses or JVM finds them at runtime.

Java bytecode
Instruction from an
instruction set designed to
interpret Java programs.

Java Virtual Machine
(JVM) The program that
interprets Java bytecodes.

148

Chapter 2 Instructions: Language of the Computer

Just In Time compiler
(JIT) The name
commonly given to a
compiler that operates at
runtime, translating the
interpreted code segments
into the native code of the
computer.

Check
Yourself

Java program

| Class files (Java bytecodes) | | Java library routines (machine language)

Java Virtual Machine
compiler

| Compiled Java methods (machine language) |

FIGURE 2.23 A translation hierarchy for Java. A Java program is first compiled into a binary version
of Java bytecodes, with all addresses defined by the compiler. The Java program is now ready to run on the
interpreter, called the Java Virtual Machine (JVM). The JVM links to desired methods in the Java library while
the program is running. To achieve greater performance, the JVM can invoke the JIT compiler, which selectively
compiles methods into the native machine language of the machine on which it is running.

The upside of interpretation is portability. The availability of software Java vir-
tual machines meant that most people could write and run Java programs shortly
after Java was announced. Today, Java virtual machines are found in hundreds of
millions of devices, in everything from cell phones to Internet browsers.

The downside of interpretation is lower performance. The incredible advances
in performance of the 1980s and 1990s made interpretation viable for many
important applications, but the factor of 10 slowdown when compared to tradi-
tionally compiled C programs made Java unattractive for some applications.

To preserve portability and improve execution speed, the next phase of Java
development was compilers that translated while the program was running. Such
Just In Time compilers (JIT) typically profile the running program to find where
the “hot” methods are and then compile them into the native instruction set on
which the virtual machine is running. The compiled portion is saved for the next
time the program is run, so that it can run faster each time it is run. This balance
of interpretation and compilation evolves over time, so that frequently run Java
programs suffer little of the overhead of interpretation.

As computers get faster so that compilers can do more, and as researchers invent
betters ways to compile Java on the fly, the performance gap between Java and C or
C++ is closing. Section 2.15 on the CD goes into much greater depth on the
implementation of Java, Java bytecodes, JVM, and JIT compilers.

Which of the advantages of an interpreter over a translator do you think was most
important for the designers of Java?

1. Ease of writing an interpreter

2. Better error messages
3. Smaller object code
4

Machine independence

2.13 A C Sort Example to Put It All Together

149

A C Sort Example to Put It All Together

One danger of showing assembly language code in snippets is that you will have
no idea what a full assembly language program looks like. In this section, we derive
the MIPS code from two procedures written in C: one to swap array elements and
one to sort them.

void swap(int v[], int k)
{

int temp;
temp = v[k];
vik] = v[k+11;

vlk+1] = temp;
}

FIGURE 2.24 A C procedure that swaps two locations in memory. This subsection uses this
procedure in a sorting example.

The Procedure swap

Let’s start with the code for the procedure swap in Figure 2.24. This procedure
simply swaps two locations in memory. When translating from C to assembly lan-
guage by hand, we follow these general steps:

1. Allocate registers to program variables.
2. Produce code for the body of the procedure.
3. Preserve registers across the procedure invocation.
This section describes the swap procedure in these three pieces, concluding by

putting all the pieces together.

Register Allocation for swap

As mentioned on pages 112—113, the MIPS convention on parameter passing is to
use registers $a0, $al, $a2, and $a3. Since swap has just two parameters, v and
k, they will be found in registers $a0 and $al. The only other variable is temp,
which we associate with register $t0 since swap is a leaf procedure (see page 116).

150

Chapter 2 Instructions: Language of the Computer

This register allocation corresponds to the variable declarations in the first part of
the swap procedure in Figure 2.24.

Code for the Body of the Procedure swap
The remaining lines of C code in swap are

temp = v[k];
vlk] = v[k+1];
vlk+1] = temp;

Recall that the memory address for MIPS refers to the byte address, and so words
are really 4 bytes apart. Hence we need to multiply the index k by 4 before adding it
to the address. Forgetting that sequential word addresses differ by 4 instead of by 1 is
a common mistake in assembly language programming. Hence the first step is to get
the address of v[k] by multiplying k by 4 via a shift left by 2:

ST $t1, $al,? # reg $t1 = k * 4
add $t1, $a0,$t1 # reg $tl = v + (k * 4)
reg $t1 has the address of v[k]

Now we load v[k] using $t1, and then v[k+1] by adding4 to $t1:

Tw $t0, 0($tl) # reg $t0 (temp) = v[k]
Tw $te, 4(%t1) # reg $t2 = vik + 1]
refers to next element of v

Next we store $t0 and $t2 to the swapped addresses:

Sw $t2, 0($tl) # vlk] = reg $t2
Sw $t0, 4(3$tl) ## vik+1] = reg $t0 (temp)

Now we have allocated registers and written the code to perform the operations
of the procedure. What is missing is the code for preserving the saved registers used
within swap. Since we are not using saved registers in this leaf procedure, there is
nothing to preserve.

The Full swap Procedure

We are now ready for the whole routine, which includes the procedure label and
the return jump. To make it easier to follow, we identify in Figure 2.25 each block
of code with its purpose in the procedure.

The Procedure sort

To ensure that you appreciate the rigor of programming in assembly language,
we’'ll try a second, longer example. In this case, we’ll build a routine that calls the
swap procedure. This program sorts an array of integers, using bubble or exchange
sort, which is one of the simplest if not the fastest sorts. Figure 2.26 shows the C

2.13 A C Sort Example to Put It All Together

151

Procedure body

swap: sll $t1, $al, 2 ffregstl=k*4

add $tl1, $a0, $t1 Fregstl=v+(k*4)
reg $t1 has the address of v[k]

Tw $t0, 0($tl) #reg $t0 (temp) = v[k]

Tw $t2, 4($t1) #regst2=vlk+1]
#f refers tonext element of v

Sw $t2, 0($t1) #vikl=reg$t2

Sw $t0, 4($tl) #vlk+l]l=reg $t0 (temp)

‘ jr $ra # return tocalling routine ‘

FIGURE 2.25 MIPS assembly code of the procedure swap in Figure 2.24.

version of the program. Once again, we present this procedure in several steps,
concluding with the full procedure.

void sort (int v[], int n)

int i, J;
for (i =0; i <n; 1 +=1) {
for (J =1 -1; J >=0 & v[jl > vlj +1]; J -=1) {
swap(v,j);

FIGURE 2.26 A C procedure that performs a sort on the array v.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are in the parameter registers
$a0 and $al, and we assign register $s0 to i and register $s1 to j.

Code for the Body of the Procedure sort

The procedure body consists of two nested for loops and a call to swap that
includes parameters. Let’s unwrap the code from the outside to the middle.
The first translation step is the first for loop:

for (i =0; 1 <n;i+=1) |

Recall that the C for statement has three parts: initialization, loop test, and itera-
tion increment. It takes just one instruction to initialize i to 0, the first part of the
for statement:

move $s0, $zero #i=0

152

Chapter 2 Instructions: Language of the Computer

(Remember that move is a pseudoinstruction provided by the assembler for the
convenience of the assembly language programmer; see page 141.) It also takes
just one instruction to increment 1, the last part of the for statement:

addi $s0, $s0, 1 #i+=1

The loop should be exited if 1 < n is not true or, said another way, should be exited
if i 2 n. The set on less than instruction sets register $t0to 1if $s0 < $al andto 0
otherwise. Since we want to testif $s0 > $al, we branch if register $t0 is 0. This
test takes two instructions:

forltst:s1t $t0, $s0, $al # reg $t0 = 0 if $s0 > $al (i=n)
beq $t0, $zero,exitl # go to exitl if $s0 = $al (i=n)

The bottom of the loop just jumps back to the loop test:

j forltst # jump to test of outer Tloop
exitl:

The skeleton code of the first for loop is then

move $s0, $zero #1i=0
forltst:slt $t0, $s0, $al # reg $t0 = 0 if $s0 > $al (i=n)
beq $t0, $zero,exitl # go to exitl if $s0 = $al (i=n)
(body of first for Toop)
addi $s0, $s0, 1 #i+=1
j forltst # jump to test of outer Toop

exitl:

Voila! (The exercises explore writing faster code for similar loops.)
The second for loop looks like this in C:

for (J =1 -1; 3 >=08&& v[jl > vlj +11; J = 1) |
The initialization portion of this loop is again one instruction:

addi $s1, $s0, -1 # J =1 -1
The decrement of j at the end of the loop is also one instruction:

addi $s1, $s1, -1 # 3 =1

The loop test has two parts. We exit the loop if either condition fails, so the first test
must exit the loop if it fails (j < 0):

for2tst: slti $t0, $sl, 0 # reg $t0 =1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)

This branch will skip over the second condition test. If it doesn’t skip, j = 0.

2.13 A C Sort Example to Put It All Together

153

v[J + 1].First we create the address by multiplying j by 4 (since we need a byte
address) and add it to the base address of v:

s11 $t1, $s1, 2 # reg $t1 =3 * 4

The second test exits if v[j]1 > v[j + 11 is not true, or exits if v[j] <

add $t2, $a0, $tl1 # reg $t2 =v + (j * 4)
Now we load v[jJ:
Tw $t3, 0($t2) # reg $t3 = v[j]

Since we know that the second element is just the following word, we add 4 to the
address in register $t2 toget v[j + 11:

Tw $td, 4($t2) 4 reg $t4 = v[j + 1]

The testof v[j] < v[j + 1]isthesameasv[j + 1] > v[jl,so the two
instructions of the exit test are

sTt $t0, $t4, $t3 # reg $t0 =0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > §$t3

The bottom of the loop jumps back to the inner loop test:

j for2tst # jump to test of inner loop
Combining the pieces, the skeleton of the second for loop looks like this:

addi $s1, $s0, -1 #Fi=1-1

for2tst:s1ti $t0, $s1, O # reg $t0 =1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit?2 4 go to exit2 if $s1 < 0 (j < 0)
s11 $tl, $s1, 2 # reg $t1 =j * 4
add $t2, $a0, $tl # reg $t2 =v + (j * 4)
Tw $t3, 0($t2) # reg $t3 = v[j]
Tw $t4, 4($t2) # reg $t4 = v[j + 1]

s1t $t0, $t4, $t3 ## reg $t0 = 0 if $t4 > $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 > $t3

(body of second for loop)

addi $s1, $s1, -1 #3-=1
J for2tst # jump to test of inner Toop
exit?:

The Procedure Call in sort
The next step is the body of the second for loop:

swap(v,Jj);
Calling swap is easy enough:

jal swap

154

Chapter 2 Instructions: Language of the Computer

Passing Parameters in sort

The problem comes when we want to pass parameters because the sort procedure
needs the values in registers $a0 and $al, yet the swap procedure needs to have its
parameters placed in those same registers. One solution is to copy the parameters
for sort into other registers earlier in the procedure, making registers $a0 and
$al available for the call of swap. (This copy is faster than saving and restoring on
the stack.) We first copy $a0 and $al into $s2 and $s3 during the procedure:

move $s2, $a0 # copy parameter $a0 into $s2
move $s3, $al # copy parameter $al into $s3

Then we pass the parameters to swap with these two instructions:

move $a0, $s2 # first swap parameter is v
move $al, $sl # second swap parameter is j

Preserving Registers in sort

The only remaining code is the saving and restoring of registers. Clearly, we must
save the return address in register $ra, since sort is a procedure and is called itself.
The sort procedure also uses the saved registers $s0, $s1, $52, and $53, so they
must be saved. The prologue of the sort procedure is then

addi $sp,$sp,-20 # make room on stack for 5 registers
Sw $ra,16($sp) # save $ra on stack
Sw $s3,12($sp) # save $s3 on stack
Sw $s2, 8($sp) # save $s2 on stack
Sw $s1, 4($sp) # save $sl on stack
Sw $s0, 0($sp) # save $s0 on stack

The tail of the procedure simply reverses all these instructions, then adds a jr to
return.

The Full Procedure sort

Now we put all the pieces together in Figure 2.27, being careful to replace references
to registers $a0 and $al in the for loops with references to registers $s2 and $s3.
Once again, to make the code easier to follow, we identify each block of code with
its purpose in the procedure. In this example, nine lines of the sort procedure in
C became 35 lines in the MIPS assembly language.

Elaboration: One optimization that works with this example is procedure inlining.
Instead of passing arguments in parameters and invoking the code with a jal instruction,
the compiler would copy the code from the body of the swap procedure where the call
to swap appears in the code. Inlining would avoid four instructions in this example. The
downside of the inlining optimization is that the compiled code would be bigger if the
inlined procedure is called from several locations. Such a code expansion might turn
into lower performance if it increased the cache miss rate; see Chapter 5.

2.13 A C Sort Example to Put It All Together 155

Saving registers

sort: addi $sp,$sp, -20 # make roomon stack for 5 registers
Sw $ra, 16($sp)# save $ra on stack
Sw $s3,12($sp) # save $s3 on stack
Sw $s2, 8($sp)ff save $s2 on stack
Sw $s1, 4($sp)ff save $s1 on stack
SwW $s0, 0($sp)# save $s0 on stack
move $s2, $a0 # copy parameter $a0 into $s2 (save $a0)
Move parameters move $s3, $al #f copy parameter $al into $s3 (save $al)
move $s0, $zeroffi=0
Outer loop forltst: s1t$t0, $s0, $s3# reg$t0=01f $s0 S $s3 (i Sn)
beq $t0, $zero, exitlffgotoexitl if $s035$s3 (i Sn)
addi $s1, $s0, -1#j=1-1
for2tst: s1ti$to, $s1, 0 #Fregst0=11f $s1<0(j<0)
bne $t0, $zero, exit2# gotoexit2 if $s1 <0 (j<0)
s11 $tl, $s1, 2 reg$tl=j*4
Inner loop add $t2, $s2, $tlffregst2=v+(j*4)
Tw $t3, 0($t2)# reg $t3 =v[j]
Tw $t4, 4($t2)#reg $td =v[j+1]
s1t $t0, $t4, $t3 #reg$t0=01f $t4 S $t3
beq $t0, $zero, exit2f go toexit2 if $t4 S $t3
move $al, $s2 # 1st parameter of swap is v (o1d $a0)
Pass parameters move $al, $s1# 2nd parameter of swap is j
and call jal swap #F swap code shown in Figure 2.25
Inner loop addi $s1, $s1, -1#j =1
j for2tst # jump to test of inner lToop
Outer loop exit2: addi $s0, $s0, 1 Fi+=1
J forltst # jump to test of outer loop
exitl: Tw $s0, 0($sp) #restore $s0 fromstack
Tw $s1, 4($sp)ff restore $s1 from stack
Tw $s2, 8($sp)ff restore $s2 from stack
Tw $s3,12($sp) #restore $s3 from stack
Tw $ra,16($sp) #restore $ra fromstack
addi $sp,$sp, 20 #f restore stack pointer

Procedure return

jr $ra #returntocalling routine

FIGURE 2.27 MIPS assembly version of procedure sort in Figure 2.26.

156

Chapter 2 Instructions: Language of the Computer

Understanding Figure 2.28 shows the impact of compiler optimization on sort program perfor-

Program
Performance

mance, compile time, clock cycles, instruction count, and CPI. Note that unopti-
mized code has the best CPI, and Ol optimization has the lowest instruction
count, but O3 is the fastest, reminding us that time is the only accurate measure of
program performance.

Figure 2.29 compares the impact of programming languages, compilation
versus interpretation, and algorithms on performance of sorts. The fourth col-
umn shows that the unoptimized C program is 8.3 times faster than the inter-
preted Java code for Bubble Sort. Using the JIT compiler makes Java 2.1 times
faster than the unoptimized C and within a factor of 1.13 of the highest optimized
C code. (@ Section 2.15 on the CD gives more details on interpretation versus
compilation of Java and the Java and MIPS code for Bubble Sort.) The ratios
aren’t as close for Quicksort in Column 5, presumably because it is harder to
amortize the cost of runtime compilation over the shorter execution time. The
last column demonstrates the impact of a better algorithm, offering three orders
of magnitude a performance increases by when sorting 100,000 items. Even
comparing interpreted Java in Column 5 to the C compiler at highest optimization
in Column 4, Quicksort beats Bubble Sort by a factor of 50 (0.05 x 2468, or 123
times faster than the unoptimized C code versus 2.41 times faster).

Elaboration: The MIPS compilers always save room on the stack for the arguments
in case they need to be stored, so in reality they always decrement $sp by 16 to make
room for all four argument registers (16 bytes). One reason is that C provides a vararg
option that allows a pointer to pick, say, the third argument to a procedure. When the
compiler encounters the rare vararg, it copies the four argument registers onto the
stack into the four reserved locations.

Relative Clock cycles | Instruction count
gcc optimization performance (millions) (millions)

None 1.00 158,615 114,938 1.38

01 (medium) 2.37 66,990 37,470 1.79

02 (full) 2.38 66,521 39,993 1.66

03 (procedure integration) 2.41 65,747 44,993 1.46

FIGURE 2.28 Comparing performance, instruction count, and CPI using compiler optimi-
zation for Bubble Sort. The programs sorted 100,000 words with the array initialized to random values.
These programs were run on a Pentium 4 with a clock rate of 3.06 GHz and a 533 MHz system bus with 2 GB
of PC2100 DDR SDRAM. It used Linux version 2.4.20.

2.14 Arrays versus Pointers 157

Bubble Sort relative | Quicksort relative | Speedup Quicksort
Language Execution method Optimization performance performance vs. Bubble Sort

Compiler None 1.00 1.00 2468

Compiler 01 2.37 1.50 1562

Compiler 02 2.38 1.50 1555

Compiler 03 2.41 1.91 1955

Java Interpreter - 0.12 0.05 1050
JIT compiler - 2.13 0.29 338

FIGURE 2.29 Performance of two sort algorithms in C and Java using interpretation and optimizing compilers relative
to unoptimized C version. The last column shows the advantage in performance of Quicksort over Bubble Sort for each language and
execution option. These programs were run on the same system as Figure 2.28. The JVM is Sun version 1.3.1, and the JIT is Sun Hotspot
version 1.3.1.

Arrays versus Pointers

A challenge for any new C programmer is understanding pointers. Comparing
assembly code that uses arrays and array indices to the assembly code that uses
pointers offers insights about pointers. This section shows C and MIPS assembly
versions of two procedures to clear a sequence of words in memory: one using
array indices and one using pointers. Figure 2.30 shows the two C procedures.

The purpose of this section is to show how pointers map into MIPS instructions,
and not to endorse a dated programming style. We'll see the impact of modern com-
piler optimization on these two procedures at the end of the section.

Array Version of Clear

Let’s start with the array version, clearl, focusing on the body of the loop and

ignoring the procedure linkage code. We assume that the two parameters array and

size are found in the registers $a0 and $al, and that 7 is allocated to register $t0.
The initialization of 1, the first part of the for loop, is straightforward:

move $t0,%$zero # i =0 (register $t0 = 0)

To set array[i] to 0 we must first get its address. Start by multiplying i by 4 to
get the byte address:

Toopl: sl $t1,$t0,2 #3t1 =1 * 4

Since the starting address of the array is in a register, we must add it to the index
to get the address of array[1] using an add instruction:

add $t2,%a0,9$t1 # $t2 = address of array[il]

Finally, we can store 0 in that address:

158 Chapter 2 Instructions: Language of the Computer

clearl(int array[], int size)
{

int i;

for (i = 0;

i < size; i +=1)
array[i] =

S
0;

clear2(int *array, int size)
{
int *p;
for (p = &array[0]; p <
&arrayl[sizel; p=p + 1)
*p = 0;
}

FIGURE 2.30 Two C procedures for setting an array to all zeros. Clearl uses indices, while
clear?2 uses pointers. The second procedure needs some explanation for those unfamiliar with C. The
address of a variable is indicated by &, and the object pointed to by a pointer is indicated by *. The declara-
tions declare that array and p are pointers to integers. The first part of the for loop in clear?2 assigns
the address of the first element of array to the pointer p. The second part of the for loop tests to see if the
pointer is pointing beyond the last element of array. Incrementing a pointer by one, in the last part of the
for loop, means moving the pointer to the next sequential object of its declared size. Since p is a pointer to
integers, the compiler will generate MIPS instructions to increment p by four, the number of bytes in a MIPS
integer. The assignment in the loop places 0 in the object pointed to by p.

SwW $zero, 0($t2) 4 arrayli]l =0

This instruction is the end of the body of the loop, so the next step is to increment 1:

addi $t0,$t0,1 #i=1+1
The loop test checks if 7 is less than size:

slt $t3,$t0,%al #F $t3 = (1 < size)
bne $t3,%$zero,lToopl # if (i < size) go to loopl

We have now seen all the pieces of the procedure. Here is the MIPS code for
clearing an array using indices:

move $t0,$zero #1i=0
Toopl: st $t1,$t0,2 # sl =1 * 4
add $t2,%$a0,9$t1 # $t2 = address of array[i]
Sw $zero, 0($t2) 4 array[i]l =20
addi $t0,$t0,1 Fi=1+1
sTt $t3,$t0,%al # $t3 = (i < size)
bne $t3,%zero,loopl # if (i < size) go to loopl

(This code works as long as size is greater than 0; ANSI C requires a test of size
before the loop, but we’ll skip that legality here.)

2.14 Arrays versus Pointers

159

Pointer Version of Clear

The second procedure that uses pointers allocates the two parameters array and
size to the registers $a0 and $al and allocates p to register $t0. The code for
the second procedure starts with assigning the pointer p to the address of the first
element of the array:

move $t0,$%$a0 # p = address of array[0]

The next code is the body of the for loop, which simply stores 0 into p:

Toop2: sw $zero,0($t0) # Memory[p] = 0

This instruction implements the body of the loop, so the next code is the iteration
increment, which changes p to point to the next word:

addi $t0,$t0,4 #fp=p+4

Incrementing a pointer by 1 means moving the pointer to the next sequential
object in C. Since p is a pointer to integers, each of which uses 4 bytes, the compiler
increments p by 4.

The loop test is next. The first step is calculating the address of the last element
of array. Start with multiplying size by 4 to get its byte address:

s11 $t1,%al,2 # $t1 = size * 4

and then we add the product to the starting address of the array to get the address
of the first word affer the array:

add $t2,%$a0,$t1 # $t2 = address of array[size]
The loop test is simply to see if p is less than the last element of array:

sTt $t3,$t0,$t2 # $t3 = (p<&arraylsizel)
bne $t3,$zero,loop2 # if (p<&karray[sizel) go to Toop?

With all the pieces completed, we can show a pointer version of the code to zero
an array:

move $t0,$a0 # p = address of array[0]
Toop2:sw$zero,0($t0) # Memoryl[p] = 0

addi $t0,$t0,4 #p=p+4

s11 $t1,%al,2 #F $t1 = size * 4

add $t2,%a0,%t1 J# $t2 = address of arrayl[sizel
sTt $t3,$t0,$t2 # $t3 = (p<&arraylsizel)

bne $t3,%$zero,loop2 # if (p<Rarray[size]) go to loop2

As in the first example, this code assumes s i ze is greater than 0.

160

Chapter 2 Instructions: Language of the Computer

loopl:

move
sl
add
SwW
addi
slt
bne

Note that this program calculates the address of the end of the array in every
iteration of the loop, even though it does not change. A faster version of the code
moves this calculation outside the loop:

move $t0,$a0 # p = address of array[0]

s11 $t1,%al,2 £ $t1 = size * 4

add $t2,%a0,$t1 # $t2 = address of arrayl[size]
Toop2:sw$zero,0($t0) # Memory[pl = 0

addi $t0,$t0,4 #fp=p+4

st $t3,$t0,$t2 ## $t3 = (p<&array[sizel)

bne $t3,%zero,loop2 # if (p<&arraylsizel) go to loop?

Comparing the Two Versions of Clear

Comparing the two code sequences side by side illustrates the difference between

array indices and pointers (the changes introduced by the pointer version are
highlighted):

$t0, $zero #i=0 move $t0,%a0 #p==&array[0]
$t1,$t0,2 #Fetl=1*4 s11 $tl1,%al,2 #$t1 =size * 4
$t2,%a0,%t1 # $t2 = &array[i] add $t2,%$a0,$t1 4 $t2 = &arrayl[sizel]
$zero, 0($t2) # array[i]l =0 Toop2: sw $zero,0($t0) 4 Memory[pl =0
$t0,$t0,1 #Fi=1+1 addi $t0,$t0,4 #p=p+4
$t3,$t0,%al #$t3 = (i < size) sTt $t3,$t0,$t2 # $t3=(p<&arraylsize])
$t3,$zero,loopls if () go to lToopl bne $t3,$zero,loop2# if () go to loop?2

The version on the left must have the “multiply” and add inside the loop
because i is incremented and each address must be recalculated from the new
index. The memory pointer version on the right increments the pointer p directly.
The pointer version moves them outside the loop, thereby reducing the instruc-
tions executed per iteration from 6 to 4. This manual optimization corresponds
to the compiler optimization of strength reduction (shift instead of multiply)
and induction variable elimination (eliminating array address calculations
within loops). @ Section 2.15 on the CD describes these two and many other
optimizations.

Elaboration: As mentioned ealier, a C compiler would add a test to be sure that size
is greater than 0. One way would be to add a jump just before the first instruction of the
loop to the s1t instruction.

2.16 Real Stuff: ARM Instructions 161

People used to be taught to use pointers in C to get greater efficiency than that Understanding
available with arrays: “Use pointers, even if you can’t understand the code.” Mod- Program
ern optimizing compilers can produce code for the array version that is just as

good. Most programmers today prefer that the compiler do the heavy lifting. Performance

»2 1| Advanced Material: Compiling C and
Interpreting Java

This section gives a brief overview of how the C compiler works and how Java is
executed. Because the compiler will significantly affect the performance of a com-
puter, understanding compiler technology today is critical to understanding per-
formance. Keep in mind that the subject of compiler construction is usually taught
in a one- or two-semester course, so our introduction will necessarily only touch
on the basics.
The second part of this section is for readers interested in seeing how an
objected oriented language like Java executes on a MIPS architecture. It shows the object oriented
Java bytecodes used for interpretation and the MIPS code for the Java version of ~language A
some of the C segments in prior sections, including Bubble Sort. It covers both the ~ Programming language
Java Virtual Machine and JIT compilers. that is oriented around

. . objects rather than
The rest of this section is on the CD.)
actions, or data versus

logic.

Real Stuff: ARM Instructions

ARM is the most popular instruction set architecture for embedded devices, with
more than three billion devices per year using ARM. Standing originally for the
Acorn RISC Machine, later changed to Advanced RISC Machine, ARM came out
the same year as MIPS and followed similar philosophies. Figure 2.31 lists the
similarities. The principle difference is that MIPS has more registers and ARM has
more addressing modes.

There is a similar core of instruction sets for arithmetic-logical and data transfer
instructions for MIPS and ARM, as Figure 2.32 shows.

Addressing Modes

Figure 2.33 shows the data addressing modes supported by ARM. Unlike MIPS,
ARM does not reserve a register to contain 0. Although MIPS has just three simple
data addressing modes (see Figure 2.18), ARM has nine, including fairly complex
calculations. For example, ARM has an addressing mode that can shift one register

162

Chapter 2 Instructions: Language of the Computer

Date announced 1985 1985

Instruction size (bits) 32 32

Address space (size, model) 32 bits, flat 32 bits, flat

Data alignment Aligned Aligned

Data addressing modes 9 3

Integer registers (number, model, size) 15 GPR x 32 bits 31 GPR x 32 bits
1/0 Memory mapped Memory mapped

FIGURE 2.31 Similarities in ARM and MIPS instruction sets.

T o name | aaw |
Add add

addu, addiu
Add (trap if overflow) adds; swivs add
Subtract sub subu
Subtract (trap if overflow) subs; swivs sub
Multiply mul mult, multu
Divide — div, divu
)) And and and
Register-register or orr or
Xor eor xor
Load high part register — lui
Shift left logical Isit sllv, sl
Shift right logical Isrt srlv, srl
Shift right arithmetic asrt srav, sra
Compare cmp, cmn, tst, teq slt/i, slt/iu
Load byte signed Idrsb Ib
Load byte unsigned Idrb Ibu
Load halfword signed Idrsh Ih
Load halfword unsigned Idrh lhu
Load word Idr Iw
Data transfer Store byte strb sb
Store halfword strh sh
Store word str sw
Read, write special registers mrs, msr move
Atomic Exchange swp, swpb Il;sc

FIGURE 2.32 ARM register-register and data transfer instructions equivalent to MIPS
core. Dashes mean the operation is not available in that architecture or not synthesized in a few instruc-
tions. If there are several choices of instructions equivalent to the MIPS core, they are separated by commas.
ARM includes shifts as part of every data operation instruction, so the shifts with superscript 1 are just a

variation of a move instruction, such as 15r'. Note that ARM has no divide instruction.

2.16 Real Stuff: ARM Instructions

163

by any amount, add it to the other registers to form the address, and then update
one register with this new address.

T aessngmote | amave | wes
X

Register operand

Immediate operand

Register + offset (displacement or based)

Register + register (indexed)

Register + scaled register (scaled)

Register + offset and update register

Register + register and update register

Autoincrement, autodecrement

PC-relative data

XX | X | X | X[X|X]|X| X

FIGURE 2.33 Summary of data addressing modes. ARM has separate register indirect and register
+ offset addressing modes, rather than just putting 0 in the offset of the latter mode. To get greater addressing
range, ARM shifts the offset left 1 or 2 bits if the data size is halfword or word.

Compare and Conditional Branch

MIPS uses the contents of registers to evaluate conditional branches. ARM uses
the traditional four condition code bits stored in the program status word:
negative, zero, carry, and overflow. They can be set on any arithmetic or logical
instruction; unlike earlier architectures, this setting is optional on each instruc-
tion. An explicit option leads to fewer problems in a pipelined implementation.
ARM uses conditional branches to test condition codes to determine all possible
unsigned and signed relations.

CMP subtracts one operand from the other and the difference sets the condi-
tion codes. Compare negative (CMN) adds one operand to the other, and the sum
sets the condition codes. TST performs logical AND on the two operands to set all
condition codes but overflow, while TEQ uses exclusive OR to set the first three
condition codes.

One unusual feature of ARM is that every instruction has the option of execut-
ing conditionally, depending on the condition codes. Every instruction starts with
a 4-bit field that determines whether it will act as a no operation instruction (nop)
or as a real instruction, depending on the condition codes. Hence, conditional
branches are properly considered as conditionally executing the unconditional
branch instruction. Conditional execution allows avoiding a branch to jump over a
single instruction. It takes less code space and time to simply conditionally execute
one instruction.

Figure 2.34 shows the instruction formats for ARM and MIPS. The principal
differences are the 4-bit conditional execution field in every instruction and the
smaller register field, because ARM has half the number of registers.

164

Chapter 2 Instructions: Language of the Computer

31 28 27 2019 16 15 12 11 43 0
ARM Rst* Rd*

Register-register 31 26 25 21 20 16 15 1110 65 0
31 28 27 20 19 16 15 12 11 0

RO - | T T

Data transfer 31 26 25 21 20 16 15 0
MIPS - Rs1® | Rd® | Const'® |

31 28 27 24 23 0

Branch 31 26 25 21 20 16 15 0
MIPS Rs1® 52° Const'® |

31 28 27 24 23 0

Jump/Call 31 26 25 0

| @ Opcode [Register [Constant

FIGURE 2.34 Instruction formats, ARM, and MIPS. The differences result from whether the
architecture has 16 or 32 registers.

Unique Features of ARM

Figure 2.35 shows a few arithmetic-logical instructions not found in MIPS. Since
it does not have a dedicated register for 0, it has separate opcodes to perform
some operations that MIPS can do with $zero. In addition, ARM has support for
multiword arithmetic.

ARM’s 12-bit immediate field has a novel interpretation. The eight least-
significant bits are zero-extended to a 32-bit value, then rotated right the number
of bits specified in the first four bits of the field multiplied by two. One advantage is
that this scheme can represent all powers of two in a 32-bit word. Whether this split
actually catches more immediates than a simple 12-bit field would be an interesting
study.

Operand shifting is not limited to immediates. The second register of all
arithmetic and logical processing operations has the option of being shifted before
being operated on. The shift options are shift left logical, shift right logical, shift
right arithmetic, and rotate right.

2.17 Real Stuff: x86 Instructions

165

e e ==

Load immediate Rd = Imm addi, $0,
Not Rd = ~(Rs1) mvn nor, $0,
Move Rd = Rs1 mov or, $0,
Rotate right Rd=Rsi>> i ror

Rdo. . i1 =Rsz1 . .31
And not Rd = Rs1 & ~(Rs2) bic
Reverse subtract Rd = Rs2-Rs1 rsh, rsc
Support for multiword CarryOut, Rd = Rd + Rs1 + adcs —
integer add OldCarryOut
Support for multiword CarryOut, Rd = Rd — Rs1 + sbcs —
integer sub OldCarryOut

FIGURE 2.35 ARM arithmetic/logical instructions not found in MIPS.

ARM also has instructions to save groups of registers, called block loads and
stores. Under control of a 16-bit mask within the instructions, any of the 16 regis-
ters can be loaded or stored into memory in a single instruction. These instructions
can save and restore registers on procedure entry and return. These instructions
can also be used for block memory copy, and today block copies are the most
important use of this instruction.

Real Stuff: x86 Instructions

Designers of instruction sets sometimes provide more powerful operations than
those found in ARM and MIPS. The goal is generally to reduce the number of
instructions executed by a program. The danger is that this reduction can occur at
the cost of simplicity, increasing the time a program takes to execute because the
instructions are slower. This slowness may be the result of a slower clock cycle time
or of requiring more clock cycles than a simpler sequence.

The path toward operation complexity is thus fraught with peril. To avoid these
problems, designers have moved toward simpler instructions. Section 2.18 dem-
onstrates the pitfalls of complexity.

Evolution of the Intel x86

ARM and MIPS were the vision of single small groups in 1985; the pieces of these
architectures fit nicely together, and the whole architecture can be described suc-
cinctly. Such is not the case for the x86; it is the product of several independent
groups who evolved the architecture over 30 years, adding new features to the
original instruction set as someone might add clothing to a packed bag. Here are
important x86 milestones.

Beauty is altogether in
the eye of the beholder.

Margaret Wolfe
Hungerford, Molly Bawn,
1877

166

Chapter 2 Instructions: Language of the Computer

general-purpose register
(GPR) A register that can
be used for addresses or
for data with virtually any
instruction.

1978: The Intel 8086 architecture was announced as an assembly language—
compatible extension of the then successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Unlike MIPS, the registers have dedicated uses, and hence the 8086 is not con-
sidered a general-purpose register architecture.

1980: The Intel 8087 floating-point coprocessor is announced. This archi-
tecture extends the 8086 with about 60 floating-point instructions. Instead
of using registers, it relies on a stack (see Section 2.20 and Section 3.7).

1982: The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory-mapping and protection
model (see Chapter 5), and by adding a few instructions to round out the
instruction set and to manipulate the protection model.

1985: The 80386 extended the 80286 architecture to 32 bits. In addition to
a 32-bit architecture with 32-bit registers and a 32-bit address space, the
80386 added new addressing modes and additional operations. The added
instructions make the 80386 nearly a general-purpose register machine. The
80386 also added paging support in addition to segmented addressing (see
Chapter 5). Like the 80286, the 80386 has a mode to execute 8086 programs
without change.

1989-95: The subsequent 80486 in 1989, Pentium in 1992, and Pentium
Pro in 1995 were aimed at higher performance, with only four instructions
added to the user-visible instruction set: three to help with multiprocessing
(Chapter 7) and a conditional move instruction.

1997: After the Pentium and Pentium Pro were shipping, Intel announced
that it would expand the Pentium and the Pentium Pro architectures with
MMX (Multi Media Extensions). This new set of 57 instructions uses the
floating-point stack to accelerate multimedia and communication applica-
tions. MMX instructions typically operate on multiple short data elements
at a time, in the tradition of single instruction, multiple data (SIMD) archi-
tectures (see Chapter 7). Pentium II did not introduce any new instructions.

1999: Intel added another 70 instructions, labeled SSE (Streaming SIMD
Extensions) as part of Pentium III. The primary changes were to add eight
separate registers, double their width to 128 bits, and add a single precision
floating-point data type. Hence, four 32-bit floating-point operations can be
performed in parallel. To improve memory performance, SSE includes cache
prefetch instructions plus streaming store instructions that bypass the caches
and write directly to memory.

2001: Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double precision arithmetic, which allows pairs of 64-bit
floating-point operations in parallel. Almost all of these 144 instructions are

2.17 Real Stuff: x86 Instructions

167

versions of existing MMX and SSE instructions that operate on 64 bits of
data in parallel. Not only does this change enable more multimedia opera-
tions, it gives the compiler a different target for floating-point operations
than the unique stack architecture. Compilers can choose to use the eight SSE
registers as floating-point registers like those found in other computers. This
change boosted the floating-point performance of the Pentium 4, the first
microprocessor to include SSE2 instructions.

2003: A company other than Intel enhanced the x86 architecture this time.
AMD announced a set of architectural extensions to increase the address space
from 32 to 64 bits. Similar to the transition from a 16- to 32-bit address space
in 1985 with the 80386, AMD64 widens all registers to 64 bits. It also increases
the number of registers to 16 and increases the number of 128-bit SSE registers
to 16. The primary ISA change comes from adding a new mode called long
mode that redefines the execution of all x86 instructions with 64-bit addresses
and data. To address the larger number of registers, it adds a new prefix to
instructions. Depending how you count, long mode also adds four to ten new
instructions and drops 27 old ones. PC-relative data addressing is another
extension. AMD64 still has a mode that is identical to x86 (legacy mode) plus a
mode that restricts user programs to x86 but allows operating systems to use
AMDG64 (compatibility mode). These modes allow a more graceful transition to
64-bit addressing than the HP/Intel IA-64 architecture.

2004: Intel capitulates and embraces AMD64, relabeling it Extended Memory
64 Technology (EM64T). The major difference is that Intel added a 128-bit
atomic compare and swap instruction, which probably should have been
included in AMD64. At the same time, Intel announced another generation of
media extensions. SSE3 adds 13 instructions to support complex arithmetic,
graphics operations on arrays of structures, video encoding, floating-point
conversion, and thread synchronization (see Section 2.11). AMD will offer
SSE3 in subsequent chips and it will almost certainly add the missing atomic
swap instruction to AMD64 to maintain binary compatibility with Intel.

2006: Intel announces 54 new instructions as part of the SSE4 instruction set
extensions. These extensions perform tweaks like sum of absolute differences,
dot products for arrays of structures, sign or zero extension of narrow data to
wider sizes, population count, and so on. They also added support for virtual
machines (see Chapter 5).

2007: AMD announces 170 instructions as part of SSE5, including 46 instruc-
tions of the base instruction set that adds three operand instructions like
MIPS.

2008: Intel announces the Advanced Vector Extension that expands the SSE
register width from 128 to 256 bits, thereby redefining about 250 instructions
and adding 128 new instructions.

168

Chapter 2 Instructions: Language of the Computer

This history illustrates the impact of the “golden handcuffs” of compatibility on
the x86, as the existing software base at each step was too important to jeopardize
with significant architectural changes. If you looked over the life of the x86, on
average the architecture has been extended by one instruction per month!

Whatever the artistic failures of the x86, keep in mind that there are more instances
of this architectural family on desktop computers than of any other architecture,
increasing by more than 250 million per year. Nevertheless, this checkered ancestry
has led to an architecture that is difficult to explain and impossible to love.

Brace yourself for what you are about to see! Do not try to read this section with the
care you would need to write x86 programs; the goal instead is to give you familiarity
with the strengths and weaknesses of the world’s most popular desktop architecture.

Rather than show the entire 16-bit and 32-bit instruction set, in this section we
concentrate on the 32-bit subset that originated with the 80386, as this portion of
the architecture is what is used today. We start our explanation with the registers
and addressing modes, move on to the integer operations, and conclude with an
examination of instruction encoding.

x86 Registers and Data Addressing Modes

The registers of the 80386 show the evolution of the instruction set (Figure 2.36). The
80386 extended all 16-bit registers (except the segment registers) to 32 bits, prefixing
an E to their name to indicate the 32-bit version. We’ll refer to them generically as
GPRs (general-purpose registers). The 80386 contains only eight GPRs. This means
MIPS programs can use four times as many and ARM twice as many.

Figure 2.37 shows the arithmetic, logical, and data transfer instructions are two-
operand instructions. There are two important differences here. The x86 arith-
metic and logical instructions must have one operand act as both a source and a
destination; ARM and MIPS allow separate registers for source and destination.
This restriction puts more pressure on the limited registers, since one source regis-
ter must be modified. The second important difference is that one of the operands
can be in memory. Thus, virtually any instruction may have one operand in mem-
ory, unlike ARM and MIPS.

Data memory-addressing modes, described in detail below, offer two sizes of
addresses within the instruction. These so-called displacements can be 8 bits or 32 bits.

Although a memory operand can use any addressing mode, there are restric-
tions on which registers can be used in a mode. Figure 2.38 shows the x86 address-
ing modes and which GPRs cannot be used with each mode, as well as how to get
the same effect using MIPS instructions.

x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (word) data types. The
80386 adds 32-bit addresses and data (double words) in the x86. (AMD64 adds 64-bit
addresses and data, called quad words; we’ll stick to the 80386 in this section.) The
data type distinctions apply to register operations as well as memory accesses.

2.17 Real Stuff: x86 Instructions

169

Name
31 0

EAX
ECX
EDX
EBX
ESP
EBP
ESI
EDI

CS

SS

DS

ES

FS

GS
EIP
EFLAGS

Use

GPRO
GPR 1
GPR 2
GPR 3
GPR 4
GPR5
GPR 6

GPR7

Code segment pointer

Stack segment pointer (top of stack)
Data segment pointer 0

Data segment pointer 1

Data segment pointer 2

Data segment pointer 3

Instruction pointer (PC)

Condition codes

FIGURE 2.36 The 80386 register set. Starting with the 80386, the top eight registers were extended

to 32 bits and could also be used as general-purpose registers.

Source/destination operand type Second source operand

Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

FIGURE 2.37 Instruction types for the arithmetic, logical, and data transfer instructions.
The x86 allows the combinations shown. The only restriction is the absence of a memory-memory mode.
Immediates may be 8, 16, or 32 bits in length; a register is any one of the 14 major registers in Figure 2.36

(not EIP or EFLAGS).

170

Chapter 2 Instructions: Language of the Computer

Register
Description restrictions MIPS equivalent

Register indirect Address is in a register. Not ESP or EBP | Tw $s0,0($s1)
Based mode with 8- or 32-bit | Address is contents of base register plus Not ESP Tw$s0,100($s])# <= 16-bit
displacement displacement. #displacement
Base plus scaled index The address is Base: any GPR | mu’l $t0,%s2,4
Base + (25¢?€ x |ndex) Index: not ESP | add $t0,$t0,$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,0($t0)
Base plus scaled index with The address is Base: any GPR | mu1 $t0,%$s2.,4
8- or 32-bit displacement Base + (25¢@€ x Index) + displacement Index: not ESP | add $t0,$t0,9$s1
where Scale has the value 0, 1, 2, or 3. Tw $s0,100($t0) # 016-bit
#displacement

FIGURE 2.38 x86 32-bit addressing modes with register restrictions and the equivalent MIPS code. The Base plus Scaled
Index addressing mode, not found in ARM or MIPS, is included to avoid the multiplies by 4 (scale factor of 2) to turn an index in a register
into a byte address (see Figures 2.25 and 2.27). A scale factor of 1 is used for 16-bit data, and a scale factor of 3 for 64-bit data. A scale factor
of 0 means the address is not scaled. If the displacement is longer than 16 bits in the second or fourth modes, then the MIPS equivalent mode
would need two more instructions: a 1ui to load the upper 16 bits of the displacement and an add to sum the upper address with the base
register $s1. (Intel gives two different names to what is called Based addressing mode—Based and Indexed—but they are essentially identical

and we combine them here.)

Almost every operation works on both 8-bit data and on one longer data size. That
size is determined by the mode and is either 16 bits or 32 bits.

Clearly, some programs want to operate on data of all three sizes, so the 80386
architects provided a convenient way to specify each version without expanding
code size significantly. They decided that either 16-bit or 32-bit data dominates
most programs, and so it made sense to be able to set a default large size. This
default data size is set by a bit in the code segment register. To override the default
data size, an 8-bit prefix is attached to the instruction to tell the machine to use the
other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus to support synchronization (see Section 2.11), or repeat
the following instruction until the register ECX counts down to 0. This last prefix
was intended to be paired with a byte move instruction to move a variable number of
bytes. The 80386 also added a prefix to override the default address size.

The x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including test, integer, and decimal arith-
metic operations

3. Control flow, including conditional branches, unconditional jumps, calls,
and returns

4. String instructions, including string move and string compare

2.17 Real Stuff: x86 Instructions

171

The first two categories are unremarkable, except that the arithmetic and logic
instruction operations allow the destination to be either a register or a memory
location. Figure 2.39 shows some typical x86 instructions and their functions.

Jje name ifequal(conditioncode) {EIP=name};
EIP-128 <=name < EIP+128
Jjmp name EIP=name
call name SP=SP-4; M[SPJ=EIP+5; EIP=name;
movw EBX, [EDI+45] EBX=M[EDI+45]
push ESI SP=SP-4; M[SP]=ESI
pop EDI EDI=M[SP]; SP=SP+4
add EAX, #6765 EAX=EAX+6765
test EDX, 42 Set condition code (flags) with EDX and 42
movs]1 MLCEDI J=MLESI];
EDI=EDI+4; ESI=ESI+4

FIGURE 2.39 Some typical x86 instructions and their functions. A list of frequent operations
appears in Figure 2.40. The CALL saves the EIP of the next instruction on the stack. (EIP is the Intel PC.)

Conditional branches on the x86 are based on condition codes or flags, like
ARM. Condition codes are set as a side effect of an operation; most are used to
compare the value of a result to 0. Branches then test the condition codes. PC-
relative branch addresses must be specified in the number of bytes, since unlike
ARM and MIPS, 80386 instructions are not all 4 bytes in length.

String instructions are part of the 8080 ancestry of the x86 and are not com-
monly executed in most programs. They are often slower than equivalent software
routines (see the fallacy on page 174).

Figure 2.40 lists some of the integer x86 instructions. Many of the instructions
are available in both byte and word formats.

x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 80386 is complex,
with many different instruction formats. Instructions for the 80386 may vary from
1 byte, when there are no operands, up to 15 bytes.

Figure 2.41 shows the instruction format for several of the example instructions in
Figure 2.39. The opcode byte usually contains a bit saying whether the operand is 8
bits or 32 bits. For some instructions, the opcode may include the addressing mode
and the register; this is true in many instructions that have the form “register =
register op immediate.” Other instructions use a “postbyte” or extra opcode byte,
labeled “mod, reg, r/m,” which contains the addressing mode information. This
postbyte is used for many of the instructions that address memory. The base plus
scaled index mode uses a second postbyte, labeled “sc, index, base.”

172 Chapter 2 Instructions: Language of the Computer

Slstrcton | Mowing

Control Conditional and unconditional branches

jnz, jz Jump if condition to EIP + 8-bit offset; JNE (for JNZ), JE (for J7) are
alternative names

Jjmp Unconditional jump—8&-bit or 16-bit offset

call Subroutine call—16-bit offset; return address pushed onto stack

ret Pops return address from stack and jumps to it

lToop Loop branch—decrement ECX; jump to EIP + 8-bit displacement if ECX # O

Data transfer Move data between registers or between register and memory

move Move between two registers or between register and memory

push, pop Push source operand on stack; pop operand from stack top to a register

les Load ES and one of the GPRs from memory

Arithmetic, logical Arithmetic and logical operations using the data registers and memory

add, sub Add source to destination; subtract source from destination; register-memory
format

cmp Compare source and destination; register-memory format

shl, shr, rcr Shift left; shift logical right; rotate right with carry condition code as fill

chw Convert byte in eight rightmost bits of EAX to 16-bit word in right of EAX

test Logical AND of source and destination sets condition codes

inc, dec Increment destination, decrement destination

or, xor Logical OR; exclusive OR; register-memory format

String Move between string operands; length given by a repeat prefix

movs Copies from string source to destination by incrementing ESI and EDI; may be
repeated

Tods Loads a byte, word, or doubleword of a string into the EAX register

FIGURE 2.40 Some typical operations on the x86. Many operations use register-memory format,
where either the source or the destination may be memory and the other may be a register or immediate
operand.

Figure 2.42 shows the encoding of the two postbyte address specifiers for both
16-bit and 32-bit mode. Unfortunately, to understand fully which registers and
which addressing modes are available, you need to see the encoding of all address-
ing modes and sometimes even the encoding of the instructions.

x86 Conclusion

Intel had a 16-bit microprocessor two years before its competitors’ more elegant
architectures, such as the Motorola 68000, and this head start led to the selection
of the 8086 as the CPU for the IBM PC. Intel engineers generally acknowledge that
the x86 is more difficult to build than computers like ARM and MIPS, but the large

2.17 Real Stuff: x86 Instructions

173

a. JE EIP + displacement

4 4 8
Jg |Condi- Displacement
tion
b. CALL
8 32
CALL Offset

c.MOV EBX, [EDI + 45]

6 11 8 8
r/m .
MOV |d|w Postbyte Displacement
d. PUSH ESI
5 3
PUSH | Reg

e. ADD EAX, #6765
4 3 1 32

ADD |Reg|w Immediate

f. TEST EDX, #42
7 1 8 32

TEST w Postbyte Immediate

FIGURE 2.41 Typical x86 instruction formats. Figure 2.42 shows the encoding of the postbyte. Many
instructions contain the 1-bit field w, which says whether the operation is a byte or a double word. The d field in
MOV is used in instructions that may move to or from memory and shows the direction of the move. The ADD
instruction requires 32 bits for the immediate field, because in 32-bit mode, the immediates are either 8 bits or
32 bits. The immediate field in the TEST is 32 bits long because there is no 8-bit immediate for test in 32-bit
mode. Overall, instructions may vary from 1 to 17 bytes in length. The long length comes from extra 1-byte
prefixes, having both a 4-byte immediate and a 4-byte displacement address, using an opcode of 2 bytes, and
using the scaled index mode specifier, which adds another byte.

market means AMD and Intel can afford more resources to help overcome the
added complexity. What the x86 lacks in style, it makes up for in quantity, making
it beautiful from the right perspective.

Its saving grace is that the most frequently used x86 architectural compo-
nents are not too difficult to implement, as AMD and Intel have demonstrated
by rapidly improving performance of integer programs since 1978. To get that
performance, compilers must avoid the portions of the architecture that are hard
to implement fast.

174

Chapter 2 Instructions: Language of the Computer

rog[w=0] w=1 |um| mod=o | mea=1i | mod=2 __|mod=3
16b | 32b 16b 32b 16b 32b 16b 32b

(0] AL AX EAX 0 addr=BX+SI| | =EAX same same same same same
1 CL CX ECX 1 addr=BX+DIl | =ECX addr as addr as addr as addr as as
2 DL DX EDX 2 addr=BP+S| | =EDX mod=0 mod=0 mod=0 mod=0 reg
3 BL BX EBX 3 addr=BP+SI| | =EBX + disp8 + disp8 + disp16 + disp32 field
4 AH SP ESP 4 addr=SI =(sib) Sl+disp8 (sib)+disp8 | Sl+disp8 (sib)+disp32 “

5 CH BP EBP 5 addr=DI =disp32 | DI+disp8 EBP+disp8 | DI+disp16 | EBP+disp32 “

6 DH Sl ESI 6 addr=disp16 |=ESI BP+disp8 | ESI+disp8 BP+disp16 | ESl+disp32 “

7 BH DI EDI 7 addr=BX =EDI BX+disp8 | EDI+disp8 BX+disp16 | EDI+disp32 “

FIGURE 2.42 The encoding of the first address specifier of the x86: mod, reg, r/m. The first four columns show the encoding
of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16-bit mode (8086) or 32-bit mode (80386).
The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the value in the 2-bit mod field and the
address size. Basically, the registers used in the address calculation are listed in the sixth and seventh columns, under mod = 0, with mod =1
adding an 8-bit displacement and mod =2 adding a 16-bit or 32-bit displacement, depending on the address mode. The exceptionsare 1) r/m=6
when mod = 1 or mod = 2 in 16-bit mode selects BP plus the displacement; 2) r/m = 5 when mod = 1 or mod = 2 in 32-bit mode selects
EBP plus displacement; and 3) r/m = 4 in 32-bit mode when mod does not equal 3, where (sib) means use the scaled index mode shown in
Figure 2.38. When mod = 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

Fallacies and Pitfalls

Fallacy: More powerful instructions mean higher performance.

Part of the power of the Intel x86 is the prefixes that can modify the execution of
the following instruction. One prefix can repeat the following instruction until
a counter counts down to 0. Thus, to move data in memory, it would seem that
the natural instruction sequence is to use move with the repeat prefix to perform
32-bit memory-to-memory moves.

An alternative method, which uses the standard instructions found in all com-
puters, is to load the data into the registers and then store the registers back to
memory. This second version of this program, with the code replicated to reduce
loop overhead, copies at about 1.5 times faster. A third version, which uses the
larger floating-point registers instead of the integer registers of the x86, copies at
about 2.0 times faster than the complex move instruction.

Fallacy: Write in assembly language to obtain the highest performance.

At one time compilers for programming languages produced naive instruction
sequences; the increasing sophistication of compilers means the gap between
compiled code and code produced by hand is closing fast. In fact, to compete
with current compilers, the assembly language programmer needs to understand
the concepts in Chapters 4 and 5 thoroughly (processor pipelining and memory
hierarchy).

2.18 Fallacies and Pitfalls

175

This battle between compilers and assembly language coders is one situation
in which humans are losing ground. For example, C offers the programmer a
chance to give a hint to the compiler about which variables to keep in registers
versus spilled to memory. When compilers were poor at register allocation, such
hints were vital to performance. In fact, some old C textbooks spent a fair amount
of time giving examples that effectively use register hints. Today’s C compilers
generally ignore such hints, because the compiler does a better job at allocation
than the programmer does.

Even if writing by hand resulted in faster code, the dangers of writing in assembly
language are the longer time spent coding and debugging, the loss in portability,
and the difficulty of maintaining such code. One of the few widely accepted axioms
of software engineering is that coding takes longer if you write more lines, and
it clearly takes many more lines to write a program in assembly language than
in C or Java. Moreover, once it is coded, the next danger is that it will become a
popular program. Such programs always live longer than expected, meaning that
someone will have to update the code over several years and make it work with new
releases of operating systems and new models of machines. Writing in higher-level
language instead of assembly language not only allows future compilers to tailor
the code to future machines, it also makes the software easier to maintain and
allows the program to run on more brands of computers.

Fallacy: The importance of commercial binary compatibility means successful
instruction sets don’t change.

While backwards binary compatibility is sacrosanct, Figure 2.43 shows that the x86
architecture has grown dramatically. The average is more than one instruction per
month over its 30-year lifetime!

Pitfall: Forgetting that sequential word addresses in machines with byte addressing
do not differ by one.

Many an assembly language programmer has toiled over errors made by assuming
that the address of the next word can be found by incrementing the address in a
register by one instead of by the word size in bytes. Forewarned is forearmed!

Pitfall: Using a pointer to an automatic variable outside its defining procedure.

A common mistake in dealing with pointers is to pass a result from a procedure that
includes a pointer to an array that is local to that procedure. Following the stack
discipline in Figure 2.12, the memory that contains the local array will be reused as
soon as the procedure returns. Pointers to automatic variables can lead to chaos.

176

Chapter 2 Instructions: Language of the Computer

Less is more.

Robert Browning,
Andrea del Sarto, 1855

1000
900
800 {’
700 /

600

500 o J

400

300 /

200

100 .'Av__/

[o e e e e e I N L e s e s s e e

TSP S R N A S . R N ST SR Y
RN GG I ACACICHC R WIS

Number of Instructions

Year

FIGURE 2.43 Growth of x86 instruction set over time. While there is clear technical value to
some of these extensions, this rapid change also increases the difficulty for other companies to try to build
compatible processors.

Concluding Remarks

The two principles of the stored-program computer are the use of instructions that
are indistinguishable from numbers and the use of alterable memory for programs.
These principles allow a single machine to aid environmental scientists, financial
advisers, and novelists in their specialties. The selection of a set of instructions that
the machine can understand demands a delicate balance among the number of
instructions needed to execute a program, the number of clock cycles needed by
an instruction, and the speed of the clock. As illustrated in this chapter, four design
principles guide the authors of instruction sets in making that delicate balance:

1. Simplicity favors regularity. Regularity motivates many features of the MIPS
instruction set: keeping all instructions a single size, always requiring three
register operands in arithmetic instructions, and keeping the register fields
in the same place in each instruction format.

2. Smaller is faster. The desire for speed is the reason that MIPS has 32 registers
rather than many more.

2.19 Concluding Remarks

177

3. Make the common case fast. Examples of making the common MIPS case
fast include PC-relative addressing for conditional branches and immediate
addressing for larger constant operands.

4. Good design demands good compromises. One MIPS example was the com-
promise between providing for larger addresses and constants in instruc-
tions and keeping all instructions the same length.

Above this machine level is assembly language, a language that humans can read.
The assembler translates it into the binary numbers that machines can understand,
and it even “extends” the instruction set by creating symbolic instructions that
aren’t in the hardware. For instance, constants or addresses that are too big are
broken into properly sized pieces, common variations of instructions are given
their own name, and so on. Figure 2.44 lists the MIPS instructions we have covered
so far, both real and pseudoinstructions.

Each category of MIPS instructions is associated with constructs that appear in
programming languages:

B The arithmetic instructions correspond to the operations found in assign-
ment statements.

B Data transfer instructions are most likely to occur when dealing with data
structures like arrays or structures.

B The conditional branches are used in if statements and in loops.

B The unconditional jumps are used in procedure calls and returns and for
case/switch statements.

These instructions are not born equal; the popularity of the few dominates the
many. For example, Figure 2.45 shows the popularity of each class of instructions
for SPEC CPU2006. The varying popularity of instructions plays an important role
in the chapters about datapath, control, and pipelining.

After we explain computer arithmetic in Chapter 3, we reveal the rest of the
MIPS instruction set architecture.

178 Chapter 2 Instructions: Language of the Computer

| wiPs istructions | _Name | Format | _Paoudo mips_| Name | Format |
add

add R move move R
subtract sub R multiply mult R
add immediate addi | multiply immediate multi |
load word Tw | load immediate 11 |
store word sw | branch less than b1t |
load half Th | branch less than
load half unsigned Thu | or equal ble !
store half sh | branch greater than bgt |
load byte b | branch greater than
load byte unsigned Tbu | or equal bge !
store byte sb |
load linked 11 |
store conditional scC |
load upper immediate Tui |
and and R
or or R
nor nor R
and immediate andi |
or immediate ori |
shift left logical sll R
shift right logical srl R
branch on equal beq |
branch on not equal bne |
set less than slt R
set less than immediate slti |
set less than immediate sltiu |
unsigned
jump j J
jump register jr R
jump and link jal

FIGURE 2.44 The MIPS instruction set covered so far, with the real MIPS instructions
on the left and the pseudoinstructions on the right. Appendix B (Section B.10) describes the
full MIPS architecture. Figure 2.1 shows more details of the MIPS architecture revealed in this chapter. The
information given here is also found in Columns 1 and 2 of the MIPS Reference Data Card at the front of
the book.

2.21 Exercises 179

Instruction class MIPS examples HLL correspondence m

Arithmetic add, sub, addi Operations in assignment statements 16% 48%
Data transfer Tw, sw, Tb, Tbu, Th, References to data structures, such as arrays 35% 36%
Thu, sb, Tui
Logical and, or, nor, andi, ori, Operations in assignment statements 12% 4%
s11, srl
Conditional branch beq, bne, sTt, slti, If statements and loops 34% 8%
sltiu
Jump g, gr, jal Procedure calls, returns, and case/switch statements 2% 0%

FIGURE 2.45 MIPS instruction classes, examples, correspondence to high-level program language constructs, and
percentage of MIPS instructions executed by category for the average SPEC CPU2006 benchmarks. Figure 3.26 in
Chapter 3 shows average percentage of the individual MIPS instructions executed.

2.20 Historical Perspective and
Further Reading

This section surveys the history of instruction set architectures (ISAs) over
time, and we give a short history of programming languages and compilers.
ISAs include accumulator architectures, general-purpose register architectures,
stack architectures, and a brief history of ARM and the x86. We also review the
controversial subjects of high-level-language computer architectures and reduced
instruction set computer architectures. The history of programming languages
includes Fortran, Lisp, Algol, C, Cobol, Pascal, Simula, Smalltalk, C++, and Java,
and the history of compilers includes the key milestones and the pioneers who
achieved them. The rest of this section is on the CD.

Exercises

Contributed by John Oliver of Cal Poly, San Luis Obispo, with contributions from Nicole
Kaiyan (University of Adelaide) and Milos Prvulovic (Georgia Tech)

Appendix B describes the MIPS simulator, which is helpful for these exercises.
Although the simulator accepts pseudoinstructions, try not to use pseudo-
instructions for any exercises that ask you to produce MIPS code. Your goal should
be to learn the real MIPS instruction set, and if you are asked to count instructions,
your count should reflect the actual instructions that will be executed and not the
pseudoinstructions.

There are some cases where pseudoinstructions must be used (for example, the
1a instruction when an actual value is not known at assembly time). In many cases,

180

Chapter 2 Instructions: Language of the Computer

they are quite convenient and result in more readable code (for example, the 11
and move instructions). If you choose to use pseudoinstructions for these reasons,
please add a sentence or two to your solution stating which pseudoinstructions
you have used and why.

Exercise 2.1

The following problems explore translating from C to MIPS. Assume that the vari-
ables f, g, h,and i are given and could be considered 32-bit integers as declared in a
C program.

a. | f g - h;

g+ (h - 5);

b. | f

2.1.1 [5] <2.2> For the C statements above, what is the corresponding MIPS
assembly code? Use a minimal number of MIPS assembly instructions.

2.1.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2.1.3 [5] <2.2> If the variables f, g, h, and 1 have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

The following problems deal with translating from MIPS to C. Assume that the
variables g, h, 1,and J are given and could be considered 32-bit integers as declared
in a C program.

a. | addi f, f,

4
b. | add f, g, h
add f, i, f

2.1.4 [5] <2.2> For the MIPS assembly instructions above, what is a correspond-
ing C statement?

2.1.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

Exercise 2.2

The following problems deal with translating from C to MIPS. Assume that the
variables g, h, 1,and j are given and could be considered 32-bit integers as declared
in a C program.

2.21 Exercises

181

a. | f =9 - f;
i+ (h - 2);

L4
-
I

2.2.1 [5] <2.2> For the C statements above, what is the corresponding MIPS
assembly code? Use a minimal number of MIPS assembly instructions.

2.2.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2.2.3 [5] <2.2> If the variables f, g, h, and 1 have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

The following problems deal with translating from MIPS to C. For the following
exercise, assume that the variables g, h, i, and j are given and could be considered
32-bit integers as declared in a C program.

a. | addi f, f, 4

b. | add f, g, h
sub f, i, f

2.2.4 [5] <2.2> For the MIPS assembly instructions above, what is a correspond-
ing C statement?

2.2.5 [5] <2.2> If the variables f, g, h, and 1 have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

Exercise 2.3

The following problems explore translating from C to MIPS. Assume that the vari-
ables f and g are given and could be considered 32-bit integers as declared in a
C program.

a. | f=-g - f;

b. | f

Il
«
+
—
1
-+
|
&l
—

2.3.1 [5] <2.2> For the C statements above, what is the corresponding MIPS
assembly code? Use a minimal number of MIPS assembly instructions.

2.3.2 [5] <2.2> For the C statements above, how many MIPS assembly instruc-
tions are needed to perform the C statement?

2.3.3 [5] <2.2> If the variables f, g, h, i,and j have values 1, 2, 3,4, and 5, respec-
tively, what is the end value of f?

182

Chapter 2 Instructions: Language of the Computer

The following problems deal with translating from MIPS to C. Assume that the
variables g, h, 1,and j are given and could be considered 32-bit integers as declared
in a C program.

a. | addi f, f, -4

b. | add i, g, h
add f, i, f

2.3.4 [5] <2.2> For the MIPS statements above, what is a corresponding C statement?

2.3.5 [5] <2.2> If the variables f, g, h, and i have values 1, 2, 3, and 4, respec-
tively, what is the end value of f?

Exercise 2.4

The following problems deal with translating from C to MIPS. Assume that the
variables f, g, h, i, and j are assigned to registers $s0, $s1, $s2, $s3, and$s4,
respectively. Assume that the base address of the arrays A and B are in registers $s6
and $s7, respectively.

a. | f = -g - Al4];
b. | B[8] = A[i-j1;

2.4.1 [10] <2.2,2.3> For the C statements above, what is the corresponding MIPS
assembly code?

2.4.2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly
instructions are needed to perform the C statement?

2.4.3 [5] <2.2,2.3> For the C statements above, how many different registers are
needed to carry out the C statement?

The following problems deal with translating from MIPS to C. Assume that the
variables f, g, h, 1, and j are assigned to registers $s0, $s1, $s2, $53, and $s4,
respectively. Assume that the base address of the arrays A and B are in registers $s6
and $s7, respectively.

a. | s11 $s2, $s4, 1
add $s0, $s2, $s3
add $s0, $s0, $sl

b. | s11 $t0, $s0, 2 #$5t0 =~ * 4
add $t0, $s6, $tO # $t0 = &A[T]
s11 $tl, $s1, 2 # $tl =g * 4
add $tl1, $s7, $tl # $t1 = &B[g]
Tw $s0, 0($t0) £ = A[f]
addi $t2, $t0, 4
Tw $t0, 0($t2)
add $t0, $t0, $s0
Sw $t0, 0($tl)

2.21 Exercises

183

2.4.4 [10] <2.2,2.3> For the MIPS assembly instructions above, what is the cor-
responding C statement?

2.4.5 [5] <2.2,2.3> For the MIPS assembly instructions above, rewrite the assem-
bly code to minimize the number if MIPS instructions (if possible) needed to carry
out the same function.

2.4.6 [5] <2.2,2.3> How many registers are needed to carry out the MIPS assem-
bly as written above? If you could rewrite the code above, what is the minimal
number of registers needed?

Exercise 2.5

In the following problems, we will be investigating memory operations in the con-
text of an MIPS processor. The table below shows the values of an array stored in
memory. Assume the base address of the array is stored in register $s6 and offset it
with respect to the base address of the array.

a. Address Data
20 4
24 5
28 3
32 2
34 1

b. Address Data

2.5.1 [10] <2.2, 2.3> For the memory locations in the table above, write C
code to sort the data from lowest to highest, placing the lowest value in the
smallest memory location shown in the figure. Assume that the data shown
represents the C variable called Array, which is an array of type int, and that
the first number in the array shown is the first element in the array. Assume
that this particular machine is a byte-addressable machine and a word consists
of four bytes.

2.5.2 [10] <2.2, 2.3> For the memory locations in the table above, write MIPS
code to sort the data from lowest to highest, placing the lowest value in the smallest
memory location. Use a minimum number of MIPS instructions. Assume the base
address of Array is stored in register $s6.

2.5.3 [5] <2.2,2.3> To sort the array above, how many instructions are required
for the MIPS code? If you are not allowed to use the immediate field in 1w and sw
instructions, how many MIPS instructions do you need?

184

Chapter 2 Instructions: Language of the Computer

The following problems explore the translation of hexadecimal numbers to other
number formats.

a. | Oxabcdefl?

b. | 0x10203040

2.5.4 [5] <2.3> Translate the hexadecimal numbers above into decimal.

2.5.5 [5] <2.3> Show how the data in the table would be arranged in memory of a
little-endian and a big-endian machine. Assume the data is stored starting at address 0.

Exercise 2.6

The following problems deal with translating from C to MIPS. Assume that the vari-
ables f, g, h, 1, and J are assigned to registers $s0, $s1, $52, $53, and $54, respec-
tively. Assume that the base address of the arrays A and B are in registers $s6 and
$57, respectively. Assume that the elements of the arrays A and B are 4-byte words:

a. | T =71+ A[2];
b. | B[8] = A[i] + A[j]:

2.6.1 [10] <2.2,2.3> For the C statements above, what is the corresponding MIPS
assembly code?

2.6.2 [5] <2.2, 2.3> For the C statements above, how many MIPS assembly
instructions are needed to perform the C statement?

2.6.3 [5] <2.2,2.3> For the C statements above, how many registers are needed
to carry out the C statement using MIPS assembly code?

The following problems deal with translating from MIPS to C. Assume that the
variables f, g, h, 7, and J are assigned to registers $s0, $s1, $s2, $s3, and $s4,
respectively. Assume that the base address of the arrays A and B are in registers $s6
and $s7, respectively.

a. | sub $s0, $s0, $s1
sub $s0, $s0, $s3
add $s0, $s0, $s1

b. | addi $t0, $s6, 4
add $tl1, $s6, $0
Sw $t1, 0($t0)
Tw $t0, 0($t0)
add $s0, $tl1, $tO

2.21 Exercises

185

2.6.4 [5] <2.2, 2.3> For the MIPS assembly instructions above, what is the
corresponding C statement?

2.6.5 [5] <2.2, 2.3> For the MIPS assembly above, assume that the registers $s0,
$s1, $s2, and $s3 contain the values 0x0000000a, 0x00000014, 0x0000001e, and
0x00000028, respectively. Also, assume that register $ s6 contains the value 0x00000100,
and that memory contains the following values:

Y S R

0x00000100 0x00000064
0x00000104 0x000000c8
0x00000108 0x0000012¢

Find the value of $s0 at the end of the assembly code.

2.6.6 [10] <2.3, 2.5> For each MIPS instruction, show the value of the opcode
(OP), source register (RS), and target register (RT) fields. For the I-type instruc-
tions, show the value of the immediate field, and for the R-type instructions, show
the value of the destination register (RD) field.

Exercise 2.7

The following problems explore number conversions from signed and unsigned
binary numbers to decimal numbers.

a. | 0010 0100 1001 0010 0100 1001 0010 01004,
b. | 0101 1111 1011 1110 0100 0000 0000 00004,

2.7.1 [5] <2.4> For the patterns above, what base 10 number does the binary
number represent, assuming that it is a two’s complement integer?

2.7.2 [5] <2.4> For the patterns above, what base 10 number does the binary
number represent, assuming that it is an unsigned integer?

2.7.3 [5] <2.4> For the patterns above, what hexadecimal number does it
represent?

The following problems explore number conversions from decimal to signed and
unsigned binary numbers.

a. | 1y,

b. | 1024,

186

Chapter 2 Instructions: Language of the Computer

2.7.4 [5] <2.4> For the base ten numbers above, convert to 2’s complement
binary.

2.7.5 [5] <2.4> For the base ten numbers above, convert to 2’s complement
hexadecimal.

2.7.6 [5] <2.4> For the base ten numbers above, convert the negated values from
the table to 2’s complement hexadecimal.

Exercise 2.8

The following problems deal with sign extension and overflow. Registers $s0 and
$s1 hold the values as shown in the table below. You will be asked to perform an
MIPS assembly language instruction on these registers and show the result.

a. | $s0 = 0x80000000,;4een, $51 = 0xD0O000000; ¢ een
0x00000001 s 5r00n, $51 = OXFFFFFFFFgiroen

b. | $s0

2.8.1 [5] <2.4> For the contents of registers $s0 and $s1 as specified above, what
is the value of $t0 for the following assembly code?

add $t0, $s0, $s1
Is the result in $t0 the desired result, or has there been overflow?

2.8.2 [5] <2.4> For the contents of registers $s0 and $s1 as specified above, what
is the value of $t0 for the following assembly code?

sub $t0, $s0, $s1

Is the result in $t0 the desired result, or has there been overflow?

2.8.3 [5] <2.4> For the contents of registers $s0 and $s1 as specified above, what
is the value of $t0 for the following assembly code?

add $t0, $s0, $sl
add $t0, $t0, $s0

Is the result in $t0 the desired result, or has there been overflow?

In the following problems, you will perform various MIPS operations on a pair of
registers, $s0 and $s1. Given the values of $s0 and $s1 in each of the questions
below, state if there will be overtlow.

2.21 Exercises

187

a. | add $s0, $s0, $sli
add $s0, $s0, $sl

b. | add $s0, $s0, $sl
add $s0, $s0, $sl1
add $s0, $s0, $sl

2.8.4 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 = 0x10000000.
For the table above, will there be overflow?

2.8.5 [5] <2.4> Assume that register $s0 = 0x40000000 and $s1 = 0x20000000.
For the table above, will there be overflow?

2.8.6 [5] <2.4> Assume that register $s0 = 0x8FFFFFFF and $s1 = 0xD0000000.
For the table above, will there be overflow?

Exercise 2.9

The table below contains various values for register $s1. You will be asked to evalu-
ate if there would be overflow for a given operation.

a. | -1y,

b. | 1024,

2.9.1 [5] <2.4> Assume that register $50 = 0x70000000 and $s1 has the value as
given in the table. If the instruction: add $s0, $s0, $s1 is executed, will there be
overflow?

2.9.2 [5] <2.4> Assume that register $50 = 0x80000000 and $s1 has the value as
given in the table. If the instruction: sub $s0, $s0, $s1 is executed, will there be
overflow?

2.9.3 [5] <2.4> Assume that register $s0 = 0x7FFFFFFF and $s1 has the value
as given in the table. If the instruction: sub $s0, $s0, $s1 is executed, will there be
overflow?

The table below contains various values for register $s1. You will be asked to evalu-
ate if there would be overflow for a given operation.

a. | 0010 0100 1001 0010 0100 1001 0010 01004,,
b. | 0101 1111 1011 1110 0100 0000 0000 00004,

2.9.4 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as
given in the table. If the instruction: add $s0, $s0, $s1 is executed, will there be
overflow?

188

Chapter 2 Instructions: Language of the Computer

2.9.5 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value
as given in the table. If the instruction: add $s0, $s0, $s1 is executed, what is the
result in hex?

2.9.6 [5] <2.4> Assume that register $s0 = 0x70000000 and $s1 has the value as
given in the table. If the instruction: add $s0, $s0, $s1 is executed, what is the
result in base ten?

Exercise 2.10

In the following problems, the data table contains bits that represent the opcode
of an instruction. You will be asked to interpret the bits as MIPS instructions into
assembly code and determine what format of MIPS instruction the bits represent.

a. | 0000 0010 0001 0000 1000 0000 0010 0000y,
b. | 0000 0001 0100 1011 0100 1000 0010 0010,

2.10.1 [5] <2.5> For the binary entries above, what instruction do they
represent?

2.10.2 [5] <2.5> What type (I-type, R-type, J-type) instruction do the binary
entries above represent?

2.10.3 [5] <2.4, 2.5> If the binary entries above were data bits, what number
would they represent in hexadecimal?

In the following problems, the data table contains MIPS instructions. You will be
asked to translate the entries into the bits of the opcode and determine the MIPS
instruction format.

a. | addi $t0, $t0, O
b. | sw $tl, 32($t2)

2.10.4 [5] <2.4,2.5> For the instructions above, show the binary then hexadeci-
mal representation of these instructions.

2.10.5 [5] <2.5> What type (I-type, R-type, J-type) instruction do the instruc-
tions above represent?

2.10.6 [5] <2.5> What is the binary then hexadecimal representation of the
opcode, Rs, and Rt fields in this instruction? For R-type instructions, what is the
hexadecimal representation of the Rd and funct fields? For I-type instructions,
what is the hexadecimal representation of the immediate field?

2.21 Exercises

189

Exercise 2.11

In the following problems, the data table contains bits that represent the opcode
of an instruction. You will be asked to translate the entries into assembly code and
determine what format of MIPS instruction the bits represent.

a. | 0x01084020
b. | 0x02538822

2.11.1 [5] <2.4,2.5> What binary number does the above hexadecimal number
represent?

2.11.2 [5] <2.4,2.5> What decimal number does the above hexadecimal number
represent?

2.11.3 [5] <2.5> What instruction does the above hexadecimal number represent?

In the following problems, the data table contains the values of various fields of
MIPS instructions. You will be asked to determine what the instruction is, and find
the MIPS format for the instruction.

a. | op=0, rs=3, rt=2, rd=3, shamt=0, funct=34

b. | op=0x23, rs=1, rt=2, const=0x4

2.11.4 [5] <2.5> What type (I-type, R-type) instruction do the instructions
above represent?

2.11.5 [5] <2.5> What is the MIPS assembly instruction described above?

2.11.6 [5] <2.4,2.5> What is the binary representation of the instructions above?

Exercise 2.12

In the following problems, the data table contains various modifications that could
be made to the MIPS instruction set architecture. You will investigate the impact of
these changes on the instruction format of the MIPS architecture.

a. | 128 registers

b. | Four times as many different instructions

2.12.1 [5] <2.5> If the instruction set of the MIPS processor is modified, the
instruction format must also be changed. For each of the suggested changes above,
show the size of the bit fields of an R-type format instruction. What is the total
number of bits needed for each instruction?

190

Chapter 2 Instructions: Language of the Computer

2.12.2 [5] <2.5> If the instruction set of the MIPS processor is modified, the
instruction format must also be changed. For each of the suggested changes above,
show the size of the bit fields of an I-type format instruction. What is the total
number of bits needed for each instruction?

2.12.3 (5] <2.5, 2.10> Why could the suggested change in the table above
decrease the size of an MIPS assembly program? Why could the suggested change
in the table above increase the size of an MIPS assembly program?

In the following problems, the data table contains hexadecimal values. You will be
asked to determine what MIPS instruction the value represents, and find the MIPS
instruction format.

a. | 0x01090012
b. | 0xAD090012

2.12.4 [5] <2.5> For the entries above, what is the value of the number in
decimal?

2.12.5 [5] <2.5> For the hexadecimal entries above, what instruction do they
represent?

2.12.6 (5] <2.4,2.5> What type (I-type, R-type, J-type) instruction do the binary
entries above represent? What is the value of the op field and the rt field?

Exercise 2.13

In the following problems, the data table contains the values for registers $t0 and
$t1.You will be asked to perform several MIPS logical operations on these registers.

a. | $t0
b. | $t0

0x12345678
0x11111111

OXAAAAAAAA, $t1
0xFOODDOOD, $tl

2.13.1 [5] <2.6> For the lines above, what is the value of $t2 for the following
sequence of instructions?

s11 $t2, $t0, 44
or $t2, $tz2, $tl

2.13.2 [5] <2.6> For the values in the table above, what is the value of $ 2 for the
following sequence of instructions?

s11 $t2, $t0, 4
andi $tz2, $tz2, -1

2.21 Exercises 191

2.13.3 (5] <2.6> For the lines above, what is the value of $t2 for the following
sequence of instructions?

srl $t2, $t0, 3
andi $t2, $t2, OxFFEF

In the following exercise, the data table contains various MIPS logical operations.
You will be asked to find the result of these operations given values for registers
$tO0and $t1.

a. | sl $t2, $t0, 1
andi $tz, $tz2, -1

b. | andi $t2, $t1, Ox00F0
srl $t2, 2

2.13.4 [5] <2.6> Assume that $£0 = 0x0000A5A5 and $t1 =00005A5A. What is
the value of $t2 after the two instructions in the table?

2.13.5 [5] <2.6> Assume that $t0 = 0xA5A50000 and $t1 = A5A50000. What is
the value of $t2 after the two instructions in the table?

2.13.6 [5] <2.6> Assume that $t0 = 0xA5A5FFFF and $t1 = ASA5FFFF. What is
the value of $t2 after the two instructions in the table?

Exercise 2.14
The following figure shows the placement of a bit field in register $t0.

31 i j 0

Field

31 - i bits i —] bits j bits

In the following problems, you will be asked to write MIPS instructions to extract
the bits “Field” from register $t0 and place them into register $t1 at the location
indicated in the following table.

a. | 31 31-(i-j) 0
Field 000..000

b. | 31 14 + i - j bits 14 0
111...111 Field 111..111

192

Chapter 2 Instructions: Language of the Computer

2.14.1 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from $t0 for the constant values i = 22 and j = 5 and places the field into $t1
in the format shown in the data table.

2.14.2 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from $t0 for the constant values i = 4 and j = 0 and places the field into $t1
in the format shown in the data table.

2.14.3 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from $t0 for the constant values i=31 and j =28 and places the field into $t1
in the format shown in the data table.

In the following problems, you will be asked to write MIPS instructions to extract
the bits “Field” from register $t0 shown in the figure and place them into register
$t1 at the location indicated in the following table. The bits shown as “XXX” are to
remain unchanged.

a. | 31 31-(i-J)
Field XXX... XXX
b. | 31 14 + i - bits 14 0
XXX oo XX X Field XXX ..o XXX

2.14.4 [20] <2.6> Find the shortest sequence of MIPS instructions that extracts
a field from $t0 for the constant values i =17 and j = 11 and places the field into
$t1 in the format shown in the data table.

2.14.5 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from $t0 for the constant values i =5 and j = 0 and places the field into $t1
in the format shown in the data table.

2.14.6 [5] <2.6> Find the shortest sequence of MIPS instructions that extracts a
field from $t0 for the constant values i=31 and j =29 and places the field into $t1
in the format shown in the data table.

Exercise 2.15

For these problems, the table holds some logical operations that are not included in
the MIPS instruction set. How can these instructions be implemented?

a. | not $t1, $t2 // bit-wise invert

b. | orn $t1, $t2, $t3 // bit-wise OR of $t2, !$t3

2.21 Exercises

193

2.15.1 (5] <2.6> The logical instructions above are not included in the MIPS
instruction set, but are described above. If the value of $t2 = 0x00FFA5A5 and the
value of $t3 = 0xFFFF003C, what is the resultin $t1?

2.15.2 [10] <2.6> The logical instructions above are not included in the MIPS
instruction set, but can be synthesized using one or more MIPS assembly instruc-
tions. Provide a minimal set of MIPS instructions that may be used in place of the
instructions in the table above.

2.15.3 (5] <2.6> For your sequence of instructions in 2.15.2, show the bit-level
representation of each instruction.

Various C-level logical statements are shown in the table below. In this exercise, you
will be asked to evaluate the statements and implement these C statements using
MIPS assembly instructions.

a. | A

B | !A;
CLO] << 4;

b. | A

2.15.4 (5] <2.6> The table above shows different C statements that use logical
operators. If the memory location at C[0] contains the integer values 0x00001234,
and the initial integer values of A and B are 0x00000000 and 0x00002222, what is
the result value of A?

2.15.5 [5] <2.6> For the C statements in the table above, write a minimal
sequence of MIPS assembly instructions that does the identical operation. Assume
$t1=A,$t2 =8B, and $s1 is the base address of C.

2.15.6 (5] <2.6> For your sequence of instructions in 2.15.5, show the bit-level
representation of each instruction.

Exercise 2.16

For these problems, the table holds various binary values for register $t0. Given
the value of $t0, you will be asked to evaluate the outcome of different branches.

a. | 0010 0100 1001 0010 0100 1001 0010 01004,
b. | 0101 1111 1011 1110 0100 0000 0000 00004,

2.16.1 [5] <2.7> Suppose that register $t0 contains a value from above and $t1
has the value

0011 1111 1111 1000 0OOOO 0000 0000 0000y,

194

Chapter 2 Instructions: Language of the Computer

Note the result of executing these instructions on particular registers. What is the
value of $t2 after the following instructions?

st $tz, $t0, $tl
beq $t2, $0, ELSE
J DONE
ELSE: addi $t2, $0, 2
DONE :

2.16.2 [5] <2.7> Suppose that register $t0 contains a value from the table above
and is compared against the value X, as used in the MIPS instruction below. Note
the format of the slti instruction. For what values of X, if any, will $t2 be equal to 1?

slti $t2, $t0, X

2.16.3 [5] <2.7> Suppose the program counter (PC) is set to 0x0000 0020. Is it
possible to use the jump MIPS assembly instruction to get set the PC to the address
as shown in the data table above? Is it possible to use the branch-on-equal MIPS
assembly instruction to get set the PC to the address as shown in the data table
above?

For these problems, the table holds various binary values for register $t0. Given
the value of $t0, you will be asked to evaluate the outcome of different branches.

a. | 0x00101000
b. | 0x80001000

2.16.4 (5] <2.7> Suppose that register $t0 contains a value from above. What is
the value of $t2 after the following instructions?

slt $t2, $0, $t0
bne $tz2, $0, ELSE
J DONE
ELSE: addi $t2, $tz2, 2
DONE:

2.16.5 [5] <2.6, 2.7> Suppose that register $t0 contains a value from above.
What is the value of $t2 after the following instructions?

s11 $t0, $t0, 2
slt $t2, $t0, $0

2.16.6 [5] <2.7> Suppose the program counter (PC) is set to 0x2000 0000. Is
it possible to use the jump (j) MIPS assembly instruction to get set the PC to the

2.21 Exercises

195

address as shown in the data table above? Is it possible to use the branch-on-equal
(beq) MIPS assembly instruction to set the PC to the address as shown in the data
table above? Note the format of the J-type instruction.

Exercise 2.17

For these problems, there are several instructions that are not included in the MIPS
instruction set are shown.

a. | subi $t2, $t3, 5 # R[rtl = R[rs] - SignExtImm
b. | rpt $t2, Toop # if(R[rs1>0) RLrs]=R[rs]-1, PC=PC+4+BranchAddr

2.17.1 [5] <2.7> The table above contains some instructions not included in
the MIPS instruction set and the description of each instruction. Why are these
instructions not included in the MIPS instruction set?

2.17.2 [5] <2.7> The table above contains some instructions not included in the
MIPS instruction set and the description of each instruction. If these instructions
were to be implemented in the MIPS instruction set, what is the most appropriate
instruction format?

2.17.3 [5] <2.7> For each instruction in the table above, find the shortest
sequence of MIPS instructions that performs the same operation.

For these problems, the table holds MIPS assembly code fragments. You will be
asked to evaluate each of the code fragments, familiarizing you with the different
MIPS branch instructions.

a. | LOOP: addi $s2, $s2, 2
subi $t1, $t1, 1
bne $tl, $0, LOOP

DONE:

b. | LOOP: s1t $t2, $0, $tl
beq $t2, $0, DONE
subi $tl1, $t1, 1
addi $s2, $s2, 2
j LOOP

DONE:

2.17.4 [5] <2.7> For the loops written in MIPS assembly above, assume that the
register $t1 is initialized to the value 10. What is the value in register $s2 assuming
the $s2 is initially zero?

2.17.5 [5] <2.7> For each of the loops above, write the equivalent C code rou-
tine. Assume that the registers $s1, $s2, $t1, and $t2 are integers A, B, i, and
temp, respectively.

196

Chapter 2 Instructions: Language of the Computer

2.17.6 [5] <2.7> For the loops written in MIPS assembly above, assume that the
register $t1 isinitialized to the value N. How many MIPS instructions are executed?

Exercise 2.18

For these problems, the table holds some C code. You will be asked to evaluate these
C code statements in MIPS assembly code.

a. | for(i=0; i<a; i++)
a += b;

b. | for(i=0; i<a; i++)
for(j=0; j<b; j++)
DL4*3) =1 + J;

2.18.1 [5] <2.7> For the table above, draw a control-flow graph of the C code.

2.18.2 [5] <2.7> For the table above, translate the C code to MIPS assembly code.
Use a minimum number of instructions. Assume that the values of a, b, i, and j
are in registers $s0, $s1, $£0, and $t1, respectively. Also, assume that register $s2
holds the base address of the array D.

2.18.3 [5] <2.7> How many MIPS instructions does it take to implement the
C code? If the variables a and b are initialized to 10 and 1 and all elements of D
are initially 0, what is the total number of MIPS instructions that is executed to
complete the loop?

For these problems, the table holds MIPS assembly code fragments. You will be
asked to evaluate each of the code fragments, familiarizing you with the different
MIPS branch instructions.

a. addi $t1, $0, 50

LOOP: Tw $s1, 0($s0)
add $s2, $s2, $sl
Tw $s1, 4($s0)
add $s2, $s2, $sl
addi $s0, $s0, 8
subi $t1, $t1, 1
bne $tl1, $0, LOOP

b. addi $t1, $0, $0

LOOP: Tw $s1, 0($s0)
add $s2, $s2, $sl
addi $s0, $s0, 4
addi $t1, $t1, 1
slti $t2, $tl1, 100
bne $t2, $s0, LOOP

2.18.4 [5] <2.7> What is the total number of MIPS instructions executed?

2.21 Exercises

197

2.18.5 [5] <2.7> Translate the loops above into C. Assume that the C-level inte-
ger 1 is held in register $t1, $s2 holds the C-level integer called result, and $s0
holds the base address of the integer MemArray.

2.18.6 [5] <2.7> Rewrite the loop to reduce the number of MIPS instructions
executed.

Exercise 2.19

For the following problems, the table holds C code functions. Assume that the first
function listed in the table is called first. You will be asked to translate these C code
routines into MIPS assembly.

a. | int fib(int n){

if (n==0)
return 0;

else if (n==1)
return 1;

else
fib(n-1) + fib(n-2);

b. | int positive(int a, int b) {
if (addit(a, b) > 0)
return 1;
else
return 0;
}
int addit(int a, int b) {
return a+b;
}

2.19.1 [15] <2.8> Implement the C code in the table in MIPS assembly. What is
the total number of MIPS instructions needed to execute the function?

2.19.2 (5] <2.8> Functions can often be implemented by compilers “in-line.” An
in-line function is when the body of the function is copied into the program space,
allowing the overhead of the function call to be eliminated. Implement an “in-line”
version of the the C code in the table in MIPS assembly. What is the reduction in
the total number of MIPS assembly instructions needed to complete the function?
Assume that the C variable n is initialized to 5.

2.19.3 [5] <2.8> For each function call, show the contents of the stack after the
function call is made. Assume the stack pointer is originally at address Ox7fffftfc,
and follow the register conventions as specified in Figure 2.11.

The following three problems in this Exercise refer to a function f that calls another
function func. The code for C function func is already compiled in another module

198

Chapter 2 Instructions: Language of the Computer

using the MIPS calling convention from Figure 2.14. The function declaration for
funcis“int func(int a, int b);” The code for function f is as follows:

a. | int f(int a, int b, int c, int d){
return func(func(a,b),c+d);
}

b. | int f(int a, int b, int c, int d){
if(a+b>c+d)

return func(a+b,c+d);
return func(c+d,a+b);

}

2.19.4 [10] <2.8> Translate function f into MIPS assembly language, also using
the MIPS calling convention from Figure 2.14. If you need to use registers $t0
through $t7, use the lower-numbered registers first.

2.19.5 [5] <2.8> Can we use the tail-call optimization in this function? If no,
explain why not. If yes, what is the difference in the number of executed instruc-
tions in f with and without the optimization?

2.19.6 [5] <2.8> Right before your function f from Problem 2.19.4 returns, what
do we know about contents of registers $t5, $s3, $ra, and $sp? Keep in mind that
we know what the entire function f looks like, but for function func we only know
its declaration.

Exercise 2.20

This exercise deals with recursive procedure calls. For the following problems,
the table has an assembly code fragment that computes the factorial of a number.
However, the entries in the table have errors, and you will be asked to fix these
errors. For number n, factorial of n=1x2x3x.. ..xn.

a. | FACT: sw $ra, 4($sp)
Sw $a0, 0($sp)
addi $sp, $sp, -
slti $t0, $a0, 1
beq $t0, $0, L1
addi $v0, $0, 1

addi $sp, $sp, 8

jr $ra
L1: addi $a0, $a0, -1
jal FACT

addi $sp, $sp, 8
Tw $a0, 0($sp)
Tw $ra, 4($sp)
mul $v0, $a0, $vO
jr $ra

2.21 Exercises

199

b. | FACT: addi $sp, $sp, 8
sw $ra, 4($sp)
Sw $a0, 0($sp)
add $s0, $0, $a0
slti $t0, $al, 2
beq $t0, $0, L1
mul $v0, $s0, $vO
addi $sp, $sp, -8

Jjr $ra
L1: addi $a0, $a0, -1
jal FACT

addi $v0, $0, 1
Tw $a0, 0($sp)
Tw $ra, 4($sp)
addi $sp, $sp, -8
jr $ra

2.20.1 (5] <2.8> The MIPS assembly program above computes the factorial of a
given input. The integer input is passed through register $a0, and the result is returned
in register $v0. In the assembly code, there are a few errors. Correct the MIPS errors.

2.20.2 [10] <2.8> For the recursive factorial MIPS program above, assume that
the input is 4. Rewrite the factorial program to operate in a non-recursive man-
ner. Restrict your register usage to registers $s0-$s7. What is the total number of
instructions used to execute your solution from 2.20.2 versus the recursive version
of the factorial program?

2.20.3 [5] <2.8> Show the contents of the stack after each function call, assum-
ing that the input is 4.

For the following problems, the table has an assembly code fragment that computes
a Fibonacci number. However, the entries in the table have errors, and you will be
asked to fix these errors. For number n, the Fibonacci of n is calculated as follows:

n fibonacci of n
1 1

2 1

3 2

4 3

5 5

6 8

7 13

8 21

200 Chapter 2 Instructions: Language of the Computer

a. | FIB: addi $sp, $sp, -12
Sw $ra, 0($sp)
Sw $s1, 4($sp)
Sw $a0, 8($sp)
slti $t0, $a0, 1
beq $t0, $0, L1
addi $v0, $a0, $0

J EXIT
L1: addi $a0, $a0, -1
jal FIB

addi $s1, $v0, $0
addi $a0, $al0, -1
jal FIB

add $v0, $v0, $sl

EXIT: Tw $ra, 0($sp)
Tw $a0, 8($sp)
Tw $s1, 4($sp)
addi $sp, $sp, 12
jr $ra

b. | FIB: addi $sp, $sp, -12
Sw $ra, 8($sp)
Sw $s1, 4($sp)
Sw $a0, 0($sp)
slti $t0, $a0, 3
beq $t0, $0, L1
addi $v0, $0, 1

] EXIT
L1: addi $a0, $a0, -1
jal FIB
addi $a0, $a0, -2
jal FIB

add $v0, $v0, $sl

EXIT: Tw $a0, 0($sp)
Tw $s1, 4($sp)
Tw $ra, 8($sp)
addi $sp, $sp, 12
jr $ra

2.20.4 (5] <2.8> The MIPS assembly program above computes the Fibonacci of
a given input. The integer input is passed through register $a0, and the result is
returned in register $v0. In the assembly code, there are a few errors. Correct the
MIPS errors.

2.20.5 [10] <2.8> For the recursive Fibonacci MIPS program above, assume that
the input is 4. Rewrite the Fibonacci program to operate in a non-recursive man-
ner. Restrict your register usage to registers $s0-$s7. What is the total number of

2.21 Exercises

201

instructions used to execute your solution from 2.20.2 versus the recursive version
of the factorial program?

2.20.6 [5] <2.8> Show the contents of the stack after each function call, assum-
ing that the input is 4.

Exercise 2.21

Assume that the stack and the static data segments are empty and that the stack and
global pointers start at address 0x7fff fffc and 0x1000 8000, respectively. Assume
the calling conventions as specified in Figure 2.11 and that function inputs are
passed using registers $a0-$a3 and returned in register $r0. Assume that leaf
functions may only use saved registers.

a. | int my_global = 100;

main()

{
int x = 10;
int y = 20;
int z;

z = my_function(x, y)
}
int my_function(int x, int y)
{

return x - y + my_global;
}

b. | int my_global = 100;
main()
{
int z;
my_global += 1;
z = leaf_function(my_global);
}
int Teaf_function(int x)
{
return x + 1;

}

2.21.1 [5] <2.8> Write MIPS assembly code for the code in the table above.

2.21.2 [5] <2.8> Show the contents of the stack and the static data segments after
each function call.

2.21.3 [5] <2.8> If the leaf function could use temporary registers ($t0, $t1,
etc.), write the MIPS code for the code in the table above.

202 Chapter 2 Instructions: Language of the Computer

The following three problems in this Exercise refer to this function, written in
MIPS assembly following the calling conventions from Figure 2.14:

a. | f: add $v0,%al,$al

bnez $a2,L
sub $v0,%a0,%al
L: Jr $vO0

b. | f: add $a2,%a3,%a2
slt $a2,%a2,%a0
move $v0,%al

beqz $az2, L
jr $ra
L: move $a0,%al
jal g ; Tail call

2.21.4 [10] <2.8> This code contains a mistake that violates the MIPS calling
convention. What is this mistake and how should it be fixed?

2.21.5 [10] <2.8> What is the C equivalent of this code? Assume that the func-
tion’s arguments are named a, D, ¢, etc. in the C version of the function.

2.21.6 [10] <2.8> At the point where this function is called register $a0, $al,
$a2, and $a3 have values 1, 100, 1000, and 30, respectively. What is the value
returned by this function? If another function g is called from f, assume that the
value returned from g is always 500.

Exercise 2.22
This exercise explores ASCII and Unicode conversion.

The following table shows strings of characters.

a. | hello world

b. | 0123456789

2.22.1 (5] <2.9> Translate the strings into hexadecimal ASCII byte values.

2.22.2 (5] <2.9> Translate the strings into 16-bit Unicode (using hex notation
and the Basic Latin character set).

The following table shows hexadecimal ASCII character values.

a. | 41 44 44

b. | 4D 49 50 53

2.21 Exercises

203

2.22.3 [5] <2.5,2.9> Translate the hexadecimal ASCII values to text.

Exercise 2.23

In this exercise, you will be asked to write an MIPS assembly program that converts
strings into the number format as specified in the table.

a. | positive and negative integer decimal strings

b. | positive hexadecimal integers

2.23.1 [10] <2.9> Write a program in MIPS assembly language to convert an
ASCII number string with the conditions listed in the table above, to an integer.
Your program should expect register $a0 to hold the address of a null-terminated
string containing some combination of the digits 0 through 9. Your program
should compute the integer value equivalent to this string of digits, then place the
number in register $v0. If a non-digit character appears anywhere in the string,
your program should stop with the value —1 in register $v0. For example, if register
$a0 points to a sequence of three bytes 50, 521> Ote, (the null-terminated string

“24”), then when the program stops, register $v0 should contain the value 24,.,.

Exercise 2.24

Assume that the register $t1 contains the address 0x1000 0000 and the register
$t2 contains the address 0x1000 0010. Note the MIPS architecture utilizes big-
endian addressing.

a. | lbu $t0, 0($tl)
sw $t0, 0($t2)
b. | 1b $t0, 0($tl)
sh $t0, 0($t2)

2.24.1 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

‘ 1000 0000 12 ‘ 34 ‘ 56 78

What value is stored at the address pointed to by register $t2? Assume that the
memory location pointed to $t?2 is initialized to OxFFFF FFFE

2.24.2 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

‘ 1000 0000 80 ‘ 80 ‘ 80 80

204

Chapter 2 Instructions: Language of the Computer

What value is stored at the address pointed to by register $t2? Assume that the
memory location pointed to $t2 is initialized to 0x0000 0000.

2.24.3 [5] <2.9> Assume that the data (in hexadecimal) at address 0x1000 0000 is:

‘ 1000 0000 11 ‘ 00 ‘ 00 FF

What value is stored at the address pointed to by register $t2? Assume that the
memory location pointed to $t2 is initialized to 0x5555 5555.

Exercise 2.25

In this exercise, you will explore 32-bit constants in MIPS. For the following prob-
lems, you will be using the binary data in the table below.

a. | 0010 0000 0000 0001 0100 1001 0010 01004,
b. | 0000 1111 1011 1110 0100 0000 0000 00004,

2.25.1 [10] <2.10> Write the MIPS assembly code that creates the 32-bit con-
stants listed above and stores that value to register $t1.

2.25.2 [5] <2.6,2.10> If the current value of the PC is 0x00000000, can you use a
single jump instruction to get to the PC address as shown in the table above?

2.25.3 [5] <2.6,2.10> If the current value of the PC is 0x00000600, can you use
a single branch instruction to get to the PC address as shown in the table above?

2.25.4 [5] <2.6,2.10> If the current value of the PC is 0x1FFFf000, can you use
a single branch instruction to get to the PC address as shown in the table above?

2.25.5 [10] <2.10> If the immediate field of an MIPS instruction was only 8 bits
wide, write the MIPS code that creates the 32-bit constants listed above and stores
that value to register $t1. Do not use the 1ui instruction.

For the following problems, you will be using the MIPS assembly code as listed in
the table.

a. | lui $t0, 0x1234
addi $t0, $t0, 0x5678

b. | Tui $t0, 0x1234
andi $t0, $t0, 0x5678

2.21 Exercises

205

2.25.6 (5] <2.6,2.10> What is the value of register $t 0 after the sequence of code
in the table above?

2.25.7 (5] <2.6, 2.10> Write C code that is equivalent to the assembly code in
the table. Assume that the largest constant that you can load into a 32-bit integer is
16 bits.

Exercise 2.26

For this exercise, you will explore the range of branch and jump instructions in
MIPS. For the following problems, use the hexadecimal data in the table below.

a. | 0x00020000
b. | OxFFFFFFOO

2.26.1 [10] <2.6,2.10> If the PC is at address 0x00000000, how many branch (no
jump instructions) do you need to get to the address in the table above?

2.26.2 [10] <2.6, 2.10> If the PC is at address 0x00000000, how many jump
instructions (no jump register instructions or branch instructions) are required to
get to the target address in the table above?

2.26.3 [10] <2.6, 2.10> In order to reduce the size of MIPS programs, MIPS
designers have decided to cut the immediate field of I-type instructions from 16
bits to 8 bits. If the PC is at address 0x0000000, how many branch instructions are
needed to set the PC to the address in the table above?

For the following problems, you will be using making modifications to the MIPS
instruction set architecture.

a. | 128 registers

b. | Four times as many different operations

2.26.4 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified,
the instruction format must also be changed. For each of the suggested changes
above, what is the impact on the range of addresses for a beq instruction? Assume
that all instructions remain 32 bits long and any changes made to the instruction
format of i-type instructions only increase/decrease the immediate field of the beq
instruction.

2.26.5 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modi-
fied, the instruction format must also be changed. For each of the suggested

206

Chapter 2 Instructions: Language of the Computer

changes above, what is the impact on the range of addresses for a jump instruc-
tion? Assume that instructions remain 32 bits long and any changes made to the
instruction format of J-type instructions only impact the address field of the
jump instruction.

2.26.6 [10] <2.6, 2.10> If the instruction set of the MIPS processor is modified,
the instruction format must also be changed. For each of the suggested changes
above, what is the impact on the range of addresses for a jump register instruction,
assuming that each instruction must be 32 bits.

Exercise 2.27

In the following problems, you will be exploring different addressing modes in the
MIPS instruction set architecture. These different addressing modes are listed in
the table below.

a. | Base or Displacement Addressing

b. | Pseudodirect Addressing

2.27.1 [5] <2.10> In the table above are different addressing modes of the MIPS
instruction set. Give an example MIPS instructios that shows the MIPS addressing
mode.

2.27.2 [5] <2.10> For the instructions in 2.27.1, what is the instruction format
type used for the given instruction?

2.27.3 [5] <2.10> List the benefits and drawbacks of a particular MIPS address-
ing mode. Write MIPS code that shows these benefits and drawbacks.

In the following problems, you will be using the MIPS assembly code as listed below
to explore the trade-offs of the immediate field in the MIPS I-type instructions.

a. | 0x00400000 beq $s0, $0, FAR

0x00403100 FAR: addi $s0, $s0, 1
b. | 0x00000100 i AWAY

0x04000010 AWAY: addi $s0, $s0, 1

2.27.4 [15] <2.10> For the MIPS statements above, show the bit-level instruc-
tion representation of each of the instructions in hexadecimal.

2.21 Exercises

207

2.27.5 [10] <2.10> By reducing the size of the immediate fields of the I-type
and J-type instructions, we can save on the number of bits needed to represent
these types of instructions. If the immediate field of I-type instructions were 8 bits
and the immediate field of J-type instructions were 18 bits, rewrite the MIPS code
above to reflect this change. Avoid using the 1ui instruction.

2.27.6 [5] <2.10> How many extra instructions are needed to do execute your
code in 2.27.5 MIPS statements in the table versus the code shown in the table above?

Exercise 2.28

The following table contains MIPS assembly code for a lock. Refer to the definition
of the Il and sc pairs of MIPS instructions.

a. | try: MOV R3,R4
LL R2,0(R2)
ADDI R2,R2, 1
SC R3,0(R1)
BEQZ R3,try
MOV R4 ,R2

2.28.1 [5] <2.11> For each test and fail of the store conditional, how many
instructions need to be executed?

2.28.2 [5] <2.11> For the load locked/store conditional code above, explain why
this code may fail.

2.28.3 [15] <2.11> Rewrite the code above so that the code may operate cor-
rectly. Be sure to avoid any race conditions.

Each entry in the following table has code and also shows the contents of various
registers. The notation “($51)” shows the contents of a memory location pointed
to by register $s1. The assembly code in each table is executed in the cycle shown
on parallel processors with a shared memory space.

Processor 1 Processor 2 mm

1 2 99 30 40

17 $tl, 0($s1)

17 $tl, 0($s1)

sc $t0, 0($sl)

AW I NP |O

sc $t0, 0($sl)

208

Chapter 2 Instructions: Language of the Computer

Processor 1 Processor 2 mm

1 2 99 30 40

17T $t1,0(%s1)

11 $t1,0($s1)
addi $t1,$t1,1
sc $t1,0(%s1)

|| W |N|RL|O

sc $t0,0($s1)

2.28.4 [5] <2.11> Fill out the table with the value of the registers for each given
cycle.

Exercise 2.29

The first three problems in this Exercise refer to a critical section of the form

Tock(Tk);
operation
unlock(Tk);

where the “operation” updates the shared variable shvar using the local (non-
shared) variable x as follows:

™ S

a. | shvar=max(shvar,x);

if(shvar>0)
shvar=max(shvar,x);

b.

2.29.1 [10] <2.11> Write the MIPS assembly code for this critical section, assum-
ing that the address of the 1k variable is in $a0, the address of the shvar variable
isin $al, and the value of variable x is in $a2. Your critical section should not con-
tain any function calls, i.e., you should include the MIPS instructions for Tock (),
unlock(),max(),and min() operations. Use 11/sc instructions to implement
the Tock () operation, and the unTock() operation is simply an ordinary store
instruction.

2.29.2 [10] <2.11> Repeat problem 2.29.1, but this time use 11/sc to per-
form an atomic update of the shvar variable directly, without using 1ock () and
unlock (). Note that in this problem there is no variable 1k.

2.29.3 [10] <2.11> Compare the best-case performance of your code from 2.29.1
and 2.29.2, assuming that each instruction takes one cycle to execute. Note: best-case

2.21 Exercises

209

means that 11/sc always succeeds, the lock is always free when we want to Tock (),
and if there is a branch we take the path that completes the operation with fewer
executed instructions.

2.29.4 [10] <2.11> Using your code from 2.29.2 as an example, explain what
happens when two processors begin to execute this critical section at the same
time, assuming that each processor executes exactly one instruction per cycle.

2.29.5 [10] <2.11> Explain why in your code from 2.29.2 register $al contains
the address of variable shvar and not the value of that variable, and why register
$a2 contains the value of variable x and not its address.

2.29.6 [10] <2.11> If we want to atomically perform the same operation on two
shared variables (e.g., shvarl and shvar?) in the same critical section, we can do
this easily using the approach from 2.29.1 (simply put both updates between the
lock operation and the corresponding unlock operation). Explain why we cannot
do this using the approach from 2.29.2. i.e., why we cannot use 11/sc to access
both shared variables in a way that guarantees that both updates are executed
together as a single atomic operation.

Exercise 2.30

Assembler instructions are not a part of the MIPS instruction set, but often appear
in MIPS programs. The table below contains some MIPS assembly instructions
that get translated to actual MIPS instructions.

clear $t0
b. | beq $t1, Targe, LOOP

2.30.1 [5] <2.12> For each assembly instruction in the table above, produce a
minimal sequence of actual MIPS instructions to accomplish the same thing. You
may need to use temporary registers in some cases. In the table 1arge refers to a
number that requires 32 bits to represent and smal 1 to a number that can fit into
16 bits.

The table below contains some MIPS assembly instructions that get translated to
actual MIPS instructions.

a. | bltu $s0, $tl, Loop
b. | ulw $v0, v

210 Chapter 2 Instructions: Language of the Computer

2.30.2 [5] <2.12> Does the instruction in the table above need to be edited dur-
ing the link phase? Why?
Exercise 2.31

The table below contains the link-level details of two different procedures. In this
exercise, you will be taking the place of the linker.

I Y S T S

Text Address Instruction Text Address Instruction
Segment Segment
0 Tbu $a0, 0($gp) 0 sw $al, 0($gp)
4 jal 0 4 jal 0
Data 0 (X) Data 0 (Y)
Segment Segment
Relocation | Address Instruction Type Dependency | Relocation | Address Instruction Type Dependency
Info Info
0 Tbu X 0 Sw Y
4 jal B 4 jal A
Symbol Address Symbol Symbol Address Symbol
Table Table
— X - Y
- B - A
D T T
Text Address Instruction Text Address Instruction
Segment - Segment
0 Tui $at, 0 0 sw $a0, 0($gp)
4 ori $a0, $at, O 4 jmp 0
0x84 jr $ra 0x180 jal 0
Data 0 (X) Data 0 (Y)
Segment Segment
Relocation | Address Instruction Type Dependency | Relocation | Address Instruction Type Dependency
Info ; Info
0 Tui X 0 sw Y
4 ori X 4 Jjmp FOO
0x180 jal A
Symbol Address Symbol Symbol Address Symbol
Table Table
— X - Y
0x180 FOO
- A

2.21 Exercises 211

2.31.1 (5] <2.12> Link the object files above to form the executable file header.
Assume that Procedure A has a text size of 0x140 and data size of 0x40 and Pro-
cedure B has a text size of 0x300 and data size of 0x50. Also assume the memory
allocation strategy as shown in Figure 2.13.

2.31.2 (5] <2.12> What limitations, if any, are there on the size of an executable?

2.31.3 (5] <2.12> Given your understanding of the limitations of branch and
jump instructions, why might an assembler have problems directly implementing
branch and jump instructions an object file?

Exercise 2.32

The first three problems in this exercise assume that the function swap, instead of
the code in Figure 2.24, is defined in C as follows:

a. | void swap(int *p, int *qg){
int temp;
temp=*p;
*p:*q;
*q=temp;
}

b. | void swap(int *p, int *qg){
Xp=*p+*(;
*q:*p,*q;
*p:*p,*q;

}

2.32.1 [10] <2.13> Translate this function into MIPS assembler code.
2.32.2 [5] <2.13> What needs to change in the sort function?

2.32.3 [5] <2.13> If we were sorting 8-bit bytes, not 32-bit words, how would
your MIPS code for swap in 2.32.1 change?

For the remaining three problems in this Exercise, we assume that the sort func-
tion from Figure 2.27 is changed in the following way:

a. | Use the swap function from the beginning of this exercise.

b. | Sort an array of n bytes instead of n words.

2.32.4 [5] <2.13> Does this change affect the code for saving and restoring reg-
isters in Figure 2.27?

2.32.5 [10] <2.13> When sorting a 10-element array that was already sorted,
how many more (or fewer) instructions are executed as a result of this change?

212

Chapter 2 Instructions: Language of the Computer

2.32.6 [10] <2.13> When sorting a 10-element array that was sorted in descend-
ing order (opposite of the order that sort () creates), how many more (or fewer)
instructions are executed as a result of this change?

Exercise 2.33

The problems in this Exercise refer to the following function, given as array code:

a. | void copy(int all, int b[J], int n){
int i;
for(i=0;1!=n;i++)
alil=bl[il;

}

b. | void shift(int all, int n){

int i;
for(i=0;i!=n-1;i++)
alil=ali+1];

}

2.33.1 [10] <2.14> Translate this function into MIPS assembly.
2.33.2 [10] <2.14> Convert this function into pointer-based code (in C).

2.33.3 [10] <2.14> Translate your pointer-based C code from 2.33.2 into MIPS
assembly.

2.33.4 [5] <2.14> Compare the worst-case number of executed instructions
per non-last loop iteration in your array-based code from 2.33.1 and your
pointer-based code from 2.33.3. Note: the worst case occurs when branch con-
ditions are such that the longest path through the code is taken, i.e., if there
is an if statement, the result of the condition check is such that the path with
more instructions is taken. However, if the result of the condition check would
cause the loop to exit, then we assume that the path that keeps us in the loop
is taken.

2.33.5 (5] <2.14> Compare the number of temporary registers (t-registers)
needed for your array-based code from 2.33.1 and for your pointer-based code
from 2.33.3.

2.33.6 [5] <2.14> What would change in your answer from 2.33.4 if registers
$t0-$t7 and $a0-%$a3 in the MIPS calling convention were all callee-saved, just
like $s0-$572

2.21 Exercises

213

Exercise 2.34

The table below contains ARM assembly code. In the following problems, you will
translate ARM assembly code to MIPS.

a. | ADD ro, rl, r2 ;r0 =rl + r2

ADC ro, rl, r2 ;r0 = rl + r2 + Carrybit
b. | CMP r0, #4 ;if (r0 1= 4) |

ADDNE r1, rl1, rO ;rl +=r0 }

2.34.1 [5] <2.16> For the table above, translate this ARM assembly code to MIPS
assembly code. Assume that ARM registers r0, rl, and r2 hold the same values
as MIPS registers $s0, $s1, and $s2, respectively. Use MIPS temporary registers
($t0, etc.) where necessary.

2.34.2 [5] <2.16> For the ARM assembly instructions in the table above, show
the bit fields that represent the ARM instructions.

The table below contains MIPS assembly code. In the following problems, you will
translate MIPS assembly code to ARM.

a. | nor $t0, #s0, 0
and $s1, $s1, $t0

b. | s11 $s1, $s2, 16
srl $s2, $s2, 16
or $sl, $s1, $s2

2.34.3 [5] <2.16> For the table above, find the ARM assembly code that corre-
sponds to the sequence of MIPS assembly code.

2.34.4 (5] <2.16> Show the bit fields that represent the ARM assembly code.

Exercise 2.35

The ARM processor has a few different addressing modes that are not supported in
MIPS. The following problems explore these new addressing modes.

a. LDR ro, [rl, #4171 ; r0 = memory[rl+47, rl += 4

b. LDMIA rO!, {rl-r3} ;orl
;0 r3

memory[r0], r2 = memory[r0+4]
memory[r0+87, ro += 3*4

2.35.1 (5] <2.16> Identify the type of addressing mode of the ARM assembly
instructions in the table above.

214

Chapter 2 Instructions: Language of the Computer

2.35.2 (5] <2.16> For the ARM assembly instructions above, write a sequence of
MIPS assembly instructions to accomplish the same data transfer.

In the following problems, you will compare code written using the ARM and
MIPS instruction sets. The following table shows code written in the ARM instruc-
tion set.

a. MOV r0, #10 ;init lToop counter to 10
LOOP: ADD ro, ril ;add rl to r0
SUBS ro0, 1 ;decrement counter
BNE LOOP ;1f Z=0 repeat Toop
b. ADD ro, ril ;r0 =r0 + rl
ADC r2, r3 ;r2 = r2 + r3 + carry

2.35.3 [10] <2.16> For the ARM assembly code above, write an equivalent MIPS
assembly code routine.

2.35.4 [5] <2.16> What is the total number of ARM assembly instructions
required to execute the code? What is the total number of MIPS assembly instruc-
tions required to execute the code?

2.35.5 [5] <2.16> Assuming that the average CPI of the MIPS assembly routine
is the same as the average CPI of the ARM assembly routine, and the MIPS proces-
sor has an operation frequency that is 1.5 times that of the ARM processor, how
much faster is the ARM processor than the MIPS processor?

Exercise 2.36

The ARM processor has an interesting way of supporting immediate constants.
This exercise investigates those differences.

The following table contains ARM instructions.

a. ADD, r3, r2, rl, LSR#4 ;r3 =1r2 + (rl >> 4)

b. ADD, r3, r2, r2 ;r3 =r2 +rl

2.36.1 [5] <2.16> Write the equivalent MIPS code for the ARM assembly code above.

2.36.2 (5] <2.16> If the register R1 had the constant value of 8, rewrite your
MIPS code to minimize the number of MIPS assembly instructions needed.

2.36.3 (5] <2.16> If the register R1 had the constant value of 0x06000000, rewrite
your MIPS code to minimize the number of MIPS assembly instructions needed.

2.21 Exercises

215

The following table contains MIPS instructions.

a. | addi r3, r2, 0x2

b. | addi r3, r2, -1

2.36.4 [5] <2.16> For the MIPS assembly code above, write the equivalent ARM
assembly code.

Exercise 2.37

This exercise explores the differences between the MIP and x86 instruction sets.
The following table contains x86 assembly code.

a. | START: mov eax, 3
push eax

mov eax, 4
mov ecx, 4
add eax, ecx
pop ecx

add eax, ecx

b. | START: mov ecx, 100
mov eax, 0
LOOP: add eax, ecx

dec ecx
cmp ecx, O
jne LOOP

DONE:

2.37.1 [10] <2.17> Write pseudo code for the given routine.

2.37.2 [10] <2.17> For the code in the table above, what is the equivalent MIPS
for the given routine?

The following table contains x86 assembly instructions.

a. | push eax

b. | test eax, 0x00200010

2.37.3 [5] <2.17> For each assembly instruction, show the size of each of the
bit fields that represent the instruction. Treat the label MY_FUNCTION as a 32-bit
constant.

2.37.4 [10] <2.17> Write equivalent MIPS assembly statements.

216

Chapter 2 Instructions: Language of the Computer

Exercise 2.38

The x86 instruction set includes the REP prefix that causes the instruction to be
repeated a given number of times or until a condition is satisfied. Note that x86
instructions refer to 8 bits as a byte, 16 bits as a word, and 32 bits as a double word.
The first three problems in this Exercise refer to the following x86 instruction:

-m interprotation

REP MOVSW Repeat until ECX is zero:
Meml6[EDI]=Meml6[ESI], EDI=EDI+2, ESI=ESI+2, ECX=ECX-1

b. | REPNE SCASB Repeat until ECX is zero:

If Mem8[EDI] == AL then go to next instruction,
otherwise EDI=EDI+1, ECX=ECI+1. Note: AL is the Teast-
significant byte of the EAX register.

2.38.1 [5] <2.17> What would be a typical use for this instruction?

2.38.2 [5] <2.17> Write MIPS code that performs the same operation, assuming
that $a0 corresponds to ECX, $al to EDI, $a2 to ESI, and $a3 to EAX.

2.38.3 [5] <2.17> If the x86 instruction takes one cycle to read memory, one
cycle to write memory, and one cycle for each register update, and if MIPS takes
one cycle per instruction, what is the speedup of using this x86 instruction instead
of the equivalent MIPS code when ECX is very large? Assume that the clock cycle
time for x86 and MIPS is the same.

The remaining three problems in this exercise refer to the following function, given
in both C and x86 assembly. For each x86 instruction, we also show its length in the
x86 variable-length instruction format and the interpretation (what the instruc-
tion does). Note that the x86 architecture has very few registers compared to MIPS,
and as a result the x86 calling convention is to push all arguments onto the stack.
The return value of an x86 function is passed back to the caller in the EAX register.

int f(int a,

if(a>b)

return c;
return d;
}

int b, int ¢, int d){ | f: push %ebp ; 1B, push %ebp to stack
mov %esp,%ebp ; 2B, move %esp to %ebp
mov 12(%ebp),%eax ; 3B, load 2" arg into %eax
cmp %eax,8(%ebp) ; 3B, compare %eax w/ 1°% arg
mov 16(%ebp),%edx ; 3B, load 3" arg into %edx
jle S ; 2B, jump if cmp result is <=
pop %ebp ; 1B, restore %ebp
mov %edx,%eax ; 2B, move %edx into %eax
ret ; 1B, return

S: mov 20(%ebp),%edx : 3B, Toad 4'" arg into %edx

pop %ebp ; 1B, restore %ebp
mov %edx,%eax ; 2B, move %edx into %eax
ret ; 1B, return

2.21 Exercises 217

b. [void f(int al]l, int n){ f: push %ebp ; 1B, push %ebp to stack
int i; mov %esp,%ebp ; 2B, move %esp to %ebp
for(i=0;i!=n;i++) mov 12(%ebp),%edx ; 3B, move 2" arg into %edx
alil]=0; mov 8(%ebp),%ecx ; 3B, move 1°% arg into %ecx
} test %edx,%edx ; 2B, set flags based on %edx
jz D ; 2B, jump if %edx was O
Xor %eax,keax ; 2B, zero into %eax
L: movl O, (%ecx,%eax,4) ; 7B, Mem[%ecx+4*%eax]=0
add 1,%eax ; 3B, add 1 to %eax
cmp %edx,%eax ; 2B, compare %edx and Z%eax
jne L ; 2B, jump if cmp was !=
D: pop ‘%ebp ; 1B, restore %ebp
ret ; 1B, return

2.38.4 [5] <2.17> Translate this function into MIPS assembly. Compare the size
(how many bytes of instruction memory are needed) for this x86 code and for your
MIPS code.

2.38.5 (5] <2.17> If the processor can execute two instructions per cycle, it must
at least be able to read two consecutive instructions in each cycle. Explain how it
would be done in MIPS and how it would be done in x86.

2.38.6 [5] <2.17> If each MIPS instruction takes one cycle, and if each x86
instruction takes one cycle plus a cycle for each memory read or write it has to
perform, what is the speedup of using x86 instead of MIPS? Assume that the clock
cycle time is the same in both x86 and MIPS, and that the execution takes the short-
est possible path through the function (i.e., every loop is exited immediately and
every if statement takes the direction that leads toward the return from the func-
tion). Note that the x86 ret instruction reads the return address from the stack.

Exercise 2.39

The CPI of the different instruction types is given in the following table.

a. 1 10 3

b. 4 40 3

2.39.1 [5] <2.18> Assume the following instruction breakdown given for execut-
ing a given program:

_ Instructions (in millions)
500

300

100

What is the execution time for the processor if the operation frequency is 5 GHz?

218

Chapter 2 Instructions: Language of the Computer

2.39.2 (5] <2.18> Suppose that new, more powerful arithmetic instructions are
added to the instruction set. On average, through the use of these more power-
ful arithmetic instructions, we can reduce the number of arithmetic instructions
needed to execute a program by 25%, and the cost of increasing the clock cycle time
by only 10%. Is this a good design choice? Why?

2.39.3 (5] <2.18> Suppose that we find a way to double the performance of
arithmetic instructions. What is the overall speedup of our machine? What if we
find a way to improve the performance of arithmetic instructions by 10 times?

The following table shows the proportions of instruction execution for the differ-
ent instruction types.

T T T
a.

70% 10% 20%

b. 50% 40% 10%

2.39.4 [5] <2.18> Given the instruction mix above and the assumption that an
arithmetic instruction requires 2 cycles, a load/store instruction takes 6 cycles, and
a branch instruction takes 3 cycles, find the average CPI.

2.39.5 [5] <2.18> For a 25% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions
are not improved at all?

2.39.6 [5] <2.18> For a 50% improvement in performance, how many cycles, on
average, may an arithmetic instruction take if load/store and branch instructions
are not improved at all?

Exercise 2.40

The first three problems in this Exercise refer to the following function, given in
MIPS assembly. Unfortunately, the programmer of this function has fallen prey to
the pitfall of assuming that MIPS is a word-addressed machine, but in fact MIPS
is byte-addressed.

a. | ; int f(int *a, int n, int x);

f: move $v0,$0 ; ret=0
move $t0,$a0 ; ptr=a
add $tl,%al,%a0 ; &(aln])

L: Tw $t2,00$t0) ; read *p
bne $t2,%a2,S ;1 (Fp==x)
addi $vO0,$v0,1 ;o ret++;

S: addi $t0,$t0,1 ; p=p+l
bne $t0,$t1,L ; repeat if pl!=&(alnl)
Jjr $ra ; return ret

2.21 Exercises

219

b. | ; void f(int al], int n);

: move $t0,$0 ; i=0;

addi $tl1,%al,-1 ; n-1
L: add $t2,$t0,%$a0 ; address of al[i]

Tw $t3,1($t2) ; read al[i+1]

sw o $t3,0($t2) ;alil=ali+l]

addi $t0,$t0,1 ; i=i+l

bne $t0,$t1,L ; repeat if il=n-1
jr $ra ; return

Note that in MIPS assembly the “;” character denotes that the remainder of the line
1s a comment.

2.40.1 [5] <2.18> The MIPS architecture requires word-sized accesses (Iw and
sw) to be word-aligned, i.e., the lowermost 2 bits of the address must both be zero.
If an address is not word-aligned, the processor raises a “bus error” exception.
Explain how this alignment requirement affects the execution of this function.

2.40.2 [5] <2.18> If “a” was a pointer to the beginning of an array of 1-byte
elements, and if we replaced lw and sw with 1b (load byte) and sb (store byte),
respectively, would this function be correct? Note: Ib reads a byte from memory,
sign-extends it, and places it into the destination register, while sb stores the least-
significant byte of the register into memory.

2.40.3 (5] <2.18> Change this code to make it correct for 32-bit integers.

The remaining three problems in this exercise refer to a program that allocates
memory for an array, fills the array with some numbers, calls the sort function
from Figure 2.27, and then prints out the array. The main function of the program
is as follows (given as both C and MIPS code):

Main Code in C MIPS Version of the Main Code

main(){ main:
int *v; 1i $s0,5
int n=5; move $a0,$s0
v=my_alloc(5); jal my_alloc
my_init(v,n); move $s1,$v0
sort(v,n); move $a0,$sl

move $al,$s0
jal my_init
move $a0,$s1
move $al,$s0
jal sort

Themy_alloc function is defined as follows (given as both C and MIPS code).
Note that the programmer of this function has fallen prey to the pitfall of

220

Chapter 2 Instructions: Language of the Computer

using a pointer to an automatic variable arr outside the function in which it

is defined.

my_alloc inC MIPS Code for my_alloc

int *my_alloc(int n){ my_alloc:
int arrlnl; addu $sp,$sp,-4 ; Push
return arr; Sw $fp,0($sp) ; $fp to stack
} move $fp,$sp ; Save $sp in $fp
s11 $t0,%a0,2 ; We need 4*n bytes
sub $sp,$sp,$t0 ; Make room for arr
move $v0,$sp ; Return address of arr
move $sp,$fp ; Restore $sp from $fp
Tw $fp,0(sp) ; Pop $fp
addiu $sp,$sp.4 ; from stack
jr ra

The my_init function is defined as follows (MIPS code):

a. | my_init:

bne $t0,%al,L
jr $ra

move $t0,9$0 ; 1=0
move $t1,%a0
L: addi $t2,$t0,10
Sw $t2,00$t1) ; v[i]=i+10
addiu $t1,%$t1,4
addiu $t0,$t0,1 s i=1+1

;ountil di==n

b. | my_init:
move $t0,%$0
move $t1,%a0

L: sT1 $t2,$t0,1
addi $t2,$t2,100
Sw $t2,0(8t1)
addiu $t1,%t1,4
addiu $t0,$t0,1
bne $t0,%al,L
jr $ra

;o i=i+l
; until di==n

; ali1=100+2%1;

2.40.4 [5] <2.18> What are the contents (values of all five elements) of array v
right before the “jal sort”instruction in the main code is executed?

2.40.5 [15] <2.18,2.13> What are the contents of array v right before the sort
function enters its outer loop for the first time? Assume that registers $sp, $s0,
$s1,$s2,and $s3 have values of 0x1000, 20, 40, 7, and 1, respectively, at the begin-
ning of the main code (right before “11 $s0, 57 is executed).

2.40.6 [10] <2.18,2.13> What are the contents of the 5-element array pointed by
v right after “jal sort” returns to the main code?

2.21 Exercises

221

§2.2, page 80: MIPS, C, Java

§2.3, page 87: 2) Very slow

§2.4, page 93:3) - 8.,

§2.5,page 101: 4) sub $s2, $s0, $sl

§2.6, page 105: Both. AND with a mask pattern of 1s will leaves Os everywhere but
the desired field. Shifting left by the right amount removes the bits from the left of
the field. Shifting right by the appropriate amount puts the field into the rightmost
bits of the word, with Os in the rest of the word. Note that AND leaves the field
where it was originally, and the shift pair moves the field into the rightmost part
of the word.

§2.7, page 111: 1. All are true. II. 1).

§2.8, page 122: Both are true.

§2.9, page 127: 1.2) 1I. 3)

§2.10, page 136:1.4) +-128K. II. 6) a block of 256M.1I1. 4) s11

§2.11, page 139: Both are true.

§2.12, page 148: 4) Machine independence.

Answers to
Check Yourself

Numerical precision
is the very soul
of science.

Sir D’arcy Wentworth Thompson
On Growth and Form, 1917

Arithmetic for
Computers

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

Computer Organization and Design. DOI: 10.1016/B978-0-12-374750-1.00003-7

© 2012 Elsevier, Inc. All rights reserved.

Introduction 224

Addition and Subtraction 224
Multiplication 230

Division 236

Floating Point 242

Parallelism and Computer Arithmetic:
Associativity 270

Real Stuff: Floating Point in the x86 272
Fallacies and Pitfalls 275

http://dx.doi.org/10.1016/B978-0-12-374750-1.00003-7

3.9 Concluding Remarks 280
3.10 Historical Perspective and Further Reading 283
3.11 Exercises 2383

The Five Classic Components of a Computer

Evaluating
performance

Processor

224

Chapter 3 Arithmetic for Computers

Subtraction: Addition’s
Tricky Pal

No. 10, Top Ten Courses
for Athletes at a Football
Factory, David Letterman
et al., Book of Top Ten
Lists, 1990

Introduction

Computer words are composed of bits; thus, words can be represented as binary
numbers. Chapter 2 shows that integers can be represented either in decimal
or binary form, but what about the other numbers that commonly occur? For
example:

m What about fractions and other real numbers?

B What happens if an operation creates a number bigger than can be
represented?

B And underlying these questions is a mystery: How does hardware really
multiply or divide numbers?

The goal of this chapter is to unravel these mysteries including representation of
real numbers, arithmetic algorithms, hardware that follows these algorithms, and
the implications of all this for instruction sets. These insights may explain quirks
that you have already encountered with computers.

Addition and Subtraction

Addition is just what you would expect in computers. Digits are added bit by bit
from right to left, with carries passed to the next digit to the left, just as you would
do by hand. Subtraction uses addition: the appropriate operand is simply negated
before being added.

Binary Addition and Subtraction

Let’s try adding 6., to 7., in binary and then subtracting 6,,, from 7., in
binary.
0000 0000 0000 0000 0000 0000 0000 01114,5 = 7ten
+ 0000 0000 0000 0000 0000 0000 0000 01104, = 6ten
= 0000 0000 0000 0000 0000 0000 0000 11014,,5 = 134en

The 4 bits to the right have all the action; Figure 3.1 shows the sums and carries.
The carries are shown in parentheses, with the arrows showing how they are
passed.

3.2 Addition and Subtraction

225

Subtracting 6,., from 7, can be done directly:

ten ten

0000 0000 0000 0000 0000 0000 0000 01114,, = 7¢en
- 0000 0000 0000 0000 0000 0000 0000 01104, = 6+ep

- 0000 0000 0000 0000 0000 0000 0000 00014, = 1t

or via addition using the two’s complement representation of —6:

0000 0000 0000 0000 0000 0000 0000 01114,, = 7¢en
+ 111111111111111111111111111110104, = ~61en

0000 0000 0000 0000 0000 0000 0000 0001 4,5 = 1t

01 (1)1 1

FIGURE 3.1 Binary addition, showing carries from right to left. The rightmost bit adds
1 to 0, resulting in the sum of this bit being 1 and the carry out from this bit being 0. Hence, the operation
for the second digit to the right is 0 + 1 + 1. This generates a 0 for this sum bit and a carry out of 1.
The third digit is the sum of 1 + 1 + 1, resulting in a carry out of 1 and a sum bit of 1. The fourth bit is
1+ 0+ 0, yielding a 1 sum and no carry.

Recall that overflow occurs when the result from an operation cannot be
represented with the available hardware, in this case a 32-bit word. When can
overflow occur in addition? When adding operands with different signs, overflow
cannot occur. The reason is the sum must be no larger than one of the operands.
For example, —10 + 4 = —6. Since the operands fit in 32 bits and the sum is no larger
than an operand, the sum must fit in 32 bits as well. Therefore, no overflow can
occur when adding positive and negative operands.

There are similar restrictions to the occurrence of overflow during subtract, but
it’s just the opposite principle: when the signs of the operands are the samie, overflow
cannot occur. To see this, remember that x — y = x + (—y) because we subtract by
negating the second operand and then add. Therefore, when we subtract operands
of the same sign we end up by adding operands of different signs. From the prior
paragraph, we know that overflow cannot occur in this case either.

Knowing when overflow cannot occur in addition and subtraction is all well and
good, but how do we detect it when it does occur? Clearly, adding or subtracting
two 32-bit numbers can yield a result that needs 33 bits to be fully expressed.

226

Chapter 3 Arithmetic for Computers

Arithmetic Logic Unit
(ALU) Hardware that
performs addition,
subtraction, and usually
logical operations such as
AND and OR.

The lack of a 33rd bit means that when overflow occurs, the sign bit is set with the
value of the result instead of the proper sign of the result. Since we need just one
extra bit, only the sign bit can be wrong. Hence, overflow occurs when adding two
positive numbers and the sum is negative, or vice versa. This means a carry out
occurred into the sign bit.

Overflow occurs in subtraction when we subtract a negative number from a
positive number and get a negative result, or when we subtract a positive number
from a negative number and get a positive result. This means a borrow occurred
from the sign bit. Figure 3.2 shows the combination of operations, operands, and
results that indicate an overflow.

We have just seen how to detect overflow for two’s complement numbers in
a computer. What about overflow with unsigned integers? Unsigned integers are
commonly used for memory addresses where overflows are ignored.

The computer designer must therefore provide a way to ignore overflow in
some cases and to recognize it in others. The MIPS solution is to have two kinds of
arithmetic instructions to recognize the two choices:

B Add (add), add immediate (addi), and subtract (sub) cause exceptions on
overflow.

B Add unsigned (addu), add immediate unsigned (addiu), and subtract
unsigned (subu) do not cause exceptions on overflow.

Because C ignores overflows, the MIPS C compilers will always generate the
unsigned versions of the arithmetic instructions addu, addiu, and subu, no
matter what the type of the variables. The MIPS Fortran compilers, however, pick
the appropriate arithmetic instructions, depending on the type of the operands.

Result
Operation Operand A | Operand B indicating overflow
>0 >0 <0

A+ B

A+ B <0 <0 >0
A-B >0 <0 <0
A-B <0 >0 >0

FIGURE 3.2 Overflow conditions for addition and subtraction.

Appendix C describes the hardware that performs addition and subtraction,
which is called an Arithmetic Logic Unit or ALU.

3.2 Addition and Subtraction

227

The computer designer must decide how to handle arithmetic overflows. Although
some languages like C and Java ignore integer overflow, languages like Ada and
Fortran require that the program be notified. The programmer or the programming
environment must then decide what to do when overflow occurs.

MIPS detects overflow with an exception, also called an interrupt on many
computers. An exception or interrupt is essentially an unscheduled procedure
call. The address of the instruction that overflowed is saved in a register, and the
computer jumps to a predefined address to invoke the appropriate routine for that
exception. The interrupted address is saved so that in some situations the program
can continue after corrective code is executed. (Section 4.9 covers exceptions in
more detail; Chapters 5 and 6 describe other situations where exceptions and
interrupts occur.)

MIPS includes a register called the exception program counter (EPC) to contain
the address of the instruction that caused the exception. The instruction move from
system control (mfcO) is used to copy EPC into a general-purpose register so that
MIPS software has the option of returning to the offending instruction via a jump
register instruction.

Arithmetic for Multimedia

Since every desktop microprocessor by definition has its own graphical displays,
as transistor budgets increased it was inevitable that support would be added for
graphics operations.

Many graphics systems originally used 8 bits to represent each of the three
primary colors plus 8 bits for a location of a pixel. The addition of speakers and
microphones for teleconferencing and video games suggested support of sound as
well. Audio samples need more than 8 bits of precision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and halfwords take up
less space when stored in memory (see Section 2.9), but due to the infrequency
of arithmetic operations on these data sizes in typical integer programs, there is
little support beyond data transfers. Architects recognized that many graphics
and audio applications would perform the same operation on vectors of this
data. By partitioning the carry chains within a 64-bit adder, a processor could
perform simultaneous operations on short vectors of eight 8-bit operands, four
16-bit operands, or two 32-bit operands. The cost of such partitioned adders was
small. These extensions have been called vector or SIMD, for single instruction,
multiple data (see Section 2.17 and Chapter 7).

One feature not generally found in general-purpose microprocessors is saturating
operations. Saturation means that when a calculation overflows, the result is set

Hardware/
Software
Interface

exception Also

called interrupt. An
unscheduled event

that disrupts program
execution; used to detect
overflow.

interrupt An exception
that comes from outside
of the processor. (Some
architectures use the
term interrupt for all
exceptions.)

228

Chapter 3 Arithmetic for Computers

to the largest positive number or most negative number, rather than a modulo
calculation as in two’s complement arithmetic. Saturation is likely what you want
for media operations. For example, the volume knob on a radio set would be
frustrating if, as you turned, it would get continuously louder for a while and then
immediately very soft. A knob with saturation would stop at the highest volume no
matter how far you turned it. Figure 3.3 shows arithmetic and logical operations
found in many multimedia extensions to modern instruction sets.

T

Unsigned add/subtract | Eight 8-bit or Four 16-bit
Saturating add/subtract | Eight 8-bit or Four 16-bit

Max/min/minimum Eight 8-bit or Four 16-bit
Average Eight 8-bit or Four 16-bit
Shift right/left Eight 8-bit or Four 16-bit

FIGURE 3.3 Summary of multimedia support for
desktop computers.

Elaboration: MIPS can trap on overflow, but unlike many other computers, there is
no conditional branch to test overflow. A sequence of MIPS instructions can discover
overflow. For signed addition, the sequence is the following (see the Elaboration on
page 104 in Chapter 2 for a description of the xor instruction):

addu $t0, $t1, $t2 # $t0 = sum, but don’t trap
xor $t3, $tl, $t2 # Check if signs differ
st $t3, $t3, $zero # $t3 =1 if signs differ
bne $t3, $zero, No_overflow # $tl1, $t2 signs =,
so no overflow

xor $t3, $t0, $tl # signs =; sign of sum match too?

$t3 negative if sum sign different
st $t3, $t3, $zero # $t3 =1 if sum sign different
bne $t3, $zero, Overflow # A1l 3 signs #; go to overflow

For unsigned addition ($t0 = $t1 + $t2), the test is

addu $t0, $tl1, $t2 # $t0 = sum
nor $t3, $tl, $zero { $t3 NOT $t1
(2°s comp - 1: 232 - $t1 - 1)
sTtu $t3, $t3, $t2 (232 - $t1 - 1) < $t2
= 232 - 1 < $t1 + $t2
bne $t3,$zero,Overflow # if(232-1<$t1+$t2) goto overflow

3.2 Addition and Subtraction

229

Summary

A major point of this section is that, independent of the representation, the finite
word size of computers means that arithmetic operations can create results that
are too large to fit in this fixed word size. It’s easy to detect overflow in unsigned
numbers, although these are almost always ignored because programs don’t want to
detect overflow for address arithmetic, the most common use of natural numbers.
Two’s complement presents a greater challenge, yet some software systems require
detection of overflow, so today all computers have a way to detect it.

The rising popularity of multimedia applications led to arithmetic instructions
that support narrower operations that can easily operate in parallel.

Some programming languages allow two’s complement integer arithmetic on
variables declared byte and half. What MIPS instructions would be used?

1. Load with 1bu, Thu; arithmetic with add, sub, mult, div; then store using
sb, sh.

2. Load with 1b, 1h; arithmetic with add, sub, mult, div; then store using
sb, sh.

3. Load with 1b, Th; arithmetic with add, sub, mult, div, using AND to mask
result to 8 or 16 bits after each operation; then store using sb, sh.

Elaboration: Inthe preceding text, we said that you copy EPC into a register via mf c0 and
then return to the interrupted code via jump register. This leads to an interesting question:
since you must first transfer EPC to a register to use with jump register, how can jump
register return to the interrupted code and restore the original values of all registers? Either
you restore the old registers first, thereby destroying your return address from EPC, which
you placed in a register for use in jump register, or you restore all registers but the one with
the return address so that you can jump—meaning an exception would result in changing
that one register at any time during program execution! Neither option is satisfactory.

To rescue the hardware from this dilemma, MIPS programmers agreed to reserve
registers $k0 and $k1 for the operating system; these registers are not restored on
exceptions. Just as the MIPS compilers avoid using register $at so that the assembler
can use it as a temporary register (see Hardware/ Software Interface in Section 2.10),
compilers also abstain from using registers $k0 and $k1 to make them available for the
operating system. Exception routines place the return address in one of these registers
and then use jump register to restore the instruction address.

Elaboration: The speed of addition is increased by determining the carry in to the
high-order bits sooner. There are a variety of schemes to anticipate the carry so that
the worst-case scenario is a function of the log2 of the number of bits in the adder.
These anticipatory signals are faster because they go through fewer gates in sequence,
but it takes many more gates to anticipate the proper carry. The most popular is carry
lookahead, which Section C.6 in (@) Appendix C on the CD describes.

Check
Yourself

230

Chapter 3 Arithmetic for Computers

Multiplication is
vexation, Division is
as bad; The rule of
three doth puzzle me,
And practice drives
me mad.
Anonymous,

Elizabethan manuscript,
1570

Multiplication

Now that we have completed the explanation of addition and subtraction, we are
ready to build the more vexing operation of multiplication.

First, let’s review the multiplication of decimal numbers in longhand to remind
ourselves of the steps of multiplication and the names of the operands. For reasons
that will become clear shortly, we limit this decimal example to using only the

digits 0 and 1. Multiplying 1000,., by 1001,,,:
Multiplicand 10004,y
Multiplier X 10014,y

1000
0000
0000
1000
Product 10010004,

The first operand is called the multiplicand and the second the multiplier.
The final result is called the product. As you may recall, the algorithm learned in
grammar school is to take the digits of the multiplier one at a time from right to
left, multiplying the multiplicand by the single digit of the multiplier, and shifting
the intermediate product one digit to the left of the earlier intermediate products.

The first observation is that the number of digits in the product is considerably
larger than the number in either the multiplicand or the multiplier. In fact, if we
ignore the sign bits, the length of the multiplication of an n-bit multiplicand and
an m-bit multiplier is a product that is n 4+ m bits long. That is, n + m bits are
required to represent all possible products. Hence, like add, multiply must cope with
overflow because we frequently want a 32-bit product as the result of multiplying
two 32-bit numbers.

In this example, we restricted the decimal digits to 0 and 1. With only two
choices, each step of the multiplication is simple:

1. Just place a copy of the multiplicand (1 X multiplicand) in the proper place
if the multiplier digitisa 1, or

2. Place 0 (0 x multiplicand) in the proper place if the digit is 0.

Although the decimal example above happens to use only 0 and 1, multiplication
of binary numbers must always use 0 and 1, and thus always offers only these two
choices.

3.3 Multiplication

231

Now that we have reviewed the basics of multiplication, the traditional next
step is to provide the highly optimized multiply hardware. We break with tradition
in the belief that you will gain a better understanding by seeing the evolution of
the multiply hardware and algorithm through multiple generations. For now, let’s
assume that we are multiplying only positive numbers.

Sequential Version of the Multiplication Algorithm
and Hardware

This design mimics the algorithm we learned in grammar school; Figure 3.4 shows
the hardware. We have drawn the hardware so that data flows from top to bottom
to resemble more closely the paper-and-pencil method.

Let’s assume that the multiplier is in the 32-bit Multiplier register and that the
64-bit Product register is initialized to 0. From the paper-and-pencil example
above, it’s clear that we will need to move the multiplicand left one digit each step,
as it may be added to the intermediate products. Over 32 steps, a 32-bit multipli-
cand would move 32 bits to the left. Hence, we need a 64-bit Multiplicand register,
initialized with the 32-bit multiplicand in the right half and zero in the left half.
This register is then shifted left 1 bit each step to align the multiplicand with the
sum being accumulated in the 64-bit Product register.

e S
Multiplicand
Shift left |

64 bits

. Multiplier
64-bit ALU Shift right [«
32 bits
Product) Control test
Write
64 bits

FIGURE 3.4 First version of the multiplication hardware. The Multiplicand register, ALU, and
Product register are all 64 bits wide, with only the Multiplier register containing 32 bits. (@ Appendix C
describes ALUs.) The 32-bit multiplicand starts in the right half of the Multiplicand register and is shifted
left 1 bit on each step. The multiplier is shifted in the opposite direction at each step. The algorithm starts
with the product initialized to 0. Control decides when to shift the Multiplicand and Multiplier registers and
when to write new values into the Product register.

Figure 3.5 shows the three basic steps needed for each bit. The least significant
bit of the multiplier (Multiplier0) determines whether the multiplicand is added to

232

Chapter 3 Arithmetic for Computers

the Product register. The left shift in step 2 has the effect of moving the intermediate
operands to the left, just as when multiplying with paper and pencil. The shift
right in step 3 gives us the next bit of the multiplier to examine in the following
iteration. These three steps are repeated 32 times to obtain the product. If each step
took a clock cycle, this algorithm would require almost 100 clock cycles to multiply

{ Start)

<
%

\

Multiplier0 = 1 1. Test

MultiplierO

Multiplier0 = 0

\

1a. Add multiplicand to product and
place the result in Product register

Y Y
2. Shift the Multiplicand register left 1 bit

Y
3. Shift the Multiplier register right 1 bit

:

No: < 32 repetitions

32nd repetition?

Yes: 32 repetitions

FIGURE 3.5 The first multiplication algorithm, using the hardware shown in Figure 3.4. If the
least significant bit of the multiplier is 1, add the multiplicand to the product. If not, go to the next step. Shift
the multiplicand left and the multiplier right in the next two steps. These three steps are repeated 32 times.

3.3 Multiplication

233

two 32-bit numbers. The relative importance of arithmetic operations like multiply
varies with the program, but addition and subtraction may be anywhere from 5 to
100 times more popular than multiply. Accordingly, in many applications, multiply
can take multiple clock cycles without significantly affecting performance. Yet
Amdahl’s law (see Section 1.8) reminds us that even a moderate frequency for a
slow operation can limit performance.

This algorithm and hardware are easily refined to take 1 clock cycle per step.
The speed-up comes from performing the operations in parallel: the multiplier
and multiplicand are shifted while the multiplicand is added to the product if the
multiplier bit is a 1. The hardware just has to ensure that it tests the right bit of
the multiplier and gets the preshifted version of the multiplicand. The hardware is
usually further optimized to halve the width of the adder and registers by noticing
where there are unused portions of registers and adders. Figure 3.6 shows the
revised hardware.

Replacing arithmetic by shifts can also occur when multiplying by constants. Some
compilers replace multiplies by short constants with a series of shifts and adds.
Because one bit to the left represents a number twice as large in base 2, shifting
the bits left has the same effect as multiplying by a power of 2. As mentioned in
Chapter 2, almost every compiler will perform the strength reduction optimization
of substituting a left shift for a multiply by a power of 2.

Multiplicand
32 bits

Y Y

\/ /
32-bit ALU -

\ —>

Product Shift rlght
Write

64 bits

FIGURE 3.6 Refined version of the multiplication hardware. Compare with the first version in
Figure 3.4. The Multiplicand register, ALU, and Multiplier register are all 32 bits wide, with only the Product
register left at 64 bits. Now the product is shifted right. The separate Multiplier register also disappeared. The
multiplier is placed instead in the right half of the Product register. These changes are highlighted in color.
(The Product register should really be 65 bits to hold the carry out of the adder, but it’s shown here as 64 bits
to highlight the evolution from Figure 3.4.)

Hardware/
Software
Interface

234

Chapter 3 Arithmetic for Computers

A Multiply Algorithm

Using 4-bit numbers to save space, multiply 2., X 3o, Or 0010, X 0011

ten two two*

Figure 3.7 shows the value of each register for each of the steps labeled
according to Figure 3.5, with the final value of 0000 0110,,,, or 6,.,. Color is
used to indicate the register values that change on that step, and the bit circled
is the one examined to determine the operation of the next step.

Signed Multiplication

So far, we have dealt with positive numbers. The easiest way to understand how
to deal with signed numbers is to first convert the multiplier and multiplicand to
positive numbers and then remember the original signs. The algorithms should
then be run for 31 iterations, leaving the signs out of the calculation. As we learned
in grammar school, we need negate the product only if the original signs disagree.

It turns out that the last algorithm will work for signed numbers, provided that
we remember that we are dealing with numbers that have infinite digits, and we are
only representing them with 32 bits. Hence, the shifting steps would need to extend
the sign of the product for signed numbers. When the algorithm completes, the
lower word would have the 32-bit product.

Initial values 0014) 0000 0010 0000 0000
1 la: 1 = Prod = Prod + Mcand 0011 0000 0010 0000 0010
2: Shift left Multiplicand 0011 0000 0100 0000 0010
3: Shift right Multiplier 0000 0000 0100 0000 0010
2 la: 1 = Prod = Prod + Mcand 0001 0000 0100 0000 0110
2: Shift left Multiplicand 0001 0000 1000 0000 0110
3: Shift right Multiplier 0000 0000 1000 0000 0110
3 1: O = No operation 0000 0000 1000 0000 0110
2: Shift left Multiplicand 0000 0001 0000 0000 0110
3: Shift right Multiplier 0000 0001 0000 0000 0110
4 1: 0 = No operation 0000 0001 0000 0000 0110
2: Shift left Multiplicand 0000 0010 0000 0000 0110
3: Shift right Multiplier 0000 0010 0000 0000 0110

FIGURE 3.7 Multiply example using algorithm in Figure 3.5. The bit examined to determine the
next step is circled in color.

3.3 Multiplication

235

Faster Multiplication

Moore’s law has provided so much more in resources that hardware designers can
now build much faster multiplication hardware. Whether the multiplicand is to be
added or not is known at the beginning of the multiplication by looking at each of
the 32 multiplier bits. Faster multiplications are possible by essentially providing
one 32-bit adder for each bit of the multiplier: one input is the multiplicand ANDed
with a multiplier bit, and the other is the output of a prior adder.

A straightforward approach would be to connect the outputs of adders on the
right to the inputs of adders on the left, making a stack of adders 32 high. An
alternative way to organize these 32 additions is in a parallel tree, as Figure 3.8
shows. Instead of waiting for 32 add times, we wait just the log, (32) or five 32-bit
add times. Figure 3.8 shows how this is a faster way to connect them.

In fact, multiply can go even faster than five add times because of the use of
carry save adders (see Section C.6 in [@ Appendix C) and because it is easy to
pipeline such a design to be able to support many multiplies simultaneously (see
Chapter 4).

Multiply in MIPS

MIPS provides a separate pair of 32-bit registers to contain the 64-bit product,
called Hi and Lo. To produce a properly signed or unsigned product, MIPS has
two instructions: multiply (mult) and multiply unsigned (multu). To fetch the
integer 32-bit product, the programmer uses move from lo (mf1o). The MIPS
assembler generates a pseudoinstruction for multiply that specifies three general-
purpose registers, generating mf 10 and mfh1i instructions to place the product into
registers.

Summary

Multiplication hardware is simply shifts and add, derived from the paper-and-
pencil method learned in grammar school. Compilers even use shift instructions
for multiplications by powers of 2.

Both MIPS multiply instructions ignore overflow, so it is up to the software to
check to see if the product is too big to fit in 32 bits. There is no overflow if Hi is
0 for multu or the replicated sign of Lo for mult. The instruction move from hi
(mfhi) can be used to transfer Hi to a general-purpose register to test for overflow.

Hardware/
Software
Interface

236

Chapter 3 Arithmetic for Computers

'

32 bits

!

1 bit - 1 bit—

Mplier31 « Mcand Mplier30 « Mcand Mplier29 « Mcand Mplier28 « Mcand Mplier3 e Mcand Mplier2 « Mcand Mplier1 e Mcand Mplier0 » Mcand
32 bits T 32 bits 32 bits
32 bits 32 bits
1bit-—~ 1 bit+
32 bits
Product47..16 . Product1 Product0

Product63 Product62

FIGURE 3.8 Fast multiplication hardware. Rather than use a single 32-bit adder 31 times, this hardware “unrolls the loop” to use 31
adders and then organizes them to minimize delay.

Divide et impera.

Latin for “Divide and
rule,” ancient political
maxim cited by
Machiavelli, 1532

Division

The reciprocal operation of multiply is divide, an operation that is even less frequent
and even more quirky. It even offers the opportunity to perform a mathematically
invalid operation: dividing by 0.

Let’s start with an example of long division using decimal numbers to recall the
names of the operands and the grammar school division algorithm. For reasons
similar to those in the previous section, we limit the decimal digits to just 0 or 1.
The example is dividing 1,001,010,.,, by 1000

ten ten:

1001 ey, Quotient

en 11001010, Dividend
—1000
10
101
1010
—1000

10

Divisor 1000

ten Remainder

3.4 Division

237

Divide’s two operands, called the dividend and divisor, and the result, called
the quotient, are accompanied by a second result, called the remainder. Here is
another way to express the relationship between the components:

Dividend = Quotient X Divisor + Remainder

where the remainder is smaller than the divisor. Infrequently, programs use the
divide instruction just to get the remainder, ignoring the quotient.

The basic grammar school division algorithm tries to see how big a number
can be subtracted, creating a digit of the quotient on each attempt. Our carefully
selected decimal example uses only the numbers 0 and 1, so it’s easy to figure out
how many times the divisor goes into the portion of the dividend: it’s either 0 times
or 1 time. Binary numbers contain only 0 or 1, so binary division is restricted to
these two choices, thereby simplifying binary division.

Let’s assume that both the dividend and the divisor are positive and hence the
quotient and the remainder are nonnegative. The division operands and both
results are 32-bit values, and we will ignore the sign for now.

A Division Algorithm and Hardware

Figure 3.9 shows hardware to mimic our grammar school algorithm. We start with
the 32-bit Quotient register set to 0. Each iteration of the algorithm needs to move
the divisor to the right one digit, so we start with the divisor placed in the left half
of the 64-bit Divisor register and shift it right 1 bit each step to align it with the
dividend. The Remainder register is initialized with the dividend.

e
Divisor
Shift right |
64 bits
Y Y S
\./ Quotient
64-bit ALU Shift left [
32 bits
y
Remainder Control
Write test
64 bits 4

FIGURE 3.9 First version of the division hardware. The Divisor register, ALU, and Remainder
register are all 64 bits wide, with only the Quotient register being 32 bits. The 32-bit divisor starts in the
left half of the Divisor register and is shifted right 1 bit each iteration. The remainder is initialized with
the dividend. Control decides when to shift the Divisor and Quotient registers and when to write the new
value into the Remainder register.

dividend A number
being divided.

divisor A number that
the dividend is divided by.

quotient The primary
result of a division;

a number that when
multiplied by the
divisor and added to the
remainder produces the
dividend.

remainder The secondary
result of a division; a
number that when added
to the product of the
quotient and the divisor
produces the dividend.

238 Chapter 3 Arithmetic for Computers

{ Start)

Y
1. Subtract the Divisor register from the
Remainder register and place the
result in the Remainder register

Remainder >0 Remainder <0

Test Remainder

Y
2a 2b. Restore the original value by adding
the Divisor register to the Remainder
register and placing the sum in the
Remainder register. Also shift the
Quotient register to the left, setting the
new least significant bit to O

\ Y
3. Shift the Divisor register right 1 bit

'

No: < 33 repetitions

33rd repetition?

Yes: 33 repetitions

FIGURE 3.10 A division algorithm, using the hardware in Figure 3.9. If the remainder is
positive, the divisor did go into the dividend, so step 2a generates a 1 in the quotient. A negative remainder
after step 1 means that the divisor did not go into the dividend, so step 2b generates a 0 in the quotient and
adds the divisor to the remainder, thereby reversing the subtraction of step 1. The final shift, in step 3, aligns
the divisor properly, relative to the dividend for the next iteration. The