
                                                                       
Video Streaming:  Concepts, Algorithms, 
and Systems 
 
John G. Apostolopoulos, Wai- tian Tan, Susie J. Wee 
Mobile and Media Systems Laboratory  
HP Laboratories Palo Alto 
HPL-2002-260 
September 18th , 2002* 
 
E-mail: [japos, dtan, swee}@hpl.hp.com 
 
 
video 
streaming, 
video 
delivery, 
streaming 
media 
content 
delivery 
networks, 
video 
coding, 
error-
resilient; 
multiple 
description 
coding 
 

Video has been an important media for communications and entertainment for many 
decades. Initially video was captured and transmitted in analog form.  The advent of digital 
integrated circuits and computers led to the digitization of video, and digital video enabled 
a revolution in the compression and communication of video. Video compression became 
an important area of research in the late 1980’s and 1990’s and enabled a variety of 
applications including video storage on DVD’s and Video-CD’s, video broadcast over 
digital cable, satellite and terrestrial (over-the-air) digital television (DTV), and video 
conferencing and videophone over circuit-switched networks. The growth and popularity 
of the Internet in the mid-1990’s motivated video communication over best-effort packet 
networks. Video over best-effort packet networks is complicated by a number of factors 
including unknown and time-varying bandwidth, delay, and losses, as well as many 
additional issues such as how to fairly share the network resources amongst many flows 
and how to efficiently perform one-to-many communication for popular content. This 
article examines the challenges that make simultaneous delivery and playback, or 
streaming, of video difficult, and explores algorithms and systems that enable streaming of 
pre-encoded or live video over packet networks such as the Internet. 
 
We continue by providing a brief overview of the diverse range of video streaming and 
communication applications. Understanding the different classes of video applications is 
important, as they provide different sets of constraints and degrees of freedom in system 
design. Section 3 reviews video compression and video compression standards. Section 4 
identifies the three fundamental challenges in video streaming: unknown and time-varying 
bandwidth, delay jitter, and loss. These fundamental problems and approaches for 
overcoming them are examined in depth in Sections 5, 6, and 7. Standardized media 
streaming protocols are described in Section 8, and additional issues in video streaming are 
highlighted in Section 9. We conclude by describing the design of emerging streaming 
media content delivery networks in Section 10. 
 

 

* Internal Accession Date Only                              Approved for External Publication 
 Copyright Hewlett-Packard Company 2002 



1 

 
1 

 
VIDEO STREAMING: CONCEPTS, ALGORITHMS, 

AND SYSTEMS 

John G. Apostolopoulos, Wai-tian Tan, Susie J. Wee 
Streaming Media Systems Group 

Hewlett-Packard Laboratories 
Palo Alto, CA, USA  

{japos,dtan,swee}@hpl.hp.com 

1. INTRODUCTION 
Video has been an important media for communications and entertainment 
for many decades.  Initially video was captured and transmitted in analog 
form.  The advent of digital integrated circuits and computers led to the 
digitization of video, and digital video enabled a revolution in the 
compression and communication of video.  Video compression became an 
important area of research in the late 1980’s and 1990’s and enabled a 
variety of applications including video storage on DVD’s and Video-CD’s, 
video broadcast over digital cable, satellite and terrestrial (over-the-air) 
digital television (DTV), and video conferencing and videophone over circuit-
switched networks.  The growth and popularity of the Internet in the mid-
1990’s motivated video communication over best-effort packet networks.  
Video over best-effort packet networks is complicated by a number of factors 
including unknown and time-varying bandwidth, delay, and losses, as well 
as many additional issues such as how to fairly share the network resources 
amongst many flows and how to efficiently perform one-to-many 
communication for popular content.  This article examines the challenges 
that make simultaneous delivery and playback, or streaming, of video 
difficult, and explores algorithms and systems that enable streaming of pre-
encoded or live video over packet networks such as the Internet.   
 
We continue by providing a brief overview of the diverse range of video 
streaming and communication applications.  Understanding the different 
classes of video applications is important, as they provide different sets of 
constraints and degrees of freedom in system design.  Section 3 reviews 
video compression and video compression standards.  Section 4 identifies the 
three fundamental challenges in video streaming: unknown and time-varying 
bandwidth, delay jitter, and loss.  These fundamental problems and 



Chapter 1 2

approaches for overcoming them are examined in depth in Sections 5, 6, and 
7.  Standardized media streaming protocols are described in Section 8, and 
additional issues in video streaming are highlighted in Section 9. We 
conclude by describing the design of emerging streaming media content 
delivery networks in Section 10. Further overview articles include [1,2,3,4,5]. 

2. OVERVIEW OF VIDEO STREAMING AND 
COMMUNICATION APPLICATIONS 

There exist a very diverse range of different video communication and 
streaming applications, which have very different operating conditions or 
properties.  For example, video communication application may be for point-
to-point communication or for multicast or broadcast communication, and 
video may be pre-encoded (stored) or may be encoded in real-time (e.g. 
interactive videophone or video conferencing).  The video channels for 
communication may also be static or dynamic, packet-switched or circuit-
switched, may support a constant or variable bit rate transmission, and may 
support some form of Quality of Service (QoS) or may only provide best effort 
support.  The specific properties of a video communication application 
strongly influence the design of the system. Therefore, we continue by briefly 
discussing some of these properties and their effects on video communication 
system design. 
 
Point-to-point, multicast, and broadcast communications 
Probably the most popular form of video communication is one-to-many 
(basically one-to-all) communication or broadcast communication, where the 
most well known example is broadcast television. Broadcast is a very efficient 
form of communication for popular content, as it can often efficiently deliver 
popular content to all receivers at the same time.  An important aspect of 
broadcast communications is that the system must be designed to provide 
every intended recipient with the required signal.  This is an important issue, 
since different recipients may experience different channel characteristics, 
and as a result the system is often designed for the worst-case channel.  An 
example of this is digital television broadcast where the source coding and 
channel coding were designed to provide adequate reception to receivers at 
the fringe of the required reception area, thereby sacrificing some quality to 
those receivers in areas with higher quality reception (e.g. in the center of 
the city).  An important characteristic of broadcast communication is that, 
due to the large number of receivers involved, feedback from receiver to 
sender is generally infeasible – limiting the system’s ability to adapt. 
 
Another common form of communication is point-to-point or one-to-one 
communication, e.g. videophone and unicast video streaming over the 
Internet.  In point-to-point communications, an important property is 
whether or not there is a back channel between the receiver and sender.  If a 
back channel exists, the receiver can provide feedback to the sender which 
the sender can then use to adapt its processing.  On the other hand, without 
a back channel the sender has limited knowledge about the channel. 
 
Another form of communication with properties that lie between point-to-
point and broadcast is multicast.  Multicast is a one-to-many 
communication, but it is not one-to-all as in broadcast.  An example of 
multicast is IP-Multicast over the Internet.  However, as discussed later, IP 



Video Streaming: Concepts, Algorithms, and Systems 3

Multicast is currently not widely available in the Internet, and other 
approaches are being developed to provide multicast capability, e.g. 
application-layer multicast via overlay networks. To communicate to multiple 
receivers, multicast is more efficient than multiple unicast connections (i.e. 
one dedicated unicast connection to each client), and overall multicast 
provides many of the same advantages and disadvantages as broadcast. 
 
Real-time encoding versus pre-encoded (stored) video 
Video may be captured and encoded for real-time communication, or it may 
be pre-encoded and stored for later viewing.  Interactive applications are one 
example of applications which require real-time encoding, e.g. videophone, 
video conferencing, or interactive games.  However real-time encoding may 
also be required in applications that are not interactive, e.g. the live 
broadcast of a sporting event. 
 
In many applications video content is pre-encoded and stored for later 
viewing.  The video may be stored locally or remotely.  Examples of local 
storage include DVD and Video CD, and examples of remote storage include 
video-on-demand (VOD), and video streaming over the Internet (e.g. as 
provided by RealNetworks and Microsoft).  Pre-encoded video has the 
advantage that it does not require a real-time encoding constraint. This can 
enable more efficient encoding such as the multi-pass encoding that is 
typically performed for DVD content.  On the other hand, it provides limited 
flexibility as, for example, the pre-encoded video can not be significantly 
adapted to channels that support different bit rates or to clients that support 
different display capabilities than that used in the original encoding. 
 
Interactive versus Non-interactive Applications 
Interactive applications such as videophone or interactive games have a real-
time constraint.  Specifically the information has a time-bounded usefulness, 
and if the information arrives, but is late, it is useless.  This is equivalent to 
a maximum acceptable end-to-end latency on the transmitted information, 
where by end-to-end we mean: capture, encode, transmission, receive, 
decode, display.  The maximum acceptable latency depends on the 
application, but often is on the order of 150 ms.  Non-interactive applications 
have looser latency constraints, for example many seconds or potentially 
even minutes.  Examples of non-interactive applications include multicast of 
popular events or multicast of a lecture; these applications require timely 
delivery, but have a much looser latency constraint.  Note that interactive 
applications require real-time encoding, and non-interactive applications 
may also require real-time encoding, however the end-to-end latency for non-
interactive applications is much looser, and this has a dramatic effect on the 
design of video communication systems. 
 
Static versus Dynamic Channels 
Video communication system design varies significantly if the characteristics 
of the communication channel, such as bandwidth, delay, and loss, are 
static or dynamic (time-varying).  Examples of static channels include ISDN 
(which provides a fixed bit rate and delay, and a very low loss rate) and video 
storage on a DVD.  Examples of dynamic channels include communication 
over wireless channels or over the Internet.  Video communication over a 
dynamic channel is much more difficult than over a static channel.  



Chapter 1 4

Furthermore, many of the challenges of video streaming, as are discussed 
later in this article, relate to the dynamic attributes of the channels. 
 
Constant-bit-rate (CBR) or Variable-bit-rate (VBR) Channel 
Some channels support CBR, for example ISDN or DTV, and some channels 
support VBR, for example DVD storage and communication over shared 
packet networks.  On the other hand, a video sequence typically has time-
varying complexity.  Therefore coding a video to achieve a constant visual 
quality requires a variable bit rate, and coding for a constant bit rate would 
produce time-varying quality.  Clearly, it is very important to match the video 
bit rate to what the channel can support.  To achieve this a buffer is typically 
used to couple the video encoder to the channel, and a buffer control 
mechanism provides feedback based on the buffer fullness to regulate the 
coarseness/fineness of the quantization and thereby the video bit rate. 
 
Packet-Switched or Circuit-Switched Network 
A key network attribute that affects the design of media streaming systems is 
whether they are packet-switched or circuit-switched.  Packet-switched 
networks, such as Ethernet LANs and the Internet, are shared networks 
where the individual packets of data may exhibit variable delay, may arrive 
out of order, or may be completely lost.  Alternatively, circuit-switched 
networks, such as the public switched telephone network (PSTN) or ISDN, 
reserve resources and the data has a fixed delay, arrives in order, however 
the data may still be corrupted by bit errors or burst errors. 
 
Quality of Service (QoS) Support 
An important area of network research over the past two decades has been 
QoS support.  QoS is a vague, and all-encompassing term, which is used to 
convey that the network provides some type of preferential delivery service or 
performance guarantees, e.g. guarantees on throughput, maximum loss 
rates or delay.  Network QoS support can greatly facilitate video 
communication, as it can enable a number of capabilities including 
provisioning for video data, prioritizing delay-sensitive video data relative to 
other forms of data traffic, and also prioritize among the different forms of 
video data that must be communicated.  Unfortunately, QoS is currently not 
widely supported in packet-switched networks such as the Internet.  
However, circuit-switched networks such as the PSTN or ISDN do provide 
various guarantees on delay, bandwidth, and loss rate.  The current Internet 
does not provide any QoS support, and it is often referred to as Best Effort 
(BE), since the basic function is to provide simple network connectivity by 
best effort (without any guarantees) packet delivery .    Different forms of 
network QoS that are under consideration for the Internet include 
Differentiated Services (DiffServ) and Integrated Services (IntServ), and these 
will be discussed further later in this writeup. 

3. REVIEW OF VIDEO COMPRESSION 
This section provides a very brief overview of video compression and video 
compression standards.  The limited space precludes a detailed discussion, 
however we highlight some of the important principles and practices of 
current and emerging video compression algorithms and standards that are 
especially relevant for video communication and video streaming.  An 
important motivation for this discussion is that both the standards 
(H.261/3/4, MPEG-1/2/4) and the most popular proprietary solutions (e.g. 



Video Streaming: Concepts, Algorithms, and Systems 5

RealNetworks [6] and Microsoft Windows Media [7]) are based on the same 
basic principles and practices, and therefore by understanding them one can 
gain a basic understanding for both standard and proprietary video 
streaming systems.  Another goal of this section is to describe what are the 
different video compression standards, what do these standards actual 
specify, and which standards are most relevant for video streaming.  

3.1 BRIEF OVERVIEW OF VIDEO COMPRESSION 

Video compression is achieved by exploiting the similarities or redundancies 
that exists in a typical video signal.  For example, consecutive frames in a 
video sequence exhibit temporal redundancy since they typically contain the 
same objects, perhaps undergoing some movement between frames.  Within 
a single frame there is spatial redundancy as the amplitudes of nearby pixels 
are often correlated.  Similarly, the Red, Green, and Blue color components 
of a given pixel are often correlated.  Another goal of video compression is to 
reduce the irrelevancy in the video signal, that is to only code video features 
that are perceptually important and not to waste valuable bits on 
information that is not perceptually important or irrelevant.  Identifying and 
reducing the redundancy in a video signal is relatively straightforward, 
however identifying what is perceptually relevant and what is not is very 
difficult and therefore irrelevancy is difficult to exploit.     
 
To begin, we consider image compression, such as the JPEG standard, which 
is designed to exploit the spatial and color redundancy that exists in a single 
still image.  Neighboring pixels in an image are often highly similar, and 
natural images often have most of their energies concentrated in the low 
frequencies.  JPEG exploits these features by partitioning an image into 8x8 
pixel blocks and computing the 2-D Discrete Cosine Transform (DCT) for 
each block.  The motivation for splitting an image into small blocks is that 
the pixels within a small block are generally more similar to each other than 
the pixels within a larger block.  The DCT compacts most of the signal energy 
in the block into only a small fraction of the DCT coefficients, where this 
small fraction of the coefficients are sufficient to reconstruct an accurate 
version of the image.  Each 8x8 block of DCT coefficients is then quantized 
and processed using a number of techniques known as zigzag scanning, run-
length coding, and Huffman coding to produce a compressed bitstream [8].  
In the case of a color image, a color space conversion is first applied to 
convert the RGB image into a luminance/chrominance color space where the 
different human visual perception for the luminance (intensity) and 
chrominance characteristics of the image can be better exploited. 
 
A video sequence consists of a sequence of video frames or images.  Each 
frame may be coded as a separate image, for example by independently 
applying JPEG-like coding to each frame.  However, since neighboring video 
frames are typically very similar much higher compression can be achieved 
by exploiting the similarity between frames.  Currently, the most effective 
approach to exploit the similarity between frames is by coding a given frame 
by (1) first predicting it based on a previously coded frame, and then (2) 
coding the error in this prediction. Consecutive video frames typically 
contain the same imagery, however possibly at different spatial locations 
because of motion.  Therefore, to improve the predictability it is important to 
estimate the motion between the frames and then to form an appropriate 
prediction that compensates for the motion.  The process of estimating the 



Chapter 1 6

motion between frames is known as motion estimation (ME), and the process 
of forming a prediction while compensating for the relative motion between 
two frames is referred to as motion-compensated prediction (MC-P).  Block-
based ME and MC-prediction is currently the most popular form of ME and 
MC-prediction: the current frame to be coded is partitioned into 16x16-pixel 
blocks, and for each block a prediction is formed by finding the best-
matching block in the previously coded reference frame.  The relative motion 
for the best-matching block is referred to as the motion vector. 
 
There are three basic common types of coded frames: (1) intra-coded frames, 
or I-frames, where the frames are coded independently of all other frames,  
(2) predictively coded, or P-frames, where the frame is coded based on a 
previously coded frame, and (3) bi-directionally predicted frames, or B-
frames, where the frame is coded using both previous and future coded 
frames.  Figure 1 illustrates the different coded frames and prediction 
dependencies for an example MPEG Group of Pictures (GOP).  The selection 
of prediction dependencies between frames can have a significant effect on 
video streaming performance, e.g. in terms of compression efficiency and 
error resilience. 
 
Current video compression standards achieve compression by applying the 
same basic principles [9, 10]. The temporal redundancy is exploited by 
applying MC-prediction, the spatial redundancy is exploited by applying the 
DCT, and the color space redundancy is exploited by a color space 
conversion.  The resulting DCT coefficients are quantized, and the nonzero 
quantized DCT coefficients are runlength and Huffman coded to produce the 
compressed bitstream. 

3.2 VIDEO COMPRESSION STANDARDS 

Video compression standards provide a number of benefits, foremost of 
which is ensuring interoperability, or communication between encoders and 
decoders made by different people or different companies.  In this way 
standards lower the risk for both consumer and manufacturer, and this can 
lead to quicker acceptance and widespread use.  In addition, these standards 
are designed for a large variety of applications, and the resulting economies 
of scale lead to reduced cost and further widespread use. 
 

PI B B PB B IB B

MPEG GOP

0 1 2 3 4 5 6 7 8 9PI B B PB B IB B

MPEG GOP

0 1 2 3 4 5 6 7 8 9

 
Figure 1: Example of the prediction dependencies between frames.  



Video Streaming: Concepts, Algorithms, and Systems 7

Currently there are two families of video compression standards, performed 
under the auspices of the International Telecommunications Union-
Telecommunications (ITU-T, formerly the International Telegraph and 
Telephone Consultative Committee, CCITT) and the International 
Organization for Standardization (ISO).  The first video compression standard 
to gain widespread acceptance was the ITU H.261 [11], which was designed 
for videoconferencing over the integrated services digital network (ISDN).  
H.261 was adopted as a standard in 1990.  It was designed to operate at p = 
1,2, ..., 30 multiples of the baseline ISDN data rate, or p x 64 kb/s.  In 1993, 
the ITU-T initiated a standardization effort with the primary goal of 
videotelephony over the public switched telephone network (PSTN) 
(conventional analog telephone lines), where the total available data rate is 
only about 33.6 kb/s.  The video compression portion of the standard is 
H.263 and its first phase was adopted in 1996 [12].  An enhanced H.263, 
H.263 Version 2 (V2), was finalized in 1997, and a completely new algorithm, 
originally referred to as H.26L, is currently being finalized as H.264/AVC. 
 
The Moving Pictures Expert Group (MPEG) was established by the ISO in 
1988 to develop a standard for compressing moving pictures (video) and 
associated audio on digital storage media (CD-ROM).  The resulting standard, 
commonly known as MPEG-1, was finalized in 1991 and achieves 
approximately VHS quality video and audio at about 1.5 Mb/s [13].  A 
second phase of their work, commonly known as MPEG-2, was an extension 
of MPEG-1 developed for application toward digital television and for higher 
bit rates [14].  A third standard, to be called MPEG-3, was originally 
envisioned for higher bit rate applications such as HDTV, but it was 
recognized that those applications could also be addressed within the context 
of MPEG-2; hence those goals were wrapped into MPEG-2 (consequently, 
there is no MPEG-3 standard).  Currently, the video portion of digital 
television (DTV) and high definition television (HDTV) standards for large 
portions of North America, Europe, and Asia is based on MPEG-2.  A third 
phase of work, known as MPEG-4, was designed to provide improved 
compression efficiency and error resilience features, as well as increased 
functionality, including object-based processing, integration of both natural 
and synthetic (computer generated) content, content-based interactivity [15].  
 

Table 1.  Current and emerging video compression standards. 

Video Coding 
Standard 

Primary Intended Applications Bit Rate 

H.261 Video telephony and teleconferencing 
over ISDN 

p x 64 kb/s 

MPEG-1 Video on digital storage media (CD-
ROM) 

1.5 Mb/s 

MPEG-2 Digital Television 2-20 Mb/s 
H.263 Video telephony over PSTN 33.6 kb/s 

and up  
MPEG-4 Object-based coding, synthetic content, 

interactivity, video streaming 
Variable 

H.264/MPEG-4 
Part 10 (AVC) 

Improved video compression 10’s to 100’s 
of kb/s 

 



Chapter 1 8

The H.26L standard is being finalized by the Joint Video Team, from both 
ITU and ISO MPEG.  It achieves a significant improvement in compression 
over all prior video coding standards, and it will be adopted by both ITU and 
ISO and called H.264 and MPEG-4 Part 10, Advanced Video Coding (AVC).   
 
Currently, the video compression standards that are primarily used for video 
communication and video streaming are H.263 V2, MPEG-4, and the 
emerging H.264/MPEG-4 Part 10 AVC will probably gain wide acceptance. 
 
What Do The Standards Specify? 
An important question is what is the scope of the video compression 
standards, or what do the standards actually specify.  A video compression 
system is composed of an encoder and a decoder with a common 
interpretation for compressed bit-streams.  The encoder takes original video 
and compresses it to a bitstream, which is passed to the decoder to produce 
the reconstructed video.  One possibility is that the standard would specify 
both the encoder and decoder.  However this approach turns out to be overly 
restrictive.  Instead, the standards have a limited scope to ensure 
interoperability while enabling as much differentiation as possible. 
 
The standards do not specify the encoder nor the decoder.  Instead they 
specify the bitstream syntax and the decoding process.  The bitstream syntax 
is the format for representing the compressed data.  The decoding process is 
the set of rules for interpreting the bitstream.  Note that specifying the 
decoding process is different from specifying a specific decoder 
implementation.  For example, the standard may specify that the decoder 
use an IDCT, but not how to implement the IDCT.  The IDCT may be 
implemented in a direct form, or using a fast algorithm similar to the FFT, or 
using MMX instructions.  The specific implementation is not standardized 
and this allows different designers and manufacturers to provide standard-
compatible enhancements and thereby differentiate their work. 
 
The encoder process is deliberately not standardized. For example, more 
sophisticated encoders can be designed that provide improved performance 
over baseline low-complexity encoders. In addition, improvements can be 
incorporated even after a standard is finalized, e.g. improved algorithms for 
motion estimation or bit allocation may be incorporated in a standard-
compatible manner. The only constraint is that the encoder produces a 
syntactically correct bitstream that can be properly decoded by a standard-
compatible decoder. 
 
Limiting the scope of standardization to the bitstream syntax and decoding 
process enables improved encoding and decoding strategies to be employed 
in a standard-compatible manner - thereby ensuring interoperability while 
enabling manufacturers to differentiate themselves.  As a result, it is 
important to remember that “not all encoders are created equal”, even if they 
correspond to the same standard.   
 

4. CHALLENGES IN VIDEO STREAMING 
This section discusses some of the basic approaches and key challenges in 
video streaming.   The three fundamental problems in video streaming are 
briefly highlighted and are examined in depth in the following three sections. 



Video Streaming: Concepts, Algorithms, and Systems 9

 
Video Delivery via File Download 
Probably the most straightforward approach for video delivery of the Internet 
is by something similar to a file download, but we refer to it as video 
download to keep in mind that it is a video and not a generic file.  
Specifically, video download is similar to a file download, but it is a LARGE 
file.  This approach allows the use of established delivery mechanisms, for 
example TCP as the transport layer or FTP or HTTP at the higher layers.  
However, it has a number of disadvantages.  Since videos generally 
correspond to very large files, the download approach usually requires long 
download times and large storage spaces.  These are important practical 
constraints.  In addition, the entire video must be downloaded before viewing 
can begin.  This requires patience on the viewers part and also reduces 
flexibility in certain circumstances, e.g. if the viewer is unsure of whether 
he/she wants to view the video, he/she must still download the entire video 
before viewing it and making a decision. 
 
Video Delivery via Streaming 
Video delivery by video streaming attempts to overcome the problems 
associated with file download, and also provides a significant amount of 
additional capabilities.   The basic idea of video streaming is to split the video 
into parts, transmit these parts in succession, and enable the receiver to 
decode and playback the video as these parts are received, without having to 
wait for the entire video to be delivered.  Video streaming can conceptually be 
thought to consist of the follow steps: 

1) Partition the compressed video into packets 
2) Start delivery of these packets 
3) Begin decoding and playback at the receiver while the video is still 

being delivered 
Video streaming enables simultaneous delivery and playback of the video.  
This is in contrast to file download where the entire video must be delivered 
before playback can begin.  In video streaming there usually is a short delay 
(usually on the order of 5-15 seconds) between the start of delivery and the 
beginning of playback at the client. This delay, referred to as the pre-roll 
delay, provides a number of benefits which are discussed in Section 6.   
 
Video streaming provides a number of benefits including low delay before 
viewing starts and low storage requirements since only a small portion of the 
video is stored at the client at any point in time. The length of the delay is 
given by the time duration of the pre-roll buffer, and the required storage is 
approximately given by the amount of data in the pre-roll buffer.    
 
Expressing Video Streaming as a Sequence of Constraints 
A significant amount of insight can be obtained by expressing the problem of 
video streaming as a sequence of constraints.   Consider the time interval 
between displayed frames to be denoted by ∆, e.g. ∆ is 33 ms for 30 frames/s 
video and 100 ms for 10 frames/s video.  Each frame must be delivered and 
decoded by its playback time, therefore the sequence of frames has an 
associated sequence of deliver/decode/display deadlines:   

o Frame N must be delivered and decoded by time TN 
o Frame N+1 must be delivered and decoded by time TN + ∆ 
o Frame N+2 must be delivered and decoded by time TN + 2∆ 
o Etc. 



Chapter 1 10

Any data that is lost in transmission cannot be used at the receiver. 
Furthermore, any data that arrives late is also useless.  Specifically, any data 
that arrives after its decoding and display deadline is too late to be displayed.  
(Note that certain data may still be useful even if it arrives after its display 
time, for example if subsequent data depends on this “late” data.)  Therefore, 
an important goal of video streaming is to perform the streaming in a 
manner so that this sequence of constraints is met. 

4.1 Basic Problems in Video Streaming 

There are a number of basic problems that afflict video streaming.  In the 
following discussion, we focus on the case of video streaming over the 
Internet since it is an important, concrete example that helps to illustrate 
these problems.  Video streaming over the Internet is difficult because the 
Internet only offers best effort service.  That is, it provides no guarantees on 
bandwidth, delay jitter, or loss rate.  Specifically, these characteristics are 
unknown and dynamic.  Therefore, a key goal of video streaming is to design 
a system to reliably deliver high-quality video over the Internet when dealing 
with unknown and dynamic: 

o Bandwidth  
o Delay jitter 
o Loss rate 

The bandwidth available between two points in the Internet is generally 
unknown and time-varying. If the sender transmits faster than the available 
bandwidth then congestion occurs, packets are lost, and there is a severe 
drop in video quality.  If the sender transmits slower than the available 
bandwidth then the receiver produces sub-optimal video quality.  The goal to 
overcome the bandwidth problem is to estimate the available bandwidth and 
than match the transmitted video bit rate to the available bandwidth.  
Additional considerations that make the bandwidth problem very challenging 
include accurately estimating the available bandwidth, matching the pre-
encoded video to the estimated channel bandwidth, transmitting at a rate 
that is fair to other concurrent flows in the Internet, and solving this 
problem in a multicast situation where a single sender streams data to 
multiple receivers where each may have a different available bandwidth. 
 
The end-to-end delay that a packet experiences may fluctuate from packet to 
packet.  This variation in end-to-end delay is referred to as the delay jitter.  
Delay jitter is a problem because the receiver must receive/decode/display 
frames at a constant rate, and any late frames resulting from the delay jitter 
can produce problems in the reconstructed video, e.g. jerks in the video.  
This problem is typically addressed by including a playout buffer at the 
receiver.  While the playout buffer can compensate for the delay jitter, it also 
introduces additional delay. 
 
The third fundamental problem is losses.  A number of different types of 
losses may occur, depending on the particular network under consideration.  
For example, wired packet networks such as the Internet are afflicted by 
packet loss, where an entire packet is erased (lost).  On the other hand, 
wireless channels are typically afflicted by bit errors or burst errors.  Losses 
can have a very destructive effect on the reconstructed video quality.  To 
combat the effect of losses, a video streaming system is designed with error 
control.  Approaches for error control can be roughly grouped into four 



Video Streaming: Concepts, Algorithms, and Systems 11

classes: (1) forward error correction (FEC), (2) retransmissions, (3) error 
concealment, and (4) error-resilient video coding.   
 
The three fundamental problems of unknown and dynamic bandwidth, delay 
jitter, and loss, are considered in more depth in the following three sections.  
Each section focuses on one of these problems and discusses various 
approaches for overcoming it. 

5. TRANSPORT AND RATE CONTROL FOR OVERCOMING 
TIME-VARYING BANDWIDTHS 

This section begins by discussing the need for streaming media systems to 
adaptively control its transmission rate according to prevalent network 
condition.  We then discuss some ways in which appropriate transmission 
rates can be estimated dynamically at the time of streaming, and survey how 
media coding has evolved to support such dynamic changes in transmission 
rates. 

5.1  The Need for Rate Control 

Congestion is a common phenomenon in communication networks that 
occurs when the offered load exceeds the designed limit, causing degradation 
in network performance such as throughput.  Useful throughput can 
decrease for a number of reasons.  For example, it can be caused by 
collisions in multiple access networks, or by increased number of 
retransmissions in systems employing such technology.   Besides a decrease 
in useful throughput, other symptoms of congestion in packet networks may 
include packet losses, higher delay and delay jitter.  As we have discussed in 
Section 4, such symptoms represent significant challenges to streaming 
media systems.  In particular, packet losses are notoriously difficult to 
handle, and is the subject of the Section 7.  
 
To avoid the undesirable symptoms of congestion, control procedures are 
often employed to limit the amount of network load.  Such control 
procedures are called rate control, sometimes also known as congestion 
control. It should be noted that different network technologies may 
implement rate control in different levels, such as hop-to-hop level or 
network level [16].  Nevertheless, for inter-networks involving multiple 
networking technologies, it is common to rely on rate control performed by 
the end-hosts.  The rest of this section examines rate control mechanisms 
performed by the sources or sinks of streaming media sessions. 

5.2  Rate Control for Streaming Media 

For environments like the Internet where little can be assumed about the 
network topology and load, determining an appropriate transmission rate 
can be difficult.  Nevertheless, the rate control mechanism implemented in 
the Transmission Control Protocol (TCP) has been empirically proven to be 
sufficient in most cases.  Being the dominant traffic type in the Internet, TCP 
is the workhorse in the delivery of web-pages, emails, and some streaming 
media.  Rate control in TCP is based on a simple “Additive Increase 
Multiplicative Decrease” (AIMD) rule [17].  Specifically, end-to-end 
observations are used to infer packet losses or congestion.  When no 
congestion is inferred, packet transmission is increased at a constant rate 



Chapter 1 12

(additive increase).  Conversely, when congestion is inferred, packet 
transmission rate is halved (multiplicative decrease). 
 
Streaming Media over TCP 
Given the success and ubiquity of TCP, it may seem natural to employ TCP 
for streaming media.  There are indeed a number of important advantages of 
using TCP.  First, TCP rate control has empirically proven stability and 
scalability.  Second, TCP provides guaranteed delivery, effectively eliminating 
the much dreaded packet losses.  Therefore, it may come as a surprise to 
realize that streaming media today are often carried using TCP only as a last 
resort, e.g., to get around firewalls.  Practical difficulties with using TCP for 
streaming media include the following.  First, delivery guarantee of TCP is 
accomplished through persistent retransmission with potentially increasing 
wait time between consecutive retransmissions, giving rise to potentially very 
long delivery time.  Second, the “Additive Increase Multiplicative Decrease” 
rule gives rise to a widely varying instantaneous throughput profile in the 
form of a saw-tooth pattern not suitable for streaming media transport. 
 
Streaming Media over Rate-controlled UDP 
We have seen that both the retransmission and the rate control mechanisms 
of TCP possess characteristics that are not suitable for streaming media.  
Current streaming systems for the Internet rely instead on the best-effort 
delivery service in the form of User Datagram Protocol (UDP).  This allows 
more flexibility both in terms of error control and rate control.  For instance, 
instead of relying on retransmissions alone, other error control techniques 
can be incorporated or substituted.   For rate control, the departure from the 
AIMD algorithm of TCP is a mixed blessing: it promises the end of wildly 
varying instantaneous throughput, but also the proven TCP stability and 
scalability. 
 
Recently, it has been observed that the average throughput of TCP can be 
inferred from end-to-end measurements of observed quantities such as 
round-trip-time and packet losses [18,19].  Such observation gives rise to 
TCP-friendly rate control that attempts to mimic TCP throughput on a 
macroscopic scale and without the instantaneous fluctuations of TCP’s AIMD 
algorithm [20,21].  One often cited importance of TCP-friendly rate control is 
its ability to coexist with other TCP-based applications.  Another benefit 
though, is more predictable stability and scalability properties compared to 
an arbitrary rate control algorithm.  Nevertheless, by attempting to mimic 
average TCP throughput under the same network conditions, TCP friendly 
rate control also inherits characteristics that may not be natural for 
streaming media.  One example is the dependence of transmission rate on 
packet round-trip time. 
 
Other Special Cases 
Some media streaming systems do not perform rate control.  Instead, media 
content is transmitted without regard to the prevalent network condition.  
This can happen in scenarios where an appropriate transmission rate is 
itself difficult to define, e.g., one-to-many communication where an identical 
stream is transmitted to all recipients via channels of different levels of 
congestion.  Another possible reason is the lack of a feedback channel. 
 



Video Streaming: Concepts, Algorithms, and Systems 13

Until now we have only considered rate control mechanisms that are 
implemented at the sender, now we consider an example where rate control 
is performed at the receiver.  In the last decade, a scheme known as layered 
multicast has been proposed as a possible way to achieve rate control in 
Internet multicast of streaming media.  Specifically, a scalable or layered 
compression scheme is assumed that produces multiple layers of 
compressed media, with a base layer that offers low but usable quality, and 
each additional layer provides further refinement to the quality.  Each 
receiver can then individually decide how many layers to receive [22].  In 
other words, rate control is performed at the receiving end instead of the 
transmitting end.  Multicast rate control is still an area of active research. 

5.3  Meeting Transmission Bandwidth Constraints 

The incorporation of rate control introduces additional complexity in 
streaming media system.  Since transmission rate is dictated by channel 
conditions, problems may arise if the determined transmission rate is lower 
than the media bit rate.  Client buffering helps to a certain degree to 
overcome occasional short-term drops in transmission rate.  Nevertheless, it 
is not possible to stream a long 200 kbps stream through a 100 kbps 
channel, and the media bit rate needs to be modified to conform with the 
transmission constraints. 
 
Transcoding 
A direct method to modify the media bit rate is recompression, whereby the 
media is decoded and then re-encoded to the desired bit rate.  There are two 
drawbacks with this approach.  First, the media resulted from recompression 
is generally of lower quality than if the media was coded directly from the 
original source to the same bit rate.  Second, media encoding generally 
requires extensive computation, making the approach prohibitively 
expensive.   The complexity problem is solved by a technique known as 
compressed-domain transcoding.  The basic idea is to selectively re-use 
compression decisions already made in the compressed media to reduce 
computation.  Important transcoding operations include bit rate reduction, 
spatial downsampling, frame rate reduction, and changing compression 
formats [23].  
 
Multiple File Switching 
Another commonly used technique is multi-rate switching whereby multiple 
copies of the same content at different bit-rates are made available.  Early 
implementations of streaming media systems coded the same content at a 
few strategic media rates targeted for common connection speeds (e.g. one 
for dialup modem and one for DSL/cable) and allowed the client to choose 
the appropriate media rate at the beginning of the session.  However, these 
early systems only allowed the media rate to be chosen once at the beginning 
of each session.  In contrast, multi-rate switching enables dynamic switching 
between different media rates within a single streaming media session.  This 
mid-session switching between different media rates enables better 
adaptation to longer-term fluctuations in available bandwidth than can be 
achieved by the use of the client buffer alone.  Examples include Intelligent 
Streaming from Microsoft and SureStream from Real Networks. 
 
This approach overcomes both limitations of transcoding, as very little 
computation is needed for switching between the different copies of the 



Chapter 1 14

stream, and no recompression penalty is incurred.  However, there are a 
number of disadvantages.  First, the need to store multiple copies of the 
same media incurs higher storage cost. Second, for practical implementation, 
only a small number of copies are used, limiting its ability to adapt to 
varying transmission rates.  
 
Scalable Compression 
A more elegant approach to adapt to longer-term bandwidth fluctuations is 
to use layered or scalable compression.  This is similar in spirit to multi-rate 
switching, but instead of producing multiple copies of the same content at 
different bit rates, layered compression produces a set of (ordered) bitstreams 
(sometimes referred to as layers) and different subsets of these bitstreams 
can be selected to represent the media at different target bit rates [20].  Many 
commonly used compression standards, such as MPEG-2, MPEG-4 and 
H.263 have extensions for layered coding.  Nevertheless, layered or scalable 
approaches are not widely used because they incur a significant compression 
penalty as compared to non-layered/non-scalable approaches. 

5.4  Evolving Approaches 

Rate control at end-hosts avoids congestion by dynamically adapting the 
transmission rate.  Alternatively, congestion can also be avoided by providing 
unchanging amount of resources to each flow, but instead limiting the 
addition of new flows.  This is similar to the telephone system that provides 
performance guarantees although with a possibility for call blocking. 
 
With all the difficulties facing streaming media systems in the Internet, there 
has been work towards providing some Quality of Service (QoS) support in 
the Internet.   The Integrated Services (IntServ) model of the Internet [24], for 
instance, is an attempt to provide end-to-end QoS guarantees in terms of 
bandwidth, packet loss rate, and delay, on a per-flow basis. QoS guarantees 
are established using explicit resource allocation based on the Resource 
Reservation Protocol (RSVP).  The guarantees in terms of bandwidth and 
packet loss rate would have greatly simplified streaming media systems.  
Nevertheless, this is only at the expense of additional complexity in the 
network.   The high complexity and cost of deployment of the RSVP-based 
service architecture eventually led the IETF to consider other QoS 
mechanisms. The Differentiated Services (DiffServ) model, in particular, is 
specifically designed to achieve low complexity and easy deployment at the 
cost of less stringent QoS guarantees than IntServ.  Under DiffServ, service 
differentiation is no longer provided on a per-flow basis. Instead, it is based 
on the code-point or tag in each packet.  Thus, packets having the same tags 
are given the same treatment under DiffServ regardless of where they 
originate.  The cost of easy deployment for DiffServ compared to IntServ is 
the reduced level of QoS support. Specific ways in which streaming media 
systems can take advantage of a DiffServ Internet is currently an area of 
active research. 
 

6. PLAYOUT BUFFER FOR OVERCOMING DELAY JITTER 
It is common for streaming media clients to have a 5 to 15 second buffering 
before playback starts.  As we have seen in Section 4, streaming can be 
viewed as a sequence of constraints for individual media samples.  The use of 



Video Streaming: Concepts, Algorithms, and Systems 15

buffering essentially relaxes all the constraints by an identical amount.  
Critical to the performance of streaming systems over best-effort networks 
such as the Internet, buffering provides a number of important advantages: 

1. Jitter reduction: Variations in network conditions cause the time it 
takes for packets to travel between identical end-hosts to vary.  Such 
variations can be due to a number of possible causes, including 
queuing delays and link-level retransmissions.  Jitter can cause 
jerkiness in playback due to the failure of same samples to meet their 
presentation deadlines, and have to be therefore skipped or delayed.  
The use of buffering effectively extends the presentation deadlines for 
all media samples, and in most cases, practically eliminates playback 
jerkiness due to delay jitter.  The benefits of a playback buffer are 
illustrated in Figure 2, where packets are transmitted and played at a 
constant rate, and the playback buffer reduces the number of packets 
that arrive after their playback deadline. 

2. Error recovery through retransmissions: The extended presentation 
deadlines for the media samples allow retransmission to take place 
when packets are lost, e.g., when UDP is used in place of TCP for 
transport.   Since compressed media streams are often sensitive to 
errors, the ability to recover losses greatly improves streaming media 
quality. 

3. Error resilience through Interleaving: Losses in some media streams, 
especially audio, can often be better concealed if the losses are 
isolated instead of concentrated.  The extended presentation 
deadlines with the use of buffering allow interleaving to transform 
possible burst loss in the channel into isolated losses, thereby 
enhancing the concealment of the subsequent losses.   As we shall 
discuss in the next section, the extended deadlines also allow other 
forms of error control schemes such as the use of error control codes, 
which are particularly effective when used with interleaving. 

4. Smoothing throughput fluctuation: Since time varying channel gives 
rise to time varying throughput, the buffer can provide needed data to 
sustain streaming when throughput is low.  This is especially 
important when streaming is performed using TCP (or HTTP), since 
the server typically does not react to a drop in channel throughput by 
reducing media rate. 

 
The benefits of buffering do come at a price though.  Besides additional 
storage requirements at the streaming client, buffering also introduces 
additional delay before playback can begin or resume (after a pause due to 
buffer depletion).  Adaptive Media Playout (AMP) is a new technique that 
enables an valuable tradeoff between delay and reliability [25,4]. 
 

7. ERROR CONTROL FOR OVERCOMING CHANNEL LOSSES 
The third fundamental problem that afflicts video communication is losses. 
Losses can have a very destructive effect on the reconstructed video quality, 
and if the system is not designed to handle losses, even a single bit error can 
have a catastrophic effect.   A number of different types of losses may occur, 
depending on the particular network under consideration.  For example, 
wired packet networks such as the Internet are afflicted by packet loss, 
where congestion may cause an entire packet to be discarded (lost).   In this 



Chapter 1 16

case the receiver will either completely receive a packet in its entirety or 
completely lose a packet.   On the other hand, wireless channels are typically 
afflicted by bit errors or burst errors at the physical layer.  These errors may 
be passed up from the physical layer to the application as bit or burst errors, 
or alternatively, entire packets may be discarded when any errors are 
detected in these packets.  Therefore, depending on the interlayer 
communication, a video decoder may expect to always receive “clean” packets 
(without any errors) or it may receive “dirty” packets (with errors).  The loss 
rate can vary widely depending on the particular network, and also for a 
given network depending on the amount of cross traffic.  For example, for 
video streaming over the Internet one may see a packet loss rate of less than 
1 %, or sometimes greater than 5-10 %.   
 
A video streaming system is designed with error control to combat the effect 
of losses.  There are four rough classes of approaches for error control: (1) 
retransmissions, (2) forward error correction (FEC), (3) error concealment, 
and (4) error-resilient video coding.  The first two classes of approaches can 
be thought of as channel coding approaches for error control, while the last 
two are source coding approaches for error control.  These four classes of 
approaches are discussed in the following four subsections. A video 
streaming system is typically designed using a number of these different 
approaches.  In addition, joint design of the source coding and channel 
coding is very important and this is discussed in Section 7.5.  Additional 
information, and specifics for H.263 and MPEG-4, are available in [26,27,28]. 

7.1 RETRANSMISSIONS 

In retransmission-based approaches the receiver uses a back-channel to 
notify the sender which packets were correctly received and which were not, 
and this enables the sender to resend the lost packets.  This approach 
efficiently uses the available bandwidth, in the sense that only lost packets 
are resent, and it also easily adapts to changing channel conditions.  
However, it also has some disadvantages.  Retransmission leads to additional 
delay corresponding roughly to the round-trip-time (RTT) between receiver-
sender-receiver.  In addition, retransmission requires a back-channel, and 

Packet Number

Time

Delay

Buffering

Playout
Delay

Packet
Reception

Packet
Transmission

Playout

Loss

Packet Number

Time

Packet Number

Time

Delay

Buffering

Playout
Delay
Playout
Delay

Packet
Reception

Packet
Transmission

Packet
Transmission

Playout

Loss

 
Figure 2: Effect of playout buffer on reducing the number of late packets. 



Video Streaming: Concepts, Algorithms, and Systems 17

this may not be possible or practical in various applications such as 
broadcast, multicast, or point-to-point without a back-channel. 
 
In many applications the additional delay incurred from using 
retransmission is acceptable, e.g. Web browsing, FTP, telnet.  In these cases, 
when guaranteed delivery is required (and a backchannel is available) then 
feedback-based retransmits provide a powerful solution to channel losses.  
On the other hand, when a back channel is not available or the additional 
delay is not acceptable, then retransmission is not an appropriate solution. 
 
There exist a number of important variations on retransmission-based 
schemes.  For example, for video streaming of time-sensitive data one may 
use delay-constrained retransmission where packets are only retransmitted 
if they can arrive by their time deadline, or priority-based retransmission, 
where more important packets are retransmitted before less important 
packets.  These ideas lead to interesting scheduling problems, such as which 
packet should be transmitted next (e.g. [29,4]). 

7.2 FORWARD ERROR CORRECTION 

The goal of FEC is to add specialized redundancy that can be used to recover 
from errors.  For example, to overcome packet losses in a packet network one 
typically uses block codes (e.g. Reed Solomon or Tornado codes) that take K 
data packets and output N packets, where N-K of the packets are redundant 
packets.  For certain codes, as long as any K of the N packets are correctly 
received the original data can be recovered.  On the other hand, the added 
redundancy increases the required bandwidth by a factor of N/K.  FEC 
provides a number of advantages and disadvantages. Compared to 
retransmissions, FEC does not require a back-channel and may provide 
lower delay since it does not depend on the round-trip-time of retransmits.  
Disadvantages of FEC include the overhead for FEC even when there are no 
losses, and possible latency associated with reconstruction of lost packets. 
Most importantly, FEC-based approaches are designed to overcome a 
predetermined amount of loss and they are quite effective if they are 
appropriately matched to the channel.  If the losses are less than a 
threshold, then the transmitted data can be perfectly recovered from the 
received, lossy data.  However, if the losses are greater than the threshold, 
then only a portion of the data can be recovered, and depending on the type 
of FEC used, the data may be completely lost.  Unfortunately the loss 
characteristics for packet networks are often unknown and time varying.  
Therefore the FEC may be poorly matched to the channel -- making it 
ineffective (too little FEC) or inefficient (too much FEC).   

7.3 ERROR CONCEALMENT 

Transmission errors may result in lost information.  The basic goal of error 
concealment is to estimate the lost information or missing pixels in order to 
conceal the fact that an error has occurred.  The key observation is that 
video exhibits a significant amount of correlation along the spatial and 
temporal dimensions.  This correlation was used to achieve video 
compression, and unexploited correlaton can also be used to estimate the 
lost information.  Therefore, the basic approach in error concealment is to 
exploit the correlation by performing some form of spatial and/or temporal 
interpolation (or extrapolation) to estimate the lost information from the 
correctly received data. 



Chapter 1 18

 
To illustrate the basic idea of error concealment, consider the case where a 
single 16x16 block of pixels (a macroblock in MPEG terminology) is lost.  This 
example is not representative of the information typically lost in video 
streaming, however it is a very useful example for conveying the basic 
concepts.  The missing block of pixels may be assumed to have zero 
amplitude, however this produces a black/green square in the middle of the 
video frame which would be highly distracting.  Three general approaches for 
error concealment are: (1) spatial interpolation, (2) temporal interpolation 
(freeze frame), and (3) motion-compensated temporal interpolation. The goal 
of spatial interpolation is to estimate the missing pixels by smoothly 
extrapolating the surrounding correctly received pixels.  Correctly recovering 
the missing pixels is extremely difficult, however even correctly estimating 
the DC (average) value is very helpful, and provides significantly better 
concealment than assuming the missing pixels have an amplitude of zero.  
The goal of temporal extrapolation is to estimate the missing pixels by 
copying the pixels at the same spatial location in the previous correctly 
decoded frame (freeze frame).  This approach is very effective when there is 
little motion, but problems arise when there is significant motion.  The goal 
of motion-compensated temporal extrapolation is to estimate the missing 
block of pixels as a motion compensated block from the previous correctly 
decoded frame, and thereby hopefully overcome the problems that arise from 
motion.  The key problem in this approach is how to accurately estimate the 
motion for the missing pixels.  Possible approach include using the coded 
motion vector for that block (if it is available), use a neighboring motion 
vector as an estimate of the missing motion vector, or compute a new motion 
vector by leveraging the correctly received pixels surrounding the missing 
pixels. 
 
Various error concealment algorithms have been developed that apply 
different combinations of spatial and/or temporal interpolation.  Generally, a 
motion-compensated algorithm usually provides the best concealment 
(assuming an accurate motion vector estimate).  This problem can also be 
formulated as a signal recovery or inverse problem, leading to the design of 
sophisticated algorithms (typically iterative algorithms) that provide 
improved error concealment in many cases.   
 
The above example where a 16x16 block of pixels is lost illustrates many of 
the basic ideas of error concealment.  However, it is important to note that 
errors typically lead to the loss of much more than a single 16x16 block.  For 
example, a packet loss may lead to the loss of a significant fraction of an 
entire frame, or for low-resolution video (e.g. 176x144 pixels/frame) an entire 
coded frame may fit into a single packet, in which case the loss of the packet 
leads to the loss of the entire frame.  When an entire frame is lost, it is not 
possible to perform any form of spatial interpolation as there is no spatial 
information available (all of the pixels in the frame are lost), and therefore 
only temporal information can be used for estimating the lost frame.  
Generally, the lost frame is estimated as the last correctly received frame 
(freeze frame) since this approach typically leads to the fewest artifacts.   
 
A key point about error concealment is that it is performed at the decoder.  
As a result, error concealment is outside the scope of video compression 
standards.  Specifically, as improved error concealment algorithms are 



Video Streaming: Concepts, Algorithms, and Systems 19

developed they can be incorporated as standard-compatible enhancements to 
conventional decoders.  

7.4  ERROR RESILIENT VIDEO CODING 

Compressed video is highly vulnerable to errors.  The goal of error-resilient 
video coding is to design the video compression algorithm and the 
compressed bitstream so that it is resilient to specific types of errors.  This 
section provides an overview of error-resilient video compression.   It begins 
by identifying the basic problems introduced by errors and then discusses 
the approaches developed to overcome these problems.  In addition, we focus 
on which problems are most relevant for video streaming and also which 
approaches to overcome these problems are most successful and when.  In 
addition, scalable video coding and multiple description video coding are 
examined as possible approaches for providing error resilient video coding. 

7.4.1 Basic problems introduced by errors 

Most video compression systems possess a similar architecture based on 
motion-compensated (MC) prediction between frames, Block-DCT (or other 
spatial transform) of the prediction error, followed by entropy coding (e.g. 
runlength and Huffman coding) of the parameters.  The two basic error-
induced problems that afflict a system based on this architecture are:  

1) Loss of bitstream synchronization 
2) Incorrect state and error propagation 

 
The first class of problems, loss of bitstream synchronization, refers to the 
case when an error can cause the decoder to become confused and lose 
synchronization with the bitstream, i.e. the decoder may loss track of what 
bits correspond to what parameters.  The second class of problems, incorrect 
state and error propagation, refers to what happens when a loss afflicts a 
system that uses predictive coding.   

7.4.2 Overcoming Loss of Bitstream Synchronization 

Loss of bitstream synchonization corresponds to the case when an error 
causes the decoder to loss track of what bits correspond to what parameters.  
For example, consider what happens when a bit error afflicts a Huffman 
codeword or other variable length codeword (VLC).  Not only would the 
codeword be incorrectly decoded by the decoder, but because of the variable 
length nature of the codewords it is highly probably that the codeword would 
be incorrectly decoded to a codeword of a different length, and thereby all the 
subsequent bits in the bitstream (until the next resync) will be 
misinterpreted.  Even a single bit error can lead to significant subsequent 
loss of information.   
 
It is interesting to note that fixed length codes (FLC) do not have this 
problem, since the beginning and ending locations of each codeword are 
known, and therefore losses are limited to a single codeword.  However, 
FLC’s do not provide good compression.  VLC’s provide significantly better 
compression and therefore are widely used. 
 
The key to overcoming the problem of loss of bitstream synchronization is to 
provide mechanisms that enable the decoder to quickly isolate the problem 



Chapter 1 20

and resynchronize to the bitstream after an error has occurred.  We now 
consider a number of mechanisms that enable bitstream resynchonization. 
 
Resync Markers 
Possibly the simplest approach to enable bitstream resynchonization is by 
the use of resynchronization markers, commonly referred to as resync 
markers.  The basic idea is to place unique and easy to find entry points in 
the bitstream, so that if the decoder losses sync, it can look for the next 
entry point and then begin decoding again after the entry point.  Resync 
markers correspond to a bitstream pattern that the decoder can 
unmistakably find.  These markers are designed to be distinct from all 
codewords, concatenations of codewords, and minor perturbations of 
concatenated codewords.  An example of a resync marker is the three-byte 
sequence consisting of 23 zeros followed by a one.   Sufficient information is 
typically included after each resync marker to enable the restart of bitstream 
decoding. 
 
An important question is where to place the resync markers.  One approach 
is to place the resync markers at strategic locations in the compressed video 
hierarchy, e.g. picture or slice headers.  This approach is used in MPEG-1/2 
and H.261/3.  This approach results in resyncs being placed every fixed 
number of blocks, which corresponds to a variable number of bits.  An 
undesired consequence of this is that active areas, which require more bits, 
would in many cases have a higher probability of being corrupted.  To 
overcome this problem, MPEG-4 provides the capability to place the resync 
markers periodically after every fixed number of bits (and variable number of 
coding blocks).  This approach provides a number of benefits including 
reduces the probability that active areas be corrupted, simplifies the search 
for resync markers, and supports application-aware packetization. 
 
Reversible Variable Length Codes (RVLCs) 
Conventional VLC’s, such as Huffman codes, are uniquely decodeable in the 
forward direction. RVLCs in addition have the property that they are also 
uniquely decodable in the backward direction.  This property can be quite 
beneficial in recovering data that would otherwise be lost.  For example, if an 
error is detected in the bitstream, the decoder would typically jump to the 
next resync marker.  Now, if RVLCs are used, instead of discarding all the 
data between the error and the resync, the decoder can start decoding 
backwards from the resync until it identifies another error, and thereby 
enables partial recovery of data (which would otherwise be discarded).  
Nevertheless, RVLC are typically less efficient than VLC. 
 
Data Partitioning 
An important observation is that bits which closely follow a resync marker 
are more likely to be accurately decoded than those further away.  This 
motivates the idea of placing the most important information immediately 
after each resync (e.g. motion vectors, DC DCT coefficients, and shape 
information for MPEG-4) and placing the less important information later 
(AC DCT coefficients).  This approach is referred to as data partitioning in 
MPEG-4.  Note that this approach is in contrast with the conventional 
approach used in MPEG-1/2 and H.261/3, where the data is ordered in the 
bitstream in a consecutive macroblock by macroblock manner, and without 
accounting for the importance of the different types of data. 



Video Streaming: Concepts, Algorithms, and Systems 21

To summarize, the basic idea to overcome the problem of loss of bitstream 
synchronization is to first isolate (localize) the corrupted information, and 
second enable a fast resynchronization. 

Application-Aware Packetization: Application Level Framing (ALF) 
Many applications involve communication over a packet network, such as 
the Internet, and in these cases the losses have an important structure that 
can be exploited.  Specifically, either a packet is accurately received in its 
entirety or it is completely lost.  This means that the boundaries for lost 
information are exactly determined by the packet boundaries.  This 
motivates the idea that to combat packet loss, one should design (frame) the 
packet payload to minimize the effect of loss. This idea was crystallized in the 
Application Level Framing (ALF) principle presented in [30], who basically 
said that the “application knows best” how to handle packet loss, out-of-
order delivery, and delay, and therefore the application should design the 
packet payloads and related processing.  For example, if the video encoder 
knows the packet size for the network, it can design the packet payloads so 
that each packet is independently decodable, i.e. bitstream 
resynchronization is supported at the packet level so that each correctly 
received packet can be straightforwardly parsed and decoded.  MPEG-4, 
H.263V2, and H.264/MPEG-4 AVC support the creation of different forms of 
independently decodable video packets.  As a result, the careful usage of the 
application level framing principle can often overcome the bitstream 
synchronization problem.  Therefore, the major obstacle for reliable video 
streaming over lossy packet networks such as the Internet, is the error 
propagation problem, which is discussed next.  

7.4.3 Overcoming Incorrect State and Error Propagation 

If a loss has occurred, and even if the bitstream has been resynchronized, 
another crucial problem is that the state of the representation at the decoder 
may be different from the state at the encoder.  In particular, when using 
MC-prediction an error causes the reconstructed frame (state) at the decoder 
to be incorrect.  The decoder’s state is then different from the encoder’s, 
leading to incorrect (mismatched) predictions and often significant error 
propagation that can afflict many subsequent frames, as illustrated in Figure 
3.  We refer to this problem as having incorrect (or mismatched) state at the 
decoder, because the state of the representation at the decoder (the previous 
coded frame) is not the same as the state at the encoder.  This problem also 
arises in other contexts  (e.g. random access for DVD’s or channel 
acquisition for Digital TV) where a decoder attempts to decode beginning at 
an arbitrary position in the bitstream. 
 
A number of approaches have been developed over the years to overcome this 
problem, where these approaches have the common goal of trying to limit the 
effect of error propagation.  The simplest approach to overcome this problem 
is by using I-frame only.  Clearly by not using any temporal prediction, this 
approach avoids the error propagation problem, however it also provides very 
poor compression and therefore it is generally not an appropriate streaming 
solution.  Another approach is to use periodic I-frames, e.g. the MPEG GOP.  
For example, with a 15-frame GOP there is an I-frame every 15 frames and 
this periodic reinitialization of the prediction loop limits error propagation to 
a maximum of one GOP (15 frames in this example).  This approach is used 
in DVD’s to provide random access and Digital TV to provide rapid channel 



Chapter 1 22

acquisition.  However, the use of periodic I-frames limits the compression, 
and therefore this approach is often inappropriate for very low bit rate video, 
e.g. video over wireless channels or over the Internet. 
 
More sophisticated methods of intra coding often apply partial intra-coding of 
each frame, where individual macroblocks (MBs) are intra-coded as opposed 
to entire frames.  The simplest approach of this form is periodic intra-coding 
of all MBs: 1/N of the MB’s in each frame are intra-coded in a predefined 
order, and after N frames all the MBs have been intra-coded.  A more 
effective method is pre-emptive intra-coding, where one optimizes the intra-
inter mode decision for each macroblock based on the macroblocks’s content,  
channel loss model, and the macroblock’s estimated vulnerability to losses.  
 
The use of intra-coding to reduce the error propagation problem has a 
number of advantages and disadvantages.  The advantages include: (1) intra 
coding does successfully limit error propagation by reinitializing the 
prediction loop, (2) the sophistication is at the encoder, while the decoder is 
quite simple, (3) the intra-inter mode decisions are outside the scope of the 
standards, and more sophisticated algorithms may be incorporated in a 
standard-compatible manner. However, intra-coding also has disadvantages 
including: (1) it requires a significantly higher bit rate than inter coding, 
leading to a sizable compression penalty, (2) optimal intra usage depends on 
accurate knowledge of channel characteristics.  While intra coding limits 
error propagation, the high bit rate it requires limits its use in many 
applications. 
 
Point-to-Point Communication with Back-Channel 
The special case of point-to-point transmission with a back-channel and with 
real-time encoding facilitates additional approaches for overcoming the error 
propagation problem [31].  For example, when a loss occurs the decoder can 
notify the encoder of the loss and tell the encoder to reinitialize the 
prediction loop by coding the next frame as an I-frame.  While this approach 
uses I-frames to overcome error propagation (similar to the previous 
approaches described above), the key is that I-frames are only used when 
necessary.  Furthermore, this approach can be extended to provide improved 
compression efficiency by using P-frames as opposed to I-frames to overcome 
the error propagation.  The basic idea is that both the encoder and decoder 
store multiple previously coded frames.  When a loss occurs the decoder 
notifies the encoder which frames where correctly/erroneously received and 
therefore which frame should be used as the reference for the next 
prediction.  These capabilities are provided by the Reference Picture Selection 
(RPS) in H.263 V2 and NewPred in MPEG-4 V2.  To summarize, for point-to-

P-frameI-frame P-frame P-frameP-frame

Error Error Propagation
P-frameI-frame P-frame P-frameP-frame

Error Error Propagation
Figure 3: Example of error propagation that can result from a single error. 



Video Streaming: Concepts, Algorithms, and Systems 23

point communications with real-time encoding and a reliable back-channel 
with a sufficiently short round-trip-time (RTT), feedback-based approaches 
provide a very powerful approach for overcoming channel losses.  However, 
the effectiveness of this approach decreases as the RTT increases (measured 
in terms of frame intervals), and the visual degradation can be quite 
significant for large RTTs [32].   
 
Partial Summary: Need for Other Error-Resilient Coding Approaches 
This section discussed the two major classes of problems that afflict 
compressed video communication in error-prone environments: (1) bitstream 
synchronization and (2) incorrect state and error propagation.  The bitstream 
synchronization problem can often be overcome through appropriate 
algorithm and system design based on the application level framing 
principle.  However, the error propagation problem remains a major obstacle 
for reliable video communication over lossy packet networks such as the 
Internet.  While this problem can be overcome in certain special cases (e.g. 
point-to-point communication with a backchannel and with sufficiently short 
and reliable RTT), many important applications do not have a backchannel, 
or the backchannel may have a long RTT, thereby severely limiting 
effectiveness.  Therefore, it is important to be able to overcome the error 
propagation problem in the feedback-free case, when there does not exist a 
back-channel between the decoder and encoder, e.g. broadcast, multicast, or 
point-to-point with unreliable or long-RTT backchannel. 

7.4.5  Scalable Video Coding for Lossy Networks 

In scalable or layered video the video is coded into a base layer and one or 
more enhancement layers.  There are a number of forms of scalability, 
including temporal, spatial, and SNR (quality) scalability.  Scalable coding 
essentially prioritizes the video data, and this prioritization effectively 
supports intelligent discarding of the data.  For example, the enhancement 
data can be lost or discarded while still maintaining usable video quality.  
The different priorities of video data can be exploited to enable reliable video 
delivery by the use of unequal error protection (UEP), prioritized 
transmission, etc.  As a result, scalable coding is a nice match for networks 
which support different qualities of service, e.g. DiffServ.   
 
While scalable coding prioritizes the video data and is nicely matched to 
networks that can exploit different priorities, many important networks do 
not provide this capability.  For example, the current Internet is a best-effort 
network.  Specifically, it does not support any form of QoS, and all packets 
are equally likely to be lost.  Furthermore, the base layer for scalable video is 
critically important – if the base layer is corrupted then the video can be 
completely lost.  Therefore, there is a fundamental mismatch between 
scalable coding and the best-effort Internet: Scalable coding produces 
multiple bitstreams of differing importance, but the best-effort Internet does 
not treat these bitstreams differently – every packet is treated equally.  This 
problem motivates the development of Multiple Description Coding, where 
the signal is coded into multiple bitstreams, each of roughly equal 
importance. 

7.4.6 Multiple Description Video Coding 

In Multiple Description Coding (MDC) a signal is coded into two (or more) 
separate bitstreams, where the multiple bitstreams are referred to as 



Chapter 1 24

multiple descriptions (MD). MD coding provides two important properties: (1) 
each description can be independently decoded to give a usable reproduction 
of the original signal, and (2) the multiple descriptions contain 
complementary information so that the quality of the decoded signal 
improves with the number of descriptions that are correctly received.  Note 
that this first property is in contrast to conventional scalable or layered 
schemes, which have a base layer that is critically important and if lost 
renders the other bitstream(s) useless. MD coding enables a useful 
reproduction of the signal when any description is received, and provides 
increasing quality as more descriptions are received. 
 
A number of MD video coding algorithms have recently been proposed, which 
provide different tradeoffs in terms of compression performance and error 
resilience [33,34,35,36].  In particular, the MD video coding system of [36,38] 
has the importance property that it enables repair of corrupted frames in a 
description using uncorrupted frames in the other description so that usable 
quality can be maintained even when both descriptions are afflicted by 
losses, as long as both descriptions are not simultaneously lost.  Additional 
benefits of this form of MD system include high compression efficiency 
(achieving MDC properties with only slightly higher total bit rate than 
conventional single description (SD) compression schemes), ability to 
successfully operate over paths that support different or unbalanced bit 
rates (discussed next) [37], and this MD video coder also corresponds to a 
standard-compatible enhancement to MPEG-4 V2 (with NEWPRED), H.263 V2 
(with RPS), and H.264/MPEG-4 Part 10 (AVC).  
 
Multiple Description Video Coding and Path Diversity 
MD coding enables a useful reproduction of the signal when any description 
is received -- and specifically this form of MD coding enables a useful 
reproduction when at least one description is received at any point in time.  
Therefore it is beneficial to increase the probability that at least one 
description is received correctly at any point in time.   This can be achieved 
by combining MD video coding with a path diversity transmission system 
[38], as shown in Figure 4, where different descriptions are explicitly 
transmitted over different network paths (as opposed to the default scenarios 
where they would proceed along a single path).  Path diversity enables the 
end-to-end video application to effectively see a virtual channel with 
improved loss characteristics [38].  For example, the application effectively 
sees an average path behavior, which generally provides better performance 
than seeing the behavior of any individual random path.  Furthermore, while 
any network path may suffer from packet loss, there is a much smaller 
probability that all of the multiple paths simultaneously suffer from losses. In 
other words, losses on different paths are likely to be uncorrelated. 
Furthermore, the path diversity transmission system and the MD coding of 
[36,38] complement each other to improve the effectiveness of MD coding:  
the path diversity transmission system reduces the probability that both 
descriptions are simultaneously lost, and the MD decoder enables recovery 
from losses as long as both descriptions are not simultaneously lost.  A path 
diversity transmission system may be created in a number of ways, including 
by source-based routing or by using a relay infrastructure.  For example, 
path diversity may be achieved by a relay infrastructure, where each stream 
is sent to a different relay placed at a strategic node in the network, and 
each relay performs a simple forwarding operation. This approach 



Video Streaming: Concepts, Algorithms, and Systems 25

corresponds to an application-specific overlay network on top of the 
conventional Internet, providing a service of improved reliability while 
leveraging the infrastructure of the Internet [38].    
 
Multiple Description versus Scalable versus Single Description 
The area of MD video coding is relatively new, and therefore there exist many 
open questions as to when MD coding, or scalable coding, or single 
description coding is preferable.  In general, the answer depends crucially on 
the specific context, e.g. specific coder, playback delay, possible retransmits, 
etc.  A few works shed light on different directions.  [39,40] proposed MD 
image coding sent over multiple paths in an ad-hoc wireless network, and 
[41] examined MD versus scalable coding for an EGPRS cellular network.  
Analytical models for accurately predicting SD and MD video quality as a 
function of path diversity and loss characteristics are proposed in [42].  
Furthermore, as is discussed in Section 10, path diversity may also be 
achieved by exploiting the infrastructure of a content delivery network (CDN), 
to create a Multiple Description Streaming Media CDN (MD-CDN) [43].  In 
addition, the video streaming may be performed in a channel-adaptive 
manner as a function of the path diversity characteristics [44,4]. 

7.5 Joint Source/Channel Coding  

Data and video communication are fundamentally different.  In data 
communication all data bits are equally important and must be reliably 
delivered, though timeliness of delivery may be of lesser importance.  In 
contrast, for video communication some bits are more important than other 
bits, and often it is not necessary for all bits to be reliably delivered.  On the 
other hand, timeliness of delivery is often critical for video communication.  
Examples of coded video data with different importance include the different 
frames types in MPEG video (i.e. I-frames are most important, P-frames have 
medium importance, and B-frames have the least importance) and the 
different layers in a scalable coding (i.e. base layer is critically important and 
each of the enhancement layers is of successively lower importance).  A basic 
goal is then to exploit the differing importance of video data, and one of the 
motivations of joint source/channel coding is to jointly design the source 
coding and the channel coding to exploit this difference in importance.  This 
has been an important area of research for many years, and the limited 
space here prohibits a detailed discussion, therefore we only present two 
illustrative examples of how error-control can be adapted based on the 

MD Video
Encoder

Path
Selector

MD #1

Relay 1

Relay 2

Packet
Receiver

MD Video
DecoderMD #2

Path # 1

Path # 2

Received
Packets

MD #1

MD #2

Original
Video

Reconstructed
Video

MD Video Encoder
and Transmitter

MD Video Receiver
and Decoder

Packet Network
and Relay Infrastructure  

Figure 4: Multiple description video coding and path diversity for reliable 
communication over lossy packet networks.  



Chapter 1 26

importance of the video data.  For example, for data communication all bits 
are of equal importance and FEC is designed to provide equal error 
protection for every bit.  However, for video date of unequal importance it is 
desirable to have unequal error protection (UEP) as shown in Table 2.  
Similarly, instead of a common retransmit strategy for all data bits, it is 
desirable to have unequal (or priortized) retransmit strategies for video data. 
 
Table 2. Adapting error control based on differing importance of video data:  
unequal error protection and unequal (prioritized) retransmission based on 
coded frame type. 

 I-frame P-frame B-frame 
FEC Maximum Medium Minimum (or none) 

Retransmit Maximum Medium Can discard 
 

8. MEDIA STREAMING PROTOCOLS AND STANDARDS 
This section briefly describes the network protocols for media streaming over 
the Internet. In addition, we highlight some of the current popular 
specifications and standards for video streaming, including 3GPP and ISMA. 

8.1 Protocols for Video Streaming over the Internet 

This section briefly highlights the network protocols for video streaming over 
the Internet.  First, we review the important Internet protocols of IP, TCP, 
and UDP.  This is followed by the media delivery and control protocols. 

Internet Protocols: TCP, UDP, IP 
The Internet was developed to connect a heterogeneous mix of networks that 
employ different packet switching technologies. The Internet Protocol (IP) 
provides baseline best-effort network delivery for all hosts in the network: 
providing addressing, best-effort routing, and a global format that can be 
interpreted by everyone.  On top of IP are the end-to-end transport protocols, 
where Transmission Control Protocol (TCP) and User Datagram Protocol 
(UDP) are the most important.  TCP provides reliable byte-stream services.  It 
guarantees delivery via retransmissions and acknowledgements.  On the 
other hand, UDP is simply a user interface to IP, and is therefore unreliable 
and connectionless.  Additional services provided by UDP include checksum 
and port-numbering for demultiplexing traffic sent to the same destination.  
Some of the differences between TCP and UDP that affects streaming 
applications are: 

o TCP operates on a byte stream while UDP is packet oriented.  
o TCP guarantees delivery via retransmissions, but because of the 

retransmissions its delay is unbounded.  UDP does not guarantee 
delivery, but for those packets delivered their delay is more 
predictable (i.e. one-way delay) and smaller. 

o TCP provides flow control and congestion control.  UDP provides 
neither.  This provides more flexibility for the application to determine 
the appropriate flow control and congestion control procedures.  

o TCP requires a back channel for the acknowledgements. UDP does  
not require a back channel. 

 



Video Streaming: Concepts, Algorithms, and Systems 27

Web and data traffic are delivered with TCP/IP because guaranteed delivery 
is far more important than delay or delay jitter.  For media streaming the 
uncontrollable delay of TCP is unacceptable and compressed media data is 
usually transmitted via UDP/IP despite control information is usually 
transmitted via TCP/IP. 

Media Delivery and Control Protocols 

The IETF has specified a number of protocols for media delivery, control, and 
description over the Internet. 
 
Media Delivery 
The Real-time Transport Protocol (RTP) and Real-time Control Protocol 
(RTCP) are IETF protocols designed to support streaming media.  RTP is 
designed for data transfer and RTCP for control messages.  Note that these 
protocols do not enable real-time services, only the underlying network can 
do this, however they provide functionalities that support real-time services.  
RTP does not guarantee QoS or reliable delivery, but provides support for 
applications with time constraints by providing a standardized framework for 
common functionalities such as time stamps, sequence numbering, and 
payload specification.  RTP enables detection of lost packets.  RTCP provides 
feedback on quality of data delivery.  It provides QoS feedback in terms of 
number of lost packets, inter-arrival jitter, delay, etc.  RTCP specifies 
periodic feedback packets, where the feedback uses no more than 5 % of the 
total session bandwidth and where there is at least one feedback message 
every 5 seconds.  The sender can use the feedback to adjust its operation, 
e.g. adapt its bit rate.  The conventional approach for media streaming is to 
use RTP/UDP for the media data and RTCP/TCP or RTCP/UDP for the 
control.  Often, RTCP is supplemented by another feedback mechanism that 
is explicitly designed to provide the desired feedback information for the 
specific media streaming application. Other useful functionalities facilitated 
by RTCP include inter-stream synchronization and round-trip time 
measurement. 
 
Media Control 
Media control is provided by either of two session control protocols:  Real-
Time Streaming Protocol (RTSP) or Session Initiation Protocol (SIP).  RTSP is 
commonly used in video streaming to establish a session.  It also supports 
basic VCR functionalities such as play, pause, seek and record.  SIP is 
commonly used in voice over IP (VoIP), and it is similar to RTSP, but in 
addition it can support user mobility and a number of additional 
functionalities. 
 
Media Description and Announcement 
The Session Description Protocol (SDP) provides information describing a 
session, for example whether it is video or audio, the specific codec, bit rate, 
duration, etc. SDP is a common exchange format used by RTSP for content 
description purposes, e.g., in 3G wireless systems.  It has also used with the 
Session Announcement Protocol (SAP) to announce the availability of 
multicast programs. 

8.2 Video Streaming Standards and Specifications 

Standard-based media streaming systems, as specified by the 3rd Generation 
Partnership Project (3GPP) for media over 3G cellular [45] and the Internet 



Chapter 1 28

Streaming Media Alliance (ISMA) for streaming over the Internet [46], employ 
the following protocols: 

• Media encoding  
o MPEG-4 video and audio (AMR for 3GPP), H.263 

• Media transport 
o RTP for data, usually over UDP/IP 
o RTCP for control messages, usually over UDP/IP 

• Media session control 
o RTSP 

• Media description and announcement 
o SDP 

The streaming standards do not specify the storage format for the 
compressed media, but the MP4 file format has been widely used.  One 
advantage of MP4 file format is the ability to include “hint tracks” that 
simplify various aspects of streaming by providing hints such as 
packetization boundaries, RTP headers and transmission times. 

9. ADDITIONAL VIDEO STREAMING TOPICS 
MULTICAST 
Multicast or one-to-many communication has received much attention in the 
last few years due to the significant bandwidth savings it promises, and the 
challenges it presents.  Consider the multicast extension of the Internet, or 
IP multicast, as an example.  When multiple clients are requesting the same 
media stream, IP multicast reduce network resource usage by transmitting 
only one copy of the stream down shared links, instead of one per session 
sharing the link.  Nevertheless, besides the many practical difficulties in 
supporting IP multicast for the wide-area Internet, the basic properties of 
multicast communication present a number of challenges to streaming 
media systems.  First and foremost is the problem of heterogeneity: different 
receivers experience different channel conditions and may have conflicting 
requirements, e.g. in terms of maximum bit-rate that can be supported, and 
the amount of error protection needed.  Heterogeneity is typically solved by 
using multiple multicast to provide choices for the receivers.  For instance, it 
is possible to establish different multicasts for different ranges of intended 
bit-rates [47].  Alternatively, the different multicasts can contain incremental 
information [22, 48]. A second challenge that multicast presents is the more 
restricted choice for error control.  While retransmission has been the error 
control mechanism of choice for many streaming applications, its 
applicability in multicast has been limited by a number of challenges.  Using 
IP multicast for retransmission, for instance, requires that both the 
retransmission request and the actual retransmission be transmitted to all 
the receivers in the multicast, an obviously inefficient solution.   Even when 
retransmissions are handled by unicast communication, scalability concerns 
still remain, since a single sender will have to handle the requests of 
potentially many receivers.    
 
END-TO-END SECURITY AND TRANSCODING 
Encryption of media is an effective tool to protect content from 
eavesdroppers.  Transcoding at intermediate nodes within a network is also  
important technique to adapt compressed media streams for particular client 
capabilities or network conditions.  Nevertheless,  network transcoding poses 
a serious threat to the end-to-end security because transcoding encrypted 



Video Streaming: Concepts, Algorithms, and Systems 29

streams generally requires decrypting the stream, transcoding the decrypted 
stream, and then re-encrypting the result.  Each transcoding node presents 
a possible breach to the security of the system.  This problem can be 
overcome by Secure Scalable Streaming (SSS) which enables downstream 
transcoding without decryption [49,50]. SSS uses jointly designed scalable 
coding and progressive encryption techniques to encode and encrypt video 
into secure scalable packets that are transmitted across the network.  These 
packets can be transcoded at intermediate, possibly untrusted, network 
nodes by simply truncating or discarding packets and without compromising 
the end-to-end security of the system.  The secure scalable packets have 
unencrypted headers that provide hints, such as optimal truncation points, 
which the downstream transcoders use to achieve rate-distortion (R-D) 
optimal fine-grain transcoding across the encrypted packets. 
 
STREAMING OVER WIRED AND WIRELESS LINKS 
When the streaming path involves both wired and wireless links, some 
additional challenges evolve.  The first challenge involves the much longer 
packet delivery time with the addition of a wireless link.  Possible causes for 
the long delay include the employment of FEC with interleaving.  For 
instance, round-trip propagation delay in the 3G wireless system is in the 
order of 100 ms even before link-level retransmission.   With link-level 
retransmission, the delay for the wireless link alone can be significant.   The 
long round-trip delay reduces the efficiency of a number of end-to-end error 
control mechanisms: the practical number of end-to-end retransmissions is 
reduced, and the effectiveness of schemes employing RPS and NewPred is 
also reduced.  The second challenge is the difficulty in inferring network 
conditions from end-to-end measurements.   In high-speed wired networks, 
packet corruption is so rare that packet loss is a good indication of network 
congestion, the proper reaction of which is congestion control.  In wireless 
networks however, packet losses may be due to corruption in the packet, 
which calls for stronger channel coding.  Since any end-to-end 
measurements contain aggregate statistics across both the wired and 
wireless links, it is difficult to identify the proper cause and therefore 
perform the proper reaction.   

10. STREAMING MEDIA CONTENT DELIVERY NETWORKS 
The Internet has rapidly emerged as a mechanism for users to find and 
retrieve content, originally for webpages and recently for streaming media.  
content delivery networks (CDNs) were originally developed to overcome 
performance problems for delivery of static web content (webpages).  These 
problems include network congestion and server overload, that arise when 
many users access popular content. CDNs improve end-user performance by 
caching popular content on edge servers located closer to users. This 
provides a number of advantages. First, it helps prevent server overload, 
since the replicated content can be delivered to users from edge servers. 
Furthermore, since content is delivered from the closest edge server and not 
from the origin server, the content is sent over a shorter network path, thus 
reducing the request response time, the probability of packet loss, and the 
total network resource usage. While CDNs were originally intended for static 
web content, recently, they are being designed for delivery of streaming 
media as well. 



Chapter 1 30

10.1 Streaming Media CDN Design 

A streaming media CDN is a CDN that is explicitly designed to deliver 
streaming media, as opposed to static webpages. Streaming media CDN 
design and operation is similar in many ways to conventional (webpage) CDN 
design and operation.  For example, there are three key problems that arise 
in general CDN design and operation.  The first is the server placement 
problem: Given N servers, where should these servers be placed on the 
network?  The second problem is the content distribution problem: On which 
servers should each piece of content be replicated?  The third problem is the 
server selection problem:  For each request, which is the optimal server to 
direct the client to for delivery of the content?   
 
Many aspects of a streaming media CDN are also quite different from a 
conventional CDN.  For example, client-server interaction for a conventional 
(webpage) CDN involves a short-lived (fraction of a second) HTTP/TCP 
session(s).  However, a streaming session generally has a long duration 
(measured in minutes) and uses RTSP and RTP/UDP.   While congestion and 
packet loss may lead to a few second delay in delivering a webpage and is 
often acceptable, the corresponding effect on a streaming media session 
would be an interruption (stall or visual artifacts) that can be highly 
distracting.  Clearly, delay, packet loss, and any form of interruption can 
have a much more detrimental effect on video streaming then on static 
webpage delivery.  In addition, in a conventional CDN each piece of content 
(webpage) is relatively small, on the order of 10’s of kilobytes, and therefore it 
can be replicated in its entirety on each chosen server.  However, streaming 
media, such as movies, have a long duration and require a significant 
amount of storage, on the order of megabytes or gigabytes, and therefore it is 
often not practical or desirable to replicate an entire video stream on each 
chosen server. Instead, the video can be partitioned into parts, and only a 
portion of each video is cached on each server. There are many interesting 
problems related to caching of video, e.g. see [51] and references therein. 
 
Two other capabilities that are important for streaming media CDN, and are 
of lesser importance for a conventional CDN for webpage distribution, are 
multicast and server hand-off. Multicast is clearly a highly desirable 
capability for streaming of popular media.  While wide-area IP Multicast is 
currently not available in the Internet, a streaming media CDN can be 
explicitly designed to provide this capability via application-layer multicast: 
the infrastructure in the streaming media CDN provide an overlay on the 
Internet and are used as the nodes for the multicast tree.  Communication 
between nodes employs only simple ubiquitous IP service, thereby avoiding 
the dependence of IP multicast. Another important capability is hand-off 
between streaming servers.  Because streaming media sessions are long 
lived, it is sometimes required to perform a midstream hand-off from one 
streaming server to another.  This functionality is not required for webpage 
delivery where the sessions are very short in duration.  Furthermore, when 
the streaming session involves transcoding, mid-stream hand-off of the 
transcoding session is also required between servers [52]. 

10.2 Multiple Description Streaming Media CDN (MD-CDN) 

CDNs have been widely used to provide low latency, scalability, fault 
tolerance, and load balancing for the delivery of web content and more 



Video Streaming: Concepts, Algorithms, and Systems 31

recently streaming media. Another important advantage offered by streaming 
media CDNs is their distributed infrastructure. The distributed 
infrastructure of a CDN can be used to explicitly achieve path diversity 
between each client and multiple nearby edge servers.  Furthermore, 
appropriately coupling MD coding with this path diversity can provide 
improved reliability to packet losses, link outages, and server failures.  This 
system is referred to as a Multiple Description Streaming Media Content 
Delivery Network [43] or an MD-CDN for short.   
 
An MD-CDN operates in the following manner:  (1) MD coding is used to code 
a media stream into multiple complementary descriptions, (2) the different 
descriptions are distributed across different edge servers in the CDN, (3) 
when a client requests a media stream, it is directed to multiple nearby 
servers that host complementary descriptions, and (4) the client 
simultaneously receives the different complementary descriptions through 
different network paths from different servers. That is, the existing CDN 
infrastructure is exploited to achieve path diversity between multiple servers 
and each client. In this way, disruption in streaming media occurs only in 
the less likely case when simultaneous losses afflict both paths. This 
architecture also reaps the benefits associated with CDNs, such as reduced 
response time to clients, load balancing across servers, robustness to 
network and server failures, and scalability to number of clients. 
 
Further information about MD-CDN design and operation is available in [43].  
Other related work include distributing MD coded data in peer-to-peer 
networks [53], streaming a conventional single description stream to a single 
client from multiple servers [54], and the use of Tornado codes and multiple 
servers to reduce download time for bulk data (not video) transfer [55]. 

11. Summary 
Video communication over packet networks has witnessed much progress in 
the past few years, from download-and-play to various adaptive techniques, 
and from direct use of networking infrastructure to the design and use of 
overlay architectures. Developments in algorithms and in compute, 
communication and network infrastructure technologies have continued to 
change the landscape of streaming media, each time simplifying some of the 
current challenges and spawning new applications and challenges.  For 
example, the emergence of streaming media CDNs presents a variety of 

SD

InternetInternet
Content
Server

Server

Server
MD # 2

MD # 1

Cell
phone

SDSD

InternetInternet
Content
Server

Server

Server

Server

Server
MD # 2

MD # 1

Cell
phone

 
Figure 5: An MD-CDN uses MD coding and path diversity to provide improved 
reliability for packet losses, link outages, and server failures. 



Chapter 1 32

conceptually exciting and practically important opportunities to not only 
mitigate existing problems, but create new applications as well.  The advent 
of high bandwidth wireless networking technologies calls for streaming 
media solutions that support not only wireless environments, but user 
mobility as well. Possible QoS support in the Internet, on the other hand, 
promises a more predictable channel for streaming media applications that 
may make low-bandwidth low-latency streaming over IP a reality. Therefore, 
we believe that video streaming will continue to be a compelling area for 
exploration, development, and deployment in the future. 
 
 

REFERENCES 
 
[1]  M.-T. Sun and A. Reibman, eds, Compressed Video over Networks, 

Marcel Dekker, New York, 2001. 
[2]  G. Conklin, G. Greenbaum, K. Lillevold, A. Lippman, and Y. Reznik, 

“Video Coding for Streaming Media Delivery on the Internet,” IEEE 
Trans. Circuits and Systems for Video Technology, March 2001. 

[3]  D. Wu, Y. Hou, W. Zhu, Y.-Q. Zhang, and J. Peha, “Streaming Video 
over the Internet: Approaches and Directions”, IEEE Transactions on 
Circuits and Systems for Video Technology, March 2001. 

[4]  B. Girod, J. Chakareski, M. Kalman, Y. Liang, E. Setton, and R. 
Zhang, “Advances in Network-Adaptive Video Streaming”, 2002 
Tyrrhenian Inter. Workshop on Digital Communications, Sept 2002. 

[5]  Y. Wang, J. Ostermann, and Y.-Q. Zhang, Video Processing and 
Communications, New Jersey, Prentice-Hall, 2002. 

[6]  www.realnetworks.com 
[7]  www.microsoft.com/windows/windowsmedia 
[8]  G. K. Wallace, “The JPEG Still Picture Compression Standard,” 

Communications of the ACM, April, 1991. 
[9]  V. Bhaskaran and K. Konstantinides, Image and Video Compression 

Standards: Algorithms and Architectures, Boston, Massachusetts: 
Kluwer Academic Publishers, 1997. 

[10]  J. Apostolopoulos and S. Wee, ``Video Compression Standards'', Wiley 
Encyclopedia of Electrical and Electronics Engineering, John Wiley & 
Sons, Inc., New York, 1999. 

[11]  “Video codec for audiovisual services at px64 kbits/s”, ITU-T 
Recommendation H.261, Inter. Telecommunication Union, 1993. 

[12]  “Video coding for low bit rate communication”, ITU-T Rec. H.263, 
Inter. Telecommunication Union, version 1, 1996; version 2, 1997. 

[13]  ISO/IEC 11172,  “Coding of moving pictures and associated audio for 
digital storage media at up to about 1.5 Mbits/s.”  International 
Organization for Standardization (ISO), 1993. 

[14]  ISO/IEC 13818.  “Generic coding of moving pictures and associated 
audio information.”  International Organization for Standardization 
(ISO), 1996. 

[15]  ISO/IEC 14496. “Coding of audio-visual objects.” International 
Organization for Standardization (ISO), 1999. 

[16]  M. Gerla and L. Kleinrock, “Flow Control: A Comparative Survey,” 
IEEE Trans. Communications, Vol. 28 No. 4, April 1980, pp 553-574. 

[17]  V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM, 
August 1988. 



Video Streaming: Concepts, Algorithms, and Systems 33

 
[18]  M. Mathis et al., “The Macroscopic Behavior of the TCP Congestion 

Avoidance Algorithm,” ACM Computer Communications Review, July 
1997. 

[19]  J. Padhye et al., “Modeling TCP Reno Performance: A Simple Model 
and its Empirical Validation,” IEEE/ACM Trans. Networking, April 
2000. 

[20]  W. Tan and A. Zakhor, “Real-time Internet Video using Error-
Resilient Scalable Compression and TCP-friendly Transport Protocol,” 
IEEE Trans. on  Multimedia, June 1999. 

[21]  S. Floyd et al., “Equation-based Congestion Control for Unicast 
Applications,” ACM SIGCOMM, August 2000. 

[22]  S. McCanne, V. Jacobsen, and M. Vetterli, “Receiver-driven layered 
multicast”, ACM SIGCOMM, Aug. 1996. 

[23]  S. Wee, J. Apostolopoulos and N. Feamster, “Field-to-Frame 
Transcoding with Temporal and Spatial Downsampling,” IEEE 
International Conference on Image Processing, October 1999. 

[24]  P. White, “RSVP and Integrated Services in the Internet: A Tutorial,” 
IEEE Communications Magazine, May 1997. 

[25]  M. Kalman, E. Steinbach, and B. Girod, "Adaptive Media Playout for 
Low Delay Video Streaming over Error-Prone Channels," preprint, to 
appear IEEE Trans. Circuits and Systems for Video Technology. 

[26]  Y. Wang and Q. Zhu, “Error control and concealment for video 
communications: A review,” Proceedings of the IEEE, May 1998. 

[27]  N. Färber, B. Girod, and J. Villasenor, “Extension of ITU-T 
Recommendation H.324 for error-resilient video transmission,” IEEE 
Communications Magazine, June 1998. 

[28]  R. Talluri, “Error-resilient video coding in the ISO MPEG-4 standard,” 
IEEE Communications Magazine, June 1998. 

[29]  P. Chou and Z. Miao, “Rate-distortion optimized streaming of 
packetized media”, IEEE Trans. on Multimedia, submitted Feb. 2001. 

[30]  D. Clark and D. Tennenhouse, “Architectural Considerations for a 
New Generation of Protocols,” ACM SIGCOMM, September 1990. 

[31]  B. Girod and N. Färber, “Feedback-based error control for mobile 
video transmission”, Proceedings of the IEEE, October 1999. 

[32]  S. Fukunaga, T. Nakai, and H. Inoue, “Error resilient video coding by 
dynamic replacing of reference pictures”, GLOBECOM, Nov. 1996. 

[33]  S. Wenger, “Video Redundancy Coding in H.263+”, Workshop on 
Audio-Visual Services for Packet Networks, September 1997. 

[34]  V. Vaishampayan and S. John, “Interframe balanced-multiple-
description video compression”, IEEE Inter Conf. on Image Processing, 
Oct.1999. 

[35]  A. Reibman, H. Jafarkhani, Y. Wang, M. Orchard, and R. Puri, 
“Multiple description coding for video using motion compensated 
prediction”, IEEE Inter. Conf. Image Processing , October 1999. 

[36]  J. Apostolopoulos, “Error-resilient video compression via multiple 
state streams”, Proc. International Workshop on Very Low Bitrate Video 
Coding (VLBV'99), October 1999. 

[37]  J. Apostolopoulos and S. Wee, “Unbalanced Multiple Description 
Video Communication Using Path Diversity”, IEEE International 
Conference on Image Processing, October 2001. 



Chapter 1 34

 
[38]  J. Apostolopoulos, "Reliable Video Communication over Lossy Packet 

Networks using Multiple State Encoding and Path Diversity," Visual 
Communications and Image Processing, January 2001. 

[39]  N. Gogate and S. Panwar, “Supporting video/image applications in a 
mobile multihop radio environment using route diversity”, 
Proceedings Inter. Conference on Communications, June 1999. 

[40]  N. Gogate, D. Chung, S.S. Panwar, and Y. Wang, “Supporting 
image/video applications in a mobile multihop radio environment 
using route diversity and multiple description coding,” Preprint. 

[41]  A. Reibman, Y. Wang, X. Qiu, Z. Jiang, and K. Chawla, “Transmission 
of Multiple Description and Layered Video over an (EGPRS) Wireless 
Network”, IEEE Inter. Conf. Image Processing, September 2000. 

[42]  J. Apostolopoulos, W. Tan, S. Wee, and G. Wornell, "Modeling Path 
Diversity for Multiple Description Video Communication," IEEE Inter. 
Conference on Acoustics, Speech, and Signal Processing, May 2002. 

[43]  J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, "On Multiple 
Description Streaming with Content Delivery Networks," IEEE 
INFOCOM, July 2002. 

[44]  Y. Liang, E. Setton and B. Girod, “Channel-Adaptive Video Streaming 
Using Packet Path Diversity and Rate-Distortion Optimized Reference 
Picture Selection”, to appear IEEE Fifth Workshop on Multimedia 
Signal Processing, Dec. 2002. 

[45]  www.3gpp.org 
[46]  www.isma.tv 
[47]  S. Cheung, M. Ammar and X. Li, “On the use of Destination Set 

Grouping to Improve Fairness in Multicast Video Distribution,” IEEE 
INFOCOM, March 1996. 

[48]  W. Tan and A. Zakhor, “Video Multicast using Layered FEC and 
Scalable Compression,” IEEE Trans. Circuits and Systems for Video 
Technology, March 2001. 

[49]  S. Wee, J. Apostolopoulos, “Secure Scalable Video Streaming for 
Wireless Networks”, IEEE International Conference on Acoustics, 
Speech, and Signal Processing, May 2001. 

[50]  S. Wee, J. Apostolopoulos, “Secure Scalable Streaming Enabling 
Transcoding without Decryption,” IEEE International Conference on 
Image Processing, October 2001. 

[51]  Z. Miao and A. Ortega, “Scalable Proxy Caching of Video under 
Storage Constraints,” IEEE Journal on Selected Areas in 
Communications, to appear 2002. 

[52]  S. Roy, B. Shen, V. Sundaram, and R. Kumar, “Application Level 
Hand-off Support for Mobile Media Transcoding Sessions”, ACM 
NOSSDAV, May, 2002. 

[53]  V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, 
"Distributing streaming media content using cooperative networking," 
ACM NOSSDAV, May 2002. 

[54]  T. Nguyen and A. Zakhor, "Distributed video streaming over internet" 
SPIE Multimedia Computing and Networking 2002, January 2002. 

[55]  J. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror 
sites in parallel: Using tornado codes to speed up downloads,” IEEE 
INFOCOM, 1999. 


