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 The purpose of this paper is to show how easy in fact it is to add, subtract, 
multiply and divide even large Roman numerals in ways that are isomorphic to 
the usual methods of carrying out these operations on the abacus.  Roman 
numerals are regularly criticized as inappropriate for carrying out these 
calculating in an efficient way, and even historical claims are made about the 
administrative inefficiencies the numeral system imposed on Roman 
bureaucracy.  The blame is placed on the lack of 0.  These claims are all false.  It 
is easy to represent all the positive rationals and to carry out the basic numerical 
operations quickly and efficiently, even without 0.  Moreover, the system may 
easily be supplemented to include zero, the negative rationals and even decimal 
representations of the reals.  First we must define clearly what a Roman numeral 
is.  We shall do so hand in hand with definitions of the Arabic system so we can 
point out similarities and differences.   
 
1.  Definitions of the Numeral Systems 
 

Basic Syntax.  Both number systems work by representing multiple units of 
powers of 10.  A single numeral, for example, may represent two 1’s, three 10’s, 
and seven 100’s.  In Arabic numerals this number is represented by 732.  In 
Roman numerals it is named by DCCXXXII.  In this section we will define the 
syntax and semantics of the numerals in their respective systems. 

We begin by laying down some conventions about syntax, i.e. about how to 
talk about signs and strings of signs.  Logicians (and linguists) call an individual 
symbolic letter or symbol a sign. Included in signs are both individual letters of 
the alphabet and mathematical symbols. Here we shall be making use of a 
limited set of so-called “basic signs”: 
 

The basic signs for Arabic numerals (in their natural order <) are 
0,1,2,3,4,5,6,7,8,9. 
The basic sign for Roman numerals (in their natural order <) are I and V. 

 

                                            
1
For a discussion of the multiplication algorithm see Michael Detlefsen, Douglas K. Erlandson, J. 

Clark Heston, and Charles M. Young, “Computation with Roman Numerals, Archive for History of 
Exact Sciences, 15:2 (1976), 141-148.  On the history of the numeral systems as described here 
see George Ifrah, From One to Zero: A Universal History of Numbers (New York: Viking Penguin, 
1987 [1981]), Lowell Bair, trans. 
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We next introduce vocabulary for describing the result of combining 

individual signs to form longer expressions.  Two signs s and s are juxtaposed 

by first writing the sign s and then writing the sign s  to its immediate right. This 
process of writing one sign to the right of another is called concatenation.  By 
repeating the process, a finite series of signs can be written one next to the 
other.  Any finite concatenation of signs is called by linguists a string.  Arabic 
and Roman numerals are strings composed of their respective basic signs. 

To define these numerals precisely, we also need a way to label the 
position of a sign within a string and to count the number of places it is from the 
right hand terminus of the string.  For this purpose we will use subscripts.  By 
en…e0 we mean the result of concatenating the individual signs en,…,e0 . 
To define this idea more rigorously, let us introduce the symbol ^ to represent the 
operation of concatenation, i.e. x^y = xy.  A special case is x^x = xx.   
 
Let us also use the letter e with and without subscripts to range over signs.  
Using this notation, ei,…,ej are all signs and { ei,…,ej } is a set of signs.    
 
Then en…e0,  the finite concatenation of e0,…,e0,    defined recursively as 
follows: 

e1e0 = e1^e0 

en+1…e0 =   en+1^en…e0 
Each ei  in en…e0 is called an occurrence of ei  in en…e0,  and it is possible that  
the same sign occur more than once.  That is, it is possible that ei be the same 
sign as ej . 

Note that in the notation en…e0 the role of subscripts in this notation is 
simply to indicate that ei and ej are different occurrences of a signs and to 
enumerate them, counting from the right.  The subscript is not part of the sign 
itself. 
 
Examples 

a^b^c = abc 
a^b^a=aba 
a^a^a=aaa 
a0=a 
a2b1c0= a^b^c = abc 
a2b1a0= a^b^a=aba 
a2a1a0= a^a^a=aaa 
 

 The individual signs that make up numerals in both number systems are 
marked by features that indicate what power of 10 they represent.  In Arabic 
numerals this feature is the number of the position they hold counting from the 
right.  In Roman numerals position is not important.  Rather the basic signs 
themselves change depending on what power of ten they represent.  One way 
this is done is by introducing an entirely new symbol for each order of 10 to stand 
for a single unit of that order, e.g. I stands for a single unit of 1’s (for 100), to X for 
a unit of 10’s (for 101), to C for a unit of 100’s (for 102), to M for a unit of 1000’s 
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(for 103).   However, since there are an infinite number of orders of 10, and we 
have only finite capacities, we cannot continue to invent a new symbol for each 
order.  Some other devise must be introduced to represent higher powers.  Over 
the centuries the users of Roman numerals invented several notations for this 
purpose.   

Perhaps the best known is the vinculum (or titulus in mediaeval Latin) that 
consists of a superscripted bar over a numeral n.  The bared n stands for 1000 
n’s.   

 

D


=500,000 

M


= 1,000,000 

X


V


I

= 18,000 

 
If the vinculum turned down at the edges the subtended number n, the whole 
represents 100,000 units of n: 

┌─┐ 
 XV =1,500,000 

┌─┐ 
 XV X


V


I

CCLII =1,518,252 

 
In practice the Romans did not use multiple bar superscripts above a single 
letter.   

A similar device of flanking curves or “legs” was adapted from Etruscan 
numeration.  Each pair of symmetric legs indicates a multiple of 1,000.   It is this 
notation that gave rise to the use of M for 1000 (it is not from mille) and D for 
500:   
 

 =   =   = M = 1,000 

 =    = D = 500 

 =         =   10,000   

 =           =   100,000 
 
Both notational conventions are found in mediaeval usage. 

A more general convention was a special device of prefixing a lower 
number n to a higher number m to obtain the concatenated form nm.  (Note that 
this notation is not to be confused with so-called subtractive notation of IV for IIII, 
IX for VIIII, XC for LXXXX etc., which was not standardized until relatively recent 
centuries. )  Here nm stands for the Roman numeral that consists of writing m n 

times, i.e. it stands for nm.  Some authors use the convention that the second 
and higher number is written as a super or subscript: 

 
XVMDXXI = XVMDXXI = 15,521 

 
This notation is in fact equivalent to the superscript notation introduced below 
since any In or Vn  may be written as In* or Vn* (or as n*V if V is greater than n*) 
such that n* is 10 raised to the nth power.  With the addition of this notation, it 
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follows that every positive integer has at least one finitely long Roman numeral 
that names it, and we shall state this result more formally shortly.    
 Since our purpose in these notes is to explore how easy it is, in general, to 
add, subtract, multiply and divide Roman numerals, in a way similar to the normal 
methods for doing these operations on the abacus, it will be convenient to use a 
simpler notation to represent units and fives of the various powers of 10.  Rather 
than superscripts let us modify the vinculum notation.  If there is no bar then let 
us understand a numeral as  standing for units of the 0 power of 10.  If there are 
n bars, let it stands for units of the nth power of 10.  For example: 
 

I1= I

= X   

V1 = 
V


 = L 

I2 = I


= X


 =C  

V2
 = V


 = L

 = D 

I3 = 1


 = X


= C


 = M 

V3 = V


 = L


 = D


 
 
Moreover, let us define the notation in a way general enough to apply to Arabic 
numerals as well: 
 

An indexed basic sign is defined as any  e
n
 such that e is a basic numeral 

(Arabic or Roman) and n is a series (possibly empty ) of horizontal bars.2   
 
In the case of both Arabic and frequently even Roman numerals, we will rewrite e

n
 

as en and replace the n with the Arabic numeral for the number of bars in n. 
Thus,  1

=  will be rewritten 12 and frequently I
=  will be rewritten I2. 

According to this convention, if there are no bar at all over e, then e 
represents units in the 0 power of 10, i.e. units; one bar means that e  represents 
units in the 1st power of 10, i.e. tens; two bars indicates it represents the 2nd 
power of 10, 100’s (i.e. 102), etc. In principle there could be any finite number of 
bars above a letter,  If there were 2534 bars above I, then the numeral would 
represent of units of 12534.  Mathematically, the use of bars has the nice feature 
that it allows us to avoid the circle of having to appeals to numerals as 
superscripts in the very definiens of  numeral.   It should be stressed that this 
notation departs from the historical titulus notation, which represented multiples 
of 1000 and which did not employ multiple bars over a single numeral. 

Let us now complete the syntax for the core notion of numeral by 
presenting the actual definition of a numeral in its respective system.  We do so 
by combining in a single notation a finite concatenation of indexed basic signs. 
 

                                            
2 Here is a more formal recursive definition of  e

n
: 

e 
1
 =e


 

e
n+1

= e
n
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An indexed Arabic/Roman numeral (in non-ordered form) is defined as 
any n place concatenation ei

n…ek
0 of indexed basic Arabic/Roman signs 

ek,…, ei. 
 

We extend the notion of natural order  to indexed numerals by ranking one of 
two numerals above the other if its index is higher, or if their indexes are th same, 
and ranks prior to having an index, or if both numerals have the same index and 
neither ranks higher than the other prior to having an index (which happens only 
if the two basic numerals are same).  

 
For any indexed numeral, xi

yj iff, either  
1. i<j,   
2. i=j and y<x, or  
3. i=j and x=y.   

 
Examples 

X

 X


 because 1<2 

I



 
V


 because I<V 

I

 = I


 because I = I 

4  4

 because 0<1 

2

  4


 because 2<4 

2

 = 2


 because 2=2 

 
Basic Semantics.  To “interpret” these number systems, we need to assume 

that we can talk about the natural numbers.  In doing so we must be careful that 
we do not assume that we already understand the numeral systems we are 
defining.  In particular we must not assume we already understand the Arabic 
numeral system.   We can avoid this circle by referring to the natural numbers as 
they are constructed in set theory.  It is possible to define the set Nn of natural 
numbers, and a series 0,1,2,3,4,… of names for them, without presupposing the 
definition of the use of the Arabic system.  The details are technical and may 
simply be assumed here.3   We will also assume that the identity relation = and 

the operations of s (successor), + (addition) and  (multiplication) on Nn are well 
defined.  Note that these too are definable in set theory.  Here s(n) stands for the 
successor n+1 of the natural number n.  For convenience and to aid 
understanding, we shall use below the bold face notation 0,1,2,3,4,… as 
abbreviations of the set theoretic names of the natural numbers, e.g. 0 is short 

for zero defined in set theory, namely it is short for  (the empty set), and 1 fis 

short for { }. Note that these bold face symbols are not the Arabic numerals, but 

                                            
3 First define 0 as .  Next define the successor operation s as follows: for any x , 

s(x)=x{x}.  Then the set of natural numbers Nn is defined as the least set A such that 0 is in A 
and for any x, if x is in A, then so is s(x).  We then define individual names for members of Nn: 1 
is s(0), 2 is s(1), 3 is s(2), etc. 
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abbreviations for set theoretic terms defined independently of the Arabic numeral 
system. 

With these assumptions we now define , the standard interpretation, for 
each system. 
 

Recursive Definition of , the standard interpretation, for indexed Arabic 
numerals 

(00) = 0 

(10) = 1 

(20) = 2 

(30) = 3 

(40) = 4 

(50) = 5 

(60) = 6 

(70) = 7 

(80) = 8 

(90) = 9 

(en+1) =  (en)10  
 

Recursive Definition of , the standard interpretation, for indexed Roman 
numerals 

(I0) = 1 

(V0) = 5 

(en+1) =  (en)10 
 

Theorem.  (en+1) = (en)10 = 1n
(e)   

 
Examples 

(43) = (42)10=(41)1010 = (40)101010 =  4101010 = 4000 

(V3) = (V2)10=(V1)1010 = (V0)101010 =  5101010 = 5000 
 

Definition of  for complex Arabic/Roman numerals: 

(ei
n…ek

0) = (ei
n)+…+(ek

0) 
 
Examples 

(12) = 11010 = 100 

(23) =21010 10 = 2000 

(23
11

2
0) = (23)+(12) = (2101010) + (11010) = 2100 

(I2) = 11010 = 100 

(V3) =11010 10)  = 5000 

(I21V
3

0
 ) = (I2)+(V3) = (11010)+( 1101010) = 1500 

 
Theorem.  For any non-zero natural number n there exists a roman numeral n 

such that (n) =  n.    
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For convenience we will introduce the identity sign = so that we can write 

“equation” using Arabic and Roman numerals.  The equations n=m  is true in the 

standard interpretation  if and only if  assigns to the two numerals n and m the 
identical natural number:  
 

(n=m) =T iff (n)=(m)  
 

Rationals and Real Numbers.  It should be remarked that it is no more 
difficult in Roman than Arabic numerals to extend the system to represent 
positive rational numbers, zero, the negative rationals and the reals.  This is true 
since every rational may be named by decimal notation, which may be used in 
the Romans as well as the Arabic system.   In the Roman numeral system all we 
need do is to introduce notation for representing units of the negative powers of 
10.  The notation readily lends itself to doing so though the Romans and 
mediaeval users did use the Roman numeral system to name the fractions 
between 1 and 0 but rather used specific names for commonly used factions, e.g. 
one half for ½,, a third for .333…. and a quarter for ¼.4  These extensions to not 
provide a symbol for 0.  However, as will be clear below when we discuss the 
abacus, 0 may be regarded as a completely blank abacus (with no active beads) 
or by what linguists call the empty string, i.e. a string composed of zero signs.  As 
will be clear, it remains possible on this understanding of how to represent zero 
to perform the standard operations of addition, subtraction, multiplication and 
division. 
 

Complex Numerals.  Complex numerals as defined so far need not be 
arranged with their component basic sings ordered in increasing value from right 
to left.  Reordering them in this way has two advantages.  First it makes them 
easier to read.  In the case of Arabic numerals it also has the advantage that if 
we introduce 0 as a place holder for powers of 10 that are not represented then 
the actual distance of a basic sign from the right correlates to the power it 
represents, thus permitting us to do away with its superscript index.    

To effect this simplification let us first reorder numerals in increasing value 

(in their “natural order” ) from right to left.    
 
Definition of Ordered Form 

                                            
4 Consider just positive decimals.  The background theory would need to be extended to include 

the set Z
+
 of positive rationals, the relation , and the operations + and , as usually defined.  An 

indexed basic sign would need to be redefined as any  e
n

 or e n such that e is a basic numeral 
(Arabic or Roman) and n is a series (possibly empty ) of horizontal bars.  Again e

n
 is written e

n 
 

and  e n is en.  The definition of  is revised to map indexed basic signs into Z
+
 with the new clause:  

(en-1) =  (en)1/10  It will then follow that for any positive rational n there exists a roman 

numeral n such that (n) = n.   The 3.1417 would be written I0I0I0I1I2I2I2I2I3V4I-4I4
, 

which could be reformulated in bar notation. 
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ei
n…ek

0 is in ordered form if and only if for  ex
m and ey

l in {ei
n,…,ek

0}  if ml, then 

ey
l  ex

m 
 
Theorem.  For any finite set {ei

n,…,ek
0}  of indexed Arabic/Roman numerals 

there is one and only one  complex numeralArabic/Roman, call it or[ei
n…ek

0],  
in ordered form.   

 
Examples 

or[31
36

3
27

5
1]= 75

36
3

23
1

1 
or[32

36
3

24
2

1] = 63
34

2
23

2
1 

or[32
36

3
23

2
1] = 63

33
2

23
2

1 
 
or[|13V

3
2|

5
1] = |53V

3
2|

1
1 

or[|23V
3

2V
2

1] = V3
3V

2
2|

2
1 

or[|23V
3

2|
2

1] = V3
3|

2
2|

2
1 

 
Though the indices in an ordered form are ranked in increasing value from 

right to left, as so far defined a string may contain more than one basic numeral 
of the same index value.  To find a simpler equivalent,  let us eliminate 
(“collapse”) such a numeral into a shorter numeral that represents the same 
natural number.  In an Arabic numeral within a given power of 10, let us replace, 
1+1 by 2, 2+1 by 3, etc. up to 8+1 by 9.  Let us also replace 9+1 of one power by 
1 of the next power. In a Roman numeral let us replace within a given power of 
10 a series of five I’s by a V of that power, and two V’s of a power by one I of the 
next higher power.  Given the standard interpretation, it  is a simple truth of 
arithmetic that the result will name an identical number: 
 
Theorem 

ei
n… In+1

i …ek
0  =  ei

n+1…Vn
i+1V

n
i …ek

0 
ei

n…Vn
i …ek

0  =  ei
n+4…Ini+4I

n
i+3I

n
i+2I

n
i+1I

n
i …ek

0 

 
Definition of (Non-Redundant) Collapsed Roman Numerals 

For any string s=ei
m…ek

0, clps[ei
m…ek

0], the collapsed form of s is the 

unique string s in ordered form (i.e.s =or[s]) such that for no n,u,v,l is it the 

case that either s= eu
l+1…Vn

i+1V
n

i …ev
0, or s= eu

l+4…Ini+4I
n

i+3I
n

i+2I
n

i+1I
n

i …ev
0. 

 
Theorem. For any Arabic/Roman numeral ei

n…ek
0 there is one and only one 

clps[ei
m…ek

0]  and it is an Arabic/Roman numeral in ordered form.   
 
(Proof is by induction.) 
 
Theorem.  For any Arabic numeral ei

n…ek
0,  

(ei
n…ek

0) = (or[ei
n…ek

0] ) = (clps[ei
n…ek

0]) 
 

In Roman numerals it often happens that there are multiple basic 
numerals with of the same index.  This happens in Roman numerals like V0

2I
0

1I
0

0, 
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which contains  I01I
0

0.   It is for that reason that each basic expression in Roman 
numerals must retain its index information, either as bar notation or in some other 
way.  It is customary, however, to simplify this information by representing it in a 
series of abbreviated forms.  The familiar symbols below abbreviate the basic 
numerals of the early indices of I and V: 
 
Definitions 

ei
n… Xi …ek

0  =  ei
n… I1i …ek

0 
ei

n… Li …ek
0  =  ei

n… V1
i …ek

0 
ei

n… Ci …ek
0  =  ei

n… I2i …ek
0 

ei
n… Di …ek

0  =  ei
n… V2

i …ek
0 

ei
n… Mi …ek

0  =  ei
n… I3i …ek

0 
 

Since, however,  X,L,C,D,M only go so far, the bar notation is extended to them.  
This is possible because they abbreviate bared basic numerals for which the bar 
notations defined.  Thus, the identities below follow from the definitions above 
and bar notation. 
 
Theorem  

I1= I

= X 

V1 = 
V


 = L 

I2 = X


 =C  

V2
 = V


 = L

 = D 

I3 = 1


 = X


= C


 = M 

V3 = V


 = L


 = D


 
 
Since each component basic sign of a complex Roman numeral retains its index, 
once the components have be put in ordered form and collapsed, the subscript 
notation conveys no information, and may be simply deleted. 
 
Theorem 

For any Roman numeral, ei
n…ek

0  if clps[ei
n…ek

0] = eu
m…ev

0 then eu
m…ev

0  is 
the finite contamination eu…ev and clps[ei

n…ek
0] = eu…ev. 

 
Given that it is not possible in general to represent the index of a component of a 
Roman numeral by its position in the right to left rank, the custom arose to 
abbreviate longer strings of components within a Roman numeral in a simpler so-
called “subtractive” notation, for example, IV for IIII, XL for XXXX, DM for 
DCCCCL, etc. 
 
Definition.   

In I
n+1 = VnInInInIn 

In V
n+1

i   =  InInInIn 
Vn

 I
n+1

  =  VnInInInIn 
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Example 

(V2I3I0V1) =  (I3V2V1I0) 

  =  (I3I2I2I2I2I2I1I1I1I1I1I0)  

  =  (I3)+(I2)+(I2)+(I2)+(I2)+(I2)+(I1)+ (I1)+ 

    (I1)+(I1)+(I1)+(I0) 
  =  1551 

 
However, because subtractive abbreviations introduce a second value for I and 
V, making them ambiguous as a function of their position, it prevents the 
automatic application of the normal Roman numeral algorithms for addition and 
multiplication.  It is best, therefore, to do without it in computation.  In practice 
doing so means eliminating all subtractive abbreviation before doing any 
computation, and then if necessary, reintroducing them afterwards.    
 
Example.  Let  ei  be I3 and ek be I2.  Then, ei

1e
k
0 is eiek, which is I3 I

2. 
 
Abbreviations within Arabic Numerals 
Let us now return to Arabic numberals and explain how they are to be collapsed. 
By making use of the basic fact arithemetic that a number from 1 to 9 is identical 
to the successor of its predecessor, any the constant numeral for a number may 
replace any series of earlier numbers in the series that sum to it.   
 
Theorem 

ei
n…2n

i …ek
0  =  ei

n+1…1n
i+11

n
i …ek

0 
ei

n…3n
i …ek

0  =  ei
n+1…2n

i+11
n

i …ek
0 

ei
n…4n

i …ek
0  =  ei

n+1…3n
i+11

n
i …ek

0 
ei

n…5n
i …ek

0  =  ei
n+1…4n

i+11
n

i …ek
0 

ei
n…6n

i …ek
0  =  ei

n+1…5n
i+11

n
i …ek

0 
ei

n…7n
i …ek

0  =  ei
n+1…6n

i+11
n

i …ek
0 

ei
n…8n

i …ek
0  =  ei

n+1…7n
i+11

n
i …ek

0 
ei

n…9n
i …ek

0  =  ei
n+1…8n

i+11
n

i …ek
0 

ei
n… In+1

i …ek
0  = ei

n+1…9n
i+11

n
i …ek

0 
 
Definition of (Non-Redundant) Collapsed Arabic Numerals 

clps[ei
n…ek

0], the collapsed form of a string ei
n…ek

0, is the unique string  s 

in ordered form, if it exists, (s)= (or[ei
n…ek

0] ) and is such that for all ex
i  

and ey
j for i,j=1,…,n,  if ij, the xy. 

 
Theorem.  For any Arabic numeral ei

m…ek
0,  clps[ei

m…ek
0] exists, is an Arabic 

numeral, and is unique. 
 
(Proof is by induction.) 
 

Theorem.  For any Arabic numeral ei
m…ek

0,  (ei
n…ek

0)  = (or[ei
n…ek

0] ) = 

(clps[ei
n…ek

0]) 
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The Placeholder 0 in Arabic Numerals   
 

Thus far, the value of a basic numeral within a complex numeral is 
indicated only by its superscripted index.  In general, a signs index is not the 
same as its rank in the left to right order, even if the numeral is in ordered form.  
This happens because, even if the signs in a numeral are ordered, there may be 
some power of 10, i.e. some index value, that is not represented.  For example in  
32

14
0

0, there is no sign with index 1, which would represent 10’s.  As a 
consequence, the superscript and the subscript of  the components are not the 
same.  Now, if every power of 10 is represented in a numeral, two things follow: 

(1) ei
n…ek

0 is in ordered form and  
(2) in every case the superscript and the subscript are the same. 

If both these condition hold, then we can drop the superscripts and subscripts, 
because we can tell from a sign’s rank what power of 10 it represents.  We count 
from the right.  A sign on rank n represents units of the n-the power of 10.  To do 
this however in for every number there must be some sign occupying every rank, 
even for those powers of 10 that have no value listed.  It was for this purpose that 
the Arabs invented 0.  In order to permit the dropping of super and subscripts, let 
us introduce placeholder 0n

m
  for missing powers n. That is,  ei

n…ek
0  lacks a 

component en
m , we insert 0n

m  and reorder.   This placeholder 0n
m represents 

zero units of the power of 10.  That is, it stands for 0.   
To insert in the string ei

n…ej
0 we first collapse ei

n…ej
0 to ew

l…ez
0.  We now 

identify these powers u,…,v not represented in ew
l…ez

0. Supose there are m+1 of 
these.  We then constructe  m+1 sings represent zero value ei

n…ej
0, concatenate 

them to ew
l…ez

0, and order the result: 
 
pl[ei

n…ej
0], the placeholder form of an Arabic numeral ei

n…ej
0 is defined as 

or[ew
l+m+1…ez

0+m+1e
u

m…ev
0] such that  

1.  clps[ei
n…ej

0] = ew
l…ez

0, and 

2.  {eu
m…ev

0 } is { 0x
k | ki, and there is no ex

y such that ex
y in {ei

n…ej
0}}. 

 
Since pl  simply inserts 0’s into a string series with for positions with superscripts 
and then renumbers, it is well-defined for any series and yields a unique output.  
Conversely, deleting the 0’s and renumbering restores the original series.  This is 
true even if the series has not be reordered or collapsed.  It follows that  pl is well 
defined and biunique for all Arabic numerals.  
 
Theorem 

For any Arabic numeral ei
n…ek

0  such that pl[ei
n…ek

0] = eu
m…ev

0 , e
u

m…ev
0 is 

the finite concatenation eu…ev and pl[ei
n…ek

0] = eu…ev. 
 
Example.  An Arabic Numeral with 0.    Consider 42

4
 24

3
 30

2 5
0

17
1

0.  Reorded, it 
becomes  24

44
2

37
1

23
0

15
0

0.  This collapses to 24
34

2
27

1
18

0
0. This number lacks a 

component representing value of the 3rd power of 10, and thus requires a 
placeholder for that power.  The placeholder form is then  24

40
3

34
2

27
1

18
0

0 .    If we 
simplify deleting super and subscripts, this becomes 20478. 
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Example 
 

(42233071) =  (23427130) 

 = (23)+(42)+(71)+(30) 
 =  20000 + 0 +400 + 70 + 3 

=  20473 
 
2.  The Abacus 
 

It is helpful to think of indexed notation en in terms of an abacus. In the 
notation en,  the superscript n  indicates a row in an abacus: 0 names the 
rightmost row (units), 1 the row to its left (hundreds), 2 the next row left 
(thousands), etc. The numeral e indicates how many beads on that row you 
move.  An abacus for Arabic numerals of the sort we happily never see beyond 
the second grade is moronically simple.  It has 10 beads on parallel rows (plus 
perhaps an eleventh bead for “carrying”).  A bead is in resting position if it is 
pushed down, and in active position if pushed up. Each row from right to left 
represents increasing powers of ten, and each bead on a row in active position 
represents one unit of that power. 

 

 
A Chinese Abacus5 

 
An  abacus for Roman numerals (which is the usual sort of abacus, 

including those used in Japan and China) there are likewise a series of parallel 
rows from right to left representing the increasing powers of ten.  However each 
row is divided into to parts, a lower part that contains four beads (and on many 
Chinese abaci there is also a fifth bead  for “carrying”), and an upper part 
containing a single bead (and often a second bead for “carrying”).  Lower beads 
are active when pushed up, and upper beads when pushed down.  Each beads 
in the lower part represents one unit of the power of 10 represented by its row, 
and each upper bead represents five units of that power.    
                                            
5
 Image from:  

http://www.hh.schule.de/metalltechnik-didaktik/users/luetjens/abakus/china/china.htm 



 Roman Numerals 

Page 13 

To represent en on an Arabic abacus, you simply push e beads into the 
active position (up) on row n+1.  For example, the Arabic numeral 2473 in 
indexed notation is 23

34
2

27
1

13
0

0, or  
13

171
3

161
3

151
2

141
2

131
2

121
2

111
1

101
1

81
1

71
1

61
1

51
1

41
1

31
0

21
0

11
0

0, 
1313131212121211111111111111101010 

Each 1n represents one bead in the active position on the nth row. Start at the 
right and move down the basic numerals from 0 to 17,  moving one bead up on 
the row indicated by the superscript.  Conversely, if you find the beads on the 
abacus arrayed in the form 

1313131212121211111111111111101010, or 
13

171
3

161
3

151
2

141
2

131
2

121
2

111
1

101
1

81
1

71
1

61
1

51
1

41
1

31
0

21
0

11
0

0, 
you can determine (“read”) that it means what we call in Arabic notation 2473. 

Now lets represent en on a Roman (or Japanese or Chinese) abacus.  If en 
is, for example, the Roman numeral CCV or C2C1V0 abbreviates I22I

2
1V

1
0 or  

I2I2V1.  Each In represents one bottom bead on row n in active position (up), and 
each Vn represents one top bead on row n in active position (down).  Thus I2I2V1 
is represented by moving two lower beads up on row 2 (third from the right) and 
one top bead down on row 1 (second from right). 

 

 
3.  Addition in Arabic and Roman Numerals, Roman Style 
 
The interpretation of the 2-place addition operation + is defined as follows:   
 

For any Arabic/Roman numeral,  

(ai
n…ak

0  + bi
m…bk

0) = (ai
n…ak

0 ) + (bi
m…bk

0)  
 
From this definition a series of useful elementary theorems follow by elementary 
arithmetic: 
 
 
Theorem 

1.  If ai
n…ak

0  and bi
m…bk

0  are Roman numerals, then 
  ai

n…ak
0 + bi

m…bk
0  =  clps[ai

n+m+1…ak
m+1b

i
m…bk

0)] 
2.  If ai

n…ak
0  and bi

m…bk
0  are Arabic numerals, then 

ai
n…ak

0 + bi
m…bk

0  =  pl[ai
n+m+1…ak

m+1b
i
m…bk

0)] 
 
Examples 
 
51+25  =  (50 + 1) + (20 + 5) 
   = 50+20+5+1 
  = 70+6 
  = 76 
 
47 + 9 + 8  = 40 + 7 + 9 + 8 
     = 40+24 
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   = 60 + 4 
    = 64 
 
 
Addition Table for Roman Numerals: 

 

 +  Im    Vm 

 In  InIm    VmIn  

Vn VnIm    Vn Vm 

 
 
 
Examples  
 
LI + XXV   = V1I0  I

1I1V0
 

     = V1I1I1V0I0 
   = LXXVI 
 
LI + XXV   = LIXXV 
   = LXXVI 
 
XLVII + IX + VIII   = XXXXVII VIIII VIII 
   = XXXX VV V IIIII IIIII 
   = XXXXX V IIIII IIII 
   = L VV IIII 
   = L X IIII 
 
XLVII + IX + VIII   = XXXXVII VIIII VIII 
     = I1I1I1I1V0I0I0  V

0I0I0I0I0 V
0I0I0 

      = I1I1I1I1 V
0V0V0

 I
0I0I0I0I0 I

0I0I0I0 

      = I1I1I1I1I1V0
 I

0I0I0I0I0 I
0I0I0I0 

      = V1V0V0
 I

0I0I0I0 

    = V1
 I

1
 I

0I0I0I0 

        = L X IIII 



 Roman Numerals 

Page 15 

 
Addition and Subtraction on the Abacus  
 
 No doubt the reason the abacus exists and has been used apparently 
independently by such diverse cultures as the ancient Romans, mediaeval 
Europe, and both modern and ancient oriental civilizations is the fact that it 
makes addition both simple and mindless.6   To ai

n…ak
0  + bi

m…bk
0 simple enter 

ai
n…ak

0  on the abacus, then enter on top of it bi
m…bk

0 by first entering bk
0, then 

bk
1, then bk

2, in order until you finally enter bi
m.  The only difficulty is that you may 

be required to move too many beads in a row into the active position than the 
row possess.  In that case you “collapse” or “carry.”   
 

 
A Roman Abacus7 

 
On a Roman abacus, you convert 5 active beads in the lower portion of row n, 
into 1 active bead in the upper portion of n, and 2 active beads in the upper 
portion of row n, to 1 active bead in the lower portion of row n+1.  

On an Arabic abacus you replace 10 active beads in row n, by 1 active 
bead in row n+1.  Note that on an Arabic abacus entering ai

n…ak
0  requires 

pushing ai
n+…+ak

0  beads.  Entering ai
n…ak

0  + bi
m…bk

0 requires entering 
ai

n+…+ak
0+ bi

m+…+bk
0  beads, plus carrying.  Doing so would be an exceedingly 

tedious process, a major reason why the abacus is not used in cultures with 
Arabic numerals. In the seventeenth century, however, Blaise Pascal invented a 
mechanical “adding machine” (called the pascaline) that is essentially a 
mechanized  Arabic abacus, which performs “carrying” automatically.8  
 
4.  Multiplication 
 

                                            
6
 For an online working abacus, in various number bases including Chinese and Roman, go to: 

http://www.tux.org/~bagleyd/java/AbacusAppJS.html 
 
7
 Image from: http://www.hh.schule.de/metalltechnik-didaktik/users/luetjens/abakus/rom-abakus-

en.htm 
8
 See, for example, http://www.macs.hw.ac.uk/~greg/calculators/pascal/Pascaline_Frames.htm. 

http://www.tux.org/~bagleyd/java/AbacusAppJS.html
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The interpretation of the 2-place multiplication operator  is defined as follows:   
 

For any Arabic/Roman numeral,  

(ai
n…ak

0   bi
m…bk

0) = (ai
n…ak

0 )  (bi
m…bk

0)  
 
Like the familiar long multiplication procedure with Arabic numerals, in the 
multiplication algorithm for multiplying with Roman numerals is grounded law of 
distribution of addition over multiplication from number theory.  In law may be 
formulated is various equivalent ways:  
 
Law of Distribution 
 

(x+y)  (u+v)  = [(x u)+(x v)]+[(y u)+(y v)] 
 

(x1+…+xn)  (y1+…+ym)    =  [(x1 y1)+…+ (x1 ym)]+…+ [(xn y1)+…+ (xn 
ym)] 
 

xy   =  
n
i=1xi  

m
j=1 yj   =   

n
i=1

m
j=1 xi  yj 

 
We now make use of the fact that a number in Arabic and Roman notation en…e0  
may be formulated (1n en)+…+ (10 e0).  That is,  
  

(en…e0) = (1n (en))+…+ (10 (e0))   
 
It then follows that binary multiplication obeys the following distribution law:   

 
Theorem.  For any Arabic/Roman numerals an…a0  and bm…b0, 
 

(an…a0  bm…b0 )  =     
 

[(1n (an)) +…+ (10 (a0)) ]  [ (1
n (bm)) +…+ (10 (b0))) ]    = 

  

[((1n (an))  (1
n (bm))+…+ ((1n (an))  (1

0 (b0)))] + … +  

[((10 (a0))  (1
n (bm))+…+ ((10 (a0))  (1

0 (b0)))] 
 
It is also possible to state the results of multiplying one basic numeral by another.  
Indeed this is essentially what we learned in elementary school when we 
memorized (or failed to) the multiplication table. 
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Theorem (Multiplication Table for Basic Arabic Numerals).    If x and y are in 

{1,2,3,4,5,6,7,8,9} and xn and ym are basic Arabic numerals, then  xn
ym  is as 

indicated in the table below: 
 

By combining the basic calculations of the table with the law of distribution it is possible 
to calculate the product of complex Arabic numerals: 
 
Example 
 

5125  =  [(11 5)+(10 1)]  [(11 2)+(10 5)] 

  = [(50 + 1)]  [(20 + 5)] 

   = [(5020)+(120)] + [(505)+(15)] 
  = 1000+20+250+5 
  = 1275 
 
It is essentially this process that we employ in the usual algorithm of “long 
multiplication:” 
       25 

     51 
         5   
       20 
     250 
           +1000 
             1275 
 

Thirty years after Pascal invented his mechanical abacus that allowed for 
addition by automatically converting ten units in column n to one unit in column 
n+1 (thereby carrying a unit values to the next higher order of ten), Leibniz 
invented a machine that would multiply by making use of the same distribution 

 1
m 

2
m
 3

m
 4

m
 5

m
 6

m
 7

m
 8

m
 9

m
 

1
n
 1

n+m 
2

n+m
 3

n+m
 4

n+m
 5

n+m
 6

n+m
 7

n+m
 8

n+m
 9

n+m
 

2
n
 2

n+m
 4

n+m
 6

n+m
 8

n+m
 1

n+m+1
 1

n+m+1
2

n+m
  1

n+m+1
4

n+m
 1

n+m+1
6

n+m
 1

n+m+1
8

n+m
 

3
n
 3

n+m
 6

n+m
 9

n+m
 1

n+m+1
2

n+m
 1

n+m+1
5

n+m
 1

n+m+1
8

n+m
 2

n+m+1
1

n+m
 2

n+m+1
4

n+m
 2

n+m+1
7

n+m
 

4
n
 4

n+m
 8

n+m
 1

n+m+1
2

n+m
 1

n+m+1
6

n+m
 2

n+m+1
 2

n+m+1
4

n+m
 2

n+m+1
8

n+m
 3

n+m+1
2

n+m
 3

n+m+1
6

n+m
 

5
n
 5

n+m
 1

n+m+1
 1

n+m+1
5

n+m
 2

n+m+1
 2

n+m+1
5

n+m
 3

n+m+1
 3

n+m+1
5

n+m
 4

n+m+1
 4

n+m+1
5

n+m
 

6
n
 6

n+m
 1

n+m+1
2

n+m
 1

n+m+1
8

n+m
 2

n+m+1
4

n+m
 3

n+m+1
 3

n+m+1
6

n+m
 4

n+m+1
2

n+m
 4

n+m+1
8

n+m
 5

n+m+1
4

n+m
 

7
n
 7

n+m
 1

n+m+1
4

n+m
 2

n+m+1
1

n+m
 2

n+m+1
8

n+m
 3

n+m+1
5

n+m
 4

n+m+1
2

n+m
 4

n+m+1
9

n+m
 5

n+m+1
6

n+m
 6

n+m+1
3

n+m
 

8
n
 8

n+m
 1

n+m+1
6

n+m
 2

n+m+1
4

n+m
 3

n+m+1
2

n+m
 4

n+m+1
 4

n+m+1
8

n+m
 5

n+m+1
6

n+m
 6

n+m+1
4

n+m
 7

n+m+1
2

n+m
 

9
n
 9

n+m
 1

n+m+1
8

n+m
 2

n+m+1
7

n+m
 3

n+m+1
6

n+m
 4

n+m+1
5

n+m
 5

n+m+1
4

n+m
 6

n+m+1
3

n+m
 7

n+m+1
2

n+m
 8

n+m+1
1

n+m
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theorem used in long multiplication.9  His machine a calculer is constructed so 
that by (1) situating an “adder crank” at a column representing a number l, (2) 
setting a selector value at m, and (3) turning the crank n times, the number m is 
automatically added to the number l as many times as the crank is turned, i.e. m 
times, with any 10 units at a column being converted (“carried”) to one unit at the 
column to its immediate left.  For example, to multiply 24 by 56, you first 
manually add 4 to 24 six times, by situating the “adder” crank at the column 
representing 4, setting the crank to the value 6 and then turning a crank 6 times, 
while the machine automatically carries as required. Then, displacing the adder 
crank one column to the right, you add 2 units (of 10’s) to figure that now 
occupies that column by setting the crank to the value 2 and turning the crank 6 
times, the machine automatically carrying as required.  At that point 25 has been 
multiplied by 6.  Then, displacing the adder crank to the 10’s column, you 
manually add 4 to that column five times by setting the crank to the value 4 and 
cranking five times.  Then, displacing the adder crank one column to the left 
again (to the 100’s column), you then set the crank to the value 2 and crank five 
times.  The product has been calculated by distribution: 

 

(64)+(420)+(504)+(5020)=1344 
 

 A version of the same algorithm works for Roman numerals, and can be 
implemented on the abacus.  We make use of the same distribution law, but 
calculate a multiplication table for basic Roman numerals.  Since there are only 
two, the table is much shorter, making life much happier for Roman children 
leaning how to multiply! 
 
Theorem (Multiplication Table for Basic Roman Numerals).    If x and y are in 

{I, V} and xn and ym are basic Roman numerals, then  xn
ym , then there are four 

cases: 

InIm = In+m
 

InVm = Vm
In = Vn+m

 

Vn
Vm = In+m+1In+m+1Vn+m

 

 
which may be summarized in the table below: 

 

   Im      Vm 

 In  In+m      Vn+m  

Vn Vn+m In+m1In+m+1Vn+m 

 

                                            
9
 See http://www.physique.usherbrooke.ca/~afaribau/essai/essai.html 
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Example 
 

LI  XXV =  (V1I0)  (I1I1V0) 

    =  (V1
 I1)(V1

I1)(V1
V0)(I0I1)(I0I1)(I0V0) 

    = V1+1V1+1I1+0+1I1+0+1V1+0I0+1I0+1V0
 

    =  V2V2 I2I2V1I1I1V0 
    =  DDCCLXXV 
    =  MCCLXXV 
 
It may be helpful to display the steps in the familiar format of “long multiplication:” 
 
  I1I1V0    XXV 

  V1I0                LI 
      V0              V 
    I1       X 
    I1       X 
  V1       L 
          I2            C 
          I2            C 
        V2                      D   
      +V2          +D           . 
     V2V2I2I2V1I1I1V0               DDCCLXXV 
          I3I2I2V1I1I1V0                  MCCLXXV 
  
 
Multiplication on the Abacus  
 
 Multiplication on the abacus exactly follows the “long division” format for 
Roman numerals above.  First the multiplicans and multiplicandum, expressed as 
Roman numerals, are  enter on the abacus.   Ideally the abacus has enough 
rows to do so while still leaving enough room to allow their product to be entered 
as it is calculated.   Usually the multiplicans and multiplicandum are entered on 
the left with one or more empty row left between them to tell them apart, and the 
product is entered on the far right, again with unused rows separating it from the 
other numbers.  When a complex numeral is entered, one bead is placed in the 
active position for each of its component basic numerals.  The multiplication 
process consists of taking each bead of the multiplicans (i.e. each basic 
numeral), multiplying it by each bead of the multiplicandum (i.e. each of its basic 
numerals).  As each of these partial products is calculated it is entered on that 
portion of the abacus reserved for representing the product.  As new products 
are entered on top of the previous total the product grows.  The abacus thus 
keeps running total of the component multiplications as the process progresses.  
In adding a new product to the total of previous products it may well be 
necessary to “carry,” as in normal addition.  In practice, each time you finish 
multiplying the multiplicandum by a component bead in the multiplicans, you 
remove that bead from its active position.  That way the total multiplicans 
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diminishes as the total product grows.  When all the beads of the multiplicans are 
gone, the process is completed. 
 Multiplying by I is easy.  To multiply a bead xn (a basic numeral) by 1m you 
just enter an x bead on the n+mth row of the product. That is, you enter xn+m.  
Indeed, multiplying the entire multiplicandum ei

n…ek
0  by 1m is easy.  You just 

replicate (copy) the entire number in the product.  In doing so, however, you must 
be sure to shift it to the left so that it terminates on row m.  That is, you enter ei+m

 

n…ek+m
 0 .  Again, this will normally require carrying. 

 Multiplying by a bead by V takes more care.  If you are multiplying a bead 
xn (a basic numeral)  by Vm, there are two cases.  If xn is In  again, the process is 
easy.  You simply enter V on the n+mth row,  That is, you enter Vn+m.  You may 
have to carry.  If xn is Vn, then you must enter In+m+1In+m+1Vn+m .  Here because 
there are more numerals involved carrying is more likely.   
 The displayed “long multiplication” above may actually be read as a 
picture of the beads on the abacus.  A basic numeral with superscript n 
represents a bead in row n, and I represents a unit bead (in the lower part) and V 
a five bead in the upper part.  Each horizontal rank in the sum records the results 
of multiplying one bead of the multiplicans by one bead of he multiplicandum.  As 
stipulated in the distribution law, the total product is then the sum of all this 
individual multiplications, i.e. the sum of all the ranks.  

Representing nm on a Roman abacus does not actually require many 
beads because sets of five units of a power are abbreviated by a five bead of that 
power.   On an Arabic abacus, however, a complex number ai

n…ak
0   is made up 

solely of unit beads.  Hence multiplying using the distribution law would require 
multiple steps of multiplying by 1.  That is, multiplying ai

n…ak
0   by bk

0, …, bi  

would require bk
0, …, bi  steps of entering  the complex numeral ai

n…ak
0. to a 

running total.   Though feasible (a machine could do it) the process it would be 
very tedious, another reason why the abacus is not used in cultures that use 
Arabic numerals.   
 
 
4.  Division 
 
The interpretation of the 2-place division operator / is defined as follows:   
 

For any Arabic/Roman numerals  ai
n…ak

0  and bi
m…bk

0 such that 

(bi
m…bk

0)(ai
n…ak

0 ),   (ai
n…ak

0  / b
i
m…bk

0) with remainder r is defined 

the greatest x such that  (bi
m…bk

0)   x = (ai
n…ak

0 )+r .  
 
There is a straightforward way to calculate ai

n…ak
0  / b

i
m…bk

0 and r.   
 
The algorithm consists of repeated applications of the following truth of 
arithmetic: 
 

(x + (y10n)) / y =   10n + (x / y)   
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In the notation of Roman numerals in which the simple concatenation of basic 
numerals is equivalent to addition the law may be formulated: 
 

(xi
n…xk

0 y
k+c

m …yi+c
0) / (y

k
m …yi

0)  =   |
c  ( xi

n…xk
0 ) / (y

k
m …yi

0) 
            

To calculate ai
n…ak

0  / b
i
m…bk

0 and r, first ai
n…ak

0  is reformulated by expansion 
so that it is equivalent to some ci

n…ck
0 b

k+c
m …bi+c

0.  It is possible to do so 

because  is greater than bi
m…bk

0 ai
n…ak

0.   Add Ic to the quotient.  If ci
n…ck

0 < 

bi
m…bk

0, stop, and set r = ci
n…ck

0.  If b
i
m…bk

0 ci
n…ck

0 , the process is repeated 
on the new diminished dividendum.  That is, ci

n…ck
0 / b

i
m…bk

0 is calculated,  
obtaining some du

s…dv
0b

i+t
m…bk+t

0 equal to ci
n…ck

, adding It to the quotient.  The 
du

s…dv
0=r if di

n…dk
0 < bi

m…bk
0 and the process stops, or du

s…dv
0 is the new 

diminished dividendum, and the process is repeated.  Since at some point the 
process stops because the diminished dividendum keeps getting smaller.   
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Example 
 

CCCLV  /  XXV = 
 
I2I2I2V1V0 /  I1I1V0 =  
 
I2V0I2I2V1  /  I1I1V0 = 
 
I2V0   I1+1I1+1V0+1  /  I

1I1V0  = 
    
I1 + (I2V0   /  I1I1V0 )  = 
        
I1 + (V1V1V0   /  I1I1V0)  = 
     
I1 + (V1I1I1I1I1I1V0   /  I1I1V0)  = 
     
I1 + (V1I1I1I1     I1I1V0  /  I1I1V0) = 
      
I1 + I0 + (V1I1I1I1   /  I1I1V0) = 

            
I1 + I0 + (V1I1I1V0V0   /   I1I1V0)  = 
                
I1 + I0 + (V1V0    I1I1V0  / I1I1V0)  = 

                
I1 + I0 + I0 + (V1V0   / I1I1V0)  =  

                     
I1 + I0 + I0 + (I1I1I1   I1I1V0   /   I1I1V0)  =  

                    
I1 + I0 +I0 + I0 + (I1I1I1  /  I1I1V0)  = 

                       
I1 + I0 +I0 + I0 + (I1I1V0V0  / I1I1V0)  =  

                        
I1 + I0 +I0 + I0 + (V0   I1I1V0  /  I1I1V0)  = 

                        
I1 + I0 + I0 +I0 + I0 + (V0     /  I1I1V0)  = 

                                
XIIII, with remainder V 

 
 Note that if the numeral system was extended to allow for the 
representation of decimal factions by allowing basic numerals for the negative 
posers of 10, then the quotient could be a calculated to any desired degree of 
precision. 
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Division on the Abacus 
 

Like multiplication “long division” on the abacus begins by entering both 
dividens and the dividendum, leaving room for the quotient.  The entire dividens 
is “divided into” the dividendum as indicated in the algorithm.  The new 
diminished dividendum is exhibited instantly by subtracting the relevant power of 
the dividens directly from the old dividendum.  As it is subtracted a I of the 
relevant power is added to the quotient.  When the dividendum becomes smaller 
than the dividens, the process stops and the remaining dividendum is literally 
“the remainder”.  The process is easy – easier than multiplication, and easier 
than either multiplication or division with Arabic numerals. 


