Mathematica troubleshooting Math 3350 Prof. Kevin Long

First rule of computer work: **DETAILS MATTER**

Computers are literal-minded, and do **exactly** what you **tell** them to do. It's critical to use very precise language. In conversation with a human, I can write cos(x), Cos(x), cos[x], Cos[x], cos[x], cos[x], and the human will understand from context that I mean "cosine of x." A computer cannot understand anything from context. If the cosine function is defined to be Cos[x], a computer cannot understand that cos[x] is supposed to be a cosine, no matter how obvious it is to **you** that it's a cosine.

If, in an example, I have typed Integrate [Cos[x], x], you will only get the same results if you use **exactly** the same syntax, including spelling, capitalization, commas, brackets [] instead of parentheses (), and so on.

Capitalize built-in function names, and use brackets [] not parentheses () for function arguments

It's Cos[x], not cos[x], Cos(x), cos(x), or cos x.

cos[Pi] doesn't do anything, because the cos function is undefined.

```
\cos[Pi] \cos(\pi)
```

Try Cos[Pi] instead, which will evaluate $\cos \pi = -1$ correctly:

```
Cos[Pi]
```

Use either Exp[x] or E^x for the exponential function e^x , not e^x .

```
f[x_{-}] = e^{x}
```

Here are some examples of what will happen: derivatives and integrals won't be simplified correctly.

```
Integrate[f[x], x] \frac{e^{x}}{\log(e)} D[f[x], x] e^{x} \log(e)
```

These calculations are actually correct, but they're not in the form you'd expect because *Mathematica* can't know that you intend the symbol "e" to mean the number $e \approx 2.718281828459045$. Because it doesn't know what is meant by "e", the

best it can do is leave log(e) in the expressions, unevaluated. The log of e is one, of course.

Instead, use E or the Exp[] function:

That's better.

Similar errors with familiar functions

What's wrong with

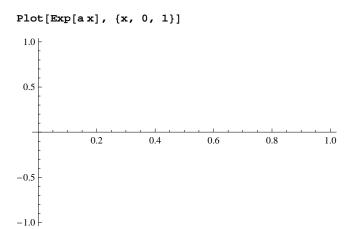
$$\frac{\sin(\mathrm{pi})}{\mathrm{pi}}$$
 and
$$\frac{\sin(\mathrm{pi})}{\mathrm{pi}}$$
 and
$$\mathrm{Integrate}[\cos[\mathrm{Pi}\,\mathbf{x}]\,,\,\{\mathbf{x},\,0\,,\,1\}]$$

$$\int_0^1 \cos(\pi\,x)\,d\,x$$
 and
$$\mathrm{Integrate}[\cos[\mathrm{pi}\,\mathbf{x}]\,,\,\{\mathbf{x},\,0\,,\,1\}]$$

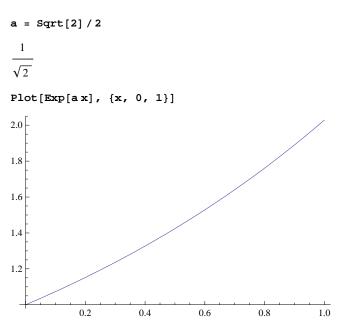
$$\int_0^1 \cos(\mathrm{pi}\,x)\,d\,x$$
 and
$$\mathrm{Integrate}[\cos\mathrm{Pi}\,\mathbf{x},\,\{\mathbf{x},\,0\,,\,1\}]$$

$$\frac{\cos\pi}{2}$$
 and

Can you do the calculation correctly?

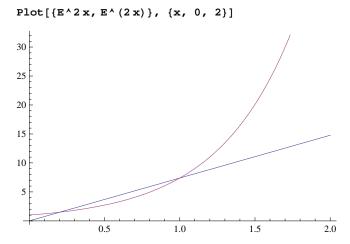

Integrate[CosPix, {x, 0, 1}]

You can't plot a function with undefined symbols in it


If you see an empty plot, check for undefined symbols. For example,

ClearAll[a]

CosPix



It's impossible to plot Exp[a x] because a hasn't been defined, and so the numerical values of e^{ax} can't be computed. If you give a a value, you can do the plot

Be careful with operator precedence

 E^2 x and E^2 x are not the same, as you can see in the plot below

Do you see what caused the problem?

I usually use Exp[z] instead of E^z, in part to help avoid this problem.

Trouble plotting derivatives

It's easy to differentiate

-1.0

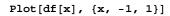
$$D[Sin[x], x]$$
 $cos(x)$

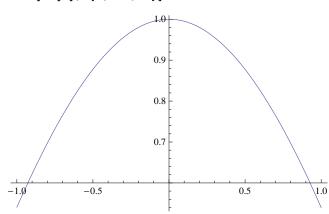
so you'd think it would be easy to plot a derivative

-0.5

-0.5

-1.0


0.5


Unfortunately, the "obvious" way to plot D[Sin[x], x] gave an error message about "not a valid variable." What went wrong? This is a *Mathematica* quirk: in doing a plot, it gives x a numerical value (say -0.9999), and then tries to compute D[Sin[x],x] with x=-0.9999. The derivative with respect to a *numerical value* is a nonsensical operation; you can only differentiate with respect to a *variable*. Hence, the error message about "not a valid variable."

1.0

So, how do you plot a derivative? Create a new function

and plot df.

