
IDL

It saves time for science

An Introduction to Interactive Data Language
http://www.ast.cam.ac.uk/~vasily/idl.htm

Tuesday, 10 November 2009

http://www.ast.cam.ac.uk/~vasily/idl.htm
http://www.ast.cam.ac.uk/~vasily/idl.htm

The (brief) history of IDL

• 1970s: David Stern at LASP, Boulder creates Rufus
and SOL, first array-oriented languages, to analyse
Mars Mariner data

• 1977: RSI founded by David Stern sells first IDL
version (VAX/VMS) to NASA

• 1987: Re-written in C for UNIX release

• 1992-94: available on Linux, Windows and Mac

• 2004: RSI morphs into ITT

Tuesday, 10 November 2009

Who uses IDL?

• Primarily, astronomers and space scientists

Tuesday, 10 November 2009

Best Features

• Scientific community contribution

• Optimised array operations

• Large suite of versatile maths, data analysis and visualisation
routines

• Interactive

• High quality graphics output

• Access to (almost) all code

• Fast, i.e. not slow

• Data structures

• Dynamic variable typing

Tuesday, 10 November 2009

How does it compare?
http://www.ast.cam.ac.uk/~vasily/idl.htm

• IRAF, MIDAS and IDL are used for astronomical data
analysis. IDL is not a replacement for IRAF, but it is easier to read and
customise.

• FORTRAN, C and IDL are similar programming languages.
IDL is slower, but also provides an environment for scientific data analysis.

• MATHEMATICA, MAPLE, MATLAB and IDL
can do maths. IDL can not solve symbolically, but has more powerful
graphics and knows astronomy.

• SUPERMONGO, PGPLOT and IDL produce
quality graphics. IDL not only plots data, but also computes and analyses it -
it’s a programming language.

Tuesday, 10 November 2009

http://www.ast.cam.ac.uk/~vasily/idl.htm
http://www.ast.cam.ac.uk/~vasily/idl.htm

IDL One Liners

• Coordinate System Transformations,
Galactic Extinction, Spectral Line Shapes, k-
Corrections, Distances in Cosmology

Tuesday, 10 November 2009

Community Coding

• Not precompiled, highly portable code

• No installation required

• No centralised distribution, the libraries are
published online by the scientists
(Chandra, SDSS, HST, Los Alamos and many
other universities and data centres)

Download IDL libraries and keep them organised, make sure they’re added to your !PATH
http://www.ast.cam.ac.uk/~vasily/idl.htm

Tuesday, 10 November 2009

http://www.ast.cam.ac.uk/~vasily/idl.htm
http://www.ast.cam.ac.uk/~vasily/idl.htm

IDL Session
• idl command line

• use command recall

• variables created on the fly

• create synthetic data

• HELP

• online help

• SAVE session

• compose scripts

• create procedure and functions

• emacs IDLWAVE: fast editing, compiling, completion

Tuesday, 10 November 2009

How To Learn IDL

• IDL Help file

• David Fanning’s Website

• IDLWAVE Google Group

• Various Tutorials online

Tuesday, 10 November 2009

GroupingCreation

Logical/bitwiseRelational

Mathematical

Assignment and compound assignment

Access

Michael Galloy, 2006 - michaelgalloy.com

Periodic Table of IDL Operators

V 10

compound
assignment

XOR=
V 10

compound
assignment

OR=
V 10

compound
assignment

AND=

V 10

compound
assignment

GT=
V 10

compound
assignment

LT=
V 10

compound
assignment

NE=
V 10

compound
assignment

-=
V 10

compound
assignment

+=
V 10

compound
assignment

GE=
V 10

compound
assignment

LE=
V 10

compound
assignment

EQ=
V 10

compound
assignment

MOD=

V 10

compound
assignment

##=
V 10

compound
assignment

#=
V 10

compound
assignment

>=
V 10

compound
assignment

<=
V 10

compound
assignment

=
V 10

compound
assignment

/=
V 10

compound
assignment

*=
V 10

compound
assignment

^=

V 7

bitwise
exclusive or

XOR
V 7

bitwise
or

OR
V 7

bitwise
and

AND

V 5

bitwise
negation

NOT

8

logical
or

||
8

logical
and

&&

5

logical
negation

~

9

conditional

?:

V 6

greater than

GT
V 6

less than

LT
V 6

not equal

NE
V 6

greater than
or equal to

GE
V 6

less than
or equal to

LE
V 6

equal

EQ

V 5

maximum

>
V 5

minimum

<
V 5

subtraction

-
V 5

addition

+

V 4

modulus

MOD
V 4

division

/
V 4

multiplication

*
4

matrix
multiplication

##
4

matrix
multiplication

#

V 3

decrement

--
V 3

increment

++
V 3

exponentiation

^

2

function call

()

1

grouping

()

2

structure
creation

{}

V 1

concatenate

[]

10

stride or
range

:

3

method
invocation

->
3

dereference

*

2

subscript

[]
V 2

structure
field

.

Tuesday, 10 November 2009

Data Input
ASCII

number array
Mixed type

ASCII
FITS

INTO ARRAY

data = fltarr(nx, ny)
openr, lun, path, /get_lun
readf, lun, data
free_lun, lun

INTO VECTORS

readcol, path, v1, v2, v3, format=fmt

INTO STRUCTURE

data = mrdfits(path, ext)

INTO VECTORS

readcol, path, v1, v2, v3, format=fmt

INTO STRUCTURE

template = ascii_template(path)
data = read_ascii(path, template=template)

INTO STRUCTURE

template = ascii_template(path)
data = read_ascii(path, template=template)

Convenient

Fast

Fast

Convenient

Fast Convenient

Tuesday, 10 November 2009

Data Output

• For you: IDL SAVE

• For your collaborators: IDL SAVE, FITS

• For the world: FITS, ASCII

Tuesday, 10 November 2009

2 Most Useful IDL
Commands

• WHERE

• HISTOGRAM

Tuesday, 10 November 2009

X Window Graphics Gotchas

• Undecomposed colour

• Backing store not set

Tuesday, 10 November 2009

Other Common IDL Gotchas
http://www.dfanning.com/code_tips/mostcommon.html

• Integer data type operations

• “Hidden” dimensions

• WHERE count

• Keywords in plotting routines

• Calling function as a procedure and vice versa

Tuesday, 10 November 2009

http://www.dfanning.com/code_tips/mostcommon.html%60
http://www.dfanning.com/code_tips/mostcommon.html%60

IDL Philosophy

• Do not re-invent the wheel, in 99% cases it
has been coded already.

• Medium-weight projects, preferably ~100
lines.

• Medium size dataset, up to 1Gb (loaded
into RAM)

• Avoid FOR loops if you can

Tuesday, 10 November 2009

Keep It Organised

• Command line: use IDLWAVE for more
recall and completion. Use JOURNAL to
keep the log of the session.

• Scripts: NO need for PRO statement, it’s
just a bunch of commands in a file! Use
GOTO, CASE and IF.

• Procedures and Functions. Naming is
important. Pass data in structures. Avoid
COMMON blocks.

Quick data
lookup

Recurrent
Tasks

Big Project

Tuesday, 10 November 2009

