
IDL 

It saves time for science

An Introduction to Interactive Data Language
http://www.ast.cam.ac.uk/~vasily/idl.htm
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The (brief) history of IDL

• 1970s: David Stern at LASP, Boulder creates Rufus 
and SOL, first array-oriented languages, to analyse 
Mars Mariner data

• 1977: RSI founded by David Stern sells first IDL 
version (VAX/VMS) to NASA

• 1987: Re-written in C for UNIX release

• 1992-94: available on Linux, Windows and Mac

• 2004: RSI morphs into ITT
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Who uses IDL?

• Primarily, astronomers and space scientists 
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Best Features

• Scientific community contribution

• Optimised array operations

• Large suite of versatile maths, data analysis and visualisation 
routines

• Interactive

• High quality graphics output

• Access to (almost) all code

• Fast, i.e. not slow

• Data structures

• Dynamic variable typing
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How does it compare?
http://www.ast.cam.ac.uk/~vasily/idl.htm

• IRAF, MIDAS and IDL are used for astronomical data 
analysis. IDL is not a replacement for IRAF, but it is easier to read and 
customise.

• FORTRAN, C and IDL are similar programming languages. 
IDL is slower, but also provides an environment for scientific data analysis.

• MATHEMATICA, MAPLE, MATLAB and IDL 
can do maths. IDL can not solve symbolically, but has more powerful 
graphics and knows astronomy.

• SUPERMONGO, PGPLOT and IDL produce 
quality graphics. IDL not only plots data, but also computes and analyses it - 
it’s a programming language.
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IDL One Liners

• Coordinate System Transformations, 
Galactic Extinction, Spectral Line Shapes, k-
Corrections, Distances in Cosmology
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Community Coding

• Not precompiled, highly portable code

• No installation required

• No centralised distribution, the libraries are 
published online by the scientists 
(Chandra, SDSS, HST, Los Alamos and many 
other universities and data centres)

Download IDL libraries and keep them organised, make sure they’re added to your !PATH
http://www.ast.cam.ac.uk/~vasily/idl.htm
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IDL Session
• idl command line

• use command recall 

• variables created on the fly

• create synthetic data

• HELP

• online help

• SAVE session

• compose scripts

• create procedure and functions

• emacs IDLWAVE: fast editing, compiling, completion
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How To Learn IDL

• IDL Help file

• David Fanning’s Website

• IDLWAVE Google Group

• Various Tutorials online
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GroupingCreation

Logical/bitwiseRelational

Mathematical

Assignment and compound assignment

Access

Michael Galloy, 2006 - michaelgalloy.com
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Data Input
ASCII 

number array
Mixed type 

ASCII
FITS

INTO ARRAY

data = fltarr(nx, ny)
openr, lun, path, /get_lun
readf, lun, data
free_lun, lun

INTO VECTORS

readcol, path, v1, v2, v3, format=fmt

INTO STRUCTURE

data = mrdfits(path, ext)

INTO VECTORS

readcol, path, v1, v2, v3, format=fmt

INTO STRUCTURE

template = ascii_template(path)
data = read_ascii(path, template=template)

INTO STRUCTURE

template = ascii_template(path)
data = read_ascii(path, template=template)

Convenient

Fast

Fast

Convenient

Fast Convenient
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Data Output

• For you: IDL SAVE

• For your collaborators: IDL SAVE,  FITS

• For the world: FITS,  ASCII
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2 Most Useful IDL 
Commands

• WHERE

• HISTOGRAM
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X Window Graphics Gotchas

• Undecomposed colour

• Backing store not set
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Other Common IDL Gotchas
http://www.dfanning.com/code_tips/mostcommon.html

• Integer data type operations

• “Hidden” dimensions

• WHERE count

• Keywords in plotting routines

• Calling function as a procedure and vice versa
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IDL Philosophy

• Do not re-invent the wheel, in 99% cases it 
has been coded already.

• Medium-weight projects, preferably ~100 
lines.

• Medium size dataset, up to 1Gb (loaded 
into RAM)

• Avoid FOR loops if you can
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Keep It Organised

• Command line: use IDLWAVE for more 
recall and completion. Use JOURNAL to 
keep the log of the session.

• Scripts: NO need for PRO statement, it’s 
just a bunch of commands in a file! Use 
GOTO, CASE and IF.

• Procedures and Functions. Naming is 
important. Pass data in structures. Avoid 
COMMON blocks.

Quick data 
lookup

Recurrent 
Tasks

Big Project
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