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The discrete energy-momentum method. 
Conserving algorithms for nonlinear elastodynamics1 

By J. C. Simo and N. Tarnow,2 Div. of Applied Mechanics, 
Dept. of Mechanical Engineering, Stanford University, Stanford, 
CA 94305, U.S.A. 

Dedicated to K. Kirchgiissner on the occasion of his 60th birthday 

§ 1. Introduction and motivation 

Classical nonlinear continuum mechanics is built on the balance laws of 
linear and angular momentum, supplemented by balance of energy and a 
statement of the second law. These two additional laws are satisfied if the 
internal dissipation in the material ~~nt, understood as the difference between 
the stress power and the rate of change of the internal energy, is positive. 3 

In particular, for nonlinear elastodynamics with conservative loading, the 
internal dissipation vanishes for smooth solutions and the total energy in the 
system E~ot is exactly conserved. For non-smooth solutions; i.e. in the 
presence of shocks, dissipation arises and the energy in the system is no 
longer conserved; see Knowles [ 1979]. In what follows, we shall only be 
concerned with smooth solutions. 

In the absence of external loading or in the presence of symmetries, the 
dynamics of a continuum exhibits two fundamental conservation laws in the 
pure traction initial boundary value problem (IBVP): The conservation laws 
of total linear momentum L 1 and total angular momentum 11 • In addition, 
the condition of positive dissipation yields an a-priori estimate on the rate 
of change of the total energy, which decays exactly by minus the dissipation. 
In summary: 

dLr = 0 dJt = 0 and 
dt ' dt 

dE tot 
_ t_ = _t"Mint < 0 dt ;z; t - • ( 1.1) 

1 Invited Lecture, Presented at Oberwolfach January 1992. 
2 Supported by AFOSR under Grant No. 2-DJA-826 with Stanford University. 
3 Implicit here is the assumption that the entropy production due to heat conduction is positive; 
equivalently, the heat flux does not oppose the temperature gradient; see Truesdell and Noli [ 1972]. 
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These fundamental properties of the continuum dynamics play a key role 
both in purely mathematical aspects of the IBVP as well as in many 
engineering applications. For instance, the realization of attitude controls 
for orbiting flexible satellites exploits these properties in a crucial manner. 

Temporal and spatial finite difference/finite element discretizations of 
the continuum dynamics need not, and in general will not, inherit the 
conservation of momentum properties ( 1.1 )1,2 and the a-priori estimate 
( 1.1 )3 • The central goal of this work is the systematic construction of 
algorithmic approximations to the continuum dynamics that will inherit, by 
design, these conservation properties and the a-priori estimate. There is a 
sizable body of literature concerned with the design of algorithms possessing 
these conservation properties; see e.g. Bayliss and Isaacson [1975] and 
Labudde and Greenspan [1976a,b]. It is often the case, however, that 
algorithms designed to preserve the a-priori energy estimate result in 
violation of momentum conservation and vice versa. For instance, the 
conservation form of the mid-point rule is an exact momentum conserving 
algorithm which does not conserve energy for autonomous Hamiltonian 
systems, except in the linear regime; see Simo, Tarnow and Wong [ 1992]. 
On the opposite side, the method of Hughes, Liu and Caughy [ 1978] yields 
an energy conserving algorithm which does not preserve angular momen­
tum. For rigid body mechanics, on the other hand, Simo and Wong [ 1991] 
show that the conservation form of the mid-point rule in body coordinates, 
together with the exponential mapping in the rotation group, define an exact 
energy and momentum conserving algorithm. 

For smooth solutions in nonlinear elastodynamics, the model problem 
of interest here, the algorithmic treatment proposed below achieves exact 
conservation of both energy and total linear and angular momentum. 
Remarkably, the scheme amounts to a simple modification of the conserva­
tion form of the mid-point rule, according to the following prescription: 

Step 1. Write a mid-point rule approximation to the IBVP for nonlinear 
elastodynamics, written in conservation form, with the symmetric 
stress tensor left open. We show that this step defines a 6-parameter 
family of exact momentum conserving algorithms, regardless of the 
specific form of the constitutive equation .. 

Step 2. For elastodynamics define the convected symmetric stress tensor by 
evaluating the gradient of the stored energy function at a convex 
combination of the right Cauchy -Green tensors at the initial and 
final times of a typical time increment. 

From a mechanical standpoint, Step 1 is equivalent to establishing balance 
of linear momentum (in conservation form) on the mid-point configuration 
defined as the average of the initial and final configurations in a time step. 
It is somewhat surprising that global balance of momentum is satisfied for 
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any symmetric stress tensor. For the Saint Venant-Kirchhoff model Step 2 
has this remarkably simple interpretation: Evaluate the elastic constitutive 
equation with the average Lagragian strain tensor and not with the Lagran­
gian strain tensor of the average configuration. We remark that convex 
combinations of the right Cauchy-Green tensor make geometric since 
positive definiteness is preserved and, more importantly, all the tensors 
involved live in the same (reference) configuration. 

Although nonlinear elastodynamics is an infinite dimensional Hamilto­
nian system, in the sense described in Simo, Marsden and Krishnaprasad 
[ 198~], the algorithmic treatment proposed herein does not rely on this 
Hamiltonian structure and is also applicable to dissipative systems. In fact, 
in contrast with the conservation form of the mid-point rule, it can be 
shown that the energy-momentum algorithms described herein do not define 
a symplectic transformation in phase space. See Arnold [ 1988] for an 
explanation of this terminology and De Vogelaere [1956], Feng Kan [1986], 
Zhong and Marsden [ 1988], Lasagni [ 1988], Sanz-Serna [ 1988] and Simo, 
Tarnow and Wong [ 1992] for the algorithmic implications. Nevertheless, the 
property of exact energy conservation induces a natural notion of algorith­
mic stability not present in symplectic schemes such as the mid-point rule. 
In fact, as demonstrated by our numerical simulations, both the mid-point 
and trapezoidal rules may produce numerical solutions exhibiting blow-up 
for sufficiently large step-sizes, while the proposed scheme renders solutions 
that remain stable. 

§2. The continuum problem. Conservation laws 

We summarize below basic results on continuum mechanics needed 
for our subsequent algorithmic developments presented in Section 3. This 
methodology is by no means restricted to the ( dissipationless) Hamilto­
nian case, as exemplified in the continuum setting by nonlinear elasto­
dynamics. In fact, our construction of exact momentum preserving al­
gorithms is independent of the specific form adopted by the constitutive 
equations. 

2.1. Lagrangian description. The weak-form of balance of momentum 

In what follows 91 c ~ndim will denote the reference placement occupied 
by a continuum body where 1 < ndim < 3 is the spatial dimension. The set Pi 
is assumed open, bounded, with smooth boundary oPA. In agreement with a 
Lagrangian description of the motion material points are labeled through­
out by their position X E 91 in the reference placement. 
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2.1.1. Some basic notation 

Let the reference boundary of!A be partitioned into disjoint subsets such 
that ofJl = r Q) u r u with r Q) n r u = 0. The (smooth) manifold Q of admissi­
ble configurations is then defined by 

(2.1) 

where iP is specified data on r cp· For elastodynamics one typically assumes 
that Q c [Hs(BI)]ndim with s > ndim/2 + 1. A motion in some time interval ~ is 
a C 1 map t E ~ ~ tp1 E Q, with associated material velocity field V1 = q,t and 
canonical momenta n 1 =eo V1 , where the superposed dot denotes time 
differentiation and eo: 11 ~ !R.+ is the reference density. Throughout our 
developments we shall denote by S1 the symmetric Piola-Kirchho.ff or 
convected stress tensor associated with the motion (/)r and related to the 
Cauchy stress tensor a1 via the well-known relation 

(2.2) 

known as the Piola-transformation. In terms of the convected stress tensor 
the prescribed traction boundary condition takes the form 

DqJtStN = t; on r 0" X ~' (2.3) 

where N: o!!J ~ S2 is the unit normal field to the reference boundary of!A 
and t;: r 11 x ~ ~ !R.ndim is the prescribed nominal traction vector. In addition 
to the boundary tractions it will be assumed that the body is acted upon by 
a body force ft : PJ x ~ -t !R.ndim. 

2.1.2. The weak form of balance of momentum 

Let "// c [Hs(PJ)]ndim denote the space of test functions associated with 
admissible configurations in Q, defined in the usual fashion as 

(2.4) 

Throughout our developments we denote by < ·, ·) the L2-inner product on 
f1l of scalars, vectors or tensors, depending on the context. Setting 
(', )r:= Jra- (·)(·) dr, the weak form of the balance of momentum at time 
t E ~ takes the form 

(2.5a) 

Here grad[ ·] is the gradient operator of vector fields on fJ.6 relative to . a 
(material) coordinate system {XA} (A= 1, ... , ndim) on BB; i.e., in /coordi­
nates we have (grad[q])A = or,ajoXA where 'la (a= 1, ... , nctim) are the 
components of 'I E "//. DqJt, on the other hand, denotes the derivative of 
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point maps relative to material coordinates; i.e. (DqJ1)~ = acpa;axA. In IR\ 
D[ ·] and grad[ ·] can be identified. The variational equation (2.5a) is supple­
mented by the local relations 

vt = lPt and nt = Qo vt in 1J X L 

along with the initial conditions 

(2.5b) 

(/)t lt=O = (/)o and 1tr lt=O = Qo Vo in~. (2.5c) 

Equations (2.5a,b,c) define· a nonlinear initial boundary value problem for 
the motion t E 0 H qJ1 E Q of the continuum system once a constitutive 
equation relating the convected stress tensor St to the motion (/)1 is specified. 

2.2. Constitutive equations. Positive internal dissipation 

As pointed out above, the algorithmic approach described below en­
compasses a general class of constitutive relations, not necessarily restricted 
to elastodynamics, subject to the only requirement of positive dissipation. 
This restriction leads naturally to meaningful definitions of nonlinear al­
gorithmic stability. 

2.2.1. Energy balance: Positive dissipation 

Let K and gp~nt denote the kinetic energy and the stress power of the 
continuum system, respectively, as defined by the relations 

Kt= ~(no Vt) = ~!Ieo Vt 11 2 and gp~nt = (DqJrSo grad[Vt]). (2.6) 

We further denote by _gp~xt the expended power of the external loading, 
defined by the expression 

_qp~xt := (f;, V,)+(!;, vt )r t E 0. (2.7) 

For fixed time t E ~ the material velocity field defines an admissible test 
function. Therefore, setting 1J = V1 in (2.5) and making use of the notations 
above yields the result 

dKt . - + ,q;mt = _gpext for any t E 0, 
dt t t ' 

(2.8) 

known as the theorem of expended power. 
Now let E~nt := JBl e df!J be the internal energy function which specifies 

the stored energy in the continuum system and define the internal dissipation 
function !0 ~nt of the system as the difference between the total stress power 
,q;~nt and the rate of change of the internal energy. We restrict our attention 
to constitutive equations obeying the following reduced dissipation inequality 

. . dE~nt 
gmt ==.?Jmt- > 0 for any t E 0 

t t dt ' (2.9) 
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which (in the absence of heat conduction) can be viewed as an equivalent 
statement of the Clausius-Duhem form of the second law. Combining (2.8) 
and (2.9) yields the following result for the rate of change of the kinetic and 
internal energies: 

(2.10) 

This relation plays a crucial role in our subsequent algorithmic develop­
ments. 

2.2.2. Constitutive equations: Examples 

Two representative and fairly classical examples which fall within the 
preceding framework are: 

i. Nonlinear elastodynamics. Here the internal energy is defined locally 
in terms of the deformation gradient D(/)1 of the motion by means of the 
frame-invariant stored energy function e = e(Dlp i Dlf't). The convected 
stress tensor st and the internal dissipation then become 

st =2Ve(DqJ'{Dlpt) and .@~nt _o Yt E ~- (2.11) 

The Cauchy stress tensor a, is obtained from (2.11)1 via the Piola-transfor­
mation (2.2). The fact that .@~nt vanishes for an elastic material justifies the 
denomination 'internal dissipation' assigned to .@~nt. For the incompressible 
problem, obtained by appending the constraint J(qJ,) = 1 in n x ~' the 
Cauchy stress tensor is defined up to a spherical part pl involving the 
hydrostatic pressure p. Nonlinear elastodynamics possesses a well-under­
stood Hamiltonian structure; see Simo, Marsden and Krishnaprasad [ 1988] 
for detailed exposition. 

ii. Incompressible Navier-Stokes system. Let Vt == vt 0 (/);
1 be the spa­

tial velocity field with spatial gradient Vv1 = (grad[ V1]Dlf'; 1) o qJ; 1• In the 
linear incompressible viscous model the Cauchy stress is defined by the 
constitutive relation 

a1 = -pl + 2}1 sym[Vv1] with J(qJ1 ) = 1 <=> div[v1] = 0 Vt EL (2.12) 

The convected stress tensor S 1 is obtained from (2.12) via the Piola-transfor­
mation (2.2). The internal dissipation function is 

~~nt = f1 J. Vv1 • Vvt dx > 0 for Jl > 0, 
tpl(fJI) 

(2.13) 

while th'e internal energy vanishes identically; i.e., E~nt = 0. 
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Several classical models in nonlinear solid mechanics exhibit positive 
dissipation while retaining a non-vanishing stored energy function; 1.e., 
finite plasticity. 

2.3. The unforced problem: Balance laws and a-priori estimate 

A number of important applications involve the solution of the initial 
boundary value problem with prescribed zero loading and driven, therefore, 
solely by initial conditions; i.e., the unforced problem. This situation is also 
relevant to the nonlinear stability analysis of algorithmic approximations 
(see Simo [ 1991]) and will be considered in what follows. 

2.3.1. Conservation laws and a-priori estimate 

Recall that the resultant force F~xt and the resultant moment T~xt of the 
prescribed external loading (relative to some inertial frame) are defined by 
the expressions 

F~xt := f j; df!J + I t; dr and r~xt == r CfJt X j; df!J + I f/Jt X ~ dr. 
Je~ Jr a Je~ Jr a 

(2.14) 

The following assumptions specify the framework relevant to the analysis of 
algorithms designed to inherit conservation laws present in the continuum 
problem: 

(A1) Assume that p~xt = 0, r~xt = 0 and q;~xt = 0, Vt E 0. 
(A2) Consider pure Neumann data; equivalently, assume r q> = 0. 

From a physical standpoint these two conditions can be realized by consid­
ering the motion of a continuum body subject to no boundary restrictions, 
with prescribed zero loading, driven by specified initial conditions. If Lt and 
11 denote the total linear and total angular momentum defined by the 
standard expressions 

L, •= f .. n, dt4 and J, •= L qJ, x n, dt4, (2.15) 

under assumptions (AI) and (A2) above the ensuing motion possesses two 
fundamental conservation laws and one a-priori estimate: 

dLt = O dJ1 = O 
dt ' dt 

(2.16) 

The a-priori estimate (2.16)3 follows at once from relation (2.10) since 
q;~xt = 0. Relations (2.16)1,2 are the familiar conservation laws of total linear 
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and total angular momentum, respectively. These latter two results can be 
derived directly from the weak form (2.5) of the momentum equation by the 
argument given below. The same approach is exploited in the algorithmic 
analysis of the momentum conserving properties presented in Section 3 .2. 

2.3.2. Conservation of momentum and the weak form 

Since r fP = 0 by assumption, it follows that test functions in "Y are 
unrestricted on the boundary. In particular, two specific class of test 
functions are now contained in "Y: 

i. Infinitesimal translations, defined by q(X) = ~' 'if X E ~' where 
e E rR_ndim is a fixed vector. For this class of test functions we have 
grad[q] - 0. Expression (2.5) along with definitions (2.14)1 and (2.15)1 give 

(2.17) 

which implies F;xt -L1 = 0 since ( 2.17) holds for any e E rR3 and collapses 
to (2.16)1 since F~xt = 0. 

ii. Infinitesimal rotations (ndim = 3), defined by '1 = e x (/Jc where e E rR3 

is a fixed vector defining the rotation axis. Following a standard convention 
let ( denote the associated skew-symmetric matrix defined by the relation 
(a:= e x a for any vector a E IR3

• For this class of test functions a direct 
calculation gives grad[q] = (DqJ1 • Inserting this result in (2.5) and using 
(2.14)2 along with (2.15h yields, after a straightforward manipulation, the 
result 

(DqJ1Sn (D(/Jc) = (cpt xft, ~) + (cpt X 1;, ~)r- (({Jt X Ttn ~) 

= [T;xt - jt] , ~. (2.18) 

Since the Cauchy stress tensor ac is symmetric, from the Piola transforma­
tion (2.2) we conclude that Dcp1S 1DqJ T is also symmetric and, therefore, 

"" r "" _ · "" ""r 
(DtptSn enlf't > = (DtpcScD(/J t ' ~ > = 0 Since ~ = -' . (2.19) 

Since e E ~3 is arbitrary combining (2.19) and (2.18) yields r;xt - j = 0 
which implies (2.16)1 since T~xt = 0. 

§3. Time discretization. Conserving schemes 

The dynamics generated by a number of important continuum system, 
including nonlinear elastodynamics, finite plasticity and the Navier-Stokes 
system among many others, obeys the conservation laws (2.16)1,2 and 
a-priori estimate (2.16)3 provided assumptions (Al) and (A2) hold. Our 
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main goal in this Section is the design of algorithmic approximations which 
will inherit these crucial properties of the continuum dynamics. 

3.1. The algorithmic framework. Conserving schemes 

Consider a partition fl = U~=o [tn, tn+ d of the time interval fl of interest, 
focus attention on a typical time interval [tn, tn + d and let ilt == tn + 1 - tn > 0 
denote the corresponding time-step size. Following a standard convention, 
we shall denote by either ( · )n or ( · )n + 1 the algorithmic approximations at 
times tn and tn+ 1 to the continuum (time-dependent) variable (·)t. In our 
algorithmic analysis we use the following restatement of condition (Al) of 
Section 2 

(Al *) For the unforced problem, assume that F~xt = 0, T~xt = 0 and 
q>~xt = 0, for all t E [tn, tn + tl· 

We assume all the variables of interest specified at time tn; in particular, 
the initial data (cpn, nn) and the symmetric Piola-Kirchhoffstress .. c · (X), for 
all X E ~. Our goal is the design of a consistent approximation to lile IBVP 
defined by (2.5a,b,c), along with a suitable constitutive equation of the type 
described in Section 2.2, possessing the following properties whenever 
assumptions (A 1 *) and ( A2) hold: 

i. Discrete momentum conservation in the sense that 

(3.la) 

ii. Discrete energy conservation, in the sense that 

E tot < Etot d Etot = Etot I'M int = 0 _ 0 1 N n + I - n an n + 1 - n ~ ;;z; t - , n - , , · · · , · (3.1b) 

The requirement E~o~ 1 = E~ot whenever .@~nt = 0 in D corresponds to exact 
energy conservation in the Hamiltonian case and will be the only situation 
addressed below within the specific context of elastodynamics. Algorithmic. 
approximations possessing the properties in (3.1) will be referred to as 
energy-momentum conserving schemes in what follows. 

For nonlinear elastodynamics, the design of a conserving scheme is . 
accomplished in two steps. First, we identify a class of one-step implicit 
algorithms which, remarkably, achieve exact momentum conservation with 
total independence of the approximation used for the convected stress 
tensor. In fact, the property of exact momentum conservation holds for any 
constitutive model. Second, we specialize this class of algorithms to nonlin-
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ear elasticity and show that an approximation to the constitutive equation 
(2.11) 1 can always be constructed such that exact conservation of energy 
is achieved. From a geometric standpoint this two-step construction 
is analogous to the approach recently advocated in Simo, Tarnow and 
Wong [ 1992]. The actual definition of the two steps, however, is entirely 
different. 

3.2. A class of exact momentum conserving algorithms 

Consider a one-parameter family of configurations (/)n + rx E Q, with as­
sociated velocity field Vn +a., defined by the convex combination 

(3.2) 

Thus, associated with the reference placement f!J of the continuum body 
we have the placements (/)n(~), (/)n + a.(f!J) and (/)n + 1 (~) illustrated in Figure 
3.1. The corresponding convected stress tensors are denoted by Sn, Sn+a. 

and Sn + 1, respectively. With the preceding notation in hand now con­
sider the following algorithmic approximation to the weak form (2.5a) of 

Configuration 

Configuration 
. at time t.t-1 

Configuration 
at time 'n 

Figure 3.1 
Illustration of the three configurations involved in the formulation of the algorithm within the step 
[tn, tn + tJ. Note that all the convected stress and right Cauchy- Green tensors live in the reference 
configuration &1. 
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balance of momentum 

1 
~t <nn + 1 - 1tn, '1) + <Dcpn + rxS, grad['l]) 

= lfn+rx' tJ) +<~+a' tJ)r VtJ E "//, (3.3a) 

where S = sr is a completely arbitrary symmetric tensor field defined on 86. 
The algorithmic weak form (3.3a) is supplemented by the local relations 

(3.3b) 

which cotnplete the algorithmic approximation to equations (2.5a,b). We 
emphasize that the symmetric tensor S is regarded here as defining a 
6-parameter family of algorithms to be further specialized below. Our 
objective is to examine the conservation properties inherited by the time 
discretization (2.5a,b ). 

3.2.1. Discrete momentum conservation 

Let p~x~ iX and T~x~ a denote the total resultant force and resultant 
moment defined by (2.14) and evaluated at time tn+ 1 • We show below that 
ifS is symmetric but otherwise completely arbitrary the algorithmic approx­
imation defined by (3.3a,b) yields the following relations 

Ln + 1 - Ln = ~tF~x! a for any a E (0, 1],} 
J n + 1 -- Jn = ~t T~~ rx only if a = ~ . 

(3.4) 

In particular, since F~x! a = 0 and T~x! a = 0 if conditions (AI*) and (A2) 
hold, relations (3.4) yield the discrete momentum conservation law (3.1) 
within the interval [tn, ln+ d provided that a=-!. 

Relation (3.4) 1 follows immediately from (3.3a) merely by setting 11 =' 
(constant) in !!4 and noting that grad['] = 0. To prove relation (3.4h we 
take ' E IR3 and use definition ( 3.2) to compute 

'·(In+ I- In)=<,, (/)n+ I X 1tn+ I- (/)n X 1tn) 

= ( ~' lfJn + I X (1tn + I - 1tn) + ( lfJn + 1 - lfJn) X 1tn)) 

= ( c;, CfJn + a X (1tn + I - 1tn)) 

+ ( ,, (lfJn + 1 - lfJn) X (ct1tn + ( 1 - a)1tn + 1) ). (3.5) 

The first term of the last right hand side of (3.5) can be evaluated as follows. 
We observe that '1 =; x lfJn + a is an admissible test function in "// for 
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arbitrary (constant)~' with gradient grad[q] = (DlfJn+a· In view of (3.3) and 
the symmetry of S we conclude that 

( ~' lfJn +a X (nn + 1 - 1tn)) = ( ~ X (/Jn +a' 1tn + 1 - 1tn) 

= L\t(~, lfJn+a Xfn+a) + (~, lfJn+a X ln+a)r 

- L\t (grad[ ~ X CfJn +a], D(/Jn +aS) 

= L\t~ ' T~x! a - L\t ( !, Dcpn + aSDcp ~+a.) 

(3.6) 

The second term in (3.5) can be further simplified with the aid of (3.3b) to 
obtain 

(~,_ (q>n+l-q>n) X (ann +(1-a)nn+l)) 

= L\t(~, Jln+a X (21tn+(1/2) -1tn+a)) 

= 2L\t( ~' eo Vn +IX X Jln + (1 /2) ). 

Inserting the last two expressions into ( 3.5) gives the result 

(3.7) 

~. (Jn+ I- Jn) = L\t~. T~~a + 2L\t(~, eo Jln+a. X Vn+(l /2) ), (3.8) 

which collapses to (3.4)2 if a =! and completes the proof. 
Observe that exact conservation of the total linear momentum and the 

total angular momentum alone does not even guarantee consistency of the 
algorithm. As the preceding proof clearly shows, one can assign arbitrary 
values to the convected stress tensor S without altering the linear and the 
angular momentum within the step. 

3.2.2. Algorithmic energy balance within a time step 

The following results are independent of the specific form of the 
constitutive equation for the convected stress tensor S1 • Within a typical 
time interval [tn, tn + d, the class of exact momentum-conserving algorithms 
obtained by setting a=! in (3.3a,b) satisfies the (finite) incremental relation 

[ Kn + 1 - Kn] + < S, E( lf'n + 1) - E( lf'n)) 

A Kinetic Energy A Internal Stress Work 

L\ Potential Energy of Loading 

(3.9) 

which can be viewed as the algorithmic counterpart of the expended power 
theorem (2.8) in the interval [tn, tn + 1 ]. By comparing the continuum relation 

12



(2.8) with ( 3.9) we concluded that the change in the potential energy of the 
loading predicted by the algorithm is exact for dead loads. Likewise, the 
predicted change in kinetic energy is also exact. On the other hand, the 
change internal energy predicted by the algorithm depends on the form of 
the algorithmic approximation adopted for the constitutive equation which, 
so far, remains unspecified. To prove (3.9) we make use of the identity 

(3.10) 

which is easily verified by a direct computation, and use (2.5b) to derive the 
relation 

sym[DqJ~+ ( 1 ;2)grad[~tVn + (1 /2)]] = sym[Dq>~+ ( 1/2)(Dq>n+ 1- Dq>n)] 

=~[C(q>n+d -C(q>n)] =E(q>n+ 1) -E(q>n). 

( 3.11) 

Setting fJ = Vn + (I /2) in the algorithmic weak form (3.3) and making use of 
these two results yields (3.9). 

Finally, let ~!0 ~~:. 1n + 11 > 0 denote the algorithmic approximation to the 
time integral J;: + 1 !0~nt dt of the internal dissipation function. The algorith­
mic approximation (3.3) is then said to be consistent with the reduced 
dissipation inequality if the following discrete counterpart of (2.9) holds: 

E~n~ 1 - E~nt = (S, £( (/}n + 1) - £( (/}n)) - ~!01~, tn + tJ ' 

with ~!0 ri~t r 11 > 0. 
n• n + (3.12) 

By analogy with the continuum problem, we view condition (3.12) as a 
restriction placed on the algorithmic approximation to the constitutive 
equation for S. In particular, in the absence of external loading [i.e., 
assuming condition (Al *)], if (3.12) holds then by combining (3.9) and 
(3.12) we obtain 

£~0~ 1 - E~ot := [Kn + 1 + E~~.] - [Kn + £~nt] = - ~!0 ~~nt• tn + 11 < 0, (3.13) 

which implies the discrete conserving condition (3.1). For elastodynamics, 
the case considered below, ~!0 i~:. tn + d = 0 and (3.13) yields the condition of 
exact energy conservation. Consequently, (3.12) is the crucial condition to 
be verified in the algorithmic approximation to the constitutive equations. 

3.3. An exact energy -momentum scheme for (smooth) elastodynamics 

We show below that for elastodynamics the constraint ( 3.1) of exact 
energy conservation provides an explicit algorithmic constitutive equation for 
the convected stress S within a typical time interval [tn , tn + 1 ] that com­
pletely defines the algorithmic approximation (3.3a,b). In what follows we 
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use the notation 

C(q>) :=Dq>TDq> and E(q>) :=HC(q>) -1] for q> E Q, (3.14) 

to designate the right Cauchy-Green tensor and the Lagrangrian strain 
tensors associated with given configuration, respectively. To motivate the 
treatment of general constitutive models we consider first the simpler 
situation afforded by a quadratic potential. 

3.3.1. Elastodynamics: The Saint Venant-Kirchhoff model 

A key insight into the structure of the algorithmic constitutive relations 
is gained by considering first the case of a quadratic stored energy function 
of the form 

e(C(tp)) = ~E(q>) · CE(tp), where C:=A1 ® 1 + 2!ll, (3.15) 

which defines the so-called Saint Venant-Kirchhoff material. The well­
known limitations of this model include failure of the poly-convexity 
condition and incorrect behavior for extreme strains; see e.g., Ciarlet [ 1988]. 
For the purpose of the present discussion, however, the model has the key 
property of leading to the stress-strain relation S1 = CE(lf't) linear in the 
Lagrangian strain. As a result, using the identity 

E(lf'n+ .) · CE(lf'n+ .) - E(q>n) · CE(lf'n) 

= [E(lf'n+.)- E(lf'n)] · C[E(lf'n+ .) + E(q>n)], (3.16) 

the change in internal energy within a time step [tn, tn + d is expressed as 

E~·~ 1- E~···= t [e(C(tp.+ I))- e(C(tp.)) df!4 

= ~ <[E(lf'n+ .) - E(lf',J], C[E(lf'n+.) + E(q>n)]). . (3.17) 

In view of (3.12) from (3.17) we conclude that for a stored energy function 
quadratic in the (nonlinear) Lagrangian strains exact energy conservation 
for dead loading is achieved if 

E~n~ 1 - E~nt = (S, E((/)n + 1) - E(q>n)) <=>IS= C[E(q>n + I) + E((/Jn)]/2.1 

(3.18) 

This result is unexpected. Since the internal energy term is evaluated at the 
mid-point configuration tl'n + (t/2) E Q it would be natural to adopt the 
constitutive equation S = CE(q>n + <1;2))· However, in sharp constrast with 
the result obtained in (3.18), this choice would result in failure of the 
property exact energy conservation in an algorithmic setting. In other 
words, for the Saint Venant- Kirchhoff model, use of the average of the 
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momentum, by adopting the algorithmic constitutive equation 

S = 2Ve(Cn +Po) with /30 E (0, 1) such that: 

e(Cn+ d- e(Cn) = S ·1(Cn+ 1- Cn). 
(3.23) 

For general constitutive models it is shown below that the actual determi­
nation of {30 can be performed essentially at no additional cost as part of 
the standard iterative solution process for the (finite element form) of the 
momentum equation. 

Remarks 3.1. 
1. The existence of the required /30 E (0, 1) in (3.23) is guaranteed by 

the mean value theorem. In particular, if e( ·) is quadratic we have 
/30 = ! is agreement with our analysis for the Saint Venant- Kirchhoff 
modcl. • 

2. Second order accurate algorithms. An accuracy analysis identical to 
that presented in Appendix I shows that the algorithm defined by (3.3a,b) 
along with (3.23) is second order accurate if and only if a = {30 = !. Thus, 
if the algorithmic constitutive equation (3.23) is adopted, exact energy 
conservation and second order accuracy can only be achieved for the Saint 
Venant- Kirchhoff model. This limitation is removed as follows. Define the 
function g: [0, 1]---+ lR by setting (see Figure 3.2) 

g(/3) ==~[e(Cn+P)- e(Cn + <t - m)J. (3.24) 

Figure 3.2 
The mean value theorem applied to the odd 
function g(-) defined in Remark 3.1.2. Here 
Po E (0, ~] always exists such that g(l) - g(O) = 
g '(f3o) . 

g(O) 
' ' 

I 
I 

• 
• I 

' I 
-~ .. ' . ..., . ', 

• . 

g(l) 
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Clearly, g( ·) is odd about fJ = ~; i.e., it satisfies the property 

g(f3) = -g(l- {3) 'i/{3 E [0, 1] :::> g(l)- g(O) = e(Cn+ I)- e(Cn). (3.25) 

By the mean value theorem, there exists {30 E (0, 1) such that g( 1) - g(O) = 
g'([J0 ). Property (3.25)1 then implies that the mean value theorem is also 
satisfied for 1 - {30 E (0, 1). Setting 

(3.26) 

from (3.25)1 and relation g( 1)-g(O) = g'({30 ) = g'( 1 - /30 ) we conclude that 
e(Cn+ J)- e(Cn) = s. Hen+ I- Cn]. Therefore, the algorithmic constitutive 
equation also yields exact energy conservation [for a suitable {30 E (0, 1)] 
but, in contrast with relation (3.23), the resulting exact energy-momentum 
conserving algorithm retains the second order accuracy property even if 
{30 # ~. See Appendix I for a detailed accuracy analysis. 

3. The energy-momentum conserving algorithm described above is 
clearly consistent. Unconditional (formal) nonlinear stability follows from 
exact energy conservation since, formally, the total energy defines a Lya­
punov function for the dynamics. D 

§4. Spatial discretization: Galerkin FEM projection 

We examine below the Galerkin projection of the algorithmic weak 
form (3.3a,b) of the temporal discretization of the IBVP onto a finite 
dimensional phase and show that this projection preserves the momentum 
maps. Moreover, we show that the time discretization of the weak form 
commutes with the spatial Galerkin projection. Consequently, all the con­
servation properties derived in the preceding Section are inherited by the 
discrete (algebraic) finite element problem. For completeness, key aspects 
involved in the actual finite element implementation of the exact-momentum 
conserving algorithm for elastodynamics are briefly summarized. 

4.1. The Galerkin FEM spatial projection 

Let ? denote the (infinite dimensional) state space for the problem at 
hand, consisting of admissible configurations and material velocity fields on 
!16, defined as 

( 4.1) 

We denote by NA: 11 ~ ~ the prescribed nnode global finite element shape 
functions of a finite element discretization of the reference placement !16, 
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with nodal points XA E dJ, A = 1, ... , nnode· As usual we assume the (com­
pleteness) condition NA(XB) = b~. The Galerkin projection of the state 
space !/ onto a finite dimensional state subspace space gh c !7 is defined 
via the formulae 

nnode 

cph(X) = L NA(X) dA and 
nnode 

Vh(X) = L NA(X)VA, vx E PJ, (4.2) 
A= l A= 1 

where (lfJh, Vh) E gh and (lfJ, V) E !7 is an arbitrary point in the state space. 
The dimension of gh is nndof X nndof where nndor==ndim X nnode· Similarly, the 
finite element subs pace "// h c "// of admissible test functions is defined by 

{ 

nnode } 
fh:= 'lh E fl'lh = L NA(X)cA, CA E (Rndim for A= 1, ... 'ndim • 

A= l 

( 4.3) 

In what follows we shall use the notation MAB== (NA, eoNB) = MBA to 
designate the entries of the "mass matrix" of the finite element discretiza­
tion. 

4.1.1. Projected algorithmic dynamics and momentum maps 

By inserting the spatial interpolations defined by ( 4.2) and ( 4.3) into the 
time-discretization (3.3a) of the weak form of balance of momentum we 
obtain a nonlinear algebraic equation defined by the expression 

1 
fit [dn + lA - dnA] = Vn+ocA' 

( 4.4) 

...., 
nnode } 
~ MAB (V V ] + Fint A Fext A i..J A n+ 1B- nB n+oc = n+oo 

B = l LJ.l 

... 

for A = 1, 2, ... , nnode, where F~n~-! and F~x! ~ denote the internal and 
external forces associated with node X A at time tn +eo as defined by the 
relations. 

F:;'~~ •= L. Dli'~+•Sh grad[NA] ~, 

F~x!~ := r NAfn +oc dPA + r NAln+rx dr. 
J8l Jr u 

(4.5) 

Consider next the momentum conservation properties inherited by the 
algebraic problem ( 4.4). By inserting the interpolations defined by ( 4.2) into 
definitions ( 2.15) gives the following expressions for the projected total 
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linear momentum and the projected total angular momentum: 
nnode nnode nnode 

L7 := L <eo, NA> vtA and J7 := L L M AB dtA X vtB' V t E L 
A= 1 A=lB=1 

(4.6) 

Now let L~, L~+ 1 and J~, J~+ 1 denote the total linear and total angular 
momentum at times tn and tn + 1, respectively, obtained by evaluating 
expressions ( 4.6) for the nodal values (dn, Vn) and (dn+ b Vn+ I). If 
(dn +I, Vn + I) E !Rnnode X !Rnnode satisfies the algebraic problem ( 4.4) then for 
the Neumann problem [i.e., under assumption (A2)] the following relations 
holds 

nnode 

L ~ + 1 - L ~ = ~t L F~x! ~ for any a E [0, 1], 
A = 1 

(4.7) nnode 

~~ + I-~~=~~ L dn+aA X F~x!~ only if (X=~· 
A= I 

In particular, in the absence of external loads [i.e., under assumption 
(Al *)] for the value r:t = ~ one recovers the discrete conservation laws of 
linear and angular momentum; namely, L~+ 1 = L~ and J~+ I= J~. The 
proof of the discrete relations ( 4.7) relies crucially on the following invari­
ance condition 

nnode 

" d Fint A 0 f." [0 1] ~ n + aA X n +a = 10f any (X E , , ( 4.8) 
A= I 

which follows from the symmetry of Sh since 

~ · J: dn +>A X F;ntA = (~:[(~X dn+•A) ®grad[NA]J, Dlp~+.sh) 
= ( e, Dcp~ +aSh Dcp~: a) = 0, ( 4.9) 

for any vector ~ E IR3
. With this result in hand, the proof of ( 4. 7) follows 

along the same lines as the argument presented in Section 3.2 for the 
time-discrete continuous problem and further details are omitted. Recall 
that Sh = ShT remains so far arbitrary. 

It can be easily verified that a result identical to that in ( 4.4) is obtained 
if the Galerkin projection is applied first to the continuous weak form 
(2.5a,b) of the momentum equation, followed by the time discretization. 
Therefore, the following diagram commutes: 

Continuum IBVPI I Semidiscrete IVP j . Gaierkin Projection . _ 

Conserving 1 Algorithm Conserving 1 Algo~ithm 
I Galerkin Projection I I Semidiscrete BV~ ---------+ Algebraic Problem 
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Furthermore, this diagram preserves the momentum maps in the sense that 
the spatial and temporal discretizations of the conservation laws of mo­
mentum, applied in any order, define the conservation laws of the discrete 
algebraic problem (for rx = 1). 

4.1.2. Algorithmic dissipation and energy balance within a time step 

It can be easily shown that the incremental form (3.9) of the expended 
power theorem also holds in [/h. Again the result is independent of the 
order in which the Galerkin interpolation and the (conserving) time dis­
cretization are applied. Similarly, the algorithmic approximation restricted 
to [/ h is said to ~e consistent with the reduced dissipation inequality if the 
counterpart of (3.12) holds; i.e., 

c 

~.@1~:.~n + 11 := <S\ E(q>~ + d - E(q>~))- [E~n~h1 - E~nt h] > 0. ( 4.10) 

As in the time semi-discrete case, in the absence of external loading [i.e., 
assumption (A 1 *)] the total energy E 101 h == Kh + Eint h computed with an 
algorithm for which condition ( 4.10) holds satisfies the a-priori estimate 

Etoth_Etoth:=-~.@inth <0 in!/hx[t t ] 
n + 1 n lm tn + 1] - n' n + 1 • ( 4.11) 

For elastodynamics the total energy is conserved if ( 4.10) holds with 
L\.@1~:.~n + Il = 0. This is the case for the algorithmic constitutive equations 
(3.23) now evaluated on Qh. 

In summary, for elastodynamics the Galerkin finite element projection 
of the dynamics onto a finite dimensional phase space f/h preserves all the 
algorithmic conservation properties derived in the preceding section and 
commutes with the time discretization. The situation is not nearly as 
transparent in other models of continuum physics, such as nonlinear rods 
and shells, where straightforward Galerkin projection may not preserve the 
momentum maps and spoil, therefore, algorithmic conservation properties. 
We refer to Simo, Rifai and Fox [ 1992] for a detailed analysis of these and 
related issues in the context of nonlinear shells. 

4.2. Implementation. Remarks on computational aspects 

We outline below the steps within a typical time subinterval [tn, tn + d 
involved in the actual implementation of the exact energy-momentum 
conserving algorithm for nonlinear elastodynamics. Remarkably, this im­
plementation is essentially identical to that of standard algorithms; The 
only additional effort required being the local solution (at quadrature 
points) of a scalar nonlinear equation. Clearly this addition involves negli­
gible cost. 
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Assume that (dnA, VnA) are prescribed initial data at the nodal points 
and time tn, for A = 1, 2, ... , nnode. Since the discrete problem ( 4.4) along 
with constitutive equations (3.23) is nonlinear, an iterative solution strat­
egy must be adopted. In what follows the approximate solution of 
( 4.4) at the kth iteration within the time will be denoted simply by 
(dn+lA' vn+JA). 

Step 1. Given (dn+ lA' vn+ lA), (A = 1, 2, ... 'nnode), compute the pro­
jected deformation gradients D<p~, D<p~ + (t/2) and D<p~ + 1 by evalu­
ation of the general formula 

nnode 

Dtp~ + a = L [cxdn +!A + ( 1 - cx)dnA] ® grad[NA] ( 4.12) 
A= 1 

for a = 0, a = ~ and rx = 1, respectively. Then compute the 
right Cauchy-Green tensors: C~ = D<p~rD<p~ and C~+ 1 = 
D hT D h 

lf'n+ 1 lf'n+ I· 

Step 2. For fixed C~ + 1 (defined above) and given C~ define the (generally) 
nonlinear function g': (0, 1) ~ IR as 

g'(fJ) := e(C~ + 1) - e(C~) 

( 4.13) 

where C~ + a == rxC~+ 1 + ( 1 - rx)C~ is evaluated at a= f3 and 
cx = 1 - P in (0, 1), respectively. Then find the value {30 E (0, 1) 
closest to ~ such that g'(/30 ) = 0. For the Saint Venant-Kirchhoff 
model /30 = t. 

Step 3. Evaluate the convected stress tensor and the convected moduli by 
the algorithmic formulae 

Sh== Ve(C~+Po) + Ve(C~+(J - Po>), } 
Ch==2[fJo V2[e(C~+Po) + (1- {J0)V2e(C~+O- Po> )]. (

4
.1

4
) 

Then compute F~n~11 12> and F~x!t-11 12) via formulae ( 4.5) and evalu­
ate the dynamic residual as 

If IlRA/I < TOL then (dn+IA' vn+lA) is the sought solution. 
Step 4. If )jRAJJ > TOL then solve for 11dn+JA the linearized system 

ni e [A2 
2 MAB1 + KABJ /1dn + lB +RA= 0. ( 4.16) 

B = I Lll 

Update the solution as dn +lA +-- dn + lA + fld11 + lA and return to 
Step 1. 
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Remarks 4.1 

1. The scalar equation g'(P) = 0 in Step 2 is easily solved since the 
solution Po E (0, 1) is precisely bounded. Thus any variant of Newton's 

method could be used, in conjunction with line search due to the lack of 
convexity of the stored energy e( ·). Observe that the derivative of g"(P) is 
trivially computed by the closed-form formula 

g"(fl) = -1(C~+ 1- C~) · [V2e(C~+P)- V2e(C~+(1-fJ))](C~+ 1- C~). 

( 4.17) 

2. Strictly speaking, the matrix KAB obtained by exact linearization of 

the internal force vector F~n~1112) is non-symmetric. In fact a standard 
calculation readily gives the expression 

x<kJAB =f.., [(grad[NA] · Sh grad[N"])l 

Geometric Term 

( 4.18) 
Material Term 

which shows that the lack of symmetry is associated with the material term 

arising for the linearization of the algorithmic constitutive equation ( 4.14)1 • 

We observe that this lack of symmetry is 'mild' and disappears as 

At~o. • 

§5. Representative numerical simulations 

The goal of this Section is to assess the performance exhibited by 
energy-momentum algorithm described above relative to two representative 

algorithms: The widely used trapezoidal rule and the symplectic midpoint­
rule, shown in Simo, Tarnow and Wong [ 1992] to define an exact momen­
tum preserving scheme. The trapezoidal rule (note the mid-point rule) can 
be obtained by setting {30 = ~ and y = ~ the classical Newmark family. We 
consider two representative simulations that exhibit finite deformations 
coupled with large overall rigid body motion. 

5.1. Dynamics of a tumbling L-shaped block 

In this first example we consider the dynamics of an L-shaped block 
subject to no boundary restrictions with material response governed by a 
Saint Venant-Kirchhoff elastic model. After an initial loading phase the 
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block tumbles free of external forces in the ambient space undergoing finite 
deformation accompanied by large overall rotations and translations. All 
the data required to define the problem and perform the simulation are 
summarized in Figure 5.1. 

According to our analysis in Section 2 the algorithmic constitutive 
equation Sh = C~[E(cp~+ 1) + E(cp~)] for the second Piola-Kirchhoff tensor 
along with the algorithmic weak form (3.3a,b) particularized at a=~ defines 
an exact energy-momentum conserving scheme. A main goal of this simula­
tion is to verify numerically these properties. The sequence of deformed 
shapes obtained in the course of the simulation, shown in Figure 5.2 
without any magnification of the actual deformations, clearly demonstrates 
the presence of finite deformations accompanied by a large overall rigid 
motion. 

The sequence of plots summarized in Figure 5.3 contain the time 
histories total energy and the three components of the total angular 
momentum computed with the energy-momentum algorithm, the symplectic 
midpoint-rule and the trapezoidal rule of the Newmark family, respectively. 
The time history of the total linear momentum is not reported since these 

face A 

10 

X 

Figure 5.1 

3 

resultant loads 
on face A 

resultant loads 
on faceB 

p( t) = { 0.5 -: 

0. 

Fx = 1600. · p(t) 
Fy = 800. · p(t) 

Fz = 1600. · p(t) 

Mx =0. 

My =0. 

Mz = -1200. · p(t) 

Fx = 800. · p(t) 

Fy = -1600. · p(t) 

Fz = -800. · p(t) 

Mx = -1200. · p( i) 

My =0. 

Mz =0. 

for t < 0.5 

for 0.5 < t < 1.0 

for t > 1.0 

Geometry and finite element mesh for the simulation of the dynamics of a 'tumbling' L-shape elastic 
block with material response governed by the Saint Venant- Kirchhoff elastic model. The body is 
initially at rest and then subjected to the loading given in the figure. 
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Figure 5.2 
Sequence of deformed shapes of the L-shaped block obtained with the exact energy-momentum 
conserving algorithm for nonlinear elasto-dynamics. 

three algorithms, as well as most of the commonly use~ time stepping 
schemes, trivially preserve the conservation law of total linear momentum. 
The results shown in Figure 5.3 include computations with several step­
sizes and demonstrate the excellent performance exhibited by the energy­
momentum algorithm. In particular, the exact conservation of total energy 
yields an unconditionally stable scheme. In sharp contrast with this perfor­
mance, both the symplectic mid-point rule and the trapezoidal rule exhibit 
a significant energy growth for the larger time-step sizes in long-term 
calculations, which leads to an eventual blow-up of the algorithmic solu­
tion and strongly suggests a loss of the unconditional stability property of 
these methods in the nonlinear regime. 

We remark that the exact conservation of total angular momentum 
exhibited by the mid-point rule is in agreement with the analysis in . Simo, 
Tarnow and Wong [ 1992]. Although the analysis in this latter reference 
shows that the trapezoidal rule fails to conserve total angular momentum, 
the results in Figure 3.3 indicate an excellent overall behavior. We at­
tribute this good performance to the small rotational increments present in 
this problem as a result of the step-sizes employed. Nevertheless, failure of 
trapezoidal rule to conserve angular momentum may become significant in 
other situations. 

5.2. Dynamics of a flexible satellite-like structure 

In the second example we present the simulation of dynamics of a 
satellite~like structure with constitutive response again modeled by a Saint 
Venant-Kirchhoff material. Figure 5.4 contains all the necessary data 
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Figure 5.3 
Time histories of the total angular momentum and the total energy computed with the exact energy­
momentum conserving algorithm, the symplectic mid-point rule and the trapezoidal rule. 

pertaining to the geometry of the problem, initial conditions and material 
properties. 

As in the preceding example, after an initial loading phase the loads are 
removed and the subsequent motion of the structure in the ambient space 
exactly conserves momentum and energy. A representative deformed shape 
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Geometry and finite element mesh for the simulation of the dynamics of a flexible satelite-like structure, 
with material response governed by the Saint Venant- Kirchhoff elastic model. The body is initially at 
rest and then subjected to the loading given in the figure. 

Figure 5.5 
Finite element mesh and representative deformed 
shape obtained in the course of the full dynamic 
response of a flexible satellite-like structure, with 
material response governed by the Saint Venant­
Kirchhotf elastic model. 
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Figure 5.6 
Time histories of the total angular momentum and the total energy computed with the exact energy­
momentum conserving algorithm, the symplectic mid-point rule and the trapezoidal rule. 

of the structure is shown in Figure 5.5 without magnification of the actual 
deformations and demonstrates the presence of finite strains. The results of 
this numerical simulation are summarized in Figure 5.6 and confirm the 
conclusions drawn from the first example concerning conservation of mo­
mentum and energy exhibited by the three algorithms. Particularly striking 
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is the robustness exhibited by the energy-momentum algorithm in compari­
son to the two other schemes considered, admitting significantly larger 
time-steps without loss of convergence during the Newton-Raphson 
iteration. 

§6. Summary and conclusions 

We have presented a new methodology for the construction of time 
stepping algorithms that inherit, by design, the conservation laws of momen­
tum along with an a-priori estimate on the rate of decay of the total energy. 
For elastodynamics, the case examined in detail in this paper, we have 
presented a new class of second order accurate, unconditionally stable, exact 
energy and momentum conserving algorithms. The excellent performance 
exhibited by this conserving scheme has been demonstrated in two numerical 
simulations involving true finite strains accompanied by large overall rota­
tions. It has been shown that the proposed method remains stable while two 
widely used algorithms, the Newmark trapezoidal rule and the symplectic 
mid-point rule, exhibit blow-up for finite step sizes. Remarkably, the actual 
implementation of these energy-momentum schemes is essentially identical to 
the one of standard schemes, and involves negligible additional cost. 

The simulations in Section 5 demonstrate how algorithms possessing the 
same asymptotic order of accuracy and identical properties in the linear 
regime can exhibit drastically different responses in the nonlinear regime. In 
this connection, it should be emphasized that the three algorithms compared 
in Section 5 do become identical when restricted to the linear regime. 
Altho~gh these schemes are unconditionally stable in the linear regimes, 
their performance in the nonlinear regime is vastly different. The numerical 
result in Section 5 appear to suggest, therefore, that algorithmic conserva­
tion properties play an important role in the practical assessment of the 
actual performance to be expected from a given algorithm in the nonlinear 
regime. In particular, conservation of the total energy for a Hamiltonian 
system such as elastodynamics is not only desirable from a physical stand­
point, but also a manifestation of unconditionally ( nonlinear) stability of 
the algorithm. 

The ideas set forth herein are by no means restricted to elastodynamics 
and can be applied, in particular, to dynamical systems exhibiting (positive) 
internal dissipation. In future publications we plan to exploit this frame­
work in the design of algorithms for dissipative systems such as the 
Navier-Stokes models. In addition, these ideas can be easily extended to 
Hamiltonian systems possessing a significantly more complex geometric 
structure, such as rod and shells. Finally, we plan to address the design of 
conserving schemes possessing higher order accuracy. 
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Appendix I. Accuracy analysis of energy-momentum schemes 

In this Appendix we outline the accuracy analysis of the discrete 
energy-momentum schemes presented in Section 4. Recall that the time 
discretization of the algorithmic weak form is 

( Qo(Vn + 1- Vn), tl ) + ~t(DlfJn+ ( 1 /2)S, grad[t~] ) :=rAt - 0, 

tit 
lfJn+ I- lfJn- l [Vn+ 1 + Vn] ==!M- 0, 

(1.1) 

where we have assumed for simplicity zero external loading. We restrict 
our attention to the case in which the algorithmic constitutive equation for 
S is defined as 

(1.2) 

with f3 E (0, 1) defined so that energy is exactly conserved; as explained 
in Section 4. The analysis of the first order accurate scheme, corresponding 
to S = 2Ve(Cn + 13 ) follows along identical lines and further details are 
omitted. 

Let ( lfJ( ·, tn + 1 ), V( ·, tn + 1 )) denote the exact solution at time tn + 1 

defined on f?J. A Taylor series expansion about tn then yields 

({)( '' ln + t) = ({)('' ln) + ~Up(' , ln) +~~Up(' , tn) + (9( ~!3), 

V(·, ln+ J) =V(·, ln) +dtJi'( ·, ln) +~~tV( · , ln) +<P(At 3
), 

DqJ('' ln + (1/2) ) = DqJ(' , ln) + ~~tDtiJ( ·, ln) + (9( ~!2). 

(1.3) 

Setting Fn + 1 := Dl{J( ·, tn + 1) and Fn := DqJ( ·, tn) a Taylor series expansion of 
en + 13 yields 

Cn + 13 := f3F~ + 1 Fn + 1 + ( 1 - f3)F~ Fn 

= F~Fn + fJ 11t[F~Fn + F!:Fn] + C9(At 2
) 

= en + f3 ~tCn + me ~t2). (1.4) 
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Inserting this last result into the Taylor series expansion of the algorithmic 
constitutive equation (1.2) about tn gives the following result 

S = [Ve(Cn) + {3 AtV2e(Cn): Cn + &(At2
) 

+ Ve(Cn) + ( 1- p) ~tV2e(Cn): Cn + lP(At2
)] 

= 2Ve(Cn) + AtV2e(Cn): Cn + lP(At2
). (1.5) 

Now let L(At) denote the result obtained by inserting the exact solution into 
the left-hand-side of the algorithmic equation (1.1 )1 • Making use of the 
expansions (1.5) and (1.3) associated with the exact solution we obtain the 
following result for (1.1)h ordered in increasing powers of At: 

L(At) ==At[ (eo Vn, 'I)+ (Dq>n 2Ve(Cn), grad[q] )] 

(1.6a) 

Similarly, denoting by -r(At) the result obtained by inserting the exact 
solution into the left-hand side of the algorithmic equation (1.1 )2 we find 

"~"(At) •= At[(jJ(-, tn) - V(·, tn)l +A;' [q;(', tn) - V(·, t")] +&(M'). (I.6b) 

By assumption, the weak form of the equations and its time differentiation 
hold at time tn. Consequently, in view of the form of (1.6a,b) it follows that 

(1.7) 

Recalling the classical definition of the local truncation error (see e.g., 
Richtmyer and Morton [ 1967]) we conclude that the proposed energy­
momentum algorithm is second order accurate for any value {1 E [0, 1]. 

Appendix II. Symplectic integration of Hamiltonian systems 

This Appendix summarizes the Hamiltonian structure underlying 
Galerkin finite element discretizations on nonlinear elastodynamics. The 
main goal is to investigate to what extent the proposed discrete energy­
momentum conserving algorithm defines a symplectic scheme. Recall that 
an algorithm is called symplectic if the (generally implicit) map that 
advances the solution in phase space from time tn to time ln + 1 defines a 
symplectic transformation. This type of algorithms has received a consider­
able amount of attention in recent years; see e.g., Ruth [ 1983], Channell 
[ 1983]~ Lasagni [ 1988], Sanz-Serna [ 1988] and the recent review paper of 
Scovel [ 1991 ]. The underlying motivation is the belief, to some extent 
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unsubstantiated, that preserving the symplectic character of the Hamilto­
nian flow will enhance the long-term characteristics of an algorithm. In 
contrast with the notions of energy and momentum, which remain applica­
ble to dissipative systems, the symplectic property is clearly restricted to 
Hamiltonian system. 

If the Hamiltonian system is non-integrable, a result of Zhong and 
Marsden [ 1988] implies that an energy preserving algorithm which is also 
symplectic can differ from the exact Hamiltonian flow only up to a time 
reparametrization and, therefore, it is unlikely to exist. Since nonlinear 
elastodynamics is a non-integrable system, the conclusions of the analysis 
given below are consistent with this observation. We show that the energy­
momentum conserving scheme defines a symplectic transformation only up 
to terms of order 11.t 3

• Additionally, we show that the mid-point rule is the 
only member of the one parameter family of generalized mid-point rule 
schemes which is symplectic. We remark that our numerical simulations in 
Section 5 strongly suggest that exact momentum and energy conser_vation 
result in significantly better performance in long-term dynamic calculations 
than exact conservation of the symplectic structure. 

11.1. Discrete canonical Hamiltonian structure 

We outline below the Hamiltonian structure of the finite dimensional 
dynamical system obtained via a Galerkin discretization on nonlinear 
elastodynamics, as described in Section 4. This Hamiltonian structure is 
considered in its own right, with independence of the Hamiltonian structure 
of the infinite dimensional dynamical system, as described in Simo, Marsden 
and Krishnaprassad [ 1988], which plays no role in these developments. 
Accordingly, given the discrete state space f/h described in Section 4, define 

pA:= nre MA 8 Vn with MA 8 := I eoNA(X)N8(X)d~ (ILl) 
B = l J~ 

and introduce the following vector notation 

no e an z == q == (d'l' d2, ... 'dn d) E [Rndof, d {q} 
p := (p',p2, ... ,pnnode) E ~ndof, p · (II.2) 

where ndor=== 3 X nnode· It follows that z E p == !R271
dof. We shall refer to p as 

the nodal phase space associated with Galerkin finite element discretizations 
of nonlinear elastodynamics. On P one defines the kinetic energy function 
via the expression 

K(p) == ~p . M - 1p > 0, with M= [MA 8 13 X 3] E ~ndof X ~ndof. (II.3) 

Next, one defines the potential energy function U: ~ndor --t !R as follows. 
Recall that the deformation gradient Dtph and the right Cauchy-Green 
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nnode 

Dcph = L dA ® grad[NA(X)] and C(cph) == [Dcph]TDcph. (II.4) 
A= 1 

Using if necessary a numerical quadrature formula with total number of 
quadrature points nquad weights g1, I= 1, ... , nquad the potential energy 
function becomes 

(11.5) 

where cp7 denotes the configuration cph evaluated at the quadrature point X1• 

Clearly, (11.5) defines a function of q E IR3
nnode. Finally, let ~ denote the 

symplectic ndof x ndof defined by 

(11.6) 

where 0 and 1 are the zero and unit ndo f x ndof matrices, respectively. Recall 
that Jl possess the following well-known properties 

Jl = -~r = -Jl- 1 and det[Jl] = 1. (11.7) 

With the foregoing notation in hand, the Galerkin discretization of nonlin­
ear elastodynamics possess a canonical Hamiltonian structure with 

i. (Nodal) canonical phase space P = IR2
ndof 

ii. (Separable) Hamiltonian H(z) = K(p) + U(q) 
iii. (Canonical) symplectic two-form w(bzh <5z2 ) ==bz[ Jlbz2 , for bzb 

bZ2 E TZP. 

Here TzP denotes the tangent space at z E P of admissible variations. For 
such a Hamiltonian system, the canonical equations of motion take the 
standard form 

! (z(t)) = JV H(z(t))} with V H(z) •= {~(~} . (II.8) 

z( t) It = o = Zo 

We shall denote by !F1 : P ~ P the flow generated by equations (11.8), defined 
by the standard relation z(t) = IF1 (Z0 ) . 

l/.2. Symplectic algorithms 

Recall that the symplectic two-form defined above is conserved by the 
Hamiltonian flow !F 1 ( ·) in the sense that the relation 

(II.9) 
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holds for arbitrary variations Jzb Jz2 E P. Here DIF1(Z) denotes the derivative 
of IF1 at z E P defined in canonical coordinates by the 2ndof x 2ndor matrix of 
partial derivatives. Condition (11.9) is equivalent to the requirement 

I [DIF,(z)VJIDIF,(z) = Jl; I (II.IO) 

in other words, the matrix D [F1 (z) is symplectic. Condition (11.9) has a 
number of well-known consequences. In particular, from (II.IO) one con­
cludes that the Hamiltonian flow preserves the volume in phase space 
(Liouville's theorem) since det[D IF1 (z)] = 1. 

In general, an arbitrary mapping G : P ~ P which satisfies condition 
(11.9) [or (11.10) with IF1 replaced by G] is called a symplectic transforma­
tion. Symplectic maps are canonical transformations which preserve the form 
of Hamilton's equations, the volume in phase space and the integral 
invariants. In particular, an algorithm defines a time-one-map in phase 
space which advances the initial conditions Zn E P at time tn to the algorith­
mic solution Zn + 1 E P according to a generally implicit rule G(zn + 1 , Zn) = 0 
consistent with Hamilton's equations. The algorithm is thus said to be 
symplectic if this time-one-map is a symplectic transformation. A direct 
verification of this condition involves considering the linearized algorithm 
bzn+ 1 = Abzn· The matrix A is called the linearized amplification matrix of 
the scheme and is given by 

A =A! 1A2 

where 

A
1 
== [oG(zn+ 1, Zn)J and A

2
== -[oG(zn + h Zn)J. 

0Zn+ 1 OZn 
(II.ll) 

It follows that the time-stepping scheme is symplectic if AT JJA = JJ. From a 
computational stand point, an alternative form of this condition that avoids 
inversion of the matrix A 1 , and hence much easier to check in applications, 
is derived as follows. From (11.11) we conclude that 

(11.12) 

and using properties (11.6) we arrive at the equivalent characterization 

I ATJJA = JJ.., A, JJA r- A2JJAI = o.l 
We remark that the spectral stability properties of the algorithm can be 
inferred from the roots of the characteristic polynomial p(A.) := det[A - 212n]. 
Since det[ A] = 1 one concludes that the spectral radius (} of symplectic 
integrators must be (} = 1. As a result, a spectrally stable algorithm which 
exhibits numerical dissipation cannot be symplectic. 
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11.3. Approximate symplectic character of the energy-momentum scheme 

First, we compute the amplification matrix of the one-parameter family 
of generalized mid-point rule algorithms and use condition (11.12) to show 
that the mid-point rule is the only symplectic member of this family. This 
result appears to be not well-known although the symplectic character of 
the mid-point rule is well-established, see Feng Kan [ 1986]. Subsequently, 
we exploit this result in an expansion of the discrete energy-momentum 
algorithm in powers of the time-step At to conclude that this latter scheme 
fails to be symplectic, at worst, to order (L\t) 3

. 

1/.3.1. The symplectic midpoint rule 

For a general canonical Hamiltonian system, the one-parameter family 
of generalized mid-point rule algorithms takes the form 

G(zn + b Zn) := Zn + 1- Zn - AtJJV H(zn +IX) = 0,} 
Zn+IX = azn+ 1 + (1- !X)Zn for IX E [0, 1]. 

(11.13) 

Differentiating expression (II.13)1 and using the notation in (11.11) gives 
the result 

A 1 =1-aL\tJJV2H(zn+ct) } 
A 2 = 1 + (1- a) L\tJJV2H(zn+ct) 

(II.14) 

With these expressions in hand, condition (II.12) then becomes 

(11.15) 

which shows that, in general, the class of algorithm (11.13) is symplectic 
only if a = 1. 

For the Galerkin finite element discretization of nonlinear elastody­
namics in Section 4, V H(zn +IX) is computed from (11.8h evaluated at Zn + ex 

with 

aqAU(q) =f.., Dfl'!+(l/2)s::,pgrad[NA(X)] df-4, 

s~p := 2v e( cc cp~ + ( l /2))), 

(11.16) 

h l ~nnode A )(d d ) ' h 'd · fi . where (/Jn+(l /2) ==2 L..A = IN (X nA + n+ lA lS t e ffil .. point con guratlon 
and C(qJ~ + (t /2) ) is the associated right Cauchy- Green tensor defined by 
(II.4h. 
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11.3.2. The discrete energy-momentum method 

The algorithmic equations that define the exact energy-momentum 
conserving algorithm now take the following form 

~~'( ) ·- - - AtJJ {F~n~(l/2)(qn, qn+ .}} = 0 
'lJl Zn + 1 ' Zn ·- Zn + 1 Zn Ll M- l • 

Pn + (1/2) 

(11.17) 

Thus, in contrast with the symplectic mid-point rule which is defined by 
(11.13) with rx =!along with (11.15), the discrete energy-momentum method 
uses F~n~(l/2) in place of VU(q). We recall the expression 

F~n~1I/2) '=f... Dq~~+(If2)S~m grad[NA(X)] ~, 
S~m := Ve(C~ + p) + Ve(C~ +(I_ m), 

c~+<X :=rxC(q>~+.) + (1- rx)C(q>~), Vrx E [0, 1]. 

(11.18) 

By comparing (11.18) with (11.15) we conclude that difference between the 
two methods lies precisely in the definition of the convected stresses; i.e. S~m 
versus S~P. A straightforward Taylor series expansion then gives the 
relation 

(11.19) 

It therefore follows that the matrices A 1m and Aim associated with the 
energy-momentum method and the corresponding matrices for the symplec­
tic mid-point rule are related by the estimates 

Aim= A!P + [(9(L\t3)] and Aim= A2P + [(9(L\t 3
)]. (11.20) 

As a result, we obtained the following estimate for condition (11.12): 

AimJI[Aim]r- A2mJl[A2m]r = [(9(L\t3)], (11.21) 

which shows that the discrete energy-momentum method defines a symplec­
tic transformation up to terms of order (9(L\t 3

). 
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Abstract 

In the absence of external loads or in the presence of symmetries (i.e., translational and rotational 
invariance) the nonlinear dynamics of continuum systems preserves the total linear and the total angular 
momentum. Furthermore, under assumption met by all classical models, the internal dissipation in the 
system is non-negative. The goal of this work is the systematic design of conserving algorithms that 
preserve exactly the conservation laws of momentum and inherit the property of positive dissipation for 
any step-size. In particular, within the specific context of elastodynamics, a second order accurate 
algorithm is presented that exhibits exact conservation of both total (linear and angular) momentum and 
total energy. This scheme is shown to be amenable to a completely straightforward ( Galerkin) finite 
element implementation and ideally suited for long-term/large-scale simulations. The excellent perfor­
mance of the method relative to conventional time-integrators is conclusively demonstrated in numerical 
simulations exhibiting large strains coupled with a large overall rigid motion. 
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