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2.1.1. Some basic notation

Let the reference boundary 4 be partitioned into disjoint subsets such
that 08 =T, uT, with T', "I, = 0. The (smooth) manifold Q of admissi-
ble configurations is then defined by

Qi={ :B->R=|J( ):=detlDp >0and |, &}, (2.1)
where ¢ is specified data on I',. For elastodynamics typically
that Q c [H*(#)]"¢= with 5 > ny,,,/2 + 1. A motion in time interval is

a C'map te — ¢, €, with associated material velocity field V, = ¢, and
canonical momenta m, =g, ¥,, where the superposed dot denotes time
differentiation and gq: # — R, 1is the reference density. Throughout our
developments we shall denote by S, the symmetric Piola—Kirchhoff or
convected stress tensor associated with the motion ¢, and related to the
Cauchy stress tensor , via the well-known relation

S, =J(¢,)Do; (6, °0,)Dp 7, (2.2)

known  the Piola-transformation. In terms of the convected stress tensor
the prescribed traction boundary condition takes the form

Dp,SN=t, onT, x |, (2.3)

where N: 0% — S? is the unit normal field to the reference boundary 6%
and ¢,: T, x | - R"n is the prescribed nominal traction vector. In addition
to the boundary tractions it will be assumed that the body is acted upon by
a body force f,: x[— R"m,

2.1.2. The weak form of balance of momentum

Let ¥~ < [H(#)]"#= denote the space of test functions associated with
admissible configurations in @, defined in the usual fashion

Vi={ 1B > R"dim|q|.l_¢ = 1 (2.4)
Throughout our developments we denote by (-, -> the L,-inner product
# of scalars, vectors or tensors, depending the context. Setting

(s r=|r, ()(-) dT, the weak form of the balance of momentum at time
t € takes the form

(aty, ) +{D@,S,, gradly]) = i n) + <, nd>r Vpe¥ . (2.5a)

Here grad[-] is the gradient operator of vector fields on # relative to.
(material) coordinate system {X?} (4 =1,.. ., Agm) 4% i.e., in coordi-
nates we have (grad[y])%4 = dn /0X? where ¢ (a=1, ..., Agm) the

components of € ¥". Dg,, on the other hand, denotes the derivative of
4















main goal in this Section is the design of algorithmic approximations which
will inherit these crucial properties of the continuum dynamics.

3.1. The algorithmic framework. Conserving schemes

Consider a partition | = | JI_, [#,, ., 1] of the time interval of interest,
focus attention on a typical time interval [z, ¢, ;] and let Ar:=¢,, , — ¢, >0
denote the corresponding time-step size. Following a standard convention,
we shall denote by either (), or (), ; the algorithmic approximations at
times ¢, and ¢, , to the continuum (time-dependent) variable (-),. In our
algorithmic analysis we use the following restatement of condition (A1) of
Section 2

(A1*) For the unforced problem, that F**=0, T = and
P =0, for all tet,, t,1]

\" Y all the variables of interest specified at time ¢,; in particular,
the initial data (¢, 7,,) and the symmetric Piola—Kirchhoff stress £ (X)), for
all X € 4. Our goal is the design of a consistent approximation to iae IBVP
defined by (2.5a,b,c), along with a suitable constitutive equation of the type
described in Section 2.2, possessing the following properties whenever
assumptions (A1*) and (A2) hold:

1. Discrete momentum conservation in the that
L,.,=L, and J,,,=J,, n=0,1,..., N (3.1a)
1. Discrete energy conservation, in the that

ni1 SEQ and EXL SEM < 2™=0, n=0,1,...,N.|(3.1b)

The requirement EY. = E)** whenever 2™ =0 in corresponds to exact
energy conservation in the Hamiltonian and will be the only situation
addressed below within the specific context of elastodynamics. Algorithmic
approximations possessing the properties in (3.1) will be referred to
energy-momentum conserving schemes in what follows.

For nonlinear elastodynamics, the design of a conserving scheme is .
accomplished in two steps. First, we identify a class of one-step implicit
algorithms which, remarkably, achieve exact momentum conservation with
total independence of the approximation used for the convected stress
tensor. In fact, the property of exact momentum conservation holds for any
constitutive model. Second, we specialize this class of algorithms to nonlin-

9



10



11



12



13



14



15



16



17



18



linear momentum and the projected total angular momentum:

pode fpode Pnode

? =A§1 <Q09 NA>V3A and Jf ‘=A§1 BZ=:1 M*® dyx Vg, Viel
(4.6)

Now let L?, L% | and J?, J% | denote the total linear and total angular
momentum at times ¢, and 7,,,, respectively, obtained by evaluating
expressions (4.6) for the nodal values (d,,V,) and (d,, ., V,, ;). If
(d, 41, V,r1) € RMode x RMmoce gatisfies the algebraic problem (4.4) then for
the Neumann problem [i.e., under assumption (A2)] the following relations
holds

~
Hnode

Li, —Li=At ) Fx4 for any « €[0, 1],
A=1

Pnode 4_7
n+1 Jh At Z dﬂ-i—DEA X F;xi,g Only if o = % ( )
A=1

-

In particular, in the absence of external loads [i.e., under assumption
(A1%*)] for the value o =5 one recovers the discrete conservation laws of
linear and angular momentum namely, L% ,=L" and J2 ,=J" The
proof of the discrete relations (4.7) relies crucially on the following invari-
ance condition

Hpode

Y dygq x FM4 = for any a [0, 1], (4.8)
A=1

which follows from the symmetry of S” since

Hnode ) Rpode
E- ) dyy .4 x FM ==< Y, (¢ xd, .4 ®grad[N]], Dlpﬁ+ask>
A=1

A=1
—<§ D(Pn+aShD(Pn+m> 0 (49)

for any vector £ e R®. With this result in hand, the proof of (4.7) follows
along the same lines as the argument presented in Section 3.2 for the
time-discrete continuous problem and further details are omitted. Recall
that $”* = §"” remains so far arbitrary.

It can be easily verified that a result identical to that in (4.4) is obtained
if the Galerkin projection is applied first to the continuous weak form
(2.5a,b) of the momentum equation, followed by the time discretization.
Therefore, the following diagram commutes:

Continuum IBVP »| Semidiscrete IVP

Galerkin Projection

| ‘
Conserving l Algorithm Conserving i Algorithm

Galerkin Projection

Semidiscrete BVP

hd

Algebraic Problem
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Assume that (d,,, V,,) are prescribed initial data at the nodal points
and time ¢,, for A =1,2, ..., B4 Since the discrete problem (4.4) along
with constitutive equations (3.23) is nonlinear, an iterative solution strat-
egy must be adopted. In what follows the approximate solution of
(4.4) at the kth iteration within the time will be denoted simply by

(dn+ 14> sz—f—IA)'

Step 1. Given (d,, 14, Ve 1a) (A =1,2,..., Hy0q), compute the pro-
jected deformation gradients D¢}, De) , ) and De! . | by evalu-
ation of the general formula

fnode

Dol .= [lod,, 4+ (1 —o)d,,]® grad[N] (4.12)

A=1

for « =0, « =3 and « =1, respectively. Then compute the

right Cauchy-Green tensors: C”= De""D¢" and C%,, =

l)qpn-+ 11)€9;z+-!
Step 2. For fixed C; | (defined above) and given C” define the (generally)

nonlinear function g’: (0, 1) - R as
g'(B)=8&C, . ,)—é(Cy)

—UVE(Ch ) +VE(Ch q_p)l - (Chi —Ch),  (413)
where Cf:H aCh,  + (1 —a)C! is evaluated at a=p and
«=1-—f m (0, 1), respectively. Then find the value B, (0, 1)

closest to 3 such that g’(8,) = 0. For the Saint Venant—Kirchhoff
model B,=3

Step 3. Evaluate the convected stress tensor and the convected moduli by
the algorithmic formulae

Ve(Cn—e—,Bo) + Ve(cn—f—(l ,80)) }
'_2[ﬁ0V2[e(Cn+,b’o) + (1~ ﬁo)Vzé(anI -ﬁo))]~

Then compute Fi'\4,, and F& w2 via formulae (4.5) and evalu-
ate the dynamic residual as

(4.14)

Mnode

= Zl MABA oy 18— dup — ALV, 5] + [Fi 0 — FEU4 0L
(4.15)

If | | <TOL then (d,, 4, V,., ) is the sought solution.

Step 4. *| > TOL then solve for Ad,_ ,, the linearized system

node 2
Z [A s M4BT + AB]Adn+13+RA=0. (4.16)

Update the solution as d,,,,<d,, ., +Ad,. ,, and return to
Step 1.
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Energy-Momentum Method: Energy Energy-Momentum Method: Ang. Momentum
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Figure 5.3

Time histories of the total angular momentum and the total energy computed with the exact energy-
momentum conserving algorithm, the symplectic mid-point rule and the trapezoidal rule.

pertaining to the geometry of the problem, initial conditions and material
properties.

As mn the preceding example, after an initial loading phase the loads are
removed and the subsequent motion of the structure in the ambient space

exactly conserves momentum and energy. A representative deformed shape
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Energy-Momentum Method: Energy
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Energy-Momentum Method: Ang. Momentum
200 ¥ ‘ v i T l T I T
150

100
50

P8 1 1 ST SNV PO DY

dn
[
t

4

—

=

=2
1

—
Tn
(o=
T
|

T

Symplectic Momentum
200
150
100

50

Time

Newmark Methoed: Momentum
200
150

100

Time

Time histories of the total angular momentum and the total energy computed with the exact energy-
momentum conserving algorithm, the symplectic mid-point rule and the trapezoidal rule.

of the structure is shown in Figure 5.5 without magnification of the actual

deformations and demonstrates the presence of finite strains. The results of

this numerical simulation are summarized in Figure 5.6 and confirm the

conclusions drawn from the first example concerning conservation of mo-

mentum and energy exhibited by the three algorithms. Particularly striking
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