
Short Version of Matlab Manual

This is an extract from the manual which was used in MA10126 in first year. Its purpose is to refamiliarise
you with the matlab programming concepts.

1 Starting MATLAB

1.1.1. Starting a MATLAB session (from a BUCS PC).
• Log on to Windows.
• From the Desktop, click Start, then All programs, then Matlab.
• The MATLAB programming environment will start, and all files which you create will be in your “My

Documents” folder which is also stored in the BUCS filespace on your H-drive as directory “dos”.
1.1.2. Running MATLAB. After you have typed matlab, a MATLAB logo will come up and then a MATLAB
command window with a prompt >>. Now you are ready to use MATLAB. Typing “Edit” to the >> prompt
will start the MATLAB editor for you.
1.1.3. Terminating your session. To finish a MATLAB session, type exit to the >> prompt. Then log off
from your Windows session via the Start menu. It is essential that you log out completely after you have
finished with any machine.

2 Do-it-Yourself Tutorial on Loops and Logical Branching

In many situations in MA20014 you will need to repeat the same command several times on different data,
or perhaps under different conditions. Statements that tell the computer which command is to be executed
next are fundamental building blocks for computer programs, and are called control-flow statements. In this
tutorial you will revise the use of three control-flow statements for MATLAB programs:
• the for loop, for repeating a statement or group of statements a fixed number of times,
• the while loop, for repeating a statement or group of statements an indefinite number of times while a

condition remains true, and
• the if-elseif-else statement, which tells the computer to perform different calculations in different

situations.
You will revise the writing of these loops by doing the following four exercises. In the exercises you should

write script programs for each of the tasks, i.e. you should create files (using the MATLAB editor/debugger)
which are saved (by clicking on Files --> Save As) in M -files (with the .m extension). These should
contain the sequence of MATLAB commands necessary to do the tasks required. I suggest you start the
exercises immediately. If you have forgotten something about the necessary MATLAB commands, please refer
to the manual entries in the sections below.

1. Write and test a script program which reads in a positive integer n, and computes n!, using a for
loop. (A convenient way to read in the data is via the input command – type help input if you have
forgotten it.)

2. Using a simple while loop, write a script to sum the series 1 + 2 + 3 + ... such that the sum is
as large as possible without exceeding 100. The program should display the sum and also how many
terms are used in the sum.

3. Write a script that takes as input an integer n and creates the n×n matrix A with (i, j)th component
given by A(i, j) = sin(1/(i + j − 1)).

1



4. Write a script that takes as input three numbers a, b and c and prints out either the solutions of the
quadratic equation ax2 + bx + c = 0, when these solutions are real, or a message indicating that the
solutions are not real.

3 The manual pages

3.1 The for loop

A simple form of such a loop is

for index = 1:n
statements
end

The statements are executed n times with index = 1, 2, 3, . . . , n. Here n is a number that must be fixed
before we enter the loop. More generally, the loop may start with the line for index = j:m:k. Usually j,m
and k are integers and k-j is divisible by m. The statements are executed repeatedly starting from index
= j with index incremented by m each time and continuing until index = k (which is the last time round
the loop). If m = 1, we can replace j:m:k in the first line of the loop by j:k. Even more generally, we can
begin with the line

for index = v

where v is a vector. The statements inside the loop are repeatedly executed with index set to each of the
elements of v in turn. Type help for and read the manual page for the for loop.

As an example, consider the computation of the series

1− 1/2 + 1/3− 1/4 + 1/5− . . . (3.1)

This is implemented in the script file tutorial3a.m:

% script tutorial3a.m
% computes the sum of the series
%
% 1 - 1/2 + 1/3 - 1/4 + ...
%
N = input(’type the number of terms to be added up: ’)

% asks the user to provide a value for N

sign = 1; % initialise the sign for the term
sum_series = 0; % initialise the sum of the series

for n = 1:N
sum_series = sum_series + sign/n;
sign = -sign; % changes sign for alternating series
end

sum_series % prints out the sum of the series to N terms

When you have worked with MATLAB for a while you will find that program speeds can be improved by
using (if possible) vector or matrix operations instead of loops. For example, to sum the series (3.1) to an
even number of terms N, we can use the following very short script.

2



% script tutorial3b.m
% computes the sum of the series
%
% 1 - 1/2 + 1/3 - 1/4 + ...
%
% to an even number of terms
% using vector operations

N = input(’type the number of terms N (with N even): ’)

sum_series = sum(1./(1:2:N-1) - 1./(2:2:N))

Exercise: Make sure you understand how the program above works. Use help sum.

We have seen how to use a for loop to create a vector whose entries are given by a formula. If the
entries of a matrix are given by a formula then we can use nested for loops to create it. For example the
Hilbert matrix H is an n× n matrix whose entry in the ith row and jth column is 1/(i + j − 1). If a value
has been assigned to n, we can write

for i = 1:n
for j = 1:n
H(i,j) = 1/(i+j-1);

end % for j
end % for i

I have added the comment after the end statements to show which loop is ended. This is useful when
there are several nested loops.

Note that this may not be the most efficient way of assembling the Hilbert matrix - see the full version
of this manual for more detail. But our main purpose here is correctness rather than efficiency.

3.2 The while loop

The general form of the while statement is

while (condition)
statements
end

The condition is a logical relation and the statements are executed repeatedly while the condition
remains true. The condition is tested each time before the statements are repeated. It must eventually
become false after a finite number of steps, or the program will never terminate.

Example. Suppose we have invested some money in a fund which pays 5% (compound) interest per year,
and we would like to know how long it takes for the value of the investment to double. Indeed we would
like to obtain a statement of the account for each year until the balance is doubled. We cannot use a for
loop in this case, because we do not know beforehand how long this will take, so we cannot assign a value
for the number of iterations on entering the loop. Instead, we must use a while loop.

3



%script tutorial3c.m

format bank % output with 2 dec places
invest = input(’type initial investment: ’)

r = 0.05; % rate of interest
bal = invest; % initial balance
year = 0; % initial year
disp(’ Year Balance’) % header for output

% (You can experiment with this)
while (bal < 2*invest) % repeat while balance is

% less than twice the investment,
% and stop when balance exceeds this

bal = bal + r*bal; % update bal
year = year + 1; % update year
disp([year,bal])

end

3.3 The if-elseif-else statement

A simple form of the if statement is
if (condition)
statements
end

Here condition and statements are the same as in the while loop, but in this case the statements are
executed only once if condition is true and are not executed at all if condition is false. For example the
following script divides 1 by i, provided i is non-zero; otherwise, j is not assigned a value.

if (i ~= 0)
j=1/i;
end

The symbol ~= is a relational operator and stands for is not equal to. Other relational operators include ==,
<=, >=, etc. Type help ops to find out about these. Note the difference between the relational operator ==
and the usual use of the symbol =, which assigns a value to a variable.

The if-else statement allows us to choose between two courses of action. For example the following
script reads in a number and prints out a message to say if it is negative or non-negative.

x = input(’ Type x : ’)

if (x<0)
disp(’x is negative’)

else
disp(’x is non-negative’)

end

Note that indenting of statements inside loops and if statements helps make your program more readable.
Going further, adding elseif allows us to choose between a number of possible courses of action.

4



x = input(’ Type x : ’)

if (x<0)
disp(’x is negative’)

elseif (x>0)
disp(’x is positive’)

else
disp(’x is zero’)

end

A more general form is

if (condition1)
statementsA

elseif (condition2)
statementsB

elseif (condition3)
statementsC

...
else

statementsE
end

This is sometimes called an elseif ladder. Its effect is the following.

• First condition1 is tested. If it is true then statementsA are executed and execution then skips to
the next statement after end.

• If condition1 is false, then condition2 is tested. If it is true, then statementsB are executed and
execution skips to the next statement after end.

• Continuing in this way, all the conditions appearing in elseif lines are tested until one is true. If
none is true, then statementsE are executed.

There can be any number of elseifs but only one else.

Example. Suppose a bank offers annual interest of 3% on balances of less than £5,000, 3.25% on balances
of £5,000 or more but less than £10,000, and 3.5% for balances of £10,000 or more. The following program
calculates an investor’s new balance after one year.

% script tutorial3d.m

bal = input(’type balance: ’)

if (bal < 5000)
rate = 0.03;
elseif (bal < 10000)
rate = 0.0325;
else
rate = 0.035;
end

disp([’new balance is : ’,num2str((1+rate)*bal)])

5



The logical relations that make up the condition in a while or if statement can quite complicated.
Simple relations can be converted into more complex ones using the three logical operators & (and), | (or)
and ~ (not). For example the quadratic equation ax2 + bx + c = 0 has two equal roots, −b/(2a), provided
that b2 − 4ac = 0 and a 6= 0. This can be programmed as:

if((b^2 - 4*a*c == 0)&(a~=0))
x = - b/(2*a);

end

4 Appendix: Some useful MATLAB commands

On-line help
help lists topics on which help is available
helpwin opens the interactive help window
helpdesk opens the web-browser-based help facility
help topic provides help on topic

lookfor string lists help topics containing string

demo runs the demo program

Workspace information and control
who lists variables currently in the workspace
whos as above, giving their size
what lists M-files on the disk
clear clears the workspace, removing all variables
clear all clears all variables and functions from the workspace

Command window control
clc clears command window, command history is lost
home same as clc

↑ recall previous command

Graphics
plot plots a graph
xlabel(’x’) labels x axis x

ylabel(’y’) labels y axis y

title(’title’) gives a figure a title title

axis fixes figure axes
clf clears figure from figure window
cla clears figure from figure window, leaving axes

Controlling program execution
break terminates execution of a for or while loop
error(’message’) aborts execution, displays message on screen
return exit from function, return to invoking program

Input from and output to terminal
x=input(’type x:’) asks user to give a value to be assigned to x

disp(’string’) outputs string to terminal

String-number conversion
num2str converts a number to a string (so it can be output e.g. as part of a message)

Logical functions
isempty true (=1) if a matrix is empty
find finds indices of non-zero elements of a matrix

Arithmetic functions
sum(x) calculates the sum of the elements of the vector x

prod(x) calculates the product of the elements of the vector x

Termination
^c (Control-c) local abort, kills the current command execution
quit quits MATLAB

exit same as quit

6


