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1 Introduction
This document introduces the reader to Deep Learning with H2O. Examples
are written in R and Python. Topics include:

� installation of H2O

� basic Deep Learning concepts

� building deep neural nets in H2O

� how to interpret model output

� how to make predictions

as well as various implementation details.

2 What is H2O?
H2O is fast, scalable, open-source machine learning and deep learning for
smarter applications. With H2O, enterprises like PayPal, Nielsen Catalina,
Cisco, and others can use all their data without sampling to get accurate
predictions faster. Advanced algorithms such as deep learning, boosting, and
bagging ensembles are built-in to help application designers create smarter
applications through elegant APIs. Some of our initial customers have built
powerful domain-specific predictive engines for recommendations, customer
churn, propensity to buy, dynamic pricing, and fraud detection for the insurance,
healthcare, telecommunications, ad tech, retail, and payment systems industries.

Using in-memory compression, H2O handles billions of data rows in-memory,
even with a small cluster. To make it easier for non-engineers to create complete
analytic workflows, H2O’s platform includes interfaces for R, Python, Scala,
Java, JSON, and CoffeeScript/JavaScript, as well as a built-in web interface,
Flow. H2O is designed to run in standalone mode, on Hadoop, or within a
Spark Cluster, and typically deploys within minutes.

H2O includes many common machine learning algorithms, such as generalized
linear modeling (linear regression, logistic regression, etc.), Näıve Bayes, principal
components analysis, k-means clustering, and others. H2O also implements
best-in-class algorithms at scale, such as distributed random forest, gradient
boosting, and deep learning. Customers can build thousands of models and
compare the results to get the best predictions.

H2O is nurturing a grassroots movement of physicists, mathematicians, and
computer scientists to herald the new wave of discovery with data science by
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collaborating closely with academic researchers and industrial data scientists.
Stanford university giants Stephen Boyd, Trevor Hastie, Rob Tibshirani advise
the H2O team on building scalable machine learning algorithms. With hundreds
of meetups over the past three years, H2O has become a word-of-mouth
phenomenon, growing amongst the data community by a hundred-fold, and
is now used by 30,000+ users and is deployed using R, Python, Hadoop, and
Spark in 2000+ corporations.

Try it out

� Download H2O directly at http://h2o.ai/download.

� Install H2O’s R package from CRAN at https://cran.r-project.
org/web/packages/h2o/.

� Install the Python package from PyPI at https://pypi.python.
org/pypi/h2o/.

Join the community

� To learn about our meetups, training sessions, hackathons, and product
updates, visit http://h2o.ai.

� Visit the open source community forum at https://groups.google.
com/d/forum/h2ostream.

� Join the chat at https://gitter.im/h2oai/h2o-3.

3 Installation
H2O requires Java; if you do not already have Java installed, install it from
https://java.com/en/download/ before installing H2O.

The easiest way to directly install H2O is via an R or Python package.

3.1 Installation in R

To load a recent H2O package from CRAN, run:

1 install.packages("h2o")

Note: The version of H2O in CRAN may be one release behind the current
version.

http://h2o.ai/download
https://cran.r-project.org/web/packages/h2o/
https://cran.r-project.org/web/packages/h2o/
https://pypi.python.org/pypi/h2o/
https://pypi.python.org/pypi/h2o/
http://h2o.ai
https://groups.google.com/d/forum/h2ostream
https://groups.google.com/d/forum/h2ostream
https://gitter.im/h2oai/h2o-3
https://java.com/en/download/
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For the latest recommended version, download the latest stable H2O-3 build
from the H2O download page:

1. Go to http://h2o.ai/download.
2. Choose the latest stable H2O-3 build.
3. Click the “Install in R” tab.
4. Copy and paste the commands into your R session.

After H2O is installed on your system, verify the installation:

1 library(h2o)
2

3 #Start H2O on your local machine using all available
cores.

4 #By default, CRAN policies limit use to only 2 cores.
5 h2o.init(nthreads = -1)
6

7 #Get help
8 ?h2o.glm
9 ?h2o.gbm

10 ?h2o.deeplearning
11

12 #Show a demo
13 demo(h2o.glm)
14 demo(h2o.gbm)
15 demo(h2o.deeplearning)

3.2 Installation in Python

To load a recent H2O package from PyPI, run:

1 pip install h2o

To download the latest stable H2O-3 build from the H2O download page:

1. Go to http://h2o.ai/download.
2. Choose the latest stable H2O-3 build.
3. Click the “Install in Python” tab.
4. Copy and paste the commands into your Python session.

After H2O is installed, verify the installation:

http://h2o.ai/download
http://h2o.ai/download
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1 import h2o
2

3 # Start H2O on your local machine
4 h2o.init()
5

6 # Get help
7 help(h2o.glm)
8 help(h2o.gbm)
9 help(h2o.deeplearning)

10

11 # Show a demo
12 h2o.demo("glm")
13 h2o.demo("gbm")
14 h2o.demo("deeplearning")

3.3 Pointing to a Different H2O Cluster

The instructions in the previous sections create a one-node H2O cluster on your
local machine.

To connect to an established H2O cluster (in a multi-node Hadoop environment,
for example) specify the IP address and port number for the established cluster
using the ip and port parameters in the h2o.init() command. The syntax
for this function is identical for R and Python:

1 h2o.init(ip = "123.45.67.89", port = 54321)

3.4 Example Code

R and Python code for the examples in this document can be found here:

https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/
booklets/v2_2015/source/DeepLearning_Vignette_code_examples

The document source itself can be found here:

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/
booklets/v2_2015/source/DeepLearning_Vignette.tex

https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/DeepLearning_Vignette_code_examples
https://github.com/h2oai/h2o-3/tree/master/h2o-docs/src/booklets/v2_2015/source/DeepLearning_Vignette_code_examples
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/v2_2015/source/DeepLearning_Vignette.tex
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/booklets/v2_2015/source/DeepLearning_Vignette.tex
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3.5 Citation

To cite this booklet, use the following:

Candel, A., Parmar, V., LeDell, E., and Arora, A. (Mar 2016). Deep Learning
with H2O. http://h2o.ai/resources.

4 Deep Learning Overview
Unlike the neural networks of the past, modern Deep Learning provides training
stability, generalization, and scalability with big data. Since it performs quite
well in a number of diverse problems, Deep Learning is quickly becoming the
algorithm of choice for the highest predictive accuracy.

The first section is a brief overview of deep neural networks for supervised
learning tasks. There are several theoretical frameworks for Deep Learning, but
this document focuses primarily on the feedforward architecture used by H2O.

The basic unit in the model (shown in the image below) is the neuron, a
biologically inspired model of the human neuron. In humans, the varying
strengths of the neurons’ output signals travel along the synaptic junctions and
are then aggregated as input for a connected neuron’s activation.

In the model, the weighted combination α =
∑n

i=1 wixi + b of input signals is
aggregated, and then an output signal f(α) transmitted by the connected neuron.
The function f represents the nonlinear activation function used throughout
the network and the bias b represents the neuron’s activation threshold.

Multi-layer, feedforward neural networks consist of many layers of interconnected
neuron units (as shown in the following image), starting with an input layer
to match the feature space, followed by multiple layers of nonlinearity, and
ending with a linear regression or classification layer to match the output space.

http://h2o.ai/resources
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The inputs and outputs of the model’s units follow the basic logic of the single
neuron described above.

Bias units are included in each non-output layer of the network. The weights
linking neurons and biases with other neurons fully determine the output of the
entire network. Learning occurs when these weights are adapted to minimize the
error on the labeled training data. More specifically, for each training example
j, the objective is to minimize a loss function,

L(W,B | j).

Here, W is the collection {Wi}1:N−1, where Wi denotes the weight matrix
connecting layers i and i + 1 for a network of N layers. Similarly B is the
collection {bi}1:N−1, where bi denotes the column vector of biases for layer
i+ 1.

This basic framework of multi-layer neural networks can be used to accomplish
Deep Learning tasks. Deep Learning architectures are models of hierarchical
feature extraction, typically involving multiple levels of nonlinearity. Deep
Learning models are able to learn useful representations of raw data and have
exhibited high performance on complex data such as images, speech, and text
(Bengio, 2009).

5 H2O’s Deep Learning Architecture
H2O follows the model of multi-layer, feedforward neural networks for predictive
modeling. This section provides a more detailed description of H2O’s Deep
Learning features, parameter configurations, and computational implementation.

http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf
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5.1 Summary of Features

H2O’s Deep Learning functionalities include:

� supervised training protocol for regression and classification tasks

� fast and memory-efficient Java implementations based on columnar com-
pression and fine-grain MapReduce

� multi-threaded and distributed parallel computation that can be run on a
single or a multi-node cluster

� automatic, per-neuron, adaptive learning rate for fast convergence

� optional specification of learning rate, annealing, and momentum options

� regularization options such as L1, L2, dropout, Hogwild!, and model
averaging to prevent model overfitting

� elegant and intuitive web interface (Flow)

� fully scriptable R API from H2O’s CRAN package

� fully scriptable Python API

� grid search for hyperparameter optimization and model selection

� automatic early stopping based on convergence of user-specified metrics
to user-specified tolerance

� model checkpointing for reduced run times and model tuning

� automatic pre- and post-processing for categorical and numerical data

� automatic imputation of missing values (optional)

� automatic tuning of communication vs computation for best performance

� model export in plain Java code for deployment in production environments

� additional expert parameters for model tuning

� deep autoencoders for unsupervised feature learning and anomaly detection
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5.2 Training Protocol

The training protocol described below follows many of the ideas and advances
discussed in recent Deep Learning literature.

5.2.1 Initialization

Various Deep Learning architectures employ a combination of unsupervised
pre-training followed by supervised training, but H2O uses a purely supervised
training protocol. The default initialization scheme is the uniform adaptive
option, which is an optimized initialization based on the size of the network.
Deep Learning can also be started using a random initialization drawn from
either a uniform or normal distribution, optionally specifying a scaling parameter.

5.2.2 Activation and Loss Functions

The choices for the nonlinear activation function f described in the introduction
are summarized in Table 1 below. xi and wi represent the firing neuron’s input
values and their weights, respectively; α denotes the weighted combination
α =

∑
i wixi + b.

Table 1: Activation Functions

Function Formula Range

Tanh f(α) = eα−e−α
eα+e−α f(·) ∈ [−1, 1]

Rectified Linear f(α) = max(0, α) f(·) ∈ R+

Maxout f(α1, α2) = max(α1, α2) f(·) ∈ R

The tanh function is a rescaled and shifted logistic function; its symmetry
around 0 allows the training algorithm to converge faster. The rectified linear
activation function has demonstrated high performance on image recognition
tasks and is a more biologically accurate model of neuron activations (LeCun
et al, 1998).

Maxout is a generalization of the Rectifiied Linear activation, where
each neuron picks the largest output of k separate channels, where each channel
has its own weights and bias values. The current implementation supports only
k = 2. Maxout activation works particularly well with dropout (Goodfellow et
al, 2013). For more information, refer to Regularization.

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://arxiv.org/pdf/1302.4389.pdf
http://arxiv.org/pdf/1302.4389.pdf
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The Rectifier is the special case of Maxout where the output of one channel is
always 0. It is difficult to determine a “best” activation function to use; each
may outperform the others in separate scenarios, but grid search models can help
to compare activation functions and other parameters. For more information,
refer to Grid Search for Model Comparison. The default activation function
is the Rectifier. Each of these activation functions can be operated with dropout
regularization. For more information, refer to Regularization.

Specify the one of the following distribution functions for the response variable
using the distribution argument:

� AUTO
� Bernoulli
� Multinomial

� Poisson
� Gamma
� Tweedie

� Laplace
� Quantile
� Huber
� Gaussian

Each distribution has a primary association with a particular loss function, but
some distributions allow users to specify a non-default loss function from the
group of loss functions specified in Table 2. Bernoulli and multinomial are
primarily associated with cross-entropy (also known as log-loss), Gaussian with
Mean Squared Error, Laplace with Absolute loss (a special case of Quantile with
quantile alpha=0.5) and Huber with Huber loss. For Poisson, Gamma,
and Tweedie distributions, the loss function cannot be changed, so loss must
be set to AUTO.

The system default enforces the table’s typical use rule based on whether
regression or classification is being performed. Note here that t(j) and o(j) are
the predicted (also known as target) output and actual output, respectively, for
training example j; further, let y represent the output units and O the output
layer.

Table 2: Loss functions
Function Formula Typical use

Mean Squared Error L(W,B|j) = 1
2‖t

(j) − o(j)‖22 Regression
Absolute L(W,B|j) = ‖t(j) − o(j)‖1 Regression

Huber L(W,B|j) =

{
1
2‖t

(j) − o(j)‖22 for ‖t(j) − o(j)‖1 ≤ 1,

‖t(j) − o(j)‖1 − 1
2 otherwise.

Regression

Cross Entropy L(W,B|j) = −
∑
y∈O

(
ln(o

(j)
y ) · t(j)y + ln(1− o(j)y ) · (1− t(j)y )

)
Classification

To predict the 80-th percentile of the petal length of the Iris dataset in R, use
the following:
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Example in R

1 library(h2o)
2 h2o.init(nthreads = -1)
3 train.hex <- h2o.importFile("https://h2o-public-test-

data.s3.amazonaws.com/smalldata/iris/iris_wheader.
csv")

4 splits <- h2o.splitFrame(train.hex, 0.75, seed=1234)
5 dl <- h2o.deeplearning(x=1:3, y="petal_len",
6 training_frame=splits[[1]],
7 distribution="quantile", quantile_alpha=0.8)
8 h2o.predict(dl, splits[[2]])

To predict the 80-th percentile of the petal length of the Iris dataset in Python,
use the following:

Example in Python

1 import h2o
2 from h2o.estimators.deeplearning import

H2ODeepLearningEstimator
3 h2o.init()
4 train = h2o.import_file("https://h2o-public-test-data.

s3.amazonaws.com/smalldata/iris/iris_wheader.csv")
5 splits = train.split_frame(ratios=[0.75], seed=1234)
6 dl = H2ODeepLearningEstimator(distribution="quantile",

quantile_alpha=0.8)
7 dl.train(x=range(0,2), y="petal_len", training_frame=

splits[0])
8 print(dl.predict(splits[1]))
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5.2.3 Parallel Distributed Network Training

The process of minimizing the loss function L(W,B | j) is a parallelized version
of stochastic gradient descent (SGD). A summary of standard SGD provided
below, with the gradient ∇L(W,B | j) computed via backpropagation (LeCun
et al, 1998). The constant α is the learning rate, which controls the step sizes
during gradient descent.

Standard stochastic gradient descent

1. Initialize W,B
2. Iterate until convergence criterion reached:

a. Get training example i

b. Update all weights wjk ∈W , biases bjk ∈ B

wjk := wjk − α∂L(W,B|j)
∂wjk

bjk := bjk − α∂L(W,B|j)
∂bjk

Stochastic gradient descent is fast and memory-efficient but not easily paral-
lelizable without becoming slow. We utilize Hogwild!, the recently developed
lock-free parallelization scheme from Niu et al, 2011, to address this issue.

Hogwild! follows a shared memory model where multiple cores (where
each core handles separate subsets or all of the training data) are able to make
independent contributions to the gradient updates ∇L(W,B | j) asynchronously.

In a multi-node system, this parallelization scheme works on top of H2O’s
distributed setup that distributes the training data across the cluster. Each
node operates in parallel on its local data until the final parameters W,B are
obtained by averaging.

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://i.stanford.edu/hazy/papers/hogwild-nips.pdf
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Parallel distributed and multi-threaded training with SGD in H2O Deep Learning

1. Initialize global model parameters W,B
2. Distribute training data T across nodes (can be disjoint or replicated)
3. Iterate until convergence criterion reached:

3.1. For nodes n with training subset Tn, do in parallel:

a. Obtain copy of the global model parameters Wn, Bn

b. Select active subset Tna ⊂ Tn
(user-given number of samples per iteration)

c. Partition Tna into Tnac by cores nc

d. For cores nc on node n, do in parallel:

i. Get training example i ∈ Tnac
ii. Update all weights wjk ∈Wn, biases bjk ∈ Bn

wjk := wjk − α∂L(W,B|j)
∂wjk

bjk := bjk − α∂L(W,B|j)
∂bjk

3.2. Set W,B := Avgn Wn, Avgn Bn

3.3. Optionally score the model on (potentially sampled)

train/validation scoring sets

Here, the weights and bias updates follow the asynchronous Hogwild! proce-
dure to incrementally adjust each node’s parameters Wn, Bn after seeing the
example i. The Avgn notation represents the final averaging of these local
parameters across all nodes to obtain the global model parameters and complete
training.
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5.2.4 Specifying the Number of Training Samples

H2O Deep Learning is scalable and can take advantage of large clusters of
compute nodes. There are three operating modes. The default behavior allows
every node to train on the entire (replicated) dataset but automatically shuffling
(and/or using a subset of) the training examples for each iteration locally.

For datasets that don’t fit into each node’s memory (depending on the amount
of heap memory specified by the -Xmx Java option), it might not be possible
to replicate the data, so each compute node can be specified to train only with
local data. An experimental single node mode is available for cases where final
convergence is slow due to the presence of too many nodes, but this has not
been necessary in our testing.

To specify the global number of training examples shared with the distributed
SGD worker nodes between model averaging, use the
train samples per iteration parameter. If the specified value is -1,
all nodes process all their local training data on each iteration.

If replicate training data is enabled, which is the default setting, this
will result in training N epochs (passes over the data) per iteration on N nodes;
otherwise, one epoch will be trained per iteration. Specifying 0 always results
in one epoch per iteration regardless of the number of compute nodes. In
general, this parameter supports any positive number. For large datasets, we
recommend specifying a fraction of the dataset.

A value of -2, which is the default value, enables auto-tuning for this parameter
based on the computational performance of the processors and the network
of the system and attempts to find a good balance between computation and
communication. This parameter can affect the convergence rate during training.

For example, if the training data contains 10 million rows, and the number of
training samples per iteration is specified as 100, 000 when running on four
nodes, then each node will process 25, 000 examples per iteration, and it will
take 40 distributed iterations to process one epoch.

If the value is too high, it might take too long between synchronization and
model convergence may be slow. If the value is too low, network communication
overhead will dominate the runtime and computational performance will suffer.
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5.3 Regularization

H2O’s Deep Learning framework supports regularization techniques to prevent
overfitting. `1(L1: Lasso) and `2 (L2: Ridge) regularization enforce the same
penalties as they do with other models: modifying the loss function so as to
minimize loss:

L′(W,B | j) = L(W,B | j) + λ1R1(W,B | j) + λ2R2(W,B | j).

For `1 regularization, R1(W,B | j) is the sum of all `1 norms for the weights
and biases in the network; `2 regularization via R2(W,B | j) represents the
sum of squares of all the weights and biases in the network. The constants λ1
and λ2 are generally specified as very small (for example 10−5).

The second type of regularization available for Deep Learning is a modern
innovation called dropout (Hinton et al., 2012). Dropout constrains the online
optimization so that during forward propagation for a given training example,
each neuron in the network suppresses its activation with probability P , which
is usually less than 0.2 for input neurons and up to 0.5 for hidden neurons.

There are two effects: as with `2 regularization, the network weight values are
scaled toward 0. Although they share the same global parameters, each training
example trains a different model. As a result, dropout allows an exponentially
large number of models to be averaged as an ensemble to help prevent overfitting
and improve generalization.

If the feature space is large and noisy, specifying an input dropout using the
input dropout ratio parameter can be especially useful. Note that in-
put dropout can be specified independently of the dropout specification in
the hidden layers (which requires activation to be TanhWithDropout,
MaxoutWithDropout, or RectifierWithDropout). Specify the amount
of hidden dropout per hidden layer using the hidden dropout ratios pa-
rameter, which is set to 0.5 by default.

5.4 Advanced Optimization

H2O features manual and automatic advanced optimization modes. The manual
mode features include momentum training and learning rate annealing and the
automatic mode features an adaptive learning rate.

http://arxiv.org/pdf/1207.0580.pdf
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5.4.1 Momentum Training

Momentum modifies back-propagation by allowing prior iterations to influence
the current version. In particular, a velocity vector, v, is defined to modify the
updates as follows:

� θ represents the parameters W,B

� µ represents the momentum coefficient

� α represents the learning rate

vt+1 = µvt − α∇L(θt)
θt+1 = θt + vt+1

Using the momentum parameter can aid in avoiding local minima and any
associated instability (Sutskever et al, 2014). Too much momentum can lead
to instability, so we recommend incrementing the momentum slowly. The pa-
rameters that control momentum are momentum start, momentum ramp,
and momentum stable.

When using momentum updates, we recommend using the Nesterov acceler-
ated gradient method, which uses the nesterov accelerated gradient
parameter. This method modifies the updates as follows:

vt+1 = µvt − α∇L(θt + µvt)
Wt+1 =Wt + vt+1

5.4.2 Rate Annealing

During training, the chance of oscillation or “optimum skipping” creates the
need for a slower learning rate as the model approaches a minimum. As opposed
to specifying a constant learning rate α, learning rate annealing gradually
reduces the learning rate αt to “freeze” into local minima in the optimization
landscape (Zeiler, 2012).

For H2O, the annealing rate (rate annealing) is the inverse of the number
of training samples required to divide the learning rate in half (e.g., 10−6 means
that it takes 106 training samples to halve the learning rate).

http://www.cs.toronto.edu/~fritz/absps/momentum.pdf
http://arxiv.org/pdf/1212.5701v1.pdf
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5.4.3 Adaptive Learning

The implemented adaptive learning rate algorithm ADADELTA (Zeiler, 2012)
automatically combines the benefits of learning rate annealing and momentum
training to avoid slow convergence. To simplify hyper parameter search, specify
only ρ and ε.

In some cases, a manually controlled (non-adaptive) learning rate and momen-
tum specifications can lead to better results but require a hyperparameter search
of up to seven parameters. If the model is built on a topology with many local
minima or long plateaus, a constant learning rate may produce sub-optimal
results. However, the adaptive learning rate generally produces the best results
during our testing, so this option is the default.

The first of two hyper parameters for adaptive learning is ρ (rho). It is similar
to momentum and is related to the memory of prior weight updates. Typical
values are between 0.9 and 0.999. The second hyper parameter, ε (epsilon),
is similar to learning rate annealing during initial training and allows further
progress during momentum at later stages. Typical values are between 10−10

and 10−4.

5.5 Loading Data

Loading a dataset in R or Python for use with H2O is slightly different than
the usual methodology. Instead of using data.frame or data.table in
R, or pandas.DataFrame or numpy.array in Python, datasets must be
converted into H2OFrame objects (distributed data frames).

5.5.1 Data Standardization/Normalization

Along with categorical encoding, H2O’s Deep Learning preprocesses the data
to standardize it for compatibility with the activation functions (refer to to the
summary of each activation function’s target space in Activation Functions).

Since the activation function generally does not map into the full spectrum
of real numbers, R, we first standardize our data to be drawn from N (0, 1).
Standardizing again after network propagation allows us to compute more
precise errors in this standardized space, rather than in the raw feature space.

For autoencoding, the data is normalized (instead of standardized) to the
compact interval of U(−0.5, 0.5) to allow bounded activation functions like
tanh to better reconstruct the data.

http://arxiv.org/pdf/1212.5701v1.pdf
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5.5.2 Convergence-based Early Stopping

Early stopping based on convergence of a user-specified metric is an especially
helpful feature for finding the optimal number of epochs. By default, it uses
the metrics on the validation dataset, if provided. Otherwise, training metrics
are used.

� To stop model building if misclassification improves (is reduced) by less
than one percent between individual scoring epochs, specify
stopping rounds=1, stopping tolerance=0.01 and
stopping metric="misclassification".

� To stop model building if the simple moving average (window length 5) if
the AUC improves (increases) by less than 0.1 percent for 5 consecutive
scoring epochs, use stopping rounds=5, stopping metric="AUC",
and stopping tolerance=0.001.

� To stop model building if the logloss on the validation set does not improve
at all for 3 consecutive scoring epochs, specify a validation frame,
stopping rounds=3, stopping tolerance=0 and
stopping metric="logloss".

� To continue model building even after metrics have converged, disable
this feature using stopping rounds=0.

� To compute the best number of epochs with cross-validation, simply
specify stopping rounds>0 as in the examples above, in combination
with nfolds>1, and the main model will pick the ideal number of epochs
from the convergence behavior of the nfolds cross-validation models.

5.5.3 Time-based Early Stopping

To stop model training after a given amount of seconds, specify max runtime secs
> 0. This option is also available for grid searches and models with cross-
validation. Note: The model(s) will likely end up with fewer epochs than
specified by epochs.

5.6 Additional Parameters

Since there are dozens of possible parameter arguments when creating models,
configuring H2O Deep Learning models may seem daunting. However, most
parameters do not need to be modified; the default settings are recommended
for most use cases.
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There is no general rule for setting the number of hidden layers, their sizes or
the number of epochs. Experimenting by building Deep Learning models using
different network topologies and different datasets will lead to insights about
these parameters.

For pointers on specific values and results for these (and other) parameters,
many example tests are available in the H2O GitHub repository. For a full list of
H2O Deep Learning model parameters and default values, refer to Parameters.

6 Use Case: MNIST Digit Classification
The following use case describes how to use H2O’s Deep Learning for classifica-
tion of handwritten numerals.

6.1 MNIST Overview

The MNIST database is a well-known academic dataset used to benchmark
classification performance. The data consists of 60,000 training images and
10,000 test images. Each image is a standardized 282 pixel greyscale image of
a single handwritten digit. An example of the scanned handwritten digits is
shown in Figure 1.

Figure 1: Example MNIST digit images

This example downloads and imports the training and testing datasets from
a public Amazon S3 bucket (https://h2o-public-test-data.s3.

https://github.com/h2oai/h2o-3/
http://yann.lecun.com/exdb/mnist/
https://h2o-public-test-data.s3.amazonaws.com/bigdata/laptopt/mnist/train.csv.gz
https://h2o-public-test-data.s3.amazonaws.com/bigdata/laptopt/mnist/train.csv.gz
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amazonaws.com/bigdata/laptopt/mnist/train.csv.gz and same
for test.csv.gz). The training file is 13MB and the testing file is 2.1MB.
The data is downloaded directly, so the data import speed is dependent on
download speed. Files can be imported from a variety of sources, including
local file systems or shared file systems such as NFS, S3 and HDFS.

https://h2o-public-test-data.s3.amazonaws.com/bigdata/laptopt/mnist/train.csv.gz
https://h2o-public-test-data.s3.amazonaws.com/bigdata/laptopt/mnist/train.csv.gz
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Example in R
To run the MNIST example in R, use the following:

1 library(h2o)
2

3 # Sets number of threads to number of available cores
4 h2o.init(nthreads = -1)
5

6 train_file <- "https://h2o-public-test-data.s3.
amazonaws.com/bigdata/laptop/mnist/train.csv.gz"

7 test_file <- "https://h2o-public-test-data.s3.
amazonaws.com/bigdata/laptop/mnist/test.csv.gz"

8

9 train <- h2o.importFile(train_file)
10 test <- h2o.importFile(test_file)
11

12 # Get a brief summary of the data
13 summary(train)
14 summary(test)

Example in Python
To run the MNIST example in Python, use the following:

1 import h2o
2

3 # Start H2O cluster with all available cores (default)
4 h2o.init()
5

6 train = h2o.import_file("https://h2o-public-test-data.
s3.amazonaws.com/bigdata/laptop/mnist/train.csv.gz
")

7 test = h2o.import_file("https://h2o-public-test-data.
s3.amazonaws.com/bigdata/laptop/mnist/test.csv.gz"
)

8

9 # Get a brief summary of the data
10 train.describe()
11 test.describe()
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6.2 Performing a Trial Run

The example below illustrates how the default settings provide the relative
simplicity underlying most H2O Deep Learning model parameter configurations.
The first 282 = 784 values of each row represent the full image and the final
value denotes the digit class.

Rectified linear activation is popular with image processing and has previously
performed well on the MNIST database. Dropout has been known to enhance
performance on this dataset as well, so we train our model accordingly.

To perform the trial run in R, use the following:

Example in R

1 # Specify the response and predictor columns
2 y <- "C785"
3 x <- setdiff(names(train), y)
4

5 # Encode the response column as categorical for
multinomial classification

6 train[,y] <- as.factor(train[,y])
7 test[,y] <- as.factor(test[,y])
8

9 # Train Deep Learning model and validate on test set
10 model <- h2o.deeplearning(
11 x = x,
12 y = y,
13 training_frame = train,
14 validation_frame = test,
15 distribution = "multinomial",
16 activation = "RectifierWithDropout",
17 hidden = c(32,32,32),
18 input_dropout_ratio = 0.2,
19 sparse = TRUE,
20 l1 = 1e-5,
21 epochs = 10)
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To perform the trial run in Python, use the following:

Example in Python

1 from h2o.estimators.deeplearning import
H2ODeepLearningEstimator

2

3 # Specify the response and predictor columns
4 y = "C785"
5 x = train.names[0:784]
6

7 # Encode the response column as categorical for
multinomial classification

8 train[y] = train[y].asfactor()
9 test[y] = test[y].asfactor()

10

11 # Train Deep Learning model and validate on test set
12 model = H2ODeepLearningEstimator(
13 distribution="multinomial",
14 activation="RectifierWithDropout",
15 hidden=[32,32,32],
16 input_dropout_ratio=0.2,
17 sparse=True,
18 l1=1e-5,
19 epochs=10)
20 model.train(
21 x=x,
22 y=y,
23 training_frame=train,
24 validation_frame=test)

The model runs for only 10 epochs since it is just meant as a trial run. In this
trial run, we also specified the validation set as the test set. In addition to (or
instead of) using a validation set, another option to estimate generalization
error is N-fold cross-validation.
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6.2.1 N-fold Cross-Validation

If the value specified for nfolds is a positive integer, N-fold cross-validation is
performed on the training frame and the cross-validation metrics are com-
puted and stored as model output. To disable cross-validation, use nfolds=0,
which is the default value.

To save the predicted values generated during cross-validation, set the
keep cross validation predictions parameter to true. This enables
calculation of custom cross-validated performance metrics for the R or Python
model.

Advanced users can also specify a fold column that specifies the holdout
fold associated with each row. By default, the holdout fold assignment is
random, but other schemes such as round-robin assignment using the modulo
operator are also supported.

To run the cross-validation example in R, use the following:

Example in R

1 # Perform 5-fold cross-validation on training_frame
2 model_cv <- h2o.deeplearning(
3 x = x,
4 y = y,
5 training_frame = train,
6 distribution = "multinomial",
7 activation = "RectifierWithDropout",
8 hidden = c(32,32,32),
9 input_dropout_ratio = 0.2,

10 sparse = TRUE,
11 l1 = 1e-5,
12 epochs = 10,
13 nfolds = 5)
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To run the cross-validation example in Python, use the following:

Example in Python

1 # Perform 5-fold cross-validation on training_frame
2 model_cv = H2ODeepLearningEstimator(
3 distribution="multinomial",
4 activation="RectifierWithDropout",
5 hidden=[32,32,32],
6 input_dropout_ratio=0.2,
7 sparse=True,
8 l1=1e-5,
9 epochs=10,

10 nfolds=5)
11 model_cv.train(
12 x=x,
13 y=y,
14 training_frame=train)

6.2.2 Extracting and Handling the Results

We can now extract the parameters of our model, examine the scoring process,
and make predictions on new data. The h2o.performance function in R
returns all pre-computed performance metrics for the training/validation set
or returns cross-validated metrics for the training set, depending on model
configuration.

An equivalent model performance method is available in Python, as well as
utility functions that return specific metrics, such as mean square error (MSE)
or area under curve (AUC). Examples shown below use the previously-trained
model and model cv objects.
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To view the model results in R, use the following:

Example in R

1 # View specified parameters of the deep learning model
2 model@parameters
3

4 # Examine the performance of the trained model
5 model # display all performance metrics
6

7 h2o.performance(model) # training metrics
8 h2o.performance(model, valid = TRUE) # validation

metrics
9

10 # Get MSE only
11 h2o.mse(model, valid = TRUE)
12

13 # Cross-validated MSE
14 h2o.mse(model_cv, xval = TRUE)

To view the model results in Python, use the following:

Example in Python

1 # View specified parameters of the Deep Learning model
2 model.params
3

4 # Examine the performance of the trained model
5 model # display all performance metrics
6

7 model.model_performance(train=True) # training
metrics

8 model.model_performance(valid=True) # validation
metrics

9

10 # Get MSE only
11 model.mse(valid=True)
12

13 # Cross-validated MSE
14 model_cv.mse(xval=True)
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The training error value is based on the parameter score training samples,
which specifies the number of randomly sampled training points used for scoring
(the default value is 10,000 points). The validation error is based on the
parameter score validation samples, which configures the same value
on the validation set (by default, this is the entire validation set).

In general, choosing a greater number of sampled points leads to a better
understanding of the model’s performance on your dataset; setting either of these
parameters to 0 automatically uses the entire corresponding dataset for scoring.
However, either method allows you to control the minimum and maximum
time spent on scoring with the score interval and score duty cycle
parameters.

If the parameter overwrite with best model is enabled, these scoring
parameters also affect the final model. This option selects the model that
achieved the lowest validation error during training (based on the sampled
points used for scoring) as the final model after training. If a dataset is not
specified as the validation set, the training data is used by default; in this case,
either the score training samples or score validation samples
parameter will control the error computation during training and consequently,
which model is selected as the best model.

Once we have a satisfactory model (as determined by the validation or cross-
validation metrics), use the h2o.predict() command to compute and store
predictions on new data for additional refinements in the interactive data science
process.

To view the predictions in R, use the following:

Example in R

1 # Classify the test set (predict class labels)
2 # This also returns the probability for each class
3 pred <- h2o.predict(model, newdata = test)
4

5 # Take a look at the predictions
6 head(pred)
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To view the predictions in Python, use the following:

Example in Python

1 # Classify the test set (predict class labels)
2 # This also returns the probability for each class
3 pred = model.predict(test)
4

5 # Take a look at the predictions
6 pred.head()

6.3 Web Interface

H2O R users have access to an intuitive web interface for H2O, Flow, to mirror
the model building process in R. After loading data or training a model in R,
point your browser to your IP address and port number (e.g., localhost:54321)
to launch the web interface. From here, you can click on Admin > Jobs to
view specific details about your model. You can also click on Data > List
All Frames to view all current H2O frames.

H2O Python users can connect to Flow the same way as R users: launch an
instance of H2O, then launch your browser and enter localhost:54321
(or your custom IP address) in the address bar. Python users can also use
iPython notebook to run examples. Launch iPython notebook in Terminal
using ipython notebook, and a browser window should automatically
launch the iPython interface. Otherwise, launch your browser and enter
localhost:8888 in the address bar.

6.3.1 Variable Importances

To enable variable importances, setting the variable importances to true.
This feature allows us to view the absolute and relative predictive strength of
each feature in the prediction task. Each H2O algorithm class has its own
methodology for computing variable importance.

H2O’s Deep Learning uses the Gedeon method (Gedeon, 1997), which is disabled
by default since it can be slow for large networks. If variable importance is a top
priority in your analysis, consider training a Distributed Random Forest (DRF)
model and comparing the generated variable importances.

http://cs.anu.edu.au/people/Tom.Gedeon/pdfs/ContribDataMinv2.pdf
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The following code demonstrates training using the variable importances
option and extracting the variable importances from the trained model. From
the web UI, you can also view a visualization of the variable importances.

Example in R
To generate variable importances in R, use the following:

1 # Train Deep Learning model and validate on test set
2 # and save the variable importances
3 model_vi <- h2o.deeplearning(
4 x = x,
5 y = y,
6 training_frame = train,
7 distribution = "multinomial",
8 activation = "RectifierWithDropout",
9 hidden = c(32,32,32),

10 input_dropout_ratio = 0.2,
11 sparse = TRUE,
12 l1 = 1e-5,
13 validation_frame = test,
14 epochs = 10,
15 variable_importances = TRUE)
16

17 # Retrieve the variable importance
18 h2o.varimp(model_vi)

Example in Python
To generate variable importances in Python, use the following:

1 # Train Deep Learning model and validate on test set
2 # and save the variable importances
3 model_vi = H2ODeepLearningEstimator(
4 distribution="multinomial",
5 activation="RectifierWithDropout",
6 hidden=[32,32,32],
7 input_dropout_ratio=0.2,
8 sparse=True,
9 l1=1e-5,

10 epochs=10,
11 variable_importances=True)
12

13 model_vi.train(
14 x=x,
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15 y=y,
16 training_frame=train,
17 validation_frame=test)
18

19 # Retrieve the variable importance
20 model_vi.varimp()

6.3.2 Java Model

To access Java code to use to build the current model in Java, click the
Preview POJO button at the bottom of the model results. This button
generates a POJO model that can be used in a Java application independently
of H2O.

To download the model:

1. Open the terminal window.

2. Create a directory where the model will be saved.

3. Set the new directory as the working directory.

4. Follow the curl and java compile commands displayed in the instructions
at the top of the Java model.

For more information on how to use an H2O POJO, refer to the POJO Quick
Start Guide at https://github.com/h2oai/h2o-3/blob/master/
h2o-docs/src/product/howto/POJO_QuickStart.md.

6.4 Grid Search for Model Comparison

H2O supports model tuning in grid search by allowing users to specify sets of
values for parameter arguments and observe changes in model behavior. An
example in R is provided below; the Python grid search API is currently in
development.

In this example, three different network topologies and two different `1 norm
weights are specified. This grid search model trains six different models using all
possible combinations of these parameters; other parameter combinations can
be specified for a larger space of models. Note that the models will most likely
converge before the default value of epochs, since early stopping is enabled.

Grid search provides more subtle insights into the model tuning and selection
process by inspecting and comparing our trained models after the grid search

https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/POJO_QuickStart.md
https://github.com/h2oai/h2o-3/blob/master/h2o-docs/src/product/howto/POJO_QuickStart.md
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process is complete. To learn how and when to select different parameter
configurations in a grid search, refer to Parameters for parameter descriptions
and configurable values.

6.4.1 Cartesian Grid Search

To run a Cartesian hyper-parameter grid search in R, use the following:

Example in R

1 hidden_opt <- list(c(32,32), c(32,16,8), c(100))
2 l1_opt <- c(1e-4,1e-3)
3 hyper_params <- list(hidden = hidden_opt, l1 = l1_opt)
4

5 model_grid <- h2o.grid("deeplearning",
6 grid_id = "mygrid",
7 hyper_params = hyper_params,
8 x = x,
9 y = y,

10 distribution = "multinomial",
11 training_frame = train,
12 validation_frame = test,
13 score_interval = 2,
14 epochs = 1000,
15 stopping_rounds = 3,
16 stopping_tolerance = 0.05,
17 stopping_metric = "misclassification")

To run a Cartesian hyper-parameter grid search in Python, use the following:

Example in Python

1 hidden_opt = [[32,32],[32,16,8],[100]]
2 l1_opt = [1e-4,1e-3]
3 hyper_parameters = {"hidden":hidden_opt, "l1":l1_opt}
4

5 from h2o.grid.grid_search import H2OGridSearch
6 model_grid = H2OGridSearch(H2ODeepLearningEstimator,
7 hyper_params=hyper_parameters)
8 model_grid.train(x=x, y=y,
9 distribution="multinomial", epochs=1000,
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10 training_frame=train, validation_frame=test,
11 score_interval=2, stopping_rounds=3,
12 stopping_tolerance=0.05,
13 stopping_metric="misclassification")

To view the results of the grid search, use the following:

Example in R

1 # print out all prediction errors and run times of the
models

2 model_grid
3

4 # print out the Test MSE for all of the models
5 for (model_id in model_grid@model_ids) {
6 mse <- h2o.mse(h2o.getModel(model_id), valid = TRUE)
7 print(sprintf("Test set MSE: %f", mse))
8 }

Example in Python

1 # print model grid search results
2 model_grid
3

4 for model in model_grid:
5 print model.model_id + " mse: " + str(model.mse())

6.4.2 Random Grid Search

If the search space is too large (i.e., you don’t want to restrict the parameters
too much), you can also let the Grid Search make random model selections for
you. Just specify how many models (and/or how much training time) you want,
and a seed to make the random selection deterministic:

Example in R

1 hidden_opt = lapply(1:100, function(x)10+sample(50,
sample(4), replace=TRUE))

2 l1_opt = seq(1e-6,1e-3,1e-6)
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3 hyper_params <- list(hidden = hidden_opt, l1 = l1_opt)
4 search_criteria = list(strategy = "RandomDiscrete",
5 max_models = 10, max_runtime_secs = 100,
6 seed=123456)
7

8 model_grid <- h2o.grid("deeplearning",
9 grid_id = "mygrid",

10 hyper_params = hyper_params,
11 search_criteria = search_criteria,
12 x = x,
13 y = y,
14 distribution = "multinomial",
15 training_frame = train,
16 validation_frame = test,
17 score_interval = 2,
18 epochs = 1000,
19 stopping_rounds = 3,
20 stopping_tolerance = 0.05,
21 stopping_metric = "misclassification")

Example in Python

1

2 hidden_opt =
[[17,32],[8,19],[32,16,8],[100],[10,10,10,10]]

3 l1_opt = [s/1e6 for s in range(1,1001)]
4 hyper_parameters = {"hidden":hidden_opt, "l1":l1_opt}
5 search_criteria = {"strategy":"RandomDiscrete",
6 "max_models":10, "max_runtime_secs":100,
7 "seed":123456}
8

9 from h2o.grid.grid_search import H2OGridSearch
10 model_grid = H2OGridSearch(H2ODeepLearningEstimator,
11 hyper_params=hyper_parameters,
12 search_criteria=search_criteria)
13 model_grid.train(x=x, y=y,
14 distribution="multinomial", epochs=1000,
15 training_frame=train, validation_frame=test,
16 score_interval=2, stopping_rounds=3,
17 stopping_tolerance=0.05,
18 stopping_metric="misclassification")
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6.5 Checkpoint Models

To resume model training, use checkpoint model keys (model id) to incremen-
tally train a specific model using more iterations, more data, different data, and
so forth. To further train the initial model, use it (or its key) as a checkpoint
argument for a new model.

To get the best possible model in a general multi-node setup, we recommend
building a model with train samples per iteration=-2 (default, auto-
tuning) and saving it to disk so that youll have at least one saved model.

To improve this initial model, start from the previous model and add iterations by
building another model, specifying checkpoint=previous model id, and
changing train samples per iteration, target ratio comm to comp,
or other parameters. Many parameters can be changed between checkpoints,
especially those that affect regularization or performance tuning.

Checkpoint restart suggestions:

1. For multi-node only: Leave train samples per iteration=-2,
increase target ratio comm to comp from 0.05 to 0.25 or 0.5 (more
communication). This should lead to a better model when using multiple
nodes. Note: No affect on single-node performance at all, since there is
no actual communication needed.

2. For both single and multi-node (bagging-like): Explicitly set
train samples per iteration=N, where N is the number of train-
ing samples for the whole cluster to train with for one iteration. Each
of the n nodes will then train on N/n randomly chosen rows for each
iteration. Obviously, a good choice for N depends on the dataset size
and the model complexity. Refer to the logs to see what values of N are
used in option 1 (when auto-tuning is enabled). Typically, option 1 is
sufficient.

3. For both single and multi-node: Change regularization parameters such as
l1, l2, max w2, input dropout ratio, hidden dropout ratios.
For best results, build the first model with RectifierWithDropout
and input dropout ratio=0 and hidden dropout ratios of
all 0s, just to be able to enable dropout regularization later. Hidden
dropout is often used for initial models, since it often improves general-
ization. Input dropout is especially useful if there is some noise in the
input.
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Options 1 and 3 should result in a good model. Of course, grid search can
be used with checkpoint restarts to scan a broad range of good continuation
models.

In the R example below, model grid@model ids[[1]] represents the
highest-performing model from the grid search used for additional training. For
checkpoint restarts, the response column, training, and validation datasets must
match. In addition, the model architecture, such as hidden = c(32,32,32)
in the example below, must match.

To restart training in R using a checkpoint model, use the following:

Example in R

1 # Re-start the training process on a saved DL model
2 # using the ‘checkpoint‘ argument
3 model_chkp <- h2o.deeplearning(
4 x = x,
5 y = y,
6 training_frame = train,
7 validation_frame = test,
8 distribution = "multinomial",
9 checkpoint = model@model_id,

10 activation = "RectifierWithDropout",
11 hidden = c(32,32,32),
12 input_dropout_ratio = 0.2,
13 sparse = TRUE,
14 l1 = 1e-5,
15 epochs = 20)

The Python example uses the “trial run” model as the checkpoint model.

Example in Python

1 # Re-start the training process on a saved DL model
2 # using the ‘checkpoint‘ argument
3 model_chkp = H2ODeepLearningEstimator(
4 checkpoint=model,
5 distribution="multinomial",
6 activation="RectifierWithDropout",
7 hidden=[32,32,32],
8 input_dropout_ratio=0.2,
9 sparse=True,
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10 l1=1e-5,
11 epochs=20)
12

13 model_chkp.train(
14 x=x,
15 y=y,
16 training_frame=train,
17 validation_frame=test)

Checkpointing can also be used to reload existing models that were saved to
disk in a previous session. For example, we can save and reload a model by
running the following commands.

To save a model in R, use the following:

Example in R

1 # Specify a model and the file path where it is to be
saved. If no path is specified, the model will be
saved to the current working directory

2 model_path <- h2o.saveModel(object = model,
3 path=getwd(), force = TRUE

)
4

5 print(model_path)
6 # /tmp/mymodel/DeepLearning_model_R_1441838096933

To save a model in Python, use the following:

Example in Python

1 # Specify a model and the file path where it is to be
saved. If no path is specified, the model will be
saved to the current working directory

2 model_path = h2o.save_model(
3 model = model,
4 #path = "/tmp/mymodel",
5 force = True)
6

7 print model_path
8 # /tmp/mymodel/DeepLearning_model_python_1441838096933
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After restarting H2O, load the saved model by specifying the host and saved
model file path. Note: The saved model must be reloaded using a compatible
H2O version (i.e., the same version used to save the model).



Use Case: MNIST Digit Classification | 41

To load a saved model in R, use the following:

Example in R

1 # Load model from disk
2 saved_model <- h2o.loadModel(model_path)

To load a saved model in Python, use the following:

Example in Python

1 # Load model from disk
2 saved_model = h2o.load_model(model_path)

You can also use the following commands to retrieve a model from its H2O key.
This is useful if you have created an H2O model using the web interface and
want to continue the modeling process in R.

To retrieve a model in R using its key, use the following:

Example in R

1 # Retrieve model by H2O key
2 model <- h2o.getModel(model_id = model_chkp@model_id)

To retrieve a model in Python using its key, use the following:

Example in Python

1 # Retrieve model by H2O key
2 model = h2o.get_model(model_id=model_chkp._id)

6.6 Achieving World-Record Performance

Without distortions, convolutions, or other advanced image processing tech-
niques, the best-ever published test set error for the MNIST dataset is 0.83%
by Microsoft. After training for 2, 000 epochs (which took about four hours)
on four compute nodes, we obtain a test set error of 0.87%.

After training for 8, 000 epochs (which took about ten hours) on ten nodes,
we obtain a test set error of 0.83%, which is the current world-record, notably
achieved using a distributed configuration and with a simple 1-liner from R:
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Example in R

1 #World Record run used epochs=8000
2

3 model <- h2o.deeplearning(x=x, y=y,
4 training_frame=train_hex, validation_frame=

test_hex,
5 activation="RectifierWithDropout",
6 hidden=c(1024,1024,2048), epochs=10,
7 input_dropout_ratio=0.2, l1=1e-5, max_w2=10,
8 train_samples_per_iteration=-1,
9 classification_stop=-1, stopping_rounds=0)

6.7 Computational Performance

There are many parameters that affect the computational performance of H2O
Deep Learning, but the default values should result in good performance for
most problems.

An in-depth study of the computational performance characteristics of H2O
Deep Learning with complete code examples and results can be found in our blog
post, Definitive Performance Tuning Guide for Deep Learning, available at
http://h2o.ai/blog/2015/08/deep-learning-performance/.

The parallel scalability of H2O for the MNIST dataset on 1 to 63 compute
nodes is shown in the figure below.

http://h2o.ai/blog/2015/08/deep-learning-performance/
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7 Deep Autoencoders
This section describes the use of deep autoencoders for Deep Learning.

7.1 Nonlinear Dimensionality Reduction

Previous sections discussed purely supervised Deep Learning tasks. However,
Deep Learning can also be used for unsupervised feature learning or, more
specifically, nonlinear dimensionality reduction (Hinton et al, 2006).

Based on the diagram of a three-layer neural network with one hidden layer
below, if our input data is treated as labeled with the same input values, then
the network is forced to learn the identity via a nonlinear, reduced representation
of the original data.

This type of algorithm, called a deep autoencoder, has been used extensively for
unsupervised, layer-wise pre-training of supervised Deep Learning tasks. Here
we discuss the autoencoder’s ability to discover anomalies in data.

7.2 Use Case: Anomaly Detection

For the deep autoencoder model described above, if enough training data
resembling some underlying pattern is provided, the network will train itself
to easily learn the identity when confronted with that pattern. However, if an
anomalous test point does not match the learned pattern, the autoencoder will
likely have a high error rate in reconstructing this data, indicating anomalous
data.

This framework is used to develop an anomaly detection demonstration using a
deep autoencoder. The dataset is an ECG time series of heartbeats and the goal
is to determine which heartbeats are outliers. The training data (20 “good”
heartbeats) and the test data (training data with 3 “bad” heartbeats appended
for simplicity) can be downloaded directly into the H2O cluster, as shown below.
Each row represents a single heartbeat.

http://www.cs.toronto.edu/~hinton/science.pdf
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Example in R

1 # Import ECG train and test data into the H2O cluster
2 train_ecg <- h2o.importFile(
3 path = "http://h2o-public-test-data.s3.

amazonaws.com/smalldata/anomaly/ecg_
discord_train.csv",

4 header = FALSE,
5 sep = ",")
6 test_ecg <- h2o.importFile(
7 path = "http://h2o-public-test-data.s3.

amazonaws.com/smalldata/anomaly/ecg_
discord_test.csv",

8 header = FALSE,
9 sep = ",")

10

11 # Train deep autoencoder learning model on "normal"
12 # training data, y ignored
13 anomaly_model <- h2o.deeplearning(
14 x = names(train_ecg),
15 training_frame = train_ecg,
16 activation = "Tanh",
17 autoencoder = TRUE,
18 hidden = c(50,20,50),
19 sparse = TRUE,
20 l1 = 1e-4,
21 epochs = 100)
22

23 # Compute reconstruction error with the Anomaly
24 # detection app (MSE between output and input layers)
25 recon_error <- h2o.anomaly(anomaly_model, test_ecg)
26

27 # Pull reconstruction error data into R and
28 # plot to find outliers (last 3 heartbeats)
29 recon_error <- as.data.frame(recon_error)
30 recon_error
31 plot.ts(recon_error)
32

33 # Note: Testing = Reconstructing the test dataset
34 test_recon <- h2o.predict(anomaly_model, test_ecg)
35 head(test_recon)
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To run the anomaly detection example in Python, use the following:

Example in Python

1 # Import ECG train and test data into the H2O cluster
2 from h2o.estimators.deeplearning import

H2OAutoEncoderEstimator
3

4 train_ecg = h2o.import_file("http://h2o-public-test-
data.s3.amazonaws.com/smalldata/anomaly/
ecg_discord_train.csv")

5 test_ecg = h2o.import_file("http://h2o-public-test-
data.s3.amazonaws.com/smalldata/anomaly/
ecg_discord_test.csv")

6

7

8 # Train deep autoencoder learning model on "normal"
9 # training data, y ignored

10 anomaly_model = H2OAutoEncoderEstimator(
11 activation="Tanh",
12 hidden=[50,50,50],
13 sparse=True,
14 l1=1e-4,
15 epochs=100)
16 anomaly_model.train(
17 x=train_ecg.names,
18 training_frame=train_ecg)
19

20 # Compute reconstruction error with the Anomaly
21 # detection app (MSE between output and input layers)
22 recon_error = anomaly_model.anomaly(test_ecg)
23

24

25 # Note: Testing = Reconstructing the test dataset
26 test_recon = anomaly_model.predict(test_ecg)
27 test_recon
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7.2.1 Stacked Autoencoder

It can be difficult to obtain convergence for deep autoencoders, especially since
H2O attempts to train all layers at once without imposing symmetry conditions
on the network topology (arbitrary configuration of layers is allowed). To train
a deep autoencoder layer by layer, follow the R code example here:

https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/
testdir_algos/deeplearning/runit_deeplearning_stacked_
autoencoder_large.R.

7.2.2 Unsupervised Pretraining with Supervised Fine-Tuning

Sometimes, there’s much more unlabeled data than labeled data. It this case,
it might make sense to train an autoencoder model on the unlabeled data and
then fine-tune the learned model with the available labels. In H2O, you would
train an autoencoder model with autoencoder enabled, and then you can
transfer its state to a supervised regular Deep Learning model by specifying
pretrained autoencoder. You can seen an R example here:

https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/
testdir_algos/deeplearning/runit_deeplearning_autoencoder_
large.R,

and the corresponding Python example here: https://github.com/
h2oai/h2o-3/blob/master/h2o-py/tests/testdir_algos/deeplearning/
pyunit_autoencoderDeepLearning_large.py.

8 Parameters
Logical indicates the parameter requires a value of either TRUE or FALSE.

� x: Specifies the vector containing the names of the predictors in the
model. No default.

� y: Specifies the name of the response variable in the model. No default.

� training frame: Specifies an H2OFrame object containing the vari-
ables in the model. No default.

� model id: (Optional) Specifies the unique ID associated with the model.
If a value is not specified, an ID is generated automatically.

https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/testdir_algos/deeplearning/runit_deeplearning_stacked_autoencoder_large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/testdir_algos/deeplearning/runit_deeplearning_stacked_autoencoder_large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/testdir_algos/deeplearning/runit_deeplearning_stacked_autoencoder_large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/testdir_algos/deeplearning/runit_deeplearning_autoencoder_large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/testdir_algos/deeplearning/runit_deeplearning_autoencoder_large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-r/tests/testdir_algos/deeplearning/runit_deeplearning_autoencoder_large.R
https://github.com/h2oai/h2o-3/blob/master/h2o-py/tests/testdir_algos/deeplearning/pyunit_autoencoderDeepLearning_large.py
https://github.com/h2oai/h2o-3/blob/master/h2o-py/tests/testdir_algos/deeplearning/pyunit_autoencoderDeepLearning_large.py
https://github.com/h2oai/h2o-3/blob/master/h2o-py/tests/testdir_algos/deeplearning/pyunit_autoencoderDeepLearning_large.py
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� overwrite with best model: Logical. If enabled, overwrites the
final model with the best model scored during training. The default is
true.

� validation frame: (Optional) Specifies an H2OFrame object repre-
senting the validation dataset used for the confusion matrix. If a value is
not specified and nfolds = 0, the training data is used by default.

� checkpoint: (Optional) Specifies the model checkpoint (either an
H2ODeepLearningModel or a key) from which to resume training.

� autoencoder: Logical. Enables autoencoder. The default is false.
Refer to the Deep Autoencoders section for more details.

� pretrained autoencoder: (Optional) Pretrained autoencoder model
(either an
H2ODeepLearningModel or a key) to initialize the model state of a
supervised DL model with.

� use all factor levels: Logical. Uses all factor levels of categorical
variance. Otherwise, omits the first factor level without loss of accuracy.
Useful for variable importances and auto-enabled for autoencoder. The
default is true. Refer to the Deep Autoencoders section for more details.

� activation: Specifies the nonlinear, differentiable activation function
used in the network. The options are Tanh, TanhWithDropout,
Rectifier, RectifierWithDropout, Maxout, or
MaxoutWithDropout. The default is Rectifier. Refer to the
Activation and Loss Functions and Regularization sections for more
details.

� hidden: Specifies the number and size of each hidden layer in the
model. For example, if c(100,200,100) is specified, a model with
3 hidden layers is generated. The middle hidden layer will have 200
neurons and the first and third hidden layers will have 100 neurons each.
The default is c(200,200). For grid search, use the following format:
list(c(10,10), c(20,20)). Refer to the section on Performing
a Trial Run for more details.

� epochs: Specifies the number of iterations or passes over the training
dataset (can be fractional). For initial grid searches, we recommend
starting with lower values. The value allows continuation of selected
models and can be modified during checkpoint restarts. The default is
10.
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� train samples per iteration: Specifies the number of training
samples (globally) per MapReduce iteration. The following special values
are also supported:

– 0 (one epoch)

– -1 (all available data including replicated training data);

– -2 (auto-tuning; default)

Refer to Specifying the Number of Training Samples for more details.

� seed: Specifies the random seed controls sampling and initialization.
Reproducible results are only expected with single-threaded operations
(i.e. running on one node, turning off load balancing, and providing a
small dataset that fits in one chunk). In general, the multi-threaded
asynchronous updates to the model parameters will result in intentional
race conditions and non-reproducible results. The default is a randomly
generated number.

� adaptive rate: Logical. Enables adaptive learning rate (ADADELTA).
The default is true. Refer to Adaptive Learning for more details.

� rho: Specifies the adaptive learning rate time decay factor. This param-
eter is similar to momentum and relates to the memory for prior weight
updates. Typical values are between 0.9 and 0.999. The default value is
0.99. Refer to Adaptive Learning for more details.

� epsilon: When enabled, specifies the second of two hyperparameters
for the adaptive learning rate. This parameter is similar to learning rate
annealing during initial training and momentum at later stages where
it assists progress. Typical values are between 1e-10 and 1e-4. This
parameter is only active if adaptive rate is enabled. The default is
1e-8. Refer to Adaptive Learning for more details.

� rate: Specifies the learning rate, α. Higher values lead to less stable
models, while lower values result in slower convergence. The default is
0.005.

� rate annealing: Reduces the learning rate to “freeze” into local
minima in the optimization landscape. The annealing learning rate is
calculated as (rate) / (1 + rate annealing * N), where N is the
number of training samples. It is the inverse of the number of training
samples required to cut the learning rate in half. If adaptive learning is
disabled, the default value is 1e-6. Refer to Rate Annealing for more
details.
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� rate decay: Controls the change of learning rate across layers. The
learning rate decay factor between layers is calculated as (L-th layer:
rate * rate decayˆ (L-1)). If adaptive learning is disabled, the
default is 1.0.

� momentum start: Controls the amount of momentum at the beginning
of training when adaptive learning is disabled. The default is 0. Refer to
Momentum Training for more details.

� momentum ramp: If the value for momentum stable is greater than
momentum start, increases momentum for the duration of the learning.
The ramp is measured in the number of training samples and can be
enabled when adaptive learning is disabled. The default is 1 million (1e6).
Refer to Momentum Training for more details.

� momentum stable: Specifies the final momentum value after the num-
ber of training samples specified for momentum ramp when adaptive
learning is disabled. The training momentum is applied for any additional
training. The default is 0. Refer to Momentum Training for more
details.

� nesterov accelerated gradient: Logical. Enables the Nesterov
accelerated gradient descent method, which is a modification to the
traditional gradient descent for convex functions. The method relies on
gradient information at various points to build a polynomial approximation
that minimizes the residuals in fewer iterations of the descent. This
parameter is only active if the adaptive learning rate is disabled. When
adaptive learning is disabled, the default is true. Refer to Momentum
Training for more details.

� input dropout ratio: Specifies the fraction of the features for each
training row to omit from training to improve generalization. The default
is 0, which always uses all features. Refer to Regularization for more
details.

� hidden dropout ratios: Specifies the fraction of the inputs for each
hidden layer to omit from training to improve generalization. The default
is 0.5 for each hidden layer. Refer to Regularization for more details.

� l1: Specifies the `1 (L1) regularization, which constrains the absolute
value of the weights (can add stability and improve generalization, causes
many weights to become 0). The default is 0, for no L1 regularization.
Refer to Regularization for more details.

� l2: L2 regularization, which constrains the sum of the squared weights and
can add stability and improve generalization by reducing many weights).
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The default is 0, which disables L2 regularization. Refer to Regularization
for more details.

� max w2: Specifies the maximum for the sum of the squared incoming
weights for a neuron. This tuning parameter is especially useful for
unbound activation functions such as Maxout or Rectifier. The default,
which is positive infinity, leaves this maximum unbounded.

� initial weight distribution: Specifies the distribution from
which to draw the initial weights. Select Uniform, UniformAdaptive
or Normal. The default is UniformAdaptive. Refer to Initialization
for more details.

� initial weight scale: Specifies the scale of the distribution func-
tion for uniform or normal distributions. For uniform distributions, the
values are drawn uniformly from initial weight scale,
initial weight scale. For normal distributions, the values are
drawn from a normal distribution with a standard deviation of
initial weight scale. The default is 1. Refer to Initialization for
more details.

� loss: Specifies the loss option: Automatic, CrossEntropy (clas-
sification only), Quadratic, Absolute, or Huber. The default is
Automatic. Refer to Activation and Loss Functions for more details.

� distribution: Specifies the distribution function of the response:
AUTO, bernoulli, multinomial, poisson, gamma,
tweedie, laplace, quantile, huber, or gaussian.

� quantile alpha: Desired quantile for quantile regression (from 0.0
to 1.0) when distribution = "quantile". The default is 0.5
(median, same as distribution = "laplace").

� tweedie power: Specifies the Tweedie power when distribution
is tweedie. The range is from 1.0 to 2.0.

� score interval: Specifies the minimum time (in seconds) between
model scoring. The actual interval is determined by the number of training
samples per iteration and the scoring duty cycle. To use all training set
samples, specify 0. The default is 5.

� score training samples: Specifies the number of training samples
to randomly sample for scoring. To select the entire training dataset,
specify 0. The default is 10000.

� score validation samples: Specifies the number of validation
dataset points for scoring. Can be randomly sampled or stratified if
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balance classes is enabled and score validation sampling
is Stratified. To select the entire validation dataset, specify 0, which
is the default.

� score duty cycle: Specifies the maximum duty cycle fraction for
model scoring on both training and validation samples and diagnostics
such as computation of feature importances. Lower values result in more
training, while higher values produce more scoring. The default is 0.1.

� classification stop: Specifies the stopping criterion for classifica-
tion error (1 - accuracy) on the training data scoring dataset. When the
error is at or below this threshold, training stops. The default is 0. To
disable, specify -1.

� regression stop: Specifies the stopping criterion for regression error
(MSE) on the training data scoring dataset. When the error is at or below
this threshold, training stops. The default is 1e-6. To disable, specify -1.

� stopping rounds: Early stopping based on convergence of
stopping metric. Stop if simple moving average of length k of
the stopping metric does not improve for k:=stopping rounds
scoring events. Can only trigger after at least 2k scoring events. To
disable, specify 0.

� stopping metric: Metric to use for early stopping (AUTO: logloss
for classification, deviance for regression). Can be any of AUTO,
deviance, logloss, MSE, AUC, r2, misclassification.

� stopping tolerance: Relative tolerance for metric-based stopping
criterion Relative tolerance for metric-based stopping criterion (stop if
relative improvement is not at least this much).

� max runtime secs: Maximum allowed runtime in seconds for model
training. Use 0 to disable.

� missing values handling: Handling of missing values. Either
Skip or MeanImputation (default).

� quiet mode: Logical. Enables quiet mode for less output to standard
output. The default is false.

� max confusion matrix size: For classification models, specifies
the maximum size (in terms of classes) for displaying the confusion matrix.
This option helps avoid printing extremely large confusion matrices. The
default is 20.
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� max hit ratio k: For multi-class only. Specifies the maximum number
(top K) of predictions to use for hit ratio computation. To disable, specify
0. The default is 10.

� balance classes: Logical. For imbalanced data, the training data
class counts can be artificially balanced by over-sampling the minority
classes and under-sampling the majority classes so that each class contains
the same number of observations. This can result in improved predictive
accuracy. Over-sampling uses replacement, rather than simulating new
observations. The max after balance size parameter specifies the
total number of observations after balancing. The default is false.

� class sampling factors: Specifies the desired over/under-sampling
ratios per class (in lexicographic order). Only applies to classification
when balance classes is enabled. If not specified, the ratios are
automatically computed to obtain class balancing during training.

� max after balance size: When classes are balanced, limits the
resulting dataset size to the specified multiple of the original dataset size.
This is the maximum relative size of the training data after balancing
class counts and can be less than 1.0. The default is 5.

� score validation sampling: Specifies the method used to sam-
ple the validation dataset for scoring. The options are Uniform and
Stratified. The default is Uniform.

� variable importances: Logical. Computes variable importances
for input features using the Gedeon method. Uses the weights connecting
the input features to the first two hidden layers. The default is false, since
this can be slow for large networks.

� fast mode: Logical. Enables fast mode, a minor approximation in
back-propagation that should not significantly affect results. The default
is true.

� ignore const cols: Logical. Ignores constant training columns, since
no information can be gained anyway. The default is true.

� force load balance: Logical. Forces extra load balancing to increase
training speed for small datasets to keep all cores busy. The default is
true.

� replicate training data: Logical. Replicates the entire training
dataset on every node for faster training on small datasets. The default
is true.
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� single node mode: Logical. Runs Deep Learning on a single node
for fine-tuning model parameters. Can be useful for faster convergence
during checkpoint restarts after training on a very large number of nodes
(for fast initial convergence). The default is false.

� shuffle training data: Logical. Shuffles training data on each
node. This option is recommended if training data is replicated on N
nodes and the number of training samples per iteration is close to N
times the dataset size, where all nodes train with almost all of the data.
It is automatically enabled if the number of training samples per iteration
is set to -1 (or to N times the dataset size or larger). The default is false.

� sparse: Logical. Enables sparse data handling (more efficient for data
with lots of 0 values). The default is false.

� col major: (Deprecated) Logical. Uses a column major weight matrix
for the input layer; can speed up forward propagation, but may slow down
backpropagation. The default is false.

� average activation: Specifies the average activation for the sparse
autoencoder (Experimental). The default is 0.

� sparsity beta: Specify the sparsity-based regularization optimization
(Experimental). The default is 0.

� max categorical features: Specifies the maximum number of
categorical features in a column, enforced via hashing (Experimental).
The default is 231 − 1 (Integer.MAX VALUE in Java).

� reproducible: Logical. Forces reproducibility on small data; slow,
since it only uses one thread. The default is false.

� export weights and biases: Logical. Exports the neural network
weights and biases as an H2OFrame. The default is false.

� offset column: Specifies the offset column by column name. Re-
gression only. Offsets are per-row “bias values” that are used during
model training. For Gaussian distributions, they can be seen as simple
corrections to the response (y) column. Instead of learning to predict the
response value directly, the model learns to predict the (row) offset of
the response column. For other distributions, the offset corrections are
applied in the linearized space before applying the inverse link function to
get the actual response values.

� weights column: Specifies the weights column by column name, which
must be included in the specified training frame. Python only : To
use a weights column when passing an H2OFrame to x instead of a list



54 | Common Python Commands

of column names, the specified training frame must contain the
specified weights column. Weights are per-row observation weights.
This is typically the number of times a row is repeated, but non-integer
values are supported as well. During training, rows with higher weights
matter more, due to the larger loss function pre-factor.

� nfolds: (Optional) Specifies the number of folds for cross-validation.
The default is 0, which disables cross-validation.

� fold column: (Optional) Specifies the name of the column with the
cross-validation fold index assignment per observation; the folds are
supplied by the user.

� fold assignment: Specifies the cross-validation fold assignment scheme
if nfolds is greater than zero and fold column is not specified. The
options are AUTO, Random, Stratified or Modulo.

� keep cross validation predictions: Logical. Specify whether
to keep the predictions of the cross-validation models. The default is
false.

9 Common R Commands
� library(h2o): Imports the H2O R package.

� h2o.init(): Connects to (or starts) an H2O cluster.

� h2o.shutdown(): Shuts down the H2O cluster.

� h2o.importFile(path): Imports a file into H2O.

� h2o.deeplearning(x,y,training frame,hidden,epochs):
Creates a Deep Learning model.

� h2o.grid(algorithm,grid id,...,hyper params = list()):
Starts H2O grid support and gives results.

� h2o.predict(model, newdata): Generate predictions from an
H2O model on a test set.

10 Common Python Commands
� import h2o: Imports the H2O Python package.

� h2o.init(): Connects to (or starts) an H2O cluster.
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� h2o.shutdown(): Shuts down the H2O cluster.

� h2o.import file(path): Imports a file into H2O.

� model = H2ODeepLearningEstimator(hidden, epochs):
Creates a Deep Learning model.

� model.train(x, y, training frame):
Trains our Deep Learning model.

� h2o.predict(model, newdata): Generate predictions from an
H2O model on a test set.
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