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Abstract

An extremely simple, description of Karmarkar’s algorithm with very few technical terms is given.

1 Introduction

A simple description of Karmarkar’s algorithm[5] together with analysis is given in this paper. Only

knowledge of simple algebra, vector dot product and matrices is assumed. Even though the method

is described in several books [8, 1, 2, 3, 7], analysis is either left out [8] or is fairly complicated. In

this paper, it is shown that the description of Roos, Terlaky and Vial[6] can be further simplified.

In addition to using only essential notation, a simpler proof of properties of “Ψ( )” function is

given.

Let A be an m× n matrix of rank m and e is a vector of all ones. Karmarkar’s Problem is:

min cTx subject to constraints Ax = 0, eTx = 1 and x ≥ 0.

Further, it is assumed that optimal value of cTx is zero and all ones vector is feasible, i.e.,

Ae = 0. We have to either find a point of cost 0 or show that none exist

We first scale the variables: x′ = xn, then the problem becomes min cT (x′/n) or equivalently

min cT (x′) subject to Ax′ = 0, eTx′ = n and x′ ≥ 0. We will drop the primes, and the problem

is[6]:
∗E-mail: ssax@iitk.ac.in
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min cTx subject to constraints Ax = 0, eTx = n and x ≥ 0.

Remark Problem is trivial if cT e = 0, hence we assume that cT e > 0.

We will assume that all m+ 1 equality constraints are linearly independent (else we eliminate

redundant rows of A).

We need few definitions. Standard simplex consists of points in n dimensions s.t. eTx = n,

x ≥ 0. The centre of the simplex is e = (1, 1, . . ., 1).

Let R be the radius of outer sphere, the smallest sphere containing the standard simplex

(circumscribes standard simplex). R is the distance from e to one of the corner point (see Figure

for an example in three dimensions) of the standard simplex (say, (0, 0, . . ., n)), thus R2 = (0 −
1)2 + . . .+ (0− 1)2 + (n− 1)2 = (n− 1)2 + (n− 1) = n(n− 1), or R =

√
n(n− 1).

Let r be the radius of another sphere— the largest sphere centred at e and completely inside the

standard simplex (inscribed inside the standard simplex). This sphere will be tangent to each face.

Each face will have one coordinate as 0. By symmetry, all other coordinates at the point of contact

will be same (say w). As the point of contact is on the standard simplex S, 0 +w+w+ . . .+w = n

or (n− 1)w = n or w = n/(n− 1). Hence,

r2 = (0− 1)2 + (w − 1)2 + . . .+ (w − 1)2 = 1 + (n− 1)(w − 1)2 = 1 +
1

n− 1
=

n

n− 1

Or

r =
√

n

n− 1

We take e = (1, 1, . . ., 1) as the starting point (which by assumption is feasible). Then, we

minimise the objective function over a smaller sphere, which we will call the inner sphere, having

same centre e, but radius αr, less than r (we will see in Section 5.2 that α can be chosen as 1/(r+1)).

Let us assume that the minimum occurs at point z. Then, in next iteration, we take the starting

point as z. The problem of minimisation on sphere is discussed in next section (Section 2). Finally,

the point z is mapped to e and the process repeated; the details of mapping are in Section 4. In
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Section 3, it is shown that the objective value at next point z is a fraction of that at the initial

point e.

2 Mathematical Preliminaries

Let P be a point in (possible hyper) plane and n̂ a unit vector normal to it. If P0 is any point in

plane, then the (vector) dot product will be zero, i.e., PP0 • n̂ = 0. Writing in full,

n1(x1 − x′1) + n2(x2 − x′2) + . . .+ nk(xk − x′k) = 0 or equivalently,

n1x1 +n2x2 + . . .+nkxk = n1x
′
1 +n2x

′
2 + . . .+nkx

′
k = C Thus, for a • x = b, normal will be in the

direction of vector a.

Equation of sphere with centre Q as β is: (x − β) • (x − β) = r2 Let P be any point in plane

a • x = b, then we know that a • xP = b. If we want QP to be perpendicular to plane, then

(xP − β) = (constant)a

Consider the problem [4]: min cTx subject to
∑

(x − a)2 ≤ ρ2. There are two points on the

sphere (see figure for an example in two dimensions), where planes parallel to given plane can be

tangent— one corresponding to maxima and other minima. These are +n and −n. These points

(say “P”) are in direction ±n̂ (a unit vector in direction of c) with length |xP − β| = r. Thus, to

minimise cTx over our sphere, we start at the centre β and take a step of length r in direction −cT

Less informally, if c = 0, all points on the sphere are optimal. If c 6= 0, the solution is obtained by

taking a step of length ρ (radius of sphere) from the centre a in the direction −c; this can be seen

by considering “parallel” planes cTx =constant. The point at which minimum will be attained will

be the point of contact on the sphere to a tangent plane.

Next [4] consider the problem: min cTx subject to Ax = b and
∑

(x − a)2 ≤ ρ2. If c = 0, all

points common to (i.e., on the intersection of) sphere and the plane are optimal. If c 6= 0, let c̄ be

the orthogonal projection of c onto the plane Ax = b. If c̄ = 0, then c is a linear combination of

rows of A and the objective function (on the intersection of sphere and plane) is constant, and all
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“feasible” points are also optimal. If c̄ 6= 0, then the solution is obtained by taking a step of length

equal to the radius of lower-dimensional sphere (intersection of our sphere and plane Ax = b) from

the centre a in the direction −c̄.

3 Solution on inner Sphere

Let us consider the problem: min cTx subject to Ax = 0,
∑
i xi = n and

∑
i(xi−1)2 < α2r2, i.e, we

are minimising only over points of the inner sphere. As the inner sphere is completely inside the

standard simplex, we can drop the constraint eTx = n (and also x ≥ 0), and the problem becomes

min cTx s.t. Ax = 0 and
∑

(xi − 1)2 < α2r2.

As the point e is feasible, Ae = 0, e lies on the plane Ax = 0. Moreover, as e, the centre of

inner sphere, lies on Ax = 0, the intersection of Ax = 0 and the inner sphere will be a “sphere” of

the same radius αr but in lower dimension. (e.g., intersection of a sphere and a plane containing

the centre is a circle with same radius and centre).

The minimum value of a linear function on sphere will be at a point (lower one) where linear

function touches the sphere. The radius vector at that point will be perpendicular to the plane.

Let us assume that p̂ is a unit vector in that direction. Then the point at which minimum will be

attained will be e− p̂(radius). Thus, for outer sphere it will be (say) zR = e− p̂R and for the inner

sphere it will be zα = e− p̂αr. We will see how to determine p̂ later (see Section 4.2).

As the outer sphere completely contains the solution space, the minimum value (of objective

function cTx) will be smaller than (or equal to) the actual optimal value which is zero. Thus,

(assuming minimum value is at zR)

0 ≥ cT zR = cT (e− p̂R) or cT p̂R ≥ cT e

Thus, cT p̂ ≥ cT e
R

As the inner sphere is inside the simplex, value of the objective function can not be less than

that on the simplex. But, as the optimal value on simplex is zero, optimal value on the inner sphere

is non-negative. If the minimum value occurs at zα on the inner sphere, then the value of objective

function is:

0 ≤ cT zα = cT (e− p̂αr) or cT p̂αr ≤ cT e
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But as cT e
R ≤ c

T p̂, we get

cT zα = cT e− cT p̂αr ≤ cT e−
(
cT e

R

)
αr = cT e

(
1− αr

R

)

Thus, if we start with initial solution e, then zα (the next solution) is an improvement (in value

of objective function) by a factor of
(
1− αr

R

)
over the initial solution.

4 Karmarkar Transform and Algorithm

We will like to map the new point z again to e to repeat the process. Thus, for a = (a1, a2, . . ., an)

and x = (x1, x2, . . ., xn), we define the transform y = Ta(x) with (for i = 1, . . ., n)

yi = n
aixi∑
j ajxj

If all ais and xis are non-negative (at least aixi should be non-zero), each component of transform

will be less than n and sum of all coordinates will be n, thus the range is again our standard

simplex. Moreover, if b = a−1 =
(

1
a1
, 1
a2
, . . ., 1

an

)
, then Tb will be the inverse transformation. Thus

this transformation is one-to-one on our standard simplex.

Remark This can also be seen directly. If Ta(x) = Ta(y), then x1
y1

= x1
y2

= . . . = xn
yn

= r (say). But

as
∑
xi =

∑
yi = 1, we have r = 1.

Moreover, if λ is any number then if y′ = Ta(λx) then

y′i =
nλaixi∑
λajxj

=
n�λaixi

�λ
∑
ajxj

=
naixi∑
ajxj

= yi

Thus, Ta(λx) = Ta(x).

4.1 Modified Problem

Assume that we are applying transform Ta (with ai = 1/zi), then point z will be mapped to e. Let

D be a diagonal matrix with diagonal entries: D = diag(a1, . . ., an).

If z is any feasible point, then for any positive x > 0 satisfying eTx = 1, we saw that there is a

unique point ξ (which depends on x) s.t. x = Tz(ξ).

Remark x = Tz(ξ) implies xi = ziξi/(
∑
ziξi), thus ξi = ρxizi where ρ is such that

∑
ξi = 1.

5



Then, equation Ax = 0 is equivalently to
∑
j Aijxj = 0 or

∑
j Aijρxj = 0 or equivalently,∑

Aijξjzj = 0 or Aξz = 0.

The objective function cTx =
∑
cixi = 1

ρ

∑
ciξizi. As optimal value of cTx is zero, it follows

that the optimal value of the transformed objective function
∑
ciξizi is also 0.

Replacing ξ by x′ and using Z = diag(z1, . . ., zn), the transformed problem is:

min(Zc)Tx′ subject to AZx′ = 0, eTx′ = n and x′ ≥ 0.

Moreover, as z is a feasible point Az = 0 or equivalently AZe = 0, thus e is again feasible.

We can thus repeat the previous method with Zc instead of c and AZ instead of A. In other

words, we have to minimise the modified objective function over inscribed sphere of radius αr i.e.,

the “modified” problem is:

min(Zc)Tx subject to AZx = 0, eTx = n and ||x− e|| ≤ αr.

4.2 Result from Algebra– Projection Matrix

Assume that A is m × n matrix, then rank of A is said to be m, with m < n iff all m rows of A

are linearly independent, i.e., β1A1 + β2A2 + . . .+ βmAn = 0 (here 0 is a row vector of size n) has

only one solution βi = 0. Thus, if v is any 1×m matrix (a column vector of size m), then vA = 0

implies v = 0. We use the fact that the matrix AAT has rank m and is invertible1.

Let A be an m× n matrix, then Ax = b (hence Ax = 0) represents a set of m equations. Each

equation will be a hyperplane in n dimensions. Let v be a vector of size n, we will like to “project”

v onto the (lower dimension or intersection of) hyperplane Ax = b. If P = pv is the projection,

then [9], we wish to write p = Pv, as best as possible, as p = Pv = α1a1 + α2a2 + . . . + αmam

where a1, . . ., am are rows of A. Projection p will again be a vector of size n. This can be written

as p = ATα.

The error of projection (or rejection) E = v − p = v − Pv will also be a vector of size n. Then

as error E can not be in these hyperplane, i.e., it should be “perpendicular” to these hyperplanes,

thus we want AE = 0. Or A(v−p) = 0, or A(v−ATα) = 0, thus Av = AATα, or α = (AAT )−1Av.

Hence, p = Pv = ATα, or Pv = AT (AAT )−1Av, or P = AT (AAT )−1A. Or, E = v − Pv =

1 As A is m× n matrix, AT will be n×m matrix. The product AAT will be an m×m square matrix. Let yT be an

m× 1 matrix (or y is a row-vector of size m).

Consider the equation (AAT )yT = 0. Pre-multiplying by y we get yAAT yT = 0 or (yA)(yA)T = 0 or the dot product

< yA, yA >= 0 which, for real vectors (matrices) means, that each term of yA is (individually) zero, or yA = 0, which

implies y is identically zero. Thus, the matrix AAT has rank m and is invertible.
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v −AT (AAT )−1Av =
(
I −AT (AAT )−1A

)
v

Thus, to summarise, projection matrix is P = AT (AAT )−1A and Rejection matrix (to get the

part perpendicular to the hyperplanes) is: I −AT (AAT )−1A

4.3 Algorithm

Start the algorithm with x = e and find z, the optimal value on the inscribed sphere of radius αr

(we will see more details of this step later).

In a typical iteration, we next apply a transformation Tz−1 to map z to e (we need a transfor-

mation Tb such that z gets mapped to e, then b = 1/z). Modify A and c and find a new z (say z′),

the optimal value on the inscribed sphere of radius αr.

Remark As we know that transformed value of z is e, transform Tz−1 is not actually applied, only

the values of A and c are updated.

Then apply inverse transformation T−1
z−1 (or Tz) to map z′ to original space, to get the value of

x′ for next iteration.

The formal algorithm is (value of α is fixed to 1/(r + 1) in Section 5.2):

Initialise: r =
√

n
n−1 , α = 1

r+1 , x = e = (1, . . ., 1)

Main step: If cTx < ε, return current x as solution of desired accuracy.

Let D = diag(x1, . . ., xn)

P =

 AD

I



Let

cP =
(

1− P T
(
PP T

)−1
P

)
(cD)T

p̂ =
cP
||cP ||

z = e− αrp̂

x =
nDy

eTDy
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5 Analysis—Potential Function

For analysis, we define a potential function:

Φ(x) = n log cTx−
n∑
i=1

log xi

As eTx = n we have 1
nxi = 1. But as Arithmetic mean is greater than or equal to geometric

mean2 1 =
∑ xi

n ≥ (
∏
xi)

1/n or taking logs, 1
n

∑
log xi ≤ 0, or

∑
log xi ≤ 0, or Φ(x) ≤ n log cTx

or

cTx ≥ exp
(

Φ(x)
n

)
Next observe that

Φ(λx) = n log cT (λx)−
n∑
i=1

log(λxi)

=
(
log cTx+ log λ

)
−
(

n∑
i=1

log xi +
n∑
i=1

log λ

)

= n log cTx−
n∑
i=1

log xi = Φ(x)

Let x be a positive vector in our standard simplex and let y = Tx(z), then

yi =
nxizi∑
xizi

, or Φ(y) = Φ(Tz(x)) = Φ(xz)

Moreover, Φ(xz) = n log cT (xz)−
∑n
i=1 log xizi = n log cTxz −

∑
log xi −

∑
log zi

Finally,

∆Φ = Φ(x)− Φ(y) = Φ(x)− Φ(xz)

= n log cTx−
�

�
�

��n∑
i=1

log xi −
(
n log cTxz −�����∑

log xi −
∑

log zi
)

= n log
cTx

cTxz
+
∑

log zi

But log cT x
cT xz

is the ratio of original and transformed problems, which we saw reduces by at least(
1− α r

R

)
. Thus:

2This can be very easily seen by induction when n is a power of 2. For basis, as xy = 1
2

(
(x+ y)2 − (x− y)2

)
,

√
xy ≤ x+y

2
. Assume that the claim is true till n/2. Then,

(∏n

i=1
xi
)1/n

=

√(∏n/2

i=1
xi

)2/n (∏n

i=1+n/2
xi

)2/n

≤√
2
n

∑n/2

i=1
xi + 2

n

∑n

i=1+n/2
xi ≤ 1

2

(
2
n

∑n/2

i=1
xi + 2

n

∑n

i=1+n/2
xi

)
= 1

n

∑n/2

i=1
xi
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∆Φ ≥ −n log
(

1− α r
R

)
+
∑

log zi

We will show that ∆ is more than a constant. But, before continuing with analysis, we need

some more results from algebra.

5.1 Function Ψ

In this section, all logs are to base e. Assume that |x| < 1. Recall3

log(1 + x) = x− x2

2 + x3

3 −
x4

4 + . . . Thus, for −1 < y < 0, (let y = −x) we have

log(1 + y) = log(1− x) = −x− x2

2 −
x3

3 −
x4

4 − . . .

Or y − log(1 + y) = −x− log(1− x) = x2

2 + x3

3 + x4

4 + . . . > 0

We define[6] Ψ(x) = x − log(1 + x). Observe that Ψ(0) = 0 Hence, Ψ(x) = x2

2 −
x3

3 + x4

4 − . . .
And, Ψ(x) ≥ 0 for x > −1

Claim 1 If x > 0 and a2 = b2 + c2, then if ax, bx, cx are greater than −1 (for log(1 + hx) to be

defined), then

Ψ(−|a|x) > Ψ(bx) + Ψ(cx)

Proof: From a2 = b2 + c2, we know that |a| ≥ |b| and |a| ≥ |c|. Without loss of generality, assume

a < 0, then −|ax| = ax and we have

Ψ(ax) = a2x2

2 − a3x3

3 + a4x4

4 − . . .

Ψ(bx) = b2x2

2 −
b3x3

3 + b4x4

4 − . . .

Ψ(cx) = c2x2

2 −
c3x3

3 + c4x4

4 − . . .

As a2 = b2 + c2, coefficients of x2 on both sides are equal.

We thus need to compare −a3x3

3 with − (b3+c3)x3

3 . As a2 = b2 + c2, a3 = ab2 + ac2. Thus, we are

comparing −x(ab2 + ac2) and −x(b3 + c3) or equivalently 0 and xb2(a− b) + xc2(a− c).

As a < 0 and −a > |b| and −a > |c|, the expressions can be re-written as: 0 and −xb2(b− a)−
xc2(c− a). Both terms inside brackets are positive, and as x > 0, right hand side will be negative.

Corollary 1 If a2 = b2 + c2 + . . .+ s2, then if ax, bx, cx, . . . are greater than −1 (for log(1 + hx)

to be defined), then if x > 0, Ψ(−|a|x) > Ψ(bx) + Ψ(cx) + . . .+ Ψ(sx)

3 As, 1
1+x

= 1−x+x2−x3+x4−x5+. . ., integrating both sides (from 0 to x) we get log(1+x) = x− x2

2
+ x3

3
− x4

4
+. . .
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Proof: (induction) Let v2 = c2 + . . . + s2. Then a2 = b2 + v2. Then from the above claim,

Ψ(−|a|x) > Ψ(bx) + Ψ(−|v|x). By induction hypothesis, Ψ(−|v|x) > Ψ(cx) + . . . + Ψ(sx) Proof

follows by adding the two inequalities.

5.2 Analysis Continued

As − log(1− x) = x+ x2

2 + x3

3 + . . . > x, hence,

∆Φ ≥ −n log
(

1− α r
R

)
+
∑

log zi

= nα
r

R
+
∑

log zi

= αr2 +
∑

log zi

But z = e− αrp̂ or zi = 1− αrpi

And, log zi = log(1− αrpi) = − (−αrpi − log(1− αrpi))− αrpi = −αrpi −Ψ(−αrpi).

But p̂ is a unit vector,
∑
p2
i = 1. As z is feasible

∑
zi = n, or

∑
pi = 0. Hence,

−
∑

log zi =
∑

αrpi +
∑

Ψ(−αrpi) =
∑

Ψ(−αrpi) ≤ Ψ(−αr)

The last inequality follows from Corollary 1 above.

For Ψ(−αr) to be defined, αr < 1, we thus4 choose α = 1
r+1 , we have

∆Φ ≥ αr2 −Ψ(−αr) = αr2 − ((−αr)− log(1− αr))

= αr2 + αr + log(1− αr)

=
r2

1 + r
+

r

1 + r
+ log

(
1− r

r + 1

)
= r + log

(
1− r

r + 1

)
= r − log(1 + r) = Ψ(r) but as r =

√
n/n− 1 > 1

≥ Ψ(1) = 1− ln 2 ≈ 0.3

Hence, potential decreases by a fixed amount after each iteration.

After k, iterations, Φ(e) − Φ(x) > kΨ(1). But as Ψ(e) = n log cT e, we get Φ(x) < n log cT e −
kΨ(1). As x is inside the standard simplex,

cTx ≤ exp
(

Φ(x)
n

)
< exp

(
n log cT e− kΨ(1)

n

)
4 Differentiating, f(α) = αr2 − Ψ(−αr) w.r.t. α, f ′(α) = r2 − −αr

1−αr + n −r/R
1−(αr/R)

f ′(α) = r2 + r + (−r) 1
1−αr ,

equating f ′(α) to 0, we get 1 + r = 1
1−αr , or 1 − αr = 1

1+r
or αr = 1 − 1

1+r
= r

r+1
or α = 1

1+r
. Thus, the maximum

value is at α = 1
1+r

.
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If we stop as soon as error cTx ≤ ε, we get

exp

(
n log cT e− kΨ(1)

n

)
≤ ε or

n log cT e− kΨ(1)
n

≤ log ε or

log cT e− kΨ(1) ≤ n log ε or

k ≥ n

Ψ(1)
log

cT e

ε

Thus, after at most n
Ψ(1) log cT e

ε iterations, algorithm finds a feasible point x for which cTx ≤ ε
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