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Hypergeometric series and the Riemann zeta function
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For infinite series related to the Riemann zeta function, De Doelder [4]
established numerous interesting identities through evaluating improper in-
tegrals. Some of them are rederived in [2] by means of the Parseval identity
for Fourier series. A couple of the most elegant examples may be reproduced
as

e e N i S
0.1 2 n — — 4
(0.1a) n§:jl( — ) s = 74,
~(l+5+...+2\ = 5
-1 2 n = — = — 4
(0.1b) n§:1< 3 ) - 4C( ),

where the latter is due to Euler (1775). Other formulas and the related
references may be found in Berndt [1, Ch. 9].

Since the first glance at the paper of Borweins [2], the author has been
stimulated, by the beauty of these formulas, to search for a different way of
dealing with such kind of infinite series. The present paper will show that the
hypergeometric method can fulfill that purpose, which may be illustrated
by the following simple example.

For complex parameters {x, c}, consider the binomial expansion

(14 2)° = i (Ti)x”

n=0

m-+1

The coefficient of ¢ gives a general infinite series identity

)

"1 +2) & man €m(M)
s i Dl e e

n=0
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where e, (n) is the mth elementary symmetric function in {1,1/2,...,1/n}.
Its specification, for x = m = 1, leads us to a strange summation formula

[e%e) 1 1
2222(_1)n 1+§++m
— n 4+ 2

due to De Doelder [4, Eq. 25].

This method works for most of the hypergeometric summation theorems.
With the notation from Slater [7], the generalized hypergeometric series
(unilateral and bilateral) read as

U, UL, -5 Up | > (o) (U1)n - .- (Up)n
(0.2a) 1+qu[ ’z] _nzzzo n! (v1)p -- “

Uiy.oty Vg - (vg)n

(0.2b) qu[ul,ug,...,up;z] _ i () () - (p)n .

Ul,’Ug,...,Uq ('Ul)n (’Ug)n ('Uq)n
where the shifted factorial is defined, for a complex number w, by
ww+1)...(w+n-—1), n=12...,
(w)n =4 1 n =0,
(w—1)(w—-2)...(w+n), n=-1,-2,...
On the one hand, the hypergeometric series may be expressed in terms of the

partial sums of the Riemann zeta function through the symmetric functions
generated by finite products (cf. [6])

n=—oo

n 2
(0.3)  J[(+a/k) = 1+an+‘%(Hg —H!)+ ...,

=
Il
—

2

=

(0.3b) (1—x/k)y" ' =1+zH, + = (H2 H))+ ...,
k=1
(0.3c) H<1+2ky_1>_1+y0 + L (O2 o) +...,
k=1
n —1
(0.3d) H(l—%‘l/_l) =1+y0, + = (O2 oN+...,
k=1
whose first two terms
"1 ~ 1
A4 Hn — P n = ’
(0.42) > P ¢ P Y 2% —1
k=1 k=1
(0.4b) oS L o _Zn:;
n — k2’ n P (2k —1)?

are closely related to the harmonic numbers.
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On the other hand, most of the hypergeometric summation theorems
(cf. [3]) evaluate infinite series as a fraction of I'-functions

F[ a,b,...,c } _ I'(a)I'(b) ... I'(c)
A B,....,C| " (A I(B)...I(C)

which may be expanded as multivariate formal power series. In fact, recall-
ing, for the I'-function (cf. [5]), the Weierstrass product

I(z)=="" T[{A+1/n)*/(1 +2/n)}

and the logarithmic derivative

I'(z) > z—1
(0.5) () —’Y+7;)(n+1)(n+z)

with the Euler constant

1
’y:nli_{rolo{ z —lnn}
k=1

we can derive the following expansions:

(0.62) I(1-2z) =exp { i (;kzk}

k=1
T
1 _ k _k

(0.6b) F(Q—z)—ﬁexp{zkz },

k=1
where the Riemann zeta sequences {oy, 7} are defined by
(0.7a) o1 =7, Om = C(m), m=2,3,...
(0.7b) mn=v+2In2, 71,=02"-1)¢C¢m), m=2.3,...
For a specific hypergeometric summation theorem, both power series expan-
sions mentioned above should coincide. The coefficients of a single monomial
xiylZF ... in both power series would result in a summation formula (trivial
or non-trivial) similar to (0.1). By means of hypergeometric theorems, this

approach will be extensively explored to establish several further infinite
summation formulas. Some examples are

= H! Tt
0.8 _ntl 1T
(0-8a) ;} (n+1)2 360

— HonHopy1 7
0.8b Zentrentl D
(0.8b) 2. 2n+1)2 647

n=0
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oo
On0n+1 7T2 2
(0.8¢) Yool = T om?,
— (2n+1) 8

Because the hypergeometric method is quite mechanical and systematic,
the tedious demonstration for summation formulas will not be presented
in detail except for necessity. Instead, we will use a self-explanatory nota-
tion [z'y72*] to indicate extracting the coefficients of the monomial xiy’ 2%
from power series expansions. Throughout the paper, the Euler summation
formulas

i A e D

(0.92) ;112_6’ ;2n+1_4’
=1 7 = (=) 73
9b 1l_m =y
(0-9b) ;r# 90 7;)(2n+1)3 327

will frequently be applied without indication.

1. The Gauss summation theorem. Recall the Gauss theorem [7,
p. 28]

T, Yy 4| _ l—z,1-2z—-y—=2
2F1[ 1—2”1] _F[l—m—z, 1—y—z]
We may reformulate it, by means of (0.6a), as a functional equation between
two multivariate infinite series

l—z,1-z—y— [T, (T + /i) (1 +y/i)
F[l—m—z,l—y—z} yz (n+1)2 HnH(l—Z/])

= exp{zakk[zk—l—(m+y+z)k—(:1:+z)k—(y—i—z)k]}

k=1

= exp {o2xy + o3zy(T + Y + 22)

+G4xy(:n2 + 9% 4 322 + 3yz + 322 + %xy) + ... },

where the right hand side of the first equality may be expanded, via (0.3),
as a power series. Then term-by-term comparison of the coefficients of the
two power series results in an infinite number of summation formulas.

EXAMPLE 1.1. Summation formulas [4, Eq. 2] related to ¢(3):

(1.1a) DS (ﬁl) — 05 = ((3),
(1.1b) [2y2] Z @ fll = 203 = 2((3).

n=0
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EXAMPLE 1.2. Summation formulas [2, Eqgs. 2-3] related to ((4):

— HyHpi LS
1.2 2 nontl -
( a‘) I:‘/L‘ yZ] TLZO (n + 1)2 30_4 307
— H? 1 117
1.2b 242 _Mn 2.2 _
( ) [IIJ‘ Yy ] T; (n + 1)2 2(02 + 304) 360 )
~ H? 1704 177"
1.2 ntl _ _
(1.2¢) ;} (n+12 4 360
EXAMPLE 1.3. Summation formulas [2, Eq. 4] and [4, Eq. 7] related to
) . 4
H, o4 7y
1.3 =T
(13) nz;o (n+1)°® 4 360
> Hn+1 504 7T4
1.3b fntl 004 T
. LI
EXAMPLE 1.4. More summation formulas related to ¢((4):
0 H" 3 7'('4
1.4 _n 5= —
(14a) ,;) n+12 4747 120
— H, 7 7t
1.4b ol o= —.
(1.4b) HZ:% n+1)2 4747 360

Sketch of proof. The coefficients of xy in both formal power series
expansions lead us to Euler’s formula ((2) = 7%/6. In Example 1.2, the
third formula follows from the previous two identities since

Hi = (Hn +

= H? +2H,(H,41 — Hy,) +

=2H,H, ., — H?

1 \* ., 2H, 1
n+1> :H”+n+1+(n+1)2
1
(n+1)2
1
RCESYER

Linear combinations of the identities of Example 1.2 yield the formulas in

Example 1.3. Other two terms

0. @]
H2 —i—H" 7T4
1.5 2 R = 6oy = —
(1.52) =] D 6o =
e HQ —_H” 7.‘.4
1.5b 8 » =20y =
( ) [2°y] = (n+1)2 04 15

can be used to derive, without difficulty, the formulas in the last example. m
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2. The Kummer summation theorem. The Kummer theorem [7,
p. 51]

x, y 4l l+x/2,14+2z—y
2F1[ l+z—y’ 1]_F[1+x,1+x/2—y

may be restated, through (0.6a), as

r l+x/2, 14—y
14z, 14+2/2—y

S n s (L 2/i)(1 +y/i)
=1—=x -1
ynzo( ) (n+ 12121 - (y — 2)/4]

— e { > (0Tl o =) — a0 (o 2"}

o o
= exp { - %xy + Z?’:Uy(?)x —2y) + émy(Qxy — T — )+ ... }

whose power series expansion via (0.3) leads us to infinite series identities.

EXAMPLE 2.1. Alternating sums [4, Eq. 5] related to ((3):

- Hy+ Hur _ 03 _ ((3)
2 _1\n +1 _ v3 _
(21a) ] LTI = =
= H, —o3  —((3)
2.1 E 1" = =
(2.1b) n:O( ) (n+1)2 8 8 ’
= Hyiq 5 5
2.1 1) — Zae = Z0(3).
(210 S e = o §60)
EXAMPLE 2.2. Alternating sums related to ((4):
- (H, — Hp1)?> 7 7t
2.2 3 E —ynar ) gy = ——
(2.2a) [z°y] n:O( ) (n+1)2 804 720°
= Hn + Hn 1)2 04 7T4
2.2b 3 E -1 n (Hn + Hp1) _04_ T
( ) [I‘y ] nzo( ) (7’L+ 1)2 8 7207
> H2 + H? 04 7t
] o ontl T4 T
(2:2¢) > (=1) (n+1)2 2 180’

(2.2d)

i(_l)anHnH _ 304 _ -7
(n+1)2 16 480
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EXAMPLE 2.3. Alternating sums related to ((4):

o0
2H, 11 H 370, 37wt
2.3 —1)” ntl L _ ,
23 ;)( ) {(n +1)3 * (n+1)2 16 1440

Sketch of proof. In Example 2.1, separating the numerator {H,, +
H, 1} of the summand in (2.1a) leads us to the other two formulas from
the same example. For Example 2.2, the last two formulas are simply linear
combinations of the first two identities. Finally, Example 2.3 follows directly
from

> H? , —H?+H! o2+ 90 2374
2,2 -1 n*tn+1 n n+1 _ 2 4 _
CEANDI (n+1)2 8 1440°

n=0

which is quite strange, but less elegant. =

3. The Dougall-Dixon summation theorem
A. The Dougall-Dixon theorem [7, p. 56]

w, 1 +w/2, T, Y, z )
5F4[ w/2, 1+w—x,1+w—y,1+w—z’1}

T lv+w—-—z,14+w—-—y,l+w—-—2z14vw—2z—y—=2
B l4+w,l4+w—zr—y,l+w—ax—2z,1+w—y—=z2

may be expressed, by means of (0.6a), as

I l+w—-—z,14+w—-—y,1+w—-—2z, 14w —-—ax—-—y—=2
14w, 1+w—z—-y, 1+w—-—z—214+w—-—y—=2

y [Lo, (L +w/i) (A +2/i)(1+y/i) (1 + 2/i)
T2+ (w = 2) /][ + (w = y) /5] + (w = 2)/]]

—exp { S04l - ) 4 (=) (= )k (w2 =y - o)
k=1

St ey - a2 - -y - )]
= exp{2032yz + 3o4xyz(x + y + 2z — 2w) + ...}

whose coefficient of [x?yz] recovers the results in Example 1.3. Another
formula from this expansion may be stated as follows.
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EXAMPLE 3.1. An intriguing identity related to ¢(3) and ¢(6):

— (Hyp 4+ Hp1)® 15 76
(3.1) [(zy2)?] ;ml)gl 3+7UG ¢*(3) + 126"

B. Replacing z by z + 1/2 in the Dougall-Dixon theorem, the resulting
identity reads as

w, 1 +w/2, x, Y, z+1/2
5F4[ w/2, 1+w—z,1+w-— y,1/2+w—z’1

_r l4w—z, 14w—y,124w—2,124+w—az—-—y—=2
- 14w, 1+w—z—y, 124w—o—2,1/24w—y—2

which may be restated as

r l4w—z,14w—y, 124w—2124+w—x—y—2
14w, 1+w—z—y, 124w—z—2124+w—y—2z

B . > w+2n+1) [T, (T +w/i) (1 + /i) (1 +y/i)
o ynz::o (n+1)° H”“[H( — @)/l + (w —y)/4]

14222k 1)
[1 1+ 20w —2)/(2k — 1)
= o { VM- ) =t - o - - 0]}
k=1
X exp { ;(—1)’“]:[(10 — )t (w—z—y—2)*

(w9 -y - 2]}
= exp{20922y + 2032y(3x + 3y + 7z — 6w) + ...}

The summation formulas obtained from its power series expansion are as
follows.

EXAMPLE 3.2. Summation formulae [4, Eq. 15] related to ((3):

(3.2) [zyz] Z = 03 = *C( )-
EXAMPLE 3.3. Summation formulas related to ((4):
— H,+H 45 s
2 Hn T ntl — o= —
(3.3a) [z%yz] Z 12 0T TR

n=0
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= 0? _ 45 4
33b 2 n+1 i _
(3.3b) [2y="] nzzo m+12 1671 32

> (H, + Hp41)? 13
3.3 A Ut Hua)” g, 1304
(3.3¢) [z7y”] pt (n+1)2 04 907T

C. Replacing w, x, y, z respectively by 1 + w, x +1/2, y +1/2, 2+ 1/2
in the Dougall-Dixon theorem, the resulting evaluation reads as

1+w, (3+w)/2, x+1/2, y+1/2, z2+1/2 |
5F4[ El—l—w;/%3/2—|—w—m,3/2+w—y,3/2+w—z71
_r 324w—2,3/24+w—y,3/24+w—2,1/24w—x—y—2
- 24w, 1+w—-—z—-y,1+tw—a—-21+w—-y—=2 ’

We may reformulate it as

rl12+tw-z124w-y,124w—-212+w—-z—-y—=
l+w,1+w—z—-—y,1+w—axz—2,1+w—-—y—=z

_ Zw+1+2n.Hz L)+ )+ 52 (L + 52)
O TG (g (1 B2 (4 5)

= 12 exp { Z(—l)k%[(w —2)F + (w—y)*" + (w—2)F

k=1
+w—z—y- 2}
Xexp{ ; kok +(w—2—y)F+(w—z—2)"
+w-y -]

=nlexp{4In2(x +y + 2z — 2w) + 209 (2 + y* + 22 + 2w?)
+ 209(2xy + 2z + yz — 2wz — 2wy — 2wz) + ...}

which enables us to compute its coefficients through power series expansions.

EXAMPLE 3.4. A strange summation formulae:

> On + On+1 71'2
(3.4) ] S Tl = Do,
e @2n+1)? 4
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EXAMPLE 3.5. Three strange summation formulas:

(3.5a) [zy] Z (O&:f?;) = 36 (72 + 481n? 2),

n=0
202+ 0%, 7
2 n n+1 2 2
. E _— = — 241n” 2
(3 5b) [.%' ] oy (2n + 1)2 96 (ﬂ- + n )7
> On0n+1 71'2 2
. — = —1In"2.
(3:5¢) Z:o 2n+1)2 8

Sketch of proof. The summation formula (3.3b) is due to De Doel-
der [4, Eq. 22] (cf. [2, Eq. 13]), and (3.5¢) follows from the difference between
the two previous identities in the last example. =

4. The Dixon—Kummer summation theorem

A. When z — oo, the Dougall-Dixon theorem in the last section reduces
to the Dixon—-Kummer theorem [7, p. 56]

w, 1 +w/2, x, Yy 4l ol ltw—z, 1w —y
4F3[ w/2, 1+w—x,1+w—1y’ 1]_F[1+w,1+w—x—y

which may be expressed, through (0.6a), as

r ldw—z,1+w—y
14w, 1+w—a:—y

w+2nﬂ) H?1(1+%)(1+§(1+%)
- exp{2<—1>k$[<w—x>k Fw— ) =t - -}
k=1

= exp { — ogxy — ozzy(x + y — 2w)
2 2 2 3
—04$y(3w + 2 4+ y° — 3wz — 3wy + §xy) +}
By means of (0.3), its power series expansion may be used to revisit the

formulas displayed in Example 2.2.
B. Replacing y by y + 1/2 in the Dixon—Kummer theorem, the resulting

evaluation reads as

w, 1+ w/2, x, y+1/2
aFs w/2, 14+w-—=z,1/24+w—1y’ -1

—r l+w—z,1/24+w—y
- l+w,1/24+w—2—y
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which may be restated as

r| 1+w-—uz, 1/24w—y
l+w,124w—x—y

R w+2n+1) 1+2y/(20—-1)
S-S R T R

xj]l(H?)(Hj)

= e { S0 Rt -t Bt - - -0

k=1
= exp{—2zIn2 + 0222w — = — 3y) — 603w x
— o3z(22% + Ty? — 6wx — 14wy + Tzy) +...}.

The first few coefficients of its formal power series expansion via (0.3) yield
the following summation formulas.

EXAMPLE 4.1. Alternating sums related to the harmonic series:

(D"
(4.1a) [x] nEO Tl In 2,
> nOn 1 3 7'['2

EXAMPLE 4.2. Alternating sums related to the harmonic series:

o0
H, +H 1 1 7T2
4.2 2 d ()" = (0 - 2107 2) = — —In2
) 2
H In?2
4.2b | — L
(4.2b) HEZO( ) ] 5
) 2
H,.; =2 In?2
4.2 _ynntl D ‘
(4.2¢) nzzo( e ST A

EXAMPLE 4.3. Alternating sums related to the harmonic series:

) = oz, 1 7
(430) [w?] D1 = feow = 1oC(3) [, Eq.21],
n=0
@) [P S ()T, = (1) - n)
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EXAMPLE 4.4. Alternating sums related to the harmonic series:

o~y at Hi

(4.4a)  [2°] Z(—l) =((3)+ gln3 2 — 7: In2,

— n+1

> H? 1 1 2
4.4b —)nn = o “In®*2— —1In2
(4.4b) ;)( )nle 16B)+ g n 15 122

S ZHig 3 L. 3 m?
(4.4¢) ;)(—1) P 1¢@) + 5?2 o n2.

C. Replacing w, z, y respectively by 1 + w,  + 1/2, y + 1/2 in the
Dixon—Kummer theorem, the evaluation reads as

1+w)/2,3/24+w—x,3/2+w—y’
_ [3/2+w—:€ 3/24+w — y}

4F3[1+w E3+w;/2 r4+1/2, y+1/2 1}

24w, 1+w—z—y
which may be reformulated, through (0.6a) and (0.6b), as

124w—2,1/24w—y
14w, 1+w—z—y

Z 2 W+ 142n H?1(1+H)(1+2 )(1+2 )
— +2)2 Hn+1 (1+ 2;1; 21w)(1_’_22u; 21y)

- mp{z(_l)k w0+ -

k=1

Ok
Tt - -]
=mexp{2In2(z +y — 2w)
+ o9 (2w? + 22 + 3y — 2y — 2wr — 2wy) +...}.

Its power series expansion via (0.3) yields infinite series identities.

EXAMPLE 4.5. Alternating sums related to the harmonic series:

= nOn + On+1 o ™
= n On T 2
(4.5Db) > (-1 1= 52 op
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On+1 T 2
4. -1H" =—In2+ —.
(4:5¢) ng( T Y

EXAMPLE 4.6. Alternating sums related to the harmonic series:
oo
(On + On+1)2 77 2

4. )= —(4In"2 —
o) ] MRS — o)

= £?-—6(2411&2 2 — 7?),

i 02 + 0? T
4.6b 2 S D U U Y )} M)
(4.6b) [2°] n;)( ) 1 g (2" 24 03)
- 9%(1211122 +2),
> OTLO'H,+1 s 2 2
4. _nnntl 629 — 2.
(4.6c) T;( el T G

Sketch of proof. The formula (4.1a) in Example 4.1 may be traced
back to Newton and Leibniz, and obtained from classical analysis. In Ex-
amples 4.2, 4.4 and 4.5, the last two formulas are trivially derived from
the first, respectively, by separating the corresponding summands. Among
these identities, the identity (4.4b) in Example 4.4 gives a corrected version
of [4, Eq. 12]. The difference between the first two identities in Example 4.6
results in the last formula in the same example. =

5. Concluding remarks
A. For the bilateral hypergeometric series, we have two general summa-
tion theorems due to Dougall [7, pp. 181-182]:

U, (R l—u,1l—v,1—z, 11—y, 1—u—-—v—z—1y
2H2[1—ar,1—y’1} _F[ l-v—z,1—-u—y,1—v—2z,1—v—y ]

H 1+a/2, b, c, d, e 1
55 a/2, 1+a-bl4+a—c,1+a—d,1+a—e’

_r l+a—b14a—c,14+a—-d,1+a—e
- 1+a,14a-b—c,1+a—-b—d,1+a—-b—e

I 1-b,1—¢,1—-d,1—¢,14+2a—b—c—d—e
l—a,1+a—c—d,1+a—-c—e,1+a—d—e|’
which may be used to recover the formulas of Examples 1.2, 2.2, 3.4 and

3.5, respectively. The only result that we find through bilateral summation



116 W. C. Chu

theorem and which is essentially different from those given in the preceding
sections, may be stated as

- n OZ—FOZ—FI O +On+1 3
(5.1) 2_(=1) { ent1)? 2 nt 1) } §ln2

n=0
which somehow resembles the formula in Example 2.3.

B. Combining Examples 1.1 and 2.1, we get four additional summation
formulas related to ¢(3) with even and odd summation indices:

(5.2a) > I({;Z)_; = %C(3),
(5.2b) 3 éfj;; = 23)
(5.2¢) > (275%1)2 = %C@),
=, Hy, 21
(5.2d) ;} ﬁ = 15403,

Similarly, we may obtain from Examples 1.2 and 2.2 the following summa-
tion formulas related to ((4):

(5.3a) i % _ %ﬁ
nozol \
(5.3b) ;) m -
(5.3¢) i W _ %ﬂ.él’
n=1
(5.3d) g w _ ;j 7
(5.31) f: HQ"QZfi”“) )

C. Finally, from the power series expansions of the I'-function we have

W,@Hw@ { ORD B eree k+z }

k>0
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I'(z) e2( 1
F(Z_g)fv1+5¢(z)+2{¢ (Z)_ZW}’

k>0

provided that € is an infinitesimal and the t-function is the logarithmic
derivative of the I'-function defined by (0.5).

Then the Gauss summation theorem stated in the first section may be
expressed as the following infinite series transformation:

i : nl(l1+ ), — lim 1 E)n(z)n

— (n+ D1+ y)ppr 0 ex £ «nl(1+y)n

B 1 l+y,l—c—x+y
_g%m{_l—i_F[ —e+y, l—z+y

= 5{¢(1+y) (1 -z +y)}

> 1
_;(k+y)(l€—w+y)

whose reformulation
[Tho,(1+x/k) =
(5:4) Z ol T =D =
(n+ 1212 (L +y/k) o (k+y)(k—z+y)

leads us, through the coefficient of [xPy?], to a general summation formula

oo

ep(n)hg(n+1)  (p+q+1
(5.5) ;}W—< bl )C(2+p+Q)

where ex(n) and hy(n) are respectively the elementary and complete sym-
metric functions of degree k in {1,1/2,...,1/n}. It contains most of the
formulas in the first section as special cases.

Remark. By means of other hypergeometric summation theorems
(cf. [3]) and formal power series expansions, it should be possible to de-
rive further infinite series identities for H,, and O,,. The interested reader
is encouraged to pursue this direction.
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