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GIS AND SPATIAL DATA ANALYSIS: CONVERGING PERSPECTIVES 
 
Michael F. Goodchild1 and Robert P. Haining2 
 
1. INTRODUCTION 
 
We take as our starting point the state of geographic information systems (GIS) and 
spatial data analysis 50 years ago when regional science emerged as a new field of 
enquiry. In the late 1950s and 1960s advances in computing technology were making 
possible forms of automated cartography that in due course would lead to the 
development of GIS. Although few would have imagined at that time that the complex 
graphic content of maps was amenable to processing by number-crunching computers, 
and that any purpose could be served by doing so, the development of scanners and 
plotters in the 1960s, along with rapid advances in software, began to open exciting 
possibilities, even at that very early stage in the development of computing (for histories 
of early GIS see Foresman, 1998; Maguire, Goodchild, and Rhind, 1991). 
 
At the same time pioneering work was taking place in the fields of mathematics and 
statistics that would be fundamental to the development of spatial data analysis. The 
seminal paper by Whittle (1954) extended autoregressive models, fundamental in 
analysing variation in time series (see for example, Kendall, 1976), to spatial data. This 
group of spatially autoregressive models was amongst the first to appear in the statistics 
literature for formally representing spatial variation. At least for some types of data, it 
now became possible to go beyond simply testing for spatial autocorrelation. The earliest 
statistics (Geary, 1954; Krishna Iyer, 1949; Moran 1948, 1950) tested the null hypothesis 
of no spatial autocorrelation (no spatial structure) against a non-specific alternative 
hypothesis. With Whittle's paper it now became possible, at least for regular lattice data, 
to specify the form of the alternative hypothesis (that is, to specify a formal 
representation of certain types of spatial structure), test for model significance, and assess 
goodness of fit to the data.   
 
More or less simultaneously with these developments in England, Matheron in France 
and his school in the mining industry were developing the method of "kriging" after the 
South African D.G. Krige (Matheron, 1963). This work extended Wiener-Kolmogorov 
stochastic-process prediction theory to the case of spatial processes defined on 
continuous geographic space. This work was undertaken to meet the very practical needs 
of the mining industry in predicting yields from mining on the basis of scattered 
(opportunistic) sampling. In due course this developed into the field of geostatistics.   
 
The third area that was to become one of the main cornerstones of spatial statistics was 
point process theory. By the 1950s many distance-based and quadrat-based statistics had 
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been developed to test for spatial randomness in a point pattern with applications in 
forestry and ecology. Work by Greig-Smith (1952) extended quadrat-count statistics to 
examine several scales of pattern simultaneously. However as yet there was no equivalent 
development in point process theory to correspond to Whittle's in the area of lattice data. 
 
This paper discusses some of the key developments in these areas and the evolution of 
geographic information science as a unified field that draws upon GIS and the methods of 
spatial statistics as an essential theoretical underpinning to spatial data analysis. The 
growth of any science depends on several conditions being met.  First, there must be 
good-quality data available. Second, there must be well-formulated hypotheses that can 
be formalised, mathematically, so that they can be subject to empirical testing. Third, 
there must be a rigorous methodology that enables the analyst to draw valid inferences 
and conclusions from the data in relation to the questions asked. This includes the ability 
to formulate models that can then be used to test hypotheses on parameters of interest. 
The final condition is the availability of a technology that permits research to be 
undertaken practically and to acceptable standards of precision.   
 
The evolution of geographic information science (GIScience; Duckham, Goodchild and 
Worboys, 2003; Goodchild, 1992) owes much to developments in GIS and the field of 
spatial data analysis. Research into GIS has advanced our technical ability to handle 
spatially referenced data. In addition it has stimulated reflection on the relationship 
between what might be loosely termed "geographic reality" and the conceptualization and 
representation of that reality in finite digital forms, that is, as countable numbers of 
points, lines and areas in two-dimensional space.   
 
Spatial data analysis is concerned with that branch of data analysis where the 
geographical referencing of objects contains important information. In many areas of data 
collection, especially in some areas of experimental science, the indexes that distinguish 
different cases can be exchanged without any loss of information.  All the information 
relevant to understanding the variation in the data set is contained in the observations and 
no relevant information is contained in the indexing. In the case of spatial data the 
indexing (by location and time) may contain crucial information. A definition of spatial 
analysis (of which spatial data analysis is one element) is that it represents a collection of 
techniques and models that explicitly use the spatial referencing of each data case. Spatial 
analysis needs to make assumptions about or draw on data describing spatial relationships 
or spatial interactions between cases. The results of any analysis will not be the same 
under re-arrangements of the spatial distribution of values or reconfiguration of the 
spatial structure (Chorley, 1972; Haining 1994). 
 
GIS and spatial data analysis come into contact, so to speak, at the spatial data matrix. At 
a conceptual level, this matrix consists of rows and columns where rows refer to cases 
and columns refer to the attributes measured at each of the cases, and the last columns 
provide the spatial referencing. At the simplest level, there might be two last columns 
containing a pair of coordinates: latitude and longitude, or x and y in some projected 
coordinate system. But today database technology allows a single conceptual column to 
contain a complex representation of the case's spatial geometry or shape. 
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This conceptual matrix is but a slice through a larger cube where the other axis is time. At 
a practical level, the spatial data matrix is the repository of the data collected by the 
researcher. In practical terms the structure and content of the matrix is the end product of 
processes of conceptualisation and representation by which some segment of 
geographical reality is captured. It is in one sense the output of a process of digitally 
capturing the world. In another sense, the matrix is the starting point or input for the 
spatial data analyst. 
 
Those principally concerned with data analysis need to give careful consideration to how 
well the data matrix captures the geographic reality underlying the problem and the 
implications (for interpreting findings) of representational choices. The question of what 
is missing from the representation – the uncertainty that the representation leaves in the 
mind of its users about the world being represented (Zhang and Goodchild, 2002) – may 
be as important as the content in some applications. By the same token those principally 
concerned with the digital representation of geographical spaces need to be aware of the 
power of statistical methodology to reveal useful data insights and understandings if data 
are made available in appropriate forms and subject to appropriate methods of analysis. 
 
This paper identifies some of the important developments in GIS and spatial data analysis 
since the early 1950s. The two started out as rather separate areas of research and 
application but have grown closer together. It is at least arguable that they meet in the 
field of GIScience, with each supporting and adding value to the other. In Section 2 we 
provide a historical perspective of developments over the past fifty years. In Section 3 we 
reflect on current challenges and speculate about the future. Finally, in Section 4 we 
comment on the potential for convergence under the rubric of GIScience 
 
2. A CRITICAL RETROSPECTIVE 
 
2.1 GIS 
 
2.1.1 Early motivations 
 
The early growth of GIS occurred in several essentially disparate areas, and it was not 
until the 1980s that a semblance of consensus began to emerge. Perhaps the most 
important of the motivations for GIS were: 
 
• The practical difficulty and tedium of obtaining accurate measurements from maps, 

and the simplicity of obtaining such measurements from a digital representation. 
Specifically, measurement of area became a major issue in conducting inventories of 
land, and led the Government of Canada to make a major investment in the Canada 
Geographic Information System beginning in the mid 1960s (Tomlinson, Calkins, and 
Marble, 1976). 

 
• The need to integrate data about multiple types of features (census tracts, traffic 

analysis zones, streets, households, places of work, etc.), and the relationships 
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between them, in large projects such as the Chicago Area Transportation Studies of 
the 1960s. 

 
• The practical problem of editing maps during the cartographic production process, 

leading to the development of the first computerized map-editing systems, again in 
the 1960s. 

 
• The need to integrate multiple layers of information in assessing the ecological 

impacts of development projects, resulting in efforts in the early 1970s to 
computerize McHarg's overlay method (McHarg, 1992). 

 
• The problems faced by the Bureau of the Census in managing large numbers of 

census returns, and assigning them correctly to reporting zones such as census tracts. 
 
By the early 1970s the research community was beginning to see the benefits of 
integrated software for handling geographic information. As with any other information 
type, there are substantial economies of scale to be realized once the foundation for 
handling geographic information is built, since new functions and capabilities can be 
added quickly and with minimal programming effort. The first commercially viable GIS 
appeared in the early 1980s, as the advent of the minicomputer made it possible to 
acquire sufficient dedicated computing power within the budget of a government 
department or firm, and as relational database management software obviated the need to 
construct elaborate data-handling functions from first principles. 
 
The economies of scale that underlie the viability of commercial GIS also impose another 
important constraint: the need to address the requirements of many applications 
simultaneously, and to devote the greatest attention to the largest segments of the market. 
Spatial data analysis may be the most sophisticated and compelling of GIS applications, 
but it is by no means the most significant commercially (Longley et al., 2001). Instead, 
the modal applications tend to be driven by the much simpler needs of query and 
inventory. In utilities management, for example, which has become among the most 
lucrative of applications, the primary value of GIS lies in its ability to track the locations 
and status of installations, rather than to conduct sophisticated analysis and modeling. 
Applications of GIS to scientific research have always had to compete with other 
demands on the attention of system developers, and while this might be seen as 
beneficial, in the sense that spatial data analysis does not have to pay the full cost of GIS 
development, it is also undoubtedly detrimental. 
 
2.1.2 Early mis-steps 
 
From the point of view of spatial data analysis, it is easy to identify several early 
decisions in the design of GIS that in hindsight turn out to have been misguided, or at 
least counter-productive. In the spirit of a critical review, then, this section examines 
some of those mis-steps. 
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First, GIS designs typically measure the locations of points on the Earth's surface in 
absolute terms, relative to the Earth's geodetic frame, in other words the Equator and the 
Greenwich Meridian. This makes good sense if one assumes that it is possible to know 
absolute location perfectly, and that as measuring instruments improve the accuracy of 
positions in the database will be enhanced accordingly. Two fundamental principles work 
against this position. First, it is impossible to measure location on the Earth's surface 
perfectly; and relative locations can be measured much more accurately than absolute 
locations. Because of the wobbling of the Earth's axis, uncertainty about the precise form 
of the Earth, and inaccuracies in measuring instruments it is possible to measure absolute 
location to no better than about 5m. But it is possible to measure relative locations much 
more accurately; the distance between two points 10km apart is readily measured to the 
nearest cm, using standard instruments. In hindsight, then, it would have been much more 
appropriate to have designed GIS databases to record relative locations, and to have 
derived absolute locations on the fly when necessary (Goodchild, 2002). 
 
Second, and following directly from the previous point, the GIS industry has been very 
slow to incorporate methods for dealing with the uncertainty associated with all aspects 
of GIS. The real world is infinitely complex, and it follows that it is impossible to create 
a perfect representation of it. Zhang and Goodchild (2002) review two decades of 
research into the measurement, characterization, modeling, and propagation of 
uncertainty. Yet very little of this research has been incorporated into commercial 
products, in part because there has been little pressure from users, and in part because 
uncertainty represents something of an Achilles' heel for GIS, a problem that if fully 
recognized might bring down the entire house of cards (Goodchild, 1998). 
 
Third, the relational database management systems (RDBMS) introduced in the early 
1980s provided an excellent solution to a pressing problem, the need to separate GIS 
software from database management, but the solution was only partial. In the hybrid 
systems that flourished from 1980 to 1995 the attributes of features were stored in the 
RDBMS, but the shapes and locations of features had to be stored in a separate, custom-
built database that was unable to make use of standard database-management software. 
The reason was very simple: the shapes of features could not be defined in the simple 
tabular structure required by an RDBMS. It was not until the late 1990s that the 
widespread adoption of object-oriented database management systems in preference to 
RDBMS finally overcame this problem, and allowed all of the data to be addressed 
through a separate, generic database-management system. 
 
2.1.3 Two world views 
 
Many of the roots of GIS lie in mapping, and the metaphor of the map still guides GIS 
design and application. But many of the applications of interest to regional scientists and 
other researchers are not map-like, and in such cases the metaphor tends to constrain 
thinking. GIS works well when applied to static data, and less well when called upon to 
analyze time series, detailed data on movement, or transactions. It works well for two-
dimensional data, and less well when the third spatial dimension is important. We expect 
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maps to provide a complete coverage of an area, and GIS technology has not been 
adapted to deal with cases where substantial quantities of data are missing. 
 
The emphasis in GIS on knowledge of the absolute positions of cases and their precise 
geometry is appropriate for mapping, but for many applications in the social sciences it is 
relative position or situation that is important. Many theories about the operation of 
social or economic processes in space are invariant under relocation, reflection, or 
rotation, though not under change in relative position. Many methods of spatial statistics 
or spatial analysis are similarly invariant under a range of spatial transformations, and 
require only knowledge of a matrix of spatial interactions between cases, not their exact 
coordinates. Conveniently, the literatures of both spatial interaction and social networks 
use the symbol W for the interaction matrix. In the spatial case, the elements of W might 
be set equal to a decreasing function of distance, or to a length of common boundary, or 
might be set to 1 if the cases share a common boundary, and 0 otherwise. 
 
As an expression of spatial relationships the W matrix is compact and convenient. The 
GIS, with its vastly more complex apparatus for representing spatial properties, is useful 
for calculating the elements of W from distances or adjacencies, and for displaying the 
results of analysis in map form.  However the actual analysis can occur in a separate set 
of software that needs to recognize only the square W matrix of interactions and the 
normally rectangular spatial data matrix discussed above in Section 1. In recent years 
much progress has been made using this concept of coupling analysis software with GIS. 
 
In essence, the GIS and the W matrix reflect two distinct world views, one providing a 
complete, continuous representation of spatial variation, and the other providing a much 
more abstract, discrete representation. In this second world view the concern for precise 
representation of absolute position that has characterised the development of GIS is 
important only for data preparation and the mapping of results. 
 
2.1.4 Infrastructure for data sharing 
 
The Internet explosion of the late 1990s produced a substantial change of perspective in 
GIS, and redirected much of the development effort in the field. In the U.S., the Federal 
government has traditionally been the primary source of geographic information, and 
under U.S. law such data has the characteristics of a public good, freely sharable without 
copyright restriction. Since 1995, the GIS community has made a massive investment in 
infrastructure to support the rapid and easy sharing of geographic information, and today 
there are on the order of petabytes of geographic information readily available, free, on 
numerous Web sites (see, for example, the Alexandria Digital Library, 
http://www.alexandria.ucsb.edu). New standards have been developed by the U.S. 
Federal Geographic Data Committee (http://www.fgdc.gov) and the Open GIS 
Consortium (http://www.opengis.org) for data formats, for the description of data 
(metadata), and for communication. New technologies have been developed to allow GIS 
users to interact with remote Web sites transparently through client software, removing 
any need to transform data in response to differences in format, projection, or geodetic 
datum.  
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A parallel effort was under way much earlier in the social sciences, through organizations 
such as the UK's Essex Data Archive, or the University of Michigan's Inter-university 
Consortium for Political and Social Research. Sophisticated methods have been 
developed for describing matrices of data, many of which include spatial information. 
The Data Documentation Initiative (DDI; http://www.icpsr.umich.edu/DDI/) is an 
international effort to define a metadata standard for social data, and efforts are now 
under way to integrate it with the metadata standards for GIS data, to allow researchers to 
search for both types simultaneously. 
 
2.1.5 The current state of GIS 
 
Today, GIS is a multi-billion-dollar industry, with billions being spent annually on data 
acquisition and dissemination, software development, and applications. It has penetrated 
virtually all disciplines that deal in any way with the surface or near-surface of the Earth, 
from atmospheric science through oceanography to criminology and history. Tens of 
thousands take courses in GIS each year, and millions are exposed to GIS through such 
services as Mapquest (http://www.mapquest.com). Millions more make use of the Global 
Positioning System and simple devices to navigate. 
 
The object-oriented approach now dominates GIS data modeling. Its first principle is that 
every feature on the Earth's surface is an instance of a class, and its second is that classes 
can be specializations of more general classes. The authors, for example, are instances of 
the class male human beings, which is a specialization of the more general class human 
beings. In turn human beings can be thought of as part of a hierarchy of increasing 
generality: mammals, vertebrates, animals, and organisms in that order. Specialized 
classes inherit all of the properties of more general classes, and add special properties of 
their own. 
 
GIS permits a vast array of operations based on this approach to representation. Most 
published methods of spatial analysis can be found implemented in the standard products 
of commercial GIS vendors, or in the extensions to those products that are offered by 
third parties. A variety of GIS products and extensions are also available as open 
software or freeware, through academic and other organizations and communities. The 
GIS industry has recently adopted component-based approaches to software, by breaking 
what were previously monolithic packages into aggregations of re-usable components. 
This has enormous advantages in the integration of GIS with other forms of software that 
use the same standards, particularly packages for statistical analysis (Ungerer and 
Goodchild, 2002). 
 
Much progress has been made in recent years in supporting the representation of 
variation in space-time, and in three spatial dimensions. But in one respect the shift to 
industry-standard object-oriented modeling has failed to address several very important 
forms of geographic data. While the concept of discrete objects is clearly appropriate for 
human beings, vehicles, buildings, and manufactured objects, it is much less compatible 
with many phenomena in the geographic world that are fundamentally continuous: rivers, 
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roads, or terrain are obvious examples. In social science, we tend to think of population 
density as a continously varying field, expressed mathematically as a function of location, 
and similarly many other social variables are better conceived as fields (Angel and 
Hyman, 1976). Fields can be represented in GIS, but only by first attributing their 
variation to a collection of discrete objects, such as sample points, or stretches of street 
between adjacent intersections, or reporting zones. In the last case the consequences of 
attributing continous variation to arbitrary chunks of space are well documented as the 
modifiable areal unit problem (Openshaw, 1983). As long as object-orientation remains 
the dominant way of thinking about data in the computing industry and in GIS, social 
scientists will have to wrestle with the artifacts created by representing continuous 
variation in this way. 
 
2.2 Progress in spatial data analysis 
 
The review of progress in spatial data analysis since the early 1950s is divided into two 
parts. First we review developments in the statistical theory for analysing spatial data. 
This is followed by a review of new techniques and methods. One aspect of the progress 
made has been in the emergence of new fields of application, which we review in Section 
3 in the context of the future development of spatial data analysis. 
 
2.2.1 Development of theory  
 
An overview of the theory for analysing spatial data in the late 1960s and early 1970s 
would have shown that developments up to then had been rather patchy. There were no 
books which brought together advances in the field and which tried to present them 
within a broader theoretical framework. There was no field of spatial statistics as such, 
although the term spatial analysis had entered the geographical literature (e.g., Berry and 
Marble, 1968). The closest to such an overview text was Matern's 1960 monograph 
Spatial Variation (Matern, 1986). This situation stood in stark contrast to the analysis of 
time-series data where several major theoretical texts existed (e.g., Anderson, 1971; 
Grenander and Rosenblatt, 1957; Kendall, 1976; Wold, 1954), as well as econometrics 
texts that dealt with the analysis of economic time series (e.g., Johnston, 1963; 
Malinvaud, 1970). In most texts and monographs, if the analysis of spatial data was 
mentioned the coverage was usually sparse with the exception of Bartlett's 1955 
monograph Stochastic Processes (Bartlett, 1955).   
 
It was Bartlett's early work that was to provide the basis for a new class of spatial models 
for area data that were developed in the seminal paper by Besag, which appeared in 1974. 
Models were developed that satisfied a two-dimensional version of the Markov property 
– the property that underlay many of the important models for representing temporal 
variation. As a result of Besag's paper it was possible to specify a general class of spatial 
models for discrete- and continuous-valued variables defined in two-dimensional space.   
 
We illustrate the difference between Whittle's and Besag's classes of models using the 
case of observations (z(1),….,z(T)) drawn from a normal distribution, generalizing the 
discussion to the case of an irregular areal system (like census tracts in a city). The 
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spatial Markov property underlying Besag's models generalizes the (first order) Markov 
property in time-series modeling.  The Markov property in time (t) states that only the 
most recent past determines the conditional probability of the present or:  
 
Prob{Z(t) = z(t) | Z(1) = z(1),......., Z(t-1) = z(t-1)} =  

Prob{Z(t) = z(t) | Z(t-1) = z(t-1)}  (2.1) 
 

where Prob{ } denotes probability. Time has a natural ordering.  The analog to (2.1) for 
spatial data is based on defining a graph structure on the set of spatial units. For each area 
(or site) a set of neighbors is defined that may be, for example, all areas which share a 
common boundary with it or whose centroids lie within a given distance of the area's 
centroid. So the analog to (2.1) is: 
   
  Prob{Z(i) = z(i) | {Z(j) = z(j)}, j ∈ D, j ≠ i} = Prob{Z(i) = z(i) | {Z(j) = z(j)}, j ∈ N(i)} 

 (2.2) 
where D denotes the set of all areas (or sites) in the study region and N(i) denotes the set 
of neighbors of site i.  
 
In spatial analysis this has been called the conditional approach to specifying random 
field models for regional data. Equation (2.2) and higher-order generalizations provide 
the natural basis for building spatial models that satisfy a spatial form of the Markov 
property (Haining 2003). 
 
A multivariate normal spatial model satisfying the first order Markov property can be 
written as follows (Besag, 1974; Cressie, 1991, p.407): 
 

E[Z(i)=z(i) | {Z(j)=z(j)}j∈N(i)}] = µ(i) + Σj∈N(i) k(i,j) [Z(j) - µ(j)]      i = 1,..,n 
and                                                                                                                           (2.3) 

Var[Z(i)=z(i) | {Z(j)=z(j)}j∈N(i)}] = σ(i)2           i = 1,..,n 
 
where k(i,i) = 0 and k(i,j) = 0 unless j∈N(i). This is called the autonormal or conditional 
autoregressive model (CAR model). Unconditional properties of the model are, using 
matrix notation: 

 
 E[Z] = µ     and     Cov[(Z - µ),(Z - µ)T] = (I - K)-1 M.    (2.4) 

 
where E[ ] denotes expected value and Cov[ ] denotes the covariance. K is the n by n 
matrix {k(i,j)} and µ = (µ(1),..,µ(n))T. K is specified exogenously. M is a diagonal matrix 
where m(i,i) = σ(i)2. Because (I - K)-1 M is a covariance matrix, it must be symmetric and 
positive definite. It follows that k(i,j) σ(j)2 = k(j,i) σ(i)2. Note that if the conditional 
variances are all equal then k(i,j) must be the same as k(j,i).   
 
If the analyst of regional data does not attach importance to satisfying a Markov property 
(see for example Haining, 2003 for a discussion of this issue) then another option is 
available called the simultaneous approach to random-field model specification. It is this 
approach which Whittle developed in his 1954 paper, and it can be readily generalized to 
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irregular areal units. Let e be independent normal IN(0, σ2I) and e(i) is the variable 
associated with site i (i = 1,..,n).  Define the expression: 
 

Z(i) = µ(i) + Σj∈N(i) s(i,j) [Z(j) - µ(j)] + e(i)           i=1,..,n.              (2.5) 
 
where s(i,i) = 0. Although it is not a requirement that s(i,j) = s(j,i), in practice this 
assumption is often made (Cressie, 1991, p.410). Let S denote the n by n exogeneously 
specified matrix {s(i,j)}. This is again based on specifying the neighbors of each site. 
Again let µ = (µ(1),..,µ(n))T. Then for (2.5): 
 

E[Z] = µ and Cov[(Z - µ),(Z - µ)T] =  σ2 (I - S)-1(I - ST)-1.       (2.6) 
 

The 1970s and early 80s was a period that saw further significant advances in what was 
becoming known as spatial statistics. Cressie (1991) wrote that in the case of spatial point 
pattern analysis "a turning point for the modern development of the field was the article 
by Ripley (1977)". Ripley proposed the use of the K function, a descriptive and modeling 
tool for point process data that had originally been suggested by Bartlett. The power of 
the K function is that it provides a description of a point pattern (random, regular, or 
clustered) at a range of scales. The K function can be used to fit properly specified spatial 
models to point data. 
 
N(A), the number of points in an area A, provides the natural basis for analysing point 
processes, and the covariance between N(A) and N(B) for two areas (A and B) can be 
reduced to a non-negative increasing function: 
 
K(d) = λ-1 E[number of additional points ≤ distance d of a randomly chosen point]    (2.7)  
 
where λ is the density of points (the number of points per unit area) and E[.] denotes the 
expected value of the expression in square brackets. 
 
Ignoring edge effects introduced by the boundary of A, the estimator of the K function 
(2.7) for any distance d is: 
 

λ-1 [(λ|A|)-1 Σl Σm(≠l) Id(dl,m)]           (2.8) 
 
where |A| is the area of the study region. Id(dl,m) is the indicator function and scores one if 
the distance between points l and m is less than or equal to d, 0 otherwise. The term (2.8) 
in square brackets is the average number of additional cases within distance d of an 
observed case, where the average is computed over all cases. The estimator of the density 
parameter λ is the number of cases n divided by the area of the study region |A|. A 
weighting function needs to be introduced on the indicator function to correct for edge 
effects (Gatrell et al., 1996, p.262-3). The significance of peaks and troughs on the plot of 
{K(d),d}can be established by Monte Carlo simulation.   
 
The early 1980s saw the appearance of a monograph that revealed the shape of the newly 
emerging field. Ripleys (1981) book Spatial Statistics provided an overview of the field 
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which included advances in geostatistics. The treatment of geostatistics was included in a 
chapter on spatial smoothing and spatial interpolation. The importance of this area and 
the wider significance of Matheron's work beyond the interests of geologists and mining 
engineers became clear as the field of automated mapping itself began to expand. 
Another significant monograph at this time was Diggle's (1983) book on point pattern 
analysis. This linked the K function for describing point pattern structure with models for 
representing point pattern variation, allowing it to be used to test specific spatial 
hypotheses. Stoyan, Kendall, and Mecke's (1987) monograph dealt with point processes 
and stochastic geometry. 
 
1991 saw the publication of Cressie's 900-page work Statistics for Spatial Data – the last 
time a statistician has provided an overview of the whole field. His text includes methods 
and models for analysing geostatistical data, lattice data (e.g., including the models of 
Whittle and Besag), point, and object pattern data.  
 
2.2.2 Development of specific techniques.   
 
As noted in Section 1, amongst the earliest spatial analysis techniques were those 
developed for testing for spatial autocorrelation on regular lattices. For regional science 
dealing usually with data on irregular areal units this meant the tests were of limited 
value. Cliff and Ord (1973, 1981) pioneered the development of tests for spatial 
autocorrelation on irregular areal units, generalizing the earlier tests and examining in 
detail the associated inference theory. In many areas of non-experimental (or 
observational) science data have higher levels of uncertainty associated with their 
measurement than in the case of experimental science. Cressie (1984) introduced 
techniques for resistant spatial analysis in geostatistics, that is techniques that were more 
robust (than traditional methods) to data errors and outliers. He also developed methods 
that could be used to highlight possible errors in spatial data sets. Haining (1990) 
extended several of Cressie's methods to area data. 
 
Many of the early methods of point pattern analysis were limited in the extent to which 
they could be applied because the underlying space across which events might occur are 
heterogeneous (or inhomogeneous). Many of the early methods were developed in 
ecology to study plant distributions across a study area. But to study clustering of disease 
cases, for example, or offense patterns it is necessary to allow for inhomogeneity in the 
distribution of the population at risk. Diggle and Chetwynd (1991) used K functions to 
develop a test for the clustering of cases in an inhomogeneous point pattern. It is a test of 
the hypothesis of random labeling of (disease) cases in a spatially distributed population. 
 
Many of the techniques of spatial analysis have emphasized the average properties 
present in spatial data. The tests for clustering or spatial autocorrelation described above 
provide evidence relating to what are termed whole-map properties. In the 1990s, there 
has been interest in developing localized tests that recognize the heterogeneity of map 
properties across the study area. In addition to tests for clustering (a whole-map property) 
that can test the hypothesis as to whether cases of a disease tend to be found together, 
tests to detect the presence of (localized) clusters are needed. Tests for the presence of 
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clusters may give evidence of where local concentrations are to be found which in turn 
can be used to focus effort on the extent to which local conditions might be responsible 
for the raised occurrence. Testing for clusters (see for example, Besag and Newell, 1991; 
Openshaw et al., 1987; Kulldorff and Nagarwalla, 1995) raise problems such as pre-
selection bias and the effects of multiple testing which need to be handled in order to 
construct a reliable inference theory. Other localized testing procedures include Anselin's 
(1995) local indicators of spatial association, or LISAs, that test for localized structures 
of spatial autocorrelation. These numerical methods have been complemented by the 
development of visualization methods for spatial data (see Haining 2003, for a review). 
The interaction of scientific visualization methods with advances in automated 
cartography and GIS has been one of the dynamic areas of spatial analysis in the 1990s 
(MacEacheren and Monmonier, 1992). The challenge has been to move away from 
seeing maps purely as end products of a program of research and hence only used to 
display findings. This requires the integration of automated mapping within the wider 
analysis agenda of exploring data, suggesting hypotheses and also lines for further 
enquiry. Mapping is a fundamental element within the scientific visualization of spatial 
data. 
 
3. CURRENT CHALLENGES AND FUTURE DIRECTIONS  
 
3.1 In GIS 
 
3.1.1 Representations and data sources 
 
Despite the limitations and false starts identified in Section 2.1, GIS today represents a 
solid basis for spatial data analysis. The basic products of the vendors provide a range of 
techniques for analysis and visualization in addition to the essential housekeeping 
functions of transformation, projection change, and resampling. Additional analysis 
techniques are often added through extensions written in scripting languages, and 
increasingly in languages such as Visual Basic for Applications, frequently by third 
parties. Various strategies of coupling are also used, to link the GIS with more 
specialized code for specific applications. 
 
Over time the GIS research community has come to focus more and more of its efforts on 
issues of representation – that is, on the fundamental task of representing the real 
geographic world in the binary alphabet of the digital computer. Research has focused on 
the representation of time, which turns out to be far more complex than the simple 
addition of a third (or fourth) dimension to the two (or three) of spatial representations. 
Peuquet (2002) provides an analysis of the philosophical and conceptual underpinnings 
of the problem, and Langran (1992) presents a more practical perspective, while Frank, 
Raper, and Cheylan (2001) address the issues of reporting zone boundaries that shift 
through time. Other research has focused on the representation of objects whose 
boundaries are uncertain (Burrough and Frank, 1996), a common issue in environmental 
data though perhaps less so in social data. 
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However the problem of time is clearly more than a simple issue of representation. The 
entire apparatus of Census data collection has traditionally approached time through 
decennial snapshots, changing reporting zone boundaries in each cycle and creating 
difficult issues for anyone wishing to analyze Census data in longitudinal series. Not only 
is there very little available in the way of spatiotemporal data, but our analytic apparatus 
and theoretical frameworks are similarly limited. The arrival of large quantities of 
tracking data in recent years, through the use of GPS attached to sample vehicles and 
individuals, is likely to stimulate renewed interest in this neglected area of both GIS and 
spatial data analysis. 
 
Other new data sources are becoming available through the deployment of high-
resolution imaging systems on satellites. It is now possible to obtain panchromatic 
images of the Earth's surface at resolutions finer than 1m, opening a range of new 
possibilities for the analysis of urban morphology and built form (Liverman et al., 1998). 
Web-based tools can be used to search for data, and also to detect and analyze references 
to location in text, creating another new source of data of potential interest to social 
science. Technology is also creating new types of human spatial behavior, as people take 
advantage of the ability of third-generation cellphones to determine exact location, and to 
modify the information they provide accordingly (Economist, 2003). 
 
3.1.2 The GIScience research agenda 
 
Various efforts have been made to identify future directions in GIS, and to lay out a 
corresponding research agenda for GIScience. Until well into the 1990s the prevailing 
view of GIS was as a research assistant, performing tasks that the user found too tedious, 
complex, or time-consuming to perform by hand. As time went on, it was assumed that 
GIS would become more and more powerful, implementing a larger and larger proportion 
of the known techniques of spatial data analysis. 
 
The advent of the Web and the popularization of the Internet provoked a fundamental 
reconsideration of this view, and greatly enlarged the research agenda at the same time. 
Instead of a personal assistant, GIS in this new context can be seen as a medium, a means 
of communicating what is known about the surface of the Earth. This is consistent with 
the earlier discussion in Section 2.1.4 about data sharing, but it goes much further and 
offers a very different view of the future of GIS. In this view spatial data analysis is 
provided by a system of services, some local and some remote, some free and some 
offered for profit. Data similarly may be local, or may be resident on some remote server. 
Location now has many meanings: the location that is the subject of the analysis; the 
location of the user; the location where the data is stored; and the location providing the 
analysis service. 
 
Perhaps the most extensive and continuous effort to define the research agenda of 
GIScience, and at the same time the future of GIS, has been the one organized by the 
University Consortium for Geographic Information Science (UCGIS). Its original ten-
point agenda (UCGIS, 1996) laid out a series of fundamental research topics that 
included advances in spatial data analysis with GIS; extensions to GIS representations; 
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and uncertainty. The list has subsequently been extended, and can be found at the UCGIS 
Web site (http://www.ucgis.org). Visualization has been added to the list, as has 
ontology, interpreted here as the abstract study of the more abstract aspects of 
representation.  
 
3.1.3 Continuing methodological issues 
 
The growth of GIS has led to a massive popularization of spatial methods, and to a much 
wider appreciation for the value of the older disciplines of geography and regional 
science. The general public now routinely encounters solutions to the shortest path 
problem in the driving directions provided by sites like MapQuest, and routinely makes 
maps of local areas through sites that implement Web-based mapping software. GIS is in  
many ways where spatial data analysis finds societal relevance, and where the results of 
scientific research are converted into policy and decisions (Craig, Harris, and Weiner, 
2002). Powerful tools of GIS are now in the hands of hundreds of thousands of users, 
many of whom have had no exposure to the theory that lies behind spatial data analysis. 
As a result it is easy to find instances of misuse and misinterpretation, and cases of 
conflict between GIS use and the principles of science.  
 
Mention has already been made of the issue of uncertainty. It is easy for system designers 
to express numerical data in double precision, allowing for 14 decimal places, and for 
output from a GIS to be expressed to the same precision. But in reality there are almost 
no instances where anything like 14 decimal places is justified by the actual accuracy of 
the data or calculations. The time-honored principle that results should be presented to a 
numerical precision determined by their accuracy is too easy to ignore, and the fact that 
results appear from a digital computer all too often gives them a false sense of authority. 
 
Another time-honored principle in science concerns replicability, and requires that results 
always be reported in sufficient detail to allow someone else to replicate them. Yet this 
principle also runs into conflict with the complexity of many GIS analyses, the 
proprietary nature of much GIS software, and the tedium of writing extensive and 
rigorous documentation. 
 
In this and other respects GIS lies at the edge of science, in the grey area between precise, 
objective scientific thinking and the vague, subjective world of human discourse. It 
brings enormous potential benefits in its ability to engage with the general public and 
with decision-makers, but at the same time presents risks in misuse and misinterpretation. 
In some domains, such as surveying, the historical response has been professionalism – 
the licensing of practitioners, and other restrictions on practice – but to date efforts to 
professionalize GIS practice have been unsuccessful, in part because the use of GIS in 
scientific research requires openness, rather than restriction. 
 
3.2 In spatial data analysis 
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We overview some of the current areas of research interest in the methodology of spatial 
data analysis. We follow this with a discussion of some new application-based spatial 
modeling and the implications of this for the future development of spatial data analysis. 
 
3.2.1 Methodology and technological development 
 
Certain spatial regression models have dominated the regional science literature to date: 
the regression model with spatially correlated errors; the regression model with spatially 
averaged (or lagged) independent or predictor variables; the regression model with a 
spatially averaged (or lagged) response variable. Each model represents some specific 
departure from the usual, traditional regression model in which relationships between a 
response and its covariates are defined vertically. By “vertical” is meant that the response 
in the ith area is only a function of the level of predictors in i. There is no reason however 
to assume this vertical structure to relationships in the case of spatial data. This is because 
underlying processes do not usually recognize the artificial spatial units (e.g., census 
tracts) in terms of which observations have been collected – unlike for example a series 
of separate and independent replications of an experimental situation. The inherent 
continuity of geographic space in relation to the spatial framework used to capture that 
variation and the ways in which processes play out across geographic space has led to a 
strong interest in spatialized versions of the traditional regression model - as well as other 
variants (see Haining, 2003, for a fuller review of models). 
 
To illustrate some recent developments consider the following example. The regression 
model with a spatially lagged response variable has been used to model outcomes on the 
assumption that levels of the response variable in one area might be a function of levels 
of the response variable in neighboring areas (this model has been used to analyze 
competition effects and some types of diffusion and interaction processes).  Models of 
this type are illustrated in (2.3) and (2.5). However this approach is problematic for some 
types of data, especially some types of count data where parameter restrictions prohibit 
the application of the models to realistic situations (see for example Besag, 1974). There 
is a second problem. The parameters of interest (the mean in the case of a Gaussian 
process; the probability of a success in the case of a logistic or binomial process; the 
intensity parameter in the case of a Poisson process) are assumed to be unknown but 
constant. The problem is to obtain the best estimate of the parameter and to place 
confidence intervals on it (in practice it is not the mean or the intensity parameter that is 
of interest of course but rather the parameters of the regression function, each associated 
with a covariate). Why should these parameters be treated as if they were fixed values to 
be estimated, rather than as random quantities? 
 
In disease modeling the parameter of interest, for any set of areas, is usually the 
underlying relative risks of the incidence, prevalence, or mortality of some specified 
disease. In offense-data modeling the parameter of interest is the underlying area-specific 
relative risks of being the victim of some specified offense (e.g., burglary).  
 
Let Z(i) = O(i) denote the number of deaths observed in area i during a specified period 
of time of a rare but non-infectious disease. It is assumed that O(i) is obtained from the 
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Poisson distribution with intensity parameter λ(i) = E(i)r(i). Now E(i) denotes the 
expected number of deaths from the disease in area i given the age and sex composition 
of the area and r(i) is the positive area-specific relative risk of dying from the disease in 
area i and is the parameter of interest. 
 
One approach to estimating {r(i)} is to assume they are drawn from a probability 
distribution called, in Bayesian terminology, the prior distribution. Two types of random 
effects models are often considered: one where the random variation of the {r(i)} is 
spatially unstructured, the other where it is spatially structured (Mollié, 1996). 
 
Consider the case where spatially structured and unstructured random effects are included 
in the model. So suppose: 
 

log(r(i)) = µ + v(i) + e(i)     (3.1) 

where v(i) is the spatially structured and e(i) is the spatially unstructured random 
variation. The {e(i)} is a Gaussian white-noise process. The {v(i)} and hence the 
{log[r(i)]} can be assumed to be drawn from a Gaussian Markov random-field prior 
similar to (2.3). For this class of model, "the conditional distribution of the relative risk in 
area i, given values for the relative risks in all other areas j≠i, depends on the relative risk 
values in the neighboring areas N(i) of area i. Thus in this model relative risks have a 
locally dependent prior probability structure" (Mollié, 1996, p.365). Note that spatial 
dependence is specified on the parameters of interest {log[r(i)]}, not the observed counts 
{O(i)}, although the latter will inherit spatial dependence from their dependence on the 
{log[r(i)]}. 
 
A model for pure spatially structured variation of relative risk is provided by the intrinsic 
Gaussian autoregression, a limiting form of a conditional autoregressive model (2.3), 
with a single dispersion parameter κ2 (Besag et al., 1991). In this model if a binary 
connectivity or weights matrix (W) is assumed (w(i,j) = 1 if i and j are neighbors, 0 
otherwise) then: 
 

                     E[v(i)| {v(j)}, j∈N(i), κ2] = Σj=1,..,n w*(i,j) v(j)              (3.2) 
     

                         Var[v(i)| {v(j)}, j∈N(i), κ2] = κ2/Σj=1,..,n w(i,j)                 (3.3) 
 

where W* denotes the row-standardized form of W. So the conditional expected value of 
the log relative risk of area i is the average of the log relative risks in the neighboring 
areas. The conditional variance is inversely proportional to the number of neighboring 
areas. If we further write: 
 

log(r(i)) = µ(i) + v(i) + e(i)     (3.4) 

µ(i) = β0 + β1X1(i) + β2X2(i) + ….+ βkXk(i)   (3.5 
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then spatial variation in the (log) relative risk is modeled as a function of predictors 
(X1,X2,..….Xk) as well. Other spatial models can be used to represent the spatially 
structured random effects in the distribution of the {r(i)}. 
 
The approach that is used for fitting and inference in these models is Markov Chain 
Monte Carlo (MCMC) simulation. MCMC is a class of simulation algorithms for 
obtaining samples from the required posterior distributions of model parameters. Large 
samples are drawn from this posterior distribution and then properties such as the 
posterior mean or mode or quantiles are obtained by Monte Carlo integration on the 
marginal distributions of the parameters of interest. MCMC using the special case of the 
Gibbs sampler is used in the WinBUGS software. Casella and George (1992) provide an 
introduction to the Gibbs sampler, and Gelman et al. (1995; chapter 11) compare the 
different algorithms.   
 
It is likely that in the future there will be a broader and richer range of statistical models 
through which to represent spatial variation. This will be important. The purpose of 
statistical modeling is to enable researchers to test hypotheses by embedding these 
hypotheses in valid representations of the statistical properties of the data. All models, by 
virtue of the simplifications they introduce, are wrong but some models are useful. Poor 
models do not provide valid tests of hypotheses and so are not useful. To date spatial 
modelers have only had a very limited class of models to work with. As the class of 
spatial models expands, analysts will be able to test hypotheses through models that 
better represent the underlying variation in the data.  
 
We now consider two areas of technological development that have implications for the 
future conduct of spatial data analysis. First, as the resolution of spatial data increases, as 
a result of improvements in the collection and storage of spatial data, opportunities are 
created for more flexible spatial aggregations and for spatial frameworks that are more 
relevant to the problem under study. But greater spatial precision does not automatically 
mean better statistical precision, and hence better representations of some forms of spatial 
variation through maps (such as relative risk rates, unemployment rates, offense rates, 
environmental parameters). This stems from the effects of the small-number problem 
(when recording data at fine spatial scales) and the implications this has for mapping, 
describing spatial variation, and undertaking inference. The methodology described 
above is one of the ways that are increasingly being used to provide better maps based on 
small-area data made possible by advances in data collection, whether by sample surveys 
or census taking. The specification of the prior distribution (on the {r(i)} for example) 
determines how information from elsewhere on the map is borrowed for the purpose of 
strengthening small-area estimates of parameters of interest. The more spatially fine-
grained the data the more important it becomes to find ways to deal with the high levels 
of stochastic variation in the data. This is one of the ways that advances brought about 
through better, more fine-grained data collection and to GIS as the medium for data 
storage raise challenges for the conduct of statistical analysis. 
 
Second, the e-science vision of science, that includes social and environmental science, is 
of a globally connected community of scholars and their resource needs interacting 
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through virtual co-laboratories. One implication of this is the need for an information 
technology to support this where data, users and analysis services are spatially distributed 
(see also 3.1.2) . This will include shared access to large computing resources, large data 
archives, and data visualization techniques, and remote access to specialized facilities. 
The spatial analysis implication is not only for the development of appropriate numerical 
and visualization tools that can handle very large data sets, but in addition intelligent 
support systems to assist the analyst in all aspects of data handling and facilitating the 
extraction of useful information. Spatial analysis will move from only dealing with small 
regions or local scales of analysis (or large regions but at a coarser resolution) to larger 
scales of analysis. This in turn draws in problems of severe non-stationarity and complex 
patterns of association that need to be allowed for. In brief, a computationally intensive or 
demanding GIS requires analytical methods to support that scale of analysis. Modeling 
complex spatial structures calls for multi-level and multi-textured quantitative spatial data 
analysis. This calls for methods of spatial statistical and spatial mathematical modeling 
and complex forms of simulation that are enabled by improvements in computing power. 
 
3.2.2 Applications and approaches to modeling 
 
The methods of spatial data analysis have been developed for, and implemented in, many 
different contexts. In early applications spatial models were used to assess competition 
effects, as measured by yield, between plants grown a fixed distance apart (e.g., Mead, 
1967; Whittle, 1954). Cliff and Ord (1973, 1981) used autocorrelation statistics so they 
could test the fit of Hagerstand-type spatial diffusion models to real data. Haining (1987) 
used unilateral spatial autoregressions to estimate population and income multipliers for 
towns organized in a central place system. Anselin (1988), treating the field as a branch 
of econometrics (spatial econometrics), developed a statistical modeling strategy, with 
software to implement the methodology (Spacestat) that follows the strategy used in 
certain forms of time-series econometric modeling. There are numerous examples of the 
use of spatial regression modeling in a wide variety of fields (see for example Haining, 
1990, 2003). 
 
Spatial modeling is undergoing its own shifts of emphasis and bringing with it new 
challenges for spatial data analysis as to how to assess correspondence between model 
output and real data. We illustrate this point with reference to two examples. 
Approaches to understanding regional growth in the 1960s and 70s focused on the role of 
the export sector. Modeling was based on pre-defined regions between which factors of 
production would move as well as flows of goods. Regional econometric and input-
output modeling were the analytical structures that implemented a top-down approach in 
which inter- and intra-regional relationships were specified usually in terms of large 
numbers of parameters. 
 
Economists' new economic geography is concerned with regional growth and with 
understanding how the operation of the economy at regional scales affects national 
economic performance (Krugman, 1995; Porter, 1998) and trade (Krugman, 1991). A 
central feature of Krugman's modeling is the "tug of war between forces that tend to 
promote geographical concentration and those that tend to oppose it - between 
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'centripetal' and 'centrifugal' forces" (Krugman, 1996). The former includes external 
economies such as access to markets, and natural advantages. The latter includes external 
diseconomies such as congestion and pollution costs, land rents, and immobile factors. At 
the centre of new economic geography models is a view of the space economy as a 
complex, self-organizing, adaptive structure. It is complex in the sense of large numbers 
of individual producers and consumers. It is self organizing through invisible hand-of-
the-market processes. It is adaptive in the sense of consumers and producers responding 
to changes in tastes, lifestyles, and technology, for example. The new economic 
geography is based on increasing returns from which spatial structure is an emergent 
property (Waldrop, 1992). Model outputs are characterized by bifurcations so that shifts 
from one spatial structure to another can result from smooth shifts in underlying 
parameters.  
 
Krugman's deterministic models appear to share common ground, conceptually, with 
multi-agent models used in urban modeling. In multi-agent models active autonomous 
agents interact and change location as well as their own attributes. Individuals are 
responding not only to local but also to global or system-wide information. Spatial 
structure in the distribution of individuals is an emergent property, and multi-agent 
models, unlike those of the regional approach to urban modeling developed in the 1970s 
and 1980s, are not based on pre-defined zones and typically use far fewer parameters 
(Benenson, 1998). 
 
These stochastic models have been used to simulate the residential behaviour of 
individuals in a city. They have evolved from cellular automata modeling approaches to 
urban structure, but describe a dynamic view of human interaction patterns and spatial 
behaviors (Benenson, 1998; Xie, 1996). In Benenson's model the probability of a 
household migrating is a function of the local economic tension or cognitive dissonance 
the household experiences at its current location. The probability of moving to any vacant 
house is a function of the new levels of economic tension or cognitive dissonance that 
would be experienced at the new location.  
 
A point of interest with both multi-agent and cellular automata models is how complex 
structures, and changes to those structures, can arise from quite simple spatial processes 
and sparse parameterizations (Batty, 1998; Benenson, 1998; Portugali et al., 1994; White 
and Engelen, 1994). The inclusion of spatial interaction can lead to fundamentally 
different results on the existence and stability of equilibria that echo phase transition 
behavior in some physical processes (Follmer, 1974; Haining, 1985). It is the possibility 
of producing spatial structure in new parsimonious ways together with the fact that the 
introduction of spatial relationships into familiar models can yield new and in some cases 
surprising insights, that underlies the current interest in space in certain areas of thematic 
social science. This interest, as Krugman (1996) points out, is underpinned by new areas 
of mathematics and modern computing that make it possible to analyze these systems. 
 
Local-scale interactions between fixed elementary units, whether these are defined in 
terms of individuals or small areas, can affect both local and system-wide properties. This 
effect is also demonstrated through certain models of intra-urban retailing where pricing 
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at any site responds to pricing strategies at competitive neighbors (Haining et al., 1996; 
Sheppard et al., 1992). Multi-agent modeling adds another, system-wide level to the set 
of interactions, allowing individuals to migrate around the space responding to global and 
local conditions in different segments of the space. 
 
All of these forms of modeling raise questions about how model expectations should be 
compared with observed data for purposes of model validation, so that validation is based 
on more than the degree of visual correspondence with real patterns. One aspect involves 
comparing the spatial structure generated by model simulations with observed spatial 
structures, and this calls directly for methods of spatial data analysis.   
 
In terms of the technology of data acquisition, in terms of the storage and display of data 
using GIS, and in terms of modeling paradigms there is an increasing focus on the micro-
scale. In terms of the way science is conducted there is an increasing focus on inter-
disciplinarity, collaboration, and communication across traditional boundaries. Spatial 
data analysis will over the coming years be responding to changes in this larger picture.  
 
4. CONCLUDING COMMENTS 
 
We began this review with comments about the differences between the world views 
represented by GIS and spatial data analysis, and with a discussion of their different 
roots. The past 40 years show ample evidence of convergence, as the two fields have 
recognized their essential complementarity. As science moves into a new era of 
technology-based collaboration and cyberinfrastructure, exploiting tools that are 
becoming increasingly essential to a science concerned with understanding complex 
systems, it is clear that GIS and spatial data analysis need each other, and are in much the 
same relationship as exists between the statistical packages and statistics, or word 
processors and writing. It is more and more difficult to analyze the vast amounts of data 
available to regional scientists, and to test new theories and hypotheses without 
computational infrastructure; and the existence of such infrastructure opens possibilities 
for entirely new kinds of theories and models, and new kinds of data. 
 
The two perspectives have also done much to stimulate each other's thinking. GIS is 
richer for the demands of spatial data analysis, and spatial data analysis is richer for the 
focus that GIS has brought to issues of representation and ontology. The whole-map, 
nomothetic approach to science is giving way to a new, place-centered approach in which 
variations over the Earth's surface are as potentially interesting as uniformity. The view 
of GIS as an intelligent assistant is giving way to a new view of GIS as a medium of 
communication, in which spatial data analysis is one of several ways of enhancing the 
message. 
 
GIS is in many ways the result of adapting generic technologies to the particular needs of 
spatial data. In that sense its future is assured, since there is no lack of new technologies 
in the pipeline. New technologies have also stimulated new science, as researchers have 
begun to think about the implications of new data sources, or new technology-based 
activities. These in turn have stimulated new kinds of analytic methods, and new 
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hypotheses about the geographic world. The process of stimulus and convergence that 
began in the 1960s with GIS and spatial data analysis is far from complete, and the 
interaction between them is likely to remain interesting and productive for many years to 
come. 
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