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1 Introduction

Trapezoid graphs are intersection graphs of trapezoids between two horizontal lines. They generalize
both interval graphs and permutation graphs. Interval graphs are intersection graphs of intervals
on the real line. Permutation graphs are intersection graphs of straight lines between two horizontal
lines. They can be represented by a permutation diagram consisting of a pair of horizontal lines (a
channel) where each line has n points. The points of one line are numbered from 1 to n and the
points of the other line are numbered by a permutation of (1,2,...,n). The graph has n vertices
v1,v2,...,V, and vertices v; and v; are adjacent if and only if the line joining two 4 points intersect
(cross) the line joining two j points. Figure 1 shows a permutation graph and a permutation
diagram for it.

Trapezoid graphs generalize these two graph classes by replacing points with intervals in the
permutation diagram. The vertices v; and v; are adjacent if and only if the trapezoid joining the
two intervals of ¢ intersect the trapezoid joining the two intervals of j. In next section we define
trapezoid graphs more precisely, present some equivalent characterization for them, and show an
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Figure 1: A permutation graph and a permutation diagram for it.
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Figure 2: A trapezoid graph G.
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Figure 3: A trapezoidal representation for graph G shown in figure 2.

application of them in channel routing problems of VLSI design. Relationship of trapezoid graphs
to other graph classes are studied in section 3. In section 4 we discuss algorithms for trapezoid graph
recognition. Section 5 contains information about some well-known problems that have efficient
algorithms on trapezoid graphs.

2 Trapezoid graphs

In this section we introduce three equivalent characterizations of trapezoid graphs and show an
application of these graphs. Informally, they are intersection graphs of a finite set of trapezoids
between two parallel lines.

Definition 1 A graph G is a trapezoid graph if there exists a set of trapezoids between a pair of
horizontal lines such that for each vertez v; of G there is a trapezoid T; and there is an edge (v;,vj)
if and only if T, NT; # ¢. We call this family of trapezoids a trapezoidal representation for G.
Each trapezoid T; has an interval I = [a;, b;] on the upper line and one interval I} = [¢;,d;] on the
lower line.

A trapezoid graph G is shown in figure 2. Figure 3 shows a trapezoidal representation for G.
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Figure 4: A box representation for trapezoid graph G shown in figure 2.

Trapezoid graphs were introduced by Dagan et al. [DGP88]. Corneil and Kamula [CK87]
independently introduced the same class but they refer to them as II (interval-interval) graphs.
Felsner, Muller, and Wernisch [FMW94] introduced an equivalent characterization (representation)
for trapezoid graphs. For two points P; = (x1,y1) and P, = (x2,y2) in plane we say P; is dominated
by P, denoted by Pi < Ps, if 1 < x9 and y; < y2. A box b in plane is the set of points
{(z,y) € R? : Iy <o < wuy,ly <y < ug} where L = (I1,13) is the lower corner and U = (uy,us) is
the upper corner of b. A box b; dominates a box bs if the lower corner of b; dominates the upper
corner of by. Two boxes are comparable if one of them dominates the other. Otherwise they are
incomparable. Now we have the following definition for trapezoid graphs.

Definition 2 A graph G is a trapezoid graph if there exists a set of boxes in plane such that for each
vertex v; of G there is a box by and there is an edge (v;,v;) if and only if b; and bj are incomparable.
We call this family of boxes a box representation for G.

A box representation of graph G is shown in figure 4.

To observe that these two definitions are equivalent, map lower and upper lines in the trapezoidal
representation to the x-axis and the y-axis in the box representation, respectively. Now for each
vertex v;, Il = [c;,d;] lies on the x-axis and I = [a;, b;] lies on the y-axis. These two intervals
define an axis-parallel box b; whose projection on the x-axis and the y-axis coincides with If and
I}, respectively. Two boxes b; and b; are incomparable if and only if T; N T; # ¢. So these two
definitions are equivalent.

Next we show another equivalent characterization for trapezoid graphs, but first we need some

definitions.

Definition 3 A partially ordered set (poset) P = (A, <) is an interval order if we can map each
element a € A to an interval I, of the real line such that x < y if and only if I, < I, i.e. I, is
totally to the left of I,. The interval order dimension of a poset P, denoted by iodimm(P) is the
minimum number k of interval orders Py, P, ..., P such that P=P NP,N...N Py, i.e. x <y if
and only if x <y in all interval orders Py, ..., Py.
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Figure 5: A channel and its labeled terminals.

Definition 4 The co-comparability graph of a poset P = (A, <) is a graph G whose vertices corre-
spond to elements of P and (a,b) € E(G) if and only if a and b are incomparable in P, i.e. x £y
and y £ x.

Note that interval graphs are co-comparability graphs of interval orders. Now we are ready to
describe another equivalent characterization for trapezoid graphs.

Theorem 1 [DGP88] A graph G is a trapezoid graph if and only if it is the co-comparability graph
of a poset P with iodim(P) < 2.

Proof: The proof of this theorem is straightforward. We present the proof idea for one direction,
the proof of other direction is similar. Assume that G is a trapezoid graph. Consider an arbitrary
trapezoidal representation of G. Define interval orders P; and P, corresponding to the intervals on
the upper and lower line, respectively. Finally consider poset P = Py NP, and show that T;NT; = ¢
if and only if (I} < I} and I} < I!) or (I} < I}* and I} < I},). The complete proof can be found
in [DGP8S]. O

Now we describe an application of trapezoid graphs in VLSI circuits design. We have a pair of
horizontal lines called channel and some points along them called terminals or ports. Each terminal
has an integral number between 1 and n as its label. All terminals with the same label constitute
a net. A channel and its terminals are shown in figure 5. In the channel routing problem we want
to connect all terminals of each net so that no two nets intersect. Routing all nets in a single layer
is not always possible. In the multi-wire model we can use several layers but each net should use
only one layer, i.e. no layer changes is allowed along the wires connecting a net. The problem
is to find the minimum number of layers needed to connect all nets. We can model this problem
using trapezoid graphs. Each net can be modeled by a trapezoid that connects rightmost and
leftmost terminals of that net on two horizontal lines. The channel of figure 5 can be modeled by
the trapezoid graph shown in figure 2. One can show [DGP88] that two nets can be routed without
intersection in the same layer if and only if their corresponding trapezoids do not intersect. Thus
the minimum number of required layers equals to minimum number of colors needed to color the
corresponding trapezoid graph.
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Figure 6: An incomplete orientation for graph G' shown in figure 2.

3 Relationship to other graph classes

In this section we first study the relationship of trapezoid graphs to some other graph classes and
then introduce some other graphs that are very similar to trapezoid graphs.

3.1 Relationship to other graph classes

We introduced trapezoid graphs as generalization of both interval and permutation graphs. Now
we show that trapezoid graphs strictly include these two graph classes. For permutation graphs
consider the case where on both horizontal lines no two intervals intersect. In this case each interval
can be considered as a point and each trapezoid as a straight line. Thus each permutation graph is a
trapezoid graph. Interval graphs can be obtained in the case where a; = ¢; and b; = d; for each v; €
V(G), i.e. one horizontal line is the mirror image of the other. In this case two trapezoids intersect
if and only if their corresponding intervals on the upper line (lower line) intersect. Therefore each
interval graph is a trapezoid graph. Figure 2 shows a trapezoid graph G that is neither an interval
graph nor a permutation graph. A trapezoidal representation for G is shown in figure 3. Therefore
G is a trapezoidal graph. G is not an interval graph because it contains Cy as an induced subgraph
and we know that interval graphs are chordal. We use the following lemma to show that G is not
a permutation graph.

Lemma 1 [PLE71] A graph G is a permutation graph if and only if G and G are comparability
graphs.

So it suffices to show that G is not a comparability graph. To prove this, assume for contradiction
that it has a transitive orientation. (vg,vs) can be oriented either vg — v5 or vs — vg. We consider
the case that it is oriented vg — wvg, the other case is similar. Now (vs,v4) ((vs,v1)) should be
oriented vy — v5 (v1 — v3), for if it were oriented vs — v4 (vs — v1), then by transitivity we would
have to have edge vg — v4 (vg — v1) but there is no such edge. Then by symmetry we may assume
that (v1,v4) is oriented vy — v4. Figure 6 shows orientations we have done so far. But now we
cannot orient (v3,vy). For if we have v3 — vy then transitivity implies an edge vs — v5, which does
not exist, and if we have v4 — v3 then transitivity implies an edge v1 — v3, which does not exist.
Contradiction, so the graph is not a comparability graph. Thus we have the following result.



Theorem 2 Trapezoid graphs strictly contain interval graphs and permutation graphs.

Theorem 1 shows that trapezoid graphs are co-comparability graphs. We know that co-
comparability graphs are perfect. So trapezoid graphs are perfect. Corneil and Kamula [CK87]
showed that trapezoid graphs are contained in both the class of asteroidal triple free graphs and
the class of weakly chordal graphs.

Definition 5 An asteroidal triple in a graph G is a set of three pairwise non-adjacent vertices of
G such that any two can be connected by a path that avoids the neighborhood of third. A graph that
contains no asteroidal triple is called an asteroidal triple free graph.

Theorem 3 [CK87] Trapezoid graphs do not contain an asteroidal triple.

Definition 6 A graph G is weakly chordal if it has no induced subgraph isomorphic to Cj or Cj
for any k > 5.

Theorem 4 [CK87] Trapezoid graphs are strictly contained in the weakly chordal graphs.

If both G and G are trapezoid graphs then theorem 1 implies that both of them are comparability
graphs and so according to lemma 1 they are permutation graphs.

3.2 Friends of trapezoid graphs

There are several graph classes that are very similar to trapezoid graphs. We briefly introduce
some of them. PI graphs and PI* graphs were introduced by Corneil and Kamula [CK87]. They
are intersection graphs of triangles between two horizontal lines. In PI (point-interval) graphs
each triangle has a point on the upper line and an interval on the lower line while in PI* graphs
each triangle has a point on lower or upper line and an interval on the other line. So PI graphs
are generalization of permutation graphs and interval graphs, PI* graphs are generalization of
PI graphs, and trapezoid graph are generalization of PI* graphs. It is shown in[CK87] that all of
these containments are strict. Simple trapezoid graphs are another class of similar graphs that were
introduced by Lin [Lin02] as intersection graphs of straight lines (sticks) and rectangles (blocks)
between two horizontal lines. In these graphs each vertex is represented by either a straight line or
a rectangle and two vertices intersect if and only if their corresponding lines or rectangles intersect.
Therefore simple trapezoid graphs are generalization of both permutation (only sticks) and inter-
val (only blocks) graphs. Lin [Lin02] has shown that there is no relationship between PI graphs
and simple trapezoid graphs. Parallelogram graphs are another subgraph of trapezoid graphs and
are defined as intersection graphs of parallelograms between two horizontal lines. Bogart et al.
[BFIL95] showed that parallelogram graphs are exactly bounded tolerance graphs.

We can also generalize the concept of trapezoid graphs.

Definition 7 [Flo95] Let m be a positive integer. Consider m + 1 parallel lines g1,92,- -, Gm+1,
where the g; are indexed according to their ordering. On g; there is given a closed interval [a;,b;].

These intervals determine an m-trapezoid on gi,go, ..., gm+1, i.€. the interior of closed polygon
a1y .y Amt1,Oms1, ..., 01. A graph G = (V, E) is called an m-trapezoid graph if and only if there
exists a family (Ty)vev of m-trapezoids on gi,...,gm+1 holding the following condition: (u,v) €

E << T,NT, # ¢. (Ty)vev is said to be an m-trapezoid representation.



The graph is independent from the ordering of m + 1 parallel lines g; [Flo95]. The class of 0-
trapezoid graphs is exactly the class of interval graphs. The class of 1-trapezoid graphs is exactly
the class of trapezoid graphs. Flotow [Flo95] has proved the following results about m-trapezoid
graphs.

Theorem 5 The class of m-trapezoid graphs is exactly the class of co-comparability graphs of an
order P with interval dimension less than or equal to m + 1.

Theorem 6 Given a co-comparability graph G, there exists a positive integer m such that G is an
m-trapezoid graph.

Circle-trapezoid graphs were introduced by Felsner et al. [FMW94] as a generalization of trapezoid
graphs, circle graphs, and circular-arc graphs.

Definition 8 A circle-trapezoid is the region between two non-crossing chords of a circle. Alter-
natively, it is the convex hull of two disjoint arcs on the circle. Clircle-trapezoid graphs are the
intersection graphs of families of circle-trapezoids on a fized circle.

4 Trapezoid graph recognition

Cogis [Cog82| developed a polynomial time algorithm for the recognition of posets with interval
dimension two. Ma and Spinrad [MS94| refined that algorithm and use theorem 1 to develop a
O(n?) time recognition algorithm for trapezoid graphs. This algorithm is currently the fastest
trapezoid graph recognition algorithm. Cheah and Corneil [CC96] developed a O(n?) recognition
algorithm that also produce a trapezoidal representation for trapezoid graphs. They introduced an
operation called vertex splitting that transforms trapezoid graphs to permutation graphs satisfying
a specific condition. The recognition algorithm tests whether the resulting permutation graph
satisfies the condition. Although this algorithm is slower, it is completely graph theoretical and
can be easily implemented.

The problem of efficient recognition of PI graphs, PI* graphs, and simple trapezoid graphs is
open. Yannakakis [Yan82] proved that for a given poset P and m > 3, the problem of deciding
whether iodim(P) = m is NP-complete. Thus theorem 5 implies that problem of recognition
m-~trapezoid graphs is NP-complete for m > 2.

5 Problems on trapezoid graphs

Several important graph problems that are NP-hard in general case have polynomial time algorithms
for trapezoid graphs. We describe outline of two algorithms for coloring problem and summarize
the results for several other problems.

5.1 Coloring

We have studied an application for finding chromatic number of trapezoid graphs in section 2.
Finding the chromatic number is N P-hard for arbitrary graphs and takes O(n?%) time for co-
comparability graphs. It has more efficient algorithms for trapezoid graphs. Historically the first
algorithm for trapezoid graphs was the coloring algorithm developed by Dagan et al. [DGP88]. This



algorithm receives a trapezoidal representation of a trapezoid graph G and finds the chromatic
number and a valid coloring for G. The algorithm takes O(nk) time where k is the chromatic
number of G. It is a simple greedy algorithm that considers trapezoids from left to right according
to their top left corner. First the set of used colors is empty. As the algorithm proceeds, it maintains
a trapezoid Tina.(j) for each color j. Tiuax(j) is a trapezoid with color j that has the rightmost
bottom right corner among all previous trapezoids with color j. For each trapezoid 7; it first finds
all the previous colors that can be used by T;. Note that a color j can be used by T if and only
if Thnaw(§) NT; = ¢. If there is no such color it assigns a new color h to T; and sets Tpaq(h) = T;.
Otherwise it selects an available color ¢ for which T},4,(c) has the rightmost bottom right corner,
colors T; with ¢, and sets Tina.(c) = T;. Dagan et al. [DGPS88] proved that this obtains the
minimum coloring by showing that G have a clique of the same size.

Felsner et al. [FMW94] developed an O(nlgn) algorithm for finding the chromatic number.
They use a box representation of the trapezoid graph G (see definition 2). Based on the given
box representation we can define a trapezoid order whose elements are the given boxes and for two
boxes b; and by we have by < by if and only if by is dominated by by. A set of mutually comparable
elements of an order is a chain and a set of mutually incomparable elements is an antichain. As we
discussed in section 2 two boxes are incomparable if and only if the corresponding vertices of the
trapezoid graph are joined. So a minimum coloring of G is a minimum chain partition of G. The
algorithm uses a sweep line technique which is widely used in computational geometry problems.
The sweep line is a vertical line L that goes from left to right and is initialized with a dummy point
d such that d is below all points of all boxes. Event points are lower and upper corners of boxes in
given box representation. The sweep line L maintains the maximal elements of the chains of this
partition ordered by y-coordinate. For each event point p depending on whether it is a lower corner
or an upper corner, some specific computations are done and L is updated appropriately. Felsner
et al. [FMW94] proved that this algorithm finds a minimum chain partition of the given trapezoid
order in time O(nlgn). Thus a minimum coloring of G can be found in this time.

5.2 Dominating set and related problems

In this subsection we consider the dominating set problem and its variants. They have many
applications in areas like bus routing, radio broadcast, coding theory, and communication networks.

Definition 9 A dominating set of a connected undirected graph G = (V, E) is a subset S of V
such that every vertex not in S is adjacent to at least one vertex in S. A dominating set S is
connected or independent if the subgraph induced by S is connected or has no edge, respectively.
An independent dominating set S is efficient if every vertexr not in S is adjacent to exactly one
verter of S. A minimum cardinality dominating set is a dominating set with the minimum number
of vertices. If graph G is weighted, i.e. each vertex v € V is associated with a real w(v), we define

the weight of S as >, cqw(v).

According to this definition we have several domination problems. Finding minimum cardinality
connected dominating set is N P-hard in arbitrary graphs. Liang [Lia95] presented an O(m + n)
time algorithm for solving this problem in trapezoid graphs and Kohler [Koh00] improved this
result by developing an O(n) time algorithm. Both of these algorithms require that a trapezoidal
representation for G is given as input. Finding minimum cardinality dominating clique is N P-hard
in co-comparability graphs [KS93]. Kohler [Koh00] presented a O(n+m) time algorithm that solves
the problem in trapezoid graphs provided that a trapezoidal representation is given.



Weighted dominating set problem tries to find a minimum weight dominating set in a weighted
graph. This problem is N P-hard for co-comparability graphs [Cha97]. Liang [Lia94] showed that
it can be solved in O(nm) time for trapezoid graphs. Lin [Lin98] developed two O(nlgn) time
algorithms that find minimum weighted independent dominating set and minimum weighted efficient
dominating set in trapezoid graphs.

5.3 Other problems

Consider the definition of trapezoid order in subsection 5.1. Assume that G is a trapezoid graph
and P is its corresponding trapezoid order. The following results are implied by this definition.
A mazimum weighted clique in G is a maximum weighted antichain in P. A maximum weighted
independent set in G is a maximum weighted chain in P. A minimum clique cover is a minimum
antichain partition of P. Felsner et al. [FMWO94] developed an algorithm that uses a sweep line
and simultaneously computes a maximum weighted independent set and a minimum clique cover of
a trapezoid graph G in O(nlgn) time provided that a box representation of G is given. They also
developed a similar algorithm that computes a maximum weighted clique of G in O(nlgn) time.
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